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Abstract

In this paper we study the Dirichlet problem
{−�pu = σ |u|p−2u + ω in �,

u = 0 on ∂�,

where σ and ω are nonnegative Borel measures, and �pu = ∇ · (∇u |∇u|p−2) is
the p-Laplacian. Here� ⊆ Rn is either a bounded domain, or the entire space. Our
main estimates concern optimal pointwise bounds of solutions in terms of two local
Wolff’s potentials, under minimal regularity assumed on σ andω. In addition, anal-
ogous results for equations modeled by the k-Hessian in place of the p-Laplacian
will be discussed.

1. Introduction

In this paper we develop an approach to studying the local and global point-
wise behaviour of solutions to equations with natural growth terms, under min-
imal regularity assumptions. Let � ⊆ Rn be an open set, with n � 2, and let
1 < p < n. The model problem under consideration is the following Dirichlet
problem

⎧⎨
⎩

−�pu = σu p−1 + ω in �,
u > 0 in �,
u = 0 on ∂�.

(1.1)

Throughout this paper we will assume that the potential σ is a locally finite
nonnegative measure, and the inhomogeneous term ω is a finite nonnegative mea-
sure. Here�pu = ∇·(|∇u|p−2 ∇u) is the p-Laplacian operator. Since our aim is to
study (1.1) in a low regularity setting, in all our results the p-Laplacian operator can
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be replaced by a general second order quasilinear operator with standard structural
assumptions, for instance the A -Laplacian operator (see for example [22]).

The equation (1.1) is a very natural perturbation of the p-Laplacian operator,
and the local behaviour of solutions to equations of the type (1.1) is a heavily
studied topic, beginning with the classic works of Serrin [44], Trudinger [46],
and Ladyzhenskaya and Ural’tseva [32], where suitable Lq assumptions are
imposed on σ and ω. The purpose of this article is to study the pointwise behav-
iour of solutions to (1.1), including the cases where the potential and data are too
rough to fall within the studies previously cited. In particular, classical tools such
as Harnack’s inequality are no longer valid in general for positive solutions of (1.1).

In recent papers [2] and [19] it is pointed out that the existence problem for
(1.1) is non-trivial for general measure right-hand side ω, even under the assump-
tion that σ ∈ Lq(�) for q > n/p. In these papers, the existence problem for (1.1)
for measure data ω is solved under the assumption that σ ∈ Lq(�) for q > n/p
with small norm. If one avoids the phenomenon of interaction between σ and ω,
then a simple analysis (see Remark 6.1 of [2]) shows that this Lq class of potentials
σ is optimal on the Lebesgue scale in order to solve the equation (1.1) for all finite
measures ω.

Here we investigate solutions of (1.1) taking into account the interaction
between the two terms σ and ω. The problem turns out to be less robust than
the super-critical case studied earlier in [39–41], where the σu p−1 term in (1.1)
is replaced by σuq with q > p − 1. The equations with natural growth terms
q = p − 1 have all the hallmarks of the end-point case where more subtle methods
of analysis are in order. For example, in what follows we will make extensive use
of John-Nirenberg type BMO estimates in weighted spaces where the underlying
measure is non-doubling.

As a result of our study, existence results are extended to more general classes
of measures σ which could be singular with respect to Lebesgue measure. More
salient is that our approach reveals pointwise behaviour of solutions. The latter
reduces questions of finer regularity of solutions u of (1.1) to merely checking
norm mapping properties of certain nonlinear integral operators. By now this is a
well developed approach to deducing fine properties of nonlinear equations, see for
example [4,11,12,34,35,40,41] and references therein.

The results of this paper are bound to be complicated due to the two-weight
nature of the problem (the interaction between σ and ω). To compensate for this,
we provide several examples of classes of both σ and ω where our main theorems
can be applied and where the pointwise expressions we obtain for solutions of (1.1)
simplify.

1.1. Two Special Cases

In order to motivate our main results, we will consider two extremal choices of
right-hand side ω. For this purpose, we will first discuss the problem in the entire
space Rn , in which case the Dirichlet problem (1.1) reads
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{
−�pu = σu p−1 + ω in Rn,

inf x∈Rn u(x) = 0.
(1.2)

In our previous work [25], we studied an important special case of (1.1), namely,
the fundamental solution:

−�pu = σu p−1 + δx0 in Rn, and inf
x∈Rn

u(x) = 0. (1.3)

Here δx0 is the Dirac delta measure with pole at x0. By producing sharp global
pointwise bounds for solutions (see (1.5) below), we showed that the problem
is controlled by two local potentials: the local nonlinear Wolff’s potential and a
local fractional linear potential (defined in (2.7) and (2.6) respectively). These two
potentials will play a prominent role in what follows.

Furthermore, it was shown that a necessary condition for the existence of a
positive supersolution (in any reasonable sense), that is, the integral inequality:

−�pu � σu p−1 in Rn,

is that the potential σ should satisfy a capacity condition:

σ(E) � C(σ ) capp(E) for all compact sets E ⊂ Rn, (1.4)

with C(σ ) = 1. Here capp is the standard p-capacity relative to Rn (see (2.5)
below). It is known that in many nonlinear elliptic problems with measure data
working with this capacity is very natural, see for example [10]. With this in mind,
a primary result of [25] can be summarized as follows:

There exists a positive constant C = C(n, p) such that if σ satisfies (1.4) with
C(σ ) < C , then there exists a solution of (1.3) such that:

u(x, x0) ≈ c |x − x0|
p−n
p−1 exp

(
c
∫ |x−x0|

0

(
σ(B(x, r))

rn−p

)1/(p−1) dr

r

)

· exp

(
c
∫ |x−x0|

0

σ(B(x0, r))

rn−p

dr

r

)
. (1.5)

Here and elsewhere in the paper, the symbol ≈ denotes a bilateral pointwise
bound, so that the constant c = c(n, p) > 0 in (1.5) may differ on each side of
the bound. In other words, u(x) ≈ c f (x)ecg(x), if there exist constants c1, c2 > 0
which depend only on n and p such that

c1 f (x)ec1g(x) � u(x) � c2 f (x)ec2g(x),

where u, f, g are nonnegative functions. Our principal aim is to extend this result
to when δx0 is replaced by a general measure ω. We will see that this generalisation
is by no means straightforward.
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The bound (1.5) leads to a natural candidate for a global pointwise bound for
solutions of (1.2) for generalω. Indeed, one might expect to be able to find a solution
of (1.2) with the bilateral estimate:

u(x) ≈ c
∫ ∞

0

[
1

rn−p
exp

(
c
∫ r

0

(
σ(B(x, s))

sn−p

)1/(p−1) ds

s

)

·
∫

B(x,r)
exp

(
c
∫ r

0

σ(B(z, s))

sn−p

ds

s

)
dω(z)

]1/(p−1) dr

r
. (1.6)

There is substantial evidence to support (1.6). The reader can check that it coincides
with (1.5) when ω = δx0 . Second, it would recover the pointwise bounds already
found very recently in the linear case p = 2 in [16,17]. However, in general (1.6)
turns out to be false.

In order to see that (1.6) fails in general, we introduce another class of examples,
of interest in their own right. Let us consider solutions u of

{
−�pu = σu p−1 in Rn,

infx∈Rn u = 1.
(1.7)

This equation has been heavily studied (in both the entire space and in domains) in
the case p = 2, where it is related to the so-called gauge, or the Feyman-Kac func-
tional, see for example [8,17]. We will see that for the purposes of the pointwise
bounds in this paper, this equation is essentially equivalent to the problem:

{
−�pu = σu p−1 + σ in Rn,

infx∈Rn u = 0,
(1.8)

which is of the form (1.1). Both equations (1.7) and (1.8) will be studied in Section 7,
where it will be shown that there exists a constant C = C(n, p) such that if σ sat-
isfies (1.4) with C(σ ) < C, then there exists a solution u of (1.8) such that

u(x) ≈
[

exp

(
c
∫ ∞

0

(
σ(B(x, r))

rn−p

)1/(p−1) dr

r

)
− 1

]
. (1.9)

The main observation regarding the bound (1.9) is that the linear potential
Ir
α(dσ) does not appear at all. Consequently, if 1 < p < 2, one can find examples

of σ so that quantity appearing in (1.6) is identically infinite (when ω = σ ), but
also such that the quantity in (1.9) is uniformly bounded.1 It follows that the bound
(1.6) is not sharp in general.

1 One way to do this is to pick a set E ⊂ B(0, 1) so that the Riesz capacity cap1,p(E) > 0,
but capp/2,2(E) = 0: this is possible if and only if 1 < p < 2, see Theorem 5.5.1 of [3].
Then choose σ to be the capacitary measure associated with E . By the dual definition of
capacity (Theorem 2.5.2 of [3]) the result follows.
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From the bound (1.9), along with a simple summation by parts argument, one
is led to another potential bound for solutions of (1.2):

u(x) ≈
∫ ∞

0

[
1

rn−p
exp

(
c
∫ r

0

(
σ(B(x, s))

sn−p

)1/(p−1) ds

s

)

·
∫

B(x,r)
exp

(
c
∫ r

0

(
σ(B(z, s))

sn−p

)1/(p−1) ds

s

)
dω(z)

]1/(p−1)
dr

r
.

(1.10)

The bound (1.10) coincides (up to multiplicative constants) with (1.9) ifω = σ .
However, when ω = δx0 , (1.10) clearly does not match (1.5).

1.2. An Example Theorem

It turns out that a combination of the two bounds (1.6) and (1.10) yields optimal
pointwise estimates for solutions of (1.2). As the discussion above shows, such a
result should depend on whether 1 < p � 2 or p � 2. Analogous results will
be proved in a bounded domain �. These results will be stated in Section 2. For
the purpose of this introduction we content ourselves with a statement of our main
result in the case p � 2 and � = Rn :

Theorem 1.1. Let p � 2. Suppose that there exists a solution of (1.2). Then there
exists a constant c > 0, depending on n and p, such that

u(x) � c
∫ ∞

0

[
1

rn−p
exp

(
c
∫ r

0

(
σ(B(x, s))

sn−p

)1/(p−1) ds

s

)

·
∫

B(x,r)
exp

(
c
∫ r

0

σ(B(z, s))

sn−p

ds

s

)
dω(z)

]1/(p−1) dr

r
. (1.11)

Conversely, there exists a positive constant C(n, p, c) > 0 such that if σ satisfies
(1.4) with C(σ ) < C, then there is a solution of (1.2) such that

u(x) � c1

∫ ∞

0

[
1

rn−p
exp

(
c
∫ r

0

(
σ(B(x, s))

sn−p

)1/(p−1) ds

s

)

·
∫

B(x,r)
exp

(
c
∫ r

0

(
σ(B(z, s))

sn−p

)1/(p−1) ds

s

)
dω(z)

]1/(p−1)
dr

r
,

(1.12)

for a positive constant c1 = c1(n, p, c) > 0, provided the right-hand side of the
preceding inequality is finite at a single point x ∈ Rn (for some choice of c > 0).

Remark 1.2. (Concerning the optimality of (1.11) and (1.12)) For certain choices
ofω, either (1.11) or (1.12) are sharp. This was discussed in the previous paragraph;
indeed, the display (1.11) is sharp if ω = δx0 , and (1.12) is sharp if ω = σ .
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There are many classes of ω and σ which satisfy the theorem above. In Remark
1.3 below we consider a simple condition on σ which ensures the existence of a
solution u for any measure ω with corresponding pointwise bound. This condition
in particular covers the work of [2] cited above.

In Section 8, we consider examples of conditions on ω so that one can deduce
the existence of a solution for any potential σ satisfying the condition (1.4) with a
small constant. In particular we will focus on three cases:

1. if ω is a weak A∞-weight (this includes ‘power weight’ right-hand sides),
2. if ω lies in Lq for some q > 1,
3. if ω lies in a suitable Morrey space.

In these three cases, we will see that the bound (1.12) simplifies.

Remark 1.3. From Theorem 1.1, it follows that there exists a constant C =
C(n, p) > 0 such that if p � 2 and

∫ ∞

0

(σ(B(x, r))
rn−p

)1/(p−1) dr

r
� C, for all x ∈ Rn, (1.13)

then there exists a positive constant c = c(n, p) > 0, along with a solution u of
(1.2) such that

1

c

∫ ∞

0

(
ω(B(x, r))

rn−p

)1/(p−1) dr

r
� u(x) � c

∫ ∞

0

(
ω(B(x, r))

rn−p

)1/(p−1) dr

r
.

The reader should note that the condition (1.13) is satisfied whenever σ ∈ Lq(Rn)

for q > n/p (with small Lq norm), and so the theorems presented in this paper
recover the relevant results of [2] mentioned above. An analogous statement holds
in the case 1 < p < 2, and also when Rn is replaced by a bounded domain �, as
we will see in Section 2.

The preceding remarks explain that in a certain sense, the bounds of this paper
are optimal. However, the following question remains:

Problem 1.4. Find a matching bilateral pointwise bound for solutions of (1.1)
which is sharp for each measure ω.

Answering this question would be tantamount to inverting the nonlinear oper-
ator −�pu − σu p−1 pointwise. Such a bound must necessarily have a much more
nonlinear dependence on ω.

The bounds (1.11) and (1.12) are proved by studying certain local function
spaces whose underlying measure is σ , the measure appearing in the lower order
term in (1.1). The proof of the lower bound (1.11) relies on a localisation procedure,
see Section 5.1 below. The lower bounds are then proved in Proposition 5.1.

Our approach to proving the existence of a solution to (1.1) with the corre-
sponding global upper bound (1.12) goes via the construction of solutions to cer-
tain nonlinear integral inequalities, see Section 4 below. It has already been seen in
[25] that such integral inequalities are intimately linked with solutions of (1.1). It
is these constructions which are the deepest portion of this paper. With this integral
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supersolution in hand, we complete the proofs of our main results with an iterative
argument, which is carried out in Section 6.

In Section 7, we study the equation (1.8), along with its counterpart in a bounded
domain. Our interest here is primarily to assert the bounds alluded to in display
(1.9) above and the surrounding discussion. It will be convenient to utilize a well
known substitution (see for example [1,2,23,26,36] and Proposition 7.2 below), to
study the closely related quasilinear Riccati type equation:{−�pv = (p − 1) |∇v|p + σ in �,

v = 0 on ∂�.
(1.14)

There have been many recent papers devoted to studying such equations under
a variety of assumptions on σ and v, see for example [1,2,14,20,36,42,43] and
references therein. In the process of asserting (1.9), we obtain the existence of
solutions of (1.14) with pointwise bounds for general measures σ (Theorem 7.5
below). We thereby obtain an extension to quasilinear operators of the work
of Hansson et al. [21], which complements the results in the aforementioned
papers.

1.3. Plan of the Paper

The organization of the paper is as follows. In Section 2 we precisely state our
main results. Sections 3–6 are then devoted to proving our main results: Section 3
introduces the required notation and background; Section 4 is then concerned with
the construction of supersolutions to integral equations. In Section 5, we obtain
lower bounds to solutions of (1.1). The proofs are then concluded in Section 6,
where the constructions of Section 4 are used to prove the existence of solutions of
(1.1) with corresponding bounds.

The final sections of the paper deal with applications and auxiliary results. A
study of solutions of the equation (1.7), along with their relationship to the equation
(1.14) with natural growth in the gradient is carried out in Section 7. Section 8 is
then devoted to special cases where our theorems are applicable. Finally, in Section
9, we consider fully nonlinear analogues of the Dirichlet problem (1.1) for Hes-
sian equations with natural growth terms. There are two appendices which contain
auxiliary results. In Appendix A we give an estimate for tails of Wolff’s potentials,
and in Appendix B, a duality theorem for discrete Littlewood–Paley spaces.

2. Main Results

In this section we state our results. We will use two notions of solution to study
(1.1); the local notion of p-superharmonicity and the stronger global notion of
solutions in the renormalizad sense, see Section 3.2 below for a brief discussion.

