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Abstract

We consider the problem of resolving all pairwise interactions of shock waves,
contact waves, and rarefaction waves in the one-dimensional flow of an ideal poly-
tropic gas. Here, resolving an interaction means to determine the types of the three
outgoing (backward, contact, and forward) waves in the Riemann problem defined
by the extreme left and right states of the two incoming waves, together with pos-
sible vacuum formation. This problem has been considered by several authors and
turns out to be surprisingly involved. For each type of interaction (head-on, involv-
ing a contact, or overtaking) the outcome depends on the strengths of the incoming
waves. In the case of overtaking waves the type of the reflected wave also depends
on the value of the adiabatic constant. Our analysis provides a complete breakdown
and gives the exact outcome of each interaction.
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1. Introduction

We consider the problem of resolving all interactions of pairs of elementary
waves in a one-dimensional compressible, adiabatic flow of an ideal and polytropic



788 Geng Chen, Erik E. Endres, & Helge Kristian Jenssen

gas as described by the Euler system (1), (2), (3). The elementary waves are shocks,
contacts, and centered rarefactions. The interactions are treated as in the Glimm
scheme [3]: if the incoming waves connect a left state Ul , via a middle state Um , to a
right state Ur , then the “interaction problem”is to determine the type and strength of
the resulting outgoing waves obtained by resolving the Riemann problem (Ul ,Ur ).
Here U denotes any triple needed to specify the state the gas; we will work mostly
with specific volume τ = 1/ρ (ρ = density), fluid velocity u, and pressure p.

For interactions that involve only shocks and/or contacts, the solution of the Rie-
mann problem (Ul ,Ur ) provides the exact solution of the wave interaction. When
one of the waves is a rarefaction, the actual interaction involves “penetration” of a
rarefaction wave by a shock, by a contact or by another rarefaction. In these cases
the exact solution is more involved. We do not treat the problem of penetration and
consider only the Riemann problem defined by the extreme states Ul and Ur .

Remark 1. In cases of wave penetration, the extreme Riemann problem (Ul ,Ur )

may not provide an accurate description of the asymptotic behavior of the wave
interaction. For example, in an overtaking interaction of a shock and a rarefaction,
the shock may not pass through the rarefaction (incomplete penetration), and in this
case the solution of the Riemann problem (Ul ,Ur ) presumably does not describe
the asymptotic behavior in the exact solution. See Part D of Chapter III in [2],
Section 3.5.2 in [1], and [4] for further details and references.

Many authors have studied the problem of pairwise interactions. Since it gives
rise to Riemann problems it may be said to originate with Riemann’s and Hugoni-
ot’s pioneering works [5,6,10] on gas dynamics. According to [2], Jouguet [7] in
his work on combustion considered interaction phenomena. A systematic approach
was initiated by von Neumann [9] in his work on hydrodynamics. Among other
issues he considered the interaction of two shock waves, and called attention to
the fact that a contact wave emerges in such interactions. He also observed that in
interactions of overtaking shocks in an ideal gas, the reflected wave is necessarily
a rarefaction whenever the adiabatic constant γ satisfies γ � 5

3 . Shock-shock and
shock-contact interactions were analyzed in detail by Roždestvenski and Janenko
[11]; see also Smoller [12]. A comprehensive treatment is presented by Courant
and Friedrichs [2], who also list results for shock-contact and rarefaction-contact
interactions. A partial treatment is also given in [8,11]. The most complete work
on pairwise interactions in ideal polytropic gases to date appears to be the analysis
by Chang and Hsiao [1]. These authors considered all ten of the essentially dif-
ferent types of pairwise interactions (see (17)–(19)), for all values of the adiabatic
constant γ > 1. In particular, they list the possible outcomes of all ten interactions.
However their analysis does not completely delimit all the various outcomes.

Our objectives in revisiting the interaction problem are to provide a complete
breakdown of all possible cases and to determine the exact outcome of each inter-
action. In addition, we specify precisely when a vacuum state appears among the
outgoing waves. Our analysis is motivated by a desire to investigate relevant mea-
sures for wave-strengths in large data solutions of the Euler system. The latter issue
will be pursued elsewhere.
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Let us explain what we mean by “complete breakdown of all cases.” This
requires a little background. We work in a Lagrangian frame such that contact waves
appear stationary, and the primary unknowns are specific volume τ , particle veloc-
ity u, and pressure p (alternatively, specific entropy S). We parametrize shocks and
rarefactions by pressure ratios across the wave, while contacts are parametrized by
specific volume ratios. With a slight abuse of terminology, “a shock f ,” say, refers
to a shock wave connecting two states U− (to the left of the shock) and U+ (to the
right of the shock), such that the pressures satisfy p(U+)

p(U−) = f . We also refer to f as
the strength of the wave. A wave changes type (shock ↔ rarefaction, or up-contact
↔ down-contact) as this pressure (or specific volume) ratio crosses the value 1.

Now, an interaction of two incoming waves x and y generically gives rise to
three outgoing waves: a backward wave B, a contact wave C and a forward wave
F , and, possibly, a vacuum state. The interaction problem amounts to determining
whether a vacuum occurs, together with the values of B,C, F , in terms of x, y.

It does not seem possible to determine the functions B(x, y),C(x, y), and
F(x, y) explicitly in all cases. A somewhat weaker request is to ask for the “transi-
tional curves” in the plane of incoming strengths. That is, to determine the curves
in the (x, y)-plane which delimit the regions

{(x, y) | B(x, y) ≷ 1}, {(x, y) | C(x, y) ≷ 1}, {(x, y) | F(x, y) ≷ 1},
as well as the vacuum regions. (It turns out that these transitional sets are either
C2-curves, or finite unions of such.) It is possible to find explicit equations for these
curves and to determine their relative locations and intersections, and thereby to
determine all possible outcomes in all pairwise interactions.

In this work we carry out the detailed computations that yield a complete break-
down in this sense. In doing so we improve on the existing results in the literature.
For example, one of the more involved cases occurs when a backward shock is

overtaken by a backward rarefaction (
↼
S
↼

R) in a gas with adiabatic exponent γ < 5
3 .

Depending on the strengths x, y of the incoming waves, the interaction may produce
any one of four outgoing wave configurations:

↼
S
<

J
⇀
S ,

↼

R
<

J
⇀
S ,

↼
S
<

J
⇀

R, or
↼

R
<

J
⇀

R,

with possible vacuum formation in the latter case, see Fig. 5 (left diagram). Here
R, J , and S denote rarefactions, contacts, and shocks, respectively; an arrow indi-
cates the direction the wave is moving relative to the Lagrangian frame, and ≷
indicate increase/decrease of density across a contact. In our analysis we delimit
the various cases in terms of certain curves in the (x, y)-plane. These curves are
given in terms of explicit equations—in some cases as explicit graphs y(x) or x(y).

The calculations are surprisingly involved, with a number of sub-cases for var-
ious combinations of strengths x, y and values of γ . It is possible that there are
more efficient ways of parametrizing waves than the present choice of pressure
and specific volume ratios. In fact, for some cases we find it useful to consider the
entropy variable as well. However, we have not been able to determine more effi-
cient parameters that would, for example, provide explicit formulas for outgoing
strengths in terms of incoming strengths.
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The rest of the article is organized as follows. In Section 2 we recall the Euler
system and two parametrizations of its wave curves, one in (τ, u, p)-space and the
other in (τ, u, S)-space. In Section 2.3 we briefly review the solution of the Rie-
mann problem and characterize the occurrence of a vacuum. We also list and group
the ten essentially different pairwise interactions, modulo reflections of the spatial
variable x ↔ −x . We analyze head-on (Group I) interactions in Section 4, and
interactions with a contact (Group II) in Section 5. The results for these groups are
summed up in Theorems 1 and 2. All of the remaining analysis deals with the more
involved cases where a shock or rarefaction overtakes another shock or rarefaction
(Group III). The results for overtaking interactions are given in Theorem 3. It turns
out that the outcome depends not only on the incoming wave-strengths but also
on the adiabatic constant γ . Considering (for concreteness) the case of overtaking

backward waves, we divide the analysis into three sub-groups:
↼
S
↼
S (IIIa),

↼
S
↼

R (IIIb),

and
↼

R
↼
S (IIIc) interactions. As observed by Chang and Hsiao [1] there are two

values (γ = 5
3 and γ = 2) at which the global structure of the transitional curve for

the reflected wave (that is, the curve {(x, y) | F(x, y) = 1}) changes character. The
type of the transmitted (backward) wave for Group III interactions is analyzed in
Section 6. In Section 7 we treat the reflected wave; this is where the most involved
analysis occurs, due to the different behaviors for γ ≷ 5

3 and γ ≷ 2. To analyze
the outgoing contact it turns out to be convenient to use (τ, u, S) variables; the
details are given in Section 8. Finally, in Section 9 we analyze vacuum formation
in overtaking interactions. Section 10 collects various auxiliary results needed in
the analysis.

2. The Euler System, Wave Curves, Riemann Problems, and Vacuums

2.1. The One-Dimensional Compressible Euler System for an Ideal Gas

We consider one-dimensional compressible flow of an ideal, polytropic gas.
The conservation laws for mass, momentum, and energy are given by

τt − ux = 0 (1)

ut + px = 0 (2)

Et + (up)x = 0, (3)

where x denotes1 a Lagrangian (mass) coordinate, τ = 1/ρ is specific volume, u

is the fluid velocity, p is pressure, and E = e + u2

2 is specific total energy. Here e
denotes specific internal energy, which for an ideal gas is given by

e(τ, p) = pτ

γ − 1
, where γ > 1 is the adiabatic constant. (4)

For later reference we note that the local sound speed c is given by

c2 = γ τp. (5)

1 x and t will later be used for other parameters as well. The context will make it clear
which use is intended.
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2.2. Wave Curves

Each fixed state (τ̄ , ū, p̄) ∈ R
+ × R × R

+ has three associated wave curves
consisting of those states that can be connected to (τ̄ , ū, p̄) (on its right) by a sin-
gle backward wave, a single contact, or a single forward wave, respectively. The
backward and forward waves are either rarefactions or entropy admissible (that is
compressive) shocks. We use pressure ratios pright/pleft to parametrize the wave
curves in the extremal fields, and specific volume ratios τright/τleft for the contact
field. We let b, c, f denote the pressure ratio (strength) of a backward, contact,
and forward wave, respectively. Using the expressions from [12] (p. 354) the wave
curves are given as follows:

↼

W (b; τ̄ , ū, p̄) =
⎛
⎜⎝

↼
φ(b)τ̄

ū − ↼

ψ(b)
√
τ̄ p̄

b p̄

⎞
⎟⎠

{
↼

R : 0 < b < 1
↼
S : b > 1

(6)

≶
J (c; τ̄ , ū, p̄) =

⎛
⎝

cτ̄
ū
p̄

⎞
⎠ 1 ≶ c (c > 0) (7)

⇀

W ( f ; τ̄ , ū, p̄) =
⎛
⎜⎝

⇀
φ( f )τ̄

ū + ⇀

ψ( f )
√
τ̄ p̄

f p̄

⎞
⎟⎠

{
⇀

R : f > 1
⇀
S : 0 < f < 1.

(8)

The auxiliary functions
↼
φ,

⇀
φ,

↼

ψ , and
⇀

ψ are given by

↼
φ(b) =

⎧⎨
⎩

b−1/γ 0 < b < 1

1+ab
b+a b > 1

⎫⎬
⎭

↼

ψ(b) =

⎧⎪⎨
⎪⎩

ν
(
bζ − 1

)
0 < b < 1

κ(b−1)√
b+a

b > 1

⎫⎪⎬
⎪⎭

⇀
φ( f ) =

⎧⎨
⎩

f −1/γ f > 1

1+a f
f +a 0 < f < 1

⎫⎬
⎭

⇀

ψ( f ) =

⎧⎪⎨
⎪⎩

ν
(

f ζ − 1
)

f > 1

κ( f −1)√
f +a

0 < f < 1

⎫⎪⎬
⎪⎭
,

where the constants κ, ν, ζ are given in terms of the parameter2

a := γ − 1

γ + 1
∈ (0, 1) (9)

as follows:

κ = √
1 − a ∈ (0, 1), ν =

√
1 − a2

a
∈ (0,+∞), ζ = a

1 + a
∈ (0, 1

2 ).

2 For brevity we use a instead of the more common notation μ2.
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We note that a is a strictly increasing function of γ , and that

a = 1
4 ⇔ γ = 5

3 , and a = 1
3 ⇔ γ = 2.

