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Abstract

In this paper, we establish analyticity of the Navier–Stokes equations with

small data in critical Besov spaces Ḃ
3
p −1
p,q . The main method is Gevrey estimates,

the choice of which is motivated by the work of Foias and Temam (Contemp
Math 208:151–180, 1997). We show that mild solutions are Gevrey regular, that

is, the energy bound ‖e
√

tΛv(t)‖E p < ∞ holds in E p := L̃∞(0, T ; Ḃ
3
p −1
p,q ) ∩

L̃1(0, T ; Ḃ
3
p +1
p,q ), globally in time for p < ∞. We extend these results for the intri-

cate limiting case p = ∞ in a suitably designed E∞ space. As a consequence of
analyticity, we obtain decay estimates of weak solutions in Besov spaces. Finally,
we provide a regularity criterion in Besov spaces.
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1. Introduction and Statement of Main Results

It is well-known that regular solutions of many dissipative equations, such as
the Navier–Stokes (NS) equations, the Kuramoto–Sivashinsky equation, the surface
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quasi-geostrophic equation and the Smoluchowski equation are in fact analytic, in
both space and time variables [4,14,18,36,49]. In fluid dynamics, the space ana-
lyticity radius has an important physical interpretation: at this length scale the
viscous effects and the (nonlinear) inertial effects are roughly comparable. Below
this length scale the Fourier spectrum decays exponentially [13,17,27,28]. In other
words, the space analyticity radius yields a Kolmogorov type length scale encoun-
tered in turbulence theory. At a more practical level, this fact can be used to show
that the finite dimensional Galerkin approximations converge exponentially quickly
in these cases [12]. Other applications of analyticity radius occur in establishing
sharp temporal decay rates of solutions in higher Sobolev norms [39], establishing
geometric regularity criteria for the Navier–Stokes equations, and in measuring the
spatial complexity of fluid flow [24,31,32].

In this paper, we study analyticity properties of the incompressible Navier–
Stokes (NS) equations in R

3. The system of equations is given by

vt + v · ∇v − μΔv + ∇ p = 0, (1.1a)

∇ · v = 0, (1.1b)

where v is the velocity field, p is the pressure, andμ > 0 is the viscosity coefficient,
which for simplicity we set as μ = 1.

Since ∇ · v = 0, we can rewrite the momentum equation (1.1a) by projecting
it onto the divergence-free space. Let P = I d − ∇(−Δ)−1div be the orthogonal
projection of L2 on divergence-free vector fields. By applying P to (1.1a), we obtain

vt + P∇ · (v ⊗ v)−Δv = 0. (1.2)

Formally, we can express a solution v of (1.2) in the integral form:

v(t) = etΔv0 −
t∫

0

[
e(t−s)Δ

P∇ · (v ⊗ v)(s)
]
ds. (1.3)

Any solution satisfying this integral equation is called a mild solution. We can find
it by using a fixed point argument for the function v �→ F(v), where

F(v)(t) = etΔv0 −
t∫

0

[
e(t−s)Δ

P∇ · (v ⊗ v)(s)
]
ds.

The invariant space for solving this integral equation corresponds to a scaling invari-
ance property of the equation. Assume that (v, p) solves (1.1). Then, the same is
true for rescaled functions:

vλ(t, x) = λv(λ2t, λx), pλ(t, x) = λ2 p(λ2t, λx), λ > 0. (1.4)

Under these scalings, L3, Ḣ
1
2 , Ẇ

3
p −1,p and Ḃ

3
p −1
p,q are critical spaces for initial

data (t = 0), that is, the corresponding norms are invariants under these scalings.
One can find various well-posedness results for small data in these critical spaces
in [6,7,9,21,29,30,40].

The goal of this paper is threefold:
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(i) analyticity of mild solutions in critical Besov spaces,
(ii) decay of Besov norms of weak solutions, and

(iii) a new regularity condition in Besov spaces.

More details on these three topics will be presented in Sects. 1.1, 1.2, and 1.3,
respectively.

1.1. Analyticity of Mild Solutions

Let us begin with analyticity results of this paper. Compared to previous works
by [15,23,37] (using iterative derivative estimates), [4] (l p space on T

3), and [25,26]
(complexified equations), we are able to establish analyticity of the Navier–Stokes

equations by obtaining Gevrey estimates in Besov spaces Ḃ
3
p −1
p,q . Specifically, we

will show that a solution v(t) ∈ Ḃ
3
p −1
p,q satisfies

sup
t>0

‖e
√

tΛv(t)‖
Ḃ

3
p −1

p,q

< ∞,

where Λ is the Fourier multiplier whose symbol is given by |ξ |1 =
3∑

i=1

|ξi |. We

emphasize that here Λ ≡ Λ1 is quantified by the l1 norm rather than the usual l2

norm associated with Λ2 := (−Δ) 1
2 . This approach enables one to avoid cumber-

some recursive estimation of higher order derivatives.
In order to explain the main idea, we define V (t) = e

√
tΛv(t). Then, V (t)

satisfies the following equation:

V (t) = e
√

tΛ+tΔv0 −
t∫

0

[
e[√tΛ+(t−s)Δ]

P∇ · (e−√
sΛV (s)⊗ e−√

sΛV (s))
]
ds

= e
√

tΛ+tΔv0

−
t∫

0

[
e[(√t−√

s)Λ+(t−s)Δ]
P∇ · e

√
sΛ(e−√

sΛV (s)⊗ e−√
sΛV (s))

]
ds.

Since e
√

t |ξ |1 is dominated by e−t |ξ |2 for |ξ | � 1, the behavior of the linear term,
e
√

tΛ+tΔv0, closely resembles that of v(t). The estimates of the nonlinear term are
similar to those of v(t) due to the nice boundedness property of the bilinear operator
Bs:

Bs( f, g) = e
√

sΛ(
e−√

sΛ f (s)e−√
sΛg(s)

)
.

As noticed from the above argument, the existence result of v(t) is crucial in estab-
lishing Gevrey regularity. Thus, in Sects. 3 (for p < ∞) and 4 (for p = ∞), we
will first show the existence of a mild solution and then proceed to explain how to
modify the existence proof to obtain Gevrey regularity.
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Compared to previous works in [19,39], which defined Gevrey norms of the
form ‖e

√
tΛ2v(t)‖X with a L2 based space Sobolev space X , the use of Λ instead

ofΛ2 is fundamental for the estimates of Bs in L p based function spaces. A similar
approach using Λ in L p-spaces was taken by [33]. However, our results cover a
larger Besov class of initial data in the full range of p, q ∈ [1,∞], and the same
method can be applied to other dissipative equations; see for example [1,2].

We now present our existence/analyticity results for p < ∞ and p = ∞ sepa-
rately. For notational simplicity, we will suppress the dependence of norms (defined
below) on q.

1.1.1. The Case p < ∞ The existence of global-in-time solutions for small data

in (the homogeneous Besov space) Ḃ
3
p −1
p,q for p < ∞ was proved by Chemin [9].

The result indicates a gain of two derivatives from the maximal regularity of the
heat kernel, which is realized in terms of the function space E p,

E p :=
{

u ∈ S
′ : ‖u‖E p = ‖u‖

L̃∞
t Ḃ

3
p −1

p,q

+ ‖u‖
L̃1

t Ḃ
3
p +1

p,q

< ∞
}
,

where

‖u‖
L̃∞

t Ḃ
3
p −1

p,q

=
⎛
⎝∑

j∈Z

2 j ( 3
p −1)q‖� j u‖q

L∞
t L p

⎞
⎠

1
q

,

and

‖u‖
L̃1

t Ḃ
3
p +1

p,q

=
⎛
⎝∑

j∈Z

2 j ( 3
p +1)q‖� j u‖q

L1
t L p

⎞
⎠

1
q

,

with the usual change for q = ∞ (here and below, Lq
t X denotes Lq([0,∞); X)).