Let us first state the capacity condition on σ that will appear throughout the
paper. For an open set � ⊂ Rn , if u is a positive p-superharmonic solution of the
inequality

−�pu � σu p−1 in �, (2.1)
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then, σ obeys the following capacity condition:

σ(E) � C capp(E,�) for any compact set E ⊂ �, (2.2)

with C = 1. This was proved as Lemma 4.3 in [25].2 Here capp is the standard
p-capacity associated to the Sobolev space W 1,p(�):

capp(E,�) = inf
{‖∇ f ‖p

Lp : f � 1 on E, f ∈ C∞
0 (�)

}
. (2.3)

Since any solution of (1.1) trivially satisfies (2.1), it follows that σ satisfies (2.2)
whenever there exists a solution of (1.1). Therefore, without loss of generality we
impose that σ satisfies (2.2) throughout the paper.

To prove the existence of solutions of (1.1) with corresponding upper bounds,
we introduce a stronger condition, namely that

σ(E) � C(σ ) capp(E) for all compact sets E ⊂ Rn, (2.4)

for a positive constant C(σ ) > 0. Here capp(E) = capp(E,Rn) is the p-capacity
in the entire space, that is

capp(E) = inf
{‖∇ f ‖p

Lp : f � 1 on E, f ∈ C∞
0 (R

n)
}
. (2.5)

It is immediate that capp(E) � capp(E,�), whenever E ⊂ � ⊂ Rn . It is well

known that (as a result of the Sobolev inequality) if σ ∈ L
n
p ,∞(Rn), then σ satisfies

(2.4). However, much more general σ are admissible for (2.4), possibly singular
with respect to Lebesgue measure. Note further that (2.2) and (2.4) coincide when
� = Rn , and so our results are sharpest in the entire space.

In order to be concise, we will use standard notation for the local potentials. The
fractional linear Riesz potential Ir

α(dσ), and the nonlinear Wolff potential Wr
β,s(dσ)

are defined by

Ir
α(dσ)(x) =

∫ r

0

σ(B(x, t))

tn−α
dt

t
, and (2.6)

Wr
β,s(dσ)(x) =

∫ r

0

(σ(B(x, t))

tn−βs

)1/(s−1) dt

t
, (2.7)

respectively, where 0 < r < ∞, 0 < α < n, 0 < β < n/s, and 1 < s < ∞. If
r = ∞ then the superscript r in the notations above will be dropped.

In the quasilinear case for equations of the p-Laplacian type we set α = p, β =
1 and s = p. Recall that Theorem 1.1 from the introduction concerned the equation
(1.1) when � = Rn in the case 2 < p < n, so we will next state our result when
� = Rn and 1 < p < 2.

2 In [25], two proofs of the necessity of (2.2) are given.
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Theorem 2.1. Let 1 < p < 2, and suppose that u is a solution of (1.2) in the
p-superharmonic sense, then σ satisfies (2.4). In addition there is a constant c =
c(n, p) > 0 such that for all x ∈ Rn,

u(x) �c
∫ ∞

0

(
ecWr

1,p(dσ)(x)

rn−p

∫
B(x,r)

ecWr
1,p(dσ)(z)dω(z)

) 1
p−1 dr

r
. (2.8)

On the other hand, under the assumption that the right-hand side of (2.9) is finite
for some x ∈ Rn and c > 0, there is a positive constant C0 = C0(n, p, c) > 0,
such that if σ satisfies (2.4) with constant C(σ ) < C0, then there exists a solution
u of (1.2). Furthermore, there is a positive constant c1 = c1(n, p, c) such that the
constructed solution u satisfies

u(x) �c1

∫ ∞

0

(
ecWr

1,p(dσ)(x)

rn−p

∫
B(x,r)

ecIr
p(dσ)(z)dω(z)

) 1
p−1 dr

r
, (2.9)

for all x ∈ Rn.

The discussion in the introduction shows that bounds in Theorem 2.1 are again
optimal (see Remark 1.2). In particular, display (2.9) is sharp if ω = δx0 , and (2.8)
is sharp if ω = σ .

As in Remark 1.3, it follows that if 1 < p < 2, and there exists a constant
C > 0 such that: ∫ ∞

0

σ(B(x, r))

rn−p

dr

r
� C for all x ∈ Rn,

then there exists a positive constant c = c(n, p) > 0 and a p-superharmonic
solution of (1.2) such that

1

c

∫ ∞

0

(
ω(B(x, r))

rn−p

)1/(p−1) dr

r
� u(x) � c

∫ ∞

0

(
ω(B(x, r))

rn−p

)1/(p−1) dr

r
.

The corresponding statement continues to hold in bounded domains. For examples
of well known classes of ω where our theorems apply, see Section 8.

Remark 2.2. The condition used in the existence result above, that (2.9) is finite at
a single point x ∈ Rn , is equivalent to the same expression (2.9) being finite almost
everywhere in Rn . In fact, either statement follows from the following weaker tail
estimate: there exists x0 ∈ Rn and R > 0 such that:

∫ ∞

R

[
1

rn−p
exp

(
c
∫ r

0

(
σ(B(x0, s)\B(x0, R))

sn−p

)1/(p−1) ds

s

)

·
∫

B(x0,r)
exp

(
c
∫ r

0

(
σ(B(z, s))

sn−p

)
ds

s

)
dω(z)

]1/(p−1) dr

r
< ∞. (2.10)

We discuss this further in Section 4.2. The analogous result is true when p � 2,
and also in the case of bounded domains treated below.
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Let us now turn to our main results for the equation (1.1) in bounded domains
�. Define d(x) = inf y∈∂� |x − y|, to be the distance to the boundary of�, and let
d� be the diameter of �.

Theorem 2.3. (Lower bounds) Let 1 < p < n. Suppose that u is a p-superharmon-
ic solution of (1.1) in a bounded domain�. Then there is a constant c = c(n, p) >
0, such that for all x ∈ �

(i) if 1 < p � 2 then:

u(x) � c
∫ d(x)

5

0

(
ecWr

1,p(dσ)(x)

rn−p

∫
B(x,r)

ecWr
1,p(dσ)(z)dω(z)

) 1
p−1 dr

r
. (2.11)

(ii) if 2 � p < n then:

u(x) � c
∫ d(x)

5

0

(
ecWr

1,p(dσ)(x)

rn−p

∫
B(x,r)

ecIr
p(dσ)(z)dω(z)

) 1
p−1 dr

r
. (2.12)

This theorem, along with the lower bounds in our previous stated results in the
entire space, follow from Proposition 5.1 below. Let us now turn to the existence
of solutions with corresponding global upper bounds.

Theorem 2.4. (Existence and upper bounds) Let 1 < p < n. Suppose that

– 1 < p � 2 and (2.13) below is finite for some x ∈ � and c > 0, or
– 2 � p < n and (2.14) below is finite for some x ∈ � and c > 0.

Then there is a positive constant C0 = C0(n, p, c) such that if σ satisfies (1.4) with
C(σ ) < C0, then there exists a renormalized solution u of (1.1) in� satisfying the
following pointwise estimate for x ∈ �:

(i) if 1 < p � 2:

u(x) � c1

∫ 2d�

0

(
ecWr

1,p(χ�dσ)(x)

rn−p

∫
B(x,r)∩�

ecIr
p(χ�dσ)(z)dω(z)

) 1
p−1 dr

r
,

(2.13)

(ii) if 2 � p < n:

u(x) � c1

∫ 2d�

0

(
ecWr

1,p(χ�dσ)(x)

rn−p

∫
B(x,r)∩�

ecWr
1,p(χ�dσ)(z)dω(z)

) 1
p−1 dr

r
.

(2.14)

Here c1 = c1(c, n, p) > 0.
These theorems remain to be optimal by looking at the special cases where

ω = δx0 or ω = σ , as in our theorems stated in the entire space.
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3. Preliminaries

3.1. Notation

For an open set �, and a measure σ defined on �, we let L p(�, dσ) (or
L p

loc(�, dσ)) be the space of functions integrable (or locally integrable) to the pth
power with respect to the measure σ . When σ is Lebesgue measure, we instead
write L p(�) (or L p

loc(�)).
For a measure defined on Rn , the mixed norm space L p(�q , dσ) is defined as

the space of sequences of functions { fQ}Q∈Q such that:

∣∣∣∣ f
∣∣∣∣

L p(�q , dσ) =
⎛
⎜⎝
∫
�

⎡
⎣∑

Q∈Q

| fQ(x)|q
⎤
⎦

p/q

dσ(x)

⎞
⎟⎠

1/p

< ∞. (3.1)

Here Q is the lattice of dyadic cubes in Rn , see Section 3.4.
We define the Sobolev space W 1,p(�) (respectively W 1,p

loc (�)) to be the space
of functions u such that u ∈ L p(�) and |∇u| ∈ L p(�) (respectively u ∈ L p

loc(�)

and |∇u| ∈ L p
loc(�)).

Throughout this paper we use the display A � B, to mean A � C B, with C
a positive constant depending on the relevant allowed parameters of the particular
theorem or lemma being proved. For a σ measurable set E , we will often denote by
|E |σ = σ(E), the σ measure of E . Finally, for a dyadic cube P ∈ Q (see Section
3.4), the display:∑

Q⊂P

reads as “the sum over all dyadic cubes Q which are contained in P”.

3.2. Notions of Solution

Let μ be a nonnegative measure defined on a (possibly unbounded) domain�,
and extend μ to be 0 outside � so that the resulting measure is defined on Rn . In
this section we introduce two of the notions of solution for quasilinear equations
with measure data, that is, the Dirichlet problem:{ −�pu = μ in �,

u = 0 on ∂�.
(3.2)

It is well known, see for example [27], that there are several notions of solution
independently developed to study (3.2). We will briefly discuss two of them: renor-
malized solutions and p-superharmonic solutions.

Superharmonic solutions. We say that u : � → (−∞,∞] is p-superharmon-
ic if u is a lower semicontinuous function, not identically infinite in any component
of �, and satisfying the following comparison principle: whenever D ⊂⊂ � and
h ∈ C(D̄) is p-harmonic in D, with h � u on ∂D, then h � u in D.

It is well known (see, for instance [22]), that for each p-superharmonic function
in � we can associate a measure μ[u] on �. We then say that −�pu = μ in �
in the p-superharmonic sense, if u is p-superharmonic in �, and μ[u] = μ in the
sense of distributions. In particular:
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Definition 3.1. We define u � 0 to be a solution of −�pu = σu p−1 + ω in the

p-superharmonic sense if u ∈ L p−1
loc (�, dσ) and dμ[u] = u p−1dσ + dω.

Renormalized solutions. When working in a bounded domain �, the more
refined notion of renormalized solutions, introduced by P. L. Lions and F. Murat,
is often most convenient, see [10] for a comprehensive introduction. Given a finite
nonnegative measureμ, it is well known that we can decompose it asμ = μ0 +μs ,
where μ0 is absolutely continuous with respect to capp, and μ+

s is singular with
respect to capp. We say that u is a renormalized solution of (3.2) if

Tk(u) ∈W 1,p
0 (�), for all k > 0; u ∈ L(p−1) n

n−p ,∞(�);
and ∇u ∈ L(p−1) n

n−1 ,∞(�).
(3.3)

In addition, for all Lipschitz functions h ∈ W 1,∞(R) such that its derivative h′ has
compact support we have∫

�

|∇u|p h′(u)φdx +
∫
�

|∇u|p−2 ∇u · ∇φh(u)dx =
∫
ω

h(u)φdμ0

+ h(∞)

∫
�

φdμs, (3.4)

whenever φ ∈ W 1,r (�)∩ L∞(�)with r > n, and so that h(u)φ ∈ W 1,p
0 (�). Here

h(∞) = limt→∞ h(t). In particular:

Definition 3.2. A function u satisfying (3.3) is a renormalized solution of (1.1) if
u ∈ L p−1

loc (�, dσ), and for any h as above:∫
�

|∇u|p h′(u)φdx +
∫
�

|∇u|p−2 ∇u · ∇φh(u)dx =
∫
�

|u|p−2uh(u)φdσ

+
∫
ω

h(u)φdμ0 + h(∞)

∫
�

φdμs, (3.5)

whenever φ ∈ W 1,r (�) ∩ L∞(�) with r > n, and so that h(u)φ ∈ W 1,p
0 (�).

The class of renormalized solutions is narrower than p-superharmonic solu-
tions. The wider class of test functions prevents the existence of solutions which
are influenced by a measure supported on the boundary of the domain, as in some
well known counterexamples for uniqueness of p-superharmonic functions (see
[27]). This additional property yields a global potential estimate. Recall the defi-
nition of the Wolff potential from (2.7) with β = 1 and s = p.

Theorem 3.3. (Potential estimates) Let μ be a nonnegative finite measure in �.
There exists a positive constant C1 = C1(n, p) such that the following two state-
ments hold:

a) Suppose B(x, 2r) ⊂ �, and suppose that u satisfies −�pu = μ in B(x, 2r) in
the p-superharmonic sense, then:

u(x) � 1

C1
Wr

1,p(dμ)(x). (3.6)
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b) Suppose in addition that� is a bounded domain, and suppose that u is a renor-
malized solution of (3.2), then there is a positive constant C1 = C1(n, p) such
that:

1

C1
Wd(x)/2

1,p (dμ)(x) � u(x) � C1W2d�
1,p (dμ)(x). (3.7)

Proof. Part a) and the lower bound of part b) in Theorem 3.3 are due to
Kilpeläinen and Malý [29]. The upper bound is a global version of a local
estimate of Kilpeläinen and Malý [30] obtained in [40]. �


3.3. Consequences of the Capacity Condition

Let σ be a measure defined on Rn . In what follows we will need several conse-
quences of the capacity condition (2.4), that is, that there exists a constant C(σ ) > 0
such that

σ(E) � C(σ )capp(E) for all compact sets E ⊂ Rn .

The following result is a well-known theorem, due to work of Maz’ya, D. Adams
and B. Dahlberg, which recasts the capacity condition as a multiplier condition:

Theorem 3.4. ([33]) Suppose that a nonnegative measure satisfies (2.4) with con-
stant C(σ ), then the following inequality holds:

∫
Rn

|h|pdσ � C(σ )

(
p

p − 1

)p ∫
Rn

|∇h|pdx, for all h ∈ C∞
0 (R

n). (3.8)

Let us next note that there exists a positive constant cn,p, depending on n and p, so
that if σ satisfies (2.4), then for each ball B(x, r) ⊂ Rn

σ(B(x, r)) � C(σ )cn,prn−p. (3.9)

Display (3.9) is a special case of (2.2). It follows from the elementary fact:

capp(B(x, r)) = capp(B(0, 1)) · rn−p.

In what follows we will need several technical lemmas from [25]. We first quote
Corollary 4.11 in [25], which is a John-Nirenberg type result:

Lemma 3.5. Suppose that σ satisfies (2.4). Then whenever β · C(σ ) < 1, there is
a constant C(n, p) > 0 such that:∫

E
e βW1,p(χE dσ)(y)dσ(y) � C(n, p)

1 − C(σ )β
σ(E), for all compact sets E ⊂ Rn .

(3.10)

The second result shows that the Hausdorff measure condition (3.9) gives us con-
trol over the tail of the Wolff potential. We present the proof in Appendix A
below, in slightly more generality, since the proof was deferred from our previous
paper [25].