The auxiliary functions
⇀
φ,

↼
φ,

⇀

ψ , and
↼

ψ are analyzed in Section 10.
It will be convenient to perform some of the calculations in (τ, u, S)-variables

(see Section 8), where S = specific entropy, and we proceed to record the expres-
sions for the wave curves in these variables. The pressure is now given by

p = p̂(τ, S) = K τ−γ exp
(

S
cv

)
(K , cv positive constants). (10)

We parametrize all wave curves in (τ, u, S)-space by specific volume ratios τright/τleft.
We use l for backward waves, c for contacts (as above), and ι for forward waves.
From the parametrizations in (τ, u, p)-space, together with (10), we obtain the
following expressions for the wave curves (τ, u, S)-variables:

↼

W (l; τ̄ , ū, S̄) =
⎛
⎝

l τ̄
ū − ↼

ξ (l)
√
τ̄ p̄

S̄ + cv
↼η(l)

⎞
⎠

{
↼

R : l > 1
↼
S : a < l < 1

(11)

≶
J (c; τ̄ , ū, S̄) =

⎛
⎝

cτ̄
ū

S̄ + cvγ ln c

⎞
⎠ 1 ≶ c (c > 0) (12)

⇀

W (ι; τ̄ , ū, S̄) =
⎛
⎝

ιτ̄

ū + ⇀
ξ (ι)

√
τ̄ p̄

S̄ + cv
⇀η(ι)

⎞
⎠

{
⇀

R : 0 < ι < 1
⇀
S : 1 < ι < 1

a .
(13)

The auxiliary functions
↼
ξ ,

⇀
ξ ,↼η,⇀η are given by

↼
ξ (l) =

⎧⎪⎨
⎪⎩

ν
(
l

1−γ
2 − 1

)
l > 1

√
a+1(1−l)√

l−a
a < l < 1

⎫⎪⎬
⎪⎭

↼η(l) =

⎧⎪⎨
⎪⎩

0 l > 1

ln
(

lγ (1−al)
l−a

)
a < l < 1

⎫⎪⎬
⎪⎭

⇀
ξ (ι) =

⎧⎪⎨
⎪⎩

ν
(
ι

1−γ
2 − 1

)
0 < ι < 1

√
a+1(1−ι)√
ι−a

1 < ι < 1
a

⎫⎪⎬
⎪⎭

⇀η(ι) =

⎧⎪⎨
⎪⎩

0 0 < ι < 1

ln
(
ιγ (1−aι)
ι−a

)
1 < ι < 1

a

⎫⎪⎬
⎪⎭
.

Remark 2. As is clear from the parametrizations (11)–(13) the entropy remains
constant across rarefactions, while it necessarily jumps across contacts.
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2.3. Riemann Problems and Vacuum Formation

A Riemann problem refers to the problem of resolving a single, initial jump
discontinuity connecting two constant states. It is known that the Euler system for
an ideal, polytropic gas admits a self-similar solution to any Riemann problem.
Furthermore, this solution is unique within the class of self-similar solutions con-
sisting of constant states connected by compressible shocks, contacts, and centered
rarefactions, possibly including a vacuum state; see [2].

Consider the Riemann problem for (1)–(3) with left state (τ̄ , ū, p̄) and right
state (τ, u, p). We use capital letters B,C , and F to denote the resulting outgo-
ing backward, contact and forward waves, respectively. Traversing the resulting
wave-fan from left to right and using the expressions (6)–(8), yield

τ = C
↼
φ(B)

⇀
φ(F)τ̄ ,

u − ū√
τ̄ p̄

= ⇀

ψ(F)
√

C B
↼
φ(B)− ↼

ψ(B), p = B F p̄.

(14)

By using the first and last equations in the middle equation, together with the relation
(83), we obtain the following equation for B:

ū − u√
τ̄ p̄

= ↼

ψ(B)+
√
τp

τ̄ p̄

↼

ψ

(
p̄B

p

)
=: F(B; τ, p, τ̄ , p̄) = F(B). (15)

To solve the Riemann problem
(
(τ̄ , ū, p̄), (τ, u, p)

)
amounts to determining the

pressure ratio B of the outgoing backward wave from F(B) = ū−u√
τ̄ p̄

. From this one
then determines C and F from (14).

The function
↼

ψ is strictly increasing and tends to +∞ at +∞ (see Section 10).
It follows that the map B �→ F(B; τ, p, τ̄ , p̄) has the same properties, and that
the Riemann problem has a unique solution without vacuum if and only if (τ̄ , ū, p̄)
and (τ, u, p) are such that

F(0; τ, p, τ̄ , p̄) <
ū − u√
τ̄ p̄

.

This is the case if and only if

u − ū <
2

γ − 1
(c + c̄) (no vacuum), (16)

where the sound speeds c and c̄ are given by (5). If the condition (16) is not satisfied,
then we agree to solve the Riemann problem as follows: a backward rarefaction con-
nects (τ̄ , ū, p̄) to (∞, 0, 0), followed by a forward rarefaction connecting (∞, 0, 0)
to (τ, u, p). In the (x, t)-plane the two rarefactions are separated by a vertical line
along which τ = ∞. The two rarefactions, together with the line x = 0, span the
fan (see [12])

−
√
γ p̄

τ̄
<

x

t
<

√
γ p

τ
.
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Group I

f b

B C F

y

F

x

B C

cf

B C F

t

Group IIIGroup II

Fig. 1. Interactions: head-on (I), involving a contact (II), overtaking (III) (Schematic)

Remark 3. We note that the rarefactions on either side of a vacuum may be in
different entropy states. In particular, this can occur in vacuums resulting from
interactions; see region {c < 1 < f } in Fig. 3, and region {y < 1 < x} in Figs. 4,

5 and 6. Recalling Remark 2 we denote the outcome of such interactions by
↼

R
≶
J
⇀

R
according to whether the left and right entropy states satisfy Sl ≶ Sr . Thus, for

these outcomes,
≶
J indicates the direction of the entropy jump across the vacuum.

3. Pairwise Interactions and Summary of Results

3.1. Pairwise Interactions

We shall consider all possible wave configurations where two elementary waves
(compressible shocks, contacts, and centered rarefactions) interact. We collect the
interactions into three groups: head-on (I), involving a contact (II), and overtaking
(III), see Fig. 1. In interactions, lower case letters are used for the incoming waves
( f for forward waves, c for contacts, and b for backward waves), while capital let-
ters B,C, F , denote outgoing waves. In Fig. 1 the waves are depicted schematically
as if no penetration occurs: all waves, including possible incoming and outgoing
rarefaction fans, are drawn as single lines in the (x, t)-plane. As described in the
introduction, the interaction problem is to resolve the particular Riemann problem
defined by the extreme left and right states in the incoming waves.

Due to the symmetry x ↔ −x there are ten essentially different pairwise inter-
actions:

Ia : ⇀S↼S
Ib : ⇀S↼R
Ic : ⇀R↼

R

⎫⎪⎬
⎪⎭

head-on interactions, (17)

IIa : ⇀S >

J

IIb : ⇀S <

J

IIc : ⇀R >

J

IId : ⇀R <

J

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

interactions with a contact, (18)
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IIIa : ↼S↼S
IIIb : ↼S↼R
IIIc : ↼R↼S

⎫⎪⎬
⎪⎭

overtaking interactions. (19)

Each interaction defines a particular Riemann problem, the interaction Riemann
problem, for which we obtain a non-linear algebraic equation determining the
strength of the outgoing backward wave, say, as detailed above for a general Rie-

mann problem. When expressed in terms of the auxiliary functions
↼
φ,

⇀
φ,

↼

ψ,
⇀

ψ ,
this nonlinear equation is the same within each of the groups I–III. However, a
breakdown into individual cases is necessary to determine exactly the outcomes of
each type of interaction.

Remark 4. The parametrizations of the wave curves in Section 2.2 are in terms
of pressure and specific volume ratios. This has the following useful consequence:
the outgoing wave strengths in interactions are given in terms of three nonlinear
algebraic equations that involves only the outgoing wave strengths (and γ ). In par-
ticular, the equations are independent of, say, the left-most state in the interaction.
See equations (28)–(30), (38)–(40), and (49)–(51).

3.2. Summary of Results

In this section we collect our results for interactions in each of the three groups.
For each group we consider every combination of incoming waves, as listed in
(17)–(19), and we describe all possible combinations of outgoing waves in the cor-
responding interaction Riemann problem. As discussed in the introduction, it does
not seem possible to determine outgoing strengths as explicit functions of incoming
strengths; instead, we describe the “transitional curves” in the plane of incoming
strengths. For example, for head-on interactions with incoming wave strengths b
and f , the outgoing backward wave B = B(b, f )may be a rarefaction or a shock.
According to (6) these outcomes correspond to B(b, f ) < 1 and B(b, f ) > 1,
respectively. The transitional curve for the backward wave in this case is the curve
{(b, f ) | B(b, f ) = 1}. Similarly, there are transitional curves for the outgoing
contact C and forward wave F . It will turn out that these sets really are curves in
the plane of incoming strengths. In addition we determine the location of all “vac-
uum-curves”, that is, the curves in the plane of incoming strengths which delimit
interactions for which the interaction Riemann problem contains a vacuum state.

To describe the results, we make reference to Figs. 2, 3, 4, 5 and 6. First, for
Group I and Group II we give two diagrams in the plane of incoming strengths
(that is, the (b, f )-plane for Group I and the ( f, c)-plane for Group II). The left
diagram depicts the various combinations of incoming waves; see left diagrams in
Figs. 2 and 3. The diagram on the right in each of these figures shows the resulting
outgoing wave configurations, together with the transitional curves and vacuum
curves. It turns out that the vacuum curve in both of the right diagrams in Figs. 2
and 3 are explicitly given as graphs. The same is true for the transitional curve for
the outgoing contact in Ia (

⇀
S
↼
S ) interactions (it is given by b f = 1). However, the
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R

RR

RR

SS

RR

RS

SJ R

JS S

RS( )

J SS
J

1

1

f

b

vacuum

bf=1

1

b1

f

Ia:Ib:

Ic: ( )

S

Fig. 2. Group I interactions: incoming (left) and outgoing (right) waves; schematic. For
vacuum configurations, see Remark 3

f*(0)

JSIIb:

S JIIa:

RJIId:

R JIIc: S SJ

S S R

R RJ R RJ

1

11

ff1

cc

vacuum

RJ

RS J

J

Fig. 3. Group II interactions: incoming (left) and outgoing (right) waves; schematic (see
Remark 6). For vacuum configurations, see Remark 3

transitional curve for the outgoing contact in IId (
⇀

R
<

J ) interactions is only implicitly
determined in our analysis. The figures are schematic; see Remark 6.

Before considering Group III interactions we state the results for Groups I and
II. We recall that the strength of a shock and rarefaction is defined as the pressure
ratio pright/pleft, while the strength of a contact wave is defined as the specific
volume ratio τright/τleft = ρleft/ρright. As a consequence all incoming strengths in
pairwise interactions are assumed to be 	= 1.

Theorem 1. (Group I interactions) Consider the head-on interactions of two ele-
mentary waves in (17). Let the incoming forward and backward waves have strengths
f and b, respectively (see left diagram in Fig. 1). Then:

(i) The outgoing backward wave B satisfies

B ≷ 1 ⇔ b ≷ 1. (20)
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IIIb:

RIIIc: S SSIIIa:
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Fig. 4. Group III interactions: incoming waves
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no interaction
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Fig. 5. Group III interactions: outgoing waves when 1 < γ < 5
3 (left) and when γ = 5

3
(right); schematic. For vacuum configurations, see Remark 3

(ii) The outgoing forward wave F satisfies

F ≷ 1 ⇔ f ≷ 1. (21)

(iii) The outgoing contact C satisfies
– Ia (

⇀
S
↼
S): C ≷ 1 ⇔ b f ≷ 1

– Ib (
⇀
S
↼

R): C > 1

– Ic (
⇀

R
↼

R): C = 1 (no outgoing contact).
(iv) For vacuum formation we have: there is never vacuum formation in Ia and

Ib interactions, while for Ic interactions vacuum occurs if and only if the
incoming strengths f and b satisfy

bζ + f −ζ � 1 where ζ = γ−1
2γ . (22)

The situation is summarized in Fig. 2.
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Fig. 6. Group III interactions: outgoing waves when 5
3 < γ < 2 (left) and when γ � 2

(right); schematic. For vacuum configurations, see Remark 3

The proof of Theorem 1 is given in Section 4. Some additional information about
the outgoing strengths in Ia and Ib interactions are recorded in Lemma 1.

Theorem 2. (Group II interactions) Consider the interactions of an elementary
forward wave with a contact wave in (18). Let the incoming forward and contact
waves have strengths f and c, respectively (see middle diagram in Fig. 1). Then:

(i) The outgoing backward wave B satisfies

− IIa and IIb (
⇀
S J ): B ≷ 1 ⇔ c ≶ 1. (23)

− IIc and IId (
⇀

R J ): B ≷ 1 ⇔ c ≷ 1. (24)

(ii) The outgoing forward wave F satisfies

F ≷ 1 ⇔ f ≷ 1. (25)

(iii) The outgoing contact C satisfies

– IIa (
⇀
S
>

J ): c < C < 1

– IIb (
⇀
S
<

J ): 1 < C < c

– IIc (
⇀

R
>

J ): C = c < 1

– IId (
⇀

R
<

J ): in this case f, c > 1 and C < c. However, the outgoing contact

may be either a
<

J (C > 1) or a
>

J (C < 1) contact. More precisely, for
fixed c > 1 the map

f �→ C = C( f, c)

takes on every value in (0, c) as f increases from 1 to ∞.
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(iv) For vacuum formation we have: there is never vacuum formation in IIa, IIb,
and IId interactions, while for IIc interactions a vacuum occurs if and only
if the incoming strengths f and c satisfy

f � f ∗(c) :=
( 2

1 − √
c

) 1
ζ

where ζ = γ−1
2γ . (26)

The situation is summarized in Fig. 3.

The proof of Theorem 2 is given in Section 5. The location of the transition curve
{C = 1} in IId interactions is analyzed in Section 5.6.

