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Abstract

In this paper we consider the asymptotic behavior of the Ginzburg–Lan-
dau model for superconductivity in three dimensions, in various energy regimes.
Through an analysis via �-convergence, we rigorously derive a reduced model for
the vortex density and deduce a curvature equation for the vortex lines. In the com-
panion paper (Baldo et al. Commun. Math. Phys. 2012, to appear) we describe
further applications to superconductivity and superfluidity, such as general expres-
sions for the first critical magnetic field Hc1 , and the critical angular velocity of
rotating Bose–Einstein condensates.

1. Introduction

In this paper we investigate the asymptotic behavior as ε → 0 of the functionals

Eε(u) ≡ Eε(u;�) =
∫
�

eε(u) dx =
∫
�

1

2
|Du|2 + 1

ε2 W (u) dx,

where ε > 0, � is a bounded Lipschitz domain in R
3, u = u1 + iu2 ∈

H1(�;C), W : R
2 � C → R is nonnegative and continuous, W (u) = 0 ⇐⇒

|u| = 1, and is assumed to satisfy some growth condition at infinity and around its
zero set (see hypothesis (Hq) below).

In the case W (u) = (1−|u|2)2
4 , one usually refers to Eε as the Ginzburg–Landau

functional. This model is relevant to a variety of phenomena in quantum phys-
ics; in fact, as corollaries of its asymptotic analysis, we will derive, here and in
the companion paper [2], reduced models for density of vortex lines (or curves)
in three-dimensional superconductivity and Bose–Einstein condensation. In these
physical applications, ε represents a (small) characteristic length, u corresponds
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to a wave function, |u|2 to the density of superconducting or superfluid material
contained in �. Moreover, the momentum, defined as the 1-form

ju ≡ (iu, du) ≡ u1du2 − u2du1,

represents the superconducting (resp. superfluid) current, and hence it is natural
to interpret the Jacobian Ju ≡ du1 ∧ du2 as the vorticity, since 2Ju = d( ju).
We refer the reader to the Appendix for notation used throughout this paper and
background on differential forms and related material.

In the two-dimensional case, it has been recognized since [5] that for min-
imizers uε of Eε (subject to appropriate boundary conditions), as ε → 0, the
energy typically scales like |log ε|. In addition, there are a finite number of sin-
gular points, called vortices, where the energy density eε(uε)dx and the vorticity
Juε concentrate. Moreover, the rescaled energy Eε (uε )|log ε| controls the total vorticity.
These phenomena are robust, in the sense that analogous results hold in higher
dimensions (see [6,24], where the limiting vorticity is supported in a codimension
2 minimal surface) and under weaker assumptions on uε , as stated in the following
�-convergence result:

Theorem 1. ([1,22]) Let K > 0, n � 2, � ⊂ R
n be a bounded Lipschitz domain,

and the potential W satisfy the growth condition1

lim inf|u|→∞
W (u)

|u|q > 0, lim inf|u|→1

W (u)

(1− |u|)2 > 0, (Hq )

for some q � 2. Then the following statements hold:

(i) Compactness and lower bound inequality. For any sequence uε ∈ H1(�,C)

such that

Eε(uε) � K |log ε|, (H0)

we have, up to a subsequence, Juε → J in W−1,p for every p < n
n−1 , where

J is an exact measure-valued 2-form in � with finite mass ||J || ≡ |J |(�),
and J has the structure of an (n− 2)-rectifiable boundary with multiplicities
in π · Z. Moreover,

lim inf
ε→0

Eε(uε)

|log ε| � ||J ||. (1.1)

(ii) Upper bound (in) equality. For any exact measure-valued 2-form J having
the structure of an (n − 2)-rectifiable boundary in � with multiplicities in
π · Z, there exist uε ∈ H1(�,C) such that Juε → J in W−1,p for every
p < n

n−1 , and

lim
ε→0

Eε(uε)

|log ε| = ||J ||. (1.2)

1 See condition (2.2) in [1].
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Other energy regimes arise naturally for Eε and are interesting for applica-
tions. In particular the energy regime Eε(uε) ≈ |log ε|2 corresponds to the onset
of the mixed phase in type-II superconductors, and to the appearance of vortices in
Bose–Einstein condensates. These situations have been extensively studied in the
two-dimensional case, especially by Sandier and Serfaty in the case of super-
conductivity (see [30] and references therein). In this energy regime, the number of
vortices is of order |log ε|, hence unbounded as ε → 0. Another feature is that the
contribution of the vortices to the energy is of the same order as the contribution of
the momentum, so that the limiting behavior can be described in terms of this last
quantity, suitably normalized. A �-convergence result for 1

gε
Eε for general energy

regimes Eε(uε) � gε � ε−2 has been proved, in the two-dimensional case, in
[23], see also [30].

1.1. Main Results

A first result of this paper extends the asymptotic analysis of [23] to the three-
dimensional case. We write fε � hε (or hε 
 fε) to express fε = o(hε) as ε → 0.
We will use the notation

A0 := {(J, v) : J is an exact measure-valued 2-form in �, v ∈ L2(�1�)}.
(1.3)

Measure-valued k-forms are discussed in the Appendix, see in particular Sections
5.1.1 and 5.1.2. Our conventions imply that a measure-value form J has finite mass,
so that ‖J‖ := |J |(�) < ∞, where |J | denotes the total variation measure asso-
ciated with J . We say that a measure-valued k-form J is exact if J = dw in the
sense of distributions for some measure-valued k− 1-form w. We show in Lemma
12 that a measure-valued (n − 1)-form J on a smooth bounded open � ⊂ R

n is
exact if and only if d J = 0 and the associated flux through each component of the
boundary ∂� vanishes. The latter condition follows automatically from the former
if ∂� is connected.

Theorem 2. Let � be a bounded Lipschitz domain in R
3, W (u) satisfy (Hq) for

some q � 2, and |log ε| � gε � ε−2. Then the following statements hold:

(i) Compactness and lower bound inequality. For any sequence uε ∈ H1(�,C)

such that

for some K > 0, Eε(uε) � K gε, (Hg)

there exist (J, v) ∈ A0 such that, after passing to a subsequence if necessary,

|uε | → 1 in Lq(�),
juε

|uε |√gε
⇀ v weakly in L2(�1�), (1.4)

juε√
gε

⇀ v weakly in L
2q

q+2 (�1�). (1.5)
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If gε � |log ε|2, then in addition,

|log ε|
gε

Juε = |log ε|
2gε

d( juε)→ J in W−1,p(�2�) ∀ p < 3/2. (1.6)

The convergences in (1.5) and (1.6) yield, in different scaling regimes,

if |log ε| � gε � |log ε|2 then (J, v) ∈ A1 := {(J, v) ∈ A0 : dv = 0},
(S1)

if gε=|log ε|2 then (J, v) ∈ A2 :={(J, v)∈A0 : J= 1

2
dv ∈ H−1(�2�)},

(S2)

if |log ε|2 � gε � ε−2 then (J, v) ∈ A3 := {(J, v) ∈ A0 : J = 0}. (S3)

and in every case,

lim inf
ε→0

Eε(uε)

gε
� ||J || + 1

2
||v||2L2(�1�)

. (1.7)

(ii) Upper bound (in)equality. Assume that (gε)ε>0 satisfies one of the scaling
conditions (Sk),

k ∈ {1, 2, 3}, identified above, and that (J, v) ∈ Ak . Then ∃Uε ∈ H1(�;C)
such that (1.4), (1.5), (1.6) hold, and

lim
ε→0

Eε(Uε)

gε
= ||J || + 1

2
||v||2L2(�1�)

. (1.8)

The compactness and lower bound assertions are either very easy, already
known (see for example [31]) or are proved almost exactly as in the two-dimensional
case. The upper bound (1.8) is the main new part of the theorem, and constitutes
the most difficult part of the theorem.

Remark 1. Assume that (gε)ε>0 satisfies one of the scaling conditions
(Sk), k ∈ {1, 2, 3}, identified above, and for (J, v) ∈ A0, set

E(J, v) := ||J || + 1

2
||v||2L2(�1�)

if (J, v) ∈ Ak, (1.9)

and E(J, v) := +∞ if (J, v) �∈ Ak . We express the �-convergence result of
Theorem 2 using the notation

Eε(uε)

gε

�−→ E(J, v), (1.10)

where the �-limit is intended with respect to the convergences (1.4), (1.5), and
(1.6). Notice that the contributions of vorticity and momentum are decoupled in
the �-limit, due to the different scaling factors in (1.5), (1.6), except for the crit-
ical regime gε = |log ε|2, where the scalings of Juε and juε coincide, and the
limits satisfy 2J = dv (see Section 1.2 below). In particular, Theorem 2 expresses
the fact that for regimes gε � |log ε|2, the contribution to the energy is given by
the vorticity and the curl-free part of the momentum, while for gε 
 |log ε|2 the
contribution of the vorticity vanishes asymptotically.
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Remark 2. As observed in [1,22], replacing W (u) by σ ·W (u), σ > 0, and letting
σ → 0, the lower bound (1.7) can be sharpened to

lim inf
ε→0

∫
�

|∇uε |2
2gε

� ||J || + 1

2
||v||2L2(�1�)

. (1.11)

Moreover, for a sequence uε satisfying (1.8), the potential part of the energy is a
lower order term, that is,∫

�

W (uε)

ε2 = o(gε) as ε → 0. (1.12)

Inequality (1.11) is also proved in [31].

Remark 3. In the two-dimensional case the �-convergence result of [23] is for-
mulated exactly as Theorem 2 above, except for the convergence of the normalized
Jacobians |log ε|

gε
Juε , which takes place in W 1,p for any p < 2.

Remark 4. By localization, Theorem 2 implies the following: for any uε satisfy-
ing (Hg), the rescaled energy densities eε (uε )dx

gε
converge weakly as measures in�,

upon passing to a subsequence, to a limiting measure μ, with |J | + v2

2 dx � μ. It

then follows thatμ = |J |+ v2

2 dx for any sequence (uε) such that the convergences
(1.4), (1.5), (1.6) and the upper bound equality (1.8) hold.

Remark 5. The final compactness assertion (1.6) is proved by establishing con-
vergence in W−1,1, and then interpolating, using the easy estimate ‖Juε‖L1 �
‖Du‖2

L2 . For |log ε| � gε � ε−2, (1.5) already implies that |log ε|
gε

Juε → 0 in

W−1, 2q
q+2 . This can also be improved by interpolating with L1 estimates (which

imply W−1,3/2 estimates) if 2q
q+2 <

3
2 .

Remark 6. The convergences (1.4), (1.5) and (1.6) have been already established
in the analysis of [1,22,23]. In particular, for a domain � ⊂ R

n with n � 4, (1.4)
and (1.5) still hold true, while the normalized Jacobians converge to J in W−1,p

for any p < n
n−1 . Moreover, assuming gε � ε−γ for some 0 < γ < 2, the conver-

gence in (1.5) can be improved according to γ , see [23]. In [8], following [10], the
convergence in (1.6) also has been proved to hold in W 1, n

n−1 (as well as in fractional
spaces W s,p with sp = n/(n−1)) for n � 4, and even in the case n = 3, assuming
the condition u ∈ Lq(�) for q > 6 (see [8], Theorem 1.3 and Remark 1.6).

Remark 7. In the scaling gε = |log ε| studied in Theorem 1, arguments in the

proof of Theorem 2 can easily be adapted to show that Eε (uε )
gε

�−→ E(J, v), where
the �-limit is again intended with respect to the convergences (1.4), (1.5) and (1.6),
and where E(J, v) is defined exactly as in (1.9), except that E(J, v) is set equal
to +∞ unless dv = 0 and J has the structure of a rectifiable boundary. This is
an improvement over Theorem 1 (see analogous results in [7] for critical points of
Eε , and in [4] for minimizers with local energy bounds), and in fact is valid in R

n

for any n � 3.
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Remark 8. The validity of (1.7), (1.8) in dimension n � 4 remains an open issue
for energy regimes gε 
 |log ε|. A major difficulty is to determine the correct
generalization of the total variation term ‖J‖ in (1.9). Different candidates include
the total variation with respect to the comass norm, the Euclidean norm, and the
mass norm, see [16]. For measure-valued 2-forms in R

3, all of these coincide.
The most reasonable conjecture is that the mass norm is the suitable one for the

higher-dimensional generalization of Theorem 2, but this seems difficult to prove.
The arguments we give to prove (1.7) are, in fact, presented in R

n , and for n � 4
they prove that (1.7) holds with ‖J‖ replaced by the comass of J , which in general
is strictly less than the mass of J . Lower bounds involving the comass norm in
R

n, n � 4, are also proved in [31].
By way of illustration, for the (constant) measure-valued 2-form J = dx1 ∧

dx2+dx3∧dx4 on an open set� ⊂ R
4, one has comass(J ) = |�|, the Euclidean

total variation of J is
√

2|�|, and mass(J ) = 2|�|.
For |log ε|2 � gε � ε−2, the total variation term does not appear in the

limiting functional, so the issue of mass versus comass does not arise, and the
proof of the lower bound (1.7) is straightforward; in fact it follows from arguments
we give here. The upper bound (1.8) is probably also easier in this case than for
|log ε| � gε � |log ε|2.

Replacing assumption (Hq) for W (u) with the following (verified in particular
for sequences of minimizers)

∃C > 1 such that |uε | � C ∀ε < 1, (H∞)

and taking into account Remark 6, a variant of Theorem 2 can be formulated as
follows:

Theorem 3. In the hypotheses of Theorem 2, we have

(i) Compactness. For any sequence uε ∈ H1(�,C) verifying (Hg) and (H∞)
we have, up to a subsequence,

juε√
gε

⇀ v weakly in L2(�1�),
|log ε|

gε
Juε → J in W−1,3/2(�2�),

(1. 13)

where J is an exact measure-valued 2-form in �, with finite mass ||J || ≡
|J |(�).

(ii) �-convergence. Assuming that gε respects one of the scaling conditions Sk

from Theorem 2, we have

Eε(uε)

gε

�−→ E(J, v), (1. 14)

with respect to the convergence (1. 13), where E(J, v) is defined in (1.9),
taking into account the relevant scaling regime.
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1.2. The Critical Regime gε = |log ε|2

Let us specialize the statements of Theorems 2 and 3 to the critical regime
gε = |log ε|2, where the scaling factors in (1.4), (1.5) and (1.6) are equal, and hence
the normalized vorticity is related to the momentum by the formula 2J = dv. We
then have

Eε(uε)

|log ε|2
�−→ E(v), (1. 15)

where, for v ∈ L2(�1�), we define

E(v) := E
(dv

2
, v
)
= 1

2
||dv|| + 1

2
||v||2L2(�1�)

, (1. 16)

if the mass ||dv|| ≡ |dv|(�) is finite, E(v) = +∞ otherwise. The �-limit is
intended with respect to the convergences (1.4), (1.5) and (1.6).

Clearly Theorem 3 yields the same conclusion (1. 15), this time with respect to
the convergence (1. 13), which in this case reads

juε
|log ε| ⇀ v weakly in L2(�1�),

2Juε
|log ε| → dv in W−1,3/2(�2�). (1. 17)

1.3. Applications to Superconductivity

As a first application of the above results in the energy regime gε = |log ε|2,
we describe the asymptotic behavior of the Ginzburg–Landau functional for super-
conductivity

Fε(u, A) =
∫
�

|du − i Au|2
2

+ 1

ε2 W (u) dx +
∫

R3

|d A − hex|2
2

dx,

defined for � ⊂ R
3, where the 2-form hex ∈ L2

loc(�
2
R

3) is an external applied
magnetic field and the 1-form A ∈ H1(�1 R3) is the induced vector potential (gauge
field). It does not change the problem to assume that hex has the form hex = d Aex
for some Aex ∈ H1

loc(�
1
R

3), so we will always make this assumption.
Let Ḣ1∗ (�1

R
3) := {A ∈ Ḣ1(�1

R
3) : d∗A = 0}, and define the inner product

(A, B)Ḣ1∗ (�1R3) := (d A, d B)L2(�2R3). This makes Ḣ1∗ (�1
R

3) into a Hilbert space,
satisfying in addition the Sobolev inequality

‖A‖L6(�1R3) � C‖A‖Ḣ1∗ (�1R3).

We will study Fε(v, A) for (v, A) ∈ H1(�;C) × [Aex + Ḣ1∗ (�1
R

3)]; this is
reasonable in view of the gauge-invariance of Fε , that is, the fact that

Fε(u, A) = Fε(u·eiφ, A+dφ) ∀φ ∈ H1(R3). (1. 18)

It is useful to decompose Fε as follows (see for example [9]):

Fε(u, A) = Eε(u) + I(u, A)+M(A, hex)+R(u, A), (1. 19)

with
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I(u, A) := −
∫
�

A · ju dx, (1. 20)

M(A, hex) :=
∫
�

|A|2
2

dx +
∫

R3

|d A − hex|2
2

dx

= 1

2
‖A‖2

L2(�1�)
+ 1

2
‖A − Aex‖2

Ḣ1∗ (�1R3)
, (1. 21)

and R(u, A) = 1
2

∫
�
(|u|2 − 1)|A|2dx is a remainder term of lower order. Thus

Fε(u, A) may be written as a continuous perturbation of Eε(u) + M(A, hex),
and using the stability properties of �-convergence we deduce, as in [23] for the
two-dimensional case, �-convergence for the functionals Fε in the critical energy
regime gε = |log ε|2:

Theorem 4. Let � ⊂ R
3 be a bounded Lipschitz domain, let W (u) satisfy (Hq)

with q � 3, and assume hex = d Aex,ε and that there exists Aex,o ∈ H1
loc(�

1
R

3)

such that Aex,ε
|log ε| − Aex,0 → 0 in Ḣ1∗ (�1

R
3). Then the following hold.