Theorem 1 (Existence [9]). Let 1 � p < ∞, 1 � q � ∞ and v0 ∈ Ḃ
3
p −1
p,q . There

exists a constant ε0 > 0 such that for all v0 ∈ Ḃ
3
p −1
p,q with ‖v0‖

Ḃ
3
p −1

p,q

� ε0, the

NS equations (1.2) admit a global-in-time solution v ∈ E p. Moreover, if q < ∞,

v ∈ C([0,∞); Ḃ
3
p −1
p,q ).

The first result of this paper is showing that solutions of Theorem 1 are, in fact,
analytic in the following sense.

Theorem 2 (Analyticity). There exists a positive constant ε0 > 0 such that for all

v0 ∈ Ḃ
3
p −1
p,q with ‖v0‖

Ḃ
3
p −1

p,q

� ε0, the NS equations (1.2) admit a solution v ∈ E p

such that e
√

tΛv ∈ E p.
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1.1.2. The Case p = ∞ The case of Ḃ−1∞,q data, corresponding to p = ∞, is

much harder because the Navier–Stokes equations are ill-posed in Ḃ−1∞,q for q > 2
[5,22,51]. To circumvent the difficulty in this case, we prove the existence of solu-
tions subject to a restricted class of initial data in Ḃ−1∞,q ∩ Ḃ0

3,∞, 1 � q < ∞. The
corresponding function space is defined as follows.

E∞ :=
{

u ∈ S
′ : ‖u‖E∞ = ‖u‖L̃∞

t Ḃ0
3,∞

+ sup
t>0

[
‖u(t)‖Ḃ−1∞,q

+ t
3
4 ‖u(t)‖

Ḃ
1
2∞,q

]}
.

Compared to the time-integrated gain of two derivatives we had in the case p < ∞,
here we have pointwise-in-time gain of regularity of order 3

2 , which is realized in
E∞.

Theorem 3 (Existence). Let 1 � q < ∞ and v0 ∈ Ḃ−1∞,q ∩ Ḃ0
3,∞. There exists a

constant ε0 > 0 such that for all v0 ∈ Ḃ−1∞,q ∩ Ḃ0
3,∞ with ‖v0‖Ḃ−1∞,q

+‖v0‖Ḃ0
3,∞

� ε0,

the NS equations (1.2) admit a global-in-time solution v ∈ E∞.

Remark 1. We note that one can replace Ḃ0
3,∞ with other auxiliary spaces,

Ḃ
3
p −1
p,∞ , 3 � p < ∞ in Theorem 1. We choose the former because it is closely

related to spaces appearing in the regularity criterion [16] with initial data in L3.
Also, we choose q < ∞ to avoid the embedding Ḃ0

3,∞ ⊂ Ḃ−1∞,∞.

Once we show the existence of a solution of (1.3) in E∞, we can show the fol-
lowing analyticity result along the lines of the proof of Theorem 2 and Theorem 3.

Theorem 4 (Analyticity). There exists a positive constant ε0 > 0 such that for all
v0 ∈ Ḃ−1∞,q ∩ Ḃ0

3,∞ with ‖v0‖Ḃ−1∞,q
+ ‖v0‖Ḃ0

3,∞
� ε0, the NS equations (1.2) admit

a solution v ∈ E∞ such that e
√

tΛv ∈ E∞.

1.2. Decay of Weak Solution

As an application of the analyticity of solutions addressed above, we will esti-
mate decay rates of weak solutions. Most of the decay results have been based on
L2 estimates, as one can see in [38,39,41–45,50]. Here, we obtain the decay of

weak solutions in Besov spaces Ḃ
3
p −1
p,q for all p. Before presenting our result, we

recall the usual notion of a weak solution, v(t) ∈ L∞
t L2 ∩ L2

t Ḣ1, satisfying (1.2)
in the sense of distributions and the additional energy inequality,

‖v(t)‖2
L2 +

t∫

0

‖∇v(s)‖2
L2 ds � ‖v0‖2

L2 .

The fundamental theorem of Leray [35] states the existence of such weak solutions
for initial data v0 ∈ L2 with ∇ · v0 = 0.

We now briefly explain the main idea of the decay estimates: (i) The energy
inequality implies that lim inf

t→∞ ‖v(t)‖Ḣ1 = 0. If we show that Besov norms
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‖v(t)‖
Ḃ

3
p −1

p,q

can be controlled by the Ḣ1 norm, then ‖v(t0)‖
Ḃ

3
p −1

p,q

becomes suf-

ficiently small after a certain transient time t0. (ii) Theorem 2 and Theorem 4 tell

us that if initial data are sufficiently small in critical spaces Ḃ
3
p −1
p,q , then the solu-

tion satisfies the estimate ‖e
√

tΛv(t)‖
Ḃ

3
p −1

p,q

globally in time. Combining these two

observations, we will show the following decay estimates of weak solutions in
Sect. 5.

Theorem 5 (Decay). Let v be a weak solution of the three dimensional Navier–
Stokes equations, subject to initial data v0 ∈ L2 and, in additionω0 = ∇×v0 ∈ L1

in case 1 < p < 2. Then, there exists a time t0 > 0 such that ‖v(t0)‖
Ḃ

3
p −1

p,q

becomes

sufficiently small so that Theorem 2 or Theorem 4 holds for p < ∞ and, respec-
tively, p = ∞. Moreover, the following decay estimate holds for ζ > 0 with
Cζ = ‖Λζ2e−Λ‖L1 ,

‖Λζ2v(t)‖
Ḃ

3
p −1

p,q

� Cζ‖v(t0)‖
Ḃ

3
p −1

p,q

(t − t0)
− ζ

2 ,

{
q � 2 for p � 2,
q � p

p−1 for 1 < p < 2.

Remark 2. This decay rate reflects the usual parabolicity of the Navier-Stokes equa-
tions in the sense of Petrowsky [48]. By the Sobolev embedding, one can extend
previous L2-based decay results [38,39,41–45,50] to obtain decay rates in L p-
based spaces for p > 2. However, the decay rates in Theorem 5 for p < 2 are
new.

Remark 3. The case p = q = 2 corresponds to the upper bound of the decay rate in
[39]. In that paper, two additional assumptions were made: (i) there exist positive

real numbers M1 and γ which may depend on v0 such that ‖v(t)‖2
L2 � M1

(1 + t)γ

for all t � 0; and (i i) for r � 3

2
, lim inf

t→∞ ‖v(t)‖Hr < ∞. In contrast, the decay

estimate asserted in Theorem 5 was obtained without these additional assumptions.

1.3. Regularity Condition

As a related subject, we will provide a Serrin-type regularity criterion in Besov
spaces. The Serrin criterion [46] says that the Leray weak solution v is smooth for

t ∈ (0, T ] if v ∈ Lr (0, T ; Ls), with
2

r
+ 3

s
= 1. We would like to show a new

regularity criterion in Besov spaces with less regularity.

Theorem 6. There exists a smooth solution of the Navier–Stokes equation on the
time interval [0, T ] for smooth initial data v0 if, on any time interval [T − t, T ],

(T − t)
1
q ‖v(t)‖Ḃσp,∞

⎧⎨
⎩

� C, t < T,

→ 0, t �→ T,

2

q
+ 3

p
− σ = 1, 3 � p � ∞, 2 < q < ∞.

(1.5)
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Remark 4. Theorem 6 generalizes the Serrin’s regularity condition and other related
results in two aspects: (i) σ can be negative and (i i) for σ = 0, ‖v(t)‖Ḃ0

p,∞ �
‖v(t)‖L p .