We finally consider Group III interactions of two overtaking waves, which we
take to be backward waves. The possible combinations of incoming waves are

↼
S
↼
S

(IIIa),
↼
S
↼

R (IIIb), and
↼

R
↼
S (IIIc), since two backward rarefactions do not meet. Let-

ting x and y denote the strengths of the left and right incoming waves, respectively,
the incoming configurations are listed in the (x, y)-plane in Fig. 4. As described in
the introduction, the outcomes of these interactions depend sensitively on the value
of the adiabatic constant γ (as well as on the incoming strengths), and we consider
four different cases: γ ∈ (1, 5

3 ), γ = 5
3 , γ ∈ ( 5

3 , 2), and γ � 2. The resulting
outgoing configurations are given in the (x, y)-plane by Fig. 5 for γ ∈ (1, 5

3 ], and
in Fig. 6 for γ > 5

3 .
In the following statement y0 denotes the unique root different from 1 of the

function α(y) := ⇀

ψ(y) − ↼

ψ(y) when γ 	= 5
3 , while y0 = 1 when γ = 5

3 . (The
function α is analyzed in Section 10.3.) Also, to shorten notation we write, for
example, B instead of B(x, y) for the strength of the backward outgoing wave.

Theorem 3. (Group III interactions) Consider the interactions of two overtaking,
elementary backward waves listed in (19). Let the left and right incoming waves
have strengths x and y, respectively, and let the outgoing waves have strengths
B,C and F (see right diagram in Fig. 1). Then for all values of γ > 1:

(i) The locus {B = 1}, indicated by a dashed curve in Figs. 5 and 6, coin-
cides with a C2-smooth and decreasing graph y = k(x). The graph satisfies
k(1) = 1 and has asymptotes x = 0 and y = ŷ(γ ) ∈ (0, 1) where ŷ(γ ) is
given in (82). The outgoing backward wave B is a shock (that is B > 1) if
and only if y > k(x).

(ii) The locus {F = 1} consists of three curves, indicated by solid lines in Figs. 5
and 6: {x ≡ 1}, {y ≡ 1}, and {y = h(x)}. We refer to these figures for the type
of the outgoing forward (reflected) wave in Group III interactions (see also
Figs. 8, 9, 10, 11, 12, 13 and 14). As indicated there the graph y = h(x) have
different global properties according to the value of the adiabatic constant
γ > 1. However, for each value of γ > 1:
– y = h(x) has a horizontal asymptote y∗ = y∗(γ ) as x ↑ +∞,
– the graphs y = k(x) and y = h(x) intersect at the point ( 1

y0
, y0).

(iii) The outgoing contact C satisfies:
– C < 1 in

↼
S
↼
S interactions

– C > 1 in
↼
S
↼

R and
↼

R
↼
S interactions.
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Fig. 8. The sets {B = 1}, {xy = 1}, and their intersections for γ < 5
3 (schematic)

(iv) For vacuum formation we have: a vacuum never appears in
↼
S
↼
S and

↼

R
↼
S

interactions, while a vacuum appears in an
↼
S
↼

R interaction if and only if the
incoming strengths y < 1 < x satisfy

0 < y �
[

1
2

(
1 − v(x)

ν

)] 1
ζ
, (27)

where

ζ = γ−1
2γ and v(x) := ν

√
x + a + κ(x − 1)√

x + ax2
.
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3 (schematic)
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Fig. 14. The sets {F = 1}, {B = 1}, and their intersection for γ � 2 (schematic)
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The situation is summarized in Figs. 4, 5, and 6.

Theorem 3 follows from the propositions in Sections 6, 7, 8, and 9. The analysis in
these sections provide further details about the location and intersection properties
of the graphs y = k(x) and y = h(x); see Figs. 8, 9, 10, 11, 12, 13 and 14. When
possible we also give explicit expressions for k(x) and h(x).

Remark 5. Before starting on the proofs of Theorems 1, 2, and 3 we note that the
analysis will make use of a number of auxiliary functions and results about their
properties. These are, for the most part, collected in Section 10.

4. Proof of Theorem 1

4.1. Group I: Head-on Interactions

Consider the interactions in Group I listed in (17). Referring to the left diagram
in Fig. 1 we use (6)–(8) to traverse the waves before and after interaction. We
obtain three equations for the outgoing strengths B,C, F in terms of the incoming
strengths b and f :

↼
φ(b)

⇀
φ( f ) = C

↼
φ(B)

⇀
φ(F) (28)

⇀

ψ( f )− ↼

ψ(b)
√

f
⇀
φ( f ) = −↼

ψ(B)+ ⇀

ψ(F)
√

C B
↼
φ(B) (29)

b f = B F. (30)

Eliminating F and C , using the relation (83) and the definitions (84), (85) of
the auxiliary functions M and N , we obtain the following nonlinear equation for
B = B(b, f ):

G(B; b, f ) = 0, (31)

where

G(B; b, f ) := ↼

ψ(B)+ ↼

ψ
( B

bf

)
M(b)N ( f )+ ⇀

ψ( f )− N ( f )
↼

ψ(b). (32)

We observe that since
↼

ψ is strictly increasing, the map B �→ G(B; b, f ) has the
same property.

In what follows we first analyze the strengths of the outgoing backward and
forward waves B and F and establish parts (i) and (ii) of Theorem 1. This infor-
mation is then used to prove the claims about the outgoing contact C . Finally, we
establish the claims about vacuum formation in head-on interactions.
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4.2. Proof of Theorem 1 Part (i)

By the defining equation (31) for B = B(b, f ) and the monotonicity of B �→
G(B; b, f ), we have by (84) that

B ≷ 1 ⇔ G(B; b, f ) = 0 ≷ G(1; b, f ) = N ( f )g(b, f ), (33)

where N ( f ) > 0 and

g(b, f ) := ↼

ψ
( 1

b f

)
M(b)− ↼

ψ(b)− ↼

ψ
( 1

f

)
.

Thus, to verify (20) we need to show that

g(b, f ) ≷ 0 ⇔ b ≶ 1. (34)

Since g(1, f ) ≡ 0 it suffices to show that ∂bg(b, f ) < 0 for all b, f > 0. We have

∂bg(b, f ) = M ′(b)
↼

ψ
( 1

b f

)− 1

b2 f
M(b)

↼

ψ ′( 1
b f

)− ↼

ψ ′(b).

Using the properties of M and
↼

ψ we get

∂bg(b, f ) < M ′(b)
↼

ψ
( 1

b f

)
� 0 whenever b f � 1.

On the other hand, if b f < 1 then

∂bg(b, f ) < M ′(b)
↼

ψ
( 1

b f

)− M(b)
↼

ψ ′( 1
b f

)

b2 f
= M(b)

b

↼

ψ
( 1

b f

)[
m(b)− �

( 1
b f

)]
< 0,

since m(b) < 1
2 for all b > 0, while �(q) > 1

2 for all q > 1 (see Section 10). This
proves (20).

4.3. Proof of Theorem 1 Part (ii)

Using (30) and the fact that B �→ G(B; b, f ) is increasing, we have

F = b f

B
≷ 1 ⇔ B ≶ b f ⇔ 0 = G(B; b, f ) ≶ G(b, f ),

where

G(b, f ) := G(b f ; b, f ) = ↼

ψ(b f )+ ⇀

ψ( f )− N ( f )
↼

ψ(b).

We have G(b, 1) ≡ 0, while

∂bG(b, f ) = f
↼

ψ ′(b f )− N ( f )
↼

ψ ′(b)

and

∂ f G(b, f ) = b
↼

ψ ′(b f )+ ⇀

ψ ′( f )− N ′( f )
↼

ψ(b).
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Using the properties of the auxiliary functions we see that each term in ∂ f G(b, f ) is
non-negative whenever 0 < b � 1, and that their sum in this case is strictly positive.
Thus, (21) holds for 0 < b < 1. For b � 1 we consider instead how G changes
along hyperbolas b f = const . Differentiating in the direction of increasing f , we
have, for b � 1, that

(−b, f ) · ∇(b, f )G(b, f ) = b
↼

ψ ′(b)N ( f )+ f
⇀

ψ ′( f )− f N ′( f )
↼

ψ(b)

> b
↼

ψ ′(b)N ( f )− f N ′( f )
↼

ψ(b)

= ↼

ψ(b)N ( f )[�(b)− n( f )] > 0 (35)

by the properties of the auxiliary functions � and n recorded in Section 10. Again,
since G(b, 1) ≡ 0, it follows that (21) holds in the set (b, f ) ∈ {b � 1, b f � 1}.
We finally observe that

G(1, f ) = ↼

ψ( f )+ ⇀

ψ( f ) < 0 whenever f < 1,

which, together with (35), verifies (21) also in {b � 1, b f < 1}. This proves (21).

4.4. Proof of Theorem 1 Part (iii)

Concerning the outgoing contact C in Group I interactions, we first observe

that C = 1 in
⇀

R
↼

R (Ic) interactions. Indeed, by Remark 2, if C 	= 1 then the entropy
would take different values on either side of the outgoing contact. However, we
have already shown that the outgoing backward and forward waves are both rar-
efactions in this case, whence (Remark 2) the entropy takes the same value on each
side of the outgoing contact.

For the other two interactions in Group I we shall use (28) together with the
following:

Lemma 1. For Ia and Ib interactions with incoming strengths b, f , and outgoing
strengths B,C, F (see Fig. 1), the following hold:

– For Ia (
⇀
S
↼
S) intersections: f < F < 1 < B < b and B + F < b + f.

– For Ib (
⇀
S
↼

R) interactions: F < f < 1.

Proof. Consider first Ia interactions for which f < 1 < b. The properties of the
auxiliary functions show that

G(b; b, f ) = ↼

ψ(b)
[
1 − N ( f )

]+ ⇀

ψ( f )
[
1 − M(b)

]
> 0 = G(B; b, f ).

AsG(·; b, f ) is increasing, this shows that b > B, and since b f = B F it follows that
F > f . Combining this with (20) and (21), we obtain that f < F < 1 < B < b.
But then b − f > B − F > 0, whence (b − f )2 > (B − F)2. Since b f = B F it
then follows that (b + f )2 > (B + F)2, that is, B + F < b + f .

Next, for Ib interactions the incoming strengths satisfy b, f < 1. As b f = B F ,
we have f > F if and only if B > b, which is the case if and only if

G(B; b, f ) = 0 > G(b; b, f ) = ↼

ψ(b)
[
1 − N ( f )

]+ ⇀

ψ( f )
[
1 − M(b)

]
.
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For b, f < 1 both terms in the expression on the right are negative. This shows
that f > F in Ib interactions.

For a Ia interaction we use f < 1 < b in the explicit expressions for
↼
φ and

⇀
φ ,

together with (30), to rewrite (28) as

C = A(b + f, b f )

A(B + F, b f )
,

where the function A is defined in (91). We then use the property (92) of A together
with the estimate B + F < b + f from Lemma 1, to obtain that b f ≷ 1 if and only
if C ≷ 1.

Finally, in
⇀
S
↼

R-interactions f, b < 1, and by parts (i) and (ii) of Theorem 1 we
have B, F < 1. Again, using the explicit expressions for

↼
φ and

⇀
φ , together with

(30), we rewrite (28) as

C = D( f )

D(F)
, (36)

where the function D is defined in (93). Since D is strictly increasing and f > F

by Lemma 1, we obtain that C > 1 in
⇀
S
↼

R interactions. This concludes the proof
of part (iii) of Theorem 1.

4.5. Proof of Theorem 1 Part (iv)

We argue as in Section 2.3 and observe that the map B �→ G(B; b, f ) is
strictly increasing. The interaction Riemann problem is vacuum-free if and only if
B = B(b, f ) > 0, or equivalently G(B; b, f ) = 0 > G(0; b, f ), that is

↼

ψ(b)+ νM(b) >

⇀

ψ( f )− ν

N ( f )
. (37)

Using the properties of the auxiliary functions
↼

ψ,
⇀

ψ and M (see Section 10) we
have:

– for Ia and Ib interactions, f < 1 such that (37) is satisfied:

LHS (37) >
↼

ψ(b) > −ν > ↼

ψ( f )− ν > RHS (37);
– for Ic interactions b < 1 < f and (37) reduces to the condition that

bζ + f −ζ > 1 (no vacuum).

The “vacuum curve” bζ + f −ζ = 1 is sketched in the right diagram in Fig. 2. This
establishes part (iv) of Theorem 1.

This concludes the proof of Theorem 1.
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5. Proof of Theorem 2

5.1. Group II: Interactions with a Contact

Consider the interactions in Group II listed in (18). Referring to the middle dia-
gram in Fig. 1 we use (6)–(8) to traverse the waves before and after interaction. We
obtain three equations for the outgoing strengths B,C, F in terms of the incoming
strengths f and c:

c
⇀
φ( f ) = C

↼
φ(B)

⇀
φ(F) (38)

⇀

ψ( f ) = −↼

ψ(B)+ ⇀

ψ(F)
√

C B
↼
φ(B) (39)

f = B F. (40)

Eliminating F and C , using the relation (83) and the definition (85), and rearrang-
ing, we obtain the following nonlinear equation for B = B( f, c)

H(B; f, c) = 0, (41)

where

H(B; f, c) := ↼

ψ(B)+ √
cN ( f )

↼

ψ
( B

f

)+ ⇀

ψ( f ). (42)

We observe that since
↼

ψ is strictly increasing, the map B �→ H(B; f, c) has the
same property.

