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Abstract

We investigate the structure of nematic liquid crystal thin films described by the
Landau–de Gennes tensor-valued order parameter model with Dirichlet boundary
conditions on the sides of nonzero degree. We prove that as the elasticity constant
goes to zero in the energy, a limiting uniaxial nematic texture forms with a finite
number of defects, all of degree 1

2 or all of degree − 1
2 , corresponding to vertical

disclination lines at those locations. We also state a result on the limiting behav-
ior of minimizers of the Chern–Simons–Higgs model without magnetic field that
follows from a similar proof.

1. Introduction

We investigate disclination line defects in a thin nematic liquid crystal by using
a tensor-valued order parameter description based on the Landau–de Gennes the-
ory. The unknown field Q in this theory is S -valued such that Q = Q(x, y),
where S is the space of 3×3, real symmetric, traceless matrices, and (x, y) varies
in a bounded domain � in R

2. For simplicity, we assume that � is a simply con-
nected bounded domain with a C3 boundary in the plane, representing the reference
configuration of a very thin liquid crystal material.

The Landau–de Gennes model is based on a phenomenological theory in which
stable states of the liquid material correspond to minimizers (or stable states) of
an energy formulated in terms of Q on �. The matrix Q(x) models the second
moments of the orientations of the rod-like liquid crystal molecules near x. Its
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values describe the average orientation and phase of the liquid crystals near x, mea-
sured through its eigenvectors and eigenvalues. (See Section 1.1 for more detail
on this structure.) As such, Q is a measure of the microscopic anisotropy of their
relative positions. In this paper, we consider fields Q ∈ W 1,2(�;S ) with fixed
uniaxial nematic boundary conditions of the form Q = Q0 on ∂� (in the sense of
trace). We assume throughout the paper that (Q0)i j ∈ C3(∂�) for all 1 � i, j � 3,
and that

Q0(x, y) = s

(
n0(x, y)⊗ n0(x, y)− 1

3
I

)
for (x, y) ∈ ∂�, (1.1)

where I is the 3 × 3 identity matrix, s is an arbitrary fixed nonzero real number,
and n0 is a fixed vector field defined on ∂� satisfying n0 = 〈n1, n2, 0〉, |n0| = 1,
and (1.1) on ∂�. Note that Q0 is invariant under changes in direction: n0(x, y) →
−n0(x, y) at any point (x, y) in ∂�, which allows boundary conditions of degree
one-half, or integer multiples of one-half, for Q0. Nonzero boundary conditions of
this type are observed on the sides of thin liquid crystal materials exhibiting defects
along curves, known as “disclination lines” in the material, whose intersections
with horizontal cross-sections are isolated points of degree 1

2 or − 1
2 . (See [3,20].)

We analyze a class of equilibria for the Landau–de Gennes energy

Fε(Q) =
∫
�

[ fe(Q)+ ε−2 fb(Q)],

where ε > 0, defined for all Q ∈ W 1,2(�;S ). Here, fe is the elastic energy
density in � given by

fe(Q) = L1

2
Qi j,k Qi j,k + L2

2
Qi j, j Qik,k

+ L3

2
Qi j,k Qik, j ,

where each term above is summed over all i, j, k from 1 to 3. Here L1, L2, L3 are
constants, Qi j,α denotes

∂Qi j
∂xα

, and (x1, x2, x3) = (x, y, z). The above formula is
valid in two- or three-dimensional reference domains. Since here we are consider-
ing a two-dimensional reference domain, �, we identify Q(x, y) with Q(x, y, 0)
above, so that Qi j,3 = 0 for all 1 � i, j � 3.We assume throughout the paper that

L1 > 0 and L1 + L2 + L3 > 0. (1.2)

The term fb is the bulk energy density given by a smooth real-valued function which
depends on temperature as well as on Q. We assume that temperature is fixed and
fb = fb(Q) is a nonnegative C∞ function defined on S such that fb(Q) = 0
if and only if Q ∈ �s = {Q ∈ S : Q = s(m ⊗ m − 1

3 I ) for some m ∈ S
2},

where s is the fixed nonzero constant in the definition of Q0. From our definitions
in the next subsection, we shall see that the energy well,�s , corresponds to a set of
uniaxial states. Liquid crystals satisfy the principle of frame indifference and are
macroscopically isotropic. As a consequence, fb is assumed to be invariant with
respect to orthogonal transformations, that is, we require
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fb(RQ Rt ) = fb(Q) for all R ∈ O(3) and Q ∈ S . (1.3)

Set

S0 = {Q ∈ S : Qi3 = Q3i = 0 for i = 1, 2},
A0 = {Q(x, y) ∈ W 1,2(�;S0): Q = Q0 on ∂�},

and

A = {Q ∈ W 1,2(�;S ) : Q = Q0 on ∂�}.
Our goal in this paper is to investigate minimizers for Fε in A0, and to analyze

their behavior in the vanishing elastic energy limit, ε → 0. The relevance for doing
this is that due to the symmetries described above, these minimizers are critical
points (equilibria) for the energy Fε over the larger space A , and thus satisfy the
full set of Euler–Lagrange equations with respect to variations in A . (We prove this
in Lemma 2.1.) In addition, each Q ∈ S is described in terms of an orthonormal
set of eigenvectors. (See (1.8).) For Q ∈ S0, we have

Q = s1m ⊗ m + s2m⊥ ⊗ m⊥ − 1

3
(s1 + s2)I (1.4)

for some real numbers s1 and s2, and Q has an orthonormal basis of eigenvectors
of the form

{m,m⊥, e3} where |m| = 1, m = 〈m1,m2, 0〉,
and m⊥ = 〈−m2,m1, 0〉, (1.5)

with eigenvalues

λ1 = 1

3
(2s1 − s2), λ2 = 1

3
(2s2 − s1), λ3 = −1

3
(s1 + s2). (1.6)

(See [17].) Thus the minimization problem of Fε over A0 models the behavior
of a thin liquid crystal material occupying � × (−η, η), with its top and bottom
surfaces treated so as to fix e3 as a principal axis (eigenvector of Q) of the liquid
crystal molecules throughout the body, with the other two principal axes (eigen-
vectors) in R

2 × {0} and boundary values on its sides given by Q = Q0(x, y).
The above problem includes a classic example from the liquid crystal literature, in
which

fb(Q) = f 0
b (Q) = a tr(Q2)− 2b

3
tr(Q3)+ c

2
(tr(Q2))2 + d

= a

(
3∑

i=1

λ2
i

)
− 2b

3

(
3∑

i=1

λ3
i

)
+ c

2

(
3∑

i=1

λ2
i

)2

+ d. (1.7)

Indeed, taking b, c > 0, a < b2

27c, and an appropriate choice of d, we have f 0
b � 0

and f 0
b (Q) = 0 if and only if Q ∈ �s where s = 1

4c(b + √
b2 − 24ac). (See [17].)



798 Patricia Bauman, Jinhae Park & Daniel Phillips

1.1. Definitions and Structural Assumptions

Our results require some structural assumptions on the bulk energy density
fb. In this section, we state these assumptions, along with some definitions and a
change of variables in A0, that will be needed to state our main results.

It is well known (see [17]) that each Q ∈ S has an orthonormal set of eigen-
vectors and can be written as

Q = s1n ⊗ n + s2k ⊗ k − 1

3
(s1 + s2)I, (1.8)

where n and k are orthogonal unit vectors in R
3; moreover, the eigenvalues of Q

are given by the formula in (1.6).

Definition 1. Let Q ∈ S . We say that Q is isotropic if all its eigenvalues are equal.
(In this case, the structure of Q is that of a “normal” liquid.)

We say that Q is uniaxial if exactly two of its eigenvalues are equal. (In this
case, Q has an axis of symmetry and its structure is “rod-like” or “disk-like”.)

We say that Q is biaxial if all its eigenvalues are distinct. (In this case, there is
no axis of complete rotational symmetry for Q and its structure is “board-like”.)

By formula (1.6) for the eigenvalues of Q ∈ S , it follows that Q is isotropic
if and only if s1 = s2 = 0 (and hence all eigenvalues are zero); Q is uniaxial if and
only if one of the following three conditions hold: s1 = 0 and s2 �= 0, s2 = 0 and
s1 �= 0, or s1 = s2 �= 0 (and hence all eigenvalues are nonzero and exactly two of
the eigenvalues are equal). Finally, Q is biaxial for all other values of s1 and s2.

The above definition, when applied to a minimizer Qε(x) of Fε in A or A0,
allows one to identify subregions of� in which the liquid crystal material is in the
isotropic, uniaxial, or biaxial phase; nonempty subregions of any of these phases are
possible for functions in A or A0. Note that�s ∩S0 is a disconnected set of uniax-
ial states in S0 with two connected components:�s ∩S0 = �′

s ∪{s(e3⊗e3− 1
3 I )},

where �′
s = {s(m ⊗ m − 1

3 I ) : m = 〈m1,m2, 0〉, |m| = 1}; also, the boundary
values Q0(x, y) are valued in �′

s .

Definition 2. Let γ : [0, 1] → ∂� be a C3 positively oriented parameterization
of ∂� such that γ is one-to-one on [0, 1). For Q0 as assumed above, choose a
unit vector field ñ0(x) = 〈ñ1(x), ñ2(x), 0〉 defined on ∂� satisfying (1.1) such that
ñ0(γ (·)) ∈ C1([0, 1)). We define the degree of Q0 on ∂� by

1

2π

∫ 1

0
ñ0(γ (t))

⊥ · dñ0(γ (t))

dt
dt : = deg Q0.

Since limt↑1 n0(γ (t)) = ±n0(γ (0)) by (1.1) and the continuity of Q0, it fol-
lows that deg Q0 = k

2 for some k ∈ Z. Since we are interested in boundary con-
ditions that correspond to a thin liquid crystal material with disclination-line type
defects, we assume that k is nonzero, and thus without loss of generality, we shall
assume throughout the paper that k > 0. As ε ↓ 0 the effect of the bulk energy
density fb becomes more pronounced and minimizers tend to have their values
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located in a neighborhood of�s
⋂

S0. We prove this rigorously in Lemma 3.2 and
Corollary 3.3. Due to the boundary conditions, however, this cannot happen
throughout �. We prove that the regions in which minimizers, Qε(x), of Fε take
values outside a neighborhood of �′

s concentrate and quantize into k small subdo-
mains. Moreover, for a subsequence as ε j → 0, these subdomains tend to k distinct
points {a1, . . . , ak} representing the cross sections of the limiting disclination lines.