(i) Compactness. For any sequence (uε, Aε) ∈ H1(�;C)×[Aex,0+Ḣ1∗ (�1
R

3)]
such that Fε(uε, Aε) � K |log ε|2, we have, up to a subsequence,

Aε
|log ε| − A ⇀ 0 weakly in Ḣ1∗ (�1

R
3), (1. 22)

for some A ∈ Aex,0 + Ḣ1∗ (�1
R

3) as well as the convergences (1.4), (1.5)
and (1.6) of Theorem 2 in the case gε = |log ε|2.

(ii) �-convergence. For v ∈ L2(�1�) and A ∈ Aex,0 + Ḣ1∗ (�1
R

3), define

F(v, A) = 1

2
||dv|| + 1

2
||v − A||2L2(�1�)

+ 1

2
||d A − d Aex,0||2L2(�2R3)

,

(1. 23)

if ||dv|| = |dv|(�) is finite, F(v, A) = +∞ otherwise.
Then under the convergences (1. 22), (1.4), (1.5) and (1.6), we have

Fε(uε, Aε)

|log ε|2
�−→ F(v, A). (1. 24)

Remark 9. Assuming (H∞), the �-limit (1. 24) is obtained with respect to the
convergences (1. 22) and (1. 17).

Remark 10. The statement of Theorem 4 is not gauge-invariant, as the condi-
tion that Aε ∈ Aex,ε + H1∗ (�1

R
3) uniquely determines the function φ in (1. 18).

Fixing this degree of freedom is clearly necessary for compactness. Note, how-
ever, that the limiting functional F has a gauge-invariance property: F(v, A) =
F(v + γ |�, A + γ ) whenever dγ = 0.

The Euler–Lagrange equations of the functional F consist in the Ampère law
d∗H = j for the resulting magnetic field H = d A − h, generated by the (gauge-
invariant) super-current j = v − A in � (see (4.6)), and a curvature equation for
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the vortex filaments, that is, the streamlines of the limiting vortex distribution (see
(4.7)), which reads, in the regular case,{

κ = 2τ × j in �,

τ� = 0 on ∂�,
(1. 25)

with κ and τ denoting, respectively, the curvature vector and the unit tangent to the
vortex filament, j the vector field corresponding to the super-current j = v − A,
and × the exterior product in R

3. Formula (1. 25) generalizes the corresponding
law in the case of a finite number of vortices (see [7], Theorem 3 (iv), and [13]).

Remark 11. In [2] we analyze in more detail the properties of minimizers of the
limiting functional F through the introduction of a dual variational problem. We
use this description to characterize to leading order the first critical field Hc1 .

These results extend to three dimensions facts about two-dimensional models
of superconductivity first established by Sandier and Serfaty [29], see also [30]
and other references cited therein. Following the initial work of Sandier and Serfaty,
it was shown in [23] that their results can be recovered via the two-dimensional
analog of the procedure we follow here and in [2].

As far as we know, the relevance of convex duality in these settings was first
pointed out by Brezis and Serfaty [12].

Remark 12. In [2] we also apply Theorem 2 to study the �-limit of the Gross–
Pitaevskii functional for superfluidity, and derive, in particular, a reduced vortex
density model for rotating Bose–Einstien condensates, deducing the corresponding
curvature equations and an expression for the critical angular velocity.

Remark 13. Theorem 4 is concerned with the description of the behavior of global
minimizers. The convergence of local minimizers with bounded vorticity has been
studied, under various assumptions, in [21,25,26], relying on techniques related to
Theorem 1.

1.4. Plan of the Paper

This paper is organized as follows: in Section 2 we prove the lower bound and
compactness statement (i) of Theorem 2, while Section 3 is devoted to the proof
of the upper bound statement (ii). In Section 4 we prove Theorem 4 and derive the
Euler–Lagrange equations of the �-limit, obtaining, in particular, formula (1. 25).
Section 5 is an Appendix that collects some notation and the proofs of some aux-
iliary results.

2. Lower Bound and Compactness

In this section we prove statement (i) of Theorem 2, relying largely on our pre-
vious works [1,23]. We prove everything in � ⊂ R

n for arbitrary n � 3. We note,
however, that the lower bound inequality (1.7) is not expected to be sharp when
n � 4, see Remark 8.



708 S. Baldo et al.

We first derive (1.4) and (1.5). Then, assuming (1.6), we derive the character-
ization of the limiting spaces Ak corresponding to the scaling regimes Sk identified
in the statement of the Theorem. We next turn to the proof of the lower bound (1.7).
The compactness statement (1.6) in the case p = 1 will be obtained during the
proof of (1.7), and the case 1 < p < n

n−1 (see Remark 6) will follow from the case
p = 1 by a short interpolation argument.

Proof of (1.4), (1.5). Observe first that |uε | → 1 in Lq(�) by assumptions (Hq)

on W (u) and (Hg) on Eε , since

∫
�

|1− |uε ||q � C
∫
�

W (uε) � Cε2 Eε(uε) � Cε2gε → 0.

From the identity |u|2|∇u|2 = |u|2|∇|u||2 + | ju|2 we deduce that

∫
�

| juε |2
|uε |2gε

� 2 · Eε(uε)

gε
� 2K , (2.1)

which yields, up to a subsequence, juε
|uε |√gε

⇀ v weakly in L2(�), completing the
proof of (1.4). Now write

juε√
gε
= juε
|uε |√gε

+ (|uε | − 1) · juε
|uε |√gε

.

Using (1.4) we deduce that (|uε | − 1) · juε
|uε |√gε

⇀ 0 weakly in L
2q

q+2 (�). This

yields juε√
gε
⇀ v weakly in L

2q
q+2 (�), that is (1.5). ��

Next, the characterization of limiting spaces Ak follows from (1.4), (1.5) and

(1.6), since by (1.5) we deduce that d( juε√
g
ε
) ⇀ dv weakly in W−1, 2q

q+2 (�), hence,

in the case gε 
 |log ε|2,

|log ε|
gε

Juε =
( |log ε|√

g
ε

)
d

(
juε√

g
ε

)
⇀ 0 · dv = 0 in W−1, 2q

q+2 (�). (2.2)

In view of (1.6), this implies J = 0 by uniqueness of the weak limit. On the other
hand, in the case gε � |log ε|2,

d

(
juε√

g
ε

)
=2

( √
g
ε

|log ε|
)
·
( |log ε|

gε
Juε

)
→0 · J=0 in W−1,p(�), p <

n

n − 1
,

which implies dv = 0, again by uniqueness of the weak limit. The above formulas,
in the case gε = |log ε|2, imply that dv = 2J .

We turn to the proof of (1.7) distinguishing two cases, namely |log ε| � gε �
|log ε|2, and |log ε|2 � gε � ε−2. We begin with the latter case.
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Proof of (1.7) in the case gε 
 |log ε|2. In this energy regime, we have just
shown that J = 0, and (1.4) and (2.1) immediately imply

lim inf
ε→0

Eε(uε)

gε
� 1

2

∫
�

|v|2, (2.3)

yielding conclusion (1.7). ��
If it is not true that gε 
 |log ε|2, then by passing to a subsequence we may

suppose that gε � C |log ε|2. By renaming the constant K in (Hg) we may also
assume that C = 1. Thus the proof of (1.7) will be completed by the following.

Proof of (1.7) in the case |log ε| � gε � |log ε|2. The main step in the proof is
the following improvement of [1], Proposition 3.1. We establish it in greater gen-
erality than is needed for the proof of (1.7). ��

We remark that (1.7) in the scaling |log ε| � gε � |log ε|2 is already estab-
lished in [31] and, moreover, that a key point in that proof is a result similar to the
following proposition.

Proposition 1. Let uε be a sequence of smooth maps on� ⊂ R
n, n � 2, such that

(Hg) holds, with |log ε| � gε � |log ε|2. Then we have, up to a subsequence,

|log ε|
gε

Juε → J in W−1,1(�2�), (2.4)

where J is an exact measure-valued 2-form2 with finite mass in�. Moreover, there
exists a closet set Cε ⊂ � such that |Cε | → 0, and such that for every simple
2-covector η such that |η| = 1 and for every open set U � �, it holds that

lim inf
ε→0

Eε(uε;Cε)

gε
� |(J, η)|(U ), (2.5)

where (J, η) is the signed measure defined according to (5.4).

Our proof of Proposition 1 differs from that of the corresponding point (Prop-
osition IV.3) in [31]. One feature of our proof is that the set Cε that we construct
is manifestly a closed set, whereas in the construction of [31], a certain amount of
work is required even to see that the corresponding set is measurable.

Taking for granted Proposition 1, we complete the proof of (1.7). First, a stan-
dard localization argument (see [1], p. 1436) gives, for any finite collection of
pairwise disjoint open sets U j � � and simple unit 2-covectors η j ,

∑
j

|(J, η j )|(U j ) � lim inf
ε→0

Eε(uε;Cε)

gε
. (2.6)

Taking the supremum over all choices of pairwise disjoint open sets U j and unit
simple 2-covectors, η j on the left-hand side of (2.6) yields the total comass norm of

2 In the case gε = |log ε|, J has the structure of a rectifiable boundary with multiplicities
in π · Z, according to Theorem 1.
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J in the sense of [16], section 1.8.1. In the three-dimensional case3 this coincides
with the total variation (or L1, accordingly) norm of J , since all 2-covectors in R

3

are necessarily simple. Hence we may write, for n = 3,

|J |(�) � lim inf
ε→0

Eε(uε;Cε)

gε
. (2.7)

Now let �ε ≡ � \ Cε , and let χε(x) be the characteristic function of �ε . We
may assume after passing to a subsequence that χε(x) → 1 as ε → 0 for almost
everywhere x ∈ �, since |Cε | → 0. Then for any h ∈ L2, χε · h → h in L2 by the
dominated convergence theorem, and so it follows from (1.4) that

∫
�

h · χε · juε
|uε |√gε

→
∫

h · v as ε → 0.

That is, χε · juε
|uε |√gε

⇀ v weakly in L2. Since

∫
�ε

eε(u) � 1

2

∫
�

χ�ε
| juε |2
|uε |2 ,

we deduce that

lim inf
ε→0

Eε(uε;�ε)
gε

� lim inf
ε→0

1

2

∫
�

χ�ε
| juε |2
|uε |2gε

� 1

2

∫
�

v2. (2.8)

To conclude, observe that Eε(uε;�) = Eε(uε;Cε)+ Eε(uε;�ε), so that

lim inf
ε→0

Eε(uε;�)
gε

� lim inf
ε→0

Eε(uε;Cε)

gε
+ lim inf

ε→0

Eε(uε;�ε)
gε

. (2.9)

Combining (2.9) with (2.8) and (2.7) we obtain (1.7). ��
We now supply the

Proof of Proposition 1. We will proceed in two steps: first, we apply the discreti-
zation procedure of [1], Section 3 at a suitable scale �ε to deduce (2.4) and to identify
a small set C ′ε ⊂ � where the Jacobian Juε is essentially confined. Second, we
apply the cited procedure again, this time imposing an additional condition that
yields good control of the resulting 2-form ν′ε (a discretization of the Jacobian) in
a small neighborhood Cε of C ′ε by the Ginzburg–Landau energy in the same small
neighborhood Cε . We then argue that the restriction of ν′ε to a suitable subset of Cε

converges to the same limit as Juε , so that from lower semicontinuity, bounds on
(ν′ε, η) � Cε yield estimates on (J, η), thereby proving (2.5).

We carry out these arguments in detail in the case n = 3 and then we discuss
the general case.

3 And for any n � 3 if gε = |log ε|, then J is obtained as a limit of polygonal currents with
uniformly bounded mass, and hence is rectifiable by the Federer–Fleming closure theorem.
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Step 1 We follow [1], Section 3. Fix a unit simple 2-covector η, and an orthonor-
mal basis (ei ) of R

3 satisfying η(e2 ∧ e3) = 1. Consider a grid G = G(a, ei , �),
given by the collection of cubes with edges of size �, and vertices having coordi-
nates (with respect to a reference system with origin in a ∈ R

3 and orthonormal
directions (ei )i=1,2,3) which are integer multiples of �. For h = 1, 2 denote by
Rh the h-skeleton of G, that is, the union of all h-dimensional faces of the cubes
of G. Consider also the dual grid having vertices in the centers of the cubes of G,
and denote its h-skeleton by R′h for h = 1, 2. From (Hg) and the assumption that
gε � |log ε|2 we have

Eε(uε;�) � K |log ε|2, and we set � ≡ �ε := |log ε|−10. (2.10)

Observe that (2.10) replaces (3.22) and (3.23) in [1]. Choose a ≡ aε by a mean-
value argument in such a way that Lemma 3.11 of [1] holds, so that, in particular,
the restriction of the energy on the two-dimensional and one-dimensional skeleton
of G is controlled by∫

Rh∩�
eε(uε)dHh � C0�

h−3 Eε(uε;�), h = 1, 2, (2.11)

for a suitable constant C0 > 1, and moreover

�

∫
�

eε(uε)

|dist(x, R1)|dx � C0 Eε(uε;�). (2.12)

In view of (2.10), Lemma 3.4 in [1] is satisfied, hence |uε | → 1 uniformly
on R1 ∩ �. In particular, for any face Q ∈ R2, the topological degree dQ :=
deg ( uε|uε | , ∂Q, S1) ∈ Z is well-defined (modulo the choice of an orientation of Q

in R
3).
The discretization procedure of [1], Lemmas 3.7 to 3.10, may then take place

on any fixed open set U � �, yielding an oriented polyhedral 1-cycle (actually, a
relative boundary in Ū ) Mε =∑(−1)σi dQi ·Q′i , where Q′i ⊂ R′1 is the unique edge
of the cubes of the dual grid intersecting the face Qi ⊂ R2, the sign (−1)σi depends
on the orientations of both Qi and Q′i , and the sum is extended to any Qi ⊂ R2

such that Qi ∩ U �= ∅. Notice that Mε is supported in R′1 ∩ U
√

3�, where U
√

3�

denotes the tubular neighborhood of U of thickness
√

3�. The cycle Mε gives rise
to a (measure-valued) 2-form νε , whose action on 2-forms in C∞c (�2�) is defined
by

〈νε, ϕ〉 := π ·
∑

Qi⊂R2
Qi∩U �=∅

(−1)σi dQi

∫
Q′i
�ϕ. (2.13)

The 2-form νε is exact in U , since Mε is a relative boundary in Ū , and enjoys the
following properties: it is a measure-valued 2-form supported in R′1 ∩U

√
3�, such

that its total variation |νε | is bounded on U by4

4 See [1], (3.29).
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|νε |(U ) =
∑

Qi⊂R2
Qi∩U �=∅

π� · |dQi | � C
Eε(uε;�)
|log ε| , (2.14)

with C > 0 independent of U � �, and such that νε is close to Juε in the W−1,1

norm, namely5

||Juε − νε ||W−1,1(�2U ) � C� · Eε(uε;�). (2.15)

Moreover, the support of νε is contained in the interior of a set C ′ε ⊂ U
√

3� given by
the union of those cubes of the grid G having at least one face Q ⊂ R2, Q∩U �= ∅,
such that dQ �= 0. Denote by I the set of indices i in (2.14) for which dQi �= 0, or
equivalently, |dQi | � 1. By (2.14) we have

|C ′ε | � �3 · |I | �
∑
i∈I

�3 · |dQi | � C�2 Eε(uε;�)
|log ε| , (2.16)

so that by (2.10), |C ′ε | → 0 as ε → 0.
Notice, moreover, that (2.14) and (Hg) imply that |log ε|

gε
· νε ⇀ J weakly

as measures, where J is a measure-valued 2-form in �, which is exact and has

total variation |J |(�) � C lim inf
ε→0

Eε(uε;�)
gε

. By (2.15) we finally deduce that

|log ε|
gε

· Juε → J in W−1,1(�2U ) for any U � �, which yields (2.4).

Step 2 For N > 0 to be chosen below, define Cε ≡ CN ,ε := {x ∈
�, dist(x,C ′ε) � 2N�} to be the tubular neighborhood of C ′ε of thickness 2N�
intersected with �. By (2.16) we have

|Cε | � 8N 3|C ′ε | � C N 3�2 gε
|log ε| → 0 as ε → 0, (2.17)

as long as N 3 � �−1. In view of (2.10), (2.17) is verified for instance by fixing

N ≡ Nε := |log ε|3. (2.18)

Observe, moreover, that

Eε(uε;Cε) � Eε(uε;�) � K gε � |log ε|2. (2.19)

Consider the grid G∗ε = G(bε, ei , �), where � = �ε = |log ε|−10 as above and bε is
chosen such that for an arbitrarily fixed δ > 0, (3.18), (3.19) and (3.20) in Lemma
3.11 of [1] hold true, and, moreover, (3.17) holds true with � replaced by Cε . In

5 Combine (2.10) and (2.12) with (3.7) and (3.14) of [1].
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other words, denoting by R∗h the h-skeleton of G∗ε , h = 1, 2, and by R̃∗2 the union
of the faces of the 2-skeleton of G∗ε orthogonal to e1, we have,

∫
R̃∗2∩(Cε )

eε(uε)dH2 � (1+ δ)�−1 Eε(uε;Cε), (2.20)

∫
R∗h∩�

eε(uε)dHh � C0δ
−1�h−3 Eε(uε;�), h = 1, 2, (2.21)

�

∫
�

eε(uε)

|dist(x, R∗1)|
dx � C0δ

−1 Eε(uε;�). (2.22)

Fix an open subset U � �. As in Step 1, the procedure of [1] yields a polyhedral
cycle

M ′
ε =

∑
Qi⊂R∗2

Qi∩U �=∅

(−1)σi dQi · Q′i , (2.23)

which is a relative boundary in Ū and is supported in R∗1
′ ∩U

√
3�, where R∗1

′ is the
one-dimensional skeleton of the dual grid to G∗. The corresponding measure-valued
2-form ν′ε , defined as in (2.13) by

〈ν′ε, ϕ〉 := π ·
∑

Qi⊂R∗2
Qi∩U �=∅

(−1)σi dQi

∫
Q′i
�ϕ, ∀ϕ ∈ C∞c (�2(�)),

(2.24)

is exact on U and verifies |ν′ε |(U ) � C Eε (uε ;�)|log ε| with C > 0 independent of U .
For x ∈ � define f (x) := dist(x, Mε), so that f is 1-Lipschitz. Denoting by

Ct = {x : f (x) � t} ∩�, we have that C2N� ⊂ Cε .

