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Abstract

We are concerned with multidimensional stochastic balance laws. We identify
a class of nonlinear balance laws for which uniform spatial BV bound for van-
ishing viscosity approximations can be achieved. Moreover, we establish temporal
equicontinuity in L1 of the approximations, uniformly in the viscosity coefficient.
Using these estimates, we supply a multidimensional existence theory of stochas-
tic entropy solutions. In addition, we establish an error estimate for the stochastic
viscosity method, as well as an explicit estimate for the continuous dependence
of stochastic entropy solutions on the flux and random source functions. Various
further generalizations of the results are discussed.

1. Introduction

We are concerned with the well-posedness and continuous dependence esti-
mates for the stochastic balance laws

∂t u(t, x)+ ∇ · f(u(t, x)) = σ(u(t, x)) ∂t W (t), x ∈ R
d , t > 0, (1)

with initial data:

u(0, x) = u0(x), x ∈ R
d . (2)

We denote by ∇ and Δ the spatial gradient and Laplacian, respectively.
Equation (1) is a conservation law perturbed by a random force driven

by a Brownian motion W (t) = W (t, ω), ω ∈ Ω , over a stochastic basis
(Ω,F , {Ft }t�0 , P), where P is a probability measure, F is a σ -algebra, and
{Ft }t�0 is a right-continuous filtration on (Ω,F) such that F0 contains all the
P-negligible subsets.
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The initial function u0(x) is assumed to be a random variable satisfying

E[‖u0‖p
L p(Rd )

+ |u0|BV(Rd )] < ∞, p = 1, 2, . . . . (3)

Regarding the flux f = ( f1, . . . , fd) : R → R
d , we assume fi ∈ C2(R), i =

1, . . . , d, and that each fi has at most polynomial growth in u, that is,

| fi (u)| � C(1 + |u|r ) for some finite integer r � 0. (4)

In this paper we focus mainly on the class of noise functions σ for which there
exists a constant C > 0 such that

σ(0) = 0, |σ(u)− σ(v)| � C |u − v| ∀u, v ∈ R. (5)

This can be generalized to wider classes for different results in terms of existence,
stability, and continuous dependence, respectively; see Section 6 for more details.
One reason for requiring σ(0) = 0 is that it follows from the L1-contraction prin-
ciple that E[‖u(t, ·)‖L1(Rd )] is finite. Similarly, the Lipschitz continuity of σ(u) is
required for the existence and uniform L p-estimates of solutions.

Stochastic partial differential equations arise in a number of problems concern-
ing random phenomena occurring in biology, physics, engineering, and econom-
ics. In recent years, there has been an increased interest in studying the effect of
stochastic forcing on solutions of nonlinear partial differential equations. Of spe-
cific interest is the effect of noise on discontinuous waves, since these are often
the relevant solutions; an important issue concerns the well-posedness (existence,
uniqueness, and stability) of discontinuous solutions.

The fundamental fluid dynamics models are based on the compressible
Navier–Stokes equations and the Euler equations. However, abundant experimental
observations suggest that the chaotic nature of many high-velocity fluid dynam-
ics phenomena calls for their stochastic formulation. Indeed, in these flows with
large Reynolds numbers, microscopic perturbations get amplified to macroscopic
scales, giving rise to unsteady flow patterns which deviate significantly from those
predicted by the classical Navier–Stokes/Euler models. The stochastic Euler or
Navier–Stokes equations seem to be more viable models. In the present paper we
are interested in nonlinear hyperbolic equations with stochastic forcing, so-called
stochastic balance laws. These balance laws can be viewed as a simple caricature
of the stochastic Euler equations.

When σ ≡ 0, Equation (1) becomes a nonlinear conservation law for which the
maximum principle holds. A satisfactory well-posedness theory is now available
(see [4]). Some efforts have been made toward the analysis of nonlinear stochastic
balance laws. In [8], a one-dimensional stochastic balance law was analyzed for
u0 in L∞ and compactly supported σ = σ(u), which ensures an L∞-bound. A
splitting method was used to construct approximate solutions, and it was shown
that a subsequence of these approximations converges to a (possible non-unique)
weak solution.

For general σ , the maximum principle is not available. Indeed, even for initial
data u0 ∈ L∞, the solution is not in L∞ generically. For σ = σ(t, x) in Ct (W

1,∞
x )



On Nonlinear Stochastic Balance Laws 709

and with compact support in x , Kim [10] established the existence and unique-
ness of entropy solutions in the one-dimensional case; see also [21]. For general
σ = σ(x, u) depending on u and for multidimensional equations in the L p-frame-
work, the uniqueness of strong stochastic entropy solutions was first established
in Feng–Nualart [7], but the existence result was restricted to one dimension. We
refer to the recent paper Debussche–Vovelle [5] for multidimensional results via
a kinetic formulation.1 For the L p–theory of deterministic conservations laws,
see [20].

One of our main observations is that uniform spatial BV-bound is preserved
for stochastic balance laws with noise functions σ(u) satisfying (5). This yields
the existence of strong stochastic entropy solutions in L p ∩ BV, as well as in L p,
for multidimensional balance laws (1). Furthermore, we develop a “continuous
dependence” theory for stochastic entropy solutions in BV, which can be used, for
example, to derive an error estimate for the vanishing viscosity method. Whenever
σ = σ(x, u) has a dependency on the spatial position x,BV-estimates are no longer
available, but we show that the continuous dependence framework can be used to
derive local fractional BV-estimates, which, in turn, can be used as before via a
temporal equicontinuity estimate to establish a multidimensional existence result.

Besides providing an existence result in a multidimensional context by standard
methods, one reason for singling out the class of nonlinear balance laws defined
by (5) is that it makes a natural test bed for numerical analysis, without having to
account for all the added technical complications in a pure L p-framework. More-
over, by assuming σ(a) = σ(b) = 0 for some constants a < b, one ensures that
the solution remains bounded between a and b if the initial function u0 does so.
Consequently, it is possible to identify a class of stochastic balance laws for which
L p ∩ BV, or even L∞ ∩ BV, supplies a relevant and technically simple functional
setting, tailored for the construction and analysis of numerical methods.

For other related results, we refer to Sinai [19] and E–Khanin–Mazel–Sinai [6]
for the existence, uniqueness, and weak convergence of invariant measures for the
one-dimensional Burgers equation with stochastic forcing which is periodic in x ,
as well as the structure and regularity properties of the solutions that live on the
support of this measure. We also refer to Lions–Souganidis [13–16] for Hamilton–
Jacobi equations with stochastic forcing and the so-called “stochastic” viscosity
solutions.

We employ the vanishing viscosity method to establish the existence of sto-
chastic entropy solutions. To this end, consider the stochastic viscous conservation
law

∂t u
ε(t, x)+ ∇ · f(uε(t, x)) = σ(uε(t, x))∂t W (t)+ εΔuε(t, x) (6)

for any fixed ε > 0, with initial data

uε(0, x) = uε0(x), x ∈ R
d , (7)

1 We became aware of this paper after our main results were obtained.
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where uε0(x) is a smooth approximation to u0(x) with

E

[∫
Rd

∣∣uε0(x)∣∣p dx
]

� E

[∫
Rd

|u0(x)|p dx
]

and, if u0 ∈ BV(Rd),

E

[∫
Rd

∣∣∇uε0(x)
∣∣ dx

]
� E

[∫
Rd

|∇u0(x)| dx
]
.

In addition, E[∫
Rd |∇2uε0(x)| dx] < ∞ for each fixed ε.

With regard to (6), we should replace (f, σ ) by appropriate smooth approxi-
mations (fε, σ ε). However, mainly to ease the presentation throughout this paper,
we will not do that but instead simply assume that (f, σ ) are sufficiently smooth
(see [7]) in order to ensure the validity of our calculations. At times, we will do the
same with the initial data.

The existence of global smooth solutions to (6)–(7) is established in [7], along
with the following uniform estimates for p � 1 and T > 0:

sup
ε>0

sup
0�t�T

E
[
‖uε(t, ·)‖p

L p(Rd )

]
+ sup
ε>0

E

[
ε

∫ T

0
‖∇uε(t, ·)‖2

L2(Rd )
dt

]
<∞. (8)

The solution satisfies

uε(t, x) =
∫

Rd
Gε(t, x − y)u0(y) dy

−
∫ t

0

∫
Rd

Gε(t − s, x − y)∇ · f(uε(t, y)) dy ds

+
∫ t

0

∫
Rd

Gε(t − s, x − y)σ (uε(s, y)) dy dW (s), (9)

where Gε(t, x) is the heat kernel:

Gε(t, x) = 1

(4πεt)d/2
e− |x|2

4εt , t > 0.

Using (3) and (8)–(9), it follows that, for each fixed ε > 0,

E
[‖(∇,Δ)uε‖L1((0,T )×Rd )

]
< ∞ for any finite T > 0, (10)

that is, ∇uε and ∇2uε are integrable for each fixed ε > 0. With different methods,
we will later prove an ε-uniform spatial BV-estimate.

The remaining part of this paper is organized as follows: In Section 2, we
prove the uniform spatial BV-bound for stochastic viscous solutions uε(t, x). In
Section 3, based on the BV-bound, we establish the equicontinuity of uε(t, x) in
t > 0, uniformly in the viscosity coefficient ε > 0. With these uniform estimates,
we establish in Section 4 the existence of stochastic entropy solutions in L p∩BV, as
the vanishing viscosity limits for problem (6)–(7) with initial data in L p∩BV. Com-
bining this existence result with the L1-stability theory in Feng–Nualart [7] leads
to the well-posedness in L p for problem (1)–(2). We further establish estimates
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for the “continuous dependence on the nonlinearities” for BV stochastic entropy
solutions in Section 5, which also lead to an error estimate for (6)–(7). Various
further generalizations of the results are discussed in Section 6.

2. Uniform Spatial BV-Estimate

As indicated in Section 1, we have available regularity and uniform L p-esti-
mates (8) for the viscous solutions uε(t, x) of (6)–(7). In this section, we establish
the uniform L1-estimate for ∇uε, that is, the uniform BV-estimate of uε(t, x) in
the spatial variables x.