In [20], Schopohl and Sluckin carried out a numerical investigation of equi-
libria for Fε in A , where fb = f 0

b is as in (1.7), with parameters so that the
energy well is a set of uniaxial states�s . They gave numerical evidence that uniax-
ial boundary conditions with nonzero degree give rise to equilibria that are nearly
uniaxial away from topologically induced defects, about which the solutions are
strongly biaxial. They pointed out that there is a subclass of equilibria which is
contained in A0, and they developed simulations for the equilibria in this subclass.
This is the class of solutions that we are studying here.

To state our main results, we use the following linear change of variables for
the coefficients of each Q ∈ A0 in terms of unique functions p = (p1, p2) and r :

Q = Q(p, r) =
⎡
⎣p1 + r

2 p2 0
p2

r
2 − p1 0

0 0 −r

⎤
⎦ . (1.9)

By (1.1) and (1.4) each Q ∈ A0 corresponds to a unique (p, r) ∈ W 1,2(�; R
2)×

W 1,2(�) satisfying p|∂� = p0, r |∂� = r0, where |p0| = |s|
2 , r0 = s

3 , and
deg ( p0

|p0| , ∂�) = k = 2 deg Q0. This can be seen by writing (since n0 ⊗ n0 =
(−n0)⊗ (−n0))

n0(γ (t)) = ±〈cosα(t), sin α(t), 0〉
for each t in [0, 1), where 〈cosα(t), sin α(t), 0〉 = ñ0(γ (t)) and α ∈ C1([0, 1)).
Then, using (1.1) and(1.4), we observe that

p0(γ (t)) = s

2
〈cos 2α(t), sin 2α(t)〉.

The representation (1.9) was motivated by the setting used for the simulations in
[20]. We may then recast our minimum problem by considering the set

A0 =
{
(p, r) ∈ W 1,2(�; R

2)× W 1,2(�) : p = p0 and r = s

3
on ∂�

}
.

The mapping Q = Q(p, r) : A0 → A0 is one-to-one and onto, and the eigen-
values for Q(p, r) are λ1 = r

2 + |p|, λ2 = r
2 − |p|, λ3 = −r . By (1.3), fb depends

only on the invariants of Q; since tr Q = 0, these are det Q = (|p|2 − r2

4 )r and
|Q|2 = 2|p|2 + 3

2 r2. Thus, fb(Q) = gb(|p|2, r) for some function gb. We prove
in Section 2 that minimizing Fε(Q) over A0 is equivalent to minimizing

Gε(p, r) =
∫
�

[ge(∇p,∇r)+ ε−2gb(|p|2, r)] for (p, r) ∈ A0, (1.10)
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where ge(∇p,∇r) is defined by

ge =
(

L1 + (L2 + L3)

2

)
|∇p|2 +

(
3L1

4
+ (L2 + L3)

8

)
|∇r |2

+ (L2 + L3)

2
(p1xrx − p1yry + rx p2y + ry p2x )

+|L2 + L3|(p1x p2y − p1y p2x ). (1.11)

This can be rewritten as

ge = L1

(
|∇p|2 + 3

4
|∇r |2

)

+ (L2 + L3)

2

((
p1x + rx

2
+ p2y

)2 +
(

p2x − p1y + ry

2

)2
)

if L2 + L3 � 0, (1.12)

ge = (L1 + L2 + L3)(|∇p|2 + 3

4
|∇r |2)

− (L2 + L3)

2

((rx

2
− p1x − p2y

)2+
(

p2x − p1y − ry

2

)2+|∇r |2
)

if 0 > L2 + L3. (1.13)

The following structural conditions are assumed for gb(p, r) = gb(|p|2, r):
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i) gb ∈ C∞([0,∞)× R), gb � 0 and gb(
s2

4 ,
s
3 ) = 0,

ii) For some m1,m2,m3 > 0
|gb,p(|p|2, r)||p| + |gb,r(|p|2, r)| � m1(|p|3 + |r |3)+ m2,

m3(|p|4 + |r |4)− 1 � gb(|p|2, r),

iii) For some δ,m4 > 0

m4((|p|2 − s2

4 )
2 + |r − s

3 |2) � gb(|p|2, r)
for ||p| − |s|

2 | + |r − s
3 | < δ.

(1.14)

Since fb(Q) = gb(|p|2, r) = gb(p, r) under the change of variables (1.9), these
are additional assumptions on fb. From (1.2), (1.12), and (1.13) we see that ge is a
positive definite quadratic. Thus Gε is strongly elliptic. It follows that minimizers
for Gε in A0 exist and that the Euler–Lagrange equation is a semi–linear elliptic
system for which minimizers are classical solutions (C∞(�)

⋂
C2(�) in our case).

(See Theorem 2.2.)
In general the bulk energy well for gb(|p|2, r) corresponds to {(p, r) : gb(|p|2, r)

= 0}. From our assumptions on fb, the bulk energy well for fb restricted to S0
is �′

s ∪ {s(e3 ⊗ e3 − 1
3 I )}. By the change of variables Q → (p, r), �′

s corre-

sponds to �s := {(p, r) : |p|2 = s2

4 , r = s
3 }, and {s(e3 ⊗ e3 − 1

3 I )} corresponds to
{(p, r) = (0,− 2s

3 )}. We note that the structural conditions (1.14) require only that
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{gb = 0} contains �s as in (i), that it is bounded as in (ii), and that gb has quadratic
growth away from �s as in (iii).

For the classic example, fb = f 0
b from the liquid crystal literature (with coef-

ficients a, b, c, and d as described above (see (1.7)), f 0
b minimizes precisely on the

uniaxial well �s ,

f 0
b (Q) = a

(
2|p|2 + 3

2
r2
)

− 2br

(
|p|2 − r2

4

)

+ c

2

(
2|p|2 + 3

2
r2
)2

+ d =: g0
b(|p|2, r)

for Q ∈ S0 and Q = Q(p, r), and one can easily show that the structural assump-
tions (1.14) are satisfied for this example of gb.

1.2. Main Results

In this section we state our main results on the structure of minimizers of the
energy functional Fε(Q) over A0, using the fact that Q is a minimizer of Fε in A0
if and only if (p, r) is a minimizer of Gε in A0 and Q = Q(p, r).

Theorem A. Let {(p j , r j )} be a sequence of minimizers for {Gε j }, respectively over
A0, such that ε j ↓ 0. For ease of notation we consider p j as a complex-valued
function by identifying R

2 and C. Then for a subsequence {(p j ′, r j ′)} there exists
a harmonic function h ∈ C2(�) and k points {a1, . . . , ak} ⊂ � such that

(|p j ′(x)|, r j ′(x)) →
( |s|

2
,

s

3

)
in Cloc(�\{a1, . . . , ak}), and

(p j ′(x), r j ′(x)) → (p∗(x), r∗(x)) =
( |s|

2
ei(h(x)+∑k

=1 θ(x)),
s

3

)
(1.15)

in W 1,2
loc (�\{a1, . . . , ak}) ∩ Cloc(�\{a1, . . . , ak}) and in Cm

loc(�\{a1, . . . , ak}) for
all m > 0, where θ = θ(x) denotes the polar angle of x with respect to the center
a. In particular, for each sufficiently small ρ > 0, if j ′ is sufficiently large, setting
�ρ = �\⋃k

=1 Bρ(a), we have

p j ′(x) = |p j ′(x)|ei(h j ′ (x)+
∑k
=1 θ(x)) in �ρ (1.16)

where h j ′(x) is a function in C2(�ρ) so that eih j ′ (x) has degree zero on ∂�, and
p j ′ has degree 1 about each of the k defects {a1, . . . , ak}.

From Theorem A and the change of variables between A0 and A0, we obtain:

Corollary A. Let {Q j } be a sequence of minimizers of {Fε j }, respectively over A0
such that ε j ↓ 0. Then for a subsequence of minimizers, we have Q j ′ = Q(p j ′, r j ′)
where {p j ′, r j ′ } ⊂ A0 satisfies Theorem A, and hence for each sufficiently small
ρ > 0, if j ′ is sufficiently large, we have:

Q j ′(x) = s j ′ 1(x)(m j ′(x)⊗ m j ′(x))+ s j ′ 2(x)(m
⊥
j ′(x)⊗ m⊥

j ′(x))

−1

3
(s j ′ 1(x)+ s j ′ 2(x))I in �ρ,
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Fig. 1. 1
2 degree defect in a nematic texture

where

m j ′(x) =
〈

cos

(
1

2
(h j ′(x)+

k∑
=1

θ(x))

)
, sin

(
1

2

(
h j ′(x)+

k∑
=1

θ(x)

))
, 0

〉
,

s j ′ 1(x) = |p j ′(x)| + 3

2
r j ′(x), s j ′ 2(x) = 3

2
r j ′(x)− |p j ′(x)|,

and Q j ′ has degree 1
2 about each a. (See Fig. 1.)

In particular, Q j ′(x) converges to a uniaxial field Q∗(x) in W 1,2
loc (�\{a1, . . . ,

ak})∩Cloc(�\{a1, . . . , ak}) and in Cm
loc(�\{a1, . . . , ak}) for all m > 0 as j ′ → ∞,

where

Q∗(x) = s

(
m(x)⊗ m(x)− 1

3
I

)
in �\{a1, . . . , ak} when s > 0,

and

Q∗(x) = s(m⊥(x)⊗ m⊥(x)− 1

3
I ) in �\{a1, . . . , ak} when s < 0.

Here,

m(x) =
〈

cos

(
1

2

(
h(x)+

k∑
=1

θ(x)

))
, sin

(
1

2

(
h(x)+

k∑
i=1

θ(x)

))
, 0

〉

(1.17)

for all x in �\{a1, . . . , ak}. Note that m j ′ and m are discontinuous while Q j ′ and
Q are continuous on �ρ .