Remark 5. Our result should be compared with the regularity criterion [10] obtained

in Lq(0, T ; B
2
q −1
∞,∞) for 2 < q < ∞. Whereas their result is better than our result

in the spatial variables by Ḃ
2
q −1
∞,∞ ⊂ B

2
q −1
∞,∞ for a negative regularity index 2

q − 1,
our result improves the criterion in the time variable because the time singular-

ity (T − t)−
1
q is measured in the weak Lq space, which contains the Lq space.

Moreover, our proof is much simpler. However, our method does not cover several
known results due to the missing end point q = ∞: for example, L∞(0, T ; L3) in
[16] and C((0, T ]; B−1∞,∞) in [10].

2. Notations: the Littlewood–Paley Decomposition and Paraproducts

We begin with some notations. L p(0, T ; X) denotes the Banach space of Boch-
ner measurable functions f from (0, T ) to X endowed with either the norm
( T∫

0

‖ f (·, t)‖p
X dt

) 1
p

for 1 � p < ∞ or sup
0�t�T

‖ f (·, t)‖X for p = ∞. For

T = ∞, we use L p
t X instead of L p(0,∞; X). For a sequence {a j } j∈Z, {a j }lq :=( ∑

j∈Z

|a j |q
) 1

q , with the usual change for q = ∞. Finally, A � B means there is a

constant C such that A � C B.
Next, we provide notation and definitions in the Littlewood–Paley theory. We

take a couple of smooth functions (χ, ϕ) supported on {ξ : |ξ | � 1} with values in
[0, 1] such that for all ξ ∈ R

d ,

χ(ξ)+
∞∑
j=0

ψ(2− jξ) = 1, ψ(ξ) = ϕ(
ξ

2
)− ϕ(ξ),

and we denote ψ(2− jξ) by ψ j (ξ). The homogeneous dyadic blocks and lower
frequency cut-off functions are defined by

� j u = 2 jd
∫

Rd

h(2 j y)u(x − y)dy, S j u = 2 jd
∫

Rd

h̃(2 j y)u(x − y)dy, (2.1)

with h = F−1ψ and h̃ = F−1χ . Then, we can define the homogeneous Little-
wood–Paley decomposition by

u =
∑
j∈Z

� j u in S
′
h, (2.2)
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where S
′
h is the space of tempered distributions u such that lim

j→−∞ S j u = 0 in

S
′
. Using this decomposition, we define stationary/ time dependent homogeneous

Besov spaces as follows:

Ḃs
p,q

=
{

f ∈ S
′
h ; ‖ f ‖Ḃs

p,q
:=

( ∑
j∈Z

2 jsq
∥∥� j f

∥∥q
L p

) 1
q
< ∞

}
, (2.3a)

Lr (0, T ; Ḃs
p,q)

=
{

f ∈ S
′
h ; ‖ f ‖Lr (0,T ;Ḃs

p,q )
:=

∥∥∥
( ∑

j∈Z

2 jsq‖� j f ‖q
L p

) 1
q
∥∥∥

Lr (0,T )
< ∞

}
,

(2.3b)

L̃r (0, T ; Ḃs
p,q)

=
{

f ∈ S
′
h ; ‖ f ‖L̃r (0,T ;Ḃs

p,q )
:=

( ∑
j∈Z

2 jsq‖� j f ‖q
Lr (0,T ;L p)

) 1
q
< ∞

}
,

(2.3c)

with the usual modification for q = ∞. According to the Minkowski inequality,
we have

‖ f ‖L̃r (0,T ;Ḃs
p,q )

� ‖ f ‖Lr (0,T ;Ḃs
p,q )

if r � q,

‖ f ‖L̃r (0,T ;Ḃs
p,q )

� ‖ f ‖Lr (0,T ;Ḃs
p,q )

if r � q.
(2.4)

The concept of paraproduct enables us to deal with the interaction of two func-
tions in terms of low or high frequency parts, [8]. For two tempered distributions
f and g,

f g =T f g+Tg f +R( f, g),

T f g =
∑

i� j−2

�i f � j g =
∑
j∈Z

S j−1 f � j g, R( f, g) =
∑

| j− j ′ |�1

� j f � j ′ g. (2.5)

Then, up to finitely many terms,

� j (T f g) = S j−1 f � j g, � j R( f, g) =
∑

k� j−2

�k f �k g. (2.6)

In Sect. 3, we will use the following decomposition:

f g =
∑
j∈Z

S j f � j g +
∑
j∈Z

S j g� j f. (2.7)

Again, up to finitely many terms, we have

� j ( f g) =
∑

k� j−2

Sk f �k g +
∑

k� j−2

�k f Sk g. (2.8)

Finally, we recall a few inequalities which will be used in the sequel.
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Bernstein’s Inequality
For 1 � p � q � ∞ and k ∈ N,

sup
|α|=k

‖∂α� j f ‖L p � 2 jk‖� j f ‖L p , ‖� j f ‖Lq � 2 jd( 1
p − 1

q )‖� j f ‖L p . (2.9)

Localization of the Heat Kernel

‖etΔ� j f ‖L p � e−t22 j ‖� j f ‖L p , (2.10)

where the constants involved in the above relations � and � are independent of f
and j .

3. The Case p < ∞: Proof of Theorem 1 (Existence) and Theorem 2
(Analyticity)

In this section, we prove Theorem 2, analyticity of the Navier–Stokes equations

with small initial data in Ḃ
3
p −1
p,q , with p < ∞. The proof is based on an adequate

modification of the proof of Theorem 1. Therefore, we begin with the detailed
existence proof of [9].

3.1. Proof of Theorem 1

We recall the definition of the function space E p,

E p =
{

u ∈ S
′ : ‖u‖E p = ‖u‖

L̃∞
t Ḃ

3
p −1

p,q

+ ‖u‖
L̃1

t Ḃ
3
p +1

p,q

< ∞
}
. (3.1)

We construct a solution in the integral form: v(t) = etΔv0 − B(v, v), where the
bilinear form B is

B(u, v) =
t∫

0

[
e(t−s)Δ

P∇ · (u ⊗ v)(s)
]
ds. (3.2)

We need to show only that B maps E p × E p to E p. We first decompose the
product u ⊗ v as paraproduct (2.7). Then, B can be decomposed as B(u, v) =
B1(u, v)+ B2(u, v), where

B1(u, v) =
∑
j∈Z

B(S j u ⊗ � jv), B2(u, v) =
∑
j∈Z

B(S jv ⊗ � j u).

We now estimate B1 in E p. We apply � j to B1 and take the L p norm. By Bern-
stein’s inequality (2.9) and localization of the heat kernel as (2.10), we have
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‖� jB1(u, v)‖L p �
∑

k� j−2

2 j

t∫

0

[
e−(t−s)22k ‖Sku(s)�kv(s)‖L p

]
ds

�
∑

k� j−2

2 j

t∫

0

[
e−(t−s)22k ‖Sku(s)‖L∞‖�kv(s)‖L p

]
ds.

(3.3)

By Bernstein’s inequality (2.9),

‖Sku‖L∞ �
∑

l�k−1

‖�lu‖L∞ �
∑

l�k−1

2l 3
p ‖�lu‖L p =

∑
l�k−1

2l2l( 3
p −1)‖�lu‖L p .

Therefore, we can replace the right-hand side of (3.3) by

‖� jB1(u, v)‖L p

�
∑

k� j−2

2 j

t∫

0

[
e−(t−s)22k

( ∑
l�k−1

2l2l( 3
p −1)‖�lu(s)‖L p

)
‖�kv(s)‖L p

]
ds. (3.4)

By taking the L∞ norm of (3.4) in time with the aid of Young’s inequality in time,
we obtain

‖� jB1(u, v)‖L∞
t L p �

∑
k� j−2

2 j
[ ∑

l�k−1

2l2l( 3
p −1)‖�lu‖L∞

t L p

]
‖�kv‖L1

t L p

� ‖u‖
L̃∞

t Ḃ
3
p −1

p,q

∑
k� j−2

2 j 2k‖�kv‖L1
t L p (3.5)

� ‖u‖E p

∑
k� j−2

2 j 2−k( 3
p )2k( 3

p +1)‖�kv‖L1
t L p .