Before we do that, let us indicate why the BV-estimate does not seem to be
available when the noise coefficient function σ = σ(x, u) depends on the spatial
position x , even if that dependence is C∞ (see Section 6 for fractional BV-estimate).
To this end, it suffices to consider the simple stochastic differential equation:

du = σ(x, u) dW (t), u(0) = u0(x), x ∈ R,

where we have dropped nonlinear transport effects and restricted ourselves to one
spatial dimension. The spatial derivative v = ∂x u satisfies

dv = (σu(x, u)v + σx (x, u)) dW (t).

Let η be a C2-function. By Ito’s formula,

dη(v) = η′(v)(σu(x, u)v + σx (x, u)) dW (t)

+1

2
η′′(v)(σu(x, u)v + σx (x, u))2 dt.

Integrating in x and taking expectations, it follows that

E

[∫
η(v(t)) dx

]
= E

[∫
η(v(0)) dx

]

+E

[∫ t

0

∫
1

2
η′′(v)(σu(x, u)v + σx (x, u))2 dx ds

]
.

Modulo an approximation argument, we can take η(·) as |·|. Unless σx ≡ 0, the
second term on the right-hand side does not seem to be controllable (this term
vanishes when σx ≡ 0).

Let us now continue with the derivation of the BV-estimate for (6). We will
need a C2-approximation of the Kruzkov entropy. Let η̄ : R → R be a C2-function
satisfying

η̄(0) = 0, η̄(−r) = η̄(r), η̄′(−r) = −η̄′(r), η̄′′ � 0, (11)

and

η̄′(r) =

⎧⎪⎨
⎪⎩

−1, when r < −1,

∈ [−1, 1], when |r | � 1,

+1, when r > 1.
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For any ρ > 0, define the function ηδ : R → R by

ηρ(r) = ρη̄

(
r

ρ

)
.

Then

|r | − M1ρ � ηρ(r) � |r | , ∣∣η′′
ρ(r)

∣∣ � M2

ρ
1|r |<ρ, (12)

where

M1 = sup
|r |�1

| |r | − η̄(r)|, M2 = sup
|r |�1

∣∣η̄′′(r)
∣∣ . (13)

We will frequently utilize the Burkholder–Davis–Gundy inequality, which we
now recall. For p > 0, there exists a constant C = C p such that, if Mt is a
continuous martingale and t a stopping time, then

E

[
sup
s�t

|Ms |p

]
� C p E[〈M〉p/2

t ],

where 〈M〉t is the quadratic variation of Mt .

Theorem 1 (Spatial BV-estimate). Suppose that (3)–(5) hold. Let uε(t, x) be the
solution of (6)–(7). Then, for t > 0,

E

[∫
Rd

|∇uε(t, x)| dx
]

� E

[∫
Rd

|∇uε0(x)| dx
]

� E

[∫
Rd

|∇u0(x)| dx
]
.

Proof. Taking the derivative of (6) with respect to xi , 1 � i � d, we obtain

∂t (u
ε
xi
)+ ∇ · (f ′(uε(t, x))uεxi

) = σ ′(uε(t, x))uεxi
∂t W (t)+ εΔ(uεxi

).

Applying Ito’s formula to ηρ(uεxi
) yields

∂tηρ(u
ε
xi
) = η′

ρ(u
ε
xi
)σ ′(uε)uεxi

∂t W (t)

+η′
ρ(u

ε
xi
)(εΔuεxi

− ∇ · (f ′(uε)uεxi
))

+1

2
η′′
ρ(u

ε
xi
)(σ ′(uε)uεxi

)2. (14)

We observe that

εη′
ρ(u

ε
xi
)Δ(uεxi

) = ε(∇ · (η′
ρ(u

ε
xi
)∇uεxi

)− η′′
ρ(u

ε
xi
)
∣∣∇uεxi

∣∣2
)

= ε(Δηρ(u
ε
xi
)− η′′

ρ(u
ε
xi
)|∇uεxi

|2)
� εΔηρ(u

ε
xi
), (15)

by using the convexity of ηρ and interpreting Δηρ(uεxi
) in the distributional sense.

Here we have used that ∇uεxi
, 1 � i � d, are integrable, see (10), so that they

vanish at infinity.
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Integrating (14) with respect to x, using (10) and (15), and noting that

∫
Rd

∫ t

0
η′(uεxi

)σ ′(uε)uεxi
dW (s) dx

is a martingale, we arrive at

E

[∫
Rd
ηρ(u

ε
xi
(t, x)) dx

]
− E

[∫
Rd
ηρ(u

ε
xi
(0, x)) dx

]

� E

[
−

∫ t

0

∫
Rd
η′
ρ(u

ε
xi
)∇ · (f ′(uε)uεxi

) dx ds

+1

2

∫ t

0

∫
η′′
ρ(u

ε
xi
)(σ ′(uε)uεxi

)2 dx ds

]
. (16)

Now we send ρ → 0 in (16). By the dominated convergence theorem,

E

[∫
Rd

∣∣uεxi
(t, x)

∣∣ dx
]

� E

[∫
Rd

∣∣uεxi
(0, x)

∣∣ dx
]

− lim
ρ→0

E

[∫ t

0

∫
Rd
η′
ρ(u

ε
xi
)∇ · (f ′(uε)uεxi

) dx ds

]

+ lim
ρ→0

1

2
E

[∫ t

0

∫
Rd
η′′
ρ(u

ε
xi
)(σ ′(uε)uεxi

)2 dx ds

]

=: E

[∫
Rd

∣∣uεxi
(0, x)

∣∣ dx
]

+ I1 + I2.

For the term I1,

|I1| = lim
ρ→0

∣∣∣∣E
[∫ t

0

∫
Rd

∇ · (f ′(uε)η′
ρ(u

ε
xi
)uεxi

) dx ds

]∣∣∣∣
+ lim
ρ→0

∣∣∣∣E
[∫ t

0

∫
Rd
η′′
ρ(u

ε
xi
)uεxi

∇uεxi
· f ′(uε) dx ds

]∣∣∣∣
� C lim

ρ→0
E

[∫ t

0

∫
Rd

∣∣uεxi

∣∣ 1

ρ
χ[−ρ,ρ](uεxi

)
∣∣∇uεxi

∣∣ ∣∣f ′(uε)
∣∣ dx ds

]
.

Notice that

∣∣uεxi

∣∣ 1

ρ
χ[−ρ,ρ](uεxi

) → 0 for almost everywhere (t, x) almost surely as ρ → 0,

and

∣∣uεxi

∣∣ 1

ρ
χ[−ρ,ρ](uεxi

)
∣∣∇uεxi

∣∣ ∣∣f ′(uε)
∣∣ � C

(∣∣∇uεxi

∣∣2 + ∣∣uε∣∣2(r−1)
)
,

where the right-side term of the inequality is integrable and independent of ρ > 0.
Then the dominated convergence theorem implies that |I1| = 0.



714 Gui-Qiang Chen, Qian Ding & Kenneth H. Karlsen

Next we consider I2. By condition (5) and estimate (12), we have
∣∣∣η′′
ρ(u

ε
xi
)(σ ′(uε)uεxi

)2
∣∣∣ = ∣∣η′′

ρ(u
ε
xi
)
∣∣ ∣∣uεxi

∣∣2
(σ ′(uε))2

� C
∣∣uεxi

∣∣ 1{|uεxi
|<ρ} � C

∣∣uεxi

∣∣ ∈ L1((0, T )× R
d).

On the other hand, since |uεxi
| is integrable and independent of ρ > 0, and

∣∣uεxi

∣∣ 1∣∣∣|uεxi

∣∣∣<ρ} → 0 for almost everywhere (t, x) almost surely as ρ → 0,

the dominated convergence theorem again implies |I2| = 0. �

3. Uniform Temporal L1-Continuity

In this section, we establish the uniform temporal L1-continuity of uε(t, x),
independent of the viscosity coefficient ε > 0.

Theorem 2 (Temporal L1-continuity). Suppose that (3)–(5) hold. Let uε(t, x) be
the solution of (6)–(7). Let D ⊂ R

d be a bounded domain in R
d and T > 0 finite.

Then, for any smallΔt > 0, there exists a constant C > 0 independent ofΔt such
that

E

[∫ T −Δt

0

∫
D

∣∣uε(t +Δt, x)− uε(t, x)
∣∣ dx dt

]

� C(Δt)1/3 → 0 as Δt → 0. (17)

Proof. Fix Δt > 0. For t ∈ [0, T − Δt], set wε(t, ·) := uε(t + Δt, ·) − uε(t, ·).
Then, for any ϕ ∈ L∞(0, T ; C∞

0 (D)), we have
∫

D
wε(t, x)ϕ(t, x) dx

=
∫

D

(∫ t+Δt

t
∂suε(s, x) ds

)
ϕ(t, x) dx

=
∫ t+Δt

t

∫
D

f(uε(s, x)) · ∇ϕ(t, x) dx ds

−ε
∫ t+Δt

t

∫
D

∇uε(s, x) · ∇ϕ(t, x) dx ds

+
∫ t+Δt

t

∫
D
σ(uε(s, x))ϕ(t, x) dx dW (s). (18)

For each t ∈ [0, T −Δt], take δ > 0, set

D−δ := {x ∈ D : dist(x, ∂D) � δ},
and denote by χD−δ (·) its characteristic function.
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Let J ∈ C∞
c (R

d) be the standard mollifier defined by

J (x) =
{

C exp
(

1
|x|2−1

)
if |x| < 1,

0 if |x| � 1,
(19)

where the constant C > 0 is chosen so that
∫
Rd J (x) dx = 1. For each δ > 0, we

take

ϕ := ϕδ(t, x) = δ−d
∫

Rd
J

(
x − y
δ

)
sgn(w(t, y))χD−δ (y) dy

in (18). It is clear that ‖ϕδ‖L∞(D) + δ ‖∇ϕδ‖L∞(D) � C , uniformly in t , for some
constant C > 0 independent of δ > 0.

Integrating (18) in t from 0 to T −Δt yields∫ T −Δt

0

∫
D

∣∣wε(t, x)
∣∣ dx dt

=
∫ T −Δt

0

∫ t+Δt

t

∫
D

f(uε(s, x)) · ∇ϕδ(t, x) dx ds dt

−
∫ T −Δt

0

∫ t+Δt

t

∫
D
ε∇uε(s, x) · ∇ϕδ(t, x) dx ds dt

+
∫ T −Δt

0

(∫ t+Δt

t

(∫
D
σ(uε(s, x))ϕδ(t, x) dx

)
dW (s)

)
dt

+
∫ T −Δt

0

∫
D
wε(t, x)(wε(t, x)− ϕδ(t, x)) dx dt

:=
4∑

j=1

I δj .