The points {a1, . . . , ak} represent the cross sections of the limiting disclination
lines perpendicular to�.We prove that this set of points minimizes a renormalized
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energy W (b) defined for b = (b1, . . . , bk) ∈ �k , which was introduced by Brezis
et al. [1] in connection with their analysis of minimizing sequences {vε} for the
Ginzburg–Landau energy

Eε(v) = 1

2

∫
�

[
|∇v|2 + 1

2ε2 (1 − |v|2)2
]

(1.18)

for v ∈ {w ∈ W 1,2(�; R
2) : w = p0/|p0| on ∂�}. (The renormalized energy W (b)

is defined by equation (3.24).) On the other hand, we analyze the limiting behavior
of the energies, {Fε j (Q j )}, as j → ∞ and show that it depends strongly on the

coefficients L1, L2, and L3 as well as the parameters s and the degree k
2 of the

boundary data Q0. More precisely, we have:

Theorem B. Let {(p j , r j )} be a sequence of minimizers for {Gε j }, respectively over
A0 (or equivalently, let {Q j } be a sequence of minimizers for {Fε j (Q j )}, respec-
tively over A0), for which (a1, . . . , ak) is a limiting configuration of defects as
ε j ↓ 0 as described in Theorem A. Then

Fε j (Q j ) = Gε j (p j , r j )− (L3 − L2 + |L3 + L2|) s2πk

4
.

Furthermore, the renormalized energy W (b) for the limiting problem minimizes
at a and we have

lim
j→∞

[
Gε j (p j , r j )− (2L1 + L2 + L3)s2πk

4
ln

1

ε j

]

= (2L1 + L2 + L3)
s2

4
W (a)+ kγ.

Here γ is a fixed constant associated to the energy of each defect core.

Investigations from the physics literature of nematic textures in thin flat
or curved surfaces (thin shells) can be found in [3,6,16,18], and [23]. In [5]
Fatkullin and Slastikov proposed and investigated a model for two-dimen-
sional nematics (assuming that L1 > 0, L2 = L3 = 0, and Q is a two-dimensional
tensor, that is, Q = Q(p, r) is in A0 with r(x) ≡ 0) combining Onsager–Ma-
ier–Saupe and Landau–de Gennes theories. This led them to analyze a variational
problem closely related to the Ginzburg–Landau energy (1.18).

Our final theorem describes how our results in this paper relate to earlier inves-
tigations of complex Ginzburg–Landau type functionals that have multiply-con-
nected energy wells. The closest study in this respect is [8] by Han and Kim,
in which they analyzed the asymptotic behavior for sequences of minimizers to
the Chern–Simons–Higgs (CSH) and the Maxwell–Chern–Simons–Higgs (MCSH)
energies used to model aspects of superconductivity.

For the (CSH) model one seeks (using our notation) minimizers pε to

Cε(p) =
∫
�

[1

2
|∇p|2 + ε−2|p|2(1 − |p|2)2

]
(1.19)

for p ∈ B0 = {v ∈ W 1,2(�; R
2) : v = p0 on ∂�}. Here p0 ∈ C3(∂�), |p0| = 1,

and deg (p0, ∂�) = k > 0 with k ∈ N.
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For the (MCSH) model one seeks minimizers (pε,q , rε,q) to

Cε,q(p, r) =
∫
�

[1

2
|∇p|2 + q−2|∇r |2 + |p|2r2 + q2(ε−1(|p|2 − 1)+ r)2]

(1.20)

for (p, r) ∈ B0 × W 1,2
0 (�). The following two results are from [8]:

i) For fixed ε > 0, from any sequence of minimizers for (1.20) with q → ∞
one can find a subsequence {(pε,q , rε,q )} and a minimizer pε to (1.19) for
which

pε,q ⇀ pε and Cε,q (pε,q , rε,q ) → Cε(pε) as q → ∞.

ii) For fixed q > 0, from any sequence of minimizers for (1.20) with ε → 0
there exists a subsequence {(pε,q , rε,q)}, a point aq = (aq

1 , . . . , aq
k ) ∈ �k ,

and a function p∗
q as in (1.15) so that pε,q → p∗

q in the sense of Theorem A
as ε → 0.

The functionals (1.10) and (1.20) are quite different. The bulk energy well for
Cε,q is S

1 ×{0}⋃{(0, ε−1)} and the second component is eventually outside of any
bounded set as ε → 0. This is in contrast to the bulk energy well for Gε, which does
not vary with ε. The analysis in [8] is based on this feature and cannot be applied to
(1.10). Furthermore, the bounds in the estimates used to prove ii) diverge as q →
∞, so they cannot be used to determine limε→0(limq→∞ Cε,q (pε,q , rε,q )) =
limε→0 Cε(pε) or the limiting behavior of minimizers of Cε, and this was left
open. Our analysis, however, applies to these issues directly. The same arguments
we use to prove Theorems A and B give the following result:

Theorem C. Let {pε} be a sequence of minimizers for (1.19) such that ε → 0. Then
there exists a subsequence {pε}, a point a = (a1, . . . , ak) ∈ �k , and a function
p∗ as in (1.15) for which pε → p∗ in the sense of Theorem A. Moreover W (·)
minimizes at a and

lim
→∞

[
Cε(pε)− πk ln

1

ε

]
= W (a)+ kγ

for a fixed constant γ .

Other related work is given in the papers [11,12], and [21] in which the authors
develop asymptotic properties for the (CSH) energy using �– convergence tech-
niques. This approach gives less detailed information than in our setting. However,
it is not restricted to sequences of minimizers as in our case, and the authors apply
it to more general energies and scalings.

Our paper is organized as follows. In Section 2 we prove regularity of mini-
mizers and show that minimizers for Gε in A0 correspond to a family of equilibria
for Fε in A . In Section 3 we prove a number of a priori estimates for minimizers
of Gε and use them to prove Theorems A and B, developing the qualitative fea-
tures of minimizers for Gε. Our results in this section expand on investigations of
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minimizers for the Ginzburg–Landau energy Eε (1.18) done by Brezis–Bethuel–
Hélein, Fanghua Lin, and Struwe. (See [1,13,14], and [22]). The energies Eε and
Gε differ in two main respects. First, the elastic term in the energy density for Eε
is the Dirichlet energy density, whereas for Gε it is a coupled quadratic in ∇Q.
Second, the energy well for the bulk energy density for Eε is S

1, while the energy
well for Gε is a bounded disconnected set consisting of the circle �s and the point
(0,− 2s

3 ). In Corollary 3.3, we prove that for ε small, minimizers of Gε take their
values near �s outside an exceptional set whose measure is O(ε2). As a result, �s

plays a role similar to the energy well for Eε, and we prove that this exceptional
set is contained in a neighborhood of k defects (vortices). The results in Section 3
are proved assuming the a priori estimate

ε−2
∫
�

gb(|pε|2, rε) � M (1.21)

for some constant M < ∞, for the family of equilibria {(pε, rε) : 0 < ε < ε1}
that are considered. In Section 4 we prove, using a Pohozaev identity, that (1.21)
is always satisfied if � is a disk and 0 < ε < 1. We then use this result to estab-
lish (1.21) for the case in which � is a C3 bounded simply connected domain and
{(pε, rε)} are minimizers, where ε1 depends on s, L1, L2, L3,�, k, and the con-
stants in (1.14), and M depends on these terms and in addition on ‖p0‖W 1,2(∂�).
Our approach for this part is similar to one used by del Pino and Felmer [4] in
which they established the analogue of (1.21) for the simpler energy (1.18).

2. The Landau–de Gennes Energy

By definition of fe, we have

fe(Q) = L1

2
|∇Q|2 + (L2 + L3)

2
|div Q|2

+ L3

2
(Qi j,k Qik, j − Qi j, j Qik,k),

where div Q is the column vector whose i th entry is the divergence of the i th row
of Q, Qi j, j . The last term in fe is a null–Lagrangian; its integral over� is constant
on

M = {Q ∈ W 1,2(�; R
3×3) : Q = Q0 on ∂�}

and its first variation at any element of M is zero. Set

f ′
e(Q) = L1

2
|∇Q|2 + (L2 + L3)

2
|divQ|2.

We say that Fε and F ′
ε = ∫

�
[ f ′

e + ε−2 fb] are equivalent since their first variations
on M agree, δV Fε(Q) = δV F ′

ε(Q), where

δV F(Q) = DF(Q)[V ] := ∂t F(Q + tV ) at t = 0

for all Q ∈ M and V ∈ W 1,2
0 (�; R

3×3).
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For Q ∈ A we write

Q(x) =
⎡
⎣z1(x) z2(x) z4(x)

z2(x) z3(x) z5(x)
z4(x) z5(x) −z1(x)− z3(x)

⎤
⎦

and for Q ∈ A0 we additionally have z4(x) = z5(x) = 0. The Euler–Lagrange
equations for F ′

ε derived by variations in A (A0) consist of the five (three) equations
δz F ′

ε = 0 for  = 1, . . . , 5 ( = 1, 2, 3).
We can now show that an equilibrium with respect to variations in A0 is also

an equilibrium with respect to variations in A . We have:

Lemma 2.1. Let Q ∈ A0 solve δz Fε(Q) = 0 for  = 1, 2, 3, then δz4 Fε(Q) =
δz5 Fε(Q) = 0, as well.

Proof. Since fb = f̃b(det Q, |Q|2) it is easy to see that ∂z4 fb(Q̂) = ∂z5 fb(Q̂) = 0
for Q̂ ∈ S0. It follows directly that δz4 F ′

ε(Q) = δz5 F ′
ε(Q) = 0 for any Q(x) ∈ A0.

��
Theorem 2.2. For each ε > 0, minimizers for Fε(Q) in A0 exist and are of class
C∞(�)

⋂
C2(�).