640 Benjamin J. Jaye & Igor E. Verbitsky

Lemma 3.6. Let σ be satisfy the ball condition (3.9). Then there is a positive
constant C = C(n, p,C(σ )) > 0, so that for all x ∈ R

n and y ∈ B(x, t), t > 0,
it follows: ∣∣∣∣∣

∫ ∞

t

[(
σ(B(x, r))

rn−p

) 1
p−1 −

(
σ(B(y, r))

rn−p

) 1
p−1
]

dr

r

∣∣∣∣∣ � C. (3.11)

Our second result using the ball estimate is a weighted exponential integrability
result from the [24]. The class of weights is the so-called weak A∞ class, which
we define now:

Definition 3.7. A nonnegative function w is a weak A∞ weight, if there are
constants Cw > 0 and θ > 0 such that, for all balls B, and measurable subsets
E ⊂ B:

|E |w
|2B|w � Cw

( |E |
|Q|
)θ
. (3.12)

Theorem 3.8. ([24]) Let ω be a weak A∞ weight, and suppose σ is a measure such
that (3.9) holds. Then for any 0 < q < ∞, there exist finite positive constants
C, c > 0 depending on n, p,C(σ ), q; along with the constants θ and Cω from
(3.12), so that:

1

|2B|ω
∫

2B
exp

[
c
∫ ∞

0

(
σ(B(x, s) ∩ B)

sn−p

)q ds

s

]
dω � C, (3.13)

for all balls B ⊂ Rn.

3.4. Dyadic Carleson Embedding Theorem

In this section we briefly discuss the dyadic Carleson measure theorem, which
we employ several times. First, recall that a cube Q in Rn is a dyadic cube (we
will write Q ∈ Q), if Q can be written Q = [2km, 2k+1m)n for some k,m ∈ Z.
We denote by �(Q) the sidelength of the cube Q. The reader should note that if P
and Q are two dyadic cubes with non-empty intersection, then either Q ⊂ P , or
P ⊂ Q.

It is known, see [25] Lemma 4.7, that condition (2.4) is equivalent to the exis-
tence of a constant C̃ > 0, so that σ satisfies the discrete Carleson measure condi-
tion: ∑

Q⊂P

cQ |Q|p′
σ � C̃ |P|σ for all P ∈ Q. (3.14)

Here, and throughout this paper, the sequence cQ is defined:

cQ = �(Q)
p−n
p−1 . (3.15)

Furthermore, there exists a constant A = A(n, p) > 0 such that: C̃/A � C(σ ) �
AC̃ , with C(σ ) as in (2.4). The dyadic Carleson embedding theorem (see, for
example, [7,37]), is then:
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Theorem 3.9. Suppose that σ satisfies (3.14) with constant C̃ > 0. Then, for any
s > 1,

∑
Q∈Q

cQ |Q|p′
σ

∣∣∣∣ 1

|Q|σ
∫

Q
f dσ

∣∣∣∣
s

� C̃
( s

s − 1

)s || f ||sLs (dσ), (3.16)

for every f ∈ Ls(dσ).

3.5. Dyadic Shifting Lemma

Here we describe a tool to transfer results for dyadic potential operators to their
continuous analogues. This technique goes back to the seminal papers [13,18].
Define Qt to be the shifted dyadic lattice by t ∈ Rn , that is Qt = { Q+t : Q ∈ Q}.
Lemma 3.10. Let φ and ψ be two functions mapping measurable sets into non-
negative measurable functions, so that whenever A ⊂ B are two measurable sets,
and x ∈ Rn, it follows that φ(A)(x) � φ(B)(x), and ψ(A)(x) � ψ(B)(x).

Then, there exists j0 = j0(n) ∈ N, and C = C(n, p) > 0, such that for all
k ∈ Z, and x ∈ Rn :
∫ 2k

0

(
φ(B(x, r))(x))

rn−p

∫
B(x,r)

ψ(B(x, r))(z)dω(z)

)1/(p−1) dr

r

� C∣∣B(0, 2k+ j0)
∣∣
∫

B(0,2k+ j0 )

∑
x∈Qt ,Qt ∈Qt
�(Qt )�2k+ j0

cQt

(
φ(Qt )(x)

∫
Qt

ψ(Qt )(z)dω(z)

) 1
p−1

dt.

This lemma has the same proof as the standard dyadic shift argument, for instance
see [6, p. 399]. We will use this result with ψ and φ having certain exponential
weights which will clearly satisfy the hypothesis of the Lemma.

4. A Nonlinear Integral Obstacle Problem

In this section we will construct solutions to certain nonlinear integral inequal-
ities. This is the principal analytic argument in our existence theorems with corre-
sponding upper bounds.

Let σ be a nonnegative measure satisfying:

σ(E) � C(σ ) capp(E), for all compact sets E ⊂ Rn, (4.1)

where the capacity capp(E) is defined as in (2.5). Here the constant C(σ ) is reserved
to be the least constant such that (4.1) holds.

Consider the nonlinear integral operator T , acting on nonnegative functions
f � 0, f ∈ Lp−1

loc (R
n, dσ) by

T ( f )(x) = W1,p( f p−1dσ)(x)

=
∫ ∞

0

( 1

rn−p

∫
B(x,r)

f p−1(z)dσ(z)
)1/(p−1) dr

r
. (4.2)
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This section is devoted to the following problem: for a finite positive measure
ω, find a positive function v such that v ∈ Lp−1

loc (dσ) such that

{
v(x) � W1,p(ω)(x) and,

there exists C > 0 such that T (v) � C(v − W1,p(ω)).
(4.3)

Solutions of (4.3) are solutions of a nonlinear obstacle problem for the integral oper-
ator T , with obstacle W1,p(ω). Given a solution of (4.3), a simple weak continuity
argument shows the existence of solutions to (1.1), as we will show in Section 6.

We will present a solution of (4.3) under the assumption that C(σ ) is small
enough. The function v, as well as the argument to prove (4.3), will differ in the
cases 1 < p � 2, and p � 2. Consider the function v, defined by

v(x) =
∫ ∞

0

(
eβW1,p(χB(x,r)dσ)(x)

rn−p

∫
B(x,r)

eβVB(x,r)(z)dω(z)

)1/(p−1)
dr

r
, (4.4)

where the potential VB(x,r) differs in the case 1 < p � 2 and p � 2:

VB(x,r)(y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
j=−∞

(
σ(B(y, r/2 j ) ∩ B(x, r))

(r/2 j )n−p

)1/(p−1)

, if p � 2,

∞∑
j=0

σ(B(y, r/2 j ) ∩ B(x, r))

(r/2 j )n−p
, if 1 < p � 2.

(4.5)

Using (3.9), the following inequalities hold

VB(x,r)(y) �
{

Wr
1,p(χB(x,r)dσ)(y)+ 1 if p � 2,

Ir
p(χB(x,r)dσ)(y)+ 1 if 1 < p � 2.

(4.6)

As a result of (4.6), v is less than a constant multiple of the right-hand side of the
bound in either (2.13) or (2.14), depending on the value of p. Our primary result is
the following:

Theorem 4.1. Suppose that there exists β > 0 such that v is finite almost every-
where. Then there is a constant C0 = C0(n, p) > 0, such that if βC(σ ) < C0, then
v is a solution of (4.3).

We will show in Section 4.2 below that v < ∞ almost everywhere for some
β > 0 if and only if it is finite at a single point.

The particular (and slightly cumbersome) structure of V in (4.5) is in order to
obtain a clean iteration argument. One should keep in mind in what follows that the
exponent β in the exponential weights appearing in (4.4) have to remain constant
in the iteration.

Proof of Theorem 4.1. To begin the proof, write

W1,p(v
p−1dσ)(x) � Iout + Iin,
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where Iout and Iin are defined by

Iout =
∫ ∞

0

(
1

rn−p

∫
B(x,r)

{∫ ∞

r

(
eβW1,p(χB(y,s)dσ)(y)

sn−p

·μB(y,s)
)1/(p−1) ds

s

}p−1

dσ(y)

)1/(p−1)
ds

s
, (4.7)

and

Iin =
∫ ∞

0

(
1

rn−p

∫
B(x,r)

{∫ r

0

(
eβW1,p(χB(y,s)dσ)(y)

sn−p

·μB(y,s)
)1/(p−1) ds

s

}p−1

dσ(y)

)1/(p−1)
ds

s
, (4.8)

here:

μB(y,s) =
∫

B(y,s)
eβVB(y,s)(z)dω(z). (4.9)

To prove Theorem 4.1, it clearly suffices to prove that there exists C0 > 0 such that
if βC(σ ) < C0, then the subsequent two inequalities hold:

Iout � v − W1,p(ω) and, (4.10)

Iin � v − W1,p(ω). (4.11)

We will first prove the inequality (4.10). This inequality is responsible for the build-
up of the tails of the potentials, it is relatively simple and the proof is valid for all
1 < p < n. The difficulty thus lies in inequality (4.11). By inspection, (4.11) will
immediately follow from the inequality:

∫
B(x,r)

⎧⎨
⎩
∫ r

0

(
eβW1,p(χB(y,s)dσ)(y)

sn−p
· μB(y,s)

)1/(p−1)
ds

s

⎫⎬
⎭

p−1

dσ(y)

� μB(x,Ar) − ω(B(x, Ar)), (4.12)

for a constant A > 0 depending on n and p (in our arguments A will be at most 4).
Here μB(x,r) is as in (4.9).

In particular, once (4.10) is proved, the problem of finding a solution of (4.3)
is reduced to a local integral estimate. We will prove that (4.10) and (4.11) in the
following series of lemmas. �

Lemma 4.2. There exists C0 = C0(n, p) > 0, so that if C(σ ) < C0, then (4.10)
holds.
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Proof. For y ∈ B(x, r) with s > r , it is clear that B(x, 2s) ⊃ B(y, s). Therefore

Iout �
∫ ∞

0

(
1

rn−p

∫
B(x,r)

{∫ ∞

r

(
eβW1,p(χB(x,2s)dσ)(y)

sn−p

·μB(x,2s)
)1/(p−1) ds

s

}p−1

dσ(y)

)1/(p−1)
ds

s
.

Let us re-write this in the following way

Iout �
∫ ∞

0

(
1

rn−p

)1/(p−1)

I I I
dr

r

with I I I = I I I (x, r) defined by

I I I =
⎛
⎜⎝
∫

B(x,r)

⎧⎨
⎩
∫ ∞

r

(
eβW1,p(χB(x,2s)dσ)(y)

sn−p · μB(x,2s)

)1/(p−1)
ds

s

⎫⎬
⎭

p−1

dσ(y)

⎞
⎟⎠

1/(p−1)

.

To estimate I I I , note that for any y ∈ B(x, r), an application of Lemma 3.6 yields

exp
(
βW1,p(χB(x,2s)dσ)(y)

)
� C exp

(
βW1,p(χB(x,2r)dσ)(y)

)

· exp

(
β

∫ ∞

r

(
σ(B(x, t) ∩ B(x, 2s))

tn−p

)1/(p−1) dt

t

)
.

(4.13)

Substituting display (4.13) into I I I and integrating through, we estimate

I I I �
∫ ∞

r

[
μB(x,2s)

sn−p exp

(
β

∫ ∞
r

(
σ(B(x, t) ∩ B(x, 2s))

tn−p

)1/(p−1) dt

t

)]1/(p−1)
ds

s

·
(∫

B(x,2r)
eβ(p−1)W1,p(χB(x,2r)dσ)(y)dσ(y)

)1/(p−1)
. (4.14)

Next, by the exponential integrability lemma (Lemma 3.5), we assert that there is
a constant C0 such that if βC(σ ) < C0, then

I I I �
∫ ∞

r

[
μB(x,2s)

sn−p exp

(
β

∫ ∞
r

(
σ(B(x, t) ∩ B(x, 2s))

tn−p

)1/(p−1) dt

t

)]1/(p−1)
ds

s

· σ(B(x, 2r))1/(p−1). (4.15)

Substituting the estimate (4.15) for I I I into the definition of Iout, we obtain

Iout �
∫ ∞

0

(
σ(B(x, 2r))

rn−p

)1/(p−1) ∫ ∞

r

(μB(x,2s)

sn−p

· exp

(
β

∫ ∞

r

(
σ(B(x, t) ∩ B(x, 2s))

tn−p

)1/(p−1) dt

t

))1/(p−1)
ds

s

dr

r
.

(4.16)
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From which an application of Fubini’s theorem yields the inequality

Iout �
∫ ∞

0

(μB(x,2s)

sn−p

)1/(p−1)
[∫ s

0

(
σ(B(x, 2r))

rn−p

)1/(p−1)

· exp

(
β/(p − 1)

∫ ∞

r

(
σ(B(x, t) ∩ B(x, 2s))

tn−p

)1/(p−1) dt

t

)
ds

s

]
dr

r
.

(4.17)

On the other hand, employing (4.1) in the form of (3.9), it follows

exp

(
β/(p − 1)

∫ ∞

s

(
σ(B(x, t) ∩ B(x, 2s))

tn−p

)1/(p−1) dt

t

)
�C(n, p,C(σ ), β).

(4.18)

Note that here the constant is independent of r . Changing variables, and applying
(4.18) in (4.17), we derive the following inequality for Iout:

Iout �
∫ ∞

0

(μB(x,s)

sn−p

)1/(p−1)
∫ s

0

(
σ(B(x, r))

rn−p

)1/(p−1)

· exp

(
β/(p − 1)

∫ s

r

(
σ(B(x, t)

tn−p

)1/(p−1) dt

t

)
dr

r

ds

s
.

The required result will now follow from integration by parts. Indeed, note that

∫ s

0

(
σ(B(x, r))

rn−p

)1/(p−1)

exp

(
β/(p − 1)

∫ s

r

(
σ(B(x, t)

tn−p

)1/(p−1) dt

t

)
dr

r

�
{

exp

(
β/(p − 1)

∫ s

0

(
σ(B(x, t)

tn−p

)1/(p−1) dt

t

)
− 1

}
.

Combining our estimates, we obtain the following conclusion

Iout �
∫ ∞

0

(μB(x,s)

sn−p

)1/(p−1)

·
{

exp

[
β/(p − 1)

∫ ∞

0

(
σ(B(x, t) ∩ B(x, s))

tn−p

)1/(p−1) dt

t

]
− 1

}
ds

s
.

Finally, note that since μB(x,r) � ω(B(x, r)), the inequality (4.10) follows. �


4.1. The Proof of (4.12)

From the discussion after display (4.11), Theorem 4.1 will be proved once we
show that we can choose C0 > 0 depending on n and p, such that if βC(σ ) < C0,
then (4.12) holds for all balls B(x, r). We first prove (4.12) when 1 < p � 2:
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Lemma 4.3. Let 1 < p � 2. There exists C0 = C0(n, p) > 0 such that if βC(σ ) <
C0, with C(σ ) as in (4.1), then there is a constant C = C(n, p) > 0 such that for
all B(x, r)

∫
B(x,r)

{∫ r

0
eβW1,p(χB(x,r)(y))

(
1

tn−p

∫
B(y,t)

eβVB(y,t))(z)dω(z)

)1/(p−1)
}p−1

dσ(y)

� C
∫

B(x,2r)

(
eβVB(x,2r)(z) − 1

)
dω(z). (4.19)

Proof. Without loss of generality, let ω ≡ 0 and σ ≡ 0 on Rn\B(x, 2r). Then,
note that by definition

VB(x,2r)(z) =
∞∑
j=0

σ(B(z, 2r/2 j ))

(2r/2 j )n−p
. (4.20)

We will display the local potential in (4.19) as a sum and then use a sequence space
imbedding. Indeed, the left-hand side of (4.19) is less than a constant multiple of

∫
B(x,r)

⎧⎨
⎩

∞∑
j=0

eβW1,p(χB(y,r/2 j )dσ)(y)
[( r

2 j

)p−n

·
∫

B(y,r/2 j )

eβVB(y,r/2 j )(z)dω(z)

]1/(p−1)
}p−1

dσ(y). (4.21)

Since 1 < p � 2, it follows that || · ||�1 � || · ||�p−1 . Hence the previous display is
less than

∫
B(x,r)

⎡
⎣ ∞∑

j=0

e(p−1)βW1,p(χB(y,r/2 j )dσ)(y)
( r

2 j

)p−n

·
∫

B(y,r/2 j )

eβVB(y,r/2 j )(z)dω(z)

⎤
⎦ dσ(y). (4.22)

By Fubini’s theorem, and since B(z, 2r/2 j ) ⊃ B(y, r/2 j ) for z ∈ B(y, r/2 j ), the
display (4.22) is dominated by

∫
B(x,2r)

∞∑
j=0

( r

2 j

)p−n
∫

B(z,r/2 j )

eβW1,p(χB(y,r/2 j )dσ)(y)dσ(y)eβVB(z,2r/2 j )(z)dω(z).