We examine these parts separately.
Thanks to the polynomial growth of f and (8),

∣∣E[I δ1 ]∣∣ � C
Δt

δ
‖f‖L1(D×(0,T )) � C(T, D)

Δt

δ
.

For the term I δ2 , we have

∣∣E[I δ2 ]∣∣ � C

(
E

[∫ T −Δt

0

∫
D

(∫ t+Δt

t

√
ε|∇uε(s, x)| ds

)2

dx dt

]) 1
2

×
(

E

[∫ T −Δt

0

∫
D
ε|∇ϕδ|2 dx ds

]) 1
2

� CΔt

(
E

[∫ T −Δt

0

∫
D

|∇ϕδ|2 dx ds

]) 1
2

� C(T, D)
Δt

δ
,

where the second inequality follows from the energy estimate (8):
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sup
ε>0

E

[
ε

∫ T

0

∥∥∇uε(t, ·)∥∥2
L2(Rd )

dt

]
< ∞.

For the term I δ3 , by the Burkholder–Davis–Gundy inequality applied to the

martingale 0 � Δt �→ ∫ t+Δt
t (

∫
D σ(u

ε(s, x))ϕδ(t, x) dx) dW (s), we have

∣∣E[I δ3 ]∣∣ � C
∫ T −Δt

0
E

⎡
⎣

(∫ t+Δt

t

(∫
D
σ(uε(s, x))ϕδ(t, x) dx

)2

ds

) 1
2
⎤
⎦ dt

� C

(
E

[∫ T −Δt

0

∫ t+Δt

t

∫
D
(σ (uε(s, x))ϕδ(t, x))2 dx ds dt

]) 1
2

� C

(
E

[∫ Δt

0

∫ T −Δt

0

∫
D
(σ (uε(s + t, x)))2 dx dt ds

]) 1
2

� C
√
Δt

(
E

[∫ T

0

∫
D
(σ (uε(t, x)))2 dx dt

]) 1
2

� C
√
Δt

(
E

[∫ T

0

∫
D

|uε(t, x)|2 dx dt

]) 1
2

� C
√
Δt,

where we have used that supε>0 E[‖uε(t)‖2
2] < ∞, uniformly in t > 0.

This L2-bound also implies

E

[∫ T

0

∫
D\D−2δ

|uε(t, x)| dx dt

]

� C (E[‖uε‖2
2])

1
2

(
E

[∫ T

0

∫
D\D−2δ

dx dt

]) 1
2

� C
√
δ.

Hence,

∣∣E[I δ4 ]∣∣ � 2E

[∫ T −Δt

0

∫
D\D−2δ

|w(t, x)| dx dt

]

+E

[∫ T −Δt

0

∫
D−2δ

∣∣∣∣|w(t, x)|

−w(t, x)
∫

Rd
δ−d J

(
x−y
δ

)
sgn(w(t, y))

∣∣∣∣ dy dx dt

]

� C
√
δ + E

[∫ T −Δt

0

∫
D−2δ

∫
Rd
δ−d J

(
x − y
δ

)

×| |w(t, x)|−w(t, x) sgn(w(t, y))| dy dx dt

]
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� C
√
δ

+C E

[∫ T −Δt

0

∫
D−2δ

∫
Rd
δ−d J

(
x − y
δ

)
|w(t, x)− w(t, y)| dy dx dt

]

� C
√
δ + C E

[∫
J (z)

∫ T

0

∫
D−2δ

|uε(t, x)− uε(t, x − δz)| dx dt dz

]

� C
√
δ + 4δ � C

√
δ,

where the third inequality follows from ||a|−a sgn(b)| � 2|a−b| for any a, b ∈ R.
The fifth inequality follows, since uε belongs to BV in x.

Setting ρ(Δt) = infδ>0{C1
Δt
δ

+ C2
√
Δt + C3

√
δ}, it follows that

∫ T −Δt

0

∫
D

|w(t, x)| dx dt � ρ(Δt).

The function ρ(·) reaches the infimum at δ = C(Δt)
2
3 , and hence

∫ T −Δt

0

∫
D

|w(t, x)| dx dt � C(Δt)
1
3 → 0 as Δt → 0.

This concludes the proof of the theorem. �

Remark 1. Since the Brownian sample paths are α-Hölder continuous for every
α < 1

2 , a fractional order in the temporal L1-continuity in (17) is expected. The
proof of Theorem 2 uses an idea due to Kruzkov [11].

4. Well-Posedness Theory in L p

Before we introduce the relevant notions of generalized solutions, let us define
what is meant by an entropy–entropy flux pair (η,q), or more simply an entropy
pair, namely a C2 function η : R → R such that η′, η′′ have at most polyno-
mial growth, with corresponding entropy flux q defined by q′(u) = η′(u)f ′(u). An
entropy pair is called convex if η′′(u) � 0.

Definition 1 (Stochastic entropy solutions). An {Ft }t�0-adapted and L2(Rd)-val-
ued stochastic process u = u(t) = u(t, x;ω) is called a stochastic entropy solution
of the balance law (1) with initial data (2) provided that the following conditions
hold:

(i) for p = 1, 2, . . .,

sup
0�t�T

E
[
‖u(t)‖p

L p(Rd )

]
< ∞, for any T > 0;
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(ii) for any convex entropy pair (η,q) and any 0 < s < t ,

−
(∫

Rd
η(u(t, x))ϕ(x) dx −

∫
Rd
η(u(s, x))ϕ(x) dx

)

+
∫ t

s

∫
Rd

q(u(τ, x)) · ∇ϕ dx dτ

+
∫ t

s

∫
Rd

1

2
η′′(u(τ, x))(σ (u(τ, x)))2ϕ dx dτ

+
∫ t

s

(∫
Rd
η′(u(τ, x))σ (u(τ, x))ϕ dx

)
dW (τ ) � 0,

for all ϕ ∈ C∞
c (R

d), ϕ � 0, where
∫ t

s (· · · ) dW (τ ) is an Ito integral.

To motivate the next definition, let us make a formal attempt to derive the L1-
contraction property for stochastic entropy solutions. To this end, consider smooth
(in x) solutions to the one-dimensional problems:

du + ∂x f (u) dt = σ(u) dW, u|t=0 = u0,

dv + ∂x f (v) dt = σ(v) dW, v|t=0 = v0.

Subtracting the two stochastic conservation laws yields

d(u − v) = −[∂x ( f (u)− f (v))] dt + [σ(u)− σ(v)] dW.

Let η(·) be an entropy. An application of the chain rule (Ito’s formula) now yields

dη(u − v) =
[

− ∂x (η
′(u − v)( f (u)− f (v)))

+η′′(u − v)( f (u)− f (v))∂x (u − v)

+1

2
η′′(u − v)(σ (u)− σ(v))2

]
dt

+η′(u − v)(σ (u)− σ(v)) dW,

where the last term is a martingale. Choosing η(·) = |·| yields η′′(·) = δ0 and the
two “η′′ terms” vanish. Consequently, after integrating and taking expectations, we
arrive at the L1-contraction (conservation) principle:

E

[∫
|u(t)− v(t)| dx

]
= E

[∫
|u0 − v0| dx

]
.

Of course, for non-smooth solutions, the Ito formula is not available and we
should instead derive the L1-contraction principle from the (stochastic) entropy
inequalities via Kruzkov’s method.

Attempting precisely that, we write the entropy condition for u(t) = u(t, x;ω)
with the entropy η(u(t)−v(s, y;ω)), where v(s, y;ω) is being treated as a constant
with respect to (t, x). Similarly, write the entropy condition for v(s) = v(s, y;ω)
for the entropy η(v(s)− u(t, x;ω)), with u(t, x;ω) being constant with respect to
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(s, y). Take η(·) = |·|, and then q(u, v) = sgn(u − v)( f (u)− f (v)). After adding
together the two entropy inequalities, we formally obtain

(dt + ds)|u − v| �
[

− (∂x + ∂y)(sgn(u − v)( f (u)− f (v)))

+1

2
δ(u − v)[(σ (u))2 + (σ (v))2]

]
dt ds

+ sgn(u(t, x)− v(s, y))σ (u(t, x)) dW (t) ds

− sgn(u(t, x)− v(s, y))σ (v(s, y)) dW (s) dt.

Depending on t < s or t > s, one of the last two terms is not adapted, and
this causes a problem for the Ito integral. In particular, by taking the expectation
of the above inequality, only one of the last two terms vanishes. Moreover, to write
1
2δ(u − v)[(σ (u))2 + (σ (v))2] in the favorable form:

1

2
δ(u − v)(σ (u)− σ(v))2,

we are missing the cross term 2σ(u)σ (v). These difficulties can be effectively
handled by the notion of “strong” stochastic entropy solutions.

Definition 2 (Strong stochastic entropy solutions). We refer to a stochastic entropy
solution u of the balance law (1) with initial data (2) as a strong stochastic entropy
solution if the following condition holds:

(iii) for each {Ft }t�0-adapted, L2(R)-valued stochastic process ũ = ũ(t) =
ũ(t, x;ω) satisfying

sup
0�t�T

E
[
‖ũ(t)‖p

L p(Rd )

]
< ∞ for any T > 0, p = 1, 2, . . . ,

and for each entropy function S : R → R, with

S(r; v, y) :=
∫

Rd
S′(ũ(r, x)− v)σ (ũ(r, x))ϕ(x, y) dx,

where r � 0, v ∈ R, y ∈ R
d , and ϕ ∈ C∞

c (R
d × R

d), there exists a deter-
ministic function Δ(s, t), 0 � s � t , such that

E

[∫
Rd

∫ t

s
S(τ ; v = u(t, y), y) dW (τ ) dy

]

� E

[∫ t

s

∫
Rd
∂vS(τ ; v = ũ(τ, y), y)σ (u(τ, y)) dy dτ

]
+Δ(s, t),

where Δ(·, ·) is such that, for each T > 0, there exists a partition {ti }m
i=1 of

[0, T ], 0 = t0 < t1 < · · · < tm = T , so that
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lim
max

i
|ti+1−ti |→0

m∑
i=1

Δ(ti , ti+1) = 0.

