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Abstract

In this paper we consider the asymptotic behavior of the Ginzburg—Lan-
dau model for superconductivity in three dimensions, in various energy regimes.
Through an analysis via I'-convergence, we rigorously derive a reduced model for
the vortex density and deduce a curvature equation for the vortex lines. In the com-
panion paper (BALDO ET AL. Commun. Math. Phys. 2012, to appear) we describe
further applications to superconductivity and superfluidity, such as general expres-
sions for the first critical magnetic field H,,, and the critical angular velocity of
rotating Bose—Einstein condensates.

1. Introduction

In this paper we investigate the asymptotic behavior as € — 0 of the functionals
1 , 1
Ecu)=E(u; Q) = [ e(u)dx = —|Dul* + = W(u) dx,
Q Q 2 62

where € > 0, Q is a bounded Lipschitz domain in R, u = u' +iu? €
HY(Q; C), W R2~C — Ris nonnegative and continuous, W(u) = 0 <—
lu| = 1, and is assumed to satisfy some growth condition at infinity and around its
zero set (see hypothesis (H,) below).

In the case W(u) = %, one usually refers to E¢ as the Ginzburg-Landau
functional. This model is relevant to a variety of phenomena in quantum phys-
ics; in fact, as corollaries of its asymptotic analysis, we will derive, here and in
the companion paper [2], reduced models for density of vortex lines (or curves)
in three-dimensional superconductivity and Bose—Einstein condensation. In these
physical applications, € represents a (small) characteristic length, u corresponds
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to a wave function, |u|? to the density of superconducting or superfluid material
contained in 2. Moreover, the momentum, defined as the 1-form

ju = (iu,du) = u'du® — uzdul,
represents the superconducting (resp. superfluid) current, and hence it is natural
to interpret the Jacobian Ju = du' A du® as the vorticity, since 2Ju = d(ju).
We refer the reader to the Appendix for notation used throughout this paper and
background on differential forms and related material.

In the two-dimensional case, it has been recognized since [5] that for min-
imizers u, of E. (subject to appropriate boundary conditions), as € — 0, the
energy typically scales like [loge|. In addition, there are a finite number of sin-
gular points, called vortices, where the energy density e. (u.)dx and the vorticity
Ju. concentrate. Moreover, the rescaled energy ﬁ;;”gl) controls the total vorticity.
These phenomena are robust, in the sense that analogous results hold in higher
dimensions (see [6,24], where the limiting vorticity is supported in a codimension
2 minimal surface) and under weaker assumptions on u, as stated in the following
I"-convergence result:

Theorem 1. ([1,22]) Let K > 0, n = 2, Q C R" be a bounded Lipschitz domain,
and the potential W satisfy the growth condition'
W(u) W (u)

lim inf > 0, liminf ————
|u]—o00 |u|q |lul—1 (1 — |u|)2

0, (Hy)

for some g 2 2. Then the following statements hold.:

(i) Compactness and lower bound inequality. For any sequence u. € H' (2, C)
such that

Ec(ue) = Kllogel, (Ho)

we have, up to a subsequence, Juc — J in WL for every p < 5, where
J is an exact measure-valued 2-form in Q with finite mass ||J|| = |J|(R2),
and J has the structure of an (n — 2)-rectifiable boundary with multiplicities
inm - Z. Moreover,
liminf 2<% > 1), (1.1)
e—0 |10g6|
(i) Upper bound (in) equality. For any exact measure-valued 2-form J having
the structure of an (n — 2)-rectifiable boundary in 2 with multiplicities in
7 - 7, there exist uc € H'(2, C) such that Juc — J in WL for every
p< nnTl’ and

Ec(ue)
im —— =
e—0 |loge]|

/1] (1.2)

1" See condition (2.2) in [1].
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Other energy regimes arise naturally for E. and are interesting for applica-
tions. In particular the energy regime E.(u.) = |log 6|2 corresponds to the onset
of the mixed phase in type-II superconductors, and to the appearance of vortices in
Bose-Einstein condensates. These situations have been extensively studied in the
two-dimensional case, especially by SANDIER and SERFATY in the case of super-
conductivity (see [30] and references therein). In this energy regime, the number of
vortices is of order [log €|, hence unbounded as ¢ — 0. Another feature is that the
contribution of the vortices to the energy is of the same order as the contribution of
the momentum, so that the limiting behavior can be described in terms of this last
quantity, suitably normalized. A I"-convergence result for gieEe for general energy

regimes E¢(ue) < g < €2 has been proved, in the two-dimensional case, in
[23], see also [30].

1.1. Main Results

A first result of this paper extends the asymptotic analysis of [23] to the three-
dimensional case. We write fe < he (orhe > fe)toexpress fe = o(he) ase — 0.
We will use the notation

Ao := {(J, v) : J is an exact measure-valued 2-form in ©, v € L>(A'Q)).
(1.3)

Measure-valued k-forms are discussed in the Appendix, see in particular Sections
5.1.1 and 5.1.2. Our conventions imply that a measure-value form J has finite mass,
so that ||J|| := |J|(2) < oo, where |J| denotes the total variation measure asso-
ciated with J. We say that a measure-valued k-form J is exact if J = dw in the
sense of distributions for some measure-valued k — 1-form w. We show in Lemma
12 that a measure-valued (n — 1)-form J on a smooth bounded open 2 C R” is
exact if and only if dJ = 0 and the associated flux through each component of the
boundary 9€2 vanishes. The latter condition follows automatically from the former
if 9€2 is connected.

Theorem 2. Let Q be a bounded Lipschitz domain in R, W (u) satisfy (Hy) for
some q > 2, and |log €| < ge < € 2. Then the following statements hold:

(i) Compactness and lower bound inequality. For any sequence uc € H 1@,
such that

for some K > 0, Ec(ue) £ Kge, (Hy,)
there exist (J, v) € Ag such that, after passing to a subsequence if necessary,

Jue

luel = 1 inL9(Q), —I— —~v weaklyin L>(A'Q), (1.4)
‘ AN Y
Jue . 29 1
— v weakly in LIT2 (A Q). (1.5)

N/
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If ge < |logel|?, then in addition,
[log €| [loge|
Jue =

8e 28

The convergences in (1.5) and (1.6) yield, in different scaling regimes,

d(jue) > J inW™P(A%Q) Vp<3/2. (1.6)

if |loge| K ge < |10ge|2 then (J,v) € A :={(J,v) € Ay : dv = 0},
(S1)
1
if ge=|loge|* then (J,v) € Ar:={(J,v) €Ay : J=§dv e H-1(A*Q)),
($2)

if |10ge|2 K ge K e 2then(J,v) € Az :=={(J,v) € Ag : J = 0}.(S3)
and in every case,
Ec(ue)

liminf ——— > ||J|| +
€e—0 8e

1 2
E”v”LZ(AIQ)' (17)

(i) Upper bound (in)equality. Assume that (g¢)e=0 satisfies one of the scaling
conditions (Sk),
k € {1, 2, 3}, identified above, and that (J, v) € Ag. Then 3U, € Hl(Q; C)
such that (1.4), (1.5), (1.6) hold, and

Ec(Uo)

€

. 1 2

The compactness and lower bound assertions are either very easy, already
known (see for example [31]) or are proved almost exactly as in the two-dimensional
case. The upper bound (1.8) is the main new part of the theorem, and constitutes
the most difficult part of the theorem.

Remark 1. Assume that (g¢)e-o satisfies one of the scaling conditions
(Sx), k € {1, 2,3}, identified above, and for (J, v) € Ay, set

I .
E() =11+ 5 I0la g, i (J.0) € Aw, (1.9)

and E(J,v) := +oo if (J,v) ¢ Aix. We express the ['-convergence result of
Theorem 2 using the notation

Eewd) gy, (1.10)
8e

where the I'-limit is intended with respect to the convergences (1.4), (1.5), and
(1.6). Notice that the contributions of vorticity and momentum are decoupled in
the I"-limit, due to the different scaling factors in (1.5), (1.6), except for the crit-
ical regime g, = |10ge|2, where the scalings of Ju, and ju. coincide, and the
limits satisfy 2J = dv (see Section 1.2 below). In particular, Theorem 2 expresses
the fact that for regimes g < |log€|?, the contribution to the energy is given by
the vorticity and the curl-free part of the momentum, while for g. > |loge|* the
contribution of the vorticity vanishes asymptotically.
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Remark 2. As observed in [1,22], replacing W (u) by o - W(u), o > 0, and letting
o — 0, the lower bound (1.7) can be sharpened to

. | 1
imint [ e 2 0+ S0l g (1.11)

Moreover, for a sequence u. satisfying (1.8), the potential part of the energy is a
lower order term, that is,

/ WE(';E) —o(g) ase— 0. (1.12)
Q

Inequality (1.11) is also proved in [31].

Remark 3. In the two-dimensional case the I"-convergence result of [23] is for-
mulated exactly as Theorem 2 above, except for the convergence of the normalized

Jacobians %J ue, which takes place in W7 for any p < 2.

Remark 4. By localization, Theorem 2 implies the following: for any u. satisfy-
ing (Hy), the rescaled energy densities ef(i’g% converge weakly as measures in €2,

. . . 2
upon passing to a subsequence, to a limiting measure w, with [J] 4 5-dx < w. It

then follows that u = |J |+ ”Tzdx for any sequence () such that the convergences
(1.4), (1.5), (1.6) and the upper bound equality (1.8) hold.

Remark 5. The final compactness assertion (1.6) is proved by establishing con-
vergence in W11, and then interpolating, using the easy estimate ||Juc|;1 <
||Du||iz. For |loge| < ge < €72, (1.5) already implies that H%Eljue — 0 in

1. 20
W42 This can also be improved by interpolating with L' estimates (which

imply W—1-3/2 estimates) if qz% < 3.

Remark 6. The convergences (1.4), (1.5) and (1.6) have been already established
in the analysis of [1,22,23]. In particular, for a domain  C R” withn = 4, (1.4)
and (1.5) still hold true, while the normalized Jacobians converge to J in W~17
forany p < -*5. Moreover, assuming g. < €~ for some 0 < y < 2, the conver-
gence in (1.5) can be improved according to y, see [23]. In [8], following [10], the
convergence in (1.6) also has been proved to hold in whit (as well as in fractional
spaces W*P withsp = n/(n— 1)) forn = 4, and even in the case n = 3, assuming
the condition u € L7(2) for ¢ > 6 (see [8], Theorem 1.3 and Remark 1.6).

Remark 7. In the scaling g = |loge| studied in Theorem 1, arguments in the

proof of Theorem 2 can easily be adapted to show that Ew) I, g (J, v), where
the I'-limit is again intended with respect to the convergences (1.4),(1.5)and (1.6),
and where E(J, v) is defined exactly as in (1.9), except that E(J, v) is set equal
to 400 unless dv = 0 and J has the structure of a rectifiable boundary. This is
an improvement over Theorem 1 (see analogous results in [7] for critical points of
E¢, and in [4] for minimizers with local energy bounds), and in fact is valid in R”
for any n = 3.
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Remark 8. The validity of (1.7), (1.8) in dimension n = 4 remains an open issue
for energy regimes g > |loge|. A major difficulty is to determine the correct
generalization of the total variation term || J || in (1.9). Different candidates include
the total variation with respect to the comass norm, the Euclidean norm, and the
mass norm, see [16]. For measure-valued 2-forms in R3, all of these coincide.

The most reasonable conjecture is that the mass norm is the suitable one for the
higher-dimensional generalization of Theorem 2, but this seems difficult to prove.
The arguments we give to prove (1.7) are, in fact, presented in R”, and for n = 4
they prove that (1.7) holds with || J || replaced by the comass of J, which in general
is strictly less than the mass of J. Lower bounds involving the comass norm in
R", n = 4, are also proved in [31].