Appealing to the exponential integrability lemma (Lemma 3.5), there exists C0 > 0
such that if βC(σ ) < C0, this last line is less than a constant multiple of

∫
B(x,2r)

∞∑
j=0

( r

2 j

)p−n ∣∣∣B(z, r/2 j−1)

∣∣∣
σ

eβVB(z,2r/2 j )(z)dω(z). (4.23)



Local and Global Behaviour of Solutions to Nonlinear Equations 647

Indeed, in order to apply Lemma 3.5 to obtain (4.23), we observe:∫
B(z,r/2 j )

eβW1,p(χB(y,r/2 j )dσ)(y)dσ(y) �
∫

B(z,r/2 j−1)

eβW1,p(χB(z,r/2 j−1)dσ)(y)dσ(y),

from which a direct application of the exponential integrability lemma yields (4.23).
The proof will be completed by summation by parts. To this end, note that the

display (4.23) is equal to

∫
B(x,2r)

∞∑
j=0

(
2r

2 j

)p−n ∣∣∣B(z, 2r/2 j )

∣∣∣
σ

exp

⎛
⎝β

∞∑
k= j

σ(B(z, 2r/2k))

(2r/2k)n−p

⎞
⎠ dω(z).

(4.24)

Recall the following elementary summation by parts result (see for example [15]):
Suppose that {λ j } j is a nonnegative sequence such that 0 � λ j � 1, then

∞∑
j=0

λ j e
∑∞

k= j λk � 2
(

e
∑∞

j=0 λ j − 1
)
. (4.25)

Note that (4.25) can be applied in (4.24) provided C0 < 1, and hence the lemma
follows by recalling the definition of VB(x,2r) from (4.20). �


We shall now move onto p > 2, which requires a more involved argument
based on Theorem 3.9. Recall the definition of the local potential VB(x,r) from
(4.5).

Lemma 4.4. Let 2 < p < n. There exists C0 = C0(n, p), such that ifβC(σ ) < C0,
then there is a constant C = C(n, p) > 0 such that

∫
B(x,2k )

{∫ 2k

0
eβW1,p(χB(y,t)(y))

(
1

tn−p

∫
B(y,t)

eβVB(y,t)(z)dω(z)

) 1
p−1
}p−1

dσ(y)

� C
∫

B(x,2k+1)

(
eβVB(x,2k+1)(z) − 1

)
dω(z), (4.26)

for all balls B(x, 2k), with k ∈ Z.

Proof. Without loss of generality, suppose σ ≡ 0 and ω ≡ 0 on Rn\B(x, 2k+1).
By the dyadic shifting lemma (Lemma 3.10), if � � k + k0, with k0 > 0 depending
on n, the left-hand side of (4.26) is less than a constant multiple of∫

B(x,2k )

{
1

2�n

∫
B(0,2�)

∑
y∈Qt ,Qt ∈Qt
�(Qt )�2 j+ j0

cQ eβW1,p(χQt dσ)(y)

·
(∫

Qt

eβVQt (z)dω(z)

)1/(p−1)

dt

}p−1

dσ(y), (4.27)

here cQ is as in (3.15), and j0 depends only on n.
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Since p > 2, it follows from Jensen’s inequality that (4.27) is less than

1

2�n

∫
B(0,2�)

[ ∫
B(x,2k )

{ ∑
y∈Qt ,Qt ∈Qt
�(Qt )�2 j+ j0

cQ eβW1,p(χQt dσ)(y)

·
(∫

Qt

eβVQt (z)dω(z)

)1/(p−1) }p−1]
dσ(y)dt. (4.28)

It suffices to be able to estimate the inner integral in (4.28) (the expression in square
brackets), for a fixed t , with constant independent on t . We will therefore assume
t = 0. As a result, it suffices to prove the estimate

∫
B(x,2k )

[ ∑
y∈Q

�(Q)�2k+ j0

cQeβW1,p(χQdσ)(y)
(∫

Q
eβVQ(z)dω(z)

)1/(p−1)

dt

]p−1

dσ(y)

� C
∫

B(x,2k+1)

(
eβVB(x,2k+1)(z) − 1

)
dω(z). (4.29)

We first claim that the left-hand side of (4.29) is less than or equal a constant
multiple of

I =
∑
Q∈Q

�(Q)�2k+ j0

cQ |Q|1/(p−1)
σ

∫
Q

eβVQ(z)dω(z). (4.30)

To prove the claim we will use the Carleson measure theorem. First, let λQ =∫
Q eβVQ(z)dω(z), then (4.29) is equal to

∫
B(x,2k )

{ ∑
y∈Q

�(Q)�2k+ j0

cQeβW1,p(χQdσ)(y)λ
1/(p−1)
Q dt

}p−1

dσ(y),

Let q = (p − 1)′ = (p − 1)/(p − 2). Applying duality in L p−1(dσ), the left-hand
side of (4.29) is in turn equal to

sup
‖g‖Lq (dσ)=1

( ∑
Q∈Q

�(Q)�2k+ j0

cQ

∫
Q

|g(y)|eβW1,p(χQdσ)(y)dσ(y)λ1/(p−1)
Q

)p−1

. (4.31)

Fix such an admissible g � 0; then it follows from Hölder’s inequality that the
quantity in the supremum appearing in display (4.31) is less than

I ·
( ∑

Q∈Q
�(Q)�2k+ j0

cQ |Q|p′
σ

(
1

|Q|σ
∫

Q
|g(y)|eβW1,p(χQdσ)(y)dσ(y)

) p−1
p−2
)p−2

,
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with I as in (4.30). To prove the claim, it therefore remains to prove the inequality

∑
Q∈Q

�(Q)�2k+ j0

cQ |Q|p′
σ

(
1

|Q|σ
∫

Q
|g(y)|eβW1,p(χQdσ)(y)dσ(y)

) p−1
p−2

�
∫

|g| p−1
p−2 dσ, for any g ∈ L(p−1)/(p−2)(dσ). (4.32)

To this end, let ε > 0 such that (p − 2)(1 + ε) < p − 1, and apply Hölder’s
inequality:

(
1

|Q|σ
∫

Q
|g(y)|eβW1,p(χQdσ)(y)dσ(y)

) p−1
p−2

�
(

1

|Q|σ
∫

Q
|g(y)|1+εdσ(y)

) p−1
(p−2)(1+ε)

·
(

1

|Q|σ
∫

Q
e

1+ε
ε
βW1,p(χQdσ)(y)dσ(y)

) (p−1)ε
(p−2)(1+ε)

.

Now, note that, if 1+ε
ε
βC(σ ) < C0, we may apply Lemma 3.5 to obtain the estimate

(
1

|Q|σ
∫

Q
e

1+ε
ε
βW1,p(χQdσ)(y)dσ(y)

) (p−1)ε
(p−2)(1+ε)

� C.

As a result, the left-hand side of (4.32) is therefore less than a constant multiple of

∑
Q∈Q

�(Q)�2k+ j0

cQ |Q|p′
σ

(
1

|Q|σ
∫

Q
|g(y)|1+εdσ(y)

) p−1
(p−2)(1+ε)

.

Since p−1
(p−2)(1+ε) > 1, applying the Carleson measure theorem (Theorem 3.9), with

s = p−1
(p−2)(1+ε) , the conclusion follows that (4.32) holds. Hence the claim is proved.

When specialised to a cube Q, the condition (4.1) is σ(Q) � C(σ )�(Q)n−p

(this follows analogously to the condition (3.9)). Hence, for z ∈ Q with �(Q) �
2k+ j0 , that there is a constant C = C(n, p,C(σ )) > 0, so that

VQ(z) �
�(Q)∑

j=−∞

(
σ(Q ∩ B(z, 2 j ) ∩ B(x, 2k+1))

2 j (n−p)

)1/(p−1)

+ C.

Recall thatσ ≡ 0 on Rn\B(x, 2k+1). Applying Fubini’s theorem, along with the the
inequality for VQ(z) obtained above, we deduce that (4.30) is less than a constant
multiple of∫

B(x,2k+1)

∑
z∈Q

�(Q)�2k+ j0

cQ

∣∣∣Q ∩ B(x, 2k+1)

∣∣∣1/(p−1)

σ

· exp

⎛
⎝β

�(Q)∑
j=−∞

(
σ(Q ∩ B(z, 2 j ) ∩ B(x, 2k+1))

2 j (n−p)

)1/(p−1)
⎞
⎠ dω(z). (4.33)
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By the summation by parts result (4.25), valid under the assumption thatβC(σ )<1,
it follows that the integrand in (4.33) is less than a constant multiple of

exp

⎛
⎝β

k+ j0+ j1∑
j=−∞

(
σ(B(z, 2 j ) ∩ B(x, 2k+1))

2 j (n−p)

)1/(p−1)
⎞
⎠− 1. (4.34)

Indeed, each cube Q such that �(Q) = 2 j , with z ∈ Q, is contained in a ball
B(z, 2 j+ j1), where j1 is a dimensional constant. Thus, the integrand in (4.33) is
less than a constant multiple of:

2 j1
n−p
p−1

k+ j0+ j1∑
�=−∞

(∣∣B(z, 2�) ∩ B(x, 2k+1)
∣∣
σ

2�(n−p)

)1/(p−1)

· exp

⎛
⎝β

�∑
j=−∞

(
σ(B(z, 2 j ) ∩ B(x, 2k+1))

2 j (n−p)

)1/(p−1)
⎞
⎠ ,

from which we may apply (4.25) to conclude (4.34). Here we have used the defi-
nition of cQ from (3.15).

Recalling the definition of VB(x,2k+1), we have asserted that there exists a con-
stant C = C(n, p,C(σ )) > 0 such that (4.29) holds. This concludes the proof of
the lemma, and with it Theorem 4.1. �


4.2. On the Finiteness of (4.4)

In this subsection we discuss the finiteness of the construction (4.4). Recall the
definition of V from (4.5). In particular, we prove that the finiteness of the tail of v
at a single point yields almost every finiteness:

Lemma 4.5. Suppose that, for some x0 ∈ Rn and R > 0:

∫ ∞

R

(eβWr
1,p(dσ)(x0)

rn−p

∫
B(x0,r)

eβVB(x,r)dω(z)
)1/(p−1) dr

r
= Ctail < ∞. (4.35)

There exists a constant C = C(n, p) > 0 such that if C(σ ) < C, then the function
v defined in (4.4) is finite almost everywhere.

This lemma proves the assertion made in Remark 2.2.

Proof. It suffices to prove that there exists C(σ ) > 0 such that:

∫
B(x0,R)

vmin(1,p−1)(x)dx < ∞.
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To this end, first note that

∫
B(x0,R)

∫ ∞

R

(
eβWr

1,p(dσ)(x)

rn−p

∫
B(x,r)

eβVB(x,r)dω(z)

)1/(p−1)
dr

r
dx

�
∫

B(x0,R)

∫ ∞

R

(
eβWr

1,p(dσ)(x0)

rn−p

∫
B(x0,2r)

eβVB(x0,2r)dω(z)

)1/(p−1)
dr

r

· exp
(
β
[
Wr

1,p(dσ)(x)− Wr
1,p(dσ)(x0)

])
dx .

Let us now fix x ∈ B(x0, R). For any r > R, an application of Lemma 3.6 yields

|Wr
1,p(dσ)(x)− Wr

1,p(dσ)(x0)|
� C(n, β,C(σ ))+

[
WR

1,p(σ )(x0)+ WR
1,p(σ )(x)

]
. (4.36)

With (4.35) in mind, we therefore estimate

∫
B(x0,R)

∫ ∞

R

(
eβWr

1,p(dσ)(x)

rn−p

∫
B(x,r)

eβVB(x,r)dω(z)

)1/(p−1)
dr

r
dx

� Ctail

∫
B(x0,R)

exp[βWR
1,p(dσ)(x)]dx � Ctail.

The last inequality follows from the exponential integrability result, Theorem 3.8
(which is valid provided C(σ ) < C(n, p) for some positive constant C > 0).

To handle the remaining part of the integral of v, let us first suppose p � 2. It
remains to show that

∫
B(x0,R)

∫ R

0

(
eβWr

1,p(dσ)(x)

rn−p

∫
B(x,r)

eβVB(x,r)dω(z)

)1/(p−1)
dr

r
dx � Ctail. (4.37)

First, by Fubini’s theorem and Hölder’s inequality, the left-hand side of display
(4.37) is less than a constant multiple (depending on R) of

∫ R

0

(
1

rn−p

∫
B(x0,R)

eβWr
1,p(dσ)(x)

∫
B(x,r)

eβVB(x,r)dω(z)dx

)1/(p−1) dr

r
. (4.38)

Let us now examine the integrand in (4.38). Applying Fubini’s theorem, we estimate
∫

B(x0,R)
eβWr

1,p(dσ)(x)
∫

B(x,r)
eβVB(x,r)dω(z)dx

�
∫

B(x0,2R)
eβVB(x0,2R)

∫
B(z,r)

eβWr
1,p(dσ)(x)dxdω(z). (4.39)

On the other hand, on account of Theorem 3.8,∫
B(z,r)

eβWr
1,p(dσ)(x)dx �

∫
B(z,4r)

eβW1,p(χB(z,4r)dσ)(x)dx � rn .
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Applying these two observations into (4.38), we deduce that the left-hand side of
(4.37) is less than a constant multiple (depending on R, β, n, p and C(σ )) of

∫ R

0

(
1

rn−p
rn
∫

B(x0,2R)
eβVB(x0,2R)dω(z)

)1/(p−1) dr

r

� R p/(p−1)
(∫

B(x0,2R)
eβVB(x,2R)dω(z)

)1/(p−1)

.

This last display is finite as a result of (4.35), as required.
The case when 1 < p < 2 is similar so we will brief. We instead consider

∫
B(x0,R)

⎧⎨
⎩
∫ ∞

R

(
eβWr

1,p(dσ)(x)

rn−p

∫
B(x,r)

eβVB(x,r)dω(z)

)1/(p−1)
dr

r

⎫⎬
⎭

p−1

dx . (4.40)

Since 1 < p < 2, the previous display is less than

∫
B(x0,R)

∫ ∞

R

eβWr
1,p(dσ)(x)

rn−p

∫
B(x,r)

eβVB(x,r)dω(z)
dr

r
dx .

From this point, we use Fubini and Theorem 3.8 as in the case p � 2 to deduce
that display (4.40) is finite. From these estimates the lemma follows. �


5. Lower Bounds: The Proofs of (1.12), (2.9), (2.11) and (2.12)

In this section we derive lower bounds for solutions of (1.1). For a ball
B(x0, 5R) ⊂ �, will be concerned with positive solutions u of

−�pu = σu p−1 + ω in B(x0, 5R), in the p-superharmonic sense. (5.1)

In particular, we will prove the following proposition:

Proposition 5.1. Let� be an open set. Suppose B(x0, 5R) ⊂ �, and suppose that
u is a positive solution of (5.1). Then there is a constant c = c(n, p) > 0, such that

(i) if 1 < p � 2, then

u(x0) � c
∫ R

0

(
ecWr

1,p(σ )(x0)

rn−p

∫
B(x0,r)

ecWr
1,p(σ )(z)dω(z)

)1/(p−1)
dr

r
, (5.2)

(ii) if 2 < p < n, then

u(x0) � c
∫ R

0

(
ecWr

1,p(σ )(x0)

rn−p

∫
B(x0,r)

ecIr
1,p(σ )(z)dω(z)

)1/(p−1)
dr

r
. (5.3)

Note that the lower bounds for solutions of (1.1) appearing in Theorems 1.1, 2.1,
along with Theorem 2.3, follow from this proposition. We begin with a some obser-
vations regarding the localisation of integral operators:
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5.1. Localisation of Operators

Let us fix x0 ∈ �, and let R > 0 be such that B(x0, 5R) ⊂ �. Suppose that u
is a positive solution of

−�pu � σu p−1 in B(x0, 5R), in the p-superharmonic sense. (5.4)

Then by the potential estimate, Theorem 3.3, it follows that for all x ∈ B(x0, R):

u(x) � C
∫ 2R

0

(
1

rn−p

∫
B(x,r)

u p−1(z)dσ(z)

)1/(p−1) dr

r
. (5.5)

First, let us restrict the integration σ to B(x0, R); since this will only decrease the
right-hand side,

u(x) � C
∫ 2R

0

(
1

rn−p

∫
B(x,r)∩B(x0,R)

u p−1(z)dσ(z)

)1/(p−1) dr

r
. (5.6)

Now, still under the assumption that x ∈ B(x0, R), we note that if r � 2R, then
B(x, r) ∩ B(x0, R) = B(x0, R). Hence we may extend the integration in (5.6),
that is:

u(x) � C
∫ ∞

0

(
1

rn−p

∫
B(x,r)∩B(x0,R)

u p−1(z)dσ(z)

)1/(p−1) dr

r
.