Proof. Recall that by (1.2), L1 > 0 and L1 + L2 + L3 > 0. We consider two cases.

i) L2 + L3 � 0. From the discussion above we can work with the energy F ′
ε

instead of Fε. Its energy density is the sum of nonnegative terms and f ′
e is

a positive definite quadratic in ∇z, z = (z1, z2, z3). The first variation of
F ′
ε in A0 results in a semilinear elliptic system of three equations in three

unknowns. From standard elliptic theory (see [7]) minimizers for F ′
ε in A0

exist, they are weak solutions to the resulting elliptic system and they are
classical (C∞(�)

⋂
C2(�)).

ii) 0 > L2 + L3. Let curl Q denote the matrix-valued function whose i th
row is the curl of the i th row of Q. Then |∇Q|2 − |div Q|2 − |curl Q|2 =
(Qi j,k Qik, j − Qi j, j Qik,k) is a null Lagrangian. As a result, if we set

f ′′
e (Q) = (L1 + L2 + L3)

2
|∇Q|2 − (L2 + L3)

2
|curl Q|2,

then fe − f ′′
e is a null Lagrangian, f ′′

e is a positive definite quadratic in ∇z,
and we can argue as in the previous case. ��

Setting p1 = (z1 − z3)/2, p2 = z2, and r = z1 + z3 then Q ∈ A0 is given
in terms of (p, r) ∈ A0 by (1.9). The minimum problem for Fε in A0 is recast as
the minimum problem for Gε as defined in (1.10) in A0, where ge as expressed
in (1.12) and (1.13) directly corresponds to f ′

e and f ′′
e in cases i) and ii) above,

respectively. Moreover, we have

ge(p, r) = fe(Q)− (L3 − L2 + |L3 + L2|)
4

(Qi j,k Qik, j − Qi j, j Qik,k).
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Corollary 2.3. If (p, r) ∈ A0 and Q = Q(p, r) then

Gε(p, r) = Fε(Q)+ (L3 − L2 + |L3 + L2|) s2πk

4
.

Proof. It suffices to evaluate
∫
�
(Qi j,k Qik, j − Qi j, j Qik,k). As this is a null-

Lagrangian we are free to choose (p, r) ∈ A0, and we set r = s
3 . It follows

from (1.9) that∫
�

(Qi j,k Qik, j − Qi j, j Qik,k) = −4
∫
�

(p1x p2y − p1y p2x )

= −4k|B |s|
2
(0)| = −s2πk.

��
Corollary 2.4. Minimizers (pε, rε) for Gε in A0 exist, they are of class C∞(�)⋂

C2(�), and they correspond to minimizers for Fε in A0 by the relation (1.9).

3. The Asymptotic Problem

By Theorem 2.2, equations (1.12)–(1.13), and our assumptions on Q0, it fol-
lows that minimizers (pε, rε) for Gε in A0 are classical solutions to the boundary
value problem⎧⎪⎨

⎪⎩
L1(p, r) :=−2L1�p1 − (L2 + L3)[�p1+ 1

2(rxx −ryy)]=− 2p1
ε2 gb,p

L2(p, r) :=−2L1�p2 − (L2 + L3)[�p2 + rxy]=− 2p2
ε2 gb,p

L3(p, r) :=− 3
2 L1�r − (L2+L3)

2 [p1xx − p1yy +2p2xy + 1
2�r ]=− 1

ε2 gb,r

(3.1)

in �,

and r = s

3
, p = p0 on ∂�, (3.2)

with |p0| = |s|
2 on ∂� and deg ( p0

|p0| , ∂�) = k > 0.

Choose a finite covering U of the C3 manifold� by coordinate neighborhoods
with uniformly bounded C3 structure, and a constant ε0 in (0, 1) (depending only
on� and U ) such that for all x0 ∈ �, B2ε0(x0) is contained in a set in U . Through-
out this section we assume (1.21) holds for all minimizers zε = (pε, rε) for Gε in
A0 for all 0 < ε < ε1 � ε0, where ε1 depends only on s, L1, L2, L3,�, k, and the
constants in (1.14), and M depends on these terms and in addition on ‖p0‖W 1,2(∂�).
This will be proved in Section 4.

We begin this section by proving several a priori estimates, namely Lemma 3.1
to Lemma 3.6, for solutions to (3.1) and (3.2) that satisfy (1.21) for the above M
and 0 < ε < ε1. These and Proposition 3.7 to Corollary 3.13 will be applied to
minimizers of Gε to prove Theorems A and B at the end of this section.

In this section, unless otherwise stated, we denote by C and C j , positive con-
stants depending at most on p0, s, L1, L2, L3,�, and the constants in (1.14). Addi-
tional dependence, for example on M , will be denoted by C(M).
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Lemma 3.1. Let zε = (pε, rε) satisfy (1.21), (3.1), and (3.2) for 0 < ε < ε1. Then
|zε| and |ε∇zε| are uniformly bounded in � by a constant C(M) independent of ε
for all 0 < ε < ε1.

Proof. Let x ∈ � and let ε ∈ (0, ε1). Set

z̃(y) = zε(εy + x) for y ∈ �̃ = {y : εy + x ∈ �}.
Then in �̃, z̃ satisfies the system obtained by setting ε = 1 in (3.1). Let B̃r =
Br (0) ∩ �̃. From (1.21) and the growth estimate (1.14) on gb, we have

‖z̃‖L4(B̃1)
� C(M) for 0 < ε < ε1.

Write (3.1) as L z = ε−2f(z), where f(z) = [−2p1gb,p,−2p2gb,p,−gb,r]t and
L is the second order elliptic operator with constant coefficients. From (1.21) and
the L4 estimate, we have

∫
B̃1

|f(z̃) · z̃| � C(M) for 0 < ε < ε1.

In addition, we have ‖z̃|C(∂�̃) � c for 0 < ε < ε1 and  � 3, where c depends
only on � and p0.

We use ϕ2(z̃ − ψ) as a test function in (3.1), where ϕ is a cutoff function van-
ishing near |y| = 1, such that ϕ = 1 on B̃3/4, and ψ is a smooth function equal to
z̃ on ∂�̃. The above inequalities and elliptic estimates give ‖z̃‖1,2;B̃3/4

� C(M).

This implies that f(z̃) ∈ L2(B̃3/4) and we see that ‖z̃‖2,2;B̃5/8
� C(M). Ellip-

tic estimates imply that z̃ ∈ W 3,2(B̃9/16), and by differentiating the equation we
obtain ‖z̃‖3,2;B̃9/16

� C(M). It follows that ‖z̃‖
C1(B̃1/2)

� C(M) uniformly for

0 < ε < ε1. The assertions then follow by scaling back to zε(x). ��
Set Oμ : = {(p, r) : ||p| − |s|

2 | + |r − s
3 | � μ}. Note that O0 = �s . Below,

H n(E) denotes the n-dimensional Hausdorff measure of E .

Lemma 3.2. Let zε satisfy (1.21), (3.1), and (3.2). Set B(ε, μ) = {x ∈ � : zε(x) �∈
Oμ}, P1(x, y) = x, and P2(x, y) = y. Let 0 < μ < δ, where δ is given in (1.14).
Then

H 1(P1(B(ε, μ)) � C(μ,M)ε and H 1(P2(B(ε, μ)) � C(μ,M)ε

for all 0 < ε < ε1.

Proof. Note that zε(x) ∈ O0 for each x ∈ ∂�. Let (x ′, y′) ∈ B(ε, μ), and set
x ′ = {(x ′, y) : y ∈ R}. Since this line intersects ∂�, there must exist (x ′, y′′) ∈ x ′
so that z(x ′, y′′) ∈ ∂Oμ/2. It follows from Lemma 3.1 that there is a C1(μ,M) > 0
so that

z(x ′, y) ∈ O3μ/4\Oμ/4 for |y − y′′| < C1ε.
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From (1.14), then, we see that there exists C2(μ,M) > 0 so that C2ε �∫
x ′ gb(|pε|2, rε)dH 1(y). Thus

C2εH
1(P1(B(ε, μ)) �

∫
�

gb(|pε|2, rε) � ε2 M.

The estimate for P2(B(ε, μ)) follows in the same manner. ��
Since B(ε, μ) ⊂ P1(B(ε, μ))×P2(B(ε, μ)) forμ > 0 we have the following.

Corollary 3.3. Let zε satisfy (1.21), (3.1), and (3.2). For any μ ∈ (0, δ) if 0 < ε <

ε1 then H 2(B(ε, μ)) � C(μ,M)ε2.

This estimate leads to a statement for all x ∈ �. We use the fact that (pε, rε)
is bounded together with Corollary 3.3 for x ∈ B(ε, μ), and the growth estimate
(1.14) for x ∈ �\B(ε, μ) to get

Corollary 3.4. Let zε satisfy (1.21), (3.1), and (3.2). If 0 < ε < ε1 then

ε−2
∫
�

((
rε(x)− s

3

)2 +
(

|pε(x)|2 − s2

4

)2
)

� C(M). (3.3)

Lemma 3.5. Let zε satisfy (1.21), (3.1), and (3.2). If 0 < ε < ε1 then
∫
�

|∇rε|2 � C(M).

Proof. We first record an energy estimate for linear elliptic systems applied to (3.1)
and (3.2),

‖pε‖2
2,2;� + ‖rε‖2

2,2;� � c1

(
ε−4

(
‖pεgb,p‖2

2;� + ‖gb,r‖2
2;�

)
+ ‖p0‖2

2,2;∂�
)
,

where c1 depends on L1, L2, L3 and �. Since gb minimizes on O0 we have

|gb,p(|pε(x)|2, rε(x))|2 + |gb,r(|pε(x)|2, rε(x))|2

� C

((
|pε(x)|2 − s2

4

)2

+
(

rε(x)− s

3

)2
)
. (3.4)

Thus, using (3.3) we find

‖rε‖2
2,2;� � C(ε−2 + 1).

It then follows from this inequality and (3.3) that
∫
�

|∇rε|2 = −
∫
�

(
rε − s

3

)
�rε � ε−1‖rε − s

3
‖2;�ε‖rε‖2,2;�

� C(M).

��
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Lemma 3.6. There is a constant ε2 ∈ (0, ε1] depending only on � and k =
deg ( p0

|p0| , ∂�), and a constant C(M) independent of ε so that if (pε, rε) is a mini-
mizer for Gε in A0 and 0 < ε < ε2 then

∫
�

|∇pε|2 � s2

4
2π k ln

1

ε
+ C(M).