Lemma 1. There exists t := tε < N� such that

||ν′ε � Ct − νε ||W−1,1(U ) � C(�+ N−1)gε, (2.25)

with C > 0 independent of ε and U. In particular, the choices of � and N (see
(2.10) and (2.18)) imply that

|log ε|
gε

· ν′ε � Ct → J in W−1,1(�2U ) (2.26)

and, for any 2-covector η,

( |log ε|
gε

· ν′ � Ct , η
)
→ (J, η) in W−1,1(U ). (2.27)

We postpone the proof of Lemma 1 to Section 5.6 of the Appendix. By (2.27)
and lower semicontinuity of total variation we deduce
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|(J, η)|(U ) � lim inf
ε→0

∣∣∣
( |log ε|

gε
· ν′ε � Ct , η

)∣∣∣(U )
� lim inf

ε→0

∣∣∣
( |log ε|

gε
· ν′ε � C N�, η

)∣∣∣(U ).
(2.28)

Observe that specializing (2.24) to the case ϕ = ψ η, with ψ ∈ C∞c (�), and
letting ψ approach the characteristic function of C N� ∩U , we have

|(ν′ε � C N�, η)|(U ) = |(ν′ε, η)|(C N� ∩U ) = π ·
∑

Qi⊂R∗2
Qi∩U �=∅

∣∣∣∣∣dQi

∫
Q′i∩C N�∩U

�η

∣∣∣∣∣ .

(2.29)

Notice that for any Q′ ⊂ R∗1
′ such that Q′ ∩ C N� �= ∅, its dual element Q is

contained in the tubular nighborhood of thickness
√

3� of C N�, which is a subset of
C2N�, so that, in particular, Q ⊂ Cε . Recalling from the definitions that �η = dx1,
which is the oriented arclength element along Q′i for Qi ∈ R̃∗2 , we obtain from
(2.29) that

|(ν′ε � C N�, η)|(U ) �
∑

Q⊂R̃∗2∩Cε

π� · |dQ |. (2.30)

One readily verifies, following [1], p. 1435, that (2.10) and (2.19) allowed us to
apply Lemma 3.10 there (which relied in turn on a fundamental estimate in [20,28]),
to efficiently estimate the sum of the degrees |dQ | in terms of Eε(uε;Cε). Namely,
for any r > 0, and any Q ⊂ R∗2 ∩� we have

(1− cr (ε))π · |dQ | � 1

|log ε|
∫

Q
eε(uε)dH2 + Kr�

|log ε|
∫
∂Q

eε(uε)dH1, (2.31)

where cr (ε) is independent of Q, and cr (ε)→ 0 as ε → 0 (see [1], p. 1435). We
may thus write

(1− cr (ε))
∑

Q⊂R̃∗2∩Cε

π · |dQ | � 1

|log ε|
∫

R̃∗2∩Cε
eε(uε)dH2 + Kr�

|log ε|
∫

R∗1∩Cε
eε(uε)dH1.

(2.32)

Combining (2.30) with (2.32), and taking into account (2.20), (2.21), we are led to

(1− cr (ε))|
( |log ε|

gε
· ν′ε � C N�, η

)
|(U ) �

(
1+ δ + Kr

δ

) Eε(uε;Cε)

gε
. (2.33)

Passing to the limit as ε → 0, we have, in view of (2.28),

|(J, η)|(U ) �
(

1+ δ + Kr

δ

)
lim inf
ε→0

Eε(uε;Cε)

gε
. (2.34)

Taking r < δ2 and δ arbitrarily small yields (2.5). ��
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Proof in the general case n � 3. The main tool used above is the algorithm from
[1] for constructing a polyhedral approximation of the Jacobian Ju, and hence
a measure-valued 2-form νε , with good estimates of ‖Ju − νε‖W−1,1 and of
|(νε, η)|(W ) for suitable subsets W ⊂ �. The procedure in [1], in fact, is pre-
sented in R

n, n � 3, and so can be employed in the general case as for n = 3, with
purely cosmetic differences. For example, in R

n , the analog of Q′i in (2.13) and
elsewhere is now the unique n−2 face of the dual grid that intersects Qi . Also, dif-
ferent scalings make it convenient to choose � = |log ε|−(3n+1), say, while we still
take N = |log ε|3. Then it remains true that gε � N , which is needed for the proof
of Lemma 1, and that |C ′ε | → 0, which follows from the fact that N n�2 gε

|log ε| → 0
as ε → 0, compare (2.17). Modulo changes of this sort, the argument is identical
in the general case. ��
Proof of (1.6). Recall that we have assumed that gε � |log ε|2. Since

||Juε − νε ||L1(�2U ) � ||Juε ||L1(�2U ) + ||νε ||L1(�2U ) � C Eε(uε;�) � Cgε
(2.35)

for any U � �, we deduce, by interpolation with (2.15),

||Juε − νε ||W−1,p(�2U ) � C(�ε · gε)
1− n(p−1)

p g
n(p−1)

p
ε � C�

1− n(p−1
p

ε · |log ε|2.
(2.36)

The conclusion (1.6) follows by choosing �ε = �ε,p = |log ε|− 3p
n−p(n−1) , so that

the right-hand side of (2.36) vanishes. ��

3. Upper Bound

In this section we prove statement (ii) of Theorem 2.

3.1. Strategy of Proof

The proof is subdivided into steps. First of all, we reduce our focus in Section
3.2 to considering an appropriate dense class of the domain of the �-limit, using a
suitable finite elements approximation. The construction of the recovery sequence
will be based on a Hodge decomposition of the limiting momentum p, described
in Section 3.3, and a discretization of the limiting vorticity dp in terms of a sys-
tem of lines where the vorticity is concentrated and quantized; this, and associated
estimates of the discretized vorticity and related quantities, are the main points
in the proof. An argument à la Biot-Savart then allows us to construct S1-valued
maps whose Jacobians are concentrated precisely on the discretized vorticity lines,
and we obtain our maps uε by adjusting the modulus around the vortex cores. The
proof is completed by the verification of the upper bound inequality, which relies
crucially on good properties of the discretized vortex lines and estimates satisfied
by associated auxiliary functions.
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3.2. Nice Dense Class

We say that a 1-form p on a domain � ⊂ R
3 is rational piecewise linear if

p is continuous, and there exists a family of closed simplices {Pi } with pairwise
disjoint interiors such that

1. � ⊂ ∪Pi ;
2. for every i , the restriction to Pi of p has the form

∑
(a jk

i xk + b j
i )dx j for

a jk
i , b j

i ∈ Q; and
3. all the vertices of each Pi are rational (that is, belong to Q

3.)

Rational piecewise linear 1-forms have the following useful property:

Lemma 2. Let p be a rational piecewise linear 1-form on � ⊂ R
3, and let {Pi }

denote the associated family of simplices, as described above.
Then for any (two-dimensional) face T of any of the simplices Pi ,

∫
T

dp ∈ Q.

Proof. We fix Pi and write V1, . . . , V4 to denote its vertices. Consider some face F
of Pi , say F = co{Vj , Vk, Vl} ≡ the convex hull of {Vi , Vj , Vk}, for some distinct
{ j, k, l} ∈ {1, . . . , 4}, and let W denote the constant 2-covector such that dp = W
in P . Then

∫
F

dp = ±1

2
((Vl − Vj ) ∧ (Vl − Vk),W ), (3.1)

where the sign depends on the orientation that F inherits from Pi , and this is clearly
rational. ��

We say that a closed set is rational polygonal if it is a finite union of closed
simplices with pairwise disjoint interiors and rational vertices. A rational polygonal
open set is the interior of a rational polygonal closed set. We write “�” to mean
“is homeomorphic to”.

Lemma 3. Suppose that � ⊂ R
3 is a bounded open subset and that ∂� is of class

C1. Given p ∈ L2(�1(�)) such that dp is a measure, and given δ > 0 small, there
exists a rational polygonal set �P

δ with � � �P
δ � �δ = {dist(x,�) < δ}, and

such that� � �P
δ � �δ , and a rational, piecewise linear 1-form pδ ∈ L2(�1�P

δ ),
such that dpδ ∈ L1(�2�P

δ ) and

‖p − pδ‖L2(�) � δ (3.2)

‖pδ‖2
L2(�P

δ )
� ‖p‖2

L2(�)
+ δ (3.3)∫

�P
δ

|dpδ| � |dp|(�)+ δ. (3.4)
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Proof. Since ∂� is of class C1, it is clear that we may find δ > 0 such that�δ � �.
By adapting standard approximation techniques for BV functions as in [18], we
can find a set �′ ⊂ �δ such that � � �′, and a 1-form p′ ∈ C∞(�1(�′)),
such that ‖p − p′‖L2(�) � δ/2, ‖p′‖2

L2(�′) � ‖p‖2
L2(�)

+ δ/2 and |dp′|(�′) �
|dp|(�)+ δ/2.

Now choose a rational polygonal domain �P
δ such that � � �P

δ � �′ with
� � �P

δ . This can be achieved by setting Qh to be the collection of cubes of
side-length h with vertices at points in hZ

3, and defining

�P
δ := int(∪{Q∈Qh :Q∩� �=∅}Q)

for some sufficiently small (rational) h. (Clearly each such cubes can be subdi-
vided into simplices with rational vertices.) If h is small enough, then Q ∩ � is
contractible for every Q ∈ Qh , and then it is not hard to check that �P

δ � �.
By taking h smaller as necessary, we may also obtain rational triangulations

with arbitrarily small mesh size.
By standard interpolation theory from the finite elements method (see for

instance [14, Chapter 3]), we can find piecewise linear 1-forms which are arbi-
trarily close to p′ in W 1,2(�δ): it suffices to choose a sufficiently fine triangulation
constructed as above, and to take the (unique) piecewise linear form pδ which
interpolates p′ in the vertices of the triangulation. Moreover, an arbitrarily small
change of pδ in the vertices makes it rational. ��

We will also need the following variant of the above.

Lemma 3 ′. Suppose that� ⊂ R
n is a bounded open subset and that ∂� is of class

C1. Given an exact measure-valued 2-form J , and given δ > 0 small, there exists a
rational polygonal set �P

δ such that � � �P
δ � �δ = {dist(x,�) < δ}, and such

that � � �P
δ � �δ , and a rational, piecewise linear 1-form p′δ ∈ L2(�1�P

δ ),
such that dp′δ ∈ L1(�2�P

δ ) and such that

‖p − pδ‖W−1,1(�) � δ,

∫
�P
δ

|dp′δ| � |J |(�)+ δ. (3.5)

The proof is a straightforward modification of the proof of Lemma 3, once we
note from Corollary 1 in the Appendix that any exact measure-valued 2-form J in
� can be written in the form J = dp′ for some p′ ∈ ∩1�q< n

n−1
Lq(�1�).

3.3. Hodge Decomposition of pδ

Here we refer for notation and basic theory to Section 5.2 of the Appendix. We
henceforth write p instead of pδ .

Since basic results on Hodge theory to which we appeal require some smooth-
ness of the domain, we fix an open set �δ with smooth boundary, such that � �
�δ � �P

δ , and such that � � �δ � �P
δ . In particular, we assume that if ∂�P

δ has
connected components (∂�P

δ )i , i = 1, . . . , b, then there exist disjoint connected
open sets W1, . . . ,Wb such that

�P
δ \ �̄δ = ∪b

i=1Wi , ∂Wi = (∂�P
δ )i ∪ (∂�δ)i ∀i. (3.6)
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Consider the Hodge decomposition p = γ + dα + d∗β on �δ satisfying the
boundary conditions (5.11). Thanks to Corollary 1 in the Appendix, we know that
β = −�−1

N (dp), so that in particular ||β||q � Cq ||dp||1 ∀ q < 3/2. Recall that by
L2-orthogonality of the Hodge decomposition we have∫

�δ

|p|2 =
∫
�δ

|γ |2 + |d∗β|2 + |dα|2. (3.7)

We emphasize that, in what follows, we will carry out most geometric argu-
ments on the polygonal set �P

δ , but the Hodge decomposition always refers to the
smooth set �δ ⊂ �P

δ .

3.4. Discretization of dp = dd∗β

We will use different arguments to approximate the different terms in the Hodge
decomposition of p. Most of our efforts will be devoted to d∗β. As noted above,
the first step in our construction is to discretize dp = dd∗β, which one can think
of as the vorticity.

Proposition 2. Let p be a rational piecewise linear 1-form supported on�P
δ ⊂ R

3,
and fix η ∈ (0, 1). For any h � η2 there exists an exact measure-valued 2-form qh

in �P
δ such that:

(i)

qh = dd∗βh, where βh = −�−1
N qh in�δ.

(ii)

||qh − dp||W−1,1(�P
δ )

� Cη,

(iii)

|qh |(�P
δ ) � ||dp||L1(�P

δ )
+ Cη,

(iv)

||d∗βh ||L p(�δ) � C p|qh |(�δ), d∗βh ⇀ d∗βη in L p(�δ) ∀ p < 3/2,

||d∗βη − d∗β||2L2(�δ)
� Cη,

where C > 0 is independent of h, η,U. For any ϕ ∈ C0(�2�P
δ ) we have the

integral representation
(v)

〈qh, ϕ〉 = h
∫
�h

�ϕ = h
m(h)∑
�=1

∫
��h

�ϕ,

where �h = ∪n(h)
s=1 Ls

h ⊂ �P
δ , Ls

h is an oriented line segment ∀ s, h, m(h) <
n(h) � K h−1, and for any �, h, ��h is an oriented simple piecewise linear
curve in �P

δ such that ∂��h ∩ U = ∅∀U ⊂ �P
δ . In particular, we have

|qh |(U ) = h|�h ∩U | for any U ⊂ �P
δ . Moreover,
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(vi)

dist(L1, L2) > c0ηh1/2 if L1, L2 are disjoint closed line segments of �h,

with c0 > 0 independent of h, η.
Finally, if L1, L2 are two line segments of ��h with exactly one endpoint in
common, and τ1, τ2 are unit tangents consistent with the orientations (fixed
in (v)) of L1, L2 respectively, then

(vii)

τ1 · τ2 > −1+ Cη2,

for some C > 0 independent of h, η.

Remark 14. The discretized vorticity qh has a 1-dimensional character, in that it is
supported on a union of line segments, so that in realizing it as a (measure-valued)
2-form, rather than a 1-form or vector field, we are departing both from the con-
vention discussed in (5.6) and from standard practice in geometric measure theory.
However, this departure is natural in that qh is an approximation of the 2-form dp,
and it is very useful when we want to appeal to Hodge Theory to solve elliptic
equations with qh on the right-hand side, as in conclusion (i) above.

Remark 15. The role of the parameter η is to guarantee that qh enjoys certain prop-
erties such as a good lower bound on distances between distinct piecewise linear
curves in the support of qh , see conclusion (vi) above. These are essential for the
verification of the upper bound inequality.

Remark 16. Our arguments (in particular the proof of (iv)) show that there exists
2-form qη such that qh ⇀ qη weakly as measures as h → 0. In fact, our construc-
tion is designed to yield an explicit description of qη, see (3.19). This complicates
the construction of qh but immediately yields uniform estimates of qη, needed for
(iv), that would otherwise require some work to obtain.

Proof. The proof of Proposition 2 will be divided into several steps. ��
Proof of (v). We start by constructing qh , which amounts to constructing a
collection �h of oriented line segments, see (v). Let η ∈ (0, 1) be fixed, and let
p be a piecewise linear rational 1-form with respect to the triangulation {Si } of
�P
δ as fixed in the proof of Lemma 3. In particular, for each i there exists a vector

vi = (v1
i , v

2
i , v

3
i ) such that dp � Si = ∑ j v

j
i � dx j . For any simplex Si , let bi its

barycentre, and let

S̃i = (1− η) · Si + η · bi ⊂ Si (3.8)

be a homothetic copy of Si , and let Ti j , T̃i j , j = 1, . . . , 4 be the 2-faces of Si , S̃i

respectively, with the induced orientations.
We will arrange that within each S̃i , our discretization of dp is supported on a

finite union of line segments exactly parallel to vi . In order to to this and to match
fluxes across the faces of each Si , we discretize the flux through the faces of each
Si and each S̃i in related, though different, ways.
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For every i and for j �= k ∈ {1, . . . , 4}, define Ti jk ≡ π−1(π(Ti j )∩π(Tik))∩Ti j

(with the orientation of Ti j ), where π ≡ πi is the projection on the 2-plane (vi )
⊥.

One may think of Ti jk as the portion of Ti j connected to Tik by flux lines of dp.
Further, define

φi j =
∫

Ti j

dp, φi jk =
∫

Ti jk

dp = |Ti j |
|Ti jk |φi j .

It follows from Lemma 2 that φi j ∈ Q for every i, j , and we will prove shortly
that φi jk ∈ Q for every i, j, k. For now, we accept this fact and continue with the
construction of qh . Thus, let φ−1 be the least common denominator of {|φi jk |} ∈ N,
so that φi jkφ

−1 ∈ Z.