We multiply (3.5) by 2 j ( 3
p −1). Then,

2 j ( 3
p −1)‖� jB1(u, v)‖L∞

t L p � ‖u‖E p

∑
k� j−2

2−(k− j)( 3
p )2k( 3

p +1)‖�kv‖L1
t L p .

(3.6)

Since 3
p > 0, we can use Young’s inequality to estimate the right-hand side of (3.6)

with respect to lq . Namely, we let a j = 2− j ( 3
p ) and b j = 2 j ( 3

p +1)‖� jv‖L1
t L p and

apply Young’s inequality to
∑

k� j−2

ak− j bk to obtain

‖B1(u, v)‖
L̃∞

t Ḃ
3
p −1

p,q

� ‖u‖E p‖v‖
L̃1

t Ḃ
3
p +1

p,q

� ‖u‖E p‖v‖E p . (3.7)
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Similarly, we can obtain the L1 in time estimation of B1(u, v). By taking the L1

norm in time to (3.4) and applying Young’s inequality in time,

‖� jB1(u, v)‖L1
t L p � ‖u‖E p 2−2 j

∑
k� j−2

2 j 2−k( 3
p )2k( 3

p +1)‖�kv‖L1
t L p . (3.8)

We multiply (3.8) by 2 j ( 3
p +1). Then,

2 j ( 3
p +1)‖� jB1(u, v)‖L1

t L p � ‖u‖E p

∑
k� j−2

2−(k− j)( 3
p )2k( 3

p +1)‖�kv‖L1
t L p ,

from which we have

‖B1(u, v)‖
L̃1

t Ḃ
3
p +1

p,q

� ‖u‖E p‖v‖E p . (3.9)

Therefore, we conclude that ‖B1(u, v)‖E p � ‖u‖E p‖v‖E p . By the symmetry of
the paraproduct of B(u, v), we finally have

‖B(u, v)‖E p � ‖u‖E p‖v‖E p , (3.10)

which completes the proof.

Remark 6. We will need to apply Young’s inequality to sequences several times
to estimate sequences which have convolution structure. Since the structure of
sequences appearing later (for example, (4.5), (4.9), (4.10) and (6.3)) is exactly
of the form used to obtain (3.7), we will apply Young’s inequality to sequences
without defining {a j } and {b j } each time.

3.2. Preliminaries

The proof of Theorem 2 in this section and likewise, Theorem 4 in Sect. 4,
requires a couple of elementary inequalities which are summarized in the follow-
ing two lemmas.

Lemma 1. Consider the operator E := e−[√t−s+√
s−√

t]Λ for 0 � s � t . Then
E is either the identity operator or is an L1 kernel whose L1 norm is bounded
independent of s, t .

Proof. Clearly, a := √
t − s + √

s − √
t is non-negative for s � t . In case a =

0, E = e−aΛ is the identity operator, while if a > 0, E = e−aΛ is a Fourier
multiplier with symbol Ê(ξ) = ∏d

i=1 e−a|ξi |. Thus, the kernel of E is given by the
product of one-dimensional Poisson kernels

∏d
i=1

a
π(a2+x2

i )
. The L1 norm of this

kernel is bounded by a constant independent of a. ��
Lemma 2. The operator E = e

1
2 aΔ+√

aΛ is a Fourier multiplier which maps
boundedly L p �→ L p, 1 < p < ∞, and its operator norm is uniformly bounded
with respect to a � 0.

Proof. When a = 0, E is the identity operator. When a > 0, then E is a Fourier

multiplier with symbol Ê(ξ) = e− 1
2 |√aξ |2+|√aξ |1 . Since Ê(ξ) is uniformly bounded

for all ξ and decays exponentially for |ξ | � 1, the claim follows from Hormander’s
multiplier theorem, e.g., [47]. ��
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3.3. Proof of Theorem 2

We are now ready to prove Theorem 2. For notational simplicity, we define a
function space Fp such that

Fp =
{
v(t) ∈ E p ; e

√
tΛv(t) ∈ E p

}
.

We need to show only that B in (3.2) is bounded from Fp × Fp to Fp. To this end,

we first apply e
√

tΛ to B in (3.2).

e
√

tΛB(u, v) = e
√

tΛ

t∫

0

[
e(t−s)Δ

P∇ · (u ⊗ v)(s)
]
ds. (3.11)

Let U (s) = e
√

sΛu, V (s) = e
√

sΛv, with U, V ∈ E p. Then,

e
√

tΛB(u, v) = e
√

tΛ

t∫

0

[
e(t−s)Δ

P∇ · (e−√
sΛU ⊗ e−√

sΛV )(s)
]
ds. (3.12)

We rewrite (3.12) as

e
√

tΛB(u, v)

=
t∫

0

[
e(

√
t−√

s)Λe
1
2 (t−s)Δe

1
2 (t−s)Δe

√
sΛ

P∇ · (e−√
sΛU ⊗ e−√

sΛV )(s)
]
ds.

(3.13)
We apply � j to (3.13) and take the L p norm. By Lemmas 1 and 2, we have

‖� j e
√

tΛB(u, v)‖L p

�
t∫

0

[
e− 1

2 (t−s)22 j
2 j

∥∥e
√

sΛ� j
(
e−√

sΛU ⊗ e−√
sΛV )(s)

)∥∥
L p

]
ds. (3.14)

To deal with the right-hand side of (3.14), we decompose the product e−√
sΛU ⊗

e−√
sΛV as

e−√
sΛU ⊗ e−√

sΛV
=

∑
j∈Z

(
e−√

sΛS jU
) ⊗ (

e−√
sΛ� j V

) +
∑
j∈Z

(
e−√

sΛ� jU
) ⊗ (

e−√
sΛS j V

)
.

Then,

‖� j e
√

tΛB(u, v)‖L p

�
t∫

0

∑
k� j−2

[
e− 1

2 (t−s)22 j
2 j

∥∥e
√

sΛ(
e−√

sΛSkU ⊗ e−√
sΛ�k V )(s)

∥∥
L p

]
ds

+
t∫

0

∑
k� j−2

[
e− 1

2 (t−s)22 j
2 j

∥∥e
√

sΛ(
e−√

sΛ�kU ⊗ e−√
sΛSk V )(s)

∥∥
L p

]
ds.

(3.15)
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To estimate the right-hand side of (3.15), we introduce the bilinear operators Bt of
the form

Bt ( f, g) = e
√

tΛ(e−√
tΛ f e−√

tΛg)

=
∫

R3

∫

R3

eix ·(ξ+η)e
√

t(|ξ+η|1−|ξ |1−|η|1) f̂ (ξ)ĝ(η)dξdη.

Recall that for a vector ξ = (ξ1, ξ2, ξ3), we denoted ‖ξ‖1 =
3∑

i=1

|ξi |. As one can

see below, this l1 version of Λ, instead of the usual l2 version of Λ, is crucial for
estimating Bt . For ξ = (ξ1, ξ2, ξ3), η = (η1, η2, η3), we now split the domain of
integration of the above integral into sub-domains depending on the sign of ξ j , η j

and ξ j + η j . In order to do so, we introduce the operators acting on one variable
(see page 253 in [34]) by

K1 f = 1

2π

∞∫

0

eıxξ f̂ (ξ) dξ, K−1 f = 1

2π

0∫

−∞
eıxξ f̂ (ξ) dξ.

Let the operators La,1 and La,−1 be defined by

La,1 f = f, La,−1 f = 1

2π

∫

R

eıxξ e−2a|ξ | f̂ (ξ) dξ.