By way of illustration, for the (constant) measure-valued 2-form J = dx' A
dx?*+dx> Adx* on an open set @ C R*, one has comass(J) = ||, the Euclidean
total variation of J is «/§|S2|, and mass(J) = 2|2|.

For [loge|?> <« ge < €2, the total variation term does not appear in the
limiting functional, so the issue of mass versus comass does not arise, and the
proof of the lower bound (1.7) is straightforward; in fact it follows from arguments
we give here. The upper bound (1.8) is probably also easier in this case than for
lloge| < ge < |logel®.

Replacing assumption (H,) for W (u) with the following (verified in particular
for sequences of minimizers)

3C > 1 suchthat jus] < C Ve <1, (Hxo)

and taking into account Remark 6, a variant of Theorem 2 can be formulated as
follows:

Theorem 3. In the hypotheses of Theorem 2, we have

(i) Compactness. For any sequence u, € H L@, 0 verifying (Hg) and (Ho)
we have, up to a subsequence,

j Io
Jhe v weakly in LZ(AIQ), | gé'JuE — Jin W_1’3/2(A2Q),

8e 8e

(1. 13)

where J is an exact measure-valued 2-form in Q, with finite mass ||J|| =
[J1(S2).

(i) T-convergence. Assuming that g. respects one of the scaling conditions S
from Theorem 2, we have

Ecwe) v piy, (1. 14)

€

with respect to the convergence (1. 13), where E(J, v) is defined in (1.9),
taking into account the relevant scaling regime.
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1.2. The Critical Regime g = |log €|?

Let us specialize the statements of Theorems 2 and 3 to the critical regime
gc = |loge |2, where the scaling factors in (1.4), (1.5) and (1.6) are equal, and hence
the normalized vorticity is related to the momentum by the formula 2J = dv. We
then have

Ec(ue) T
—_— =

1.1
Togep  EW: (1. 15)

where, for v € LZ(A] ), we define

dv 1 1
E() = E(Sv) = 3lldvll + 51012 10, (1. 16)
if the mass ||dv|| = |dv|(R2) is finite, E(v) = 400 otherwise. The I'-limit is

intended with respect to the convergences (1.4), (1.5) and (1.6).
Clearly Theorem 3 yields the same conclusion (1. 15), this time with respect to
the convergence (1. 13), which in this case reads

; 2J
Jfe Ly weaklyin L2(A'Q), —2te
|log €| [log €|

— dvin W2(A%Q).  (1.17)

1.3. Applications to Superconductivity

As a first application of the above results in the energy regime g. = |log €|,
we describe the asymptotic behavior of the Ginzburg—Landau functional for super-
conductivity

du—iAul®> 1 dA — hex|?
fG(M’A):/ M+—2W(u)dx+/ de,
Q 2 € R3 2

defined for Q@ C R3, where the 2-form hey € L? (A*R3) is an external applied

loc

magnetic field and the 1-form A € H'(A' R?) is the induced vector potential (gauge
field). It does not change the problem to assume that /¢x has the form hex = d Aex
for some Aex € HZIOC(AI]R3), so we will always make this assumption.

Let H*1 (A'R3) := {A € H'(A'R?) : d*A = 0}, and define the inner product
(A, B)H*l (AIR3) = (dA, dB)2p2Rr3)- This makes H*1 (A'R3) into a Hilbert space,
satisfying in addition the Sobolev inequality

Al Loair3) = CllAl g1 a1R3)-

We will study F. (v, A) for (v, A) € H'(Q: C) x [Aex + H}(A'R)]; this is
reasonable in view of the gauge-invariance of F, that is, the fact that

Fe(u,A) = Fe(u-e'®, A+d¢) Vo € H' (RY). (1.18)
It is useful to decompose F. as follows (see for example [9]):
Fe(u, A) = Ec(u) + Z(u, A) + M(A, hex) + R(u, A), (1.19)

with
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T(u, A) := —/A-judx, (1.20)
Q
A2 dA — hey|?
M(A, hey) :=/ |—|dx +/ de
Q 2 ]R3 2
1 2 1 2
= EIIAIILZ(AIQ)+§||A—Aex||HJ(A1R3), (1.21)

and R(u, A) = % fQ(|u|2 — 1)|A[%dx is a remainder term of lower order. Thus
Fe(u, A) may be written as a continuous perturbation of E(u) + M(A, hex),
and using the stability properties of I'-convergence we deduce, as in [23] for the
two-dimensional case, I'-convergence for the functionals F¢ in the critical energy
regime g, = |10g6|2:

Theorem 4. Let Q@ C R3 be a bounded Lipschitz domain, let W (u) satisfy (Hy)

with g 2 3, and assume hexy = dAex.c and that there exists Aex.o € H!' (A'RY)

loc
such that ‘?Oegx‘g‘ — Aex,0 — Oin H*l (A'R3). Then the following hold.

(i) Compactness. Forany sequence (u¢, Ac) € H'(Q; C) x[Aex 0+ H)} (A'R?)]
such that Fe(ue, Ae) < Klloge |2, we have, up to a subsequence,
Ac
[loge|

— A — 0 weaklyin Hl (A'R?), (1.22)

for some A € Aexo + H*1 (A'R3) as well as the convergences (1.4), (1.5)
and (1.6) of Theorem 2 in the case g = |log €|*. )
(i) T-convergence. For v € L2(A'Q)and A € Aex.0 + H*1 (A'R3), define

1 1 1
Fo. 4) = Slldvll + 5110 = All}2 1) + 5144 = dAexl 2 g2
(1.23)

if ||[dvl|| = |dv|(S2) is finite, F (v, A) = 400 otherwise.
Then under the convergences (1. 22), (1.4), (1.5) and (1.6), we have

Felue, A

6(”;;) L Fw, 4). (1.24)

[log el

Remark 9. Assuming (Hyo), the I'-limit (1. 24) is obtained with respect to the
convergences (1. 22) and (1. 17).

Remark 10. The statement of Theorem 4 is not gauge-invariant, as the condi-
tion that A¢ € Aex.e + H*1 (A'R3) uniquely determines the function ¢ in (1. 18).
Fixing this degree of freedom is clearly necessary for compactness. Note, how-
ever, that the limiting functional F has a gauge-invariance property: F (v, A) =
F(+ylg, A+ y) whenever dy = 0.

The Euler-Lagrange equations of the functional F consist in the Ampere law
d*H = j for the resulting magnetic field H = dA — h, generated by the (gauge-
invariant) super-current j = v — A in Q (see (4.6)), and a curvature equation for
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the vortex filaments, that is, the streamlines of the limiting vortex distribution (see
(4.7)), which reads, in the regular case,

[K:ZTX] in 2, (1. 25)

T7T=0 on 02,

with k and 7 denoting, respectively, the curvature vector and the unit tangent to the
vortex filament, j the vector field corresponding to the super-current j = v — A,
and x the exterior product in R3. Formula (1. 25) generalizes the corresponding
law in the case of a finite number of vortices (see [7], Theorem 3 (iv), and [13]).

Remark 11. In [2] we analyze in more detail the properties of minimizers of the
limiting functional F through the introduction of a dual variational problem. We
use this description to characterize to leading order the first critical field H,, .

These results extend to three dimensions facts about two-dimensional models
of superconductivity first established by SANDIER and SERFATY [29], see also [30]
and other references cited therein. Following the initial work of Sandier and Serfaty,
it was shown in [23] that their results can be recovered via the two-dimensional
analog of the procedure we follow here and in [2].

As far as we know, the relevance of convex duality in these settings was first
pointed out by BREZ1s and SERFATY [12].

Remark 12. In [2] we also apply Theorem 2 to study the I'-limit of the Gross—
Pitaevskii functional for superfluidity, and derive, in particular, a reduced vortex
density model for rotating Bose—Einstien condensates, deducing the corresponding
curvature equations and an expression for the critical angular velocity.

Remark 13. Theorem 4 is concerned with the description of the behavior of global
minimizers. The convergence of local minimizers with bounded vorticity has been
studied, under various assumptions, in [21,25,26], relying on techniques related to
Theorem 1.

1.4. Plan of the Paper

This paper is organized as follows: in Section 2 we prove the lower bound and
compactness statement (i) of Theorem 2, while Section 3 is devoted to the proof
of the upper bound statement (ii). In Section 4 we prove Theorem 4 and derive the
Euler-Lagrange equations of the I'-limit, obtaining, in particular, formula (1. 25).
Section 5 is an Appendix that collects some notation and the proofs of some aux-
iliary results.

2. Lower Bound and Compactness

In this section we prove statement (i) of Theorem 2, relying largely on our pre-
vious works [1,23]. We prove everything in  C R” for arbitrary n = 3. We note,
however, that the lower bound inequality (1.7) is not expected to be sharp when
n 2 4, see Remark 8.
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We first derive (1.4) and (1.5). Then, assuming (1.6), we derive the character-
ization of the limiting spaces Ay corresponding to the scaling regimes Sy identified
in the statement of the Theorem. We next turn to the proof of the lower bound (1.7).
The compactness statement (1.6) in the case p = 1 will be obtained during the
proof of (1.7), and thecase | < p < n’%] (see Remark 6) will follow from the case
p = 1 by a short interpolation argument.

Proof of (1.4), (1.5). Observe first that |u.| — 1 in L9(2) by assumptions (H,)
on W(u) and (Hg) on E., since

/ 11— Juell? < C/ W(ue) £ Ce*Ec(ue) < Ce?ge — 0.
Q Q

From the identity |u|?|Vu|? = [u|*|V|u||> + |ju|® we deduce that

2
E
/ |]”;| <. e(ue) <K, 2.1
Q |uel“ge 8e
which yields, up to a subsequence, i | f — v weakly in L?(£2), completing the
proof of (1.4). Now write
JUe ] JUe
= + (luel = 1) - .
v/ 8e |Me|«/ e |”e|\/ge
. 29
Using (1.4) we deduce that (Juc| — 1) - \u]|li;> — 0 weakly in L9+2 (). This
29

yields f/”i — v weakly in L4+2(Q), thatis (1.5). O

Next, the characterization of limiting spaces Ay follows from (1.4), (1.5) and
. 2
(1.6), since by (1.5) we deduce that d(%) — dv weakly in w e (), hence,
in the case g > |loge|?,

lloge| (Ilogel) (jue) 1,2
Jue = d —~0-dv=0 inW ~a2(Q). (2.2)
8e ‘ \/ge \/Es

In view of (1.6), this implies J = O by uniqueness of the weak limit. On the other
hand, in the case g < |loge|?,

' I
d(“‘f)=2(“/§5 ).(logEI ) 50-7=0 in W LP(Q), p<L
NI [loge| e 1

which implies dv = 0, again by uniqueness of the weak limit. The above formulas,
in the case g = [log€|?, imply that dv = 2J.

We turn to the proof of (1.7) distinguishing two cases, namely [loge| < g <
llog€|?, and |log €|> < g < € 2. We begin with the latter case.




I'-Convergence of Three-Dimensional Ginzburg—Landau Functionals 709

Proof of (1.7) in the case g > |loge|?. In this energy regime, we have just
shown that J = 0, and (1.4) and (2.1) immediately imply

E 1
fiminf 260 > -/ w2, (2.3)
2 Ja

e—=0 8¢

yielding conclusion (1.7). O

If it is not true that g > |log €|?, then by passing to a subsequence we may
suppose that g¢ < C|loge|>. By renaming the constant K in (Hg) we may also

assume that C = 1. Thus the proof of (1.7) will be completed by the following.

Proof of (1.7) in the case |loge| < g < |loge|2. The main step in the proof is
the following improvement of [1], Proposition 3.1. We establish it in greater gen-
erality than is needed for the proof of (1.7). O

We remark that (1.7) in the scaling [loge| < ge < |loge|? is already estab-
lished in [31] and, moreover, that a key point in that proof is a result similar to the
following proposition.