Note here the constant C has changed, but is still a positive constant depending on
n and p. Let us now define σ̃ by

dσ̃ = χB(x0,R)dσ, (5.7)

and a nonlinear integral operator N :

N ( f )(x) = Nσ̃ ( f )(x) =
∫ ∞

0

(
1

rn−p

∫
B(x,r)

f p−1(z)dσ̃ (y)

)1/(p−1) dr

r
, (5.8)

The iterates of N are denoted by N j ( f ) = N (N j−1( f )).
Using the definition of (5.7), it follows that, for all x ∈ B(x0, R)

u(x) � CN (u)(x). (5.9)

Now, suppose that u is a positive solution of (5.1). By the interior potential esti-
mate, Theorem 3.3, it again follows that there exists a constant C = C(n, p) > 0
such that that for all x ∈ B(x0, R)

u(x) � CN (u)(x)+ CW1,pω̃(x), (5.10)

where ω̃ is a restriction of ω:

dω̃ = χB(x0,R)dω. (5.11)

Mimicking the discussion in Section 5.1 of [25], we iterate (5.10) to obtain the
following lemma:
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Lemma 5.2. Suppose u is a positive solution of (5.1). Let x0 ∈ � such that
B(x0, 5R) ⊂ �. Then, with N and ω̃ as in (5.8) and (5.11) respectively, there
is a constant C = C(n, p) > 0 such that

a) If 1 < p � 2:

u(x) � C
∞∑
j=0

C jN j (W1,pω̃)(x), for all x ∈ B(x0, R). (5.12)

b) If 2 < p < n, then for any q > 1,

u(x) � C(q)
∞∑
j=0

j (q
2−p
p−1 )C jN j (W1,pω̃)(x), for all x ∈ B(x0, R), (5.13)

where C(q) = C(q, n, p) > 0.

Proposition 5.1 will follow from careful estimation of the sums in Lemma 5.2.
In order to estimate the sums, we use the array of tools described in Section 3.3.
First we note the localized measure σ̃ satisfies the strong capacity condition (2.4),
indeed

Lemma 5.3. Under the assumption that u is a solution of (5.4), the measure σ̃
satisfies the strong capacity condition (2.4). More precisely, there is a constant
C = C(n, p) > 0 such that:

σ̃ (E) � Ccapp(E) for all compact sets E ⊂ Rn .

Proof. Let E be a compact set. From Lemma 4.3 of [25] (see (2.2) above), since
u is a solution of (5.4), we have the following estimate

σ̃ (E) = σ(E ∩ B(x0, R)) � capp(E ∩ B(x0, R), B(x0, 5R)).

However, by the separation of E ∩ B(x0, R) and B(x0, 5R), and since 1 < p < n,
we have that (as a consequence of the Sobolev inequality)

capp(E ∩ B(x0, R), B(x0, 5R)) � c(n, p)capp(E ∩ B(x0.R)).

The lemma follows. �

From Lemma 5.3 it follows that σ̃ is a Carleson measure, which we state as a

lemma.

Lemma 5.4. Suppose that u is a positive solution of the inequality u � N (u),
with N as in (5.8). Then the measure σ̃ , defined in (5.7), is a discrete Carleson
measure, that is, there is a positive constant C = C(n, p) such that for each dyadic
cube P ∈ Q and every compact set E ⊂ Rn,

∑
Q⊂P
Q∈Q

cQ |Q ∩ E |p′
σ̃

� C |P ∩ E |σ̃ . (5.14)

Here cQ is the sequence defined in (3.15).
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Proof. From Lemma 5.3, it follows that σ̃ satisfies (2.4). Therefore, as described
before display (3.14), it follows that (5.14) holds. �


A useful corollary of Lemma 5.4, together with Lemma B.1 from Appendix B,
is the following.

Corollary 5.5. Let 1 < p � 2, and let {λQ}Q∈Q be any nonnegative sequence
indexed over the dyadic cubes. Suppose that σ̃ satisfies (5.14); then there is a
constant C = C(n, p) such that:

∫
P

⎧⎨
⎩

∑
x∈Q, Q⊂P

cQλ
1/(p−1)
Q

⎫⎬
⎭

p−1

dσ̃ (x) � C
∑
Q⊂P

cQ |Q|1/(p−1)
σ̃

λQ (5.15)

for each dyadic cube P ∈ Q.

Proof. This corollary follows from Lemma B.1 in Appendix B. Letting s =
1/(p − 1) and relabelling, the lemma boils down to the observation that that

μQ = c2−p
Q |Q|

2−p
p−1

σ̃
is admissible for (B.2) in Lemma B.1. But this is precisely

the statement (5.14). �

Having completed our discussion on localisation, we turn to proving Proposi-

tion 5.1. First up is a lemma regarding the estimation of the ‘tails’ of sums appearing
in Lemma 5.2.

5.2. A Tail Estimate for 1 < p < n

The following Lemma can be proved by mimicking the proof of Lemma 5.4
in [25].

Lemma 5.6. Let 1 < p < n. There is a constant c = c(n, p) > 0 such that for
each m � 1, and every x ∈ B(x0, R):

N m(W1,p)(ω̃)(x) � cm

m!
∫ ∞

0

(∫ r

0

(
σ̃ (B(x, t/2))

tn−p

)1/(p−1) dt

t

)m

(x)

·
∫ r

0

(
ω̃(B(x, s/2))

sn−p

)1/(p−1) ds

s

dr

r
. (5.16)

5.3. The Proof of Proposition 5.1 in Case p � 2

Let us begin with the case when p � 2, and we introduce an auxiliary function
Bt (σ̃ ), defined byx

Bt (σ̃ )(z) =
∞∑
j=0

( t

2 j

)p−n
∣∣∣B(z, t/2 j )

∣∣∣
σ̃

(5.17)

Lemma 5.7. Let p � 2, then there is a constant C = C(n, p) > 0 such that for
all m ∈ N ∪ {0}, and any x ∈ B(x0, R) and r > 0,
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∫
B(x,2r)

{∫ 2r

0

(
1

tn−p

∫
B(y,t)

(
Bt (σ̃ )

)m
(z)dω̃(z)

)1/(p−1)
}p−1

dσ̃ (y)

� C

m + 1

∫
B(x,r)

(Br (σ̃ )
)m+1

(z)dω̃(z), (5.18)

here Bt (σ̃ ) is as in (5.17).

Proof. First note that the left-hand side of (5.18) is greater than a constant multi-
ple of

∫
B(x,2r)

⎧⎨
⎩

∞∑
j=0

(( r

2 j

)p−n
λB(y, r

2 j )

)1/(p−1)

⎫⎬
⎭

p−1

dσ̃ (y), (5.19)

where

λB(y, r
2 j )

=
∫

B(y, r
2 j )∩B(x,r)

(
B

r
2 j (σ̃ )

)m
(z)dω̃(z).

Since p − 1 � 1, it follows that display (5.19) is greater than

∫
B(x,2r)

∞∑
j=0

( r

2 j

)p−n
∫

B(y, r
2 j )∩B(x,r)

(
B

r
2 j (σ̃ )

)m
(z)dω̃(z)dσ̃ (y).

By Fubini’s theorem, the previous display is, in turn, equal to

∫
B(x,r)

∞∑
j=0

( r

2 j

)p−n
σ̃
({

y ∈ B(x, 2r):y ∈ B
(

z,
r

2 j

)}) (
B

r
2 j (σ̃ )

)m
(z)dω̃(z).

(5.20)

But, for z ∈ B(x, r) and t � r , it follows that B(z, t) ⊂ B(x, 2r). Applying this
observation in (5.20) yields

∫
B(x,r)

∞∑
j=0

( r

2 j

)p−n
σ̃
(

B
(

z,
r

2 j

)) (
B

r
2 j (σ̃ )

)m
(z)dω̃(z). (5.21)

Let us now recall the following elementary summation by parts inequality. Let
{λ j } j be a nonnegative sequence, and let m � 1, then

1

m

⎛
⎝ ∞∑

j=0

λ j

⎞
⎠

m

�
∞∑
j=0

λ j

⎛
⎝ ∞∑

j=k

λk

⎞
⎠

m−1

. (5.22)

Applying (5.22) in (5.21) the lemma follows. �

To complete the proof of Proposition 5.1 when p � 2, recall the formal Neu-

mann series expansions in Lemma 5.2. Applying Lemma 5.6 into Lemma 5.2 results
in a constant c > 0 such that
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u(x0) � c
∫ ∞

0
exp

(
c
∫ r

0

(
σ̃ (B(x0, t/2))

tn−p

)1/(p−1) dt

t

)

×
(
ω(B(x0, r))

rn−p

)1/(p−1) dr

r
. (5.23)

On the other hand, from Lemma 5.7 it follows that there exists a constant C =
C(n, p) > 0 with

N m(W1,p(ω̃)(x0) � Cm
∫ ∞

0

(
1

rn−p

∫
B(x0,r)

(Br (σ̃ )z))mdω̃(z)

)1/(p−1) dr

r
,

hence Lemma 5.2 yields a constant c > 0 such that

u(x0) � c
∫ ∞

0

(
1

rn−p

∫
B(x0,r)

ecBr (σ̃ )(z)dω̃(z)

)1/(p−1) dr

r
. (5.24)

Averaging (5.23) and (5.24) with the inequality of arithmetic and geometric means,
we assert that there is a positive constant c > 0 such that

u(x0) � c
∫ ∞

0
exp

(
c
∫ r

0

(
σ̃ (B(x0, t/2))

tn−p

)1/(p−1) dt

t

)(
1

rn−p

·
∫

B(x0,r)
ecBr (σ̃ )(z)dω̃(z)

)1/(p−1) dr

r
. (5.25)

But, using (3.9), it is easy to see that, for any z ∈ B(x0, R):

Br (σ̃ )(z) � Ir
p(dσ̃ )(z)− 1.

Hence (5.3) follows from (5.25) and recalling the definition of σ̃ .

5.4. The Proof of Proposition 5.1 when 1 < p < 2

We now move onto the case when 1 < p < 2. Let j0 be as in Lemma 3.10,
then we have the following lemma:

Lemma 5.8. Let 1 < p < 2, then there is a constant C = C(n, p) > 0 such that
for all m ∈ N ∪ {0}, and x ∈ B(x0, R)

∫
B(x,r)

∫ ∞

0

(
1

sn−p

∫
B(y,s)

( ∑
z∈Q
Q∈Q

cQ |Q ∩ B(y, s)|1/(p−1)
σ̃

)m

(z)

· dω̃(z)

)1/(p−1) ds

s

}p−1

dσ̃ (y)

� C

m + 1

∫
B(x,r)

( ∑
z∈Q
Q∈Q

cQ |Q ∩ B(x, r)|1/(p−1)
σ̃

)m+1

(z)dω̃(z). (5.26)
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Proof. First note that, for any ball B(y, 2 j ), there is a dyadic cube Q such that
y ∈ Q, Q ⊂ B(y, 2 j ), and �(Q) = 2 j− j0 . Thus, the left-hand side of (5.26) is
greater than a constant multiple of

∫
B(x,r)

{ ∑
y∈P
P∈Q

cP

(∫
P∩B(x,r)

( ∑
z∈Q
Q⊂P

cQ |Q ∩ P|
1

p−1

σ̃

)m

(z)dω̃(z)

) 1
p−1
}p−1

dσ̃ (y)

(5.27)

where the constant depends on n, p and j0. By appealing to duality, in the form of
Corollary 5.5, we see that (5.27) is greater than a constant multiple of

∑
P∈Q

cP |P ∩ B(x, r)|1/(p−1)
σ̃

∫
P∩B(x,r)

( ∑
z∈Q
Q⊂P

cQ |Q ∩ B(x, r)|
1

p−1

σ̃

)m

(z)dω̃(z).

An application of Fubini’s theorem, followed by the summation by parts inequality
(5.22) proves the lemma. �


Let us now complete the proof of Proposition 5.1. Note that Lemmas 5.6 and 5.8
combine with Lemma 5.2, as in Section 5.3, to show that there is a positive constant
c > 0, with

u(x0) � c
∫ ∞

0
exp

(
c
∫ r

0

(
σ̃ (B(x0, t/2))

tn−p

)1/(p−1) dt

t

)(
1

rn−p

·
∫

B(x0,r)
exp

(
c
∑
z∈Q
Q∈Q

cQ |Q ∩ B(x0, r)|1/(p−1)
σ̃

)
dω̃(z)

)1/(p−1) dr

r
.

(5.28)

It remains to use a shifting argument to recover (5.2).
The bound (5.28) continues to hold if we shift the dyadic lattice for any t ∈ Rn .

Averaging over all shifts t ∈ B(0, 2k+ j0), it follows

u(x) � C

2n(k+ j0)

∫
B(0,2k+ j0 )

∫ 2k

0
exp

(
c
∫ r

0

(
σ̃ (B(x0, t/2))

tn−p

)1/(p−1) dt

t

)(
1

rn−p

·
∫

B(x0,r)
exp

(
c
∑
z∈Qt

Qt ∈Qt

cQt |Qt ∩ B(x0, r)|1/(p−1)
σ̃

)
dω̃(z)

)1/(p−1) dr

r
dt.
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By Jensen’s inequality, the right-hand side of the previous display is greater than

∫ 2k

0
exp

(
c
∫ r

0

(
σ̃ (B(x0, t/2))

tn−p

)1/(p−1) dt

t

)(
1

rn−p

∫
B(x0,r)

exp

(
c

1

2n(k+ j0)

·
∫

B(0,2k+ j0 )

∑
z∈Qt

Qt ∈Qt

cQt |Qt ∩ B(x0, r)|1/(p−1)
σ̃

dt

)
dω̃(z)

)1/(p−1) dr

r
. (5.29)

Next, using Lemma 3.10 in (5.29), it follows that there exists a constant c = c(n, p)
such that

u(x) � c
∫ 2k

0
exp

(
c
∫ r

0

(
σ̃ (B(x0, t/2))

tn−p

)1/(p−1) dt

t

)

(
1

rn−p
·
∫

B(x0,r)
· exp

(
c
∫ 2k

0

σ̃ (B(z, r))

rn−p

dr

r

)
dω̃(z)

)1/(p−1)
dr

r
, (5.30)

But now note that for any z ∈ B(x0, R), and any k > log2 R + 1, one can estimate:

∫ 2k

0

σ̃ (B(z, r))

rn−p

dr

r
� c(n, p)

∫ ∞

0

σ̃ (B(z, r))

rn−p

dr

r
.

Thus, letting k → ∞, we obtain the required bound (5.2). This completes the proof
of Proposition 5.1.

6. Existence of Solutions to (1.1)

In this section, we conclude the proofs of our main results. We will consider
the case when � is a bounded domain, that is, Theorem 2.4. The case � = Rn

(Theorems 1.1 and 2.1) is similar, using the weak continuity of the p-Laplacian
operator from [48]. Indeed, see [25], Section 7 for the argument in the caseω = δx0 .
There is no problem in generalizing the argument found there to the more general
measure, and so we will omit the details here.