Proof. We first construct a comparison function for the energy in (1.18). Choose
a set of distinct points {b1, . . . , bk} ⊂ �, depending only on � and k such that

min{|bn − b|, dist(bn, ∂�); 1 � n,  � k, n �= } = ε

is maximal. Define

wε(x) =
k∏
=1

ζ

( |x − b|
ε

)
(x − b)

|x − b| ei jε(x)

where ζ(t) ∈ C2(R) such that ζ(t) = 0 for t � 1
2 , ζ(t) = 1 for 1 � t , and

jε(·) is harmonic in � such that wε = p0
|p0| on ∂� for ε < ε. Then, one has

Eε(wε) � πk ln( 1
ε
)+c0 for 0 < ε < ε, where Eε is given in (1.18) and c0 depends

only on � and p0. We next set (w′, r ′) = (
|s|
2 wε, s

3 ) ∈ A0 and use this as our
comparison function for Gε. Set ε2 = min {ε, ε1}. Then, for ε ∈ (0, ε2], using
(1.11) and (1.14) we find that

Gε(w′, r ′) � (L1 + L2 + L3

2
)

∫
�

|∇w′|2

+|L2 + L3|
∫
�

(w′
1,xw

′
2,y − w′

1,yw
′
2,x )+ C1.

The second integral on the right depends only on w′|∂�. Thus we get

Gε(w′, r ′) �
(

L1 + L2 + L3

2

)
s2

4
2πk ln

1

ε
+ C1.

Next, we use ∫
�

ge(∇pε,∇rε) � Gε(pε, rε) � Gε(w′, r ′).

From (1.11) and suppressing the subscript ε we see
(

L1+ (L2 + L3)

2

)∫
�

|∇p|2+ (L2 + L3)

2

∫
�

(p1xrx − p1yry +rx p2y + ry p2x )

+|L2 + L3|
∫
�

(p1x p2y − p1y p2x ) � (2L1 + L2 + L3)
s2

4
πk ln

(
1

ε

)
+ C1.

Again, the third integral is a constant depending on p0. The lemma will follow
once we show that we can bound the second integral appropriately. To do this we
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multiply the third equation in (3.1) by (r − s
3 ) and integrate over �. We get using

Lemma 3.5 that for 0 < ε < ε2 :
∣∣∣ (L2 + L3)

2

∫
�

(p1xrx − p1yry + p2xry + p2yrx )

∣∣∣
� ε−2

∫
�

|gb,r| · |r − s

3
| + C2(M)

� ε−2
∫
�

(
|gb,r|2 + |r − s

3
|2
)

+ C2(M).

Finally using (3.3) and (3.4) we see that the last integral is bounded by a constant
C(M) independent of ε for 0 < ε < ε2. ��

We are in a position to apply Lin’s Structure Proposition; see [15]. Significant
parts of the proposition were also proved by Jerrard [10] and Sandier [19]. Define

Jε(v) =
∫
�

jε(v), where

jε(v) = 1

2

[
|∇v|2 + 1

2ε2

(
s2

4
− |v|2

)2
]
.

Proposition 3.7. For fixed s �= 0 and a constant K suppose that

pε ∈ {v ∈ W 1,2(�; R
2) : v = p0 on ∂�} such that

p0 ∈ C3(∂�), |p0| = s

2
, deg

(
p0

|p0| , ∂�
)

= k > 0,

Jε(pε) � π
s2

4
k ln

1

ε
+ K ,

where 0 < ε < η. Fix 0 < α0 <
1
8 . There are positive constants η0 ∈ (0, η)

and ρ0 > 0 depending on K ,�,p0, and α0 so that if ε < η0 then for each pε,
there are points {aε1, . . . , aεk } satisfying

min{|aεn − aε |, dist(aεn, ∂�); 1 � n,  � k, n �= } � ρ0,

and constants αm(ε), α0 � αm � 2α0 for 1 � m � k so that εαm
∫
∂Bm

jε(pε) � C

for a fixed constant C(s), |pε| � |s|
4 on ∂Bm, and deg ( pε

|pε | , ∂Bm) = 1 where
Bm := Bεαm (aεm). Furthermore, for any sequence {pε} with ε ↓ 0, there exists a
subsequence {ε(q)}, points {a1, . . . , ak} and a function h(x) so that

a
ε(q)
m → am and pε(q) → p∗ =

k∏
m=1

(x − am)

|x − am | eih(x) |s|
2

as q → ∞, where the convergence is strongly in L2(�), weakly in

W 1,2
loc (�\{a1, . . . , ak}), and ‖h‖W 1,2(�) � C1

for some constant C1 = C1(K ,�,p0).
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We take into account (1.21), Corollary 3.4, Lemma 3.5, Lemma 3.6 and apply
the Proposition to a sequence of minimizers.

Lemma 3.8. Let {(pε, rε)} be a sequence of minimizers for {Gε} in A0 such that
ε ↓ 0. Then for a subsequence {(pε , rε)} we have pε → p∗ as in Proposition 3.7
and

rε ⇀
s

3
in W 1,2(�).

The next two lemmas strengthen the notion of convergence using the fact that
we are working with a sequence of minimizers. Set �ρ = �\⋃k

j=1 Bρ(a j ).

Lemma 3.9. Let {(p, r)} be a sequence of minimizers for {Gε} in A0 such that

ε ↓ 0, converging to (p∗, s
3 ), in L2(�), where p∗(x) = |s|

2

∏k
j=1

(x−a j )

|x−a j | eih(x).

Then for each 0 < ρ <
ρ0
2 ,

(p, r) →
(

p∗, s

3

)
in W 1,2(�ρ) and lim

ε→0
ε−2


∫
�ρ

gb(|p|2, r) = 0.

Moreover �h = 0 in �.

Proof. Applying Lemma 3.8 and using a diagonal argument, we have (p, r) ⇀
(p∗, s

3 ) in W 1,2(�ρ) for each ρ > 0, as above. Furthermore, (p, r) is a local
minimizer for ∫

�ρ

[ge(∇p,∇r)+ ε−2
 gb(|p|2, r)].

To prove strong convergence it is enough to show that for each x ∈ �\{a1, . . . , ak}
there exists a neighborhood Ux of x, on which (p, r) → (p∗, s

3 ) in W 1,2(Ux ∩�).
We first consider the case x �∈ ∂� and take d = d(x) > 0 such that B3d =
B3d(x) ⊂ �\{a1, . . . , ak}. Then

∑k
j=1 θ j (x)+ h(x) is single-valued here and we

write p∗ = |s|
2 eiω(x) on B2d . From Lemma 3.8 and (3.3), for each ρ > 0, there

exists C0(ρ,M) < ∞ independent of  so that

∫
�ρ

[|∇p|2 + |∇r|2 + ε−2
 ((|p|2 − s2

4
)2 + (r − s

3
)2)
]

� C0(ρ,M).

(3.5)

Takeρ < d . Then for any subsequence {(p j , r j )} of {(p, r)} (possibly after pass-
ing to a further subsequence that we do not relabel) d can be chosen, d � d � 2d
so that

∫
∂Bd

[|∂τp j |2+|∂τ r j |2+ε−2
 j
((|p j |2− s2

4
)2+(r j −

s

3
)2)]�C1(x,M),

(3.6)



Analysis of Nematic Liquid Crystals with Disclination Lines 813

where ∂τ denotes the tangential derivative. Thus (|p j |, r j ) → (
|s|
2 ,

s
3 ) uniformly

on ∂Bd and (p j , r j ) ⇀ (p∗, s
3 ) in W 1,2(∂Bd). Since deg ( p∗

|p∗| , ∂Bd) = 0, it fol-

lows that deg (
p j
|p j | , ∂Bd) = 0 for j sufficiently large, and we can write p j (x) =

|p j (x)|eiω j (x) for x ∈ ∂Bd . We define ω̃ j (x) and ω̃(x) on Bd as the harmonic
extensions of ω j |∂Bd and ω|∂Bd , respectively. It follows that

ω̃ j ⇀ ω in W 1,2(∂Bd) and ω̃ j → ω̃ in W 1,2(Bd). (3.7)

The first limit follows from [9] and the second follows from elliptic regularity
theory. We next construct comparison functions

(p̃ j , r̃ j ) := (|p̃ j |eiω̃ j , r̃ j ) on Bd ,

such that (p̃ j , r̃ j ) = (p j , r j ) on ∂Bd .
This is done by setting

(|p̃ j |, r̃ j ) =
( |s|

2
,

s

3

)
on Bd−ε j

,

and for each θ define (|p̃ j |, r̃ j )(|x|, θ) to be linear for d − ε j � |x| � d.

Then based on (3.6) and (3.7) it follows that (p̃ j , r̃ j ) → (p̃, r̃) = (
|s|
2 eiω̃, s

3 ) in
W 1,2(Bd). Moreover,∫

Bd

ge(∇p̃, 0) = lim
j→∞

∫
Bd

[ge(∇p̃ j ,∇r̃ j )+ ε−2
 j

gb(|p̃ j |2, r̃ j )].

From the minimality of (p j , r j ) and the weak lower semicontinuity of
∫

Bd
ge we

have ∫
Bd

ge(∇p∗, 0) � lim sup
j→∞

∫
Bd

[ge(∇p j ,∇r j )+ ε−2
 j

gb(|p j |2, r j )]

�
∫

Bd

ge(∇p̃, 0). (3.8)

From (1.11) it follows that
∫

Bd
ge(∇p, 0) minimizes in the set {p = |s|

2 ei f ∈
W 1,2(Bd) : f = ω on ∂Bd} if and only if� f = 0 in Bd . Thus p̃ is the unique mini-
mizer and p̃ = p∗ on Bd ; see [2]. From (1.12) and (1.13) we see that

∫
Bd

ge(∇p,∇r)
is the sum of weakly lower semi-continuous integrals. We have shown that the sum
is weakly continuous on the sequence {(p j , r j )}. It follows that each of its terms
is weakly continuous on this sequence, as well. Thus

∫
Bd

|∇p j |2 → ∫
Bd

|∇p∗|2
and

∫
Bd

|∇r j |2 → 0 as j → ∞. Thus (p j , r j ) → (p∗, s
3 ) in W 1,2(Bd) and, as

a result, the full sequence (p, r) → (p∗, s
3 ) in W 1,2(Bd). A further consequence

is that

lim
→∞ ε−2



∫
Bd

gb(|p|2, r) = 0.
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Moreover, we have shown that p∗ = |s|
2 ei(

∑k
j=1 θ j +h(x)), where �h = 0 in

�\{a1, . . . , ak}. From Proposition 3.7 we have that h ∈ W 1,2(�); this implies that
the singularities are removable.