Proposition 1. Let u. be a sequence of smooth maps on Q C R", n = 2, such that
(Hy) holds, with [loge| < ge < |loge|*. Then we have, up to a subsequence,

[log e
8e

Jue —> J  inw h(A%Q), (2.4)

where J is an exact measure-valued 2-form* with finite mass in Q. Moreover; there
exists a closet set C. C 2 such that |C.| — 0, and such that for every simple
2-covector n such that |n| = 1 and for every open set U € L, it holds that

lim inf (e €

e—>0 &e

Z |(J. ), (2.5)

where (J, n) is the signed measure defined according to (5.4).

Our proof of Proposition 1 differs from that of the corresponding point (Prop-
osition IV.3) in [31]. One feature of our proof is that the set C, that we construct
is manifestly a closed set, whereas in the construction of [31], a certain amount of
work is required even to see that the corresponding set is measurable.

Taking for granted Proposition 1, we complete the proof of (1.7). First, a stan-
dard localization argument (see [1], p. 1436) gives, for any finite collection of
pairwise disjoint open sets U; € 2 and simple unit 2-covectors 7,

E ; C
ST apIU)) < liminf Eelue: GO (2.6)
; e—0 Ze

Taking the supremum over all choices of pairwise disjoint open sets U; and unit
simple 2-covectors, 1; on the left-hand side of (2.6) yields the total comass norm of

2 In the case ge = |log €|, J has the structure of a rectifiable boundary with multiplicities
in 7 - Z, according to Theorem 1.
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J in the sense of [16], section 1.8.1. In the three-dimensional case’ this coincides
with the total variation (or L1, accordingly) norm of J, since all 2-covectors in R3
are necessarily simple. Hence we may write, for n = 3,

E ; C,
1(€) < liminf Eelue; Co) 2.7)
€—>

8e

Now let Q¢ = 2\ C¢, and let x(x) be the characteristic function of 2.. We
may assume after passing to a subsequence that y.(x) — 1 as € — 0 for almost
everywhere x € Q, since |Cc| — 0. Then forany h € L2, xc-h — hin L? by the
dominated convergence theorem, and so it follows from (1.4) that

Jue
h~x~——>/h~v ase — 0.
/Q AN

That is, e - ﬁgﬁ — v weakly in L?. Since

! jucl
ec(u) 2 —/ X9 ,
/ . 2J" lucl?
we deduce that

Ec(ue; Q 1 uc> 1
Jim inf ¢ e? $2) gnminf-/ X "”;' > -/ 2. (2.8)
e—~0 8e e—0 2 Jg luel”ge 2 )a

To conclude, observe that E¢ (ue; Q2) = Ec(ue; Ce) + Ec(ue; 2¢), so that

Ec(ue; 2 .. Ec(ue; C . Ee(ue; Q
liminfE(u—e) lemmfg(u;e)—i—hmmf M

e—0 8e T e—0 8e e—0 8e

(2.9)

Combining (2.9) with (2.8) and (2.7) we obtain (1.7). O

We now supply the

Proof of Proposition 1. We will proceed in two steps: first, we apply the discreti-
zation procedure of [1], Section 3 at a suitable scale £, to deduce (2.4) and to identify
a small set C é C 2 where the Jacobian Ju. is essentially confined. Second, we
apply the cited procedure again, this time imposing an additional condition that
yields good control of the resulting 2-form v, (a discretization of the Jacobian) in
a small neighborhood C¢ of C/ by the Ginzburg-Landau energy in the same small
neighborhood C.. We then argue that the restriction of v. to a suitable subset of C
converges to the same limit as Ju., so that from lower semicontinuity, bounds on
(v., n) L Ce yield estimates on (J, n), thereby proving (2.5).

We carry out these arguments in detail in the case n = 3 and then we discuss
the general case.

3 And for anyn = 3if gc = |loge|, then J is obtained as a limit of polygonal currents with
uniformly bounded mass, and hence is rectifiable by the Federer—Fleming closure theorem.
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Step 1 We follow [1], Section 3. Fix a unit simple 2-covector 1, and an orthonor-
mal basis (e;) of R? satisfying n(e> A e3) = 1. Consider a grid G = G(a, e;, £),
given by the collection of cubes with edges of size ¢, and vertices having coordi-
nates (with respect to a reference system with origin in a € R? and orthonormal
directions (e;);=1,2,3) which are integer multiples of £. For 1 = 1,2 denote by
R;, the h-skeleton of G, that is, the union of all #-dimensional faces of the cubes
of G. Consider also the dual grid having vertices in the centers of the cubes of G,
and denote its /-skeleton by R), for i = 1, 2. From (H,) and the assumption that
ge < |loge|? we have

Ec(ue; ) < K|logel?, and we set £ = £, := [loge| 0. (2.10)

Observe that (2.10) replaces (3.22) and (3.23) in [1]. Choose a = a, by a mean-
value argument in such a way that Lemma 3.11 of [1] holds, so that, in particular,
the restriction of the energy on the two-dimensional and one-dimensional skeleton
of G is controlled by

/ ecu)dH! < Col" S Eeue: @), h=1.2, @.11)
RN
for a suitable constant Cy > 1, and moreover
e/ el < CoE(u: Q). (2.12)
o |dist(x, Ry)|

In view of (2.10), Lemma 3.4 in [1] is satisfied, hence |u¢| — 1 uniformly
on Ry N Q. In particular, for any face Q € Ry, the topological degree dp :=
Ue

deg (=, 90, S") € Z is well-defined (modulo the choice of an orientation of Q

luel”
in R?).
The discretization procedure of [1], Lemmas 3.7 to 3.10, may then take place
on any fixed open set U € €2, yielding an oriented polyhedral 1-cycle (actually, a
relative boundary in U) M, = > (—1)7 dg,-Q},where Q; C Rj isthe unique edge
of the cubes of the dual grid intersecting the face Q; C Ry, the sign (—1)° depends
on the orientations of both Q; and Q}, and the sum is extended to any Q; C R»

such that Q; N U # . Notice that M, is supported in R} N U‘/gz, where U V3¢

denotes the tubular neighborhood of U of thickness ~/3¢. The cycle M, gives rise
to a (measure-valued) 2-form v,, whose action on 2-forms in C2° (A2Q) is defined
by

(Ve, @) == - Z (—1)""in//*¢. (2.13)
QiCRy Q;
QiNU#Y

The 2-form v, is exact in U, since M, is a relative boundary in U, and enjoys the

following properties: it is a measure-valued 2-form supported in R{ N U ‘/ﬂ, such
that its total variation |v¢| is bounded on U by*

4 See [1], (3.29).
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E ; Q
@) = S e g, < Ll (2.14)
0i:cky llog €]
QiNU#Y

with C > 0 independent of U &€ €2, and such that v, is close to Ju, in the w-L1
norm, namely5

1Jute = vellw-11(a20) S CL- Ec(ue; Q). 2.15)

Moreover, the support of ve is contained in the interior of aset C, C U V3t given by
the union of those cubes of the grid G having at least one face Q C Ry, QNU # 0,
such that dp # 0. Denote by I the set of indices i in (2.14) for which dg, # 0, or
equivalently, |dp,| = 1. By (2.14) we have

Ec(ue; Q)

CH<e <N B dp | Sce?
ICLHS 112D 0 1dg,| < Tog<]

iel

, (2.16)

so that by (2.10), |C.| — O ase — 0.

Notice, moreover, that (2.14) and (Hg) imply that ‘logel - Ve — J weakly

as measures, where J is a measure-valued 2-form in €2, Wthh is exact and has

1 Q
total variation |J|(2) < C lim 161f 6(—6) By (2.15) we finally deduce that
€—> g

€

‘%E' - Jue — Jin WL(A2U) for any U € €, which yields (2.4).

Step 2 For N > 0 to be chosen below, define Cc = Cy. = {x €
Q, dist(x, C,) < 2N/} to be the tubular neighborhood of C. of thickness 2N ¢
intersected with Q2. By (2.16) we have

|Ce| £ 8N3|CL| < CN3£2% -0 ase— 0, (2.17)
oge

as long as N3 < ¢ In view of (2.10), (2.17) is verified for instance by fixing
N = N, := |loge|’. (2.18)
Observe, moreover, that
Ec(ue: Co) < Ee(ue: Q) < Kge < [loge/*. (2.19)
Consider the grid G¥ = G(be, ;, £), where £ = £, = |log €710 as above and b, is

chosen such that for an arbitrarily fixed § > 0, (3.18), (3.19) and (3.20) in Lemma
3.11 of [1] hold true, and, moreover, (3.17) holds true with 2 replaced by C.. In

5 Combine (2.10) and (2.12) with (3.7) and (3.14) of [1].
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other words, denoting by R} the h-skeleton of G, h = 1, 2, and by R~§‘ the union
of the faces of the 2-skeleton of G orthogonal to e, we have,

/ eewdH? < (1 +8)0™ Eclue: Co). (2.20)
R5N(Ce)
/ ecu)dH" < Cos "B E (ue; ), h=1,2, (2.21)
RENQ

ec(ue) —1
0] —  dx < Cod T Ec(ue; Q). 222
/Qldist(x’m)| x < Cod Eeue: Q) (2.22)

Fix an open subset U € 2. As in Step 1, the procedure of [1] yields a polyhedral
cycle

M. = Z (=1)%dg, - 0}, (2.23)
QiCR3
QiNU#Y

which is a relative boundary in U and is supported in R}’ N U V3t where R}’ is the
one-dimensional skeleton of the dual grid to G*. The corresponding measure-valued
2-form v, defined as in (2.13) by

W.g)=m- > (—1)”"in/

QiCR3 0
QiNU#Y

*p, Ve CPANQ),

(2.24)

is exact on U and verifies [v.|(U) < C % with C > 0 independent of U.

For x € Q define f(x) := dist(x, M,), so that f is 1-Lipschitz. Denoting by
C' ={x: f(x) <1}NKQ, wehave that C2N¢ c C..
Lemma 1. There exists t := te < N{ such that
v, L C" = vellyw-11y < CUU+ NDge, (2.25)

with C > 0 independent of € and U. In particular, the choices of £ and N (see
(2.10) and (2.18)) imply that

I
ogel ot Ly w1 (a2) (2.26)
8e

and, for any 2-covector n,

|
(' ogel ¢t n) = () in W), (2.27)
8e

We postpone the proof of Lemma 1 to Section 5.6 of the Appendix. By (2.27)
and lower semicontinuity of total variation we deduce
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[loge|
|, IW) < limi nf)( g ’Lc’,n)‘(U)
|loge| (2.28)
< o L N ‘
< llgl)l(l)lf ( - v, LC ,77) 0).

Observe that specializing (2.24) to the case ¢ = 5, with ¥ € C2°(L), and
letting v approach the characteristic function of CV* N U, we have

d l./ *1)
© o:ncNinU

(2.29)

(e CVEIW) = oL mIEN Uy =a - >

QiCR3
QiNU#Y

Notice that for any Q' C R}’ such that Q' N C Nt £ ¢, its dual element Q is
contained in the tubular nighborhood of thickness /30 of CN¢, which is a subset of
C2Nt 5o that, in particular, Q C C.. Recalling from the definitions that xn = dx!,

which is the oriented arclength element along Q for Q; € RN’Z", we obtain from
(2.29) that

eVl £ D we-ldgl. (2.30)
QCR3NC.