We proceed to analyze the strengths of the outgoing backward and forward
waves B and F . This information is then used to verify the claims about the outgo-
ing contact C in Theorem 2. We then establish part (iv) of Theorem 2 concerning
vacuum formation in interactions with a contact. Finally, in Section 5.6 we include
a partial analysis of the location of the transition curve {C = 1} in the ( f, c)-plane,
and show that it is the graph of a non-monotone function c �→ f(c) satisfying

lim
c↓1

f(c) = lim
c↑∞ f(c) = +∞. (43)

5.2. Proof of Theorem 2 Part (i)

By the monotonicity of B �→ H(B; f, c), the defining equation (41) for B =
B( f, c), and the definition (85) of the function N , we have

B ≷ 1 ⇔ 0 ≷ H(1; f, c) = (1 − √
c)
⇀

ψ( f ).

Then, using the sign properties of
⇀

ψ , we obtain: for
⇀
S J interactions we have f < 1

and (23) follows, while for
⇀

R J interactions we have f > 1, and (24) follows. This
verifies part (i) of Theorem 2.
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5.3. Proof of Theorem 2 Part (ii)

We observe that H( f ; f, c) = ↼

ψ( f )+ ⇀

ψ( f ). Thus, by (40), the monotonicity
of H(·; f, c), and the defining equation (41) for B = B( f, c), we have

F ≷ 1 ⇔ f ≷ B ⇔ H( f ; f, c) ≷ 0 ⇔ ↼

ψ( f )+ ⇀

ψ( f ) ≷ 0.

According to the properties of the auxiliary functions
↼

ψ and
⇀

ψ , the last condition
holds if and only if f ≷ 1. This verifies part (ii) of Theorem 2.

5.4. Proof of Theorem 2 Part (iii)

As for Group I, in order to determine the type of the transmitted contact we will
consider each interaction separately. The outgoing ratio C occurs in both (38) and
(39), and we will make use of both relations.

Case IIa (
⇀
S
>

J ) In this case f, c < 1, and from the analysis above we have that
F < 1 < B. Thus f = B F > F , while a direct evaluation shows that B

↼
φ(B) > 1.

As
⇀

ψ is increasing we have 0 >
⇀

ψ( f ) >
⇀

ψ(F), and it follows that

⇀

ψ( f )+ ↼

ψ(B) >
⇀

ψ(F) >
⇀

ψ(F)
√

B
↼
φ(B).

Comparing with (39) shows that C < 1 in this case. We further claim that C > c,
which, according to (38), is the case if and only if

⇀
φ( f ) ≡ ⇀

φ(B F) >
↼
φ(B)

⇀
φ(F),

which is equivalent to E(B F) > E(B)E(F), where the function E is defined in
(94). We apply part (a) of Lemma 5 and conclude that this last inequality is indeed
satisfied since B F = f < 1.

Case IIb (
⇀
S
<

J ) In this case f < 1 < c, and from the analysis above we have that

F, B < 1. Thus f = B F < F and the properties of the auxiliary functions
⇀

ψ and
↼
φ show that

⇀

ψ( f )+ ↼

ψ(B) <
⇀

ψ( f ) <
⇀

ψ(F) <
⇀

ψ(F)Bζ = ⇀

ψ(F)
√

B
↼
φ(B).

A comparison with (39) shows that C > 1. We further claim that C < c, which,
according to (38), is the case if and only if

⇀
φ( f ) ≡ ⇀

φ(B F) <
↼
φ(B)

⇀
φ(F).

Using the functions D, E (defined in (93) and (94)) we rewrite this as

E(B F) <
E(B)E(F)

D(B)
. (44)

Now, as B, F < 1, part (b) of Lemma 5 shows that E(B F) < E(B)E(F). At the
same time D is a strictly increasing function with D(1) = 1, such that D(B) < 1.
It follows that (44) is satisfied and C < c.
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Case IIc (
⇀

R
>

J ) In this case c < 1 < f , whence, by the analysis above, B < 1 < F .
This means that the backward and forward outgoing waves are both rarefactions,
and it follows from Remark 2 that C = c in this case.

Case IId (
⇀

R
<

J ) In this case c, f > 1, and the earlier analysis shows that 1 <
F, B < f . Using the explicit expressions for

⇀
φ and

↼
φ in (38), together with (40),

we get

C =
⇀
φ( f )c

⇀
φ(F)

↼
φ(B)

= c

D(B)
, (45)

where D is defined in (93). Since B > 1, D(1) = 1, and D is strictly increasing, it

follows from (45) that C < c in IId (
⇀

R
<

J ) interactions.
Next we want to verify that C may be either ≷ 1 depending on the incoming

strengths f and c. First, as B, F > 1 and B F = f , it follows from the defining

relation H(B; f, c) = 0 and the explicit expressions for N ,
⇀

ψ and
↼

ψ , that

(
√

c − 1) f ζ + 1 = √
cBζ +

↼

ψ(B)

ν
. (46)

The right-hand side is strictly increasing with respect to B, such that this relation
provides B as a function of f and c:

B = B( f, c) = unique B-value satisfying (46) for given f, c > 1.

By substituting B = B( f, c) into (45) we obtain the strength C = C( f, c) of the
outgoing contact. We now have:

Lemma 2. Consider an
⇀

R
<

J interaction with incoming strengths f, c > 1. Then,
as f increases from 1 to ∞ while c > 1 is kept fixed, the strength C = C( f, c) of
the outgoing contact (determined from (46) and (45)) decreases from c to 0.

Proof. Recall that B �→ D(B) increases from 1 to ∞ as B increases from 1
to ∞. Thus the claim follows from the expression (45) for C provided the map
f �→ B( f, c), for fixed c > 1, increases from 1 to ∞ as f increases from 1 to ∞.
Now, B( f, c) is the unique root of (46). For fixed c > 1 the left-hand side of (46)
increases from 1 to ∞ as f increases from 1 to ∞. At the same time the right-hand
side of (46) increases from 1 to ∞ as B increases from 1 to ∞. This shows that
f �→ B( f, c) increases from 1 to ∞ as f increases from 1 to ∞.

This establishes part (iii) of Theorem 2.

5.5. Proof of Theorem 2 Part (iv)

We argue as in Section 2.3 and observe that the map B �→ H(B; f, c) is
strictly increasing. The interaction Riemann problem is vacuum-free if and only if
B = B( f, c) > 0, or equivalently H(B; f, c) = 0 > H(0; f, c), that is

ν
[
1 + √

cN ( f )
]− ⇀

ψ( f ) > 0. (47)
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– IIa and IIb: for an
⇀
S J interaction we have f < 1, such that LHS (47) > 0. Thus

no vacuum occurs in
⇀
S J interactions.

– IIc and IId: for
⇀

R J interactions we have f > 1. Using the explicit expressions

for the functions
↼

ψ,
⇀

ψ, N , we get that no vacuum occurs if and only if

(1 − √
c) f ζ < 2. (48)

For IId interactions c > 1, (48) is satisfied, and no vacuum occurs. On the other
hand, for IIc interactions we have c < 1, and no vacuum appears if and only if
f < f ∗(c), where f ∗(c) is defined in (26).

This concludes the proof of Theorem 2.

5.6. Location of the Transition Curve {C = 1} for IId Interactions

We now want to determine more precisely the “transition” curve in the ( f, c)-
plane across which the outgoing contact changes type IId interactions. As above,
we denote the outgoing strength of the contact by C( f, c). By Lemma 2 we know
that for each c > 1 there is a unique f -value f(c) such that C(f(c), c) = 1. We
derive an expression for f(c) as follows. First, from (45) with C = 1, we get that

c = D(B).

Let δ := D−1 such that

B = δ(c) = outgoing backward strength when no outgoing contact occurs.

Substituting this value for B into (46) then yields the corresponding value of the
incoming forward wave f , that is f(c):

f(c) =
[
δ(c)ζ +

⇀

ψ(δ(c))+ ↼

ψ(δ(c))

ν(
√

c − 1)

] 1
ζ

,

where we have made use of the explicit expressions for
⇀

ψ . It turns out that this is
a non-monotone function. Figure 7 shows the graph of the function

ϒ(B) := Bζ +
⇀

ψ(B)+ ↼

ψ(B)

ν(
√

D(B)− 1)

when γ = 4
3 . (The plot shows the same qualitative features for other values of γ .)

As c �→ δ(c) is strictly increasing it follows that c �→ f(c) is also non-monotone.
In particular, the plot indicates that f(c) has a unique minimum. Finally, a direct
evaluation verifies (43).

Remark 6. We have not proved that f(c) has a unique minimum, nor determined
its absolute minimum. In particular, we have not determined whether its absolute
minimum is smaller or larger than f ∗(0) = 21/ζ . Figure 3 should be read with
these provisions in mind.
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6. Proof of Theorem 3: Setup and Part (i)

The analysis of interactions involving overtaking waves is more involved. From
Theorems 1 and 2 we see that most outcomes in Groups I and II interactions are
independent of the adiabatic constant γ . Indeed, only the transition curve for the
outgoing contact C in IId interactions, as well as the transition curves for vacu-
ums in Ic and IIc interactions, depend explicitly on the adiabatic constant. Also,
these dependencies are “stable” in the sense that the transition curves are pres-
ent and qualitatively similar for all values of γ > 1. The situation for Group III
interactions is markedly different.

We consider the pairwise interactions of overtaking backward waves of strengths
x and y (see right diagram in Fig. 1). It will turn out that the location and prop-
erties of the transition curve for the reflected (forward) wave, that is, the locus
{F(x, y) = 1}, depends sensitively on γ . At the same time, the transition curve of
the outgoing backward wave, viz. {B(x, y) = 1}, as well as the vacuum transition
curve, both depend on γ . However, in the latter cases the dependence is stable in
the above sense. The situation is depicted in Figs. 5 and 6.

For reference we introduce the following three regions delimited by the lines
x = 1 and y = 1 in the first quarter of the (x, y)-plane:

– IIIa = {x, y > 1}, corresponding to
↼
S
↼
S -interactions

– IIIb = {x > 1 > y > 0}, corresponding to
↼
S
↼

R-interactions

– IIIc = {y > 1 > x > 0}, corresponding to
↼

R
↼
S -interactions.

(The region {x, y < 1} corresponds to two backward rarefaction waves, which do
not meet.)

In this section we determine the type of transmitted (backward) wave in Group
III interactions. Sections 7 and 8 provide the analysis of the reflected (forward)
and contact waves, respectively, while Section 9 gives the conditions for vacuum
formation in overtaking interactions. Together these results establish parts (i)-(iv)
of Theorem 3.

6.1. Group III: Overtaking Interactions

Consider the interactions in Group III listed in (19). Referring to the right dia-
gram in Fig. 1 we use (6)–(8) to traverse the waves before and after interaction. We
obtain three equations for the outgoing strengths B,C, F in terms of the incoming
strengths x and y:

↼
φ(x)

↼
φ(y) = C

↼
φ(B)

⇀
φ(F) (49)

↼

ψ(x)+ ↼

ψ(y)
√

x
↼
φ(x) = ↼

ψ(B)− ⇀

ψ(F)
√

C B
↼
φ(B) (50)

xy = B F. (51)

Eliminating F and C , using (83) and (84), and rearranging, yield the following
nonlinear equation for B = B(x, y)

K(B; x, y) = 0, (52)
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where

K(B; x, y) := ↼

ψ(B)+ ↼

ψ
( B

xy

)
M(x)M(y)− ↼

ψ(x)− ↼

ψ(y)M(x). (53)

We observe that since
↼

ψ is strictly increasing, the map B �→ K(B; x, y) has the
same property.

6.2. Proof of Theorem 3 Part (i)

By the monotonicity of B �→ K(B; x, y), the defining equation (52) for B =
B(x, y), and the definition (84) of the function M , we have

B ≷ 1 ⇔ 0 ≷ K(1; x, y) = M(x)K (x, y),

where

K (x, y) := ↼

ψ
( 1

xy

)
M(y)+ ⇀

ψ
( 1

x

)− ↼

ψ(y). (54)

We are not able, in general, to solve the equation K (x, y) = 0 explicitly for x or
y. Instead, we determine the properties of the zero-level of K by estimating the
partials ∂x K , ∂y K in Proposition 1. We also determine the relative locations and
intersections of {K (x, y) = 0} with the hyperbola xy = 1, see Proposition 2. This
information will be used in Section 7 and depends on γ .

Proposition 1. The partials of the function K (x, y) defined in (54) satisfy

∂x K (x, y) < 0, ∂y K (x, y) < 0 for all x, y > 0. (55)

Proof. As
↼

ψ,
⇀

ψ are strictly increasing we have

∂x K (x, y) = − 1
x2 y

↼

ψ ′( 1
xy

)
M(y)− 1

x2

⇀

ψ ′( 1
x

)
< 0. (56)

On the other hand

∂y K (x, y) = − 1
xy2

↼

ψ ′( 1
xy

)
M(y)+ ↼

ψ
( 1

xy

)
M ′(y)− ↼

ψ ′(y), (57)

such that ∂y K (x, y) < 0 if and only if

1
xy

↼

ψ ′( 1
xy

)− ↼

ψ
( 1

xy

)
m(y)+ y

↼

ψ ′(y)
M(y)

> 0, (58)

where the function m is analyzed in Section 10. By the properties of the auxiliary
functions the last inequality is trivially satisfied whenever xy � 1. For xy < 1 we

use instead that
↼

ψ ′ > 0 such that (58) follows, provided

1
xy

↼

ψ ′( 1
xy

)
>

↼

ψ
( 1

xy

)
m(y).