For N ∈ N, we define hN := φ
N , so that

φi jk
hN

∈ Z for all i, j, k, and simi-

larly
φi j
hN
∈ Z for every i, j . We will prove the proposition for every hN such that

hN < η2; for arbitrary h < η2, the conclusions of the proposition then hold if we
define qh := qhN , βh := βhN , for N such that hN � h < hN−1.

We henceforth fix an arbitrary N such that hN < η2, and we drop the subscript
and write simply h.

We first discretize dp on every Ti j . In order to avoid discretizing any 2-face
twice in inconsistent ways, we define

T := {Ti j : φi j > 0 or Ti j ⊂ ∂�P
δ }.

For Ti j ∈ T , let m = mi j := φi j
h ∈ Z, and let � = �i j verify (�i j − 1)2 < m � �2

i j .

Now partition Ti j into �2
i j closed triangular pieces {T a

i j }�
2

a=1 with pairwise disjoint

interiors, each one isometric to �−1
i j Ti j . Select m of these triangles, and let {sa

i j }ma=1
be the barycentres of the chosen triangles.

If Ti j �∈ T , then Ti j = −Ti ′ j ′ for some Ti ′ j ′ ∈ T , we set m = mi j := mi ′ j ′ ,
and sa

i j = sa
i ′ j ′ for a = 1 . . .mi j .

Next we consider {T̃i j }. For i, j, k, let T̃i jk ≡ (1 − η) · Ti jk + η · b (with the
orientation of Ti jk) and define

T̃ := {T̃i jk : φi jk > 0}.
Now proceed as above: for each T̃i jk ∈ T̃ , let m = mi jk := φi jk

h ∈ Z and �i jk :=
!√m ", and partition T̃i jk into �2

i jk closed triangular pieces {T̃ a
i jk}

�2
i jk

a=1 with pairwise

disjoint interiors, each one isometric to �−1
i jk T̃i jk . Select m of these triangles, and let

{s̃a
i jk}ma=1 be the barycentres of the chosen triangles.

If Ti jk �∈ T̃ , then φi jk � 0. If φi jk = 0 (which in particular happens if Ti jk = ∅)
we do nothing. If φi jk < 0, then noting that our orientation conventions imply that
φi jk = −φik j , we see that T̃ik j ∈ T̃ , and we define s̃a

i jk = π−1
i πi (s̃a

ik j ) ∩ Ti jk .

We now define piecewise linear curves as follows. First, for every Ti jk ∈ T̃ ,
we define

�̃a
i jk := [π−1

i (π(s̃a
i jk))] ∩ S̃i , oriented so that ∂�̃a

i jk = s̃a
i jk − s̃a

ik j .
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Here and below, if c is an oriented piecewise smooth curve, we write ∂c = p − q
to mean that

∫
c d f = f (p) − f (q) whenever f is a smooth function. We define

�i =∑ j,k,a �̃
a
i jk , so that �i ⊂ S̃i , and

∂�i =
∑
j,k,a

sign(φi jk)s̃
a
i jk . (3.9)

Moreover, let �i be the collection of segments with the smallest total arclength
satisfying this condition (as the segments of �i are all parallel to each other).

Now for each i, j , let Pi j := {(1 − λ)x + λbi : x ∈ Ti j , 0 < λ < η} be the
pyramidal frustum having bases Ti j and T̃i j , and let �i j be a collection of (oriented)
line segments such that

∂�i j =
∑

a

sign(φi j )s
a
i j −

∑
k,a

sign(φi jk)s̃
a
i jk, (3.10)

and that minimizes the total arclength among the set of all collections of line seg-
ments satisfying the constraint (3.10). Such collections exist, since sign(φi j ) =
sign(φi jk) and mi j =∑k �= j mi jk , so that

∑
a

sign(φi j )−
∑
k,a

sign(φi jk) = sign(φi j )mi j −
∑

k

sign(φi jk)mi jk = 0.

Hence �i j is well-defined, and clearly �i j ⊂ Pi j .
We define �h to be the union ∪�i ∪�i j of the families of segments constructed

above, and n(h) to be the total number of segments comprising �h . We also define
��h , for � = 1, . . . ,m(h), where m(h) � n(h), to be the polyhedral curves real-
izing the connected components of �h . It follows from (3.11), proved below, that
∂��h = 0 in �P

δ .
Finally, we define the measure-valued 2-form qh to satisfy statement (v).
In the following we will write “a region” to refer to either one of the S̃i or one of

the Pi j . We remark that the definition of �h states that, in the language of Brezis
et al. [11], its restriction to any region is a minimal connection, subject to the
condition (3.9) in S̃i and (3.10) in Pi j .

Proof that φi jk ∈ Q. Fix i, j, k, let V1, . . . , V4 ∈ Q
3 denote the vertices of Si ,

anality) that Ti j = co{V1, V2, V3}, Tik = co{V1, V2, V4}, where co A denotes the
convex hull of A. Let Ṽl := π(Vl) for l = 1, . . . , 4, so that

π(Ti j ) ∩ π(Tik) = co{Ṽ1, Ṽ2, Ṽ3} ∩ co{Ṽ1, Ṽ2, Ṽ4}.
Clearly this set is a (possibly degenerate) triangle containing the segment co
{Ṽ1, Ṽ2}. From elementary geometry we see that one of the following three cases
must hold:

Case 1 π(Ti j ) ∩ π(Tik) = co{Ṽ1, Ṽ2}. Then φi jk = 0 ∈ Q.

Case 2 π(Ti j ) ⊂ π(Tik) or π(Tik) ⊂ π(Ti j ). Then φi jk = φi j or φik , so φi jk ∈ Q.
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Case 3 π(Ti j ) ∩ π(Tik) = co(Ṽ1, Ṽ2, Z), where, after possibly switching the
labels on Ṽ1 and Ṽ2, {Z} = co{Ṽ1, Ṽ3} ∩ co{Ṽ2, Ṽ4}. If this holds, then let Zi j :=
π−1(Z)∩ Ti j , and Zik := π−1(Z)∩ Tik . Then since π(Zi j ) = Z = π(Zik), there
exist some numbers a1, a2, a3 such that

V1 + a1(V3 − V1) = Zi j = Zik + a3vi = V2 + a2(V4 − V2)+ a3vi .

This is a system of three equations for (a1, a2, a3) with rational coefficients, and
moreover it is nondegenerate in the case we are considering, so al ∈ Q for l =
1, . . . , 3. It follows that Zi j ∈ Q

3, and hence that Ti jk = co{V1, V2, Zi j } has
rational vertices. Then it follows as in the proof of Lemma 2 (see in particular
(3.1)) that φi jk ∈ Q.

Proof of (i). By Lemma 12 and Corollary 1 in the Appendix, it suffices to check
that dqh = 0 in �δ and that

∫
(∂�)i

(qh)� = 0 for every connected component
(∂�δ)i of ∂�δ .

To do this, fix any f ∈ C∞c (R3), and note that (v), (3.9), (3.10) imply that

〈dqh, � f 〉 = 〈qh, d∗ � f 〉 = 〈qh, �d f 〉 = h
∑

i

∫
�i

d f +
∑
i, j

∫
�i j

d f

= h
∑
i, j,a

(sign φi j ) f (sa
i j ).

Here all terms of the form f (s̃a
i jk) have cancelled, since they occur twice, with

opposite signs, in (3.9) and (3.10). If sa
i j ∈ �P

δ , then our construction implies that

there exists exactly one (i ′, j ′, a′) �= (i, j, a) such that sa
i j = sa′

i ′ j ′ , and moreover

that sign φi j = − sign φi ′ j ′ . Thus all contributions from �P
δ vanish, and the above

reduces to

〈dqh, � f 〉 = h
∑

{i, j,a:sa
i j∈∂�P

δ }
(sign φi j ) f (sa

i j ). (3.11)

In particular, by considering f ∈ C∞c (�δ) we see that dqh = 0 in �δ .
Now fix some component (∂�δ)k of ∂�δ . Then (3.6) implies that

0 =
∫

Wk

d1 =
∫
∂Wk

1 =
∫
(∂�P

δ )k

(qh)� −
∫
(∂�δ)k

(qh)�.

Moreover, it follows from (3.10), (3.11), and the definition of (qh)� (see (5.8) in
the Appendix) that∫

(∂�P
δ )k

(qh)� =
∑

(i, j):Ti j⊂(∂�δ)k
h(sign φi j )mi j .

However, the definitions of mi j and φi j imply that the above quantity equals

∑
(i, j):Ti j⊂(∂�P

δ )k

φi j =
∑

(i, j):Ti j⊂(∂�P
δ )k

∫
Ti j

dp =
∫
(∂�P

δ )k

dp = 0.

Then, as remarked above, (i) follows from Lemma 12 and Corollary 1.
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Proof of (iii). We next estimate the mass of qh . We will bound the mass on each
region R, and then sum up the estimates. We begin by comparing the fluxes of qh

and dp across ∂R.

Lemma 4. Let R be a region, and let (dp)� and (qh)� be the tangential parts of
dp and qh, respectively, on ∂R, ie, the measures in R

3, supported in ∂R, defined as
discussed in the Appendix, see (5.8). Then there exists a constant C = C(dp,�P

δ ),
independent of η and h, such that

||(qh − dp)�||W−1,1(R3) � C(η + h1/2) � Cη. (3.12)

Proof. First consider the case of a pyramidal frustrum Pi j . Then, arguing
as in the proof of (i), we find from (3.10) that (qh)� = h

∑
a sign(φi j )

δsa
i j
− h

∑
k,a sign(φi jk)δs̃a

i jk
. Similarly, the definition of φi j and the fact that Ti j

and T̃i j are parallel implies that
∫
∂Pi j

f (dp)� = φi j

|Ti j |
∫

Ti j

f dH2 − φi j

|Ti j |
∫

T̃i j

f dH2 + O(‖ f ‖∞η)

where the error term comes from neglecting ∂Pi j \ (Ti j ∪ T̃i j ), which has an area
bounded by Cη.

Thus for any continuous f ,

∫
∂Pi j

f (dp − qh)� =
[
φi j

|Ti j |
∫

Ti j

f dH2 − h
∑

a

sign(φi j ) f (sa
i j )

]

−
⎡
⎣ φi j

|Ti j |
∫

T̃i j

f dH2 − h
∑
a,k

sign(φi j ) f (s̃a
i jk)

⎤
⎦+ O(‖ f ‖∞η).

We will consider only the second term on the right-hand side (which is slightly
harder). We assume for simplicity that φi j > 0; the case φi j < 0 is essentially

identical. Noting that
φi j

|T̃i j | =
φi jk

|T̃i jk | and that |T̃ a
i jk | = �−2

i jk |T̃i jk |, and using notation

from the first step above, we have∫
T̃i j

f (dp − qh)� = φi j

|Ti j |
∫

T̃i j

f dH2 − h
∑
a,k

f (s̃a
i jk)

=
( φi j

|Ti j | −
φi j

|T̃i j |
) ∫

T̃i j

f dH2 +
∑
k,a

φi jk

|T̃i jk |
∫

T̃ a
i jk

f − f (s̃a
i jk)dH2

+
∑
a,k

[
|φi jk |
�2

i jk

− h

]
f (s̃a

i jk)+
∑

k

φi j

|Ti j |
∑

k

∫
T̃i jk\∪a T̃ a

i jk

f H2. (3.13)

It is clear from the definition of φi j that |φi j | � ‖dp‖∞|Ti j | � C , and since by
definition (�i jk − 1)2 < mi jk = h−1φi jk � �2

i jk ,

∣∣∣φi jk

�2
i jk

− h
∣∣∣ � 2

mi jk

φi jk

�i jk
� C

mi jk
(hφi jk)

1/2 � C

√
h

mi jk
.
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Similarly, one checks that |Ti jk \∪a T a
i jk | = |Ti jk ||1− mi jk

�2
i jk
| � C |Ti jk |

√
h. Note also

that | f (x) − f (s̃a
i jk)| � ‖d f ‖∞diam(T̃ a

i jk) � C‖d f ‖∞
√

h for x ∈ T̃ a
i jk . Taking

these into account, elementary calculations yield∣∣∣∣∣
∫

T̃i j

f (dp − qh)�

∣∣∣∣∣ � C(η +√h)‖ f ‖W 1.∞ .

Since similar computations apply to Ti j , we deduce that | ∫
∂Pi j

f (dp − q)�| �
Cη‖ f ‖W 1,∞ for every Pi j . If the region R is a simplex S̃i , then

∫
∂Si

f (dp−h)� is
a sum of terms of exactly the form

∫
T̃i j

f (dp − qh)� already estimated (now with
the opposite orientation) and so the conclusion follows in this case, as well. ��

For future reference, we remark that the above proof shows that that∫
Ti j

f (dp − qh)� � C
√

h‖ f ‖W 1.∞ ,
∫

T̃i j

f
( dp

(1− η)2 − qh

)
�

� C
√

h‖ f ‖W 1.∞ . (3.14)

Indeed, every term on the right-hand side of (3.13) can be bounded by Ch1/2 except
for the term (

φi j
|Ti j | −

φi j

|T̃i j | )
∫

T̃i j
f dH2. This term is not present when one consid-

ers Ti j rather than T̃i j , and it is also not present if one considers T̃i j , but with dp

replaced by dp
(1−η)2 , since (1 − η)2 = |T̃i j |/|Ti j |. Thus (3.14) follows from our

earlier arguments.
We will need the following result about continuous dependence of the minimal

connection upon its boundary datum.

Lemma 5. Let K be a compact convex domain in R
3, ζ a measure supported on

∂K such that
∫
∂K ζ = 0. Then we have

min{||α|| ≡ |α|(K ), dα = 0 in K , α� = ζ on ∂K } � C ||ζ ||W−1,1(R3).

The proof of this lemma is postponed to Section 5.5 in the Appendix. Let us
apply Lemma 5 first with K = Pi j , ζ = (qh − dp)� and let αh be the measure 2-
form that realizes the minimum. By (3.12) and Lemma 5 we deduce |αh |(Pi j ) � Cη.

As remarked above, the restriction of �h to any region R is a minimal connec-
tion, and as a consequence, it follows from Theorems 5.3 an 5.4 in Brezis et al.
[11] that qh � R has minimal mass among all 2-form-valued measures q ′ in R such
that (q ′)� = (qh)� on ∂R (not merely those corresponding to a union of oriented
line segments). We thus have

|qh |(Pi j ) � ||αh + dp|| � |αh |(Pi j )+
∫

Pi j

|dp| �
∫

Pi j

|dp| + Cη. (3.15)

Next, applying Lemma 5 with K = S̃i , ζ = (qh − dp)� and arguing exactly as
above, we obtain

|qh |(S̃i ) �
∫

S̃i

|dp| + Cη. (3.16)

Statement (iii) follows by summing over all regions.
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Proof of (ii). It suffices to show that for every region R,

〈ϕ, (dp − qh) � R〉 =
∫

R
(ϕ, dp)− 〈ϕ, qh � R〉 � Cη‖ϕ‖W 1,∞ (3.17)

for every ϕ ∈ C∞c (�2
R

3). This is clear if R = Pi j , since |Pi j | � Cη for all i, j ,
so that ‖dp‖L1(Pi j )

� Cη, and hence |qh |(Pi j ) � Cη by (3.15).

If R = S̃i , then we assume, after changing coordinates, that dp = λdx2 ∧ dx3

on S̃i for some λ ∈ R. Now fix ϕ ∈ C∞c (�2
R

3) and let� ∈ C∞c (R3) be a function
such that (�d�, dx2 ∧ dx3) = (ϕ, dx2 ∧ dx3) in Si , and such that ‖�‖W 1,∞ �
C‖ϕ‖W 1,∞ . Indeed, (�d�, dx2 ∧ dx3) = �x1 , so we can take

�(x) := χ(x)
∫ x1

−∞

(
ϕ(s, x2, x3), dx2 ∧ dx3

)
ds

where χ ∈ C∞c (R3) satisfies χ ≡ 1 on Si and ‖∇χ‖L∞ � 1. Then clearly
〈dp � S̃i , ϕ〉 = 〈dp � S̃i , �d�〉, and it follows from the form of dp and the defi-
nition (that is, statement (v)) of qh that 〈qh � S̃i , ϕ〉 = 〈qh � S̃i , �d�〉. Thus Lemma
4 implies that

〈ϕ, (dp − qh) � S̃i 〉 = 〈�d�, (dp − qh) � S̃i 〉 =
∫
∂ S̃i

�(dp − qh)� � Cη‖ϕ‖W 1,∞ .

Thus ‖(dp − qh) � Si‖W−1,1(R3) � Cη. ��
Proof of (iv). The estimate ‖d∗βh‖L p(�δ) � C p|qh |(�δ) � C, 1 � p < 3/2,
follows immediately from Corollary 1 in the Appendix. Thus d∗βh is weakly pre-
compact in these L p spaces, and we need only to identify the limit, prove that it is
unique, and estimate its L2 distance from d∗β.

To do this we will show that qh → qη in W−1,1(�δ), where qη = (1−η)−2dp
on S̃i , while on Pi j , qη is defined to be the unique minimizer of the problem

min{|α|(Pi j ), dα = 0 in Pi j , α� = ζ on ∂Pi j }, (3.18)

where ζ = (dp)� on Ti j , ζ = (1− η)−2(dp)� on T̃i j and ζ = 0 on the remaining
faces of ∂Pi j . Since then βη = −�−1qη, the uniqueness of βη will follow, and we
will deduce the estimates of βη from the explicit form of qη, which we find below.