One readily verifies, following [1], p. 1435, that (2.10) and (2.19) allowed us to
apply Lemma 3.10 there (which relied in turn on a fundamental estimate in [20,28]),
to efficiently estimate the sum of the degrees |dg| in terms of E. (u.; Cc). Namely,
forany r > 0, and any Q C R; N 2 we have

/e( OdH? + /eg(ue)dH1 2.31)
[log €| |10ge|

where ¢, (¢) is independent of Q, and ¢,(¢) — 0 as e — 0 (see [1], p. 1435). We
may thus write

(1 —cp(e)m - ldg| =

< ec(u)dH? + ec(u)dH'
llog €| Jrinc. lloge| Jrinc,

(I—cre) D-ldol =
QCR3NC,
(2.32)

Combining (2.30) with (2.32), and taking into account (2.20), (2.21), we are led to

loge Ec(ug; C
a —cr(e))|(| gel -ngcW,n)KU) < (1 F54 )M (2.33)
8e 8 8e
Passing to the limit as € — 0, we have, in view of (2.28),
E ; C
(1, MIU) < (1 F54 —) lim inf Ze¥et Co). (2.34)
O 8e

Taking r < 82 and § arbitrarily small yields (2.5). O
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Proof in the general case n = 3. The main tool used above is the algorithm from
[1] for constructing a polyhedral approximation of the Jacobian Ju, and hence
a measure-valued 2-form ve, with good estimates of ||Ju — ve|y-1.1 and of
[(ve, n)|(W) for suitable subsets W C . The procedure in [1], in fact, is pre-
sented in R”, n 2 3, and so can be employed in the general case as for n = 3, with
purely cosmetic differences. For example, in R”, the analog of Q] in (2.13) and
elsewhere is now the unique n — 2 face of the dual grid that intersects Q;. Also, dif-
ferent scalings make it convenient to choose £ = |log €|~ say, while we still
take N = [log €|*. Then it remains true that g. < N, which is needed for the proof
of Lemma 1, and that |Cé| — 0, which follows from the fact that N"¢2 m f‘el — 0
as € — 0, compare (2.17). Modulo changes of this sort, the argument is 1dentical
in the general case. O

Proof of (1.6). Recall that we have assumed that g, < |loge 2. Since

| Jue — Ve||L1(A2U) = ||Jue||L1(A2U) + ||Ve||L1(A2U) S CEc(ue; Q) = Cge

(2.35)
for any U € 2, we deduce, by interpolation with (2.15),
1_}1(1)71) n(p—1) 1,"(17_] 5
|[Jue — Ve“W—l«P(AZU) < CLe - ge) P 8e Poscee P [loge|”.
(2.36)

3
The conclusion (1.6) follows by choosing £, = £ , = |loge |_"—I'(1'7'—1> , so that
the right-hand side of (2.36) vanishes. O

3. Upper Bound

In this section we prove statement (ii) of Theorem 2.

3.1. Strategy of Proof

The proof is subdivided into steps. First of all, we reduce our focus in Section
3.2 to considering an appropriate dense class of the domain of the I"-limit, using a
suitable finite elements approximation. The construction of the recovery sequence
will be based on a Hodge decomposition of the limiting momentum p, described
in Section 3.3, and a discretization of the limiting vorticity dp in terms of a sys-
tem of lines where the vorticity is concentrated and quantized; this, and associated
estimates of the discretized vorticity and related quantities, are the main points
in the proof. An argument & la Biot-Savart then allows us to construct S'-valued
maps whose Jacobians are concentrated precisely on the discretized vorticity lines,
and we obtain our maps u. by adjusting the modulus around the vortex cores. The
proof is completed by the verification of the upper bound inequality, which relies
crucially on good properties of the discretized vortex lines and estimates satisfied
by associated auxiliary functions.
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3.2. Nice Dense Class

We say that a 1-form p on a domain  C R3 is rational piecewise linear if
p is continuous, and there exists a family of closed simplices { P;} with pairwise
disjoint interiors such that

1. QCUP; . . )

2. for every i, the restriction to P; of p has the form > (a/ Fxi + b)dx/ for
aijk,bij € Q; and

3. all the vertices of each P; are rational (that is, belong to Q%)

Rational piecewise linear 1-forms have the following useful property:

Lemma 2. Let p be a rational piecewise linear 1-form on Q C R>, and let {P;}
denote the associated family of simplices, as described above.
Then for any (two-dimensional) face T of any of the simplices P;,

/poe(@.

Proof. We fix P; and write V1, ..., V4 to denote its vertices. Consider some face F’
of P;, say F' = co{V;, Vi, V;} = the convex hull of {V;, V;, Vi}, for some distinct
{j,k,1} € {1,...,4}, and let W denote the constant 2-covector such that dp = W
in P. Then
1
/ dp = iz((Vz VAWMV = Vi), W), 3.D
F

where the sign depends on the orientation that F inherits from P;, and this is clearly
rational. O

We say that a closed set is rational polygonal if it is a finite union of closed
simplices with pairwise disjoint interiors and rational vertices. A rational polygonal
open set is the interior of a rational polygonal closed set. We write “~" to mean
“is homeomorphic to”.

Lemma 3. Suppose that Q@ C R? is a bounded open subset and that 32 is of class
C!. Given p € L2(AY(RQ)) such that dp is a measure, and given § > 0 small, there
exists a rational polygonal set Q“; with Q € Qf € Q9 = {dist(x, Q) < 8}, and
suchthat Q ~ Q(f ~ Q% and a rational, piecewise linear 1-form ps € L*(A' Qf;),
such that dps € L! (AQQ(ISD) and

Ip—pslli2 =8 (3.2)
151320y = P12y +8 (3.3)

| tal < ldpl +5 (3.4)
$
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Proof. Since 9 is of class C1, itis clear that we may find § > O such that Qb ~ Q.
By adapting standard approximation techniques for BV functions as in [18], we
can find a set Q' C Q% such that Q@ € ', and a I-form p’ € C®(AL(Q)),
such that [|p — p'llz2@) = 8/2. 1P'172.qy = IPII72 g, + 8/2 and |dp/|[(2) =
|dp|(S2) + &/2.

Now choose a rational polygonal domain Qg’ such that Q € Q (‘; € Q' with
Q ~ Qf; . This can be achieved by setting Qj, to be the collection of cubes of
side-length & with vertices at points in hZ>, and defining

Q5 = int(Uggeq,:0nan Q)

for some sufficiently small (rational) /. (Clearly each such cubes can be subdi-
vided into simplices with rational vertices.) If 4 is small enough, then Q N Q is
contractible for every Q € Qy, and then it is not hard to check that SZ(‘; ~ Q.

By taking i smaller as necessary, we may also obtain rational triangulations
with arbitrarily small mesh size.

By standard interpolation theory from the finite elements method (see for
instance [14, Chapter 3]), we can find piecewise linear 1-forms which are arbi-
trarily close to p’ in W'2(Qs): it suffices to choose a sufficiently fine triangulation
constructed as above, and to take the (unique) piecewise linear form ps which
interpolates p’ in the vertices of the triangulation. Moreover, an arbitrarily small
change of ps in the vertices makes it rational. O

We will also need the following variant of the above.

Lemma 3'. Suppose that Q C R" is a bounded open subset and that 92 is of class
C!. Given an exact measure-valued 2-form J, and given 8 > 0 small, there exists a
rational polygonal set 525 such that Q € Qg) € QO = (dist(x, Q) < 8}, and such
that Q >~ Qf; ~ Q% and a rational, piecewise linear 1-form pé € Lz(Alﬁg),
such that dpj € L' (Azﬂg’) and such that

Ip=psllwie S8 [ ldpil S 1I@)+5. (3.5)
QB
The proof is a straightforward modification of the proof of Lemma 3, once we
note from Corollary 1 in the Appendix that any exact measure-valued 2-form J in
Q can be written in the form J = dp’ for some p’ € Ni<gen LY (A'Q).

3.3. Hodge Decomposition of ps

Here we refer for notation and basic theory to Section 5.2 of the Appendix. We
henceforth write p instead of ps.

Since basic results on Hodge theory to which we appeal require some smooth-
ness of the domain, we fix an open set €25 with smooth boundary, such that Q &
Qs € QF, and such that @ ~ Qs ~ QF. In particular, we assume that if 32} has
connected components (0 Qf )i,i = 1,..., b, then there exist disjoint connected
open sets Wy, ..., W, such that

QPN Qs =U Wy, aW = (3R U (3Q); Vi (3.6)
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Consider the Hodge decomposition p = y + da + d* on Qs satisfying the
boundary conditions (5.11). Thanks to Corollary 1 in the Appendix, we know that
B = _Az_vl (dp), so that in particular ||B||, < Cylldpl|l1 V¢ < 3/2. Recall that by

L?-orthogonality of the Hodge decomposition we have

/|p|2=/ ly12 4+ 1d*BI* + |da|*. (3.7)
Qs Qs

We emphasize that, in what follows, we will carry out most geometric argu-
ments on the polygonal set ', but the Hodge decomposition always refers to the
smooth set Q25 C Qf; .

3.4. Discretization of dp = dd* B

We will use different arguments to approximate the different terms in the Hodge
decomposition of p. Most of our efforts will be devoted to d*B. As noted above,
the first step in our construction is to discretize dp = dd* B, which one can think
of as the vorticity.

Proposition 2. Let p be a rational piecewise linear 1-form supported on Qf; c R},
and fix 1) € (0, 1). For any h < n? there exists an exact measure-valued 2-form qj,
in Qg’ such that:

)
qn = dd* By, where B, = —A;lqh inQs.
(ii)
||Qh - deWfll(Qg’) g C’7,
(iii)
lanl(R5) < 11l gr, + C.
(iv)

lld*BullLr2s) = Cplanl(Rs), d*Bn — d*p"in LY () ¥V p < 3/2,
ld*B" — d*Bll}2q,, < Cn,

where C > 0 is independent of h, n, U. For any ¢ € CO(AZQf;) we have the
integral representation

(V)
m(h)
(qh,<p>=h/ *¢=h2/l*<ﬂ,
T o=1"7Th
where Ty, = U?(:hl)Lfl c QF, L3, is an oriented line segment ¥ s, h, m(h) <

n(h) < Kh=', and for any €, h, Fﬁ is an oriented simple piecewise linear
curve in Ql‘; such that 8Ff; NU = @PVYU C Q(‘SD. In particular, we have
lgn|(U) = h|Ty, NU| forany U C Qf;. Moreover,
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(vi)
dist(Ly, Lo) > conh1/2 if L1, Lo are disjoint closed line segments of T'j,,

with co > 0 independent of h, 1.
Finally, if L1, L, are two line segments of Ff; with exactly one endpoint in
common, and Ty, Ty are unit tangents consistent with the orientations (fixed
in (v)) of L1, Ly respectively, then
(vii)
T1-7p > —1 +Cn2,
for some C > 0 independent of h, 1.

Remark 14. The discretized vorticity g, has a 1-dimensional character, in that it is
supported on a union of line segments, so that in realizing it as a (measure-valued)
2-form, rather than a 1-form or vector field, we are departing both from the con-
vention discussed in (5.6) and from standard practice in geometric measure theory.
However, this departure is natural in that gj, is an approximation of the 2-form dp,
and it is very useful when we want to appeal to Hodge Theory to solve elliptic
equations with g, on the right-hand side, as in conclusion (i) above.

Remark 15. The role of the parameter 7 is to guarantee that gj, enjoys certain prop-
erties such as a good lower bound on distances between distinct piecewise linear
curves in the support of g, see conclusion (vi) above. These are essential for the
verification of the upper bound inequality.

Remark 16. Our arguments (in particular the proof of (iv)) show that there exists
2-form ¢" such that g, — ¢" weakly as measures as 7 — 0. In fact, our construc-
tion is designed to yield an explicit description of ¢”, see (3.19). This complicates
the construction of g;, but immediately yields uniform estimates of g, needed for
(iv), that would otherwise require some work to obtain.