For xy < 1 the latter inequality is equivalent to

�
( 1

xy

)
> m(y),

where the auxiliary function � is analyzed in Section 10. In particular, � satisfies
�(q) > 1

2 for q > 1, while m(y) < 1
2 for all y > 0. This shows that ∂y K (x, y) < 0

for all x, y > 0.
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It follows that {B = 1} = {K (x, y) = 0} is given by a graph y = k(x), for a
C2-smooth and strictly decreasing function k(x). A calculation shows that:

lim
y↓0

K (x, y) = ∞, lim
y↑∞ K (x, y) = −∞ for x > 0,

lim
x↓0

K (x, y) = ∞ for y > 0,

and

lim
x↑∞ K (x, y) = K∞(y) := −νM(y)− ↼

ψ(y)− κ√
a

for y > 0.

The function K∞(y) is a strictly decreasing function and satisfies

K∞(0) = ν − κ√
a
> 0, lim

y↑∞ K∞(y) = −∞,

and has a unique root y = ŷ(γ ) ∈ (0, 1) (given in (82)). This concludes the proof
of part (i) of Theorem 3.

Before considering the outgoing forward wave F , we need to analyze the relative
positions and intersections of the curves {xy = 1} and {B = 1} = {K (x, y) = 0}.
These depend on γ and are given by the properties of the function α := ⇀

ψ − ↼

ψ ,
which is analyzed in Section 10.3.

Proposition 2. Let {y = k(x)} = {B = 1} be as in part (i) of Theorem 3. Let
y0 = y0(γ ) denote the root different from 1 of the function α(y, a) when γ 	= 5

3 ,

and set y0 = 1 when γ = 5
3 . Let x0 = 1

y0
. The relative positions and intersections

of the curves {xy = 1} and {y = k(y)} are then given as follows:

(a) For 1 < γ < 5
3 (see Fig. 8): y0 < 1 < x0 and

• the curves intersect at (1, 1) tangentially and at (x0, y0) transversally, and
only at these points,

• 1
x < k(x) for x ∈ (x0,∞),

• 1
x > k(x) for x ∈ (0, 1) ∪ (1, x0).

(b) For γ = 5
3 (see Fig. 9): y0 = x0 = 1 and

• the curves intersect only at (1, 1) (tangentially),
• 1

x < k(x) for x ∈ (1,∞),
• 1

x > k(x) for x ∈ (0, 1).
(c) For γ > 5

3 (see Fig. 10): x0 < 1 < y0 and
• the curves intersect at (1, 1) tangentially and at (x0, y0) transversally, and

only at these points,
• 1

x < k(x) for x ∈ (x0, 1) ∪ (1,∞),
• 1

x > k(x) for x ∈ (0, x0).

Proof. From (55) we have that K (x, y) ≷ 0 for y ≶ k(x), while

K
( 1

y , y
) = α(y, a). (59)

The statements about the location of the intersection points and the relative posi-
tions of {xy = 1} and {y = k(x)}, follow immediately from this and the properties
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of the function α(y, a) as detailed in Section 10.3 (see Figs. 8, 9, 10). Calculating
k′(x) = − ∂x K (x,y)

∂y K (x,y) at the points of intersection shows that k′(1) = −1 and that

k′(x0) ≷ − 1
x2

0
if and only if α′(y0) ≶ 0. The tangency and transversality claims

follow from this and the properties of α.

7. Proof of Theorem 3 Part (ii)

We now consider the reflected wave in overtaking interactions. To determine
the type of the outgoing forward wave F we use (51) together with the defining
equation (52) for B:

F ≷ 1 ⇔ xy ≷ B ⇔ H(x, y) ≷ K(B; x, y) = 0, (60)

where we have introduced the function

H(x, y) := K(xy; x, y) = ↼

ψ(xy)− ↼

ψ(x)− ↼

ψ(y)M(x). (61)

We note that

H(1, y) = H(x, 1) = H(0, y) ≡ 0 ∀ x, y > 0.

To keep the lengths of the proofs to a reasonable length we have collected some
parts of the analysis of H in Sections 10.5, 10.6 and 10.7. We consider separately
the cases γ ∈ (1, 5

3 ), γ = 5
3 , and γ > 5

3 .

7.1. The Reflected Wave F in the Case 1 < γ < 5
3

The following proposition details the properties of the reflected wave when the
adiabatic constant is between 1 and 5

3 . We recall that x0 := 1
y0

, where 0 < y0 < 1

is the unique root different from 1 of the function α = ⇀

ψ − ↼

ψ defined in Section
10.3.

Proposition 3. Consider the interactions of two overtaking backward waves listed
in (19). Let the left and right incoming waves have strengths x and y, respectively.
For 1 < γ < 5

3 (0 < a < 1
4 ) the outgoing reflected wave F = F(x, y) is given as

follows.

(a)
↼
S
↼
S-interactions (IIIa, x, y > 1) yield F > 1: the reflected wave is a rarefac-

tion.
(b)

↼
S
↼

R-interactions (IIIb, 0 < y < 1 < x)may yield either type of reflected wave.
More precisely, in the region 0 < y < 1 < x, the set {H(x, y) = 0} ≡ {F = 1}
coincides with a graph y = h(x), and the reflected wave F is a
(b1) rarefaction (that is F > 1) if and only if y < h(x),
(b2) shock (that is F < 1) if and only if y > h(x).

The location of the graph y = h(x) is given as follows. Let y = k(x) be
the graph along which B = 1 (defined in Section 6.2). Then, in the region
0 < y < 1 < x:
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Fig. 15. q �→ α(q, a) when 0 < a < 1
4 (1 < γ < 5

3 , schematic)

(b3) the three graphs y = h(x), y = k(x), and y = 1
x all pass through

(x0, y0),
(b4) h(x) < k(x) < 1

x for 1 < x < x0,
(b5) h(x) > k(x) > 1

x for x > x0
(b6) y = h(x) has horizontal asymptote y∗(γ ) ∈ (ŷ(γ ), 1) as x ↑ +∞, and

lim
x↓1

h(x) = y1(γ ) :=
[

3
4(1−a)

] 1
ζ
< 1, (62)

(c)
↼

R
↼
S interactions (IIIc, 0 < x < 1 < y) yield F < 1: the reflected wave is a

shock.

The situation is summarized in Fig. 5 (left diagram) and in Fig. 11.

Proof. We consider each region in turn:

(a) This part follows directly from (60) and (118).
(b) For this part we split the argument into several steps.

1. We first observe that by definition (84) of the auxiliary function M , we
have

H
( 1

y , y
) = M

( 1
y

)
α(y, a). (63)

Together with (51), (59), and the properties of the mapα(·, a) (see Fig. 15),
this shows: in the region IIIb (0 < y < 1 < x), and for 1 < γ < 5

3 ,
the two curves {xy = 1} and {B = 1} ≡ {y = k(x)}, and the set
{F = 1} ≡ {H(x, y) = 0} (yet to be shown to be a curve), intersect at,
and only at, the point (x0, y0).

2. Next we consider the equation H(x, y) = 0 in the lower sub-region

IIIb1 := {0 < y < xy < 1 < x}.
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Using the explicit expressions for the auxiliary functions
↼

ψ and M , we
may solve explicitly for y as a function of x and obtain that in IIIb1, the
set {H(x, y) = 0} coincides with the graph y = h1(x), where

h1(x) =
⎡
⎣M(x)− 1

ν

↼

ψ(x)− 1

M(x)− xζ

⎤
⎦

1
ζ

=
[√

x + ax2 − √
x + a − κ

ν
(x − 1)√

x + ax2 − xζ
√

x + a

] 1
ζ

. (64)

Note that the numerator and denominator are both positive by Lemma 4.
A calculation shows that h1(x) <

1
x if and only if α( 1

x , a) < 0, which,
according to the analysis in Section 10.3, holds if and only if x < x0 = 1

y0

(since γ < 5
3 ). A direct evaluation shows that

lim
x↓1

h1(x) =
[

3
4(1−a)

] 1
ζ =: y1(γ ),

which is < 1 since a < 1
4 . This verifies (62). We conclude that {F =

1} ∩ IIIb1 is given as the graph {(x, h1(x)) | 1 < x < x0}. Furthermore,
it follows from (86) and (87) in Lemma 4 that

{F ≷ 1} ∩ IIIb1 = {y ≶ h1(x), 1 < x < x0}.

By the intersection properties verified in step 1 above, and the fact that

lim
x↓1

k(x) = 1,

it follows that the graph {y = h1(x) | 1 < x < x0} lies strictly below the
curve segment {y = k(x) | 1 < x < x0}.

3. The analysis of the equation H(x, y) = 0 in the upper sub-region

IIIb2 := {0 < y < 1 < xy}

is more involved. In particular it is not possible to solve for y explicitly in
terms of x or vice versa. Instead we will make use of the analysis in Section
10.6. First, (126) shows that the map y �→ H(x, y) has no root in ( 1

x , 1),
whenever x � x0 and 1 < γ < 5

3 . We infer that {F = 1} ∩ IIIb2 lies in
the region x > x0. We next locate the zero-level of H more precisely. By
(61) we have H(x, y) = 0 if and only if

↼

ψ(y) =
↼

ψ(xy)− ↼

ψ(x)

M(x)
.
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For (x, y) ∈ {F = 1}∩ IIIb2 we thus get by (84) (see (54) for the defini-
tion of K )

K (x, y) = ↼

ψ
( 1

xy

)
M(y)+ ⇀

ψ
( 1

x

)− ↼
ψ(xy)−↼ψ(x)

M(x)

= ↼

ψ
( 1

xy

)
M(y)− ↼

ψ(xy)
M(x) < 0.

That is, in sub-region IIIb2 the zero level of H (yet to be shown to be a
graph y = h2(x)) lies above y = k(x), and therefore (according to part (a)
of Proposition 2) also above y = 1

x . Finally, since 1 < γ < 5
3 , (126) and

(127) show that {F(x, y) = 1} ∩ {x > x0, k(x) < y < 1} is a graph of a
C2-function h2(x). The graph y = h(x) in the statement of Proposition
3 is then the concatenation of y = h1(x) for x < x0 with y = h2(x) for
x > x0.

4. We finally note that the inequalities between k(x) and 1
x were established

in Part (a) of Proposition 2. This concludes the proof of part (b).
(c) By (60) the reflected wave satisfies F < 1 if and only if H(x, y) < 0. When

γ < 5
3 we have a < 1

4 , and Lemma 8 shows that H(x, y) < 0 in IIIc.

Remark 7. While numerical plots indicate that the function y = h(x) is monotone
decreasing, we have not been able to prove this.

7.2. The Reflected Wave F in the Case γ = 5
3

This is a limiting case; for clarity of exposition we treat it separately. The fol-
lowing proposition details the properties of the reflected wave in the particular case
when the adiabatic constant is that of a monatomic gas, γ = 5

3 .

Proposition 4. Consider the interactions of two overtaking backward waves listed
in (19). Let the left and right incoming waves have strengths x and y, respectively.
For γ = 5

3 (a = 1
4 ) the outgoing reflected wave F = F(x, y) is given as follows.

(a)
↼
S
↼
S-interactions (IIIa, x, y > 1) yield F > 1: the reflected wave is a rarefac-

tion.
(b)

↼
S
↼

R-interactions (IIIb, 0 < y < 1 < x)may yield either type of reflected wave.
More precisely, in the region 0 < y < 1 < x, the set {H(x, y) = 0} ≡ {F = 1}
coincides with a graph y = h(x), and the reflected wave F is a

(b1) rarefaction (that is F > 1) if and only if y < h(x),
(b2) shock (that is F < 1) if and only if y > h(x).

The location of the graph y = h(x) is given as follows. Let y = k(x) be
the graph along which B = 1 (defined in Section 6.2). Then, in the region
0 < y � 1 � x:

(b3) the three graphs y = h(x), y = k(x), and y = 1
x all pass through (1, 1),

and
(b4) h(x) > k(x) > 1

x for x > 1.

(c)
↼

R
↼
S interactions (IIIc, 0 < x < 1 < y) yield F < 1: the reflected wave is a

shock.
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Fig. 16. q �→ α(q, 1
4 ) (γ = 5

3 , schematic)

The situation is summarized in Fig. 5 (right diagram) and in Fig. 12.

Proof. We consider each region in turn:

(a) This part follows directly from (60) and (118).
(b) The proof of this part follows the proof for part (b) of Proposition 3. We split

the argument into similar steps.
1. From (63), (59), and the properties of the map α(·; 1

4 ) (see Fig. 16) it
follows that: in region IIIb (0 < y < 1 < x) when γ = 5

3 , the two curves
{xy = 1} and {B = 1} ≡ {y = k(x)}, and the set {F = 1} ≡ {H(x, y) =
0} (yet to be shown to be a curve), do not intersect.