We consider first a truncated pyramidal region Pi j , which is the harder case.
The uniform mass bounds (3.16) imply that qh � Pi j is precompact in W−1,1(R3).
Let q denote a limit of a convergent subsequence. It follows from (3.14) that (qh)�
on ∂Pi j converges to ζ as defined above, and hence that q� = ζ on ∂Pi j . Next,
if q did not solve the minimization problem (3.18), we could use the estimate
‖(qh)� − ζ‖W−1,1 � C

√
h (which is (3.14)) together with Lemma 5 to create a

sequence q ′h such that (q ′h)� = (qh)�, and with |q ′h |(Pi j ) < |qh |(Pi j ) for all small
enough h, contradicting the minimality of qh . Thus q = qη, a minimizer of (3.18).

We now argue that the unique minimizer (3.18) is given by

q∗(x) = a
(x − bi )�

((x − bi ) · νi j )3
� dx�, (3.19)
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where bi denotes the barycentre of Si , νi j is the unit normal to Ti j , and a ∈ R is
adjusted so that q∗� = ζ . (A calculation shows that such a number a exists and also
that dq∗ = 0.) The (unique) minimality of q∗ now follows from a calibration argu-
ment. We briefly recall the idea: Let f (x) = |x − bi |, so that d f =∑ (x−bi )�|x−bi | dx�,
and (�d f, q∗) = |q∗| in Pi j . For any other 2-form valued measure q ′ supported in
Pi j such that dq ′ = 0 in Pi j and q ′� = ζ on ∂Pi j , we have

|q∗|(Pi j ) = 〈q∗ � Pi j , �d f 〉 =
∫
∂Pi j

f ζ = 〈q ′, �d f 〉 � |q ′|(Pi j ),

since | � d f | � 1 everywhere. Hence q∗ is a minimizer. Furthermore, if equality
holds, then, heuristically, q ′ is parallel to �d f , or more precisely, q ′ has the form

〈q ′, ψ〉 = ∫Pi j
(
(x−bi )��dx�

|x−bi | , ψ)dμ′ for some measure μ′. Then one can check that

q∗ is the only measure-valued 2-form of this form such that dq ′ = 0 in Pi j , q ′� = ζ

on ∂Pi j . Hence qη = q∗ as asserted.
The proof that qh � S̃i converges in W−1,1 to (1 − η)−2dp � S̃i can be carried

out on exactly the same lines, except that the limit has a simpler form. It can also
be proved by arguing as in the proof of (ii), but using (3.14) instead of (iii). Thus
we have proved that qh → qη in W−1,1(�P

δ ).
From the explicit form of qη, noting that

∑
i, j |Pi j | � Cη, we see that

||qη − dp||2
L2(�P

δ )
� Cη. (3.20)

Thus‖d∗βη−d∗β‖2
2 = ‖d∗�−1

N (qη−dp)‖2
2 � Cη, by (3.20) and standard elliptic

estimates. This concludes the proof of statement (iv).

Proof of (vi). We now prove the separation properties of the polyhedral curves ��h .
Let L1 and L2 be closed line segments of�h , with endpoints s±1 and s±2 , and assume
that L1 and L2 are disjoint, so that in particular {s±1 } ∩ {s±2 } = ∅.

If L1, L2 belongs to non-adjacent regions of the family {S̃i , Pi j } then the con-
clusion is obvious, so we assume that this is not the case, and we claim that

dist (s±m , Ln) � c2ηh1/2 for m �= n,m, n ∈ {1, 2}. (3.21)

To see this, let F denote the face (some Ti j or T̃i j ) containing s+1 say. If F also
contains an endpoint of L2 (for example s+2 ), then by construction

L2 forms an angle of at least cηwith F, (3.22)

by which we mean that |t · n| � cη, where t and n here denote a unit tangent to L2
and a unit normal to F . Indeed, the set of angles between segments �̃a

i jk interior to

a simplex S̃i and a face of that simplex are independent of η and h and are nonzero,
and since there are only finitely many such angles, (3.22) holds for such segments if
c is sufficiently small. All other segments connect two parallel faces of a pyramidal
frustrum Pi j , and for these segments, (3.22) follows from the fact that these faces
are, by construction, separated by a distance cη, for c independent of η, h.
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Combining (3.22) with the fact that |s+1 − s+2 | � ch1/2, we deduce (3.21) from
elementary geometry in the case when F contains an endpoint of L2. The claim
(3.21) is still clearer if neither endpoint of L2 is contained in F .

It is evident that (3.21) implies (vi) if L1 and L2 belong to distinct but adjacent
regions. If L1 and L2 belong to the same region, then in view of the minimality
property of qh , we obtain statement (vi) from (3.21) and the following Lemma:

Lemma 6. Let {s±m }m=1,2 satisfy |s+1 − s−1 | + |s+2 − s−2 | � |s+1 − s−2 | + |s+2 − s−1 |.
Also, let Lm be the segment joining s+m and s−m , for m = 1, 2. Then

dist(L1, L2) � 1√
2

min
m �=n

dist(s±m , Ln). (3.23)

Proof. Let Qm ∈ Lm,m = 1, 2 be such that dist (L1, L2) = |Q1 − Q2| = d.
If either Qm is an endpoint, then the conclusion is clear, so we assume that both
are interior points, in which case the segment from Q1 to Q2 is orthogonal to both
L1, L2. We may then assume without loss of generality that the midpoint Q1+Q2

2 is
the origin, and that Q1 = (0, 0, d

2 ), Q2 = (0, 0,− d
2 ), and, moreover, that L1 and

L2 are parallel to the directions (cos θ, sin θ, 0), (cos θ,− sin θ, 0), respectively,
for some θ . Define s̃±1 = (±λ cos θ,±λ sin θ, d

2 ), s̃±2 = (±λ cos θ,∓λ sin θ,− d
2 ),

for λ > 0, chosen so that one of the s̃±m coincides with the closest point to 0 among
the original endpoints.

Our hypothesis and the triangle inequality imply that |s̃+1 − s̃−2 | + |s̃+2 − s̃−1 | �|s̃+1 − s̃−1 | + |s̃+2 − s̃−2 |, which reduces to

2
√

4λ2 cos2 θ + d2 � 4λ = 2
√

4λ2(cos2 θ + sin2 θ), so that d2 � 4λ sin2 θ.

On the other hand, assuming for concreteness that s̃+1 agrees with the original
endpoint s+1 , then since s̃+2 ∈ L2, we use the above inequality to find that we

dist(s+1 , L2) � |s̃+1 − s̃+2 | =
√

4λ2 sin2 θ + d2 �
√

2d.

��
Proof of (vii). Finally, suppose that L1 and L2 are adjacent, and that L1 precedes
L2 in the ordering induced by their respective orienting unit tangents τ1, τ2. Decom-
pose τi as τ⊥i + τ ‖i , where for i = 1, 2, τ⊥i is orthogonal to the face Ti j that con-
tains the common endpoint of L1 and L2. The orientation conventions imply that
τ⊥1 · τ⊥2 > 0, and, as noted above, each segment forms an angle of at least cη with
Ti j , which implies that |τ⊥i | � cη for i = 1, 2. Statement (vii) follows directly.

The proof of Proposition 2 is now complete. ��

3.5. Pointwise Estimates for d∗βh

Let G(x) = (4π)−1|x |−1 be the Poisson kernel in R
3. We may write

d∗βh = d∗(G ∗ qh)+�h �h = d∗(−�−1
N qh − G ∗ qh). (3.24)
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In view of statement (i), we deduce that d�h = d∗�h = 0 in�δ , that is,−�� = 0
in �δ and �N = −d∗(G ∗ qh)N on ∂�δ . From the decomposition (3.24) we will
deduce pointwise and integral estimates for d∗βh .

We begin with the term d∗(G ∗ qh) = G ∗ d∗qh . The integral representation of
d∗(G ∗ qh) through the Biot-Savart law takes the form

d∗(G ∗ qh)(x) = h
m(h)∑
�=1

3∑
i, j,k=1

1

4π
dxiεi jk

∫
��h

(x j − y j )dyk

|x − y|3 , (3.25)

where εi jk is the usual totally antisymmetric tensor. This can be justified, for exam-
ple, by noting that 〈d∗(G ∗qh), ϕ〉 = 〈qh,G ∗ dϕ〉, since G is even, and then using
statement (v) of Proposition 2 to explicitly write out the right-hand side. From
(3.25) we readily deduce

Lemma 7. Let l1, l2 > 0, L = {(0, 0, z), −l1 � z � l2} ⊂ R
3, q the associated

measure 2-form, that is 〈q, ϕ〉 = ∫L �ϕ for ϕ ∈ C0(�2
R

3). Then

d∗(G ∗ q) = xdy − ydx

4π(x2 + y2)

(
l2 − z√

x2 + y2 + (l2 − z)2
+ l1 + z√

x2 + y2 + (l1 + z)2

)
.

(3.26)

As a result,

|d∗(G ∗ q)(p0)| � 1

2π · dist (p0, L)
for every p0 ∈ R

3. (3.27)

Proof. We obtain (3.26) by particularizing (3.25) to the case �h = L . We easily
deduce (3.27) from (3.26) if p0 = (x0, y0, z0) with −l1 � z0 � l2, in which

case dist(p0, L) =
√

x2
0 + y2

0 . If z0 > l2 then, writing r0 = (x2
0 + y2

0 )
1/2, since

λ $→ λ√
r2

0+λ2
< 1 is an increasing function and 0 < z0 − l2 < z0 + l1, we find

from (3.26) that

|d∗(G ∗ q)(p0)| � 1

4πr0

⎛
⎝1− z0 − l2√

r2
0 + (l2 − z0)2

⎞
⎠

=
⎛
⎝
√

r2
0 + (l2 − z0)2 − (z0 − l2)

r0

⎞
⎠
(

1

4π dist(p0, L)

)
,

and (3.27) follows, since
√

a2 + b2 � a + b for a, b � 0. The same reasoning of
course holds if z0 < −l1. ��
Lemma 8. Let x ∈ �δ be such that dist (x, �h) � c0

2 ηh1/2, where c0 > 0 is defined
in statement (vi) of Proposition 2. Then there exists a constant K > 0 independent
of η, h such that if η � 1, then
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|d∗βh(x)| � h

2π · dist (x, �h)
+ K

η2 if dist(x,∪i, j∂ S̃i ∪ ∂Pi j ) � c0

2
ηh1/2,

(3.28)

|d∗βh(x)| � h

π · dist (x, �h)
+ K

η2 if dist(x,∪i, j∂ S̃i ∪ ∂Pi j ) <
c0

2
ηh1/2.

(3.29)

Proof. The definition (3.24) of �h implies that for any measure-valued 2-form q,

|d∗βh | � |d∗(G ∗ q)| + |d∗(G ∗ qh − G ∗ q)| + |�h |. (3.30)

Fix x ∈ �δ \�h and let r = c0
2 ηh1/2. Define a measure-valued 2-form by 〈q, ϕ〉 =

h
∑
{s:Br (x)∩Ls

h �=∅}
∫

Ls
h
�ϕ, where {Ls

h} is the collection of line segments whose
union gives �h , see Proposition 2 (v). By Proposition 2 (vi), there is at most one
term in the sum that defines q if dist(x,∪i, j∂Pji ∪∂ S̃i ) � r , and otherwise at most
two terms. Then |d∗(G ∗ q)| is estimated via Lemma 7 to give the first term on the
right-hand sides of (3.28) and (3.29), respectively, and we must show that the other
two terms in (3.30) can be bounded by K/η2.

Interior regularity for harmonic functions, together with Proposition 2, state-
ments (iii) and (iv) allow us to fix some q ∈ (1, 3/2) and argue as follows:

||�h ||L∞(�) � C ||�h ||W 2,2(�)

� C ||�h ||Lq (�δ)

= C ||d∗βh − d∗(G ∗ qh)||Lq (�δ)

� C(1+ Cη)||dp||L1(�δ)
� C.

(3.31)

To estimate the remaining term in (3.30), observe that

|d∗(G ∗ qh − G ∗ q)(x)| � 6

4π
h

3∑
k=1

m(h)∑
�=1

∫
��h∩Br (x)c

dyk

|x − y|2

� C
3∑

k=1

∫ M

−M

⎛
⎝m′(h)∑
�′=1

h

|x − yt
�′ |2

⎞
⎠ dt

(3.32)

where M > 0 is such that�δ ⊂ BM (0) and {yt
�′ }�′ = ∪���h∩{yk = t, |y−x | > r},

for |t | � M . For every k and t ,

m′(h)∑
�′=1

h

|x − yt
�′ |2

�
∑M/r

j=1
h

r2 j2 #{�′ : jr � |x − yt
�′ | < ( j + 1)r}.

Consider the collection of (two dimensional) balls

{z : zk = t, |z − yt
�′ | < r}, for yt

�′ such that jr � |x − yt
�′ | < ( j + 1)r.

These balls are pairwise disjoint by Proposition 2 (vi), and are contained in the annu-
lus {z : zk = t, ( j − 1)r � |x − z| < ( j + 2)r}, which has area (6 j + 3)πr2. Thus
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#{�′ : jr � |x−yt
�′ | < ( j+1)r} � 6 j+3 for all j . In addition, if we write xt for the

projection of x onto the plane {zk = t}, then #{�′ : jr � |x − yt
�′ | < ( j + 1)r} = 0

if ( j + 1)r < |x − xt |. Then elementary estimates lead to the conclusion

m′(h)∑
�′=1

h

|x − yt
�′ |2

� C
h

r2 log
( M

|x − xt |
)
.

Substituting this into (3.32), we see that |d∗(G∗qh−G∗q)(x)| � C h
r2 = C(c0η)

−2,
completing the proof of the lemma. ��

The next lemma shows that we get uniform estimates of certain quantities if
we mollify on a scale comparable to the minimum distance between the discretized
vortex lines.

Lemma 9. Let 0 < μ < 1 and r = μc0ηh1/2, for c0 as in statement (vi) of Prop-
osition 2. Then there exists a nonnegative radial function φ supported in the unit
ball, with

∫
φ = 1, and such that, in addition, φr (x) := r−3φ(x/r) satisfies

||φr ∗ d∗βh ||W 1,p(�1�) � K (3.33)

for any p <∞, where K = K (μ, η, ‖φ‖∞, p) is independent of h.

Proof. First, let ψ be any radial mollifier with support in the unit ball, such that
ψ � 0 and

∫
ψ = 1, and let ψr (x) := r−3ψ(x/r). Then for x ∈ �δ , in view of

statement (vi) of Proposition 2, either Br (x)∩�h = ∅ or Br (x)∩�h = Br (x)∩{L1},
or Br (x) ∩ �h = Br (x) ∩ {L1, L2}, where Li are segments of �h . Hence we have

|ψr ∗ qh(x)| � r−3||ψ ||∞
∑

i

h|Li ∩ Br (x)| � 4hr−2||ψ ||∞ � 4

(c0μη)2
||ψ ||∞.

(3.34)

Now fix open sets � = �3 � �2 � �1 � �0 = �δ and functions χm for
m = 1, 2, 3 such that χm ∈ C∞c (�m−1) and χm ≡ 1 on an open neighborhood
of �̄m . Fix a mollifier ψ1 as above, but such that spt(ψ1) ⊂ B1/3, and define
ψ2 = ψ1 ∗ ψ1 and ψ3 = ψ1 ∗ ψ2. Thus ψm is radial with support in B1 for
m = 1, 2, 3, so that (3.34) applies toψm

r . Now write ζ0 = d∗β, and for m = 1, 2, 3
define ζm = ψ1

r ∗ (χmζm−1).
If h, and thus r , is small enough (which we will henceforth take to be the case),

then

ζm = ψ1
r ∗ ζm−1 = ψm

r ∗ d∗βon�m, and ζm has support in�m−1. (3.35)

We claim that

‖dζm‖L p(�m−1) � Cm‖ζm−1‖L p(�m−1) + C(p, μ,ψ1,�δ) ,

‖d∗ζm‖L p(�m−1) � Cm‖ζm−1‖L p(�m−1).
(3.36)
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To see these, note first that dζm = ψ1
r ∗ (dχm ∧ ζm−1) + ψ1

r ∗ (χmdζm−1). Then
Jensen’s inequality implies that

‖ψ1 ∗ (dχm ∧ ζm−1)‖L p(�m−1) � ‖dχm ∧ ζm−1‖L p(�m−1) � Cm‖ζm−1‖L p(�m−1).

We estimate ψ1
r ∗ (χmdζm−1) first in the case m = 1, when it follows from state-

ment (i) of Proposition 2 that ψ1
r ∗ (χ1dζ0) = ψ1

r ∗ (χ1qh). Then arguing as in
(3.34) we find that for any p <∞,

‖ψ1
r ∗ (χ1qh)‖L p(�) � C(p,�δ)‖ψ1

r ∗ (χ1qh)‖L∞(�) � C(p, ψ1,�δ)(c0μη)
−2,

proving the first part of (3.36) for m = 1. For m = 2, 3,

‖ψ1
r ∗ (χmdζm−1)‖L p(�m−1) � ‖dζm−1‖L p(�m−1)

(3.35)= ‖ψm−1 ∗ qh‖L p(�m−1),

and we conclude (3.36) much as in the case m = 1. The second claim of (3.36) is
similar but easier, since (3.35) implies that d∗ζm = ψ1

r ∗ [�dχm ∧ �ζm−1], so that
‖d∗ζm‖p � ‖|dχm | |ζm−1|‖L p(�m−1) � Cm‖ζm−1‖L p(�m−1).