Proof. The proof of Proposition 2 will be divided into several steps. O

Proof of (v). We start by constructing g5, which amounts to constructing a
collection I'j, of oriented line segments, see (v). Let n € (0, 1) be fixed, and let
p be a piecewise linear rational 1-form with respect to the triangulation {S;} of

Q “SD as fixed in the proof of Lemma 3. In particular, for each i there exists a vector

v = (vil, vl.z, v?) such that dp L S; = Zj v;.j * dx ;. For any simplex §;, let b; its

barycentre, and let

Ss=0—=n-Si+n-bCSi (3.8)

be a homothetic copy of §;, and let T;;, T;;, j = 1, ..., 4 be the 2-faces of §;, S;
respectively, with the induced orientations.

We will arrange that within each S;, our discretization of dp is supported on a
finite union of line segments exactly parallel to v;. In order to to this and to match
fluxes across the faces of each §;, we discretize the flux through the faces of each
S; and each S‘i in related, though different, ways.
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Foreveryi andfor j # k € {1, ..., 4},define Tjj; = n_l(n(Tl-j)ﬂn(T,-k))ﬂTij
(with the orientation of 7;;), where w = mr; is the projection on the 2-plane (i)t
One may think of T;j; as the portion of T;; connected to Tj; by flux lines of dp.
Further, define

| T35
bij = dp,  ijr = dp = ——¢ij.
T:: Tijk |lek|

1

It follows from Lemma 2 that ¢;; € Q for every i, j, and we will prove shortly
that ¢;jx € Q for every i, j, k. For now, we accept this fact and continue with the
construction of g,. Thus, let ¢! be the least common denominator of {|¢; ik} €N,
so that ¢ijk¢_l eZ.

For N € N, we define hy = %, so that i’—l’vk € Z for all i, j, k, and simi-
larly f—x € Z for every i, j. We will prove the proposition for every &y such that
hy < n?; for arbitrary i < n?, the conclusions of the proposition then hold if we
define qj, := qny, Bn := By for N suchthathy < h < hy_;.

We henceforth fix an arbitrary N such that iy < 2, and we drop the subscript
and write simply 4.

We first discretize dp on every T;;. In order to avoid discretizing any 2-face

twice in inconsistent ways, we define
T:={Tij : ¢ij > 0orT;; C IQL}.

For Tjj € T,letm = m;; := 424 € Z,and let £ = ¢;; verify ({;; — D2 <m< Zl.zj.

Now partition 7;; into Elgj closed triangular pieces {Tl‘]’ }22:1 with pairwise disjoint
interiors, each one isometric to Zi_.l T;;. Select m of these triangles, and let {s;lj }Z’Zl
be the barycentres of the chosen triangles.

If T;; ¢ T, then T;j = —T;rj for some T;jr € T, we setm = m;j 1= mjj,
and si; =57, fora =1...mj;.

Next we consider {f}j}. For i, j, k, let Tijk = (1 —n) - Tijx +n - b (with the
orientation of 7; ;) and define

T =Tk : bijk > 0}

Now proceed as above: for each f}jk € T, letm =m;j = d)}—f 26 Z and £;ji =
~ . . =0 e . .

[/m 1, and partition T} into Zizj « Closed triangular pieces {Tl‘; Sl kl with pairwise

disjoint interiors, each one isometric to El.;,l(T,- k- Select m of these triangles, and let

{874 )=y be the barycentres of the chosen triangles.

Tk ¢ ’f, then ¢; j« <0. If ¢; jx = O (which in particular happens if T;j; = ¥)
we do nothing. If ¢;jx < 0, then noting that our orientation conventions imply that
Gijk = —@ikj, we see that f}kj € 7, and we define §i“jk = ni_lm (§l.“kj) N Tjjk.

We now define piecewise linear curves as follows. First, for every T € T,
we define

~ 1 - P . ~ - ~
F?jk = [m; (n(sf‘jk))] N S;, oriented so that 8I’§’jk = sl-“jk — sf’kj.



I'-Convergence of Three-Dimensional Ginzburg—Landau Functionals 721

Here and below, if ¢ is an oriented piecewise smooth curve, we write dc = p — g
to mean that fc df = f(p) — f(q) whenever f is a smooth function. We define

Ti=>ta f‘f‘jk, so that T; C §;, and

al'; = Z sign(qﬁijk)ffjk. 3.9

J.k.a

Moreover, let I'; be the collection of segments with the smallest total arclength
satisfying this condition (as the segments of I'; are all parallel to each other).

Now for each i, j, let P;; := {(1 — A)x +Ab; : x € T;;,0 < A < n} be the
pyramidal frustum having bases 7;; and f, j»and let I';; be a collection of (oriented)
line segments such that

Ty = > sign(gyj)sss — D sign(¢iju)ity. (3.10)
a

k,a

and that minimizes the total arclength among the set of all collections of line seg-
ments satisfying the constraint (3.10). Such collections exist, since sign(¢;;) =

sign(¢iji) and mij = >y, i mijk, so that

Z sign(¢ij) — »_ sign(¢iji) = sign(ej)mi; — D _ sign(giji)miji = 0.
k

k,a

Hence I';; is well-defined, and clearly I';; C P;;.

We define I', to be the union UT'; UT;; of the families of segments constructed
above, and n(h) to be the total number of segments comprising I';,. We also define
Fﬁ, for £ = 1,...,m(h), where m(h) < n(h), to be the polyhedral curves real-
izing the connected components of ['j,. It follows from (3.11), proved below, that
ary =0in Q7.

Finally, we define the measure-valued 2-form gy, to satisfy statement (v).

In the following we will write “a region” to refer to either one of the S; or one of
the P;;. We remark that the definition of Iy, states that, in the language of BREZIS
ET AL. [11], its restriction to any region is a minimal connection, subject to the
condition (3.9) in S; and (3.10) in Pij.

Proof that ¢;;x € Q. Fix i, j, k,let V|,..., V4 € Q3 denote the vertices of S;,
anality) that 7;; = co{V1, V2, V3}, Tix = co{V1, V2, V4}, where co A denotes the
convex hull of A. Let \71 =mx((V)) forl =1,...,4,so that

7(Ti;) N (Tix) = co{Vi, Vo, V3} Nco(Vy, Va, Val.

Clearly this set is a (possibly degenerate) triangle containing the segment co
{V1, V»}. From elementary geometry we see that one of the following three cases
must hold:

Case 1 7(T;;) N7 (Tix) = co{V, Va}. Then ¢;jx = 0 € Q.
Case2 7 (T;j) C n(Ti) or w(Tix) C 7w(Tij). Then ¢;jx = ¢ij or gik, s0 gijk € Q.
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Case 3 7 (T;;) N n(Ti) = co(\71, \72, Z), where, after possibly switching the
labels on \71 and \72, {Z} = co{\71, \73} N co{\72, \74}. If this holds, then let Z;; :=
7~ (Z2)NTij, and Zix := 7 ~1(Z) N Ti. Then since 7(Z;;) = Z = 7 (Zix), there
exist some numbers ai, a>, az such that

Vi+a1(Vas = V1) =Zijj = Zi +azv; = Vo + ax(Vy — V2) + azv;.

This is a system of three equations for (a1, a2, a3) with rational coefficients, and
moreover it is nondegenerate in the case we are considering, so ¢; € Q for [ =
I,...,3. It follows that Z;; € Q3, and hence that T;j; = co{Vy, V2, Z;;} has
rational vertices. Then it follows as in the proof of Lemma 2 (see in particular
(3.1)) that ¢;jx € Q.

Proof of (i). By Lemma 12 and Corollary 1 in the Appendix, it suffices to check
that dg;, = 0 in Qs and that f(m)i (gn)T = O for every connected component
(895),’ of 395.

To do this, fix any f € C° (R3), and note that (v), (3.9), (3.10) imply that

<dqh,a~f>=<qh,d**f>:<qh,*df>=hZ‘,/F df+Z/r df
i ihj o

= h > (sign¢ij) [ (s{}).
i,j,a
Here all terms of the form f (Efjk) have cancelled, since they occur twice, with
opposite signs, in (3.9) and (3.10). If si“j € Qf; , then our construction implies that
there exists exactly one (i’, j/, a’) # (i, j, a) such that slf‘j = sl.”,/j,, and moreover
that sign ¢;; = — sign ¢/ j». Thus all contributions from Qf; vanish, and the above
reduces to

(dan,«f)=h D (siengyj) f(s5;). 3.11)
{i,j,a:s;f,.easzg’}

In particular, by considering f € C2°(Q2s) we see that dg, = 0 in €2s.
Now fix some component (3€2s); of 9€2s. Then (3.6) implies that

0=/ d1=/ 1=/ (qm—/ (@)
Wi Wi (CIoIoP (3Q2)k

Moreover, it follows from (3.10), (3.11), and the definition of (g;)T (see (5.8) in
the Appendix) that

/ L lanT = > hisigngij)mij.
(@825 )% (i.)): T3 (O )
However, the definitions of m;; and ¢;; imply that the above quantity equals
> o= X [a=[  a=o
(i.J):Tij Qe (.)):Tijc@Qn ™Y (082 )%

Then, as remarked above, (i) follows from Lemma 12 and Corollary 1.
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Proof of (iii). We next estimate the mass of g,. We will bound the mass on each
region R, and then sum up the estimates. We begin by comparing the fluxes of g
and dp across dR.

Lemma 4. Let R be a region, and let (dp)T and (gi)T be the tangential parts of
dp and qy, respectively, on R, ie, the measures in R3, supported in d R, defined as
discussed in the Appendix, see (5.8). Then there exists a constant C = C(dp, Qf; ),
independent of n and h, such that

1(gn — dp)Tllw-11 @3 < C(p +h'?) < C. (3.12)

Proof. First consider the case of a pyramidal frustrum P;;. Then, arguing
as in the proof of (i), we find from (3.10) that (gn)T = h, sign(¢;;)
833 —h Zk, o Sign(o; jk)(Sg;zjk. Similarly, the definition of ¢;; and the fact that T;;

and T; ; are parallel implies that

/ f(dph=ﬂ/ Fare - D de2+0(||f||oon>
P, \Tijl Jr; |Ti;| J7,

where the error term comes from neglecting 0 P;; \ (T;; U 7~} ), which has an area
bounded by Cn.
Thus for any continuous f,

[ rap—anr= / £ = 3 s )
P, |Tz]|

a |¢j|/ f K — hZSIgn(¢’J)f(§1]k + O flloem)-
Y a,k

We will consider only the second term on the right-hand side (which is slightly
harder). We assume for simplicity that ¢;; > 0; the case ¢;; < 0 is essentially

identical. Noting that % = I?JJI:I and that |T]k| = El]le,]k| and using notation
ij ij

from the first step above, we have
9 i
/ fdp—qn)T = i/ dez_hZf(Sijk)
7 \Tij1 J7;

= ﬂ—ﬂ / ¢ljk 5
B ( |ﬁ]|) fijfd + z f f@G ljk)d'H

+ 2 "’Z"’" —h f(~,,k)+z Dij Z/ fHE (3a3)
ok L Gk ITijl = JTpvatsy
It is clear from the definition of ¢U that |¢>l]| ldplloc|T;j| < C, and since by
definition (£;;; — D2 < mijx =h~ ¢l/k < gl]k,
Pk 2 20k 2 gy, o<
Ez/k mijk Lijk mijk mijk
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Similarly, one checks that|Tijk\UaT,~‘j‘~k| = |Tjll mljk| < C|T,,k|«/_ Note also

that | (5) — £ G| < [df ldiam(T) < Cldf oo/ for x € T, Taking
these into account, elementary calculations yield

S C+ VIl fllyiee

/ Fdp —amr
T;j

Since similar computations apply to 7;;, we deduce that | fa P fdp —g)t| <

Cnll f w10 for every P;;. If the region R is a simplex S;, then fas,- f(dp—p)T is
a sum of terms of exactly the form fﬁj f(dp — qn)T already estimated (now with

the opposite orientation) and so the conclusion follows in this case, as well. O
For future reference, we remark that the above proof shows that that

dp
[ —air = et [ (G2 ),

< VR f oo (3.14)

Indeed, every term on the right-hand side of (3.13) can be bounded by Ch'/? except

for the term ﬂ — %) ff_ f d’H?. This term is not present when one consid-
iy

ers T;; rather than T j» and it is also not present if one considers T} 7, but with dp
replaced by (1 )2, since (1 — n)? = |7~",~j|/|T,-j|. Thus (3.14) follows from our
earlier arguments.