The notion of strong stochastic entropy solutions is due to Feng–Nualart [7],
who proved the L1-contraction property for these solutions:

E
[‖u(t)− v(t)‖L1(Rd )

]
� E

[‖u0 − v0‖L1(Rd )

]
for t > 0, (20)

where u(t) is any stochastic entropy solution with u|t=0 = u0 and v(t) is any strong
stochastic entropy solution with v|t=0 = v0. In (20), the entropy |·| can be replaced
by (·)+, yielding the L1-comparison principle.

Feng–Nualart [7] employed the compensated compactness method to prove an
existence result in the one-dimensional context. The following theorem provides
the existence of strong stochastic entropy solutions for a class of multidimensional
equations.

Theorem 3 (Existence in L p ∩ BV). Suppose that (3)–(5) hold. Then there exists
a strong stochastic entropy solution u of the balance law (1) with initial data (2)
such that

E
[|u(t, ·)|BV(Rd )

]
� E

[|u0|BV(Rd )

]
for any t � 0. (21)

Proof. For fixed ε > 0, we mollify u0 by uε0 ∈ C∞ so that E[‖uε0‖2
Hs (Rd )

] is finite
for any s > 0, and

E
[
‖uε0‖p

L p(Rd )
+ ∣∣uε0∣∣BV(Rd )

]
� E

[
‖u0‖p

L p(Rd )
+ |u0|BV(Rd )

]
< ∞,

for any p = 1, 2, . . ., and uε0(x) → u0(x) for almost everywhere x, almost surely
as ε → 0.

Now the same arguments as in Section 4 of Feng–Nualart [7] yield that there
exists an Ft -adapted stochastic process uε = uε(t) ∈ C([0,∞); L2(Rd)) satisfy-
ing almost surely that

(i) E[‖uε(t, ·)‖2
Hs (Rd )

] < ∞ for all t > 0;

(ii) ∂xi x j u
ε(t, ·) ∈ C(Rd) for all i, j = 1, . . . , d;

(iii) For any ϕ ∈ C∞
c (R

d), ϕ � 0, and 0 < s < t ,

〈η(uε(t, ·)), ϕ〉 − 〈η(uε(s, ·)), ϕ〉

=
∫ t

s

〈
q(uε(τ, ·)),∇ϕ〉

dτ + 1

2

∫ t

s

〈
η′′(uε(τ, ·))(σ (uε(τ, ·))2, ϕ

〉
dτ

+
∫ t

s

〈
η′(u(τ, ·))σ (u(τ, ·)), ϕ〉

dW (τ )

+ε
∫ t

s

(〈
η(uε(τ, ·)),Δϕ〉 − 〈

η′′(uε(τ, ·))|∇uε(τ, ·)|2, ϕ
〉)

dτ
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�
∫ t

s

〈
q(uε(τ, ·)),∇ϕ〉

dτ + 1

2

∫ t

s

〈
η′′(uε(τ, ·))(σ (uε(τ, ·))2, ϕ

〉
dτ

+
∫ t

s

〈
η′(uε(τ, ·))σ (u(τ, ·)), ϕ〉

dW (τ )+ O(ε),

where the first equality in (iii) follows from the Ito formula.
Combining the results established in Sections 2 and 3, we conclude that there

exist a subsequence (still denoted) {uε(t, x)}ε>0 and a limit u(t, x) such that, as
ε → 0,

uε(t, x) → u(t, x) for almost everywhere (t, x), almost surely,

and the limit u(t, x) satisfies (21). Arguing as in Feng–Nualart [7], we can pass
to the limit in the entropy inequality (iii) to conclude that the limit u(t, x) is a
stochastic entropy solution (see Definition 1). Moreover, we can prove that u is a
strong stochastic entropy solution (see Definition 2). �

Combining Theorem 3 with the L1-stability result established in Feng–Nualart
[7], we conclude

Theorem 4 (Well-posedness in L p). Suppose that (4) and (5) hold, and that u0
satisfies

E
[
‖u0‖p

L p(Rd )

]
< ∞, p = 1, 2, . . . .

(i) Existence: There exists a strong stochastic entropy solution of the balance law
(1) with initial data (2) such that, for any t � 0,

E
[
‖u(t, ·)‖p

L p(Rd )

]
< ∞, p = 1, 2, . . . . (22)

(ii) Stability: Let u(t, x) be a strong stochastic entropy solution of (1) with initial
data u0(x), and let v(t, x) be a stochastic entropy solution with initial data
v0(x). Then, for any t > 0,

E

[∫
Rd

|u(t, x)− v(t, x)| dx
]

� E

[∫
Rd

|u0(x)− v0(x)| dx
]
. (23)

Proof. For the ∩∞
p=1L p(Rd)-valued random variable u0, we can approximate u0

by uδ0(x) in L1 as δ → 0, with E[‖uδ0‖p
p + |uδ0|BV] < ∞ for fixed δ > 0. Then,

according to Theorem 3, there exists a corresponding family of global strong entropy
solutions uδ(t, x) for δ > 0.

The L1-stability (contraction) result established in Feng–Nualart [7] implies
that uδ(t, x) is a Cauchy sequence in L1, which yields the strong convergence of
uδ(t, x) to u(t, x) almost everywhere, almost surely. Since

E
[
‖uδ(t, ·)‖p

L p(Rd )

]
� E

[
‖uδ0(·)‖p

L p(Rd )

]
� C, p = 1, 2, . . . ,

where C is independent of δ, one can check that u(t, x) is a strong stochastic entropy
solution, and (22) holds. For the stability result (23), see [7]. �
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5. Continuous Dependence Estimates

The aim of this section is to establish an explicit “continuous dependence on the
nonlinearities” estimate in the BV class. Let u(t) = u(t, x;ω) be a strong stochastic
entropy solution of

∂t u + ∇ · f(u) = σ(u) ∂t W, u|t=0 = u0. (24)

Let v(t) = v(t, x;ω) be a strong stochastic entropy solution of

∂tv + ∇ · f̂(v) = σ̂ (v) ∂t W, v|t=0 = v0. (25)

We are interested in estimating E[‖u(t)− v(t)‖L1 ] in terms of u0 − v0, f − f̂ and
σ − σ̂ . Relevant continuous dependence results for deterministic conservation laws
have been obtained in [17,1], and in [3] for strongly degenerate parabolic equations;
see also [2,9].

We start with the following important lemma.

Lemma 1. Suppose that (3)–(5) hold for the two data sets (u0, f, σ ) and (v0, f̂, σ̂ ).
For any fixed ε > 0, let u(t) = u(t, x;ω) be the solution to the stochastic parabolic
problem

du + [∇x · f(u)− εΔxu] dt = σ(u) dW (t), u|t=0 = u0. (26)

For any fixed ε̂ > 0, let v(t) = v(t, y;ω) be the solution to the stochastic parabolic
problem

dv + [∇y · f̂(v)− ε̂Δyv] dt = σ̂ (v) dW (t), v|t=0 = v0. (27)

Take 0 � φδ = φδ(x, y) ∈ C∞
c (R

d × R
d) to be of the form:

φδ(x, y) = 1

δd
J

(
x − y

2δ

)
ψ

(
x + y

2

)
=: Jδ

(
x − y

2

)
ψ

(
x + y

2

)
, (28)

where J (·) is a regularization kernel as in (19) and 0 � ψ ∈ C∞
c (R

d). More-
over, given any entropy function η(·) with η(0) = 0 and η′(·) odd, introduce the
associated entropy fluxes for u, v ∈ R:

qf (u, v) =
∫ u

v

η′(ξ − v)f ′(ξ) dξ, qf̂ (u, v) =
∫ u

v

η′(ξ − v)f̂ ′(ξ) dξ.

Then, for any t > 0,∫∫
η(u(t, x)− v(t, y))φδ(x, y) dx dy −

∫∫
η(u0(x)− v0(y))φδ(x, y) dx dy

� I f (φδ)+ I f,f̂ (φδ)+ I σ,σ̂ (φδ)+ I ε,ε̂(φδ)

+
∫∫ ∫ t

s
η′(u(s, x)− v(s, y))(σ (u(s, x))− σ̂ (v(s, y)))

×φδ(x, y) dW (s) dx dy,



On Nonlinear Stochastic Balance Laws 723

where

I f (φδ) =
∫∫ ∫ t

0
qf (u(s, x), v(s, y)) · ∇ψ

(
x + y

2

)
Jδ

(
x − y

2

)
ds dx dy,

I f,f̂ (φδ) =
∫∫ ∫ t

0
(qf̂ (v(s, y), u(s, x))− qf (u(s, x), v(s, y)))

×∇yφδ(x, y) ds dx dy,

I ε,ε̂(φδ) = (
√
ε − √

ε̂)2
∫∫ ∫ t

0
η(u(s, x)− v(s, y))

×Δy Jδ

(
x − y

2

)
ψ

(
x + y

2

)
ds dx dy

+1

4
(
√
ε + √

ε̂)2
∫∫ ∫ t

0
η(u(s, x)− v(s, y))

×Jδ

(
x − y

2

)
Δψ

(
x + y

2

)
ds dx dy

+(ε̂ − ε)

∫∫ ∫ t

0
η(u(s, x)− v(s, y))

×∇y Jδ(x − y) · ∇ψ
(

x + y
2

)
ds dx dy,

I σ,σ̂ (φδ) =
∫∫ ∫ t

0

1

2
η′′(u(s, x)− v(s, y))

×(σ (u(s, x))− σ̂ (v(s, y)))2φδ(x, y) ds dx dy.

Proof. Subtracting (27) from (26) and subsequently applying Ito’s formula to
η(u(t)− v(t)), we obtain

dη(u − v) =
[

− η′(u − v)(∇x · f(u)− ∇y · f̂(v))+ η′(u − v)(εΔxu − ε̂Δyv)

+1

2
η′′(u − v)(σ (u)− σ(v))2

]
dt

+η′(u − v)(σ (u)− σ(v)) dW (t). (29)

Observe that

η′(u − v)∇x · f(u) = ∇x · qf (u, v), η′(u − v)∇y · f̂(v) = ∇y · qf̂ (v, u),

and thus

−η′(u − v)(∇x · f(u)− ∇y · f̂(v))

= −(∇x + ∇y) · qf (u, v)+ ∇y · (qf (u, v)− qf̂ (v, u)).