Proof of Theorem 2.4. Let ω be a finite nonnegative measure in �, and suppose
that, for some c > 0, the right-hand side of either (2.13) or (2.14) is finite for some
x ∈ �. By Lemma 4.5, we have that the function v defined in (4.4) is finite almost
everywhere with β = c. We wish to apply Theorem 4.1, to assert the existence of a
positive constant C0 = C0(n, p, β) > 0 such that if C(σ ) < C0, then there exists
v (finite almost everywhere), satisfying

v(x) � K W1,p(v
p−1dσ)(x)+ K W1,p(dω)(x), (6.1)
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here K = max(1, 2
2−p
p−1 )C1, with C1 as in Theorem 3.3. To this end, note from The-

orem 4.1 that there exists such a constant C̃0 > 0 such that provided C(σ ) < C̃0
there exists C2 > 0 such that

W1,p(v
p−1dσ)(x)+ C2W1,p(dω)(x) � C2v(x).

Letting C0 = C̃0

C2 K
, we arrive at (6.1).

We are now in a position to begin the iterative argument. Let us first define u0
to be a renormalized solution of{−�pu0 = ω in �,

u0 = 0 on ∂�.

Then, note that by Theorem 3.3 and (6.1), it follows that that u0 � v.
We now inductively produce a sequence {u j } j�1 such that:

– u j ∈ Lp−1(�, dσ),
– u j � u j−1 for all j � 1,
– u j � v for all j � 1, and
– each u j is a renormalized solution of:

{
−�pu j = σu p−1

j−1 + ω in �,
u j = 0 on ∂�.

(6.2)

To see this, suppose u1, . . . , u j−1 have been constructed. Then, let u j be a solution
of (6.2), such that u j � u j−1. The existence of such a function u j is ensured by
Lemma 6.9 of [40]. By Theorem 3.3 and (6.1), it follows that:

u j (x) � K W1,p(u
p−1
j−1 dσ)(x)+ K W1,p(ω)(x)

� K W1,p(v
p−1dσ)(x)+ K W1,p(ω)(x)

� v(x), (6.3)

as required. Note that v ∈ L p−1(�, dσ) by construction since � is a bounded
domain.

Since the sequence {u j } j�0 is increasing, there exists a function u such that
u j converges to u. We wish to conclude that u is a renormalized solution of (1.1).
This will follow as in the stability result of [10] once as we have proved that
∇Tk(u j ) → ∇Tk(u) in L p(�), for any k > 0. Here Tk(u) = min(u, k), is the
truncation operator. However, since {u j } j form an increasing sequence this is not
difficult to prove. Indeed, let us fix k > 0; then it is well known [10] that if
v j = Tk(u j ), v = Tk(u), then v j , v ∈ W 1,p

0 (�), and v j → v weakly in W 1,p(�).
In addition, the truncates are supersolutions, that is:
∫
�

∣∣∇v j
∣∣p−2 ∇v j · ∇ψ � 0, whenever ψ ∈ W 1,p

0 (�) ∩ L∞(�), and ψ � 0.

(6.4)
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Under these assumptions, it is known that v j → v strongly in W 1,p
0 (�), see for

example the proof of Theorem 3.75 from [22]. Thus, we conclude, as in [10], that
u is a renormalized solution of:

{−�pu = σu p−1 + ω in �,
u = 0 on ∂�,

(6.5)

and u � v. The proof of the existence of solutions, along with the estimates (2.13)
and (2.14) is complete. This completes the proof. �


7. On the Equations (1.7) and (1.14)

In this section, we make a short study of the equation (1.7) along with the related
equation (1.14). Here we will also assert the pointwise bound (1.9) for (1.8) stated
in the introduction, which plays an important role in our two weight problem. The
results here are of interest in their own right, as we indicated in the introduction.

Our first goal here is to note the equivalence between (1.8) and (1.7). Indeed,
suppose u is a solution of (1.8). Denoting v = u + 1 it follows that

min(22−p, 1)σv p−1 � −�pv � max(22−p, 1)σv p−1 in Rn, (7.1)

and clearly infx∈Rn u(x) = 0. Note the same relationship holds in the converse
direction, too. As a result, the bound (1.9) for solutions of (1.8) will follow from
Proposition 7.1 below. Let us in general consider:

{−�pu = σu p−1 in �,
u = 1 on ∂�.

(7.2)

So that equation (7.2) reads as (1.7) if� = Rn . Recall the capacity condition (2.4)
and the constant C(σ ) along with it.

Proposition 7.1. (i) Let � = Rn. Suppose that σ satisfies (2.4) for all compact
sets E ⊂ Rn. Then there exists a constant C0 = C0(n, p) > 0, such that if
C(σ ) < C0, then there exists a solution u ∈ W 1,p

loc (R
n) of (7.2) along with a

constant c > 0 such that

exp

[
1

c

∫ ∞

0

(
σ(B(x, r))

rn−p

)1/(p−1) dr

r

]

� u(x) � exp

[
c
∫ ∞

0

(
σ(B(x, r))

rn−p

)1/(p−1) dr

r

]
. (7.3)

(ii) Let � be a bounded domain. Suppose that σ satisfies (2.4) for all compact
sets E ⊂ Rn. Then there exists a constant C0 = C0(n, p) > 0, such that if
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C(σ ) < C0, then there exists a solution u ∈ W 1,p(�) of (7.2), along with a
constant c > 0 such that:

exp

[
1

c

∫ d(x)/2

0

(
σ(B(x, r))

rn−p

)1/(p−1) dr

r

]

� u(x) � exp

[
c
∫ 2d�

0

(
σ(B(x, r))

rn−p

)1/(p−1) dr

r

]
(7.4)

Here d(x) is the distance to the boundary on�. To prove the lower bounds in (7.3)
and (7.4), it will be convenient to go through an auxiliary equation:{−�pu = (p − 1) |∇u|p + σ, in �,

u = 0 on ∂�.
(7.5)

The connection between (7.2) and (7.5) is the content of the following result.

Proposition 7.2. Let � be a connected open set. Let μs be a measure singular
with respect to capacity, and suppose σ is absolutely continuous with respect to
capacity. Suppose that u ∈ L p−1

loc (�, dσ) is a p-superharmonic solution of
{−�pu = σu p−1 + μs in �,

u > 0 in �.
(7.6)

Then v = log u ∈ W 1,p
loc (�), and v satisfies (7.5) in the sense of distributions.

The proof of Proposition 7.2 below makes use of a recent result of Kilpeläinen
et al. [28]. This replaces our original argument based on techniques of Dal Maso
and Malusa [9]. Similar results have recently been proved in [2].

Proof of Proposition 7.2. Since u is p-superharmonic, from Theorem 3.2 of [28]
it follows that u is a local renormalized solution. By definition, this means that for
each φ ∈ C∞

0 (�) and h ∈ W 1,∞(R) with derivative h′ having compact support,
we have∫

�

|∇u|p−2∇u · ∇(h(u)φ)dx =
∫
�

h(u)φu p−1dσ +
∫
�

h(u)φdμs . (7.7)

Assume φ � 0. For k > 0, let h(u) = Tk(u)1−p, with Tk(s) = min(k, s). Then
∫
�

|∇u|p−1∇u

Tk(u)p−1 · ∇φdx = (p − 1)
∫
�∩{u�k}

|∇u|p

u p
φdx +

∫
�

φ
u p−1

Tk(u)p−1 dσ

+
∫
�

φ

Tk(u)p−1 dμs . (7.8)

We now need a few standard properties of p-superharmonic functions. First, since
μs is singular with respect to capacity, we have that μs({u < k}) = 0 for all k > 0
(see for example Lemma 2.9 of [28]). Therefore∫

�

φ

Tk(u)p−1 dμs = 1

k p−1

∫
�

φdμs → 0 as k → ∞.
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Next, recall that (see for example Chapter 7 of [22]) that v = log(u) ∈ W 1,p
loc (�).

Therefore, from Lebesgue’s dominated convergence theorem:
∫
�∩{u�k}

|∇u|p

u p
φdx →

∫
�

|∇v|phdx as k → ∞,

and, also

∫
�

|∇u|p−1∇u

Tk(u)p−1 · ∇φdx →
∫
�

|∇v|p−2∇v · ∇φdx as k → ∞.

From a final application of the monotone convergence on the term involving the
measure σ , we deduce from letting k → ∞ in (7.8) that v is a weak solution of
(7.5). �


Using Proposition 7.2, we readily conclude the lower bounds in Proposition
7.1. Indeed, both follow from the following local lemma:

Lemma 7.3. Let � be an open set, and suppose that u is a p-superharmonic solu-
tion of (7.2). Then, there exists a constant c = c(n, p) > 0:

u(x) � exp

[
c
∫ d(x)/2

0

(
σ(B(x, r))

rn−p

)1/(p−1) dr

r

]
, for all x ∈ �. (7.9)

Proof. By Proposition 7.2, v = log u solves (7.5) in the weak sense. This clearly
implies that v solves −�pv � σ in the p-superharmonic sense in �. Applying
Theorem 3.7, it follows there is a constant c = c(n, p) > 0 such that

v(x) � cW
d(x)

2
1,p (dσ)(x) for all x ∈ �.

Recalling that v = log u, the proposition follows. �

Turning now to the existence of solutions along with the upper bounds in Prop-

osition 7.1, the primary ingredient is the following lemma. The proof also serves
as a prototype of the kind of supersolutions developed in Section 4.

Lemma 7.4. Suppose that σ is a nonnegative measure satisfying (2.4), and define
v(x) by

v(x) = exp

[
β

∫ ∞

0

(
σ(B(x, r))

rn−p

)1/(p−1) dr

r

]
= exp

[
βW1,p(dσ)(x)

]
. (7.10)

For any β > 0, there exists C0 = C0(n, p) > 0 such that if C(σ ) < C0, then there
exists a constant C = C(n, p) > 0 such that

W1,p(v
p−1dσ)(x) � C(v(x)− 1). (7.11)

Furthermore, inf x∈Rn v = 1.
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Proof of Lemma 7.4. Writing out W1,p(v
p−1dσ)(x), and applying Lemma 3.6,

we derive

W1,p(v
p−1dσ)(x)

�
∫ ∞

0

[
1

rn−p
exp

(
(p − 1)β

∫ ∞

r

(
σ(B(x, t))

tn−p

) 1
p−1 dt

t

)

·
∫

B(x,r)
exp

(
(p − 1)β

∫ r

0

(
σ(B(y, t))

tn−p

) 1
p−1 dt

t

)
dσ(y)

]1/(p−1)
dr

r
.

(7.12)

On the other hand, as a result of the exponential integrability lemma (Lemma 3.10),
there exists a positive constant C0 = C0(n, p) > 0, so that, provided βC(σ ) < C0

∫
B(x,r)

exp

(
(p − 1)β

∫ r

0

(σ(B(y, t))

tn−p

) 1
p−1 dt

t

)
dσ(y) � σ(B(x, 2r)).

Note that also, using the estimate on balls (3.9), it follows that there exists a positive
constant C = C(n, p, β,C(σ )), so that

exp

(
β

∫ 2r

r

(
σ(B(y, t))

tn−p

) 1
p−1 dt

t

)
� C.

Substituting these two estimates into (7.12):

W1,p(v
p−1dσ)(x) �

∫ ∞
0

(
σ(B(x, 2r))

(2r)n−p

) 1
p−1

exp

(
β

∫ ∞
2r

(
σ(B(x, t))

tn−p

) 1
p−1 dt

t

)
dr

r

�
∫ ∞

0

(
σ(B(x, r))

rn−p

) 1
p−1

exp

(
β

∫ ∞
r

(
σ(B(x, t))

tn−p

) 1
p−1 dt

t

)
dr

r

� (v(x)− 1),

the last inequality in the sequence follows from integration by parts. The statement
that infx∈Rn v(x) = 1 follows from

inf
x∈Rn

W1,p(dσ)(x) = 0,

the latter assertion may be verified in a similar manner to the argument around
display (6.20) of [25]. This concludes the proof of the lemma. �

Note that, for any measure σ supported on �, it follows

W1,p(dσ)(x) � W2d�
1,p (dσ)(x), for all x ∈ �,

where the implied constant in the inequality depends only on n and p. Let us now
complete the proof of Proposition 7.1:



Local and Global Behaviour of Solutions to Nonlinear Equations 665

Proof of the existence part of Proposition 7.1. Part (i). Recall the definition of
v(x) from (7.10). By virtue of Lemma 7.4, we may choose C(σ ) small enough so
that:

C1W1,p(v
p−1)(x)+ 1 � v(x), (7.13)

with C1 as in Theorem 3.3. We claim that one can choose C(σ ), depending on only
n and p, so that both:

v ∈ L p
loc(R

n), and v ∈ L p
loc(R

n, dσ). (7.14)

These two properties follow from applications of Theorem 3.8 and Lemma 3.5,
respectively. Let us construct a sequence (u j ) j such that u0 = 1 and

⎧⎪⎨
⎪⎩

−�pu j = σu p−1
j−1 in Rn,

u j � v, u j ∈ W 1,p
loc (R

n),

infRn u j = 1.

(7.15)

Suppose that u0, . . . u j−1 have been constructed. Then let B� = B(0, 2�) and
denote by u�j the unique solution of

−�pu�j = σu p−1
j−1 in B�, u�j − 1 ∈ W 1,p

0 (B�).

The existence of u�j follows from monotone operator theory (see Proposition 5.1

in Chapter 2 of [45]), since σu p−1
j−1 ∈ W −1,p′

(B�) by hypothesis and Theorem

3.4. Note that u�j � v, as follows from Theorem 3.3 together with the assumption
u j−1 � v and display (7.13).

The sequence (u�j )� forms an increasing sequence by the classical comparison
principle, and therefore using Theorem 1.17 of [29] in combination with the weak
continuity of the p-Laplacian (see [48]), we can find a p-superharmonic function
u j such that u�j → u j almost everywhere and

−�pu j = σu p−1
j−1 in D ′(Rn).

Furthermore 1 � u j � v, so infRn u j = 1. To see that u j ∈ W 1,p
loc (R

n), note that
if φ ∈ C∞

0 (B�):∫
�

|∇u�j |pφ p �
∫
�

u p−1
j−1 u�jφ

pdσ + p
∫
�

|∇u�j |p−1u�j |∇φ|φ p−1dx .

Using Young’s inequality on the right-hand side along with blunt estimates, we
obtain ∫

�

|∇u�j |pφ p �
∫
�

v p|∇φ|pdx +
∫
�

v pφ pdσ < ∞. (7.16)

The finiteness follows from (7.14). Using weak compactness along with the almost
everywhere convergence, it follows that u j ∈ W 1,p

loc (R
n). The sequence (7.15) has
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been constructed. Appealing once again to Theorem 1.17 of [29] with the weak
continuity of quasi-linear operators, we deduce the existence of a solution u of:

−�pu = σu p−1 in Rn .

Furthermore 1 � u � v and so infRn u = 1. It remains to show that u ∈ W 1,p
loc (R

n),
but this follows immediately from (7.16) and weak compactness. Recalling the def-
inition of v from (7.10), the proposition follows.

The proof of part (ii) is easier. Indeed, first note that under the present assump-
tions inσ , it follows from Theorem 3.4 and Hölder’s inequality thatσ ∈ W −1,p′

(�).
Let u0 = 1. Appealing to monotone operator theory (see for example [45]), we
inductively find a sequence {u j } such that

{
−�pu j = σu p−1

j−1 ,

u j − 1 ∈ W 1,p
0 (�).

(7.17)

Arguing inductively as in part (i), we can further suppose that u j � v for all j . In
addition, we may suppose v ∈ L p(�) ∩ L p(�, dσ), again as in part (i) (recall �
is bounded).