We will need the following result about continuous dependence of the minimal

connection upon its boundary datum.

Lemma 5. Let K be a compact convex domain in R3, ¢ a measure supported on
dK such that [;, ¢ = 0. Then we have

min{||a|| = |¢|(K), da =0inK, a1 =, ondK} < C NS w11 (R3)-

The proof of this lemma is postponed to Section 5.5 in the Appendix. Let us
apply Lemma 5 first with K = P;;, ¢{ = (g, — dp) and let ¢, be the measure 2-
form thatrealizes the minimum. By (3.12) and Lemma 5 we deduce |a, | (P;;) <Cn.

As remarked above, the restriction of ', to any region R is a minimal connec-
tion, and as a consequence, it follows from Theorems 5.3 an 5.4 in BREZIS ET AL.
[11] that g;, _ R has minimal mass among all 2-form-valued measures ¢’ in R such
that (¢")T = (gn)T on AR (not merely those corresponding to a union of oriented
line segments). We thus have

lgn|(Pij) = llow +dpll = lan|(Pij) +/ ldp| §/ ldpl + Cn. (3.15)
Pij Pij
Next, applying Lemma 5 with K = S;, ¢ = (g — dp)T and arguing exactly as
above, we obtain

|qh|(3i)§/§ ldp| + Cn. (3.16)

Statement (iii) follows by summing over all regions.
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Proof of (ii). It suffices to show that for every region R,

(p,dp —qn)LR) = /R(%dp)—(fﬂ,thLR) < Cnllellwre  (3.17)

for every ¢ € C§°(A2R3). This is clear if R = P;;, since |P;j| < Cn forall i, j,
so that ||dP||L1(P,~_,) < Cn, and hence |g;|(P;;) < Cnby (3.15).

If R = §;, then we assume, after changing coordinates, that dp = Adx* A dx>
on S; for some A € R. Now fix ¢ € CSO(AZR3) andlet € C° (R?) be a function
such that (xd®, dx* A dx3) = (¢, dx* A dx?) in S;, and such that [Pllyieo =
Cllellwi.. Indeed, (xd P, dx* ndx?) = ®,,, so we can take

D(x) := x(x) /x} (go(s,xg, X3), dx* A dx3) ds

where x € CSO(R3) satisfies x = 1 on S; and |[Vx|z~ < 1. Then clearly
(dpLSi,¢) = (dpLS;, *xd®), and it follows from the form of dp and the defi-
nition (that is, statement (v)) of g;, that (g, _ S, ©) = {gnL S;, *d®). Thus Lemma
4 implies that

(@, (dp —qn) L S;) = (*d D, (dp — qn) L S;) = / ®(dp — qn)T = Clllyrc.
3S;

Thus [|(dp — gn) L Sillw-11®3 < Cn. O

Proof of (iv). The estimate ||d*ByllLrs) = Cplanl(25) = C, 1 = p < 3/2,
follows immediately from Corollary 1 in the Appendix. Thus d* g, is weakly pre-
compact in these L? spaces, and we need only to identify the limit, prove that it is
unique, and estimate its L> distance from d* S.

To do this we will show that g, — ¢" in W~11(Qs), where ¢" = (1 —n)2dp

on S‘i , while on P;;, " is defined to be the unique minimizer of the problem
minf{|a|(F;;), do =0in P;;, at = ondP;; }, (3.18)

where { = (dp)TonTjj, ¢ = (1— ) ~2(dp)T on f}j and ¢ = 0 on the remaining
faces of d P;;. Since then 7 = —A~4", the uniqueness of 7 will follow, and we
will deduce the estimates of 87 from the explicit form of ¢”7, which we find below.
We consider first a truncated pyramidal region P;;, which is the harder case.
The uniform mass bounds (3.16) imply that g  P;; is precompact in w-LLHRY).
Let g denote a limit of a convergent subsequence. It follows from (3.14) that (g)T
on d P;; converges to ¢ as defined above, and hence that gt = ¢ on 9 P;;. Next,
if ¢ did not solve the minimization problem (3.18), we could use the estimate
1gn)T — Cllyw-11 = C~/h (which is (3.14)) together with Lemma 5 to create a
sequence g, such that (¢;)T = (gx)T, and with |g; |(P;;) < |gn|(P;;) for all small
enough &, contradicting the minimality of gj,. Thus ¢ = ¢, a minimizer of (3.18).
We now argue that the unique minimizer (3.18) is given by

(x —bi)e

e —=bi)e ¢
a((x By . *dx", (3.19)

g (x) =
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where b; denotes the barycentre of S;, v;; is the unit normal to 7;;, and a € Ris
adjusted so that g% = ¢. (A calculation shows that such a number « exists and also
that dg* = 0.) The (unique) minimality of ¢* now follows from a calibration argu-
ment. We briefly recall the idea: Let f(x) = |x — b;|,sothatdf = Z (l’; lz)l” dxt,
and (xdf, ¢*) = |¢*| in P;;. For any other 2-form valued measure ¢” supported in
P;j such that dg’ = 0in P;j and ¢/- = ¢ on 3 P;;, we have

1P = " Byosdfy = [ fr = g df) < IR

since | xdf| <1 everywhere. Hence ¢* is a minimizer. Furthermore, if equality
holds, then, heuristically, q' is parallel to xdf, or more precisely, g’ has the form

=/ P (L=bidexdx ‘i”)‘;ldx Y)d ' for some measure . Then one can check that

qg*is the only measure-valued 2-form of this form such thatdg’ = Oin P;j, ¢} = ¢
on 0 P;;. Hence ¢" = g™ as asserted.

The proof that g, L S; converges in W11 to (1 — ) 2dp L S; can be carried
out on exactly the same lines, except that the limit has a simpler form. It can also
be proved by arguing as in the proof of (ii), but using (3.14) instead of (iii). Thus
we have proved that g, — ¢" in W=11(Q]).

From the explicit form of ¢, noting that 3, ; |

llg" = dpll2gp) < Cn. (3.20)

P;j| = Cn, we see that

Thus||d*B" —d*B ||% = ||a?"‘A;1 (g"—dp) ||§ < Cn, by (3.20) and standard elliptic
estimates. This concludes the proof of statement (iv).

Proof of (vi). We now prove the separation properties of the polyhedral curves I"Z
Let L and L; be closed line segments of I',, with endpomts th * and s2 , and assume
that L and L, are disjoint, so that in particular {s1 1N {s2 } = 0.

If L1, L, belongs to non-adjacent regions of the family (Si, Pi } then the con-
clusion is obvious, so we assume that this is not the case, and we claim that

dist (s%, L,) = conh'?  form #n,m,n € {1,2}. (3.21)

To see this, let F denote the face (some T7;; fij or T ;j) containing s1 say. If F also
contains an endpoint of L; (for example s, ), then by construction

L, forms an angle of at least cn with F, (3.22)

by which we mean that |f - n| = ¢, where ¢ and n here denote a unit tangent to L;
and a unit normal to F. Indeed, the set of angles between segments Flf‘j ¢ interior to

a simplex S; and a face of that simplex are independent of 1 and 4 and are nonzero,
and since there are only finitely many such angles, (3.22) holds for such segments if
c is sufficiently small. All other segments connect two parallel faces of a pyramidal
frustrum P;;, and for these segments, (3.22) follows from the fact that these faces
are, by construction, separated by a distance cn, for ¢ independent of n, 4.
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Combining (3.22) with the fact that |s;" — 53| = ch!/2, we deduce (3.21) from
elementary geometry in the case when F contains an endpoint of L;. The claim
(3.21) is still clearer if neither endpoint of L; is contained in F.

It is evident that (3.21) implies (vi) if L| and L; belong to distinct but adjacent
regions. If L1 and L, belong to the same region, then in view of the minimality
property of g, we obtain statement (vi) from (3.21) and the following Lemma:

Lemma 6. Let {sjj}mzl,z satisfy |sf' —s; |+ |s;' -5 = |si|r -5 |+ |si|r =5l
Also, let L,, be the segment joining s, and s,,;, for m = 1, 2. Then

1
dist(L{, Ly) = — min dist(sT, L,,). 3.23
ist(L z),ﬁgl;r; ist(s,,, Ln) (3.23)

Proof. Let Q,, € L,,,m = 1,2 be such that dist (L, Ly) = |Q1 — Q»| = d.
If either Q,, is an endpoint, then the conclusion is clear, so we assume that both
are interior points, in which case the segment from Q1 to Q> is orthogonal to both
Ly, L>. We may then assume without loss of generality that the midpoint 2 ;Qz is
the origin, and that Q1 = (0, 0, %), 0, = (0,0, —%), and, moreover, that L and
L, are parallel to the directions (cos @, sin6, 0), (cos6, —sin@, 0), respectively,
for some 6. Define Eli = (A cosf, £Asin0, ‘2—1), §§t = (£AcosO, FArsinb, —%),
for A > 0, chosen so that one of the Ejf coincides with the closest point to 0 among
the original endpoints.

Our hypothesis and the triangle inequality imply that |§fr -5 |+ |§zr -5z
|57 — §; | + 155 — 55 |, which reduces to

2y 422 cos20 +d? = 4\ = 2\/4)»2(cos2 6 + sin20), sothatd” > 4xsin® 6.

On the other hand, assuming for concreteness that §1+ agrees with the original
endpoint sf‘, then since §2+ € L, we use the above inequality to find that we

dist(s;™, Lo) S I5] — 55| = V4aZsin?6 +d? < V2d.
0O

Proof of (vii). Finally, suppose that L; and L, are adjacent, and that L precedes

L, inthe ordering induced by their respective orienting unit tangents 7y, 7. Decom-

pose t; as til + rl.”, where fori =1, 2, TiJ‘ is orthogonal to the face 7;; that con-

tains the common endpoint of Lj and L,. The orientation conventions imply that

tlJ- . rzl > 0, and, as noted above, each segment forms an angle of at least ¢ with

T;, which implies that |rl.l| 2 cn fori = 1, 2. Statement (vii) follows directly.
The proof of Proposition 2 is now complete. O

3.5. Pointwise Estimates for d* By,
Let G(x) = (4)~!x|~! be the Poisson kernel in R3. We may write

A B =d*(Gxq) +W, Wy =d* (—Ay'qn—Gxqn). (324
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In view of statement (i), we deduce that d\¥;, = d*W¥);, = 01in Q;s, thatis, — AW =0
in Q5 and Yy = —d*(G * gj) N on 3Q2s. From the decomposition (3.24) we will
deduce pointwise and integral estimates for d*},.