Now recall the Gaffney–Gårding inequality

‖ζ‖W 1,p(U ) � C p(U )
(‖ζ‖L p(U ) + ‖dζ‖L p(U ) + ‖d∗ζ‖L p(U )

)
, 1 < p < +∞,

(3.37)

valid for a differential form ζ with compact support in U ⊂ R
n . Applying this to

ζm , taking into account (3.36) and noting that ‖ζm‖L p � ‖ζm−1‖L p , we find that

‖ζm‖W 1,p(�m−1)
� C‖ζm−1‖L p(�m−1) + C. (3.38)

Recall that Proposition 2, statement (iv), provides uniform estimates of ζ0 = d∗β
in L p(�0) for every p < 3/2, so (3.38) implies uniform estimates of ‖ζ1‖W 1.p(�0)

for every p < 3/2, and hence of ‖ζ1‖L p(�0) for ever p < 3. Iterating this argument
twice more and recalling (3.35), we find that (3.33) holds with φ = ψ3. ��

3.6. Construction of the Sequence uε in Case gε � |log ε|2

Assume that the sequence gε satisfies either gε = |log ε|2 or |log ε|2 � gε �
ε−2. Suppose that we are given (J, v) ∈ A0 as defined in (1.3), and moreover that
J = 1

2 dv if gε = |log ε|2, and that J = 0 if |log ε|2 � gε � ε−2.
Set p = 1

2π v. Fix δ > 0 and let pδ be the piecewise linear approximation
provided by Lemma 3, and recall the Hodge decomposition pδ = γ + dα + d∗β
in �δ introduced in Section 3.3. Fix η > 0, and h = hε = (gε)−1/2, and let qh be
the discretized vorticity, with support �h , and βh = −�−1

N qh the approximation to
β constructed in Proposition 2.

As we discuss in Remark 22, if c is any cycle in �δ \ �h , then h−1
∫

c d∗βh is
an integer for every h. Thus, if we fix x̄ ∈ � and let cx̄,x denote a path in �δ \ �h

from x̄ to x , it follows that

φh(x) := 1

h

∫
cx̄,x

d∗βh is well-defined function �δ \ �h → R/Z, (3.39)
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independent of the choice of cx̄,x , and is hence well-defined almost everywhere in
�.

Moreover, according to Lemma 11, we may write γ =∑κ
j=1 a j · dφ j , where

φ j is well-defined in R/Z for j = 1, . . . , κ . For any j let n j = [h−1a j ] ∈ Z be
the integer part of h−1a j , and consider h−1γh ≡ dψh =∑κ

j=1 n j dφ j , so that ψh

is well-defined in R/Z. Let finally αh = h−1α. The map

vh = exp(i2π(φh + ψh + αh)) (3.40)

is thus a well-defined map �δ → S1, with

jvh = 2π(dφh + dψh + dαh) = 2π

h
(d∗βh + γh + dα), (3.41)

and Jvh = π
h dd∗βh = π

h · qh . Now let

ρε(x) ≡ ρε,h(x) = min
{dist (x, �h)

ε
, 1
}
, (3.42)

for �h as in Proposition 2, statement (v) and set, finally,

uε ≡ uε,h = ρε · vh . (3.43)

3.7. Completion of Proof of (1.8) in Case gε � |log ε|2

We first claim that

juε√
gε

⇀ 2π(dα + d∗βη + γ ) weakly in Lq for every q ∈ (1, 3/2). (3.44)

for βη as in statement (iv) of Proposition 2. To see this, we write

juε√
gε
= 2π(d∗βh + γh + α)+ 2π(ρ2

ε − 1)(d∗βh + γh + dα). (3.45)

It is clear from the definition of γh that γh → γ uniformly as ε (and thus h) tend to
0, and we know from Proposition 2 that d∗βh ⇀ d∗βη in the relevant Lq spaces.
So we need to show only that the last term in (3.45) vanishes. For this, we use
statements (vi), (v), and (iii) of Proposition 2 to see that

|{dist (x, �h) � ε}| � Cε2|�h | = C
ε2

h
|qh |(�δ) � C

ε2

h
. (3.46)

It easily follows from this and from the definition of ρε that (ρ2
ε − 1) → 0 in

Lr for every r < ∞. Thus, fixing q ∈ (1, 3/2) and r such that 1
q + 1

r = 1, in
view of uniform estimates of ‖d∗βh‖q in Proposition 2 (iv), we find from Hölder’s
inequality that (ρ2

ε − 1)(d∗βh + γh + dα)→ 0 in L1 as ε → 0, proving (3.44).

We now turn to the proof of the upper bound. Since h = g−1/2
ε , we have

Eε(uε;�)
gε

= h2

2

∫
�

|∇ρε |2 + ρ2
ε | jvh |2 + W (ρε)

ε2 . (3.47)

Let us estimate the various terms contributing to gε−1 Eε(uε;�). First note that
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h2

2

∫
�

|∇ρε |2 + W (ρε)

ε2 � Ch2

ε2 |{dist (x, �h) � ε}|

for C = 1
2 (1+ ‖W‖L∞(B1)). It follows from this and (3.46) that

h2

2

∫
�

|∇ρε |2 + W (ρε)

ε2 � Ch. (3.48)

Moreover,

h2

2

∫
�

ρ2
ε | jvh |2 = 2π2

∫
�

ρ2
ε (|d∗βh |2 + |dα + γh |2 + 2 d∗βh · (dα + γh)).

(3.49)

We have just shown in the proof of (3.44) that ρ2
ε (dα+γh)→ dα+γ in L p ∀ p <

+∞ and that d∗βh ⇀ d∗βη weakly in Lq ∀ q < 3/2. Thus, recalling the estimate
‖d∗βη − d∗β‖2

2 � Cη from statement (iv) in Proposition 2, we obtain

lim
ε→0

∫
�

ρ2
ε (dα + γh) · d∗βh =

∫
�

d∗βη · (dα + γ )

= C
√
η +

∫
�

d∗β · (dα + γ ), (3.50)

lim
ε→0

∫
�

ρ2
ε |dα + γh |2 �

∫
�δ

|dα + γ |2. (3.51)

For the remaining term, fix 0 < μ < 1 and set r = c0μηh1/2. Denote Gλ
h ={dist (x, �h) � λ} ∩�. We have

2π2
∫

R3
ρ2
ε |d∗βh |2 = Aε + Bε + Cε, (3.52)

where

Aε = 2π2
∫

Gε
h

ρ2
ε |d∗βh |2, Bε = 2π2

∫
Gr

h\Gε
h

|d∗βh |2,

Cε = 2π2
∫
�\Gr

h

|d∗βh |2. (3.53)

Let us estimate Aε . By (3.28), (3.29), and (3.42), ρ2
ε |d∗βh |2 � h2

ε2 + 2K 2

η4 in Gε
h , so

(3.46) implies that

Aε � |Gε
h |
(h2

ε2 +
2K 2

η4

)
� C(h + K

ε2

η4h
) (3.54)

so that, since h = g−1/2
ε and |log ε|2 � gε � ε−2, we have

lim sup
ε→0

Aε = 0. (3.55)



734 S. Baldo et al.

Let us turn to Cε . Let φr be the radial mollifier found in Lemma 9. Observe that
d∗βh is harmonic on � \ Gr

h , and hence coincides there with φr ∗ d∗βh , by the
mean-value property of harmonic functions. By (3.33) and Rellich’s Theorem we
deduce that φr ∗ d∗βh is strongly compact in L2(�), and hence by Proposition 2,
statement (iv) that φr ∗ d∗βh → d∗βη in L2(�) as ε → 0. We deduce that

lim sup
ε→0

Cε = lim sup
ε→0

2π2
∫
�\Gr

h

|φr ∗ d∗βh |2 � lim
ε→0

2π2
∫
�

|φr ∗ d∗βh |2

= 2π2
∫
�

|d∗βη|2

� 2π2
∫
�

|d∗β|2 + Cη.

(3.56)

To estimate Bε we proceed as follows: let V1 = (Gr
h \Gε

h) \Ur0 , where Ur0 =
{dist (x,∪i, j∂ S̃i∪∂Pi j ) < r0}∩� and r0 = c0

2 ηh1/2, and set V2 = (Gr
h \Gε

h)∩Ur0 .
For any σ > 0 we have, using for d∗βh the bound (3.28) on V1 and (3.29) on V2,

2π2
∫

V1

|d∗βh |2 � (1+ σ)h2

2

∫
V1

dx

|dist (x, �h)|2 + (1+
1

σ
)
2π2 K 2

η4 |V1|

� (1+ σ)h2π log
(r

ε

)
|�h \Ur0 | + (1+

1

σ
)
Cμ2

η2 h|�h \Ur0 |, (3.57)

2π2
∫

V2

|d∗βh |2 � 4(1+ σ)h2

2

∫
V2

dx

|dist (x, �h)|2 + (1+
1

σ
)
2π2 K 2

η4 |V2|,

� 4(1+ σ)h2π log
(r

ε

)
|�h ∩Ur0 | + (1+

1

σ
)
Cμ2

η2 h|�h ∩Ur0 |, (3.58)

so that

Bε � (1+ σ)h2π log
(r

ε

) (|�h | + 3|�h ∩Ur0 |
)+ (1+ 1

σ
)
Cμ2

η2 h|�h |. (3.59)

If gε = h−2 = |log ε|2, then statements (iii) and (v) of Proposition 2 and (3.59)
give

lim sup
ε→0

Bε �
[
(1+ σ)π + (1+ 1

σ
)
Cμ2

η2

]
· (Cη + ||dpδ||L1(�δ)

), (3.60)

while if |log ε|2 � gε � ε−2 (that is ε � h � |log ε|−1), we have

lim sup
ε→0

Bε � (1+ 1

σ
)
Cμ2

η2 · (Cη + ||dpδ||L1(�δ)
). (3.61)

We sum up all the contributions (3.48), (3.50), (3.51), (3.55), (3.56), (3.60) and
(3.61), noting that the terms estimated in (3.50), (3.51), and (3.56) add up to
2π2

∫
�
|dα+γ +d∗β|2+C

√
η = 2π2

∫
�
|pδ|2+C

√
η. Thus, letting firstμ→ 0,

then σ → 0, in (3.60) and (3.61), we obtain

lim sup
ε→0

Eε(uε,�)

gε
� π

∫
�δ

|dpδ| + 2π2
∫
�

|pδ|2 + C
√
η, (3.62)

if gε = |log ε|2, and
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lim sup
ε→0

Eε(uε,�)

gε
� 2π2

∫
�δ

|pδ|2 + C
√
η, (3.63)

if |log ε|2 � gε � ε−2. In these estimates C is independent of η. Thus, since
p = 2πv, and recalling (3.7), (3.3), (3.4), and statement (iv) of Proposition 2,
we see that as first η and then δ tend to 0, the right-hand sides above converge
to 1

2 |dv|(�) + 1
2‖v‖2

L2(�)
in the case gε = |log ε|2, and 1

2‖v‖2
L2(�)

in the case

|log ε|2 � gε � ε−2. Thus, we can find sequences η = ηε and δ = δε tending to
zero slowly enough that, if we define Uε := uε with parameters δε in the piece-
wise linear approximation (Lemma 3) and ηε in the discretization of the vorticity
(Proposition 2) , then

lim sup
ε→0

Eε(Uε,�)

gε
� 1

2
|dv|(�)+ 1

2
‖v‖2

L2(�)
if gε = |log ε|2 (3.64)

lim sup
ε→0

Eε(Uε,�)

gε
� 1

2
‖v‖2

L2(�)
if |log ε|2 � gε � ε−2. (3.65)

This finally proves the upper bound (1.8), recalling that J = 1
2 dv for gε = |log ε|2

and J = 0 when |log ε|2 � gε � ε−2.
Finally, having established the energy upper bound for Uε , the compactness

assertions (1.4), (1.5) and (1.6) imply that 1√
gε

jUε,
1√

gε |Uε | jUε and JUε converge
to limits in the required spaces, so it suffices only to identify the limits. In fact, it
suffices to show, for example, that 1√

gε
jUε → v in the sense of distributions, and

this follows (after taking ηε in the definition of Uε to converge to zero more slowly,
if necessary) from (3.44). ��

3.8. Construction of the Sequence uε in Case gε � |log ε|2

Let J be an exact measure-valued 2-form in � and v ∈ L2(�1�) such that
dv = 0. Fix δ > 0, and let pδ be the rational piecewise linear approximation
of p := v

2π from Lemma 3. Furthermore, let p′δ be the rational piecewise linear
function from Lemma 3’, so that dp′ approximates J . Our Hodge decomposition
gives, respectively, pδ = γ + dα + d∗β ′, and p′δ = γ ′ + dα′ + d∗β. Let h = 1√

gε

and h′ = |log ε|
gε

, so that h = h′
√

gε
|log ε| � h′. Fix η > 0, and for h′ < η2 let d∗βh′

be the discretization of d∗β via Proposition 2. Let φh′ be defined as in (3.39), so
that dφh′ = 1

h′ d
∗βh′ , let h−1γh = dψh be as in Section 3.6, and set αh = h−1α.

Finally, let ρε be as in (3.42) and define

uε = ρε exp(i2π · (φh′ + ψh + αh)). (3.66)

3.9. Completion of Proof of (1.8) in Case gε � |log ε|2

We have to estimate

Eε(uε;�)
gε

= h2

2

∫
�

|∇ρε |2 + W (ρε)

ε2 + 4π2ρ2
ε

∣∣∣∣ 1

h′
d∗βh′ + 1

h
(γh + dα)

∣∣∣∣
2

.

(3.67)
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Then | dist(x, �h) � ε}| � ε2

h′ as in (3.46), so we find as in (3.48) that

h2

2

∫
�

|∇ρε |2 + W (ρε)

ε2 � C
h2

h′
−→ 0. (3.68)

For the remaining terms we have

2π2
∫
�

ρε |dα + γh |2 → 2π2
∫
�

|dα + γ |2 � 2π2
∫
�δ

|pδ|2, (3.69)

2π2 h

h′

∫
�

ρ2
ε d∗βh′ · (dα + γh)→ 0, (3.70)

2π2 h2

h′2

∫
�

ρ2
ε |d∗βh′ |2 = A′ε + B ′ε + C ′ε, (3.71)

where, in the notation corresponding to (3.71),

A′ε = 2π2 h2

h′2

∫
Gε

h′
ρ2
ε |d∗βh′ |2,

B ′ε = 2π2 h2

h′2

∫
Gr

h′ \Gε
h′
|d∗βh′ |2,

C ′ε = 2π2 h2

h′2

∫
�\Gr

h′
|d∗βh′ |2

(3.72)

for r = c0η(h′)1/2. Reasoning as in (3.54) and (3.56), we deduce a fortiori that
lim sup Aε = lim supε→0 Cε = 0, while following (3.57) and (3.58) we deduce

B ′ε � (1+ σ)h2π log(
r

ε
) (|�h′ | + C |�h′ ∩Ur |)+ (1+ 1

σ
)
h2

h′
|�h′ |, (3.73)

so that lim sup B ′ε � (1+ σ)π ∫
�δ
|dp′δ| +Cη by Proposition 2 (iii). Summing up

the various contributions and then letting σ → 0, we obtain

lim sup
ε→0

Eε(uε)

gε
� π

∫
�δ

|dp′δ| + 2π2
∫
�δ

|pδ|2 + Cη. (3.74)

We conclude the proof as in the previous cases, by defining Uε := u(ε,ηε ,δε) (that is,
defining uε as above, but with parameters δε in the piecewise linear approximation
of Lemma 3, and ηε in the discretization of the vorticity of Proposition 2) for ηε and
δε converging to zero sufficiently slowly, so that Uε satisfies the Gamma-limsup
inequality (1.8), and then verifying the convergence as before. ��

4. Applications to Superconductivity

In this section we prove Theorem 4 and begin the analysis of the limiting func-
tional F , deriving the curvature equation for the vortex filaments. We use a good
deal of notation that was introduced in Section 1.3.

In the companion paper [2] we analyze the properties of F in more detail and
derive further applications such as a general expression for the first critical field,
Hc1 .
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4.1. Proof of Theorem 4

First, recalling that hex = d Aex,ε , we see immediately from the definition of
Fε and of the Ḣ1∗ (�1

R
3) norm that

‖Aε − Aex,ε‖2
Ḣ1∗

� 2Fε(uε, Aε) � K |log ε|2.

It immediately follows that 1
|log ε| (Aε− Aex,ε) is weakly precompact in Ḣ1∗ (�1

R
3),

and since |log ε|−1 Aex,ε → Aex,0 in Ḣ1∗ (�1
R

3), we deduce (1. 22).
The above bounds on Aε and the Sobolev embedding Ḣ1∗ ↪→ L6 imply that

‖|log ε|−1 Aε‖L6(�1�) � K . (4.1)

In order to establish the remaining compactness assertions, we use the decom-
position (1. 19), which implies that

Eε(uε) � Fε(uε, Aε)+
∣∣∣
∫
�

Aε · juε
∣∣∣ � K |log ε|2 +

∣∣∣
∫
�

Aε · juε
∣∣∣,

using the fact that M(A; d Aex,ε) + R(uε, Aε) � 0. To estimate the right-hand
side, note that, in general,

| ju · A| � |u| |Du| |A| � 1

4
|Du|2 + |u|2|A|2 � 1

4
|Du|2 + 2|A|2

+2(|u| − 1)2|A|2 � 1

4
|Du|2 + 2|A|2 + c

ε2
| |u| − 1 |3 + Cε2|A|6.

And hypothesis (Hq) with q � 3 implies that c | |u| − 1 |3 � 1
2 W (u) if c is small

enough, so that

∣∣∣
∫
�

Aε · juε
∣∣∣ � 1

2
Eε(uε)+ C

∫
�

|Aε |2 + ε2|Aε |6 dx .

By combining the above inequalities and using (4.1), we find that Eε(uε) �
K ′|log ε|2, which in view of Theorem 2 implies that (1.4), (1.5), (1.6) hold with
gε = |log ε|.