2. Next we will show that the equation H(x, y) = 0 has no solution in the
lower sub-region

IIIb1 := {0 < y < xy < 1 < x},
whenever a � 1

4 . (We will use this again in the proof of Proposition 5).
As in the proof of Proposition 3 we get that if (x, y) ∈ IIIb1 satisfies
H(x, y) = 0, then yζ = h1(x) where h1 is given by (64) (with a = 1

4 ).
In particular, since y < 1

x in IIIb1, we would have that h1(x) <
1
x , which

is equivalent to

α
( 1

x

)
< 0.

For a � 1
4 , or equivalently, γ � 5

3 , this implies x < 1 (see Figs. 16
and 17), which contradicts the assumption that (x, y) ∈ IIIb1. This shows
that the set {F = 1} does not meet the sub-region IIIb1 when γ � 5

3 .
3. Next consider the equation H(x, y) = 0 in the upper sub-region

IIIb2 := {0 < y < 1 < xy}.
As in the proof of Proposition 3 we use the results of Section 10.6. For
a = 1

4 it is shown there that the map y �→ H(x, y) has exactly one root
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in ( 1
x , 1) for each fixed x > 1 (recall x0 = 1 in the present case). It fol-

lows that the set {F(x, y) = 1} ∩ {x > 1, k(x) < y < 1} consists of a
C2-smooth graph {y = h2(x)}.

4. We finally note that the inequalities between k(x) and 1
x were established

in Part (b) of Proposition 2. This concludes the proof of part (b).
(c) As in the proof of Proposition 3 this part follows from Lemma 8.

7.3. The Reflected Wave F in the Case γ > 5
3

This case is the most complicated one to analyze. In particular, now the set
{F = 1} ≡ {H = 0} either meets all three of IIIa, IIIb, and IIIc, or just IIIa and
IIIc. More precisely we shall see that {H(x, y) = 0} is a curve in the (x, y) plane
which always meets IIIa and IIIc, and which meets IIIb if and only if 5

3 < γ < 2.
See Figs. 13 and 14.

Proposition 5. Consider the interactions of two overtaking backward waves listed
in (19). Let the left and right incoming waves have strengths x and y, respectively.
For γ > 5

3 (a >
1
4 ) the outgoing reflected wave F = F(x, y) is given as follows.

(a)
↼
S
↼
S-interactions (IIIa, x, y > 1)may yield either type of reflected wave. More

precisely, in the region x, y > 1, the set {F = 1} coincides with the graph of
the strictly decreasing function

j (x) = 2a

(1 − a)2x

[
a(1 + x)+

√
a2(1 + x)2 + ax(1 − a)2

]
. (65)

Set

x̄ := 4a2

1 − 3a
ȳ := 2a

√
a

(1 − √
a)2

y∗ := 4a2

(1 − a)2
. (66)

Then the graph intersects the line x = 1 at (1, ȳ). For 5
3 < γ < 2 ( 1

4 < a < 1
3 )

the graph intersects the line y = 1 at (x̄, 1), while for γ � 2 (a � 1
3 ) it has

the horizontal asymptote y = y∗ > 1 as x ↑ ∞. The reflected wave is a:
(a1) rarefaction (F > 1) if and only if y > max( j (x), 1)
(a2) shock (F < 1) if and only if 1 < y < j (x).

(b)
↼
S
↼

R-interactions (IIIb, 0 < y < 1 < x) may or may not yield either type of
reflected wave. First, for γ � 2 (a � 1

3 ) the set {F = 1} does not meet IIIb
and the reflected wave is necessarily a rarefaction (F > 1).
On the other hand, for 5

3 < γ < 2 ( 1
4 < a < 1

3 ) the set {F = 1} meets IIIb
along a graph y = h(x), defined for x > x̄ , with h(x̄) = 1. The reflected wave
F is a:
(b1) rarefaction (F > 1) if and only if y < min(h(x), 1),
(b2) shock (F < 1) if and only if x > x̄ and h(x) < y < 1.

The graph y = h(x) in the region 0 < y < 1 < x lies above the graph
y = k(x) along which B = 1 (defined in Section 6.2).
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(c)
↼

R
↼
S-interactions (IIIc, 0 < x < 1 < y)may yield either type of reflected wave.

More precisely, in IIIc the set {F = 1} consists of a graph y = i(x), 0 < x < 1,
with the properties:
(c1) a rarefaction results (F > 1) if and only if y < i(x),
(c2) a shock results (F < 1) if and only if y > i(x),
(c3) i(x) ≡ y0 (the unique zero of α(y, a)) for 0 < x < 1

y0
,

(c4) 1
x < i(x) < min

{ ȳ
x , y0

}
for 1

y0
< x < 1.

The situation is summarized in Figs. 6, 13, and 14.

Proof. We consider each region in turn:

(a) IIIa: The set {F = 1} is the zero-level of the function H(x, y)whose behavior
on IIIa is analyzed in Section 10.5. The expression in (65) is what results from
solving (117) (with equality) for y in terms of x . A calculation shows that
this is a decreasing function of x > 1, and that it has the intersection and
asymptotic properties as described above. The conclusions follows from this
together with (60) and (117).

(b) IIIb: As shown in the proof of part (b) of Proposition 4 (step 2) the set {F = 1}
does not meet subregion IIIb1:= {0 < y < xy < 1 < x} whenever a > 1

4 .
Also, according to the analysis in Section 10.6, {F = 1} meets subregion
IIIb2:= {0 < y < 1 < xy < x} if and only if 1

4 < a < 1
3 . The proper-

ties in (b1) and (b2) follow from (128) and (129). The fact that y = h(x)
(denoted h2(x) in Section 10.6) lies above y = k(x) is proved as in part (b)
of Proposition 3 (step 3).

(c) IIIc: It is convenient to consider separately the two sub-domains

IIIc1 := {0 < x < xy � 1 < y} and IIIc2 := {0 < x < 1 < xy < y}.
In IIIc1 we use the definition of H and the explicit expressions for the auxiliary

functions
↼

ψ and M to find that

H(x, y) = ↼

ψ(xy)− ↼

ψ(x)− ↼

ψ(y)M(x) = xζ α(y, a),

where α := ⇀

ψ − ↼

ψ has a unique zero y0 > 1 (since γ > 5
3 , see analysis in

Section 10.3 and Fig. 17). The properties of α then shows that the restriction
of H to IIIc1 satisfies

H(x, y)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

< 0 for 0 < x < 1
y and y > y0

≡ 0 along (x, y0), 0 < x < 1
y0

> 0 for 0 < x < 1
y and 1 < y < y0.

(67)

In sub-region IIIc2 we consider instead how H(x, y) varies as (x, y) moves
along hyperbolas {xy = C̄} (C̄ = constant) in the direction of increasing y-
values. For this we make use of the properties of the function η(y, a), which
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Fig. 17. q �→ α(q, a) when a > 1
4 (γ > 5

3 , schematic)

is analyzed in Section 10.7. In the rest of this proof we assume C̄ > 1. Let’s
define the directional derivative

d(x, y) := (−x, y) · ∇(x,y)H(x, y) = κ
2 xζ η(y, a),

where η(y, a) is defined in (131). We first observe from (130)–(131) that the
leading term in d( C̄

y , y) for y � 1 is proportional to −y
1
2 −ζ . Since ζ < 1

2

this shows that d(x, y)
∣∣
IIIc2 tends to −∞ as y ↑ ∞.

We next consider the sign of d(x, y) as we “start out” along {xy = C̄} from
(1, C̄), in the direction of increasing y. As detailed in Section 10.7, the sign
of d(x, y) coincides with that of

√
a(1 + a)

1 − √
a

− √
y + a.

Thus, if the constant C̄ satisfies
√

a(1 + a)

1 − √
a

−
√

C̄ + a � 0 ⇔ C̄ � ȳ := 2a
√

a

(1 − √
a)2

,

then, since H(1, C̄) = 0, H(x, y) < 0 along {xy = C̄}. On the other hand,
if 1 � C̄ < ȳ, then H increases along {xy = C̄} as y increases, until y = ȳ,
after which it decreases to −∞. We see from this that H has:
– no zero along {xy = C̄} when C̄ > ȳ,
– a unique zero along {xy = C̄} when 1 < C̄ � ȳ.
It follows that the zeros of H(x, y) in IIIc2 lie along a curve y = i(x), where i
satisfies i( 1

y0
) = y0 and i(1) = ȳ. It remains to argue that the graph y = i(x)

lies below the line y = y0, and we do this by showing that H(x, y0) < 0 for
1
y0
< x < 1. Indeed, by using the property

⇀

ψ(y0) = ↼

ψ(y0) together with the

explicit expressions for the auxiliary functions
↼

ψ and M , we have that

∂x H(x, y0) = −∂x
(
α(xy0, a)

)
for

1

y0
< x < 1.
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Integrating from 1
y0

to x we obtain

H(x, y0) = −α(xy0, a) < 0,

where the latter inequality follows from the properties of α(·, a)when a > 1
4 .

8. Proof of Theorem 3 Part (iii)

To analyze the outgoing contact discontinuity in Group III interactions it is
advantageous to work in (τ, u, S)-space where we track two quantities, τ and S,
that change across contacts. The wave curves in these variables were recorded in
Section 2.

8.1. Equations for Outgoing Waves in (τ, u, S)-Variables

We refer to Group III interactions in Fig. 1 and denote the specific volumes
ratios τright/τleft across the incoming waves by x̃ (leftmost) and ỹ (rightmost). We
use capital letters L ,C, I to denote the specific volume ratios across the outgoing
backward, contact, and forward waves, respectively.

We use the expressions for the wave curves in (τ, u, S)-space to traverse the
waves before and after interaction. From (10)–(13) we obtain the following equa-
tions for the outgoing strengths L , I,C :

↼
ξ (x̃)+ ↼

ξ (ỹ)
√

x̃1−γ exp(↼η(x̃)) = ↼
ξ (L)− ⇀

ξ (I )
√

C L1−γ exp(↼η(L)), (68)
↼η(x̃)+ ↼η(ỹ) = ↼η(L)+ γ ln C + ⇀η(I ), (69)

x̃ ỹ = C L I. (70)

As for Groups I and II we consider IIIa, IIIb, and IIIc interactions separately. We
find it necessary to make a further breakdown and consider each combination of
outgoing extreme waves within each of IIIa, IIIb, and IIIc. For the most part, the
type of the outgoing contact follows readily from (68)–(70) and the properties of

the auxiliary functions. The only exception is the case
↼
S
↼
S → ↼

S J
⇀

R which requires
additional arguments.

8.2. Outgoing Contact in IIIa-Interactions

These are
↼
S
↼
S -interactions, which corresponds to a < x̃, ỹ < 1, or, in terms

of incoming pressure ratios x, y > 1. It follows from the analysis in Section 6.2
that, independently of the value of γ , the outgoing backward wave is a shock, that
is, a < L < 1. There are therefore only two possibilities for the extreme outgoing
waves in this case. (The analysis in Section 7 shows that both can occur when
γ > 5

3 .) We treat them separately and show that the outgoing contact satisfies
C < 1 in both cases.
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Case 1:
↼
S J

⇀
S . In this case a < L < 1 < I < 1

a . By (69) and (107) we have that

�(x̃)�(ỹ) = �(L)�(I )Cγ . (71)

Assume for contradiction that C � 1; then (71) together with (108) give

�(L) � �(x̃)�(ỹ)�(I −1).

Also, if C � 1 then (70) gives x̃ ỹ � L I > a. Since a < x̃, ỹ, x̃ ỹ < 1, Lemma 6
gives �(x̃)�(ỹ) < �(x̃ ỹ), such that

�(L) < �(x̃ ỹ)�(I −1).

Again, since C � 1, (70) gives x̃ ỹ I −1 = C L � L > a, and we have a <

x̃ ỹ, I −1, x̃ ỹ I −1 < 1. Lemma 6 applies and gives �(x̃ ỹ)�(I −1) < �(x̃ ỹ I −1),
such that

�(L) < �(x̃ ỹ I −1).

As � is strictly decreasing on (a, 1
a ), we conclude that L > x̃ ỹ

I . However, by (70),
this implies that C < 1 and we reach a contradiction. Thus C < 1.

Case 2:
↼
S J

⇀

R. In this case a < L < 1 and I � 1. As x̃ < 1 and
⇀
ξ (I ) � 0, (68)

and (107) give that
↼
ξ (x̃)+ ↼

ξ (ỹ)
√
�(x̃) <

↼
ξ (x̃)+ ↼

ξ (ỹ)
√

x̃1−γ �(x̃) � ↼
ξ (L). (72)

Also, in this case (107) shows that (69) reduces to

�(x̃)�(ỹ) = �(L)Cγ .

Assuming, again for contradiction, that C � 1, we thus obtain

�(x̃)�(ỹ) � �(L). (73)

We proceed to show that this leads to a contradiction with (72). For this we set
�(s) := √

�(s) (s ∈ (a, 1)) and define the function � := ↼
ξ (�−1) which is

analyzed in Section 10.4. Now let

z1 := �(x̃) > 1, z2 := �(ỹ) > 1, z3 := �(L) > 1,

where we have used that � and hence � are decreasing. Hence (73) reduces to

z1z2 � z3, (74)

and Lemma 7 gives

�(z1)+ z1�(z2) � �(z1z2).