Furthermore, the sequence (u j ) j is increasing. Hence, testing u j − 1 in (7.17)
and using Minkowski’s inequality, we derive

(∫
�

|∇u j |pdx

)1/p

�
(∫

�

(u j − 1)pdσ

)1/p

+ σ(�)1/p �
(∫

�

v pdσ

)1/p

.

(7.18)

From (7.18), we find that there exists u ∈ W 1,p(�), so that u j → u weakly in
W 1,p(�). Since u j is an increasing sequence of supsersolutions, it is standard (see
for example [22]) that u j → u strongly in W 1,p(�).3 It readily follows that u is a
solution of (7.2). Furthermore u � v. �


Since it may be of interest, we collect the results proved for the equation (7.5)
into a single result:

Theorem 7.5. Let � be a bounded domain, or � = Rn.

a) Suppose that u ∈ W 1,p
loc (�), is a positive weak solution of (7.5). Then σ satisfies

(2.2), with constant C = 1, and furthermore

u(x) � Wd(x)/2
1,p (dσ)(x), for all x ∈ �.

b) Conversely, suppose that σ satisfies (2.4), then there exists C0 = C0(n, p) > 0
such that if C(σ ) < C0, then there is a positive weak solution of u ∈ W 1,p

loc (�)

of (7.5), such that:

u(x) � W2d�
1,p (dσ)(x), for all x ∈ �.

3 This has already been seen in Section 6.
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Furthermore, if � is bounded, then u can be chosen to lie in the class W 1,p
0 (�).

Proof. The proof of (a) follows immediately from Lemma 4.2 of [25], and
Theorem 3.3 above. On the other hand, part (b) is an immediate corollary of Prop-
ositions 7.1 and 7.2. �


8. Examples

In this section we will discuss conditions on ω so that our theorems guarantee
the existence of a solution to (1.1).

8.1. Lq Data

Our first example concerns the case when ω ∈ Lq(�) for some q > 1. Here
we will let� be a bounded domain. We will always extend measures and functions
by zero outside of � so they are defined on Rn .

Proposition 8.1. Let 1 < p < n, and let � be a bounded domain. Furthermore,
let ω ∈ Lq(�) for q > 1, and suppose that σ satisfies (2.4). Then, there exists
C0 = C(σ, q) such that if C(σ ) < C0 then there is a positive constant c > 0,
depending on n and p, together with a renormalized solution u of (1.1) such that

u(x) � C(n, p, q,�)

[∫ d�

0

(
1

rn−p

∫
B(x,r)

ωq(z)dz

)1/(p−1) dr

r

]1/q

· exp

[
c

q ′

∫ d�

0

(
σ(B(x, r))

rn−p

)1/(p−1) dr

r

]
. (8.1)

Furthermore, for all r <
nq

n − p
, one can choose C0 to in addition depend on r so

that u ∈ Lr (�).

Proof. Our first aim is to show that the quantities appearing in (2.14) and (2.13)
are finite almost everywhere for a choice of c > 0. To this end, let us momentarily
fix x ∈ �, and denote by T:

Tr (σ )(z) =
{

Ip(χB(x,r)dσ)(z) if 1 < p < 2,
W1,p(χB(x,r)dσ)(z) if p � 2.

This allows us to deal with both cases 1 < p < 2 and p � 2 simultaneously. Note
by Hölder’s inequality

∫
B(x,r)

ecTr (σ )(z)dω �
(∫

B(x,r)
ecq ′Tr (σ )(z)dx

)1/q ′ (∫
B(x,r)

ωqdx

)1/q

. (8.2)

Since we are assuming that σ satisfies (2.4), it follows that the hypotheses of
Theorem 3.8 are valid (in the case of Lebesgue measure). Therefore there exists
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c1 = c1(n, p) > 0 such that provided cq ′ < c1, there is a constant C = C(n, p, q)
such that ∫

B(x,r)
ecTr (σ )(z)dω � C(n, p, q)rn/q ′

(∫
B(x,r)

ωqdx

)1/q

. (8.3)

Let us now form the right-hand sides appearing in (2.14) and (2.13):

∫ d�

0

[
ecWr

1,p(χ�)(x)

rn−p

∫
B(x,r)

ecTr (σ )(z)dω

]1/(p−1)
dr

r
. (8.4)

Substituting (8.3) into (8.4) and appealing to Hölder’s inequality a second time, we
derive that (8.4) is less than a constant multiple of

⎛
⎝∫ d�

0

[
ecWr

1,p(χ�)(x)

rn−p
· rn

]1/(p−1)
dr

r

⎞
⎠

1/q ′

·
⎛
⎝∫ d�

0

[
ecWr

1,p(χ�)(x)

rn−p

∫
B(x,r)

ωqdz

]1/(p−1)
dr

r

⎞
⎠

1/q

(8.5)

Since (8.5) is bounded by a constant multiple of the right-hand side of (8.1), it
follows that both (2.14) and (2.13) are finite almost everywhere for a choice of
c > 0. Hence by Theorem 2.4, there exists a solution u of (1.1) so that (8.1) holds.

To see the regularity property, note that, for any ω ∈ Lq , we have
∫ d�

0

(
1

rn−p

∫
B(x,r)

ωq(z)dz

)1/(p−1) dr

r
∈ Ls(�), for all s < n/(n − p).

This is a standard regularity property of the nonlinear potential (and remains true
if ωq is replace by a finite measure). For any r < qn/n − p, choose s so that

r

q
< s <

n

n − p
.

We see by applying Hölder’s inequality in (8.1):

∫
�

ur dx � C

[∫
�

(∫ d�

0

(
1

rn−p

∫
B(x,r)

ωq(z)dz

)1/(p−1) dr

r

)s

dx

]r/qs

·
[∫

�

exp

(
c

sq

s − q

∫ d�

0

(
σ(B(x, r))

rn−p

)1/(p−1) dr

r

)
dx

] 1−sq
sq

.

(8.6)

From Theorem 3.8 together with a covering of � by balls, we can pick c > 0 (or
C(σ ) > 0) such that

∫
�

exp

(
c

sq

s − q

∫ d�

0

(
σ(B(x, r))

rn−p

)1/(p−1) dr

r

)
dx � C(�),

the proposition follows. �
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8.2. Weak-A∞ Data

The second class we consider is when ω is a weak-A∞ weight. We recall that
a nonnegative function w is a weak A∞ weight if there are constants Cw > 0 and
θ > 0 such that, for all balls B, and measurable subsets E ⊂ B

|E |w
|2B|w � Cw

( |E |
|Q|
)θ
. (8.7)

All locally integrable power weights ω = |x |q for q > −n are included in this
class, and these form an important subclass of right-hand sides for the equation
(1.1). In this subclass, the pointwise bound presented in our main theorems col-
lapses to a much simpler expression. The point here is that we continue to obtain a
sharp bilateral pointwise bound for such ω, in contrast to the Lq case considered
above.

Proposition 8.2. Let � = Rn and 1 < p < n. Suppose that σ satisfies (2.4), and
suppose that ω is a weak A∞ weight. There exist constants c1, c2,C0 > 0, depend-
ing on n, p, θ and Cw, so that if C(σ ) < C0, then there exists a p-superharmonic
solution of (1.1) such that

c1

∫ ∞

0

(
ec1Wr

1,p(dσ)(x)

rn−p
ω(B(x, r))

)1/(p−1)
dr

r

� u(x) � c2

∫ ∞

0

(
ec2Wr

1,p(dσ)(x)

rn−p
ω(B(x, r))

)1/(p−1)
dr

r
(8.8)

Proof of Proposition 8.2. In light of Theorems 1.1 and 2.1, the lower bound in
display (8.8) is clear, so we only need to show the upper bound. To this end we
need to assert the existence of a constant c > 0 such that the bounds (1.12) and (2.9)
are finite, and are bounded above by the expression appearing in the right-hand side
(8.8). By inspection, this will follow if we show (with q = min(1, 1/(p − 1))):

∫
B(x,r)

exp

[
c
∫ r

0

(
σ(B(z, s)

sn−p

)q ds

s

]
dω(z) � Cω(B(x, 4r)). (8.9)

Provided C(σ ) or c > 0 are small enough, display (8.9) follows directly from
Theorem 3.8. �


8.3. Morrey Space Data

Our third example of ω is when it lies in a suitable Morrey space. We will again
discuss the case when � is a bounded domain. The precise condition we use is the
following: there exists ε > 0 and a constant C(ω) > 0 such that

ω(B(x, r)) � C(ω)rn−p+ε for all balls B(x, r) ⊂ Rn . (8.10)

Note that this condition is not contained in the Lq space condition, since no higher
integrability is assumed. With this condition, the following holds:
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Proposition 8.3. Let � be a bounded domain. Suppose that ω satisfies (8.10), and
that σ satisfies (2.4). Then, there exists C0 = C(n, p,C(ω)) such that if C(σ ) < C0
then there is a positive constant c > 0, depending on n, p and C(ω), together with
a renormalized solution u of (1.1) such that

u(x) � C(C(ω),�, n, p) exp

[
c
∫ d�

0

(
σ(B(x, r))

rn−p

)1/(p−1) dr

r

]
. (8.11)

The proposition follows in a fashion very similar to Proposition 8.1 above,
once we have asserted a suitable integrability result. We therefore will prove the
following lemma, and leave the remainder of the argument to the reader:

Lemma 8.4. Suppose that σ satisfies the weak ball estimate (3.9) with constant
C(σ ) > 0, and that ω satisfies (8.10), then there exists a constant c > 0, depend-
ing on n, p,C(σ ) and C(ω) so that, for any ball B(x, r):

∫
B(x,r)

exp

(
c
∫ r

0

σ(B(z, r))

rn−p

)1/(p−1) dr

r
)dω � 1

c
rn−p+ε. (8.12)

Proof. The proof we sketch is an adaptation of the dyadic shifting argument from
[25], see the argument from Lemma 4.8 through Corollary 4.11. We reduce matters
to a dyadic version. Recall the definition of the dyadic Wolff potential from (4.12)
of [25]. From the argument of Lemma 4.9 of [25], in particular (4.19), it follows
that in order to prove (8.12) it suffices to prove that

I =
∫

B(x,r)

∑
z∈Q1∈D

( |Q1∩B(x, r)|σ
�(Q1)n−p

)1/(p−1)

·
∑

z∈Q2⊂Q1

( |Q2∩B(x, r)|σ
�(Q2)n−p

)1/(p−1)

· · ·
∑

z∈Qm⊂Qm−1

( |Qm ∩ B(x, r)|σ
�(Qm)n−p

)1/(p−1)

dω

� A(n, p,C(ω),C(σ ))(B(n, p)C(ω)C(σ ))mrn−p+ε, (8.13)

where all sums are taken over dyadic cubes, see Section 3.4 above for notation. Let
σ̃ be the measure σ̃ (E) = σ(E ∩ B(x, r)) and ω̃(E) = ω(E ∩ B(x, r)). Note that
any ball B(x, r) is contained in the union of at most 2n dyadic cubes {P j } j=1,...2n

of radius � r . The argument to show (8.13) splits into two cases, depending on
whether 1 < p � 2 or p > 2.

First suppose that 1 < p � 2, then note that, for any dyadic cube P ∈ D , it
follows

∑
Q⊂P

( |Q|σ̃
�(Q1)n−p

)1/(p−1)

ω(Q ∩ B(x, r))

=
∫

P∩B(x,r)

∑
z∈Q⊂P

( |Q|σ̃
�(Q)n−p

)(2−p)/(p−1)
ω(Q ∩ B(x, r))

�(Q)n−p
dσ. (8.14)
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Using the property on σ , we bound the right-hand side of (8.14) by

C(σ )
2−p
p−1

∫
P∩B(x,r)

∑
z∈Q⊂P

ω(Q ∩ B(x, r))

�(Q)n−p
dσ � C(ω)C(σ )

2−p
p−1 |P|σ̃ rε, (8.15)

where we have estimated the sum in the integrand in the following way: for each
z ∈ B(x, r), z ∈ P j for some j , with P j the dyadic covering of B(x, r) as above.
Then
∑

z∈Q⊂P

ω(Q ∩ B(x, r))

�(Q)n−p
=

∑
z∈Q⊂P j

· · · +
∑

P j ⊂Q⊂P

· · ·

� C(ω)
∑

z∈Q⊂P j

�(Q)ε + ω(B(x, r))
∑

Q⊃P j

�(Q)p−n

� C(ω)�(P j )ε + rn−p+εC(ω)�(P j )p−n � rε. (8.16)

Applying (8.14) into the left-hand side of (8.13), it follows that

I � C(σ )
2−p
p−1 rε

∑
Q1∈Q

( |Q1∩B(x, r)|σ
�(Q1)n−p

)1/(p−1) ∑
Q2⊂Q1

( |Q2∩B(x, r)|σ
�(Q2)n−p

)1/(p−1)

· · ·
∑

Qm−1⊂Qm−2

( |Qm−1 ∩ B(x, r)|σ
�(Qm−1)n−p

)1/(p−1)

|Qm−1|σ̃ ,

Now, following (4.19) of [25], we conclude

I � BmrεC(σ )
2−p
p−1 C(σ )m−1σ(B(x, r)) � rn−p+εBmC(σ )mC(σ )

2−p
p−1 ,

for a suitable constant B = B(n, p) > 0. We conclude that (8.13) holds if p � 2.
Let us now consider the case when p � 2. This is slightly more involved. In

this case note

|Q|ω̃ � C(ω)1/(p−1)(min(�(Q), r)n−p+ε)1/(p−1)|Q|(p−2)/(p−1)
ω̃

. (8.17)

Hence, if we set

I I =
∑
Q⊂P

( |Q|σ̃
�(Q)n−p

)1/(p−1)

ω(Q ∩ B(x, r)), (8.18)

then, from using Hölder’s inequality in (8.18):

I I � C(ω)1/(p−1)

⎛
⎝∑

Q⊂P

|Q|σ̃
(

min(�(Q), r)n−p+ε

�(Q)n−p

)1/(p−1)
⎞
⎠
(2−p)/(p−1)

·
⎛
⎝∑

Q⊂P

|Q ∩ B(x, r)|ω
(

min(�(Q), r)n−p+ε

�(Q)n−p

)1/(p−1)
⎞
⎠

1/(p−1)

.
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Subsequently, by Fubini’s theorem

I I �

⎛
⎝∫

P∩B(x,r)

∑
z∈Q⊂P

(
min(�(Q), r)n−p+ε

�(Q)n−p

)1/(p−1)

dσ

⎞
⎠

p−2
p−1

·
⎛
⎝∫

P∩B(x,r)

∑
z∈Q⊂P

(
min(�(Q), r)n−p+ε

�(Q)n−p

)1/(p−1)

dx

⎞
⎠

1
p−1

� C(ω)1/(p−1)C(σ )1/(p−1) min(�(P), r)
n−p+ε

p−1 ω(P∩B(x, r))(p−2)/(p−1).

The implicit constants here depend on n, p and ε. In the previous calculation the
integrands have been estimated in a similar manner as in (8.16) above, splitting the
sums over the small cubes and large cubes (compared with r ).

One can then iterate this calculation to estimate

I � (C(p, n, ε))m(C(ω)C(σ ))m/(p−1)r
n−p+ε

p−1 ω(B(x, r))(p−2)/(p−1)

� (C(p, n, ε))m(C(ω)C(σ ))m/(p−1)rn−p+ε.