For α = (α1, α2, α3),β = (β1, β2, β3) ∈ {−1, 1}3, denote the operator

Za,α,β = Kβ1 Lt,α1β1 ⊗ · · · ⊗ Kβ3 Lt,α3β3 and Kα = Kα1 ⊗ Kα2 ⊗ Kα3 .

The above tensor product means that the j-th operator in the tensor product acts on
the j-th variable of the function f (x1, x2, x3). A tedious (but elementary) calcula-
tion now yields the following identity:

Bt ( f, g) =
∑

(α,β,γ )∈{−1,1}3×3

Kα1 ⊗ Kα2 ⊗ Kα3

(
Zt,α,β f Zt,α,γ g

)
. (3.16)

We now note that the operators Kα, Za,α,β defined above, being linear combina-
tions of Fourier multipliers (including Hilbert transform) and the identity operator,
commute withΛ. Moreover, they are bounded linear operators on L p, 1 < p < ∞
and the corresponding operator norm of Zt,α,β is bounded independent of t � 0.
By taking the L p norm to (3.16), we have

‖Bt ( f, g)‖L p � ‖Zt,α,β f Zt,α,γ g‖L p .
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We now apply this argument to the right-hand side of (3.15). Then,

‖e
√

tΛB(u, v)‖L p �
t∫

0

∑
k� j−2

[
e− 1

2 (t−s)22 j
2 j‖Z SkU ⊗ Z�k V ‖L p

]
ds

+
t∫

0

∑
k� j−2

[
e− 1

2 (t−s)22 j
2 j‖Z�kU ⊗ Z Sk V ‖L p

]
ds,

(3.17)

where we denote Z without indices t,α,β for the notational simplicity. By Bern-
stein’s inequality (2.9), we have

‖Z Sku‖L∞ �
∑

l�k−1

‖Z�lu‖L∞ �
∑

l�k−1

‖�l Zu‖L∞

�
∑

l�k−1

2l 3
p ‖�l Zu‖L p �

∑
l�k−1

2l2l( 3
p −1)‖�lu‖L p ,

where we use the fact that Z commutes with �l and the boundedness of Z on L p.
Therefore, we can follow the lines from (3.4) to (3.10) in proof of Theorem 1 to
obtain

‖B(u, v)‖Fp � ‖U‖E p‖V ‖E p � ‖u‖Fp‖v‖Fp , (3.18)

which completes the proof.

4. The Case p = ∞: Proof of Theorem 3 (Existence) and Theorem 4
(Analyticity)

We now show the well-posedness and analyticity for the Navier–Stokes equa-
tions of the limiting case p = ∞. To this end, we recall the definition of the space
E∞

E∞ :=
{

u ∈ S
′ : ‖u‖E∞ = ‖u‖L̃∞

t Ḃ0
3,∞

+ sup
t>0

[
‖v(t)‖Ḃ−1∞,q

+ t
3
4 ‖v(t)‖

Ḃ
1
2∞,q

]}
.

As one can see below, we need to obtain two additional estimates, t
1
4 ‖v(t)‖

Ḃ
− 1

2∞,q

and t
1
2 ‖v(t)‖Ḃ0∞,q

. (See (4.10), (4.14) and (4.17)). These terms can be obtained

by interpolating ‖v(t)‖Ḃ−1∞,q
and t

3
4 ‖v(t)‖

Ḃ
1
2∞,q

, but we proceed with the proof by

establishing bounds in K∞ whose norm is given by

‖v‖K∞

= sup
t>0

[
‖v(t)‖Ḃ−1∞,q

+ t
1
4 ‖v(t)‖

Ḃ
− 1

2∞,q

+ t
1
2 ‖v(t)‖Ḃ0∞,q

+ t
3
4 ‖v(t)‖

Ḃ
1
2∞,q

]
, (4.1)
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to avoid complicated expressions coming from the interpolation. The time weights
appearing in (4.1) will be introduced below through the Gaussian bound,

|ξ |ae−t |ξ |2 � t−
a
2 . (4.2)

In addition, we will use the following lemma repeatedly in the proof of Theorem 3.

Lemma 3. For any 0 < a < 1 and 0 < b < 1,

t∫

0

[
(t − s)−as−b

]
ds � t1−a−b.

The result follows by decomposing the time integral into two parts,

t∫

0

[
(t − s)−as−b

]
ds =

t
2∫

0

[
(t − s)−as−b

]
ds +

t∫
t
2

[
(t − s)−as−b

]
ds

� t−a

t
2∫

0

s−bds + t−b

t∫
t
2

(t − s)−ads.

4.1. Proof of Theorem 3

As we did in the proof Theorem 2, we need to show that B maps E∞ × E∞
to E∞. Since we already estimated the bilinear term B in Ḃ0

3,∞ in Theorem 1, we
need to show only that B maps from E∞ × E∞ to K∞. We decompose u ⊗ v as
(2.5). Then,

B(u, v) =
t∫

0

[
∇e(t−s)Δ

P(Tu ⊗ v + Tv ⊗ u + R(u ⊗ v))
]
ds

:= B1(u, v)+ B2(u, v)+ B3(u, v).

(4.3)

Estimation of B3(u, v)

We estimate B3 first, where we need the auxiliary norm ‖u‖L̃∞
t Ḃ0

3,∞
. By Bern-

stein’s inequality (2.9) and localization of the heat kernel (2.10),

‖� jB3(u, v)(t)‖L∞ � 2 j‖� jB3(u, v)(t)‖L3

�
t∫

0

[
22 j e−(t−s)22 j ∑

k� j−2

‖�ku(s)‖L3‖�kv(s)‖L∞
]
ds
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� ‖u‖L̃∞
t Ḃ0

3,∞

t∫

0

[
2

3 j
2 e−(t−s)22 j ∑

k� j−2

2
j−k
2 2

k
2 ‖�kv(s)‖L∞

]
ds

� ‖u‖E∞

t∫

0

[
2

3 j
2 e−(t−s)22 j ∑

k� j−2

2
j−k
2 2

k
2 ‖�kv(s)‖L∞

]
ds. (4.4)

We will repeatedly use (4.4) to estimate B3(u, v) in K∞. To estimate B3(u, v) in
L∞

t Ḃ−1∞,q , we multiply (4.4) by 2− j . Then,

2− j‖� jB3(u, v)(t)‖L∞

� ‖u‖E∞

t∫

0

[
2

j
2 e−(t−s)22 j ∑

k� j−2

2
j−k
2 2

k
2 ‖�kv(s)‖L∞

]
ds (4.5)

� ‖u‖E∞

t∫

0

[
(t − s)−

1
4 s− 3

4
∑

k� j−2

2
j−k
2 s

3
4 2

k
2 ‖�kv(s)‖L∞

]
ds.

By taking the lq norm to (4.5) with the aid of Young’s inequality (as mentioned in
Remark 6), we have

‖B3(u, v)(t)‖Ḃ−1∞,q
� ‖u‖E∞

[
sup
t>0

t
3
4 ‖v(t)‖

Ḃ
1
2∞,q

] t∫

0

[
(t − s)−

1
4 s− 3

4

]
ds.

Therefore, Lemma 3 implies that

‖B3(u, v)(t)‖Ḃ−1∞,q
� ‖u‖E∞‖v‖E∞ . (4.6)

We will do the same calculation to estimate B3 for the next two terms in (4.1)
without details.

‖B3(u, v)(t)‖
Ḃ

− 1
2∞,q

� ‖u‖E∞
[

sup
t>0

t
3
4 ‖v(t)‖

Ḃ
1
2∞,q

] t∫

0

[
(t − s)−

1
2 s− 3

4

]
ds (4.7)

� ‖u‖E∞‖v‖E∞

t
1
4

.