Thus, by (74) and the fact that �(z) is an increasing function, we obtain �(z1)+
z1�(z2) � �(z3), or equivalently:

↼
ξ (x̃)+

√
�(x̃)

↼
ξ (ỹ) � ↼

ξ (L). (75)

This contradicts (72), and we conclude that C < 1.
This establishes the first statement in part (iii) of Theorem 3.
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8.3. Outgoing Contact in IIIb-Interactions

These are
↼
S
↼

R-interactions for which a < x̃ < 1 < ỹ. There are now four
possible combinations of outgoing forward and backward waves. (The analysis in
Section 7 shows that they can all occur when γ > 5

3 ). We demonstrate that the
outgoing contact discontinuity C always satisfies C > 1 by considering each case
separately.

Case 1:
↼

R J
⇀
S . In this case L � 1, 1 � I < 1

a and (107) shows that (69) reduces
to

�(x̃) = �(I )Cγ .

Since a < x̃ < 1 � I , (110) shows that �(x̃) > �(I ), such that C > 1.

Case 2:
↼

R J
⇀

R. In this case L � 1, I � 1 and (107) shows that (69) reduces to

�(x̃) = Cγ .

Since a < x̃ < 1, (110) shows that �(x̃) > 1, such that C > 1.

Case 3:
↼
S J

⇀

R. In this case a < L � 1, I � 1 and (107) shows that (69) reduces
to

�(x̃) = �(L)Cγ .

We now argue by contradiction: if C � 1 then �(x̃) � �(L), and (110) shows that
L � x̃ . However, combining this with C � 1 < ỹ and (70) gives

L < L ỹ � x̃ ỹ = C L I � L I,

contradicting I � 1. Hence C > 1.

Case 4:
↼
S J

⇀
S . In this case a < L < 1 < I < 1

a and (69), (107), and (110) give

�(x̃) = �(L)�(I )Cγ < �(L)Cγ . (76)

From (68) and the fact that
↼
ξ (ỹ),

⇀
ξ (I ) < 0, we obtain that

↼
ξ (x̃) >

↼
ξ (L). As

↼
ξ is

strictly decreasing, we infer that x̃ < L . Thus �(x̃) > �(L), which combined with
(76) gives C > 1.

8.4. Outgoing Contact in IIIc-Interactions

These are
↼

R
↼
S -interactions for which a < ỹ < 1 < x̃ . As for

↼
S
↼

R-interactions,
there are four possible combinations of extreme outgoing waves. (The analysis in
Section 7 shows that they can all occur when γ > 5

3 ). We claim that the outgoing
contact discontinuity C always satisfies C > 1. Considering the same cases as for
↼
S
↼

R-interactions, it turns out that the arguments for Cases 1, 2, and 3 for
↼

R
↼
S -inter-

actions are identical to those for
↼
S
↼

R-interactions, upon interchanging x̃ and ỹ. We



Pairwise Wave Interactions in Ideal Polytropic Gases 825

therefore need to consider only Case 4,
↼
S J

⇀
S , where the outgoing strengths satisfy

a < L < 1 < I < 1
a . As above, we use (69), (107), and (110) to obtain

�(ỹ) = �(L)�(I )Cγ < �(L)Cγ . (77)

Since x̃ > 1 we have
↼
ξ (x̃) < 0 and

√
x̃1−γ exp(↼η(x̃)) < 1. At the same time

⇀
ξ (I ) < 0, and we get from (68) that

↼
ξ (ỹ) >

↼
ξ (L). As

↼
ξ is strictly decreasing we

have ỹ < L and (77) yields C > 1.
With this we have established the second statement in part (iii) of Theorem 3.

9. Proof of Theorem 3 Part (iv)

For this part of the proof we use the pressure ratios x and y of the incoming
waves. We argue as in Section 2.3 and observe that the map B �→ K(B; x, y) is
strictly increasing (see (53) for the definition of the function K). The interaction
Riemann problem is vacuum-free if and only if B = B(x, y) > 0, or equivalently
K(B; x, y) = 0 > K(0; x, y), that is

K(0; x, y) = −ν − νM(x)M(y)− ↼

ψ(x)− ↼

ψ(y)M(x) < 0. (78)

Rearranging the last expression we have that the overtaking-wave interaction pro-
duces no vacuum if and only if the incoming parameters x and y satisfy

− νM(y)− ↼

ψ(y) <
ν + ↼

ψ(x)

M(x)
. (79)

Since the function
↼

ψ is strictly increasing with
↼

ψ(0) = −ν and
↼

ψ(1) = 0, it fol-
lows that the inequality (79) is satisfied whenever y > 1. Consequently, a vacuum

is never generated in
↼
S
↼
S (IIIa) and

↼

R
↼
S (IIIc) interactions.

On the other hand, depending on the incoming pressure ratios x and y, a vacuum

may or may not emerge from an
↼
S
↼

R (IIIb) interaction. In this case y < 1 < x and
(79) takes the explicit form

v(x) := ν
√

x + a + κ(x − 1)√
x + ax2

> ν(1 − 2yζ ). (80)

Lemma 3. The function v(x) is strictly decreasing for x > 1, for all values of
γ > 1.

Proof. Differentiating and collecting terms with coefficients ν and κ , respectively,
we obtain that v′(x) < 0 (for x > 1) if and only if

√
x + a

1 + a
<

1 + 2ax + x2

1 + (1 + 2a)x
.

This relation holds since the right- and left-hand sides are separated by a linear
function: √

x + a

1 + a
<

x − 1

2(1 + a)
+ 1 <

1 + 2ax + x2

1 + (1 + 2a)x
for x > 1.
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Thus, a vacuum appears in a IIIb interaction if and only if the incoming strengths
y < 1 < x satisfy

0 < y � V (x) :=
[

1
2

(
1 − v(x)

ν

)] 1
ζ

where ζ = γ−1
2γ , (81)

and v(x) is given by (80). A calculation shows that the strictly increasing function
V (x) satisfies V (1) = 0 and

lim
x↑∞ V (x) = [ 1

2

(
1 − √

ζ
)] 1

ζ =: ŷ(γ ) < 1. (82)

See Figures 5, 6, 8, 9, 10, 11, 12, 13 and 14 for schematic plots of the vacuum
transition-curve y = V (x). As indicated in these figures, the horizontal asymptote
ŷ(γ ) of y = V (x) coincides with the horizontal asymptote of the transition curve

{B = 1} in
↼
S
↼

R (IIIb) interactions.
This completes the proof of Theorem 3.

10. Definitions and Properties of Auxiliary Functions

10.1. Auxiliary Functions for Wave Curves

The functions
↼
φ,

⇀
φ,

↼

ψ,
⇀

ψ were defined in Section 2. A calculation shows that
they are all C2 functions with Lipschitz continuous 2nd derivatives. Furthermore:

–
↼
φ(q) is strictly decreasing, tends to +∞ as q ↓ 0, tends to a as q → ∞, and
↼
φ(1) = 1.

–
⇀
φ(q) is strictly decreasing, tends to 1

a as q ↓ 0, tends to 0 as q → ∞, and
⇀
φ(1) = 1.

–
↼

ψ(q) is increasing, tends to −ν (with infinite slope) as q ↓ 0, tends to +∞ as

q → ∞, and
↼

ψ(1) = 0.

–
⇀

ψ(q) is increasing, tends to −
√

1−a
a (with finite slope) as q ↓ 0, tends to +∞

as q → ∞, and
⇀

ψ(1) = 0.

For reference, we record the relation
√

q
⇀
φ(q)

↼

ψ
( 1

q

) = −⇀

ψ(q). (83)

10.2. The Functions M, N ,m, n, �, A, D and E, and Their Properties

In this section we define a number of auxiliary functions and list some use-
ful properties. To verify these requires mostly routine calculations which are not
included. We recall that the parameter a ∈ (0, 1) is defined in 9. Define the functions
M and N by

M(q) := −
↼

ψ(q)
⇀

ψ
( 1

q

) ≡
√

q
↼
φ(q) =

⎧⎪⎨
⎪⎩

qζ 0 < q < 1

√
q+aq2

q+a q > 1

⎫⎪⎬
⎪⎭

(84)
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and

N (q) := −
⇀

ψ(q)
↼

ψ
( 1

q

) ≡
√

q
⇀
φ(q) =

⎧⎪⎨
⎪⎩

√
q+aq2

q+a 0 < q < 1

qζ q > 1

⎫⎪⎬
⎪⎭
. (85)

Both M(q) and N (q) take the value 1 at q = 1, are increasing and convex down,
tend to zero as q ↓ 0 (with infinite slope), and tend to +∞ as q → ∞.

Lemma 4. For x > 1 the function M(x) defined in (84) satisfies the following
inequalities for all values of γ > 1:

M(x) =
√

x + ax2

x + a
> xζ (86)

M(x) =
√

x + ax2

x + a
> 1 + κ(x − 1)

ν
√

x + a
. (87)

Proof. By squaring both sides in (86) and rearranging we obtain the equivalent
condition that the function

f (x) := x + ax2 − x2ζ+1 − ax2ζ

satisfies f (x) > 0 for x > 1. A calculation shows that f ′′′(x) > 0 for x > 1,
while f (1) = f ′(1) = f ′′(1) = 0. This proves (86). By squaring, rearranging, and
canceling a factor of (x − 1) we obtain that (87) holds if and only if

(1 − ζ )x + (1 + ζ ) > 2

√
x + a

1 + a
.

Squaring again and simplifying gives that this holds if and only if (x − 1)2 > 0.

Define the function m by

m(q) := q M ′(q)
M(q)

⎧⎪⎨
⎪⎩

≡ ζ 0 < q < 1,

= a(1+2aq+q2)
2(q+a)(1+aq) q > 1.

(88)

A calculation shows that m is non-decreasing and with range [ζ, 1
2 ). Hence the

function

n(q) := q N ′(q)
N (q)

= m
( 1

q

)
(q > 0) (89)

is non-increasing and with range [ζ, 1
2 ). Define the function

�(q) := q
↼

ψ ′(q)
↼

ψ(q)
=

⎧⎪⎨
⎪⎩

ζqζ

qζ−1
0 < q < 1,

q(q+2a+1)
2(q−1)(q+a) q > 1.

(90)
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A calculation shows that � is decreasing, has a vertical asymptote at q = 1, and
satisfies �(q) > 1

2 for all q > 1. Define the function A by

A(q, ξ) := 1 + aq + a2ξ

a2 + aq + ξ
(q, ξ > 0). (91)

A calculation shows that

∂q A(q, ξ) ≷ 0 ∀q > 0 ⇔ ξ ≷ 1. (92)

Define the function D by

D(q) := q
1
γ

(
1 + aq

q + a

)
(q > 0). (93)

A calculation shows that D is strictly increasing, D(1) = 1, and that D(q) ↑ ∞ as
q ↑ ∞.

Lemma 5. Define the function E by

E(x) := 1 + ax

x + a
x > 0. (94)

Then

(a) for 0 < x < 1 < y: E(xy) > E(x)E(y) ⇔ xy < 1,
(b) for 0 < x, y < 1: E(xy) < E(x)E(y).

Proof. A calculation shows that, since 0 < a < 1, E(xy) > E(x)E(y) if and only
if (1 − xy)(1 − x)(1 − y) < 0. Parts (a) and (b) follow directly from this.

10.3. The Function α and its Properties

The function α plays a key role in several parts of the arguments. We define

α(q) ≡ α(q, a) := ⇀

ψ(q)− ↼

ψ(q) q > 0. (95)

We need to locate the roots of α, and these depend sensitively on the value of
a = γ−1

γ+1 . As a first step we introduce

α̃(q) ≡ α̃(q, a) := κ(q − 1)√
q + a

− ν
(
qζ − 1

)
, q > 0, (96)

such that

α(q) =
{

α̃(q) 0 < q < 1
−α̃(q) q � 1,

(97)

where the constants κ, ν, ζ are defined in terms of a in Section 2. To analyze α̃ we
introduce the new variable

z(q) ≡ z(q, a) := q − 1√
q + a

, q > 0, (98)
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which satisfies

z′(q) = q + 2a + 1

2(q + a)
3
2

, z′′(q) = −q + 4a + 3

4(q + a)
5
2

. (99)

For fixed a ∈ (0, 1) the function z(q) is strictly increasing with a strictly increas-
ing inverse q(z) defined for z ∈ (−a−1/2,∞), and with q(0) = 1. The first two
derivatives of the latter are given by

q ′(z) = 1

z′(q)
= 2(q + a)

3
2

q + 2a + 1
, q ′′(z) = − z′′(q)

(z′(q))3
= 2(q + 4a + 3)(q + a)2

(q + 2a + 1)3
,

(100)

where q = q(z). Now, in terms of the variable z(q), we have

α̃(q) = β(z(q)),

where

β(z) := κz − ν
[
q(z)ζ − 1

]
. (101)

Thus, in order to locate the zeros of α̃ we may as well determine the zeros of β(z)
for z ∈ (−a−1/2,∞), and then translate back to q-locations. (This turns out to
be easier than to determine directly the roots of α̃.) We do so by considering the
derivatives of β(z). Differentiating β(z) and using (100) we have

β ′(z) = 2νζ

[√
1 + a

2
− qζ−1(q + a)

3
2

q + 2a + 1

]
(102)

and

β ′′(z) = 2qζ−2(q + a)2

γ
3
2 (q + 2a + 1)3

· (q − 1)(q − q̄),

where

q = q(z) and q̄ := 2a(2a + 1)

1 − a
.