In conclusion, we have asserted that (8.13) holds, and therefore the lemma is proved.
�


9. A Fully Nonlinear Analogue: The k-Hessian

In this section we briefly describe how one can obtain a k-Hessian analogue of
our primary results. Let 1 � k < n/2, then we will be interested in the problem:

{
Fk(−u) = σuk + ω in Rn,

inf x∈Rn u(x) = 0.
(9.1)

Here, Fk is the k-Hessian operator (see [5]), defined for smooth functions u by

Fk(u) =
∑

1�i1<···<ik�n

λi1 . . . λik ,

with λ1, . . . λn denoting the eigenvalues of the Hessian matrix D2u. We will use
the notion of k-convex functions, introduced by Trudinger and Wang [47] to
state our results. We say that u is k-convex in � if u : � → [−∞,∞) is upper
semicontinuous and satisfies Fk(u) � 0 in the viscosity sense, that is for any
x ∈ �, Fk(q)(x) � 0 for any quadratic polynomial q so that u −q has a local finite
maximum at x . We will seek solutions u � 0 of (9.1) so that −u is k-convex. This
convention allows us to state our results in the form analogous to the quasilinear
case. Equivalently (see [47]), we may define k-convex functions by a comparison
principle: an upper semicontinuous function u : � → [−∞,∞) is k-convex in �
if for every open set D ⊂⊂ �, and v ∈ C2

loc(D)∩C(D̄)with Fk(v) � 0 in D, then

u � v on ∂D �⇒ u � v in D.
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The necessary condition on σ is now considered in terms of the k-Hessian
capacity, introduced again in [47]. The k-Hessian capacity of a compact set E is
defined by

capk(E) = sup{μk[u](E) : u is k-convex in Rn, −1 < u < 0}. (9.2)

Here μk[u] is the k-Hessian measure of u, see Theorem 9.2 below. The two local
potentials that will be relevant for our bounds will be the fractional linear potential
Ir

2k(dσ) and Wr
2k

k+1 ,k+1
(dσ), as defined in (2.6) and (2.7) respectively.

Theorem 9.1. Let 1 � k < n/2, and let α = 2k/(k + 1). Suppose that u � 0 is a
solution of (9.1) such that −u is k-convex. Then σ satisfies

σ(E) � C(σ )capk(E) for all compact sets E ⊂ Rn . (9.3)

In addition, there is a constant c = c(n, k) > 0 such that u satisfies

u(x) � c
∫ ∞

0

(
ecWr

α,k+1(dσ)(x)

rn−αs

∫
B(x,r)

ecIr
2k (dσ)(z)dω(z)

) 1
k dr

r
, (9.4)

for all x ∈ Rn.
Conversely, assuming the right-hand side of (9.5) below is finite for some x ∈ �

and c > 0, there exists a positive constant C0 = C0(n, k, c) > 0, such that if σ
satisfies (9.3), with constant C(σ ) < C0, then there exists a solution u � 0 of (9.1)
such that −u is k-convex, and

u(x) � c1

∫ ∞

0

(
ecWr

α,k+1(dσ)(x)

rn−αs

∫
B(x,r)

ecWr
α,k+1(dσ)(z)dω(z)

) 1
2k dr

r
, (9.5)

for all x ∈ Rn. Here c1 = c1(n, k, c) > 0.

Let�k(�) be the set of k-convex functions such that u is not identically infinite
in each component of �. The following weak continuity result is key to us.

Theorem 9.2. ([47]) Let u ∈ �k(�). Then there is a nonnegative Borel measure
μk[u] in � such that

– μk[u] = Fk(u) whenever u ∈ C2(�), and
– If {um}m is a sequence in �k(�) converging in L1

loc(�) to a function u, then
the sequence of measures {μk[um]}m converges weakly to μk[u].

The measure μk[u] associated to u ∈ �k(�) is called the Hessian measure of
u. Hessian measures were used by Labutin [31] to deduce Wolff’s potential esti-
mates for a k-convex function in terms of its Hessian measure. The following global
version of Labutin’s estimate is deduced from his result in [40]:

Theorem 9.3. ([40]) Let 1 � k � n, and suppose that u � 0 is such that −u ∈
�k(�) and infx∈Rn u(x) = 0. Then, if μ = μk[u], there is a positive constant K ,
depending on n and k, such that:

c1W 2k
k+1 ,k+1μ(x) � u(x) � c2W 2k

k+1 ,k+1μ(x), x ∈ Rn .
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Using Theorem 9.3, we see that there is a positive constant C > 0, so that any
solution u of (9.1) satisfies the following estimate:

u(x) � C
∫ ∞

0

(
1

rn−2k

∫
B(x,r)

uk(z)dσ(z)

)1/k dr

r

+ C
∫ ∞

0

(
ω(B(x, r))

rn−2k

)1/k dr

r
. (9.6)

By iterating (9.6), one obtains a lower bound for u in terms of a formal Neumann
series of iterated operators, cf. Lemma 5.2. The iterates can be estimated using the
techniques of Lemmas 5.6 and 5.7. One then arrives at (9.4). The calculation was
carried out in full for the fundamental solution in [25].

Regarding (9.5), one can construct a supersolution (9.6) using precisely the same
techniques as Lemma 4.4. In other words, the integral inequalities that govern the
k-Hessian have the same behaviour as the integral inequalities for the p-Laplacian
when p � 2. From the integral supersolution, we conclude using Theorem 9.2
that there exists a solution of (9.1) such that (9.5) holds. This mimics the iterative
argument of [25], and is similar in nature to the arguments spelled out in Section 6
above.

Acknowledgements. Supported in part by NSF grant DMS-0901550.

Appendix A. A Tail Estimate for Nonlinear Potentials:
Proof of Lemma 3.6

Lemma A.1. Let σ be a Borel measure satisfying:

σ(B(x, r)) � Crn−αs, for all balls B(x, r). (A.1)

Then there is a positive constant C = C(n, α, s, σ ) > 0 such that for all x ∈ Rn

and y ∈ B(x, t), t > 0, it follows:

∣∣∣∣∣
∫ ∞

t

[(
σ(B(x, r))

rn−αs

) 1
s−1 −

(
σ(B(y, r))

rn−αs

) 1
s−1
]

dr

r

∣∣∣∣∣ � C. (A.2)

Proof. Without loss of generality, suppose that

∫ ∞

t

[(
σ(B(x, r))

rn−αs

) 1
s−1 −

(
σ(B(y, r))

rn−αs

) 1
s−1
]

dr

r
> 0.

We want to rearrange the integrand so it is nonnegative. To this end, we define two
sets:

A = {z ∈ Rn : |x − z| � |y − z|}, and B = {z ∈ Rn : |y − z| < |x − z|}.
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Then if z ∈ B and |z − x | < r , we have that |y − z| < r , and thus B(x, r) ∩ B ⊂
B(y, r) ∩ B such that

σ(B(x, r) ∩ B) � σ(B(y, r) ∩ B), and: (A.3)

σ(B(y, r) ∩ A) � σ(B(x, r) ∩ A). (A.4)

Using (A.3) gives

∫ ∞

t

[(
σ(B(x, r))

rn−αs

) 1
s−1 −

(
σ(B(y, r))

rn−αs

) 1
s−1
]

dr

r

�
∫ ∞

t

(
σ(B(x, r) ∩ A)+ σ(B(y, r) ∩ B)

rn−αs

) 1
s−1

−
(
σ(B(y, r) ∩ A)+ σ(B(x, r) ∩ B)

rn−αs

) 1
s−1 dr

r
=
∫ ∞

t

[
I

1
s−1 − I I

1
s−1

] dr

r
.

From (A.3) and (A.4) it immediately follows that the integrand in nonnegative, that
is that I � I I .

The proof now splits into two cases, when 1 < s < 2 and when s � 2. First
suppose 1 < s < 2, then note the elementary inequality: for a, b ∈ (0,∞) with
a > b, and γ � 1

aγ − bγ � γ aγ−1(a − b). (A.5)

Plugging I and I I into (A.5) yields: I
1

s−1 − I I
1

s−1 � 1
s−1 (I − I I )I

2−s
s−1 � C(I − I I ).

Here we have used the estimate (A.1) in the last inequality, noting that 2 − s > 0.
As a result (in case 1 < s < 2), the lemma will follow from the following

inequality

∫ ∞

t

σ(B(x, r) ∩ A)+ σ(B(y, r) ∩ B)

rn−αs

−σ(B(y, r) ∩ A)+ σ(B(x, r) ∩ B)

rn−αs

dr

r
� C. (A.6)

Let us now split σ into σ1 = σ · χRn\B(x,2t) and σ2 = σ · χB(x,2t) and if we can
control the left-hand side of (A.6) with either σ1 or σ2 in place of σ then we are
done.

The estimate for σ2 is a straightforward application of (A.1):
∫ ∞

t

σ2(B(x, r) ∩ A)+ σ2(B(y, r) ∩ B)

rn−αs
− σ2(B(y, r) ∩ A)+ σ2(B(x, r) ∩ B)

rn−αs

dr

r

� Cσ(B(x, 2t))
∫ ∞

t

1

rn−αs

dr

r
� C

σ(B(x, 2t))

(2t)n−αs
� C,

where (A.1) has been used in this last inequality.
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We now move onto the estimate for σ1. First note that if r < t and y ∈ B(x, t),
then B(y, r) ⊂ B(x, 2t) and so σ1(B(y, r)) = 0. This allows us to extend the
integration to over the half line:

∫ ∞
t

σ1(B(x, r) ∩ A)+ σ1(B(y, r) ∩ B)

rn−αs − σ1(B(y, r) ∩ A)+ σ1(B(x, r) ∩ B)

rn−αs
dr

r

= 1

n − αs

∫
Rn

[
χA(z)

|x − z|n−αs − χA(z)

|y − z|n−αs + χB(z)

|y − z|n−p − χB(z)

|x − z|n−αs

]
dσ1(z)

= 1

n − αs

∫
Rn\B(x,2t)

∣∣∣∣ 1

|x − z|n−αs − 1

|y − z|n−αs

∣∣∣∣ dσ(z).

Let z /∈ B(x, 2t), then whenever y ∈ B(x, t), it is easy to see that

1

2
|y − z| � |x − z| � 2 |y − z| . (A.7)

Note the following elementary inequality. For a, b ∈ (0,∞) with a > b, and
γ � 0:

aγ − bγ � γ (aγ−1 + bγ−1)(a − b). (A.8)

Due to (A.7) and (A.8), and since y ∈ B(x, t), it follows

∣∣∣∣ 1

|x − z|n−αs − 1

|y − z|n−αs

∣∣∣∣ � C
|x − y|

|x − z|n−αs+1 � C
t

|x − z|n−αs+1 .

Combining these observations, we obtain

∫
Rn\B(x,2t)

∣∣∣∣ 1

|x − z|n−αs − 1

|y − z|n−αs

∣∣∣∣ dσ(z)
� C

∫
Rn\B(x,2t)

t

|x − z|n−αs+1 dσ(z)

� Ct
∫ ∞

2t

σ(Br (x))

rn−αs

dr

r2 � Ct
∫ ∞

2t

dr

r2 � C.

As a result, the lemma is proved in the case 1 < s � 2.
We now move onto the s � 2 case. First recall that with I and I I as before, we

have I � I I , and hence I
1

s−1 − I I
1

s−1 � (I − I I )
1

s−1 . This implies that

∫ ∞

t

[(
σ(B(x, r))

rn−αs

) 1
s−1 −

(
σ(B(y, r))

rn−αs

) 1
s−1
]

dr

r

�
∫ ∞

t

(
σ(B(x, r) ∩ A)+ σ(B(y, r) ∩ B)

rn−αs

−σ(B(y, r) ∩ A)+ σ(B(x, r) ∩ B)

rn−αs

) 1
s−1 dr

r
.
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Let ε > 0 small enough so that ε(s − 2) < min(n − αs, 1). Then, by Hölder’s
inequality

∫ ∞

t
(I − I I )

1
s−1

dr

r
� Ct

ε(
1

s − 1
−1)
(∫ ∞

t
(I − I I )rε(s−1) dr

r1+ε

) 1

s − 1

= Ctε(
1

s−1 −1)
(∫ ∞

t

(
σ(B(x, r) ∩ A)+ σ(B(y, r) ∩ B)

rn−αs

−σ(B(y, r) ∩ A)+ σ(B(x, r) ∩ B)

rn−αs

)
rε(s−1) dr

r1+ε

) 1
s−1

.

We wish to bound the right-hand side by a constant. To this end we will split the
measure σ as before into σ1 and σ2. The following estimate for σ2 follows easily
using (A.1):

tε(
1

s−1 −1)
(∫ ∞

t

(
σ2(B(x, r) ∩ A)+ σ2(B(y, r) ∩ B)

rn−αs

−σ2(B(y, r) ∩ A)+ σ2(B(x, r) ∩ B)

rn−αs

)
rε(s−1) dr

r1+ε

) 1
s−1

� C,

We now concentrate on the σ1 estimate. First we note that we may extend the
domain of integration over the whole half line and use Fubini’s theorem as in the
1 < s � 2 case to find that

tε(
1

s−1 −1)
(∫ ∞

t

(
σ(B(x, r) ∩ A)+ σ(B(y, r) ∩ B)

rn−αs

−σ(B(y, r) ∩ A)+ σ(B(x, r) ∩ B)

rn−αs

)
rε(s−1) dr

r1+ε

) 1
s−1

� Ctε(
1

s−1 −1)
(∫

Rn\B(x,2t)

∣∣∣∣ 1

|x − z|n−αs−ε(s−1)+ε

− 1

|y − z|n−αs−ε(s−1)+ε

∣∣∣∣ dσ(z)
) 1

s−1

= I I I.

Now by adapting the previous argument in the s � 2 case, we have∣∣∣∣ 1

|x − z|n−αs−ε(s−1)+ε − 1

|y − z|n−αs−ε(s−1)+ε

∣∣∣∣ � C
t

|x − z|n−αs−ε(s−1)+ε+1
.

Hence

I I I � Ctε(
1

s−1 −1)
(∫

Rn\B(x,2t)

t

|x − z|n−αs−ε(s−1)+ε+1
dσ(z)

) 1
s−1

� Ctε(
1

s−1 −1)
(∫ ∞

2t

t σ(B(x, r))

rn−αs−ε(s−1)+ε+1

dr

r

) 1
s−1

� C,

where in the last inequality we have used (A.1), then we are left with a convergent
integral by choice of ε. This completes the proof in the case s � 2. �
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Appendix B. Duality in Discrete Littlewood–Paley Spaces

Lemma B.1. Fix a dyadic cube P ∈ Q, and let s > 1. There is a constant c =
c(s) > 0 such that:

1

c
sup

{μQ}Q⊂P

∑
Q⊂P

λQμQ |Q|σ �
∫

P

⎡
⎣ ∑

x∈Q⊂P

λs
Q

⎤
⎦

1/s

dσ(x)

� c sup
{μQ}Q⊂P

∑
Q⊂P

λQμQ |Q|σ , (B.1)

where the supremum is taken over all sequences {μQ}Q⊂P satisfying:

sup
Q⊂P

1

|Q|σ
∑

R⊂Q, R∈Q

μs′
R |R|σ � 1. (B.2)

Proof. The lower estimate is known to be a (nontrivial) consequence of the Carle-
son measure theorem, Theorem 3.9. A proof can be found in Theorem 4, part (b)
of [49], see also Theorem 3.1 of [38]. To prove the upper estimate, write

∫
P

⎧⎨
⎩
∑

x∈Q⊂P

λs
Q

⎫⎬
⎭

1/s

dσ(x)=
∑
Q⊂P

λs
Q

∫
Q

{ ∑
x∈R⊂P

λs
R

} 1
s −1

dσ(x)

=
∑
Q⊂P

λQ |Q|σ 1

|Q|σ
∫

Q

{
λs

Q∑
x∈R⊂P λ

s
R

}1−1/s

dσ(x).

Let us set

μQ = 1

|Q|σ
∫

Q

{ λs
Q∑

x∈R⊂P λ
s
R

}1/s′
dσ(x).

It remains to see that {μQ} is admissible for (B.2). This is a simple consequence of
Hölder’s inequality and interchanging summation and integration. Indeed, for any
Q ⊂ P , and with this choice of μQ , it follows:

∑
R⊂Q, R∈Q

μs′
R |R|σ �

∑
R⊂Q, R∈Q

∫
R

λs
R∑

x∈S⊂P λ
s
S

dσ(x)

=
∫

Q

∑
x∈R⊂Q λ

s
R∑

x∈S⊂P λ
s
S

dσ(x) � |Q|σ ,

as required. �
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