Lastly if x ∈ ∂�, we take a neighborhood Ux and d ∈ (0, ε0) so that there
exists a smooth diffeomorphism defined on Bd satisfying ψ(x) = x and

ψ : B+
d = {y + x : y2

1 + y2
2 < d, y2 � 0} →

onto
Ux.

We can then carry out the radial construction of (|p̃|, r̃) in B+
d , push this forward

to Ux, and then argue as in the previous case. ��
We next prove that {(|p|, r)} converges uniformly to ( |s|

2 ,
s
3 ) outside of a

neighborhood of {a1, . . . , ak}. The proof is similar to that in [13] Theorem A. This
is possible since the density ge can be expressed as the positive definite quadratic
(1.12) or (1.13).

Lemma 3.10. Let (pε , rε) = (p, r) be a convergent sequence of minimizers for
{Gε} in A0 as in Lemma 3.9. Given ρ ∈ (0, ρ0

2 ) and μ ∈ (0, δ2 ), there exists 0 so
that

(p(x), r(x)) ∈ Oμ for all x ∈ �ρ and  > 0.

Proof. Assume there exists x ∈ �ρ such that

(p(x), r(x)) �∈ Oμ for  ∈ N.

Since ∂�, it follows that there exists z ∈ �ρ such that (p(z), r(z)) ∈ ∂Oμ.
Using Lemma 3.1 we see there is a c(μ) > 0 so that

(p(x), r(x)) ∈ O 3μ
2

\ Oμ
2

for x ∈ Bcε(z)
⋂
�ρ.

It follows from (1.14) that there is a constant β(μ) > 0 so that

gb(|p(x)|2, r(x)) � β for x ∈ Bcε(z)
⋂
�ρ.

Thus we conclude for  sufficiently large that there is a constant C2 > 0 so that

ε−2


∫
Bcε (z)

⋂
�ρ

gb(|p|2, r) � C2.

On the other hand, it follows from Lemma 3.9 that the left side tends to zero as
 → ∞. ��

In the next two lemmas we prove that if a sequence of minimizers {(pε , rε)}
converges in W 1,2

loc (�\{a1, . . . , ak}), then in fact it is bounded in W j,2
loc (�\{a1, . . . ,

ak}) for all j . Our arguments are based on three features: first that {(|pε |, rε)}
converges uniformly to ( |s|

2 ,
s
3 ) on K for each K ⊂⊂ �\{a1, . . . , ak}, second that

( s2

4 ,
s
3 ) is a nondegenerate minimum point for gb, and third that ge is strongly

elliptic. A corresponding result is proved for minimizing sequences to the Ginz-
burg–Landau energy (1.18) in [1]. In that case the Euler–Lagrange equations are
diagonal and the authors are able to apply estimates for elliptic equations. Here,
our arguments rely only on L2 estimates for elliptic systems.
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Lemma 3.11. Let {(pε , rε)} be a sequence of minimizers for {Gε} in A0 converg-
ing in W 1,2

loc (�\{a1, . . . , ak}) as ε → 0. Then for K ⊂⊂ �\{a1, . . . , ak} there
exist constants 0 and E so that if  � 0, then

‖D2(pε , rε)‖2;K � E

Proof. It suffices to establish the estimate in a neighborhood of each point in
�\{a1, . . . , ak}. We first consider the case of x0 ∈ �\{a1, . . . , ak}. Then B2d(x0) ⊂
�\{a1, . . . , ak} for some d(x0) ∈ (0, ε0). Fixing x0 and η, 0 < η <

|s|
6 , we take d

and 0 so that ∫
B2d (x0)

(|Dpε |2 + |Drε |2) < η (3.9)

and

‖pε | − |s|
2

| + |rε − s

3
| < η on B2d(x0) (3.10)

for all  � 0.
Let ζ ∈ C2

c (B2d(x0)) be such that ζ = 1 on Bd(x0). We suppress the sub-
scripts and write (pε , rε) = (p, r). Then multiplying (3.1) by −∂x j (ζ

2∂x j (p, r)),
we get using the strong ellipticity of the system that there exists a constant
�(L1, L2, L3) > 0 for which

�‖ζD∂x j (p, r)‖2
2;B2d

+ ε−2


∫
B2d

ζ 2[D2gb](∂x j (|p|2, r)) · (∂x j (|p|2, r))

� C‖|Dζ |∂x j (p, r)‖2
2;B2d

− ε−2


∫
B2d

2gb,p|∂x j p|2ζ 2.

Here Dgb = (∂pgb, ∂rgb) and [D2gb] is the Hessian of gb. Using (1.14), (3.10)
and taking η sufficiently small, we have

λ

∫
B2d

ζ 2|∂x j (|p|2, r)|2 �
∫

B2d

ζ 2[D2gb]∂x j (|p|2, r) · ∂x j (|p|2, r)

for some λ > 0.
From equations (3.1), using |p| � |s|

4 on B2d , we get

ε−4


∫
B2d

ζ 2(g2
b,p + g2

b,r) = ε−4


∫
B2d

ζ 2|Dgb|2 � C
∫

B2d

ζ 2|D2(p, r)|2.

Thus we find

‖ζD2(p, r)‖2
2;B2d

+ ε−4
 ‖ζDgb‖2

2;B2d
+ ε−2

 ‖ζD(|p|2, r)‖2
2;B2d

� C0

∫
B2d

ζ 2|Dp|4 + C1

� C2

∫
B2d

ζ 2|D2p|2 ·
∫

B2d

|Dp|2 + C3. (3.11)
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The last estimate follows by applying the Sobolev estimate
(∫

�

ϕ2
)1/2

� c
∫
�

(|Dϕ| + |ϕ|), (3.12)

with ϕ = ζ |Dp|2 and c = c(�). Choosing η small in (3.9) the first term on the
right of (3.11) can be absorbed into the left and the lemma is proved for the case
of K ⊂⊂ �\{a1, . . . , ak}.

Assume next that x0 ∈ ∂� and d < ε0, so that B2d(x0) is contained in a coor-
dinate patch in which we can locally flatten ∂� near x0. We consider the special
case where ∂� is already locally flat,

B2d(x0) ∩ (�\{a1, . . . , ak})
= B+

2d(x0) = {(x1, x2) : (x1 − x01)
2 + (x2 − x02)

2 < 4d2 and x2 � x02}.
Let ζ ∈ C∞

c (B2d(x0)) such that ζ = 1 on Bd(x0). Let (p̃, r̃) ∈ W 2,2(�) such
that (p̃, r̃) = (p0,

s
3 ) on ∂�. Again suppressing subscripts, we multiply (3.1) by

∂x1(ζ
2∂x1(p − p̃, r − r̃)) and integrate by parts. Then, for any 0 < θ < 1 we get

�‖ζD∂x1(p, r)‖2
2;B+

2d
� C1‖|Dζ ||∂x1(p, r)|‖2

2;B+
2d

+θε−4
 ‖ζDgb‖2

2;B+
2d

+ 1

θ

(∫
B+

2d

|∂x1p|4ζ 2 + C2

)
. (3.13)

We next multiply (3.1) by

−∂x2(ζ
2∂x2(p, r)) = −ζ 2∂2

x2
(p, r)− 2ζ∂x2ζ∂x2(p, r).

Using the ellipticity of L we get

L1

2
‖ζ 2∂2

x2
(p, r)‖2

2;B+
2d

−�1(‖ζ 2 D∂x1(p, r)‖2
2;B+

2d

+‖|Dζ ||D(p, r)|‖2
2;B+

2d
)

� −
∫

B+
2d

L(p, r) · ∂x2(ζ
2∂x2(p, r)) = I, (3.14)

where �1 = �1(L1, L2, L3).
From (3.1) we have

I =
∫

B+
2d

[2p1gb,p, 2p2gb,p, gb,r]t · ∂x2(ζ
2∂x2(p, r)).

Here we integrate by parts. Since gb minimizes at (|p|2, r) = (s2, s
3 ), it follows

that gb,p = gb,r = 0 on ∂�. Thus the boundary term will vanish and we find that

I = −ε−2


∫
B+

2d

∂x2 [2p1gb,p, 2p2gb,p, gb,r]tζ 2∂x2(p, r)

� 2ε−2


∫
B+

2d

|gb,p||∂x2 p|2ζ 2. (3.15)
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Combining (3.13), (3.14), and (3.15) we see that there exists �2(L1, L2, L3) > 0
so that

�2(‖ζ 2 D2(p, r)‖2
2;B+

2d
+ ε−4

 ‖ζDgb‖2
2;B+

2d
) � C2‖|Dζ ||D(p, r)|‖2

2;B+
2d

+ θε−4
 ‖ζDgb‖2

2;B+
2d

+ 1

θ

(∫
B+

2d

|Dp|4ζ 2 + C3

)
.

From this point, the argument proceeds just as above. In the general case one first
flattens the boundary and analyzes the system in local coordinates in the same
manner. ��
Lemma 3.12. Let {(pε , rε)} be the sequence of minimizers for {Gε} from the
previous lemma. For each integer j > 2 and set K ⊂⊂ �\{a1, . . . , ak} there are
constants E j so that

‖(pε , rε)‖ j,2;K � E j for  � 0.