Next,

η′(u − v)(εΔxu − ε̂Δyv)

= (εΔx + ε̂Δy)η(u − v)− η′′(u − v)(ε|∇xu|2 + ε̂|∇yv|2)
= (εΔx + 2

√
ε
√
ε̂∇x · ∇y + ε̂Δy)η(u − v)− η′′(u − v)|√ε∇xu − √

ε̂∇yv|2.
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Inserting the last two relations into (29), we arrive at

dη(u − v) =
[

− (∇x + ∇y) · qf (u, v)+ ∇y · (q(u, v)− qf̂ (v, u))

+(εΔx + 2
√
ε
√
ε̂∇x · ∇y + ε̂Δy)η(u − v)

−η′′(u − v)

∣∣∣√ε∇xu − √
ε̂∇yv

∣∣∣2

+1

2
η′′(u − v)(σ (u)− σ(v))2

]
dt

+η′(u − v)(σ (u)− σ(v)) dW (t). (30)

We integrate (30) against the test function φδ defined in (28) to yield
∫∫

η(u(t, x)− v(t, y))φδ(x, y) dx dy −
∫∫

η(u0(x)− v0(y))φδ(x, y) dx dy

� I 1
c + I 2

c + Id + I σ,σ̂ (φδ)

+
∫∫ ∫ t

0
η′(u(s, x)− v(s, y))(σ (u(s, x))− σ(v(s, y)))

×φδ(x, y) dW (s) dx dy,

where

I 1
c := −

∫∫ ∫ t

0
(∇x + ∇y) · qf (u, v)φδ(x, y) ds dx dy,

I 2
c :=

∫∫ ∫ t

0
∇y · (qf (u(s, x), v(s, y))− qf̂ (v(s, y), u(s, x)))

×φδ(x, y) ds dx dy,

Id :=
∫∫ ∫ t

0
(εΔx + 2

√
ε
√
ε̂∇x · ∇y + ε̂Δy)η(u(s, x)− v(s, y))

×φδ(x, y) ds dx dy.

Integrating by parts gives I 2
c = I f,f̂ (φδ), and also I 1

c = I f (φδ), since

(∇x + ∇y)φδ(x, y) = Jδ

(
x − y

2

)
(∇x + ∇y)ψ

(
x + y

2

)

= Jδ

(
x − y

2

)
∇ψ

(
x + y

2

)
.

We now investigate the term Id . A calculation shows that

(εΔx + 2
√
ε
√
ε̂∇x · ∇y + ε̂Δy)φδ(x, y)

= (εΔx + 2
√
ε
√
ε̂∇x · ∇y + ε̂Δy)Jδ

(
x − y

2

)
ψ

(
x + y

2

)

+Jδ(x − y)(εΔx + 2
√
ε
√
ε̂∇x · ∇y + ε̂Δy)ψ

(
x + y

2

)
+ R,
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and

R = 2ε∇x Jδ

(
x − y

2

)
· ∇xψ

(
x + y

2

)
+ 2ε̂∇y Jδ(x − y) · ∇yψ

(
x + y

2

)

+2
√
ε
√
ε̂∇x Jδ

(
x − y

2

)
· ∇yψ

(
x + y

2

)

+2
√
ε
√
ε̂∇y Jδ

(
x − y

2

)
· ∇xψ

(
x + y

2

)

=
(

2ε∇x Jδ

(
x − y

2

)
+ 2

√
ε
√
ε̂∇x Jδ

(
x − y

2

)
+ 2

√
ε
√
ε̂∇y Jδ

(
x − y

2

)

+2ε̂∇y Jδ

(
x − y

2

))
· ∇yψ

(
x + y

2

)

= 2∇y Jδ

(
x − y

2

)
· ∇yψ

(
x + y

2

)
(ε̂ − ε)

= ∇y Jδ

(
x − y

2

)
· ∇ψ

(
x + y

2

) (
ε̂ − ε

)
.

Moreover,

(εΔx + 2
√
ε
√
ε̂∇x · ∇y + ε̂Δy)Jδ

(
x − y

2

)
= (

√
ε − √

ε̂)2Δy Jδ

(
x − y

2

)
,

(εΔx + 2
√
ε
√
ε̂∇x · ∇y + ε̂Δy)ψ

(
x + y

2

)
= 1

4
(
√
ε + √

ε̂)2Δψ

(
x + y

2

)
.

Consequently, after integrating by parts, Id becomes I ε,ε̂(φδ). �
Theorem 5 (Continuous dependence estimates). Suppose that (3)–(5) hold for the
two data sets (u0, f, σ ) and (v0, f̂, σ̂ ). Let u(t) and v(t) be the strong stochastic
entropy solutions of (24)–(25), respectively, for which

E
[|v(t)|BV(Rd )

]
� E

[|v0|BV(Rd )

]
for t > 0.

In addition, we assume that either

u, v ∈ L∞((0, T )× R
d ×Ω) for any T > 0,

or

f ′′, f ′ − f̂ ′, σ − σ̂ ∈ L∞.

Then

(i) There is a constant CT > 0 such that, for any 0 < t < T with T finite,

E

[∫
Rd

|u(t, x)− v(t, x)|ψ(x) dx
]

� CT

(
E

[∫
Rd

|u0(x)− v0(x)|ψ(x) dx
]

+ √
t‖ψ‖L1(Rd )‖σ − σ̂‖L∞

+t E
[|v0|BV(Rd )

]
(‖f ′ − f̂ ′‖L∞ + ‖σ − σ̂‖L∞)

)
,
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where the constant CT > 0 is independent of |u0|BV(Rd ) and |v0|BV(Rd ), and
may grow exponentially in T . Moreover, ψ = ψ(x) � 0 is any function satis-
fying |ψ | � C0 and |∇ψ | � C0ψ , which includes ψ(x) = e−C0|x| and, more
generally, ψ(x) = 1 when |x| � R and ψ(x) = e−C0(|x|−R) when |x| � R.
In particular, for any R > 0, this choice implies

E

[∫
|x|<R

|u(t, x)− v(t, x)| dx
]

� CT,R

(
E

[∫
Rd

|u0(x)− v0(x)| dx
]

+ √
t‖σ − σ̂‖L∞

+t E
[|v0|BV(Rd )

]
(‖f ′ − f̂ ′‖L∞ + ‖σ − σ̂‖L∞)

)
.

(ii) There is a constant CT such that, for any 0 < t < T < ∞,

E

[∫
Rd

|u(t, x)− v(t, x)|ψ(x) dx
]

� CT

(
E

[∫
Rd

|u0(x)− v0(x)|ψ(x) dx
]

+ √
t‖ψ‖L1(Rd )Δ(σ, σ̂ )

+t E
[|v0|BV(Rd )

]
(‖f ′ − f̂ ′‖L∞ +Δ(σ, σ̂ ))

)
,

where ψ(x) is as before and

Δ(σ, σ̂ ) := sup
ξ �=0

∣∣σ(ξ)− σ̂ (ξ)
∣∣

|ξ | .

Remark 2. If, in addition to the assumptions listed in Theorem 5, u0(x) and v0(x)
are periodic in x with the same period, we can “remove”ψ from the above estimates,
since integrations are then over a bounded domain.

Proof. As the vanishing viscosity method converges (see Theorem 3), it suffices
to prove the result for (26)–(27) with ε̂ = ε.

For ρ > 0, let ηρ : R → R be the function defined by (11)–(13). Then the
function

qf
ρ(u, v) =

∫ u

v

η′
ρ(ξ − v)f ′(ξ) dξ, u, v ∈ R,

satisfies

∣∣∣∂u(qf
ρ(u, v)− qf

ρ(v, u))
∣∣∣ � M2

2

∥∥f ′′∥∥
L∞ ρ, (31)

where M2 = sup|u|�1

∣∣η̄′′(u)
∣∣.
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In view of Lemma 1 with ε̂ = ε,

E

[∫∫
ηρ(u(t, x)− v(t, y))φδ(x, y) dx dy

]

−E

[∫∫
ηρ(u0(x)− v0(y))φδ(x, y) dx dy

]

� E

[∫∫ ∫ t

0
qf
ρ(u(s, x), v(s, y)) · ∇ψ

(
x + y

2

)
Jδ

(
x − y

2

)
ds dx dy

]

+E

[∫∫ ∫ t

0
(qf̂
ρ(v(s, y), u(s, x))

−qf
ρ(u(s, x), v(s, y))) · ∇yφδ ds dx dy

]

+E

[∫∫ ∫ t

0

1

2
η′′
ρ(u(s, x)− v(s, y))

×(σ (u(s, x))− σ̂ (v(s, y)))2φδ(x, y) ds dx dy
]

+ε E

[∫∫ ∫ t

0
ηρ(u(s, x)− v(s, y))Jδ

(
x − y

2

)
Δxψ

(
x + y

2

)
ds dx dy

]
.

(32)

Observe that

−∇y · (qf̂
ρ(v(s, y), u(s, x))− qf

ρ(u(s, x), v(s, y)))

= ∇yv · ∂v(qf
ρ(u, v)− qf̂

ρ(v, u))|(u,v)=(u(s,x),v(s,y)),

and, thanks to (31),

∣∣∣∂v(qf
ρ(u, v)− qf̂

ρ(v, u))
∣∣∣

=
∣∣∣∂v(qf

ρ(v, u)− qf̂
ρ(v, u))+ ∂v(qf

ρ(u, v)− qf
ρ(v, u))

∣∣∣
� |f ′(v)− f̂ ′(v)| + M2

2
‖f ′′‖L∞ρ.