This shows that the sign of β ′′(z) is the same as that of the function

Q(z) := (q(z)− 1)(q(z)− q̄), (103)

such that Q(z) has the zeros z1 := 0 and z2 := z(q̄). We note that

z2 � z1 ⇔ q̄ � 1 ⇔ a � 1

4
⇔ γ � 5

3
. (104)

To locate the zeros of β(z) we consider these regimes separately. The approach is
the same in each case: the signs of β ′′(z), together with end-point values of β ′′, β ′
and β, determine the number and locations of the roots of β. We therefore detail
the argument only in the representative case when 1 < γ < 5

3 .
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In this case the function Q(z) has two distinct roots, z1 = 0 and z2 = z(q̄) ∈
(−a−1/2, 0). From (103) we have that β ′′(z) > 0 when z belongs to (−a−1/2, z2)∪
(0,∞), andβ ′′(z) < 0 when z ∈ (z2, 0). Henceβ ′(z) is increasing on (−a−1/2, z2)∪
(0,∞) and decreasing in (z2, 0). Next, from (98), (101), and ζ < 1

2 we obtain

lim
z↓−a−1/2

β ′(z) = −∞, β ′(0) = 0, lim
z→∞β

′(z) = νζ
√

1 + a > 0. (105)

It follows that β ′(z) > 0 has two roots: one at z3 ∈ (−a− 1
2 , z2) and one at z = 0.

Also, β ′(z) < 0 on (−a− 1
2 , z3), and β ′(z) > 0 on (z3, 0) ∪ (0,∞).

Next, by (98) and (101) we have β(−a−1/2) = ν − κa−1/2 > 0 and β(0) = 0.
It follows that β itself has exactly two roots: a leftmost root z4 ∈ (−a−1/2, z3) and
the other one at z = 0. Translating back to q-variables we conclude that α̃(q) has
exactly two zeros: q(z4) =: y0 ∈ (0, 1) and q = 1. Finally, it follows from this and
(97) that the same holds for α(q) itself. See Fig. 15.

Similar arguments show that

– when γ = 5
3 the function α(q) has a single root at q = 1 (Fig. 16), and

– when γ > 5
3 the function α(q) has exactly two roots: one at q = 1 and one at

y0 ∈ (1,∞) (Fig. 17).

10.4. The Functions � and �, and Their Properties

We define the function

�(s) ≡ �(s, a) := sγ (1 − as)

s − a
, a < s <

1

a
, (106)

such that the functions ↼η and ⇀η in (11)–(13) may be expressed as follows:

↼η(l) =
⎧⎨
⎩

0 l > 1

ln�(l) a < l < 1

⎫⎬
⎭

⇀η(ι) =
⎧⎨
⎩

0 0 < ι < 1

ln�(ι) 1 < ι < 1
a

⎫⎬
⎭ . (107)

The function � satisfies the relation

�(s)�( 1
s ) = 1, a < s <

1

a
. (108)

A calculation shows that

�′(s) = −aγ sγ−1 (s − 1)2

(s − a)2
, (109)

such that � is a positive and strictly decreasing function on (a, 1
a ), and satisfies

�(s) ≷ 1 for s ≶ 1. (110)

Lemma 6. The function � has the following property: for s, t, st ∈ (a, 1
a )

�(s)�(t) < �(st) if and only if (1 − st)(1 − s)(1 − t) > 0. (111)
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Proof. By using the expression for � we have that �(s)�(t) < �(st) if and only
if

[
1 − as

s − a

] [
1 − at

t − a

]
<

1 − ast

st − a
.

Using the assumption that s, t , and st are all larger than a, a calculation shows that
this holds if and only if (1 − st)(1 − s)(1 − t) > 0.

We introduce the auxiliary function

�(z) := ↼
ξ (�−1(z)), z ∈ (1,∞), (112)

where
↼
ξ is defined in Section 2.2 and

�(s) := √
�(s), s ∈ (a, 1).

Lemma 7. The function � : (1,∞) → (0,∞) is increasing and has the property
that

�(z1)+ z1�(z2) � �(z1z2) for all z1, z2 � 1. (113)

Proof. First, since �(1) = 0, (113) follows from

�′(z) � �′(z1z), z ∈ (1,∞) (114)

by integration from z = 1 to z = z2. In turn, (114) follows if we show that � is a
concave:

�′′(z) < 0, z ∈ (1,∞). (115)

To establish (115) we first calculate �′(z):

�′(z) =
↼
ξ ′(s)
�′(s)

=
√

1 + a

aγ
·
√

1 − as(s + 1 − 2a)

s
γ
2 −1(s − 1)2

,

where s = �−1(z) ∈ (a, 1). Since�′(s) < 0 we see that (115) holds if and only if

d

ds

[√
1 − as(s + 1 − 2a)

s
γ
2 −1(s − 1)2

]
> 0 for s ∈ (a, 1).

A calculation shows that this is the case if and only if the polynomial

P(a, s) := 2a2s3 − (10a2 − 5a + 1)s2 + (8a3 − 10a2 + 14a − 6)s

−(6a2 − 5a + 1)

satisfies

P(a, s) < 0 whenever 0 < a < 1 and a < s < 1. (116)



832 Geng Chen, Erik E. Endres, & Helge Kristian Jenssen

To verify (116) we fix s ∈ (0, 1) and consider the map a �→ P(a, s) for 0 < a < 1.
Since

∂3
a P(a, s) = 48s > 0, ∂2

a P(1, s) = 4(s − 1)2(s − 3) < 0,

while

∂aP(s, s) = (s − 1)2(4s2 + 12s + 5) > 0,

and

P(s, s) = (s − 1)3(2s2 + 4s + 1) < 0,

it follows that (116) indeed holds.

10.5. The Function H(x, y) in Region IIIa

Consider the function H defined in (61). For (x, y) ∈ IIIa = {x > 1, y > 1}
we use the explicit expressions for

↼

ψ and M to get

H(x, y) = κ

⎡
⎣ (xy − 1)√

xy + a
− (x − 1)√

x + a
− (y − 1)√

y + a
·
√

x + ax2

x + a

⎤
⎦ (x, y > 1).

Thus

H(x, y) ≷ 0 ⇔ (xy − 1)√
xy + a

≷ (x − 1)√
x + a

+ (y − 1)√
y + a

·
√

x + ax2

x + a

⇔ (xy − 1)
√

x + a
√

y + a

≷ (x − 1)
√

y + a
√

xy + a + (y − 1)
√

xy + a
√

x + ax2.

For x, y > 1 this holds if and only if the same inequality with squared right-hand
side and left-hand side holds. After squaring each side, collecting positive and neg-
ative terms, canceling the common factor

√
x(x − 1)(y − 1), and rearranging, we

obtain:

H(x, y) ≷ 0 ⇔ 2(xy + a)
√

y + a
√

1 + ax

≶
√

x
[
(1 − a)xy2 + 2a(xy + a)+ (3a + 1)y

]
.

Again each side is positive; squaring, collecting terms, canceling the common factor
(1 − xy)2, and rearranging, finally yield

H(x, y) ≷ 0 ⇔ xy
[
(1 − a)2 y − 4a2

]
≷ 4a2(y + a) when x, y > 1.(117)

In particular, if 0 < a � 1
4 then (1 − a)2 y − 4a2 > 4a2(y + a) whenever y > 1.

Thus

H(x, y) > 0 whenever x, y > 1 and 0 < a � 1
4 . (118)
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10.6. The Function H(x, y) in Region IIIb2

Consider the function H defined in (61). We want to determine its zeros in the
subregion IIIb2 := {0 < y < 1 < xy}. From (61) and the explicit expressions for
↼

ψ and M , we have

H(x, y) = κ(xy − 1)√
xy + a

− κ(x − 1)√
x + a

− ν(yζ − 1)

√
x + ax2

x + a
for

1

x
< y < 1.

Fixing x > 1 we first note that

H
(
x, 1

x

) = M(x)α
( 1

x , a
)

while H(x, 1) ≡ 0, ∀x > 0. (119)

We study y �→ H(x, y) as y increases from 1
x to 1 by analyzing y �→ ∂y H(x, y).

As we shall see, its behavior depends on whether 0 < a � 1
4 ,

1
4 < a < 1

3 , or
a � 1

3 . Introducing the functions θ(z, a) and Q(z, x, a) by

θ(z, a) := (z + 2a + 1)z1−ζ

(z + a)
3
2

for z > 1, (120)

Q(z, x, a) :=
√

1 + a

2
· xζ

M(x)
· θ(z, a)− 1 for x, z > 1, (121)

we have

∂y H(x, y) = νζM(x)yζ−1 Q(xy, x, a) for (x, y) ∈ IIIb2. (122)

We next observe the following points:

(A1) By (122) the sign of ∂y H(x, y) is the same as that of Q(z, x, a)|z=xy .
(A2) According to Lemma 4,

Q(1, x, a) = xζ

M(x)
− 1 < 0, (123)

such that, in IIIb2, y �→ H(x, y) “starts out” decreasing at y = 1
x .

(A3) A calculation shows that Q(x, x, a) > 0 for x > 1 if and only if

(1 − 3a)(x − x̄) > 0 where x̄ = 4a2

1 − 3a
. (124)

(A4) We have x̄ < 0 for a > 1
3 , while

0 < x̄ � 1 ⇔ 0 < a � 1
4 , x̄ > 1 ⇔ a ∈ ( 1

4 ,
1
3

)
.

For a = 1
3 , x̄ is undefined and Q(x, x, 1

3 ) < 0.
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(A5) By (121), the sign of ∂z Q(z, x, a) coincides with that of ∂zθ(z, a). A calcu-
lation shows that the latter is given by

∂zθ(z, a) = (1 − a)(z − 1)(z − ẑ)

2(1 + a)zζ (z + a)
5
2

, where ẑ := 2a(2a + 1)

1 − a
.(125)

We have

ẑ ≷ 1 ⇔ a ≷ 1

4
.

We can now analyze the zeros of y �→ H(x, y) for 1
x < y < 1:

• 0 < a � 1
4 . By (A2)-(A5) we have

Q(1, x, a) < 0 and Q(x, x, a) > 0,

while

∂z Q(z, x, a) > 0 for 1 < z < x .

It follows from this and (122) that y �→ ∂y H(x, y) changes sign once from
negative to positive as y increases from 1

x to 1. From (119) and the properties
of the map α, we have H(x, 1

x ) ≷ 0 according to x ≷ x0. (Here x0 = 1
y0
, y0

being the unique root of α(·, a) different from 1 when a < 1
4 , and y0 = 1

when a = 1
4 .) We conclude from (119) that when 1 < γ < 5

3 then the map
y �→ H(x, y) has

∗ no root in ( 1
x , 1) when x � x0, (126)

∗ exactly one root y = h2(x) ∈ ( 1
x , 1) when x > x0. (127)

As H is a C2-map it follows that h2(x) is a C2-function.
• a > 1

4 . By (119) and the properties of α(y, a)we have H(x, 1
x ) > 0 = H(x, 1)

for x > 1. As above we have Q(1, x, a) < 0, but now ẑ > 1 (by (A5)) and

∂z Q(z, x, a) < 0 for z ∈ (1, ẑ), ∂z Q(z, x, a) > 0 for z ∈ (ẑ,∞),

and Q(z, x, a) → ∞ as z ↑ ∞ (by (121), (120), and the fact that ζ < 1
2 ). Thus,

the map z �→ Q(z, x, a) has a unique zero in (ẑ,∞)whenever a > 1
4 . By (122)

this root corresponds to a zero of y �→ ∂y H(x, y) in the interval ( 1
x , 1) if and

only if Q(x, x, a) > 0. By (A4) and (124) this is the case if and only if a < 1
3

and x > x̄ . We conclude that, for each fixed x > 1 the map y �→ H(x, y) has:

∗ a unique root y = h2(x) ∈ ( 1
x , 1) if and only if x > x̄ ,

when 1
4 < a < 1

3 , (128)

∗ no root in ( 1
x , 1) when a � 1

3 . (129)

Again, in the former case h2 is C2-smooth.
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10.7. The Function H(x, y) in Region IIIc

Consider the function H defined in (61). In IIIc:= {0 < x < 1 < y} we
analyze how H(x, y) varies along hyperbolas xy = const. Again, by using the

explicit expressions for
↼

ψ and M we have

(−x, y) · ∇(x,y)H(x, y) = κ
2 xζ η(y, a) for 0 < x < 1 and y > 1, (130)

where the function η is given by

η(y, a) := 2√
1 + a

− (1 − a)y2 + (5a + 1)y + 2a2

(1 + a)(y + a)
3
2

for y � 1. (131)

A calculation shows that η(y, a) factors as follows:

η(y, a) = − (1 − a)
(√

y + a − √
1 + a

)2

(1 + a)(y + a)
3
2

×
[√

y + a −
√

a(1 + a)

1 − √
a

][√
y + a +

√
a(1 + a)

1 + √
a

]
.

It follows from this and (130) that the directional derivative (−x, y) ·∇(x,y)H(x, y)
in IIIc has the same sign as

√
a(1 + a)

1 − √
a

− √
y + a,

which is strictly decreasing in y. In particular, since
[√

a(1 + a)

1 − √
a

− √
y + a

]∣∣∣∣
y=1

� 0 if and only if a � 1
4 ,

and since H(1, y) = H(x, 1) ≡ 0, we obtain the following:

Lemma 8. For a � 1
4 the function H(x, y) is strictly negative in IIIc = {0 < x <

1 < y}.
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