Proof. Choose η < |s|
6 so that [D2gb] � λI on Oη. We suppress the subscript ε

and assume that  � 0, where 0 is from the previous lemma. We further assume
that d ∈ (0, ε0) is sufficiently small so that Bd(x0) ⊂ �\{a1, . . . , ak} and so that
(3.10) holds. Assume that there exists a constant Eq < ∞ so that

‖(p, r)‖2
q,2;Bd

+ ε−2
 ‖

(
|p|2 − s2

4
, r − s

3

)
‖2

q−1,2;Bd

+ε−4
 ‖(gb,p, gb,r )‖2

q−2,2;Bd
� Eq (3.16)

holds for q = j − 1. We prove this estimate for q = j where E j−1 is replaced
by a possibly larger constant, E j , and d by d/2. Note that we already have (3.16)
for q = 2 from Lemma 3.11. Let ∂γ be a derivative of order j − 1 and Dq be the
collection of all partial derivatives of order q. Let ζ ∈ C∞

c (Bd) be such that ζ = 1
on Bd/2. We use (−1) j−1∂γ (ζ 2∂γ (p, r)) as a test function in (3.1) and find

�‖ζ 2|D∂γ (p, r)|‖2
2;� � C‖|Dζ |∂γ (p, r)‖2

2;�

−ε−2


∫
�

ζ 2∂γ (gb,p2p, gb,r ) · ∂γ (p, r) = I −�. (3.17)

From (3.16) we have I � C0(E j−1, d). We write

∂γ (gb,p2p, gb,r) · ∂γ (p, r) = ∂γ (gb,p, gb,r) · (2p · ∂γ p, ∂γ r)

+
∑

|α|� j−2
α+β=γ

aα∂
αgb,p∂

βp · ∂γ p, (3.18)

2p · ∂γ p = ∂γ |p|2 +
∑
α+β=γ

1�|α|� j−2

bα∂
αp · ∂βp, (3.19)
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and

∂γ (gb,p, gb,r) = [D2gb]∂γ (|p|2, r) (3.20)

+
∑

∑
α,β (|α|α+|β|mβ)= j−1

cαβ
∏

|α|� j−2

(∂α|p|2)α ·
∏

|β|� j−2

(∂βr)mβ ,

where aα, bα are constants, 0 = m0 = 0, and cαβ(x) = (c1
αβ(x), c2

αβ(x)) are
bounded. Inserting (3.18), (3.19), and (3.20) into the right side of (3.17), we have
for Bd = Bd(x0):

I I = ε−2


∫
Bd

ζ 2[D2gb]∂γ (|p|2, r) · ∂γ (|p|2, r)

+ε−2


∫
Bd

ζ 2
∑

cαβ�(∂
α|p|2)α (�∂βr)mβ · ∂γ (|p|2, r)

+ε−2


∫
Bd

ζ 2∂γ gb,p

(∑
bα∂

αp · ∂βp
)

+ε−2


∫
Bd

ζ 2
(∑

aα∂
αgb,p∂

βp · ∂γ p
)

= I I I + I V + V + V I.

Just as in Lemma 3.11, we have

λε−2


∫
Bd

ζ 2|∂γ (|p|2, r)|2 � I I I.

From Sobolev’s theorem, the derivatives in IV of order less than j −2 are bounded.
It follows then for any θ > 0 that

|I V | � C1ε
−2


∫
Bd

ζ 2

⎛
⎝ j−2∑

t=1

|Dt (|p|2, r)|2
⎞
⎠ |∂γ (|p|2, r)|

� θε−4


∫
Bd

ζ 4|D j−2(|p|2, r)|4 + C2(E j−1, d)

θ
.

Then, using (3.12) and (3.16) we see

|I V | � θC3(E j−1)ε
−2


∫
Bd

ζ 2|D j−1((|p|2, r)|2 + C4(E j−1, d)

θ
.

To estimate |V |, we write ∂γ = ∂x ′∂γ
′

for some x ′ and integrate by parts to get

|V | � θε−4


∫
Bd

ζ 2|D j−2gb,p|2 + θC5(E j−1)

∫
Bd

ζ 2|D j p|2 + C6(E j−1, d)

θ2 .

To bound |V I |, we first consider the terms with α �= 0. For these |β| < j − 1 and
we see we can bound these terms just as was done for V . The term with α = 0

can be bounded by C7
θ

g2
b,p

ε4


+ θ |ζD j−1p|4. The integral of the first term over Bd is
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bounded by applying (3.16) for q = 2 (which follows from Lemma 3.11), and the
second by θC8(E j−1)

∫
Bd
ζ 2|D j p|2 + C9(E j−1, d). Thus

|V I | � C10(E j−1)θ
(
ε−4


∫
Bd

ζ 2|D j−2gb,p|2 +
∫

Bd

ζ 2|D j p|2
)

+ C11(E j−1, d)

θ
.

Summing on |γ | = j − 1 and collecting the estimates for I I I, . . . , V I we find

�

∫
Bd

ζ 2|D j (p, r)|2 + λ(ε−2


∫
Bd

ζ 2|D j−1(|p|2, r)|2

� θC12(E j−1)
( ∫

Bd

ζ 2|D j (p, r)|2 + ε−2


∫
Bd

ζ 2|D j−1(|p|2, r)|2

+ε−4


∫
Bd

ζ 2|D j−2(gb,p, gb,r)|2
)

+ C13(E j−1, d)

θ2 . (3.21)

From (3.1) we have ε−2
 (gb,p, gb,r) = −( p

|p|2 · (L1,L2),L3)(p, r). Using this, the

estimate |p| � |s|
4 , and Sobolev’s theorem we get

ε−4


∫
Bd

ζ 2|D j−2(gb,p, gb,r)|2 � C14(E j−1)

∫
Bd

ζ 2|D j (p, r)|2 + C15(E j−1, d).

Inserting this estimate into (3.21) and choosing θ sufficiently small, we obtain
(3.16) for q = j and d replaced by d/2. ��
Corollary 3.13. Let {(pε , rε)} be a sequence of minimizers for {Gε} in A0 con-
verging to (p∗, r∗) in W 1,2

loc (�\{a1, . . . , ak}). Then for each integer m,

(pε , rε) → (p∗, r∗) in Cloc(�\{a1, . . . , ak}),
and in Cm

loc(�\{a1, . . . , ak}) as  → ∞.

Proof of Theorem A. Let {(pε, rε)} be a sequence of minimizers for {Gε} in A0
for which (1.21) holds and such that ε ↓ 0. Then by applying Lemma 3.8 it follows
that there exists a subsequence {(pε , rε)} and points {a1, . . . , ak} ⊂ � so that

(pε , rε) ⇀

⎛
⎝ |s|

2

k∏
j=1

x − a j

|x − a1| eih(x),
s

3

⎞
⎠ = (p∗, s

3
)

in W 1,2
loc (�\{a1, . . . , ak})× W 1,2(�).

By Lemma 3.10 for each ρ ∈ (0, ε0), (|pε |, rε) → (
|s|
2 ,

s
3 ) uniformly on �ρ =

�\⋃k
j=1 Bρ(a j ), and from Lemma 3.9

(pε , rε) →
(

p∗, s

3

)
in W 1,2(�ρ).

Moreover h(x) is harmonic in �.
Finally, by applying Corollary 3.13 we see that

(pε , rε) → (p∗, s

3
) in C(�ρ) and Cm

loc(�ρ)

for each integer m. ��
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We need to establish several properties for the following minimum problem in
order to prove Theorem B. Let β ∈ C, |β| = 1 and define

L

(
ε

μ
;β
)

:= L

(
ε

μ
, 1;β

)
= L(ε, μ;β)

= inf
(v,r)∈Aβ

∫
Bμ

[ge(∇v,∇r)+ ε−2gb(|v|2, r)]

+(2L1 + L2 + L3)
|s|
4

2

π ln

(
ε

μ

)
, (3.22)

where

Aβ = {(v, r) ∈ W 1,2(Bμ) : v(x) = β|s|
2

x

|x | and r(x) = s

3
for |x | = μ}.

Lemma 3.14. L(τ ;β) is independent of β for all β ∈ C with |β| = 1. More-
over L(τ ) := L(τ ;β) is a nondecreasing function of τ for τ > 0 such that
γ := limτ↓0 L(τ ) > −∞.

Proof. For any T ∈ SO(2), consider the change of variables by rotation, y = T x
for x ∈ B1 and set

R =
⎡
⎣t11 t12 0

t21 t22 0
0 0 1

⎤
⎦ .

The energy density is frame indifferent and, as such, satisfies

fe(∇y Q̃(y))+ τ−2 fb(Q̃(y)) = fe(∇x Q(x))+ τ−2 fb(Q(x)),

where Q̃(y) = RQ(T t y)Rt . This translates into a statement of invariance for ge

and gb,

ge(∇yp̃(y),∇yr̃(y))+ τ−2gb(|p̃(y)|2, r̃(y)) = ge(∇xp(x),∇xr(x))

+τ−2gb(|p(x)|2, r(x)),
where p̃(y) = T 2p(T t y) and r̃(y) = r(T t y). Let β = β1 + iβ2. Then the boundary
condition for p(x) as a vector in R

2 reads as p0(x) = |s|
2 K x for |x| = 1, where

K =
[
β1 −β2
β2 β1

]
.

Given T ∈ SO(2), the boundary condition for p̃(y) becomes p̃0(y) = |s|
2 T 2 K T t y

for |y| = 1. In particular, if we let T = K t , we get p̃0(y) = |s|
2 y for |y| = 1. Thus the

mapping (p, r) ∈ Aβ → (p̃, r̃) ∈ A1 is an isometry such that Gτ (p, r) = Gτ (p̃, r̃).
In particular, we see that L(τ ;β) = L(τ ; 1) = L(τ ).

The monotonicity property of L(τ ) follows by the same argument for (1.18)
given in [1], Chapter 3. A lower bound m for minimizers for the energy (1.18) with
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� = B1 is proved in [1], Chapter 5. Let uε be such a minimizer with uε(x) = x
|x|

on ∂B1. If (vτ , rτ ) is a minimizer for (3.22) with μ = 1 and ε = τ , it follows that

Eτ (
2

|s|vτ ) � Eτ (uτ ) � −π ln(τ )− m.

Thus, using (3.3) we have

1

2

∫
B1

|∇vτ |2 � − s2

4
π ln(τ )− m′.