Hence, after an integration by parts,

∣∣∣∣E
[∫∫ ∫ t

0
(qf̂
ρ(v(s, y), u(s, x))− qf

ρ(u(s, x), v(s, y))) · ∇yφδ ds dx dy
]∣∣∣∣

� t E
[|v0|BV(Rd )

] ‖ψ‖L∞(Rd )

(
‖f ′ − f̂ ′‖L∞ + M2

2
‖f ′′‖L∞ρ

)
.
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Consequently, again thanks to (31) and also (12), we can write (32) as

E

[∫∫
|u(t, x)− v(t, y)|φδ(x, y) dx dy

]

−E

[∫∫
|u0(x)− v0(y)|φδ(x, y) dx dy

]

� E

[∫∫ ∫ t

0
qf
ρ(u(s, x), v(s, y)) · ∇ψ

(
x + y

2

)
Jδ

(
x − y

2

)
ds dx dy

]

+E

[∫∫ ∫ t

0

1

2
η′′
ρ(u(s, x)− v(s, y))

×(σ (u(s, x))− σ̂ (v(s, y)))2φδ(x, y) ds dx dy
]

+t |v0|BV(Rd ) ‖ψ‖L∞(Rd ) (‖f ′ − f̂ ′‖L∞ + O(ρ))
+O(‖ψ‖L1(Rd ) ρ)+ O(ε). (33)

Sending δ → 0 and using |∇ψ(x)| � C0ψ(x), we obtain

lim
δ→0

∣∣∣∣E
[∫∫ ∫ t

0
qf
ρ(u(s, x), v(s, y)) · ∇ψ

(
x + y

2

)
Jδ(x − y) ds dx dy

]∣∣∣∣
� C2‖f ′‖L∞

∫ t

0
E

[∫
|u(s, x)− v(s, x)|ψ(x)dx

]
ds;

hence, sending δ → 0 in (33) returns

E

[∫
|u(t, x)− v(t, x)|ψ(x) dx

]
− E

[∫
|u0(x)− v0(x)|ψ(x) dx

]

� C2‖f ′‖∞
∫ t

0
E

[∫
|u(s, x)− v(s, x)|ψ(x) dx

]
ds

+E

[∫ ∫ t

0

1

2
η′′
ρ(u(s, x)− v(s, x))(σ (u(s, x))− σ̂ (v(s, x)))2ψ(x) ds dx

]

+t E
[|v0|BV(Rd )

] ‖ψ‖L∞(Rd ) (‖f ′ − f̂ ′‖L∞ + O(ρ))
+O(‖ψ‖L1(Rd ) ρ)+ O(ε).

Next, with our choice of ηρ , it follows that

∣∣∣∣E
[∫ ∫ t

0

1

2
η′′
ρ(u(s, x)− v(τ, x))(σ (u(s, x))− σ̂ (v(s, x)))2ψ(x) ds dx

]∣∣∣∣
� E

[∫ ∫ t

0

M2

ρ
1|u(s,x)−v(s,x)|<ρ(σ (u(s, x))− σ̂ (u(s, x)))2ψ(x) ds dx

]

+E

[∫ ∫ t

0

M2

ρ
1|u(s,x)−v(s,x)|<ρ(σ̂ (u(s, x))− σ̂ (v(s, x)))2ψ(x) ds dx

]

=: A + B. (34)
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Clearly,

|A| � C3 E

[∫ ∫ t

0

∣∣σ(u(s, x))− σ̂ (u(s, x))
∣∣2

ρ
ψ(x) ds dx

]

� C3‖ψ‖L1(Rd )

t‖σ − σ̂‖2
L∞

ρ

and, in view of (5),

|B| � C4

∫ t

0
E

[∫
|u(s, x)− v(s, x)|ψ(x) dx

]
ds.

In summary, we have arrived at

E

[∫
|u(t, x)− v(t, x)|ψ(x) dx

]
− E

[∫
|u0(x)− v0(x)|ψ(x) dx

]

� C

(
‖f ′‖L∞

∫ t

0
E

[∫
|u(s, x)− v(s, x)|ψ(x) dx

]
ds

+‖ψ‖L∞(Rd )E[|v0|BV(Rd )]t (‖f ′ − f̂ ′‖L∞ + ρ)

+‖ψ‖L1(Rd )

t‖σ − σ̂‖2
L∞

ρ
+ ‖ψ‖L1(Rd ) ρ + ε

)
,

which implies via the Gronwall inequality that, for any t > 0,

E

[∫
|u(t, x)− v(t, x)| ψ(x) dx

]

� eC‖f ′‖L∞ t E

[∫
|u0(x)− v0(x)|ψ(x) dx

]

+CeC‖f ′‖L∞ t

(
‖ψ‖L∞(Rd )E

[|v0|BV(Rd )

]
t (‖f ′ − f̂ ′‖L∞ + ρ)

+‖ψ‖L1(Rd )

t‖σ − σ̂‖2
L∞

ρ
+ ‖ψ‖L1(Rd ) ρ + ε

)
. (35)

Choosing ρ = √
t‖σ − σ̂‖L∞ and sending ε → 0 supplies part (i).

About part (ii), the only difference in the proof comes from the estimate of the
A-term in (34), which is replaced by

|A| � C3 E

[∫ ∫ t

0

|σ(u(s, x))− σ̂ (u(s, x))|2
ρ|u(s, x)|2 |u(s, x)|2ψ(x) ds dx

]

= C3 E

[∫ ∫ t

0

(Δ(σ, σ̂ ))2

ρ
|u(s, x)|2ψ(x) ds dx

]

� C3‖ψ‖L∞(Rd )E
[‖u‖L∞(0,T ;L2(Rd ))

] t (Δ(σ, σ̂ ))2

ρ
.
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With this estimate at our disposal, (35) is replaced by

E

[∫
|u(t, x)− v(t, x)| ψ(x) dx

]

� eC‖f‖L∞ t E

[∫
|u0(x)− v0(x)|ψ(x) dx

]

+CeC‖f ′‖L∞ t
(

‖ψ‖L∞(Rd )E
[|v0|BV(Rd )

]
t (‖f ′ − f̂ ′‖L∞ + ρ)

+‖ψ‖L∞(Rd )

t (Δ(σ, σ̂ ))2

ρ
+ ‖ψ‖L1(Rd ) ρ + ε

)
.

Part (ii) follows by choosing ρ = √
tΔ(σ, σ̂ ) and sending ε → 0. �

Theorem 6 (Error estimate). Suppose that (3)–(5) hold. Let u(t) be the strong sto-
chastic entropy solutions of (24), for which

E
[|u(t)|BV(Rd )

]
� |u0|BV(Rd ) for t > 0, (36)

and let uε be the solution to the parabolic problem

duε + [∇x · f(uε)− εΔxuε] dt = σ(uε) dW (t), uε|t=0 = u0.

In addition, we assume that

either u, v ∈ L∞((0, T )× R
d ×Ω) for any T > 0, or f ′′ ∈ L∞.

Then there exists a constant CT > 0 such that, for any 0 < t < T with T finite,

E

[∫
Rd

|u(t, x)− uε(t, x)| dx
]

� CT E
[|u0|BV(Rd )

]
t
√
ε.

Proof. We proceed as in the proof of Theorem 5, starting from Lemma 1 with
σ̂ = σ, f̂ = f, ε̂ �= ε, uε = u, u ε̂ = v, leading to

E

[∫∫ ∣∣∣uε(t, x)− u ε̂(t, y)
∣∣∣φδ(x, y) dx dy

]

� E

[∫∫ ∫ t

0
qf
ρ(u

ε(s, x), u ε̂(s, y)) · ∇ψ
(

x + y
2

)
Jδ

(
x − y

2

)
ds dx dy

]

+E

[∫∫ ∫ t

0
η′′
ρ(u

ε(s, x)− u ε̂(s, y))

×(σ (uε(s, x))− σ(u ε̂(s, y)))2φδ(x, y) ds dx dy
]

+t |u0|BV(Rd ) ‖ψ‖L∞(Rd )O(ρ)+ O(‖ψ‖L1(Rd ) ρ)

+(√ε − √
ε̂)2 E

[∫∫ ∫ t

0
ηρ(u

ε(s, x)− u ε̂(s, y))

×Δy Jδ

(
x − y

2

)
ψ

(
x + y

2

)
ds dx dy

]
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+1

4
(
√
ε + √

ε̂)2 E

[∫∫ ∫ t

0
ηρ(u

ε(s, x)− u ε̂(s, y))

×Jδ

(
x − y

2

)
Δψ

(
x + y

2

)
ds dx dy

]

+(ε̂ − ε)E

[∫∫ ∫ t

0
ηρ(u

ε(s, x)− u ε̂(s, y))

×∇y Jδ

(
x − y

2

)
· ∇ψ

(
x + y

2

)
ds dx dy

]

=: I1 + I2 + I3 + I4 + I5 + I6. (37)

As before,

|I2| � C1

∫ t

0
E

[∫ ∣∣uε(s, x)− uε(s, y)
∣∣ Jδ(x − y)ψ

(
x + y

2

)
dx dy

]
ds.

Noting that the right-hand side is independent of ρ, we can first send ρ → 0 in
(37), and then let ψ tend to 1Rd , keeping in mind the L p-estimates (21), with the
outcome that I1, I3, I5, I6 → 0. The resulting estimate reads

E

[∫∫ ∣∣∣uε(t, x)− u ε̂(t, y)
∣∣∣ Jδ

(
x − y

2

)
dx dy

]

� C1

∫ t

0
E

[∫∫
|u(s, x)− v(s, y)| Jδ

(
x − y

2

)
dx

]
ds + I, (38)

where

I = (
√
ε − √

ε̂)2 E

[∫∫ ∫ t

0
|uε(s, x)− u ε̂(s, y)|Δy Jδ

(
x − y

2

)
ds dx dy

]
.

An integration by parts, followed by application of the spatial BV-estimate (36),
yields

|I | � C 2 t E
[|u0|BV(Rd )

] (√ε − √
ε̂)2

δ
.

In view of this, it follows from (38) in a completely standard way that

E

[∫
|uε(t, x)− u ε̂(t, x)| dx

]

� C1

∫ t

0
E

[∫ ∣∣uε(s, x)− vε(s, x)
∣∣ dx

]
ds

+C3 E
[|u0|BV(Rd )

] (
δ + t

(
√
ε − √

ε̂)2

δ

)
.

Choosing δ = √
ε − √

ε̂ gives

E

[∫
Rd

|uε(t, x)− u ε̂(t, x)| dx
]

� CT E
[|u0|BV(Rd )

]
t (

√
ε − √

ε̂).

Sending ε̂ → 0 concludes the proof of the theorem. �
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Remark 3. Theorem 6 indicates that the sequence {uε(t, x)} is a Cauchy sequence
in C(0, T ; L1), which directly implies its strong convergence.