‖B3(u, v)(t)‖Ḃ0∞,q
� ‖u‖E∞

[
sup
t>0

t
3
4 ‖v(t)‖

Ḃ
1
2∞,q

] t∫

0

[
(t − s)−

3
4 s− 3

4

]
ds (4.8)

� ‖u‖E∞‖v‖E∞

t
1
2

.
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To estimate t
3
4 ‖B3(u, v)(t)‖

Ḃ
1
2∞,q

, we need to divide the time integration into two

parts.

2
j
2 ‖� jB3(u, v)(t)‖L∞

� 2
3 j
2

t
2∫

0

[
2 j e−(t−s)22 j ∑

k� j−2

‖�ku(s)‖L∞‖�kv(s)‖L3

]
ds

+ 2
j
2

t∫
t
2

[
2 j e−(t−s)22 j ∑

k� j−2

‖�ku(s)‖L∞‖�kv(s)‖L∞
]
ds

= I j + I I j .

We begin with I j ,

I j =
t
2∫

0

[
22 j e−(t−s)22 j

2
j
2

∑
k� j−2

‖�ku(s)‖L3‖�kv(s)‖L∞
]
ds

�

t
2∫

0

[ 1

t − s

∑
k� j−2

‖�ku(s)‖L3 2
j−k
2 2

k
2 ‖�kv(s)‖L∞

]
ds

� ‖u‖L∞
t Ḃ0

3,∞

t
2∫

0

[ 1

t − s

∑
k� j−2

2
j−k
2 2

k
2 ‖�kv(s)‖L∞

]
ds

� ‖u‖E∞

t
2∫

0

[ 1

t − s

∑
k� j−2

2
j−k
2 2

k
2 ‖�kv(s)‖L∞

]
ds.

Using Young’s inequality, we obtain that

{
I j

}
lq � ‖u‖E∞

[
sup
t>0

t
3
4 ‖v(t)‖

Ḃ
1
2∞,q

] t
2∫

0

[
(t − s)−1s− 3

4

]
ds (4.9)

� ‖u‖E∞‖v‖E∞

t
3
4

.

Next, we estimate I I j .

I I j �
t∫

t
2

[
(t − s)−

1
2

∑
k� j−2

2
j−k
2 2

k
2 ‖�ku(s)‖L∞‖�kv(s)‖L∞

]
ds

=
t∫

t
2

[
(t − s)−

1
2 s− 3

4 s− 1
2

∑
k� j−2

2
j−k
2 s

1
2 ‖�ku(s)‖L∞s

3
4 2

k
2 ‖�kv(s)‖L∞

]
ds,
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from which we have

{
I I j

}
lq �

[
sup
t>0

t
1
2 ‖v(t)‖Ḃ0∞,q

][
sup
t>0

t
3
4 ‖v(t)‖

Ḃ
1
2∞,q

] t∫
t
2

[
(t − s)−

1
2 s− 3

4 s− 1
2

]
ds

� ‖u‖E∞‖v‖E∞

t
3
4

.

(4.10)

By (4.9) and (4.10), we have

‖B3(u, v)(t)‖
Ḃ

1
2∞,q

� ‖u‖E∞‖v‖E∞

t
3
4

. (4.11)

Therefore, by (4.6), (4.7), (4.8), and (4.11),

‖B3(u, v)‖K∞ � ‖u‖E∞‖v‖E∞ . (4.12)

Estimation of B1(u, v) and B2(u, v)

Now, we estimate B1(u, v). By applying � j to B1(u, v) and taking the L∞ norm,
we have

‖� jB1(u, v)(t)‖L∞ �
t∫

0

[
2 j e−(t−s)22 j ‖S j u(s)‖L∞‖� jv(s)‖L∞

]
ds.

We note that we used the auxiliary norm ‖u‖Ḃ0
3,∞

to replace ‖�ku‖L∞ by ‖�ku‖L3

to gain one derivative to estimate B3(u, v). Here, we can gain one derivative from
S j u to estimate B1 and B2(u, v) as follows.

‖S j u‖L∞ �
j∑

l=−∞
‖�lu‖L∞ =

j∑
l=−∞

2l2−l‖�lu‖L∞ (4.13)

� 2 j‖u‖Ḃ−1∞,q
� 2 j‖u‖E∞ .

We will use this property to estimate B1(u, v) for the first three terms in (4.1). We
begin with the estimation of ‖B1(u, v)‖L∞

t Ḃ−1∞,q
.

2− j‖� jB1(u, v)(t)‖L∞ � ‖u‖E∞

t∫

0

[
2 j e−(t−s)22 j ‖� jv(s)‖L∞

]
ds

� ‖u‖E∞

t∫

0

[
(t − s)−

1
2 ‖� jv(s)‖L∞

]
ds

= ‖u‖E∞

t∫

0

[
(t − s)−

1
2 s− 1

2 s
1
2 ‖� jv(s)‖L∞

]
ds,
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which implies, by Lemma 3, that

‖B1(u, v)(t)‖Ḃ−1∞,q
� ‖u‖E∞

[
sup
t>0

t
1
2 ‖v(t)‖Ḃ0∞,q

] t∫

0

[
(t − s)−

1
2 s− 1

2

]
ds

� ‖u‖E∞‖v‖E∞ . (4.14)

Again, we will use the same calculation to estimate B1(u, v) for the following two
terms without details.

‖B1(u, v)(t)‖
Ḃ

− 1
2∞,q

� ‖u‖E∞
[

sup
t>0

t
3
4 ‖v(t)‖

Ḃ
1
2∞,q

] t∫

0

[
(t − s)−

1
2 s− 3

4

]
ds

� ‖u‖E∞‖v‖E∞

t
1
4

. (4.15)

‖B1(u, v)(t)‖Ḃ0∞,q
� ‖u‖E∞

[
sup
t>0

t
3
4 ‖v(t)‖

Ḃ
1
2∞,q

] t∫

0

[
(t − s)−

3
4 s− 3

4

]
ds

� ‖u‖E∞‖v‖E∞

t
1
2

. (4.16)

To estimate t
3
4 ‖B1(u, v)(t)‖

Ḃ
1
2∞,q

, we need to divide the time integration into two

parts.

2
j
2 ‖� jB1(u, v)(t)‖L∞ �

t
2∫

0

[
2

j
2 2 j e−(t−s)22 j ‖S j u(s)‖L∞‖� jv(s)‖L∞

]
ds

+
t∫

t
2

[
2

j
2 2 j e−(t−s)22 j ‖S j u(s)‖L∞‖� jv(s)‖L∞

]
ds

= I I I j + I Vj .

We begin with I I I j . By (4.13),

I I I j � ‖u‖E∞

t
2∫

0

[
22 j e−(t−s)22 j

2
j
2 ‖� jv(s)‖L∞

]
ds.

Thus, we have

{
I I I j

}
lq � ‖u‖E∞

[
sup
t>0

t
3
4 ‖v(t)‖

Ḃ
1
2∞,q

] t
2∫

0

[
(t − s)−1s− 3

4

]
ds

� ‖u‖E∞‖v‖E∞

t
3
4

.
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To estimate I Vj , we slightly change the estimation of ‖S j u‖L∞ as follows:

‖S j u(s)‖L∞ �
j∑

l=−∞
‖�lu(s)‖L∞ =

j∑
l=−∞

2
l
2 s− 1

4 2− l
2 s

1
4 ‖�lu(s)‖L∞

� 2
j
2 s− 1

4

[
sup
s>0

s
1
4 ‖u(s)‖

Ḃ
− 1

2∞,q

]
� 2

j
2 s− 1

4 ‖u‖E∞ .