We begin with the term d*(G * g5) = G * d*qy,. The integral representation of
d*(G * gj) through the Biot-Savart law takes the form

mwy 3 () — vy
d*(G*xqp)(x)=h —dxle'-k/ —_— (3.25)
Z; i,j,zklzl am . re b—yP

where ¢; j is the usual totally antisymmetric tensor. This can be justified, for exam-
ple, by noting that (d*(G *qp), ¢) = {qn, G *d¢), since G is even, and then using
statement (v) of Proposition 2 to explicitly write out the right-hand side. From
(3.25) we readily deduce

Lemma 7. Let [1,1, > 0, L = {(0,0,2), =) <z < l,} C R3, g the associated
measure 2-form, that is (q, ¢) = fL *@ for ¢ € CO(A*R?). Then

dy — yd I — !
d*(G*q)nyzy;C 22 I 1+2 '
A2y V2 + 2+ (22 a2y 4+ 2)?
(3.26)
As a result,
1
1d*(G % q)(po)| £ ———— for every py € R, (3.27)

— 2m - dist (po, L)

Proof. We obtain (3.26) by particularizing (3.25) to the case ', = L. We easily
deduce (3.27) from (3.26) if pg = (xo, yo, z0) with —=I; < zg < [p, in which

case dist(po, L) = \/x3 + y3. If zo0 > [ then, writing ro = (x§ + y3)!/2, since
A

rg+kz

from (3.26) that

A= < 1 is an increasing function and 0 < zo — l» < zo + [1, we find

1 | z0— Iy

4mro V7o + (2 = 20)?
Ve + (L —20)* — (zo — 1) ( 1 )

) 45 dist(po, L)

[IA

|[d*(G *q)(po)|

and (3.27) follows, since ~/a% + b2 < a + b for a, b 2 0. The same reasoning of
course holds if zop < —/;. O

Lemma 8. Let x € Q5 be such that dist (x, ') < %‘)nhl/z, where co > 0is defined
in statement (Vi) of Proposition 2. Then there exists a constant K > 0 independent
of n, h such that if n < 1, then
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K ~ co
d* < 4 if dist(x, U, j8S; UdP;) = —nh'/?,
|d"Bn(x)] = st T + 7 if dist(x,U; ;o5 ij) = >
(3.28)
h K . . = co 12
|d*Br(x)| < —7'[ dist(x. T)) + F if dist(x,U; ;0S; UdP;;) < 577/’1 .
(3.29)

Proof. The definition (3.24) of Wj implies that for any measure-valued 2-form ¢,
|d*Bn] = 1d*(G * @) +1d*(G * g — G * q)| + [ W] (3.30)

Fixx € Qs\ Iy andletr = "0 nh'/?. Define a measure-valued 2-form by (g, ¢) =
hY s B, (0)NL £0) J. Ly *¢s where {L}} is the collection of line segments whose
union gives l"h, see Proposmon 2 (v). By Proposition 2 (vi), there is at most one
term in the sum that defines ¢ if dist(x, U; jo Pj; U 85‘,-) = r, and otherwise at most
two terms. Then |d*(G * g)| is estimated via Lemma 7 to give the first term on the
right-hand sides of (3.28) and (3.29), respectively, and we must show that the other
two terms in (3.30) can be bounded by K /n?.

Interior regularity for harmonic functions, together with Proposition 2, state-
ments (iii) and (iv) allow us to fix some g € (1, 3/2) and argue as follows:

WhllLe@) = ClIVAl w22
< ClIWnllLaay)

(3.31)
= C||d"Bn — d* (G * qn)llra(s)
= CA+Clldplip gy = C.
To estimate the remaining term in (3.30), observe that
3 m(h)
|d*(G % qn — G * q)(x)| = —h /
kz;; ring, (e 1x —Y|2
3 . , (3.32)
<c / — N

where M > 0is such that 25 C By (0) and{yz,}e/ = Ugl“f;ﬂ{yk =t,|y—x|>r},
for |t| £ M. For every k and 1,

m' (h) h
v <« M/r n ’. <lx —
2'21 iR S Sl A # s jr Sl = ypl < (G + Dr).

Consider the collection of (two dimensional) balls
{z:"=t1z—yhl <r}, for y, suchthat jr<|x—yh| <+ Dr

These balls are pairwise disjoint by Proposition 2 (vi), and are contained in the annu-
lus {z: 2 =1, (j — )r < |x —z| < (j +2)r}, which has area (6 + 3)7r?. Thus
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#0' 2 jr < |x—y,| < (j+Dr} = 643 forall j.Inaddition, if we write x’ for the
projection of x onto the plane {ZF =1}, then #{¢' : jr < |x — y2,| <(+Dr}=0
if (j + 1)r < |x — x|. Then elementary estimates lead to the conclusion

Substituting this into (3.32), we see that |d* (G *g;, —G*q) (x)| < Cr% = C(con)_z,
completing the proof of the lemma. 0O

The next lemma shows that we get uniform estimates of certain quantities if
we mollify on a scale comparable to the minimum distance between the discretized
vortex lines.

Lemma9. LetO < u < landr = ,u,cor}hl/z,for co as in statement (Vi) of Prop-

osition 2. Then there exists a nonnegative radial function ¢ supported in the unit
ball, with f¢ = 1, and such that, in addition, ¢,(x) = r_3¢(x/r) satisfies

l1gr * d*Bullwroarg) = K (3.33)
forany p < oo, where K = K (i, 1, ||@|loo, P) is independent of h.

Proof. First, let ¢ be any radial mollifier with support in the unit ball, such that
¥ 2 0 and fzp = 1, and let ¥, (x) := r_31p(x/r). Then for x € Qs, in view of
statement (vi) of Proposition 2, either B, (x)NI'y, = @or B, (x)NI'y, = B-(x)N{L},
or B,(x) NT'y, = B-(x) N{Ly, Lo}, where L; are segments of I';,. Hence we have

4
(coun)?

W % qn()| < r [ Ylloo D hIL: N Br(x)| < 4hr 2|0 < 119 oo-

1

(3.34)

Now fix open sets 2 = Q3 € Q) € Q) € Qp = Qs and functions y,, for
m = 1,2,3 such that x,, € C>°(Q,—1) and x, = 1 on an open neighborhood
of €,,. Fix a mollifier 1//1 as above, but such that spt(wl) C Biy3, and define
v? = ¢l syl and Y3 = ¢! % 2 Thus ™ is radial with support in B for
m = 1,2, 3, so that (3.34) applies to ¥/"". Now write {p = d*p,andform =1, 2,3
define ¢, = I/frl * (XmCm—1)-

If &, and thus r, is small enough (which we will henceforth take to be the case),
then

I = 1//r1 % Gt = Y)" * d* BonQ2,,, and g, has support in 2,,—1. (3.35)
We claim that

1dmllLr @y < Cnlllm—t1llLr, ) + C(p, 1, ', Q)

(3.36)
N emllLr @1 = CullEm—1llLr(Qum_1)-
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To see these, note first that d¢,, = 1/fr1 * (dxm A Em—1) + w,] * (Xmd&m—1). Then
Jensen’s inequality implies that

1¥1 % (dxm A Sn—DLr(@mp) = Ndxm A Cn—1lLr@n_1) = Cnllém=-1lLr(@p_1)-

We estimate 1//,1 * (Xmd&m—1) first in the case m = 1, when it follows from state-
ment (i) of Proposition 2 that 1//,1 * (x1d&o) = I/Irl * (x19nr). Then arguing as in
(3.34) we find that for any p < oo,

1, * g llier@ < C(p, IV * (g e < C(p, ¥, Qs)(coun) ™2,
proving the first part of (3.36) form = 1. Form = 2, 3,

(3.35)
19, % GomdGm—D e @) < Nden-1lLr@n ) = 1Wm—1 * qnllLr@n_1)s
and we conclude (3.36) much as in the case m = 1. The second claim of (3.36) is
similar but easier, since (3.35) implies that d*¢,, = 1//r1 * [xd xm A *Cp—1], so that

Id*Smllp = Mld Xml 1&m—1lLr -1 S CnllSm—1llLr,_1)-
Now recall the Gaffney—Garding inequality

¢ lwrrwy = CpU) (Igllr@wy + 1dE ey + 14 S liLr@y) » 1 < p < +o0,
(3.37)

valid for a differential form ¢ with compact support in U C R”. Applying this to
Zm,» taking into account (3.36) and noting that ||, |lzr < |&m—1llLr, we find that

”é‘m”leP(Qm_l) § Cllgm-1 ||Ll’(§2m_1) +C. (3.38)

Recall that Proposition 2, statement (iv), provides uniform estimates of ¢y = d*8
in L () for every p < 3/2, so (3.38) implies uniform estimates of |1 || w10 (o)
forevery p < 3/2, and hence of ||¢1 || .r () for ever p < 3. Iterating this argument
twice more and recalling (3.35), we find that (3.33) holds with ¢ = 1/;3. O

3.6. Construction of the Sequence u. in Case gc > |loge|?

Assume that the sequence g satisfies either g = |log €|? or |10ge|2 K g K
€2, Suppose that we are given (J, v) € Ay as defined in (1.3), and moreover that
J = }dvif gc = |loge|?, and that J = 0if |loge|® < ge < 2.

Set p = %v. Fix § > 0 and let ps be the piecewise linear approximation
provided by Lemma 3, and recall the Hodge decomposition ps = y + da + d*
in Q; introduced in Section 3.3. Fix > 0, and 4 = h = (gc)~'/?, and let g, be
the discretized vorticity, with support I'j,, and 8, = —A]_\,l qn the approximation to
B constructed in Proposition 2.

As we discuss in Remark 22, if ¢ is any cycle in Q5 \ I'j,, then h! fc d*By is
an integer for every h. Thus, if we fix x € @ and let cx , denote a path in Q5 \ I'y,
from x to x, it follows that

1
dn(x) == E/ d* By, is well-defined function 5 \ I', — R/Z, (3.39)
Cx,x



732 S. BALDO ET AL.

independent of the choice of ¢z x, and is hence well-defined almost everywhere in
Q.

Moreover, according to Lemma 11, we may write y = Zf;:l aj-d¢j, where
¢ is well-defined in R/Z for j = 1,...,«k. Forany j letn; = [h’laj] € Z be
the integer part of h_laj, and consider h ™'y, = dyy, = ZI;=1 njdg;j, so that vy,
is well-defined in R/Z. Let finally o, = h~'o. The map

v, = exp(i27 (¢p + Y +ap)) (3.40)

is thus a well-defined map Qs — S!, with

2
Jvn = 2w (dop +dyn + day) = 7(d*ﬂh +yn +da), (3.41)

and Jvp = 7-dd*Bp = 7 - qn. Now let

o ordist(x, Tp)
pe(x) = pen(x) = min { =1, (3.42)

for I'j, as in Proposition 2, statement (v) and set, finally,
Ue = Ue ) = Pe * V- (3.43)

3.7. Completion of Proof of (1.8) in Case g = |loge|?

We first claim that
Jue
8e

— 27 (da +d*B" +y) weakly in LY for every g € (1,3/2). (3.44)

for B7 as in statement (iv) of Proposition 2. To see this, we write

Jue
A/ 8¢

It is clear from the definition of yj, that y, — y uniformly as € (and thus %) tend to
0, and we know from Proposition 2 that d*8, — d*B" in the relevant L7 spaces.
So we need to show only that the last term in (3.45) vanishes. For this, we use
statements (vi), (v), and (iii) of Proposition 2 to see that

=27(d* By + i + @) + 27 (02 — D(d* By + vy +da).  (3.45)

. €2 €2
{dist (x, Ty) < €}] £ Ce*|Ty| = C7|Qh|(96) < C?' (3.46)

It easily follows from this and from the definition of p. that (,062 —1) - 0in
L" for every r < oo. Thus, fixing ¢ € (1,3/2) and r such that % + % =1, in
view of uniform estimates of ||d* By, ||, in Proposition 2 (iv), we find from Holder’s

inequality that (/oe2 — 1)(d*Bp +yn +da) — 0in L' as € — 0, proving (3.44).
1/2

We now turn to the proof of the upper bound. Since & = g ', we have
Ec(ue; Q) b (p )
e R (3.47)
€