6. More General Equations

We now briefly discuss diverse generalizations.
First of all, as in [7], the stochastic term in (1) can be replaced by the more

general term
∫

z∈Z
σ(u(t, x); z)∂t W (t, dz),

where Z is a metric space, σ : R × Z → R,W (t, dz) is a space-time Gaussian
white noise martingale random measure with respect to a filtration {Ft } (see for
example, Walsh [22], Kurtz–Protter [12]) with

E[W (t, A) ∩ W (t, B)] = μ(A ∩ B)t

for measurable A, B ⊂ Z , where μ is a (deterministic) σ -finite Borel measure on
the metric space Z . In particular, when Z = {1, 2, . . . ,m} and μ is a counting
measure on Z , then the stochastic term reduces to

m∑
k=1

σk(u(t, x))∂t Wk(t).

For the spatial BV and temporal L1-continuity estimates and stability results,
we can allow for more general flux functions f(t, x, u)with spatial dependence, by
combining the present methods with those in [2,9].

Next, let us discuss the case where the noise coefficient σ(x, u) has a spatial
dependence, focusing on the stochastic balance law:

∂t u + ∇ · f(u) = σ(x, u) ∂t W (t), (39)

where the noise coefficient is assumed to satisfy σ(x, 0) = 0 and

|σ(x, u)− σ(x, v)| � C |u − v| , ∀ u, v ∈ R, ∀ x ∈ R
d ,

|σ(x, u)− σ(y, u)| � C |x − y| |u| , ∀ u ∈ R, ∀ x, y ∈ R
d ,

(40)

where C is a deterministic constant.
In the previous sections, we have established the existence of a strong stochastic

entropy solution in the multidimensional context. The proof was based on deriving
the BV-estimates. However, as mentioned before, the BV-estimates are no longer
available when the noise term σ depends on the spatial location x. However, it
is possible to derive fractional BV estimates. For fixed ε > 0, let uε(t, x) be the
solution to the stochastic parabolic problem:

duε + [∇x · f(uε)− εΔxuε] dt = σ(x, uε) dW (t), uε|t=0 = u0, (41)
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where we tactically assume that f, σ, u0 are sufficiently smooth to ensure the exis-
tence of a regular solution [7]. Utilizing the continuous dependence framework
(Lemma 1) which also holds when the noise term σ depends on x, we will prove
that, for any δ > 0,

E

[∫
Rd

∫
Rd

∣∣uε(t, x + z)− uε(t, x − z)
∣∣ Jδ(z)ψ(x) dx dz

]

� CT E

[∫
Rd

∫
Rd

|u0(x + z)− u0(x − z)| Jδ(z)ψ(x) dx dz
]

+CT
√
δ (1 + ‖ψ‖L1(Rd )), 0 < t < T, (42)

for some finite constant CT independent of ε, where Jδ is a symmetric mollifier
and ψ � 0 is a compactly supported smooth function. In what follows, we assume
that the cut-off function ψ � 0 satisfies

|∇ψ(x)| � C0ψ(x), |Δψ(x)| � C0ψ(x), ψ ≡ 1 on K R := {|x| < R} ,

for some constants C0 > 0 and R > 0. One example of such a function, at
least after an easy approximation argument, is the compactly supported function
ψ ∈ W 2,∞(Rd) defined by

ψ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, |x| � R,
1

eπ+1

(√
2eπ−(|x|−R) sin(|x| − R + π

4 )+ 1
)
, R � |x| � R + π,

0, |x| � R + π.

Estimate (42) can be turned into a fractional BV estimate thanks to the follow-
ing deterministic lemma, which is related to known links between Sobolev, Besov,
and Nikolskii fractional spaces (see, for example, [18]); a proof can be found in the
appendix.

Lemma 2. Let h : R
d → R be a given integrable function, r, s ∈ (0, 1)with r < s,

ψ ∈ C∞
c (R

d), and {Jδ}δ>0 a sequence of symmetric mollifiers, that is, Jδ(x) =
1
δd J ( |x |

δ
), 0 � J ∈ C∞

c (R), supp (J ) ⊂ [−1, 1], J (−·) = J (·), and
∫

J = 1. Then

(i) There exists a positive constant C1 = C1(J, d, r, s) < ∞ such that, for any
δ > 0,

∫
Rd

∫
Rd

|h(x + z)− h(x − z)| Jδ(z)ψ(x) dx dz

� C1 δ
r sup

|z|�δ

(
|z|−s

∫
Rd

|h(x + z)− h(x − z)|ψ(x) dx
)
. (43)
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(ii) There exists a positive constant C2 = C2(J, d, r, s) < ∞ such that, for any
δ > 0,

sup
|z|�δ

(∫
Rd

|h(x + z)− h(x)|ψ(x) dx
)

� C2 δ
r sup

0<δ�1

(
δ−s

∫
Rd

∫
Rd

|h(x + z)− h(x − z)| Jδ(z)ψ(x) dx dz
)

+C2 δ
r ‖h‖L1(Rd ) . (44)

Suppose that u0 is, say, a deterministic function belonging to BV(Rd), or more
generally to the Besov space B�1,ν(R

d) for ν ∈ ( 1
2 , 1).

Starting from (42) with δ > 0,

1√
δ

E

[∫
Rd

∫
Rd

∣∣uε(t, x + z)− uε(t, x − z)
∣∣ Jδ(z)ψ(x) dx dz

]

� CT
1√
δ

∫
Rd

∫
Rd

|u0(x + z)− u0(x − z)| Jδ(z) ψ(x) dx dz

+CT (1 + ‖ψ‖L1(Rd ))

� 2 CT C1 ‖ψ‖L∞(Rd ) sup
|z|�δ

(
|z|−s

∫
Rd

|u0(x + z)− u0(x)| dx
)

+CT (1 + ‖ψ‖L1(Rd ))

� C(T, R), (45)

where (43) with r = 1
2 and s > 1

2 was used to arrive at the second inequality.
In view of (44) with s = 1

2 and r < 1
2 ,

sup
|z|�δ

2

E

[∫
Rd

∣∣uε(t, x + z)− uε(t, x)
∣∣ψ(x) dx

]

� C2 δ
r sup

0<δ�1

(
1√
δ

∫
Rd

∫
Rd

∣∣uε(t, x + z)− uε(t, x − z)
∣∣ Jδ(z)ψ(x) dx dz

)

+C2 δ
r

∥∥uε(t, ·)∥∥L1(Rd )
. (46)

Combining (45) with (46) yields

Theorem 7 (Fractional BV-estimate). For fixed ε > 0, let uε solve the stochastic
parabolic problem (41) with initial data u0 belonging to the Besov space Bν1,∞(Rd)

for some ν ∈ ( 1
2 , 1). In addition, we assume that

either uε ∈ L∞((0, T )× R
d ×Ω) for any T > 0, or f ′′ ∈ L∞.



On Nonlinear Stochastic Balance Laws 735

Fix T > 0 and R > 0. There exists a constant CT,R independent of ε such that, for
any 0 < t < T ,

sup
|z|�δ

E

[∫
K R

∣∣uε(t, x + z)− uε(t, x)
∣∣ dx

]
� CT,R δ

r , r ∈
(

0,
1

2

)
.

Proof of (42). We start off from Lemma 1 with f̂ = f, ε̂ = ε, σ̂ = σ, v0 = u0, and
v = u (this lemma also holds when σ depends on x):

E

[∫∫
ηρ(u

ε(t, x)− uε(t, y))Jδ

(
x − y

2

)
ψ

(
x + y

2

)
dx dy

]

−E

[∫∫
ηρ(u0(x)− u0(y))Jδ

(
x − y

2

)
ψ

(
x + y

2

)
dx dy

]

� E

[∫∫ ∫ t

0
qf
ρ(u

ε(s, x), uε(s, y)) · ∇ψ
(

x + y
2

)
Jδ

(
x − y

2

)
ds dx dy

]

+E

[∫∫ ∫ t

0
(qf
ρ(u

ε(s, y), uε(s, x))

−qf
ρ(u

ε(s, x), uε(s, y))) · ∇yφδ ds dx dy
]

+E

[∫∫ ∫ t

0

1

2
η′′
ρ(u

ε(s, x)− uε(s, y))

×(σ (x, uε(s, x))− σ(y, uε(s, y)))2φδ(x, y) ds dx dy
]

+ε E

[∫∫ ∫ t

0
ηρ(u

ε(s, x)−uε(s, y))Jδ

(
x−y

2

)
Δxψ

(
x + y

2

)
ds dx dy

]

=: I1 + I2 + I3 + I4. (47)

Finally, denoting the left-hand side of (47) by LHS and utilizing (12), we have

LHS = E

[∫∫ ∣∣uε(t, x)− uε(t, y)
∣∣ Jδ

(
x − y

2

)
ψ

(
x + y

2

)
dx dy

]

−E

[∫∫
|u0(x)− u0(y)| Jδ

(
x − y

2

)
ψ

(
x + y

2

)
dx dy

]

+O(ρ) ‖ψ‖L1(Rd ) .

Since |∇ψ(x)| � C0ψ(x),

|I1| � C
∫ t

0
E

[∫∫ ∣∣uε(s, x)− uε(s, y)
∣∣ Jδ

(
x − y

2

)
ψ

(
x + y

2

)
dx dy

]
ds.

Note that, thanks to (31) and the boundedness of f ′′,

qf
ρ(v, u) = qf

ρ(u, v)+
∫ u

v

∂ξ

(
qf
ρ(ξ, v)− qf

ρ(v, ξ)
)

dξ

= qf
ρ(u, v)+ |u − v| O(ρ),
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so that

|I2|�C ρ E

[∫∫ ∫ t

0

∣∣uε(s, x)−uε(s, y)
∣∣ ∣∣∣∣∇y Jδ

(
x−y

2

)∣∣∣∣ψ
(

x+y
2

)
ds dx dy

]

+C ρ E

[∫∫ ∫ t

0

∣∣uε(s, x)−uε(s, y)
∣∣ Jδ

(
x−y

2

) ∣∣∣∣∇ψ
(

x+y
2

)∣∣∣∣ ds dx dy
]

� C t ‖ψ‖L∞(Rd )

(ρ
δ

+ ρ
)
,

where we have used the estimate

sup
0�t�T

E
[∥∥uε(t)

∥∥
L1(Rd )

]
< ∞ for any T > 0,

and exploited |∇ψ(x)| � C0ψ(x).
Regarding I3,

|I3| � E

[∫∫ ∫ t

0

M2

ρ
1|uε(s,x)−uε(s,x)|<ρ(σ (x, uε(s, x))− σ(y, uε(s, x)))2

×Jδ

(
x − y

2

)
ψ

(
x + y

2

)
ds dx dy

]

+E

[∫∫ ∫ t

0

M2

ρ
1|uε(s,x)−uε(s,y)|<ρ(σ (y, uε(s, x))− σ(y, uε(s, y)))2

×Jδ

(
x − y

2

)
ψ

(
x + y

2

)
ds dx dy

]
=: A + B,

where, with reference to the second part of (40),

|A| � M2 E

[∫∫ ∫ t

0

|σ(x, uε(s, x))− σ(y, uε(s, x))|2
ρ

×Jδ

(
x − y

2

)
ψ

(
x + y

2

)
ds dx dy

]

� C E

[∫ ∫∫ t

0

|y − x|2
ρ

|uε(s, x)|2 Jδ

(
x − y

2

)
ψ

(
x + y

2

)
ds dx dy

]

� C ‖ψ‖L∞(Rd ) t
δ2

ρ
,

where we have put to use the estimate

sup
0�t�T

E
[∥∥uε(t)

∥∥2
L2(Rd )

]
� CT for any T > 0.