(4.17)

Therefore,

I Vj � ‖u‖E∞

t∫
t
2

[
2

3 j
2 e−(t−s)22 j

s− 1
4 2

j
2 ‖� jv(s)‖L∞

]
ds

� ‖u‖E∞

t∫
t
2

[
(t − s)−

3
4 s− 1

4 2
j
2 ‖� jv(s)‖L∞

]
ds,

which implies that

{
I V

}
lq � ‖u‖E∞

[
sup
t>0

t
3
4 ‖v(t)‖

Ḃ
1
2∞,q

] t∫
t
2

[
(t − s)−

3
4 s− 1

4 s− 3
4

]
ds

� ‖u‖E∞‖v‖E∞

t
3
4

.

By (4.17) and (4.18), we have

‖B1(u, v)(t)‖
Ḃ

1
2∞,q

� ‖u‖E∞‖v‖E∞

t
3
4

. (4.18)

Therefore, By (4.14), (4.15), (4.16), and (4.18),

‖B1(u, v)‖K∞ � ‖u‖E∞‖v‖E∞ . (4.19)

Since B2(u, v) is of the form of B1(u, v) by changing the role of u and v, we have

‖B2(u, v)‖K∞ � ‖u‖E∞‖v‖E∞ . (4.20)

Combining (4.12), (4.19), and (4.20), we finally have

‖B(u, v)‖K∞ � ‖u‖E∞‖v‖E∞ , (4.21)

which completes the proof of Theorem 3.
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4.2. Proof of Theorem 4

We can prove Theorem 4 along the lines the proof of Theorem 2 and Theorem 3.
We define a function space F∞ such that

F∞ =
{
v(t) ∈ E∞ ; e

√
tΛv(t) ∈ E∞

}
.

We need to show only that B in (3.2) is bounded from F∞ × F∞ to F∞. Let
U (s) = e

√
sΛu, V (s) = e

√
sΛv, with U, V ∈ E∞. By replacing the L p norm by

the L∞ norm in (3.14), we have

‖� j e
√

tΛB(u, v)‖L∞

�
t∫

0

[
e− 1

2 (t−s)22 j
2 j

∥∥e
√

sΛ� j
(
e−√

sΛU ⊗ e−√
sΛV

)
(s)

∥∥
L∞

]
ds. (4.22)

Then, we decompose
(
e−√

sΛU ⊗ e−√
sΛV

)
as

Te−√
sΛU ⊗ e−√

sΛV + Te−√
sΛV ⊗ e−√

sΛU + R(e−√
sΛU ⊗ e−√

sΛV )

and follow the calculations in the proof of Theorem 3. In general, Kα and Zt,α,β do
not map L∞ to L∞. However, these operators are bounded in L∞ when localized
in dyadic blocks in the Fourier spaces. Therefore,

‖e
√

tΛB(u, v)‖K∞ � ‖U‖E∞‖V ‖E∞ � ‖u‖F∞‖v‖F∞ . (4.23)

Since we already obtained the bound of ‖e
√

tΛB(u, v)‖L∞
t Ḃ0

3,∞
in Sect. 3, we finally

have

‖B(u, v)‖F∞ � ‖u‖F∞‖v‖F∞ .

This completes the proof of Theorem 4.

5. Proof of Theorem 5: Decay of Besov Norms

In this section, we will obtain various decay estimates of weak solutions of
the Navier–Stokes equations in Besov spaces. We need the following lemma to
proceed.

Lemma 4. The Fourier multipliers corresponding to the symbols m(ξ) = |ξ |ζ e−√
t |ξ |1

are given by convolution with corresponding kernel k, which is an L1 function with
‖k‖L1 � Cζ

tζ/2
.

Proof. For a proof of the L1 bound on k, we apply lemma 2.1 in [34] under the

scaling: ξ �→ t
1
2 ξ . ��
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Theorem 2 and Theorem 4 tell us that if initial data are sufficiently small in crit-

ical spaces Ḃ
3
p −1
p,q , then the solution is globally in the Gevrey class. Then, lemma 4

allows us to obtain the following time decay of (homogeneous) Besov norms:

‖Λζ2v(t)‖
Ḃ

3
p −1

p,q

= ‖Λζ2e−√
tΛe

√
tΛv(t)‖

Ḃ
3
p −1

p,q

� Cζ t−
ζ
2 ‖e

√
tΛv(t)‖

Ḃ
3
p −1

p,q

, ζ > 0,

where we recall that Λ2 = (−Δ) 1
2 . If we can show that a solution v(t) satisfies

lim inf
t→∞ ‖v(t)‖

Ḃ
3
p −1

p,q

= 0, (5.1)

then due to Theorem 2 and Theorem 4, after a certain transient time t0, we have

sup
t>t0

‖e
√

tΛv(t)‖
Ḃ

3
p −1

p,q

< ∞.

Consequently, we obtain

‖Λζ2v(t)‖
Ḃ

3
p −1

p,q

� Cζ‖v(t0)‖
Ḃ

3
p −1

p,q

(t − t0)
− ζ

2 , ζ > 0, (5.2)

where ‖v(t0)‖
Ḃ

3
p −1

p,q

is sufficiently small to apply Theorem 2 or Theorem 4.

5.1. Proof of Theorem 5

We only need to show (5.1). For v0 ∈ L2, we have the following energy inequal-
ity:

‖v(t)‖2
L2 +

t∫

0

‖∇v(s)‖2
L2 ds � ‖v0‖2

L2 .

This implies that

sup
t>0

‖v(t)‖2
L2 � ‖v0‖2

L2 , lim inf
t→∞ ‖v(t)‖Ḣ1 = 0. (5.3)

In order to obtain the second relation in (5.3), for ε > 0 arbitrary, choose
t large so that 1

t ‖v0‖2
L2 < ε

4 . We note that the energy inequality yields
1
t

∫ t
0 ‖∇v(s)‖2

L2 � 1
t ‖v0‖2

L2 . This immediately implies that there exists t0 ∈ (0, t)

such that ‖∇v(t0)‖2
L2 < ε. Due the uniform bound on ‖v(t)‖L2 , it also follows that

lim inf t→∞ ‖u(t)‖Ḣβ = 0 for 0 < β � 1.

For p = q = 2, Ḃ
1
2
2,2 = Ḣ

1
2 . Thus by (5.2), we have

‖Λζ2v(t)‖Ḣ
1
2

� Cζ‖v(t0)‖
Ḣ

1
2
(t − t0)

− ζ
2 , ζ > 0, (5.4)

where ‖v(t0)‖
Ḣ

1
2

is sufficiently small to apply Theorem 2.
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For p > 2 and q � 2, the embedding Ḣ
1
2 ⊂ Ḃ

3
p −1
p,q implies that ‖v(t)‖

Ḃ
3
p −1

p,q

→
0 as t → ∞. Therefore,

‖Λζ2v(t)‖
Ḃ

3
p −1

p,q

� Cζ‖v(t0)‖
Ḃ

3
p −1

p,q

(t − t0)
− ζ

2 , ζ > 0, (5.5)

where ‖v(t0)‖
Ḃ

3
p −1

p,q

is sufficiently small to apply Theorem 2 for p < ∞ or Theo-

rem 4 for p = ∞ and q < ∞.
To deal with the case p < 2, we will use the vorticity ω = ∇ × v. From the

vorticity equation, ωt + v · ∇ω −Δω = ω∇v, we have ([11])

‖ω(t)‖L1 � ‖v0‖2
L2 + ‖ω0‖L1 . (5.6)

We will use this L1 vorticity bound to estimate the decay rate in Besov spaces. By
the interpolation of the L1 norm and the L2 norm of � jv(t), we have

‖� jv(t)‖L p � C‖� jv(t)‖αL2‖� jv‖1−α
L1 , α = 2p − 2

p
. (5.7)

We multiply (5.7) by 2 j ( 3
p −1+ζ ). Then,

2 j ( 3
p −1+ζ )‖� jv(t)‖L p � C2 j ( 1

p +ζ )‖� jv(t)‖αL2

(
2 j‖� jv(t)‖L1

)1−α

� C2 j ( 1
p +ζ )‖� jv(t)‖αL2

(‖� jw(t)‖L1
)1−α

� C2 j ( 1
p +ζ )‖� jv(t)‖αL2 ,

(5.8)

where we use the fact that

‖� j∇v‖L1 � C‖� jw‖L1 � C‖w‖L1 , C independent of j.