Let us estimate the various terms contributing to gg_ Ec(uc; ). First note that
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h? w ch>
—/ 192+ 22D < CM st e, T < e
2 Ja € €

for C = %(1 + [[W]l oo (By))- It follows from this and (3.46) that

h2 w
—/ Vo2 + XD < oy (3.48)
2 Q 62

Moreover,

h? ,
> /Q pelivnl® = an/gpf(ld*ﬂhlz + e+ yul* +2d* By - (dat + ).
(3.49)

We have just shown in the proof of (3.44) that ,oe2 da+yp) > da+yinLPVp <
~+o00 and that d* B, — d*B" weakly in L9V g < 3/2. Thus, recalling the estimate
ld*B" —d*pB ||% < Cr from statement (iv) in Proposition 2, we obtain

li
e—0

m [ e2das ) -dpy =/Qd*ﬂ”'(doe+y)
- a/ﬁ+/ &B-da+y), (3.50)
Q

m [ pllda +yu)* < / lda + y 2. (3.51)
Q Qs

li
e—>0

For the remaining term, fix 0 < u < 1 and set r = counh'/?. Denote Gz =
{dist (x, ') £ A} N Q. We have

2x? [ "B = Ac+ B+ Ce. (3.52)
R3
where
A =272 / P2\d* B, Be = 27 / B,
o e

Ce = 2712/ |d* Bu > (3.53)
Q\G),

Let us estimate Ac. By (3.28), (3.29), and (3.42), p2[d*By[> < 5 + {]Lf in G<, so
(3.46) implies that

2 2K2 2

€
ASIGH( G + ) SCh Ko (3.54)

/

so that, since h = ggl % and loge|> < ge < €2, we have

limsup A = 0. (3.55)

e—0
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Let us turn to C.. Let ¢, be the radial mollifier found in Lemma 9. Observe that
d* By, is harmonic on Q \ G’ , and hence coincides there with ¢, * d*fy,, by the
mean-value property of harmonic functions. By (3.33) and Rellich’s Theorem we
deduce that ¢, % d*fy, is strongly compact in L?(£2), and hence by Proposition 2,
statement (iv) that ¢, * d* B, — d*B" in L*(Q) as € — 0. We deduce that

limsup C, = limsup2n2/ | d*Bp)* < lim 2;12/ gy * d* Bp)?
Q\G, €0 Q

e—0 e—0

=2712/ \d*B")? (3.56)
Q

< 2n2/ |d*B|> + Cn.
Q

To estimate B, we proceed as follows: let V; = (G}, \ G;) \ Uy,, where U, =
{dist (x, U; j3S;Ud P;j) < ro}NQandro = Lnh'/?, and set Vo = (G} \ G5)NUy,.
For any 0 > 0 we have, using for d* g, the bound (3.28) on V; and (3.29) on V;,

h? dx 1 27%K?
27? |d*ﬂh|2§(1+o>—/ T+ )=Vl

Vi 2 Jy, |dist (x, Tp)[?
2 r 1 Ccp?
< (1 oo’log () 04\ Unl + (1 + D=mhiD\ Unl, - G57)
27 [ ld*pul? < 401+ >h2/ & a+ LR
g Wl” = o)— | ——— Vs,
1% 2 Vo |dlSt (-xs Fh)l2 o 774
By r 1 Cu?
< 4(1 4 o)h%x log (2) 0 OV U+ (14 = =hiTh N U (358)

so that
2 r 1 Cu?
Be £ (14 0)h?x log (2) (ITh] + 31T N Uy l) + (1 + Dol (359

If gc = h? = |log e|2, then statements (iii) and (v) of Proposition 2 and (3.59)
give

. 1 Cu?
lim sup B¢ < [(1 +o)r 4+ (1+ 5)7] “(Cn+ldpsllLiqs), (3.60)
e—>0
while if [loge|> <« ge <« €72 (thatis € < h < [loge|™!), we have
. 1 Cu?
limsup Be < (14 )= (Cn + lldps |1 @) (3.61)
€e—

We sum up all the contributions (3.48), (3.50), (3.51), (3.55), (3.56), (3.60) and
(3.61), noting that the terms estimated in (3.50), (3.51), and (3.56) add up to
27% [o lda+y +d*BI>+C .y =212 [, |ps|* + C /1. Thus, letting first © — 0,
then 0 — 0, in (3.60) and (3.61), we obtain

Ec(uc, Q2
1imsup£ §n/ |dps| +27‘[2/ Ips|* + C /1, (3.62)
e—0 8e Qs Q

if gc = |loge|?, and
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lim sup Eelue, &) < 2%2/ Ips|® + C /1, (3.63)

e—0 8e Qs
if |loge|> < ge < € 2. In these estimates C is independent of 7. Thus, since
p = 2mv, and recalling (3.7), (3.3), (3.4), and statement (iv) of Proposition 2,
we see that as first n and then § tend to O, the right-hand sides above converge
to 2|dv|($2) + 2||v||L2(Q) in the case g = |loge|2 and 2||U”L2(sz) in the case

lloge|?> « ge <« €72, Thus, we can find sequences 7 = 7. and § = . tending to
zero slowly enough that, if we define U, := u, with parameters . in the piece-
wise linear approximation (Lemma 3) and 7, in the discretization of the vorticity
(Proposition 2) , then

, Ec(Us, Q) _ 1

lim sup ——"—> < ~|dv[(Q) + = ||v||L2(Q) if g = |logel> (3.64)
e—0 8e 2

, Ec(Ue,Q) _ 1 , -

lim sup% < §||v||L2(Q) if lloge|> € ge €€ 2. (3.65)
€e—0 €

This finally proves the upper bound (1.8), recalling that J = 1dv for g = |log€|?
and J = 0 when |loge|2 K ge K €2

Finally, having established the energy upper bound for U, the compactness
assertions (1.4), (1.5) and (1.6) imply that f] iUk, J?:\UéljUE and J U, converge
to limits in the required spaces, so it suffices only to identify the limits. In fact, it
suffices to show, for example, that \/Lg? jU< — v in the sense of distributions, and
this follows (after taking 7¢ in the definition of U, to converge to zero more slowly,
if necessary) from (3.44). O

3.8. Construction of the Sequence u. in Case g < |loge 12

Let J be an exact measure-valued 2-form in Q and v € L?(A'Q) such that
dv = 0. Fix § > 0, and let ps be the rational piecewise linear approximation
of p := 5 from Lemma 3. Furthermore, let p; be the rational piecewise linear
function from Lemma 3’, so that dp’ approximates J. Our Hodge decomposition
gives, respectively, ps = y +da +d*p’, and p; = y' +do’ +d*B. Leth = L

V8
and i’ = ‘loge‘ ,sothat h = h/“‘[)/:z‘ &« W'.Fixn > 0, and for b’ < n? let d* By

be the dlscretlzatlon of d* ﬂ via Proposition 2. Let ¢, be defined as in (3. 39) SO
that d¢y, = d B, let =1y, = dyry, be as in Section 3.6, and set o, = h™ '
Finally, let p, be as in (3.42) and define

Ue = pe eXp(i27 - (P + Y + an)). (3.66)

3.9. Completion of Proof of (1.8) in Case g < |10ge|2

‘We have to estimate

e(ue; 2) _ _/ |V,0€|2 ('06) + 4 —,d*ﬂh’ + —(yp +do)| .
8e Q € h h

(3.67)
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Then | dist(x, Ty) S €}| S 2—2, as in (3.46), so we find as in (3.48) that

h? w h?
—/ Vot 4 X0 < o1, (3.68)
2 /o 2 %

For the remaining terms we have

2:72/Qpe|doz+yh|%2n2/9|doe+y|2gz#/SZ PP (3.69)

8

Zh 2 5%

2n W Qped Bu - (da + yn) — 0, (3.70)
Zh2 2 2 /

27 hT/Qpeld*,Bm =A.+B.+C., (3.71)

where, in the notation corresponding to (3.71),

1 2]12 2| g% 2
A, =2m w2 peld” B,
Gh’

2

h
B, =2r’— \d* By |, 3.72)
h'* Jar\c,
2 hz 2
o ~ *p
Co=2m0 - |d* By |

h/
for r = con(h’)'/%. Reasoning as in (3.54) and (3.56), we deduce a fortiori that
lim sup A = lim sup,_, 5 Ce = 0, while following (3.57) and (3.58) we deduce

r 1 h?
B, < (1+o)h’n 10g(;) (Tw |+ Cllpy U+ (A + ;)W|Fh’|» (3.73)

so that limsup B, < (14 o0)x st ldps| + Cn by Proposition 2 (iii). Summing up
the various contributions and then letting o — 0, we obtain

E
1imsupﬁ < n/ |dpj| +2n2/ Ips)®> + Cn. (3.74)
e—0 8e Qs Qs

We conclude the proof as in the previous cases, by defining U := u( y, s,) (thatis,
defining u. as above, but with parameters §. in the piecewise linear approximation
of Lemma 3, and 7. in the discretization of the vorticity of Proposition 2) for . and
8¢ converging to zero sufficiently slowly, so that U, satisfies the Gamma-limsup
inequality (1.8), and then verifying the convergence as before. O

4. Applications to Superconductivity

In this section we prove Theorem 4 and begin the analysis of the limiting func-
tional F, deriving the curvature equation for the vortex filaments. We use a good
deal of notation that was introduced in Section 1.3.

In the companion paper [2] we analyze the properties of F in more detail and
derive further applications such as a general expression for the first critical field,
H,.
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4.1. Proof of Theorem 4

First, recall_ing that hex = dAex.e, We see immediately from the definition of
Fe and of the H} (A'R?) norm that

A = Aexcllyy < 2Fc(ue. Ae) < Klloge|*.
It immediately follows that “0+g6‘ (Ac — Aex.c) is weakly precompact in H! (A'R3),

and since [loge| ' Aex.c — Aex.0in HI(A'RY), we deduce (1.22).
The above bounds on A and the Sobolev embedding H,! < L® imply that

Iogel ™ Aclloaray < K. (4.1)

In order to establish the remaining compactness assertions, we use the decom-
position (1. 19), which implies that

3

Ee(“e)gfe(uevAe)‘i“/Ae'jue §K|10g6|2+‘/Ae'jue
Q Q

using the fact that M(A; dAex.e) + R(ue, Ac) = 0. To estimate the right-hand
side, note that, in general,

1 1
lju- Al < |ul|Dul |A] £ Z'D”'2+ ul?|AI* < Z'D”'2 +2|A
C

1
+2(lul = DHAP £ 21Dul + 201 + 5 [|ul = 1 + Ce?| A",
€

And hypothesis (H,) with ¢ > 3 implies that ¢ | |u| — 1> < W (w) if ¢ is small
enough, so that

‘/Ae'j”s
Q

By combining the above inequalities and using (4.1), we find that E.(u.) <
K'|log €|, which in view of Theorem 2 implies that (1.4), (1.5), (1.6) hold with
8e = |loge|.

To prove statement (ii), consider the decomposition of F, given by (1. 19),
(1. 20), which may be rewritten

Felue, Ae)  Ec(ue) ( Ac hex )

1
< S Ecluo) +c/ Ac + 2|6 dx.
Q

|loge|2 - |loge|2 |10ge|7 [log €|
+I( Jue Ae ) Rue, Ae) 42)
[loge|’ |loge] llog e|? .

Recall that (1. 15) asserts

1 r
H()g—elee(uE) — E(v),
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with E(v) defined in (1. 16). Note further that M is lower semicontinuous with
respect to the weak H ! convergence of <, and hence, taking into account (1. 22),

|10g6|’
we readily deduce
A h
M(—f, ex ) L M, h). 43)
[loge| |loge|

Moreover, by Sobolev embedding, (1. 22) implies — A strongly in L?(2),

|10g€|

for any 1 < p < 6, whereas (1.5) gives \l{;:el — v weakly in L?7/+2)(Q). For

g = 3 we h