To prove statement (ii), consider the decomposition of Fε given by (1. 19),
(1. 20), which may be rewritten

Fε(uε, Aε)

|log ε|2 = Eε(uε)

|log ε|2 +M
( Aε
|log ε| ,

hex

|log ε|
)

+ I
( juε
|log ε| ,

Aε
|log ε|

)
+ R(uε, Aε)

|log ε|2 . (4.2)

Recall that (1. 15) asserts

1

|log ε|2 Eε(uε)
�−→ E(v),
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with E(v) defined in (1. 16). Note further that M is lower semicontinuous with
respect to the weak Ḣ1∗ convergence of Aε|log ε| , and hence, taking into account (1. 22),
we readily deduce

M
( Aε
|log ε| ,

hex

|log ε|
)

�−→M(A, h). (4.3)

Moreover, by Sobolev embedding, (1. 22) implies Aε|log ε| → A strongly in L p(�),

for any 1 � p < 6, whereas (1.5) gives juε
|log ε| ⇀ v weakly in L2q/(q+2)(�). For

q � 3 we have 2q/(q + 2) � 6/5, so that for any admissible sequence (uε, Aε)
we have

I
( juε
|log ε| ,

Aε
|log ε|

)
→ I(v, A). (4.4)

Note, finally, that for the remainder term R(uε, Aε), since |1−|u|2|3/2 � CW (u),

|R(uε, Aε)| �
∫
�

∣∣∣1− |u|2
∣∣∣ |Aε |2dx

� Cε4/3
(∫

�

W (uε)

ε2 dx

)2/3 (∫
�

|Aε |6dx

)1/3

� Cε4/3 Eε(uε)
2/3‖Aε‖2

L6(�)

� Cε4/3|log ε|10/3,

so that 1
|log ε|2 R(uε, Aε) � C(ε|log ε|)4/3 converges uniformly to 0.

From the above considerations it follows immediately that

Fε(uε, Aε)

|log ε|2
�−→ E(v)+ I(v, A)+M(A, h), (4.5)

which is formula (1. 23). ��

4.2. Some Properties of the �-Limit F

In this section we derive the Euler–Lagrange equations for the functional F and
deduce a curvature equation for the limiting vortex filaments. First of all, notice
that F is strictly convex and hence admits a unique minimizer (v, A). We first make
variations of F with respect to A. Standard computations yield

{
d∗(d A − h) = 1� · (v − A) in R

3

[(�(d A − h))�] = [(d A − h)N ] = 0 on ∂�,
(4.6)

where 1� denotes the characteristic function of � and [(d A − h)N ] denotes the
jump across ∂� of the normal component of (d A− h). Denoting j = 1� · (v− A)
the gauge-invariant supercurrent in � and H = d A − h, we recover from (4.6)
Ampère’s law d∗H = j in R

3 for the magnetic field H , which has to be coupled
with Gauss’s law for electromagnetism d H = d(d A− h) = 0 in R

3, and with the
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continuity condition [H ] = 0 on ∂�, which is a consequence of [HN ] = 0 (by
(4.6)) and [H�] = 0 on ∂� (by Gauss’s law d H = 0).

Now let J (v) denote the convex and positively 1-homogeneous function
J (v) := ||dv||, and let ∂ J be its subdifferential. Making variations of F with
respect to v yields the differential inclusion

0 ∈ 1

2
∂ J (v)+ v − A. (4.7)

Assume the minimizer v is regular and spt |dv| = Ū , with U an open subset of �.
In particular, if U is a proper subset of �, then one may view � ∩ ∂U as a kind
of free boundary. This situation has a counterpart in the two-dimensional case (see
[23,30]). Then (4.7) corresponds to

1

2

∫
U

dv

|dv| ∧ �dφ +
∫
�

(v − A) ∧ �φ = 0 (4.8)

for any φ ∈ C∞(�1�) such that sptφ ⊂ � \ ∂U . Testing (4.8) with
φ ∈ C∞c (�1(� \ Ū )) we deduce v = A in � \ Ū . Testing now with
those φ ∈ C∞(�1(�)) such that sptφ ⊂ Ū \ (� ∩ ∂U ) and integrating by parts
(4.8) we further deduce∫

U

[
1

2
d∗
(

dv

|dv|
)
+ v − A

]
∧ �φ +

∫
∂�∩Ū

(
φ ∧ � dv

|dv|
)
� = 0, (4.9)

whence {
d∗
(

dv
|dv|
)
= 2(A − v) in U,

(� dv
|dv| )� = 0 on Ū ∩ ∂�. (4.10)

Notice that τ = � dv
|dv| is the unit tangent covector field to the streamlines of the

covector distribution �dv, which correspond to the limiting vorticity. From (4.10)
we obtain, in particular,{

τ ∧ �dτ = 2τ ∧ (v − A) = 2τ ∧ j in U,

τ� = 0 on Ū ∩ ∂�. (4.11)

Denoting, respectively, by τ and j the vector fields corresponding to τ and j , we
notice that �(τ ∧ j) corresponds to τ × j , and �dτ corresponds to the vector field
∇ × τ , so that �(τ ∧ �dτ) corresponds to the curvature vector κ = τ × (∇ × τ ).
We thus deduce the curvature equation (1. 25).

Remark 17. Notice that d∗τ = �d( dv
|dv| ) = 0 (or equivalently ∇ · τ = 0) in �.

From (4.10) we deduce that τ satisfies the Hodge system
⎧⎪⎨
⎪⎩

dτ = �2 j in �

d∗τ = 0 in �

τ� = 0 on ∂�,

(4.12)

or respectively
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⎧⎪⎨
⎪⎩
∇ × τ = 2j in �

∇ · τ = 0 in �

τ� = 0 on ∂�,

(4.13)

under the pointwise constraint |τ | = 1 (resp. |τ | = 1) in spt j .

Remark 18. From (4.6), (4.10) we recover, in particular, the continuity equation
d∗ j = d∗(v − A) = 0 (or equivalently, ∇ · j = 0). If A is in the Coulomb gauge
d∗A = 0 (which happens in particular if Aex = cx1dx2 − x2dx1) and A ∈ H1∗ , so
that d∗(A − Aex) = 0), then it follows that v satisfies

{
d∗v = 0 in �

vN = 0 on ∂�.
(4.14)

5. Appendix

In this Appendix we recollect basic facts and notation that we use throughout
the paper, as well as background on differential forms, Hodge decompositions and
minimal connections. We also provide the proofs of Lemma 1 and Lemma 5.

5.1. Differential Forms

For 0 � k � n, let �k
R

n be the space of k-covectors in R
n , that is, θ ∈ �k

R
n

if θ = ∑ θI dx I , where dx I := dxi1 ∧ · · · ∧ dxik , 1 � i1 < · · · < ik � n. For
θ, β ∈ �k

R
n , their inner product is given by (θ, β) :=∑ θI · βI .

Let � ⊂ R
n be a bounded open set with smooth boundary. We will denote

by C∞(�k�) := C∞(�;�k
R

n) the space of smooth k-forms on �. Similarly,
we denote by L p(�k�), W 1,p(�k�) the spaces of k-forms of class L p and W 1,p

respectively. For ω ∈ C∞(�k�), denote by ω� ∈ C∞(�k∂�) its tangential com-
ponent6 on ∂�, and by ωN := ω|∂�−ω� its normal component on ∂�. The oper-
ators ω $→ ω� and ω $→ ωN extend to bounded linear operators W 1,p(�k�) →
L p(∂�;�k

R
n). The Hodge star operator � : �k

R
n → �n−k

R
n is defined in such a

way that θ∧�ϕ = (θ, ϕ)dx1∧· · ·∧dxn . The L2 inner product ofω, η ∈ C∞(�k�)

is defined by

〈ω, η〉 :=
∫
�

(ω, η)dLn =
∫
�

ω ∧ �η.

Let T ⊂ � be a piecewise smooth m-dimensional submanifold with bound-
ary. Integration of (the tangential component of) a smooth m-form ω on T will be
denoted by

∫
T ω ≡

∫
T ω� =

∫
T i∗ω, with i : T → � the inclusion map.

The adjoint with respect to 〈·, ·〉 of the Hodge � operator on k-forms is
(−1)k(n−k)�.

6 That is ω� := i∗ω, where i : ∂�→ � is the inclusion map.
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5.1.1. Measure-Valued Forms A distribution-valued k-form μ is an element of
the dual space7 of C∞(�k�), and we express the duality pairing through the nota-
tion 〈·, ·〉. In particular, we will say that μ is a measure-valued k-form (see [3],
Definition 2.1) if

〈μ, ϕ〉 � C ||ϕ||∞ ∀ϕ ∈ C∞c (�k�). (5.1)

A measure-valued k-form μ can be represented by integration (see [3], Propo-
sition 2.2) as follows:

〈μ, ϕ〉 =
∫
�

(ν, ϕ) d|μ|, (5.2)

where |μ| is the total variation measure of (the vector measure) μ and ν is a |μ|-
measurable k-form such that (ν, ν)1/2 =: |ν| = 1 |μ|-almost everywhere in �. We
denote by ||μ|| := |μ|(�) the total variation norm of |μ|. It coincides with the L1

norm ||μ||1 =
∫
�
|μ| if μ ∈ L1(�k�). We denote by μ � U the restriction of μ to

U ⊂ �, defined by

〈μ � U, ϕ〉 =
∫

U
(ν, ϕ) d|μ|. (5.3)

Moreover, for η a unit k-covector and μ a measure k-form in �, the component
along η of μ is a signed measure denoted (μ, η) defined by

(μ, η)(U ) := (μ(U ), η) =
∫

U
(ν, η)d|μ| ∀U � �, (5.4)

with variation measure |(μ, η)| given by

|(μ, η)|(U ) =
∫

U
|(ν, η)|d|μ| ∀U � �. (5.5)

Notice that an oriented piecewise smooth k-dimensional submanifold T ⊂ �

can be identified with a measure k-form T̂ , whose action on smooth k-forms ϕ is
given by

〈T̂ , ϕ〉 =
∫

T
ϕ. (5.6)

Let d be the exterior differentiation operator, and d∗ = (−1)n(k+1)+1 � d� its
adjoint with respect to 〈·, ·〉, that is, 〈dω, η〉 = 〈ω, d∗η〉 for ω a k-form, and η an
(n − k − 1)-form. We define the action of d and d∗ on a measure-valued distribu-
tion μ by duality, so that 〈dμ, η〉 := 〈μ, d∗η〉 and 〈d∗μ, η〉 := 〈μ, dη〉 for η with
compact support.

Stokes’ Theorem reads
∫

T dϕ = ∫
∂T ϕ�, for ϕ a smooth (k − 1)-form and T

as above. Notice that by (5.6) we have

〈T̂ , dϕ〉 = 〈d∗T̂ , ϕ〉 = 〈∂̂T , ϕ〉, so that ∂̂T = d∗T̂ . (5.7)

A measure-valued k-form μ is said to be closed if dμ = 0, and it is exact if
there exists a measure-valued k − 1-form ψ such that μ = dψ .

7 One can thus identify a distribution-valued k-form with a k-current, see [16], although
we generally choose not to do so.
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5.1.2. The Tangential Part of Measure-Valued Forms Suppose that ω is a
closed measure-valued n− 1-form defined on an open subset� ⊂ R

n . If we fix an
open U ⊂ � with piecewise smooth boundary ∂U , we will use the notation ω� to
denote the distribution defined by

∫
f ω� :=

∫
U

d f ∧ ω for all f ∈ C∞(U ) ∩ C(Ū ). (5.8)

Thus our definition states that ω� := �d(χUω) in the sense of distributions, where
χU is the characteristic function of U . Although the notationω� does not explicitly
indicate the set U , it will normally be clear from the context, and when it is not, we
will write, for example, “ω� on ∂U”.

In general, ω� is a distribution supported on ∂U . We claim that
∫

f ωT depends only on f |∂U , for smooth f. (5.9)

To verify this, it suffices to check that
∫

U d f ∧ ω = 0 for ω as above, whenever
f = 0 on ∂U . Toward this end, let χε denote a smooth function with compact
support in U , such that 0 � χε � 1, |∇χε | � C/ε, χε(x) = 1 if dist(x, ∂U ) � ε,
and χε = 0 if dist(x, ∂U ) � ε/2. Then

∫
U

d f ∧ ω = lim
ε→0

∫
U
χεd f ∧ ω = lim

ε→0

∫
U

f dχε ∧ ω,

since ω is closed. Since f is smooth and f = 0 on ∂U, | f dχε | � (Cε)(C/ε) � C
when dist(x, ∂U ) < ε, so the right-hand side is bounded by |ω|(supp dχε). Since
|ω| has finite total mass by assumption, we easily conclude that there exists a
sequence εk ↘ 0 such that limk→∞

∫
U χεk d f ∧ ω = 0, proving (5.9).

It follows from (5.9) that expressions such as
∫
∂U ω� are well-defined.

In this paper it will often be the case that ω� is a measure supported on ∂U ,
and when this holds, we may also think of ω� as a measure-valued (n − 1)-form
on ∂U . In particular, if ω is smooth enough, then

∫
f ω� agrees with the classical

expression discussed above,
∫
∂U f (x)i∗ω(x), where i : ∂U → � is the inclusion

map.

5.1.3. Harmonic Forms If dω = d∗ω = 0, thenω is said to be harmonic. Denote
by

Hk ≡ Hk(�) := {ω ∈ L2 ∩ C∞(�k�), dω = 0, d∗ω = 0}
the space of harmonic k-forms on �, and by

Hk� = {ω ∈ Hk, ω� = 0}, Hk
N = {ω ∈ Hk, ωN = 0}

the spaces of harmonic forms with vanishing tangential and normal components on
∂�. Since �ωN = (�ω)� and �� = (−1)k(n−k), we have the bijections

� : Hk� → Hn−k
N , � : Hk

N → Hn−k
� .
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Harmonic forms in Hk� ∪ Hk
N are smooth up to ∂�. Denote by H(ω) (resp.

H�(ω), HN (ω)) the orthogonal projection of a k-form ω on Hk (resp. Hk�, Hk
N ).

With respect to an orthonormal basis {γi }i=1,...,� of Hk (resp. Hk�, Hk
N ), the orthog-

onal projection is of course given by
∑�

i=1〈ω, γi 〉 γi .
The Laplace operator −� = dd∗ + d∗d on smooth k-forms is positive semi-

definite, commutes with �, d, d∗, and h ∈ Hk ⇒ −�h = 0.

5.2. Hodge Decompositions

For ω ∈ L p(�k�), 1 < p < +∞, we have the following Hodge decomposi-
tion, orthogonal with respect to 〈·, ·〉 (see for example [19], Theorem 5.7, or [27]
for p � 2):

ω = γ + dα + d∗β, (5.10)

where

γ ∈ Hk
N , α ∈ W 1,p(�k−1�), β ∈ W 1,p(�k+1�), βN = 0. (5.11)

Then γ = HN (ω). Moreover there exists a unique � ∈ W 2,p(�k�) such that

−�� = ω − HN (ω), �N = 0, (d�)N = 0, (5.12)

and

||d�||1,p + ||d∗�||1,p � C p||ω||p. (5.13)

We will write � = −�−1
N (ω − HN (ω)).

We may also decompose ω = γ + dα + d∗β with

γ ∈ Hk�, α ∈ W 1,p(�k−1�), β ∈ W 1,p(�k+1�), α� = 0, (5.14)

so that γ = H�(ω). In this case there exists a unique � ∈ W 2,p(�k�) such that

−�� = ω − H�(ω), �� = 0, (d∗�)� = 0. (5.15)

Moreover, (5.13) holds. We write in this case � = −�−1
� (ω − H�(ω)).

The operator −�−1
� is self-adjoint on H⊥�, and similarly −�−1

N is self-adjoint
on H⊥

N .

Remark 19. In case � = R
n , basic properties of harmonic functions imply that

Hk = {0}. For ω compactly supported, the potential � is given in particular by
� = G∗ω, where G(x) = cn|x |n−2 is the Poisson kernel on R

n, n � 3. The Hodge
decomposition of ω reads ω = dα + d∗β, with β = G ∗ dω and α = G ∗ d∗ω. In
this case α, β ∈ Ẇ 1,p rather than W 1,p.

For ω ∈ L1(�k�) or, more generally, a measure-valued k-form, the decom-
position (5.10) fails in general, but decompositions of the form (5.12), (5.15) still
hold, in view of this variant of [3], Theorem 2.10:
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Proposition 3. Let μ be a measure-valued k-form in�. If HN (μ) = 0, there exists
a unique � ∈ W 1,q(�k�)∀ q < n/(n − 1), denoted by � = −�−1

N (μ), such that

−�� = μ, �N = 0, (d�)N = 0,

so that, in particular, HN (�) = 0.
If H�(μ) = 0, then there exists a unique � ∈ W 1,q(�k�)∀ q < n/(n − 1),

denoted by � = −�−1
� (μ), such that

−�� = μ, �� = 0, (d∗�)� = 0,

and in particular H�(�) = 0.
In both cases, we have

||d�||q + ||d∗�||q � Cq ||μ|| ∀q <
n

n − 1
. (5.16)

Proof. The proof of Proposition 3 follows exactly the duality argument à la Stam-
pacchia carried out in [3], taking into account the elliptic estimates (5.13) for the
operators −�N and −��, and observing that they are self-adjoint. ��
Corollary 1. A measure-valued k-form μ is exact if and only if dμ = 0 and
HN (μ) = 0. In addition, if μ is exact then μ = dζ , for ζ := d∗(−�N )

−1μ ∈
∩1�q<n/n−1Lq(�k−1(�)), and ||ζ ||q � Cq ||μ||.