By taking the lq norm to (5.8), we have

‖Λζ2v(t)‖
Ḃ

3
p −1

p,q

� C
( ∑

j

2 jq( 1
p +ζ )‖� jv(t)‖αq

L2

) 1
q
. (5.9)

We take q0 such as αq0 = 2. Then for q � q0 = p
p−1 > 2, we have

‖Λζ2v(t)‖
Ḃ

3
p −1

p,q

� C‖v(t)‖
2
q

Ḣ
q
2 (

1
p +ζ ) . (5.10)

Since q
2 (

1
p + ζ ) = 1

2(p−1) + qζ
2 > 1

2 for p < 2, the right-hand side of (5.10) goes
to 0 as t → ∞ by (5.4). Therefore,

‖Λζ2v(t)‖
Ḃ

3
p −1

p,q

� Cζ‖v(t0)‖
Ḃ

3
p −1

p,q

(t − t0)
− ζ

2 , ζ > 0, (5.11)

where ‖v(t0)‖
Ḃ

3
p −1

p,q

is sufficiently small to apply Theorem 2. This completes the

proof of Theorem 5.
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Remark 7. By using the relation between Besov spaces and Triebel-Lizorkin spaces
Ḟ s

p,q

Ḃs
p,p ⊂ Ḟ s

p,p,

we can obtain the decay of weak solutions in Sobolev spaces Ẇ s,p with p < 2.
(For the definition of Triebel-Lizorkin spaces and embedding properties, see [20]).
By taking p = q < 2,

‖e
√

tΛv(t)‖
Ḟ

3
p −1

p,p

� ‖v(t0)‖
Ḃ

3
p −1

p,p

.

Since l p ⊂ l2 for p < 2,

‖e
√

tΛv(t)‖
Ḟ

3
p −1

p,2

� ‖v(t0)‖
Ḃ

3
p −1

p,p

,

which is equivalent to the estimate solutions in the potential function Ẇ s0,p such
that

‖e
√

tΛv(t)‖Ẇ s0,p � ‖v(t0)‖
Ḃ

3
p −1

p,q

, s0 = 3

p
− 1 > 0.

Therefore,

‖Λζ2v(t)‖L p � Cζ‖v(t0)‖
Ḃ

3
p −1

p,p

(t − t0)
− ζ−s0

2 , ζ > s0,

where ‖v(t0)‖
Ḃ

3
p −1

p,p

is sufficiently small to apply Theorem 2.

6. Proof of Theorem 6: Regularity Condition in Besov Spaces

In order to prove Theorem 6, we need to show only that ‖∇v(t)‖L∞ appearing
in the blowup criterion [3] can be controlled by (1.5). To this end,we will estimate

∇v in Besov spaces Ḃ
3
p
p,1, which is contained in the L∞. As before, we express v

in the integral form:

v(t) = etΔv0 −
t∫

0

[
e(t−s)Δ

P∇ · (v ⊗ v)(s)
]
ds. (6.1)

By applying � j to (6.1) and taking the L p norm, we have

‖� jv(t)‖L p � e−t22 j ‖� jv0‖L p +
t∫

0

[
2 j e−(t−s)22 j ‖� j (v ⊗ v)(s)‖L p

]
ds

� e−t22 j ‖� jv0‖L p +
t∫

0

2 j
[
e−(t−s)22 j

(
‖S jv(s)‖L∞‖� jv(s)‖L p
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+
∑

k� j−2

2k 3
p ‖�kv(s)‖L p‖�kv(s)‖L p

)]
ds

= e−t22 j ‖� jv0‖L p + I + I I,

where we use the decomposition v⊗v = 2Tv⊗v+R(v⊗v) at the second inequality.

Estimation of I

By Bernstein’s inequality (2.9),

‖S jv(s)‖L∞ �
j∑

l=−∞
2l 3

p 2−σ l2σ l‖�lv(s)‖L p � 2 j ( 3
p −σ)‖v(s)‖Ḃσp,∞ ,

where we use the condition 3
p − σ = 1 − 2

q > 0 for q > 2. Then,

I (t) �
t∫

0

[
2 j (1+ 3

p −σ)e−(t−s)22 j ‖v(s)‖Ḃσp,∞‖� jv(s)‖L p

]
ds.

Therefore,

‖(I )‖
Ḃ

3
p +1

p,1

�
t∫

0

[
(t − s)−

1
2 (1+ 3

p −σ)s− 1
q s

1
q ‖v(s)‖Ḃσp,∞‖v(s)‖

Ḃ
3
p +1

p,1

]
ds

� sup
0<τ<t

[
τ

1
q ‖v(τ)‖Ḃσp,∞‖v(τ)‖

Ḃ
3
p +1

p,1

] t∫

0

[
(t − s)−

1
2 (1+ 3

p −σ)s− 1
q

]
ds

� sup
0<τ<t

[
τ

1
q ‖v(τ)‖Ḃσp,∞‖v(τ)‖

Ḃ
3
p +1

p,1

]
, (6.2)

where we use the condition 1 + 3
p − σ = 2 − 2

q < 2 for q < ∞, and
1

2

(
1 + 3

p
− σ

)
+ 1

q
= 1 to apply Lemma 3.

Estimation of II

I I (t) �
t∫

0

[
2 j e−(t−s)22 j ∑

k� j−2

2−k2−kσ2kσ‖�kv(s)‖L p 2k( 3
p +1)‖�kv(s)‖L p

]
ds

�
t∫

0

[
2− jσ e−(t−s)22 j ‖v(s)‖Ḃσp,∞

∑
k� j−2

2( j−k)2k( 1
p +1)‖�kv(s)‖L p

]
ds,
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from which we obtain

‖I I (t)‖
Ḃ

3
p +1

p,1

�
t∫

0

[
(t − s)−

1
2 (1+ 3

p −σ)s− 1
q s

1
q ‖v(s)‖Ḃσp,∞‖v(s)‖

Ḃ
3
p +1

p,1

]
ds

� sup
0<τ<t

[
τ

1
q ‖v(τ)‖Ḃσp,∞‖v(τ)‖

Ḃ
3
p +1

p,1

] t∫

0

[
(t − s)−

1
2 (1+ 3

p −σ)s− 1
q

]
ds

� sup
0<τ<t

[
τ

1
q ‖v(τ)‖Ḃσp,∞‖v(τ)‖

Ḃ
3
p +1

p,1

]
. (6.3)

By (6.2) and (6.3),

‖v(t)‖
Ḃ

3
p +1

p,1

� ‖v0‖
Ḃ

3
p +1

p,1

+ sup
0<τ<t

[
τ

1
q ‖v(τ)‖Ḃσp,∞‖v(τ)‖

Ḃ
3
p +1

p,1

]
. (6.4)

We translate the time interval from [0, t] to [T − a, T ]. Then,

‖v(T )‖
Ḃ

3
p +1

p,1

� ‖v(T − a)‖
Ḃ

3
p +1

p,1

+ sup
0<τ<a

[
(τ )

1
q ‖v(t + τ)‖Ḃσp,∞‖v(t + τ)‖

Ḃ
3
p +1

p,1

]
. (6.5)

Therefore, ‖v(t)‖
Ḃ

3
p +1

p,1

does not blow up at T as long as (1.5) holds. This completes

the proof of Theorem 6.
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