The existence of a finite lower bound for L(τ ) follows from this and the estimates
in the proof of Lemma 3.6. ��
Proof of Theorem B. The relation between Fε and Gε is proved in Corollary 2.3.
We establish the asymptotic relation by arguing as in [1], Chapter 8. Let

ϒ = {b = (b, . . . , bk) ∈ �k : bi �= b j if i �= j},
and for b ∈ ϒ set

qb(x) = |s|
2

k∏
j=1

(x − b j )

|x − b j | eihb(x),

where hb(x) is harmonic in� and is determined (mod 2π ) by the condition qb = p0
on ∂�. From [1], Chapter 8 we have

1

2

∫
�\

k⋃
j=1

Bρ(b j )

|∇qb|2

= s2

4

(
πk ln

1

ρ
+ W (b)

)
+ O(ρ) as ρ → 0, (3.23)

where W (b) is the renormalized energy for (1.18) given in [1]. We express this
using our notation. Set R(x) = ∑k

j=1 ln |x − b j | and τ = ν⊥, where ν is the
exterior unit normal to ∂�. Then

W (b) = −π
∑
 �= j

log |b − b j | + 1

2

∫
∂�

R∂νR

−
∫
∂�

hb∂τ R + 1

2

∫
�

|∇hb|2. (3.24)

Note that using (1.11), we have

ge(∇qb, 0) =
(

L1 + L2 + L3

2

)
|∇qb|2

+|L2 + L3|(qb1,x qb2,y − qb1,yqb2,x ), (3.25)

and that qb1,x qb2,y − qb1,yqb2,x = 0 since |qb| = |s|
2 .
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We next construct a comparison function for (1.10). Let b ∈ ϒ. Then for
0 < ε << ρ and for ρ sufficiently small (depending on � and b), we define

(p̃ε , r̃ε) =
⎧⎨
⎩
(qb, s/3) for x ∈ �\⋃k

j=1 Bρ(b j ),

(v0(x − b j ), s/3) for ρ/2 � |x − b j | � ρ,

(v j ((x − b j )), r j (x − b j )) for x ∈ Bρ/2(b j ).

Here (v j , r j )minimizes
∫

Bρ/2(0)
[ge +ε−2

 gb] with boundary conditions ( |s|
2
β j x
|x| ,

s
3 )

on ∂Bρ/2(0) and β j = ∏k
=1
 �= j

(b j −b)
|b j −b| eihb(b j ). The function v0 is a minimal har-

monic map valued in {|v| = | s
2 |} such that p̃ε is continuous. From Lemma 3.14

we have
∫

Bρ/2(0)
[ge(∇v j ,∇r j )+ ε−2

 gb(|v j |2, r j )]

= (2L1 + L2 + L3)
s2π

4
ln

(
ρ

2ε

)
+ γ + oε(1) (3.26)

as ε → 0. Then from (3.23), (3.25), and Lemma 3.14 we get

Gε(pε , rε) � G(p̃ε , r̃ε)

= (2L1 + L2 + L3)
s2

4

(
πk ln

(
1

ε

)
+ W (b)

)
+ kγ

+O(ρ)+ oε(1).

Let a ∈ ϒ be a limiting configuration as in Theorem A. Then from Lemma 3.9 and
(3.23-26) we have

Gε(pε , rε) � (2L1 + L2 + L3)
s2

4

(
πk ln

(
1

ε

)
+ W (a)

)
+ kγ

+O(ρ)+ oε(1).

Just as in [1], choosing ε = ε(ρ) << ρ with ρ → 0, we arrive at our assertion.
It follows from these two inequalities that W minimizes at b = a and that the limit
for Gε(pε , rε) as  → ∞ is established. ��

4. The Pohozaev Identity

In this section we show that (1.21) always holds for minimizers of Gε in A0 if
� is simply connected and 0 < ε < ε1, where ε1 depends on s, L1, L2, L3,�, k,
and the constants in (1.14), and M depends on these terms and ‖p0‖W 1,2(∂�), as
well. We first prove (1.21) for solutions to (3.1-2) in the case of a disk using the
Pohozaev identity.
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Lemma 4.1. Let (p, r) = (pε, rε) be a solution to (3.1-2) where� = �R = BR(0)
and 0 < ε < 1. Then there is a constant C0 = C0(R, L1, L2, L3, ‖p0‖1,2;∂BR , s)
so that

ε−2
∫

BR

gb(|p|2, r) � C0.

Proof. We multiply the system (3.1) by −∇(p1, p2, r)x and integrate over BR .
We find

0 =
∫

BR

[(2L1 + L2 + L3)(�p·∇p·x)+
(

3L1

2
+ L2 + L3

4

)
�r∇r ·x

−ε−2∇g · x]
+ (L2 + L3)

2

∫
BR

[2rxy∇ p2 · x + 2p2xy∇r · x]

+ (L2 + L3)

2

∫
Br

[(rxx − ryy)∇ p1 · x + (p1xx − p1 yy)∇r · x]

=: I + (L2 + L3)

2
I I + (L2 + L3)

2
I I I. (4.1)

We can calculate I as in [1], Chapter 3,

I = R

(
L1 + (L2 + L3)

2

)∫
∂BR

(|pν |2 − |pτ |2)

+R

(
3L1

4
+ (L2 + L3)

8

)∫
∂BR

(|rν |2 − |rτ |2)+ 2ε−2
∫

BR

gb. (4.2)

Here pτ and rτ are tangential derivatives. Note that rτ = 0 and pτ = p0τ on ∂BR .
To calculate II, we write

∫
BR

rxy∇ p2 · x =
∫

BR

(rxy x p2x + rxy y p2 y)

= −
∫

BR

(xrx p2xy + yry p2xy)

+ 1

R

∫
∂BR

xy(p2xrx + p2 yry).

Using this and the fact that rτ = 0 on ∂BR , we get

I I = 2

R

∫
∂BR

xy p2νrν.

To calculate III, we change variables, x ′ = (x − y)/
√

2, y′ = (x + y)/
√

2. Then

I I I = 2
∫

BR

(rx ′ y′∇ p1 · x + p1x ′ y′∇r · x) = 2

R

∫
∂BR

x ′y′ p1νrν .
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Writing (x, y) = (R cos θ, R sin θ), then, it follows that (x ′, y′) = (R cos(θ +
π
4 ), R sin(θ + π

4 )). Thus I I + I I I = R
∫
∂BR

rν(cos 2θ, sin 2θ) · pν . Finally, we
see that

∣∣∣∣
(

L2 + L3

2

)
(I I + I I I )

∣∣∣∣ � R
|L2 + L3|

2

(∫
∂BR

( |rν |
4

2

+ |pν |2
))

. (4.3)

Thus using (4.1), (4.2) and (4.3) with (1.2), we get

R

(
L1 + (L2 + L3)

2

)∫
∂BR

|p0τ |2

� R(L1 + L2 + L3

2
− |L2 + L3|

2
)

∫
∂BR

|pν |2

+R

(
3L1

4
+ (L2 + L3)

8
− |L2 + L3|

8

)∫
∂BR

|rν |2

+2ε−2
∫

BR

gb � 2ε−2
∫

BR

gb.

��
Lemma 4.2. Let � be a C3 bounded simply connected domain in R

2. There is a
constant 0 < ε1 � ε0 such that if (p, r) = (pε, rε) is a minimizer for Gε in A0 and
0 < ε < ε1, then

ε−2
∫
�

gb(|p|2, r) � M.

Here ε1 depends on s, L1, L2, L3,�, k, and the constants in (1.14) and M depends
on these terms and ‖p0‖W 1,2(∂�).

Proof. Set R = 2(diam(�)) and assume that 0 ∈ �. We construct an extension
of p. Let p̂ ∈ W 1,2(BR(0)\�) valued in {|p̂| = |s|

2 } and such that p̂ is a minimal

harmonic map satisfying p̂ = p0 on ∂� and p̂(x) = |s|
2 (

x
|x| )

k on ∂BR(0). Note that
‖p̂‖1,2;BR(0)\� � C‖p0‖1,2;∂�. Set

(p′, r ′) =
{
(p, r) for x ∈ �,
(p̂, s

3 ) for x ∈ BR \�.

Let G̃ε = ∫
BR

[ge + 1
2ε2 gb], and let (p̃, r̃) be a minimizer for G̃ε such that

(p̃, r̃) = (p̂, s
3 ) on ∂BR . We can apply Lemma 4.1 (with ε replaced by

√
2ε) and

the results from Section 3 to G̃ε and (p̃, r̃) for the case of � = BR . In particular,
from the proof of Theorem B, there are constants C1 and 0 < η1 < 1, depending
on s, L1, L2, L3,�, k, and the constants in (1.14) so that

(2L1 + L2 + L3)
s2

4
πk ln

1

ε
− C1 � G̃ε(p̃, r̃) � G̃ε(p′, r ′)
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for all 0 < ε < η1. Note that

G̃ε(p′, r ′) =
∫
�

[ge(∇p,∇r)+ 1

2ε2 gb(|p|2, r)]

+
∫

BR\�
ge(∇p̂, 0)

= Gε(p, r)− 1

2ε2

∫
�

gb(|p|2, r)+ C2,

where C2 depends only on ‖p0‖1,2;∂� and the constants in (1.14). Thus

(2L1 + L2 + L3)
s2

4
πk ln

1

ε
+ 1

2ε2

∫
�

gb(|p|2, r) � Gε(p, r)+ C1 + C2.

(4.4)

Next we consider the comparison map (w′, r ′) constructed in Lemma 3.6
defined for ε < ε = η2. Since (p, r) is a minimizer for Gε, we get

Gε(p, r) � Gε(w′, r ′) � (2L1 + L2 + L3)
s2

4
πk ln

1

ε
+ C3

for all ε < ε = η1, where C3 depends only on p0,�, L1, L2, L3, and the constants
in (1.14). It follows from this and (4.4) that

ε−2
∫
�

gb(|p|2, r) � 2(C1 + C2 + C3) =: M

for all 0 < ε < ε1 = min{η1, η2, ε0}. ��
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