Similarly, a measure-valued k form μ is co-exact (that is, can be written
μ = d∗ψ for some measure-valued k + 1-form ψ) if and only if d∗μ = 0 and
H�(μ) = 0, and if these conditions hold, then μ = d∗ζ for ζ = d(−��)−1μ ∈
∩1�q<n/n−1Lq(�k+1�), and ||ζ ||q � Cq ||μ||.
Proof. If dμ = 0 and HN (μ) = 0, then we appeal to Proposition 3 and define
ζ = d∗(−�−1

N μ), and it follows that μ = dζ . Conversely, μ = dψ in � for some
measure-valued k − 1-form ψ , then it is clear that dμ = 0 in �, and if ϕ ∈ Hk

N ,
then for χε as in the proof of (5.9),

∫
φ · μ = lim

ε→0

∫
χεϕ · dψ = lim

ε→0

∫
d∗(χεϕ) · ψ.

Next, the fact thatϕ ∈ Hk
N and properties ofχε imply that |d∗(χεϕ)| = |dχε∧�ϕ| �

C , independent of ε. We then conclude as in the proof of (5.9) that
∫
φ · μ = 0,

and hence that HN (μ) = 0.
The assertions about co-exact forms are proved in exactly the same way. ��

Remark 20. In case � = R
n, μ compactly supported, we have in particular

ζ = d∗(G ∗ μ) (resp. ζ = d(G ∗ μ)).
Remark 21. If ϕ is a smooth k-form and ϕN = 0 (resp. ϕ� = 0), then (d∗ϕ)N = 0
(resp. (dϕ)� = 0). The form ζ of Corollary 1 is only in Lq , and so does not have a
normal (resp. tangential) trace, but can be shown to satisfy ζN = 0 (resp. ζ� = 0)
in a sort of distributional sense, as a consequence of the fact that ζ = d∗� (resp.
β = d�) for � = −�−1

N μ ∈ W 1,q , with �N = 0 (resp. � = −�−1
� μ, �� = 0).
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This distributional trace (of which our definition (5.8) of q� for a closed mea-
sure-valued n− 1-form q is a special case) is strong enough to provide uniqueness
assertions in the setting of Corollary 1. For example, if dμ = 0, then there is a
unique ζ ∈ Lq(�k−1�) satisfying dζ = μ, d∗ζ = 0, and ζN = 0 in the distribu-
tional sense.

Remark 22. Through the Green operators −�−1
N (resp. −�−1

� ), one obtains an
integral expression for the linking number of a k-cycle and a (relative) (n− k− 1)-
boundary (resp. a relative k-cycle with a (n − k − 1)-boundary) in � (see for
example [15]). For instance, let � be a relative (n − k − 1)-boundary in �, that is,
� = ∂R+�′ with R ⊂ � and�′ ⊂ ∂�. One immediately verifies that H�(�̂) = 0,
and hence HN (��̂) = 0. Let β = −�−1

N (��̂). Hence we have d∗β ∈ L p(�1�)

for p < n
n−1 and β is smooth outside �. Hence, for a k-cycle γ ⊂ � \ � we have

0 = ∂̂γ = d∗γ̂ , and moreover∫
γ

d∗β = 〈d∗�−1
N (��̂), γ̂ 〉 = 〈�̂, �d(−�−1

N γ̂ )〉 = 〈∂̂R, �d(−�−1
N γ̂ )〉

= 〈R̂, �d∗d(−�−1
N γ̂ )〉 = 〈R̂, �γ̂ + ��−1

N (dd∗γ̂ )〉
= 〈R̂, �γ̂ 〉 = 〈γ̂ � R, �1〉 =

∑
ai∈γ∩R

�(τγ ∧ �τR(ai )) ∈ Z.

(5.17)

Observe that in case � = ∂R ⊂ � is a (n − k − 1)-boundary in �, we have
H(�̂) = 0, hence we may consider β = −�−1(��̂) = G ∗ (��̂) with G the
Poisson kernel in R

n , and deduce for d∗β the integral representation

d∗β = G ∗ (�d�̂) = (�dG) ∗ �̂ =
∫
�

�dG(x − ·), (5.18)

which in the case n = 3, k = 1 reads more familiarly

d∗β =
3∑

i, j,k=1

4πdxi εi jk

∫
��h

(x j − y j )dyk

|x − y|3 . (5.19)

Following (5.17), we thus deduce the Biot-Savart formula for the linking number
link(�, γ ) of � = ∂R with a k-cycle γ in �, namely∫

γ

d∗β =
∫
γx

∫
�y

�dG(x − y) = 〈R̂, �γ̂ 〉 =
∑

ai∈γ∩R

�(τγ ∧ �τR(ai )) ∈ Z.

(5.20)

Notice that the integral formula (5.20) also gives link(�, γ ) when � is just a
cycle, that is, ∂� = 0, not necessarily a boundary. In fact, considering γ × � ⊂
R

n
x×R

n
y , we have ∂(γ ×�) = 0 in R

n×R
n , and �dG(x− y) = |Sn−1|−1 ·ψ∗(dσ),

whereψ : γ ×�→ Sn−1 ⊂ R
n is given byψ(x, y) = x−y

|x−y| and dσ is the volume

form of Sn−1. Hence∫
γx

∫
�y

�dG(x − y) = 1

|Sn−1|
∫
γ×�

ψ∗(dσ) = deg(ψ) ∈ Z. (5.21)
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5.3. Representation of Harmonic 1-Forms

Next, we describe the spaces H1
N , (resp. H1�), of harmonic 1-forms on� ⊂ R

n

with zero normal (resp. tangential) component on ∂�. Since Hn−1
N = �H1� (resp.

Hn−1
� = �H1

N ), this also yields a representation for harmonic (n − 1)-forms.

Lemma 10. (Description of H1�) Let (∂�)i , i = 0, . . . , b denote the connected
components of ∂�. Then γ ∈ H1� if and only there exist constants c1, . . . , cb such
that γ = dφ, where φ is the unique harmonic function in � such that φ ≡ ci on
(∂�)i for i � 1, and φ = 0 on (∂�)0.

Proof. In fact, H1� is isomorphic to the first relative de Rham cohomology group
of �, that is H1

d R(�; ∂�), (see for example [17] vol. 1, Corollary 1, section 5.2.6)
and H1

d R(�, ∂�) � R
b, as it is shown in Lemma 13 below. Finally, the family of

1-forms described in the above statement span a b-dimensional subspace of H1�.
��

Lemma 11. (Description of H1
N ) Let κ denote the dimension of H1

N . Then there
exists an an orthogonal basis {Hj }κj=1 for H1

N normalized so that for each j , there

exists a R/Z-valued function φ j such that Hj = dφ j , so that ei2πφ j is well-defined.

Proof. In fact, H1
N is isomorphic to the first de Rham cohomology group H1

d R(�),
which in turn is isomorphic to Hom(H1(�,Z),R), and these are all finitely gen-
erated. (See for example [17] vol.1, Corollary 1 in section 5.2.6 and Theorem 3 in
Section 5.3.2). It follows that if {γi }κi=1 are cycles that form a basis for H1(�;Z),
then there exists a (unique) basis {Hi }κi=1 for H1

N such that
∫
γ j

H j = δi j for

i, j = 1, . . . , κ . We now fix x0 ∈ � and define φ j (x) :=
∫
γ (x0,x)

Hj , j = 1 . . . , κ ,
where γ (x0, x) is any path in� that starts at x0 and ends at x . If γ ′(x0, x) is another
such path, then γ (x0, x) − γ ′(x0, x) is homologous to an integer linear combina-
tion of the γi ’s, so that

∫
γ (x0,x)

Hj −
∫
γ ′(x0,x)

Hj ∈ Z. Thus φ j is well-defined as
a function �→ R/Z. It is immediate that Hj = dφ j . ��

Next, we describe an exactness criterion for closed (n − 1)-forms in � ⊂ R
n .

Lemma 12. A measure-valued (n − 1) form q on a smooth bounded open set
� ⊂ R

n is exact if and only if dq = 0 and
∫
(∂�)i

q� = 0 for every connected
component (∂�)i of ∂�.

Proof. Let γ ∈ Hn−1
N , so that �γ ∈ H1� and hence, by Lemma 10, �γ = dϕ,

where �ϕ = 0 in � and ϕ ≡ ci on the i th connected component (∂�)i . Then

〈q, γ 〉 =
∫
�

q ∧ �γ =
∫
�

q ∧ dϕ
(5.8),(5.9)=

b∑
i=1

ci

∫
(∂�)i

q� . (5.22)

We deduce that HN (q) = 0 if and only if
∫
(∂�)i

q� = 0 for every i . The conclusion
now follows from Corollary 1. ��
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5.4. Proof of Lemma 10 Completed

We need the following easy result, whose proof uses the language of algebraic
topology (see for example [32]).

Lemma 13. Let U be a connected Lipschitz domain in R
n, such that ∂U has b+ 1

connected components. Then H1
d R(U, ∂U ) � R

b.

Proof. From the exact sequence in singular homology for the pair (Ū , ∂U ), we
have

H1(∂U )
i∗−→ H1(Ū )

�∗−→ H1(Ū , ∂U )
∂∗−→ H0(∂U )

i0∗−→ H0(Ū )→ 0, (5.23)

which gives rise to the short exact sequence

0 → Im�∗ → H1(Ū , ∂U )→ Ker i0∗ → 0. (5.24)

By hypothesis we have H0(U ) = Z, H0(∂U ) = Z
b+1, and (5.23) implies Ker i0∗ =

Z
b. By the Mayer–Vietoris exact sequence for V = Ū , W = R

n \U we have

H2(V ∪W )→ H1(V ∩W )
(i∗,i∗)−−−→ H1(V )⊕ H1(W )→ H1(V ∪W ), (5.25)

which yields, since V ∪W = R
n is contractible,

0 → H1(∂U )
(i∗,i∗)−−−→ H1(Ū )⊕ H1(R

n \ Ū )→ 0, (5.26)

so that (i∗, i∗) is an isomorphism. In particular, i∗ = π1 ◦ (i∗, i∗) is onto, hence
H1(Ū ) =Im i∗=Ker�∗, which yields Im�∗ = 0, so that (5.24) implies that
H1(Ū , ∂U ) is isomorphic to Ker i0∗ = Z

b. From the regularity assumption8 on
U we have, in particular, H1(Ū , ∂U ) � H1(U, ∂U ). Finally, from the relation

H1(U, ∂U ;R) = Hom (H1(U, ∂U );R) = Hom (Zb;R) � R
b, (5.27)

the conclusion follows, since the first singular relative cohomology group with real
coefficients H1(U, ∂U ;R) is isomorphic to the first de Rham relative cohomology
group H1

d R(U, ∂U ). ��

5.5. Proof of Lemma 5

Step 1 We have: inf{||α||L1(�2 K ), dα = 0 in K , α� = ζ on ∂K } = ||ζ
||Ẇ−1,1(K ), where

||ζ ||Ẇ−1,1(K ) = sup

{∫
ϕ ζ : ϕ ∈ W 1,∞

c (R3), ||dϕ||L∞(K ) � 1

}
.

8 Actually it is sufficient for U to be a Lipschitz neighborhood retract in R
n .
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This follows by a straightforward modification of an argument in Federer [16].
We provide a sketch: define a linear functional acting on C∞c (R3) by

A(ϕ) :=
∫
∂K
ϕ ζ, ϕ ∈ C∞c (R3).

Given any measure-valued 2-form α, we similarly define a linear functional Bα
acting on C∞c (�1

R
3) by

Bα(ψ) =
∫

K
ψ ∧ α, ψ ∈ C∞c (�1

R
3).

And generally, for a linear functional C on C∞c (�1
R

3), we define ∂C(ϕ) := C(dϕ)
for ϕ ∈ C∞c (R3). Then the definitions (see (5.8) in particular) imply that A = ∂C
and ‖C‖ <∞ if and only if C = Bα for some measure-valued 2-form α such that
dα = 0 in K and α� = ζ on ∂K . Next, we note that ||ζ ||Ẇ−1,1(K ) = Fhom,K (A),
where Fhom,S(A) denotes the homogeneous flat norm of A in K , see [16]. Then, as
observed in section 4.1.12 of [16] in a slightly different setting, the Hahn-Banach
Theorem implies that

Fhom,K (A) = min{ ||C ||, spt C ⊂ K , ∂C = A },

and this translates to our claim, in view of our earlier remarks.

Step 2 We claim that ||ζ ||Ẇ−1,1(K ) � C ||ζ ||W−1,1(R3), where

||ζ ||W−1,1(R3) = sup
{ ∫

R3
ϕζ, ϕ ∈ W 1,∞

c (R3), ||ϕ||W 1,∞(R3) � 1
}
.

It suffices to show that there exists C > 0 such that, for any ϕ ∈ W 1,∞
c (R3) with

‖dϕ‖L∞(K ) � 1, there exists ψ ∈ W 1,∞
c (R3) such that

∫
ϕζ =

∫
ψζ and ‖ψ‖W 1,∞(R3) � C. (5.28)

Indeed, given ϕ such that ‖dϕ‖L∞(K ) <∞, we fix x0 ∈ K and we define ψ(x) =
ϕ(x)− ϕ(x0) for x ∈ K .

Since K is convex, ϕ and hence ψ are 1-Lipschitz on K , so that |ψ(x)| �
|x − x0| � diam(K ) in K . Next, we extend ψ to R

3 \ K , such that the extended
function is still 1-Lipschitz and moreover satisfies ‖ψ‖L∞(R3) � diam(K), and has
compact support.

Since ζ is a measure supported on ∂K , clearly
∫
ψζ depends only on the behav-

ior of ψ in ∂K , and hence
∫
ψ ζ = ∫ (ϕ − ϕ(x0)) ζ =

∫
ϕ ζ , since

∫
∂K ζ = 0,

proving (5.28). ��
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5.6. Proof of Lemma 1

Step 1 We will show below that there exists a piecewise smooth oriented 2-
manifold with boundary S = Sε such that

∂S = Mε − M ′
ε in U and H2(S ∩U ) � C� · Eε(uε;�) � C�gε,

(5.29)

with C > 0 independent of ε and U . (See the proof of Proposition 1 for notation
used here and below.) We first complete the proof of the lemma, assuming (5.29).

We may assume that S transversally intersects the level set f −1(t) for almost
everywhere t , since if not, we can arrange that this condition is satisfied after an
arbitrarily small perturbation of S that leaves ∂S fixed. Noting that f −1(t) coincides
with ∂Ct for almost everywhere t , we deduce that S∩ ∂Ct is piecewise smooth for
almost everywhere t > 0.

Since f is 1-Lipschitz, the same is true for f � S, so that |∇( f � S)| � 1 almost
everywhere, and

H2((S ∩ C N�) ∩U ) �
∫
(S∩C N�)∩U

|∇( f � S)|dH2

=
∫ N�

0
H1((S ∩ ∂Ct ) ∩U )dt,

by the coarea formula. We deduce that there exists tε such that

H1((S ∩ ∂Ctε ) ∩U ) � (N�)−1H2(S ∩U ) � C N−1gε. (5.30)

In U it holds

∂(S ∩ Ctε ) = (∂S) ∩ Ctε + S ∩ (∂Ctε )

= (Mε − M ′
ε) ∩ Ctε + S ∩ (∂Ctε )

= Mε − M ′
ε ∩ Ctε + S ∩ (∂Ctε ).

(5.31)

In particular, for φ ∈ C∞c (�1U ), we have

〈νε − ν′ε � Ctε , φ〉 =
∫

S∩Ctε
d � φ −

∫
S∩∂Ctε

�φ,

(using the definitions (2.13) and (2.24)), whence

||νε − ν′ε � Ctε ||W−1,1(U ) � H2(S ∩ Ctε ∩U )+H1(S ∩ ∂Ctε ∩U )

� (1+ (N�)−1)H2(S ∩U ) � C(�+ N−1)gε, (5.32)

by (5.30) and (5.29). This gives precisely (2.25).
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Step 2 To conclude, we supply the proof of our earlier claim (5.29).
Let g(x) = |dist(x, R1)|−1 + |dist(x, R∗1)|−1. By the coarea formula, we have
∫

B1

ds
∫

u−1
ε (s)

g(x)dH1(x) =
∫
�

g(x)|Juε |dx �
∫
�

g(x)eε(uε)dx, (5.33)

so that by a mean-value argument, (2.12), and (2.22), we deduce from (5.33) that
there exists a regular value s of uε such that |s| < 1/2 and, denoting Ms := u−1

ε (s),
we have
∫

Ms

g(x)dH1(x) =
∫

Ms

dH1(x)

|dist(x, R1)| +
∫

Ms

dH1(x)

|dist(x, R∗1)|
� K Eε(uε;�)

πδ�
.

(5.34)

Define as in [1], Lemma 3.8 (i), the map � : R
3 \ R1 → R′1 and, accordingly,

the map �∗ : R
3 \ R∗1 → R∗1

′. Set �(t, x) = (1 − t)x + t�(x), �∗(t, x) =
(1 − t)x + t�∗(x), and define S1 = �([0, 1] × Ms) and S2 = �∗([0, 1] × Ms).
Note, following [1], Lemma 3.8 (ii), that since Ms has no boundary in U , we have
∂S1 = �# Ms − Ms and ∂S2 = �∗# Ms − Ms in U . However, from [1], Lemma
3.8 (i), we know that �# Ms = Mε the point being that the intersection number
of Ms with any 2-face Qi agrees with (−1)σi dQi , due to orientation conventions
and elementary properties of topological degree. Similarly �∗# Ms = M ′

ε , so if we
define S := S1 − S2, then ∂S = Mε − M ′

ε in U , which is the first part of (5.29).
Following the proof of [1], Lemma 3.8 (ii), we readily deduce that

H2(S ∩U ) = H2(S1 ∩U )+H1(S2 ∩U ) � C�2
∫

Ms

g(x)dH1(x).

(5.35)

Combining (5.35) and (5.34), claim (5.29) follows. ��
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