Moreover, with reference to the first part of (40),

|B| � C
∫ t

0
E

[∫∫ ∣∣uε(s, x)− uε(s, y)
∣∣ Jδ

(
x − y

2

)
ψ

(
x + y

2

)
dx dy

]
ds.
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Regarding I4, using |Δψ(x)| � C0ψ(x), we have

|I4| � C
∫ t

0
E

[∫∫ ∣∣uε(s, x)− uε(s, y)
∣∣ Jδ

(
x − y

2

)
ψ

(
x + y

2

)
dx dy

]
ds.

Summarizing, we have arrived at

E

[∫∫ ∣∣uε(t, x)− uε(t, y)
∣∣ Jδ

(
x − y

2

)
ψ

(
x + y

2

)
dx dy

]

� E

[∫∫
|u0(x)− u0(y)| Jδ

(
x − y

2

)
ψ

(
x + y

2

)
dx dy

]

+C
∫ t

0
E

[∫∫ ∣∣uε(s, x)− uε(s, y)
∣∣ Jδ

(
x − y

2

)
ψ

(
x + y

2

)
dx dy

]
ds

+C t ‖ψ‖L∞(Rd )

(ρ
δ

+ ρ
)

+ C ‖ψ‖L∞(Rd ) t
δ2

ρ
+ Cρ ‖ψ‖L1(Rd ) .

Optimizing with respect to ρ (take ρ = O(δ3/2)) and applying Gronwall’s inequal-
ity give

E

[∫∫ ∣∣uε(t, x)− uε(t, y)
∣∣ Jδ

(
x − y

2

)
ψ

(
x + y

2

)
dx dy

]

� CT E

[∫∫
|u0(x)− u0(y)| Jδ

(
x − y

2

)
ψ

(
x + y

2

)
dx dy

]

+CT
(
1 + ‖ψ‖L1(Rd )

) √
δ, 0 < t < T, (48)

for some constant CT independent of ε.
Introducing new variables, x̃ = x+y

2 and z = x−y
2 in (48), so x = x̃ + z and

y = x̃ + z, we finally obtain (42) (dropping the tildes). �
Combining Theorem 7 with the argument in Section 3, we conclude

Theorem 8 (Existence and regularity). Suppose that (40) holds and also that
‖f ′′‖L∞ < ∞.

(i) Let the initial data u0 belong to the Besov space Bν1,∞(Rd) for some ν ∈ ( 1
2 , 1)

and

E
[
‖u0‖p

L p(Rd )

]
< ∞, p = 1, 2, . . . . (49)

Then there exists a strong stochastic entropy solution of the balance law (39)
with initial data u0 such that, for fixed T > 0 and R > 0, there exists a
constant CT,R such that, for any 0 < t < T ,

sup
|z|�δ

E

[∫
K R

|u(t, x + z)− u(t, x)| dx
]

� CT,R δ
r

for some r ∈ (0, 1
2 ) and

E
[
‖u(t, ·)‖p

L p(Rd )

]
< ∞, p = 1, 2, . . . . (50)
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(ii) Let u0 satisfy only (49). Then there exists a strong stochastic entropy solution
of the balance law (39) with initial data u0 satisfying (50).

Finally, we remark in passing that the results and techniques extend easily to
stochastic balance laws with additional nonhomogeneous terms, by combining with
the Gronwall inequality, such as

∂t u(t, x)+ ∇ · f(x, u(t, x)) = σ(x, u(t, x)) ∂t W (t)+ g(x, u(t, x)),

for a large class of non-homogeneous terms f(x, u), g(x, u).
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Appendix A. Proof of Lemma 2

Since r < s, we can prove (43) as follows:

δ−r
∫

Rd

∫
Rd

|h(x + z)− h(x − z)| Jδ(z)ψ(x) dz dx

=
∫

Rd

∫
Rd

|h(x + z)− h(x − z)|
δd+r

J

( |z|
δ

)
ψ(x) dz dx

� ‖J‖L∞(R)

∫
Rd

∫
|z|�δ

|h(x + z)− h(x − z)|
|z|d+r

ψ(x) dz dx.

� ‖J‖L∞(R) sup
|z|�δ

(
z−s ‖(h(· + z)− h(· − z))ψ‖L1(Rd )

∫
|z|�δ

1

|z|d+r−s
dz

)

� CJ,d,r,s sup
|z|�δ

(
z−s ‖(h(· + z)− h(· − z))ψ‖L1(Rd )

)
,

where we have used the integrability of 1/ |z|d+r−s (since d + r − s < d).
We continue with the proof of (44). To this end, let us introduce the modulus

of continuity

ω(δ) := sup
|z|�δ

(∫
Rd

|h(x + z)− h(x)|ψ(x) dx
)
, δ > 0.

Clearly, ω(·) is a non-decreasing function and thus

∫ ∞

0
κ−r−1ω(κ) dκ �

∫ ∞

δ

κ−r−1ω(κ) dκ � ω(δ)

∫ ∞

δ

κ−r−1 dκ = 1

r
δ−rω(δ);
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therefore

ω(δ) � r δr
∫ ∞

0
κ−r−1ω(κ) dκ. (A.1)

Set

hδ(x) :=
∫

Rd
J δ

2
(y)h(x + y) dy,

and note that∫
Rd

|h(x + z)− h(x)|ψ(x) dx

�
∫

Rd
|hδ(x + z)− hδ(x)|ψ(x) dx +

∫
Rd

|hδ(x + z)− h(x + z)|ψ(x) dx

+
∫

Rd
|hδ(x)− h(x)|ψ(x) dx, (A.2)

We estimate the first two terms on the right-hand side as follows:
∫

Rd
|hδ(x)− h(x)|ψ(x) dx

=
∫

Rd

∣∣∣∣2dδ−d
∫

Rd
J

(
2 |y|
δ

)
(h(x + y)− h(x)) dy

∣∣∣∣ψ(x) dx

� ‖J‖L∞(R) δ
−d

∫
|y|�δ

2

∫
Rd

|h(x + y)− h(x)|ψ(x) dx dy

and, similarly,
∫

Rd
|hδ(x + z)− h(x + z)|ψ(x) dx

� ‖J‖L∞(R) δ
−d

∫
|y|�δ

2

∫
Rd

|h(x + z + y)− h(x + z)|ψ(x) dx dy

= ‖J‖L∞(R) δ
−d

∫
|y|�δ

2

∫
Rd

|h(x + y)− h(x)|ψ(x − z) dx dy

� C δ−d
∫

|y|�δ
2

∫
Rd

|h(x + y)− h(x)|ψ(x) dx dy + I1(δ),

where, for δ � 0,

I1(δ) := δ−d sup
|z|�δ

2

(∫
|y|�δ

∫
Rd

|h(x + y)− h(x)| |ψ(x)− ψ(x − z)| dx dy

)

� δ C ‖∇ψ‖L∞(Rd ) ‖h‖L1(Rd ) 10�δ�1(δ)

+C ‖ψ‖L∞(Rd ) ‖h‖L1(Rd ) 1δ>1(δ).
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For each z ∈ R
d and x ∈ R

d ,

hδ(x + z)− hδ(x) =
∫ 1

0
∇hδ(x + θz) · z dθ.

Observe that, for each x ∈ R
d ,

∇hδ(x) =
∫

Rd
∇ J δ

2
(y)(h(x + y)− h(x)) dy.

by the symmetry of the mollifier. Thus, with |z| � δ,

∫
Rd

|hδ(x + z)− hδ(x)|ψ(x) dx

=
∫

Rd

∣∣∣∣
∫ 1

0
∇hδ(x + θz) · z dθ

∣∣∣∣ψ(x) dx

� C δ−d sup
|z|�δ, θ∈[0,1]

(∫
|y|�δ

2

∫
Rd

|h(x + θz + y)− h(x + θz)|ψ(x) dx dy

)

= C δ−d sup
|z|�δ, θ∈[0,1]

(∫
|y|�δ

2

∫
Rd

|h(x + y)− h(x)|ψ(x − θz) dx dy

)

� C δ−d
∫

|y|�δ
2

∫
Rd

|h(x + y)− h(x)|ψ(x) dx dy + I2(δ),

where I2(δ) denotes the expression

C δ−d sup
|z|�δ, θ∈[0,1]

(∫
|y|�δ

2

∫
Rd

|h(x + y)− h(x)| |ψ(x)− ψ(x − θz)| dx dy

)
,

and

I2(δ) � δ C ‖∇ψ‖L∞(Rd ) ‖h‖L1(Rd ) 10�δ�1(δ)

+C ‖ψ‖L∞(Rd ) ‖h‖L1(Rd ) 1δ>1(δ),

with reference to the term I1(δ).
In view of the estimates derived above, taking the supremum in (A.2) over

|z| � δ, we have established

ω(δ) � C δ−d
∫

|y|�δ
2

∫
Rd

|h(x + y)− h(x)|ψ(x) dx dy

+ C ‖h‖L1(Rd ) (δ 10�δ�1(δ)+ 1δ>1(δ)).
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Multiplying this by δ−r−1 and integrating in δ from 0 to ∞ yield (replacing y
by z) ∫ ∞

0
δ−r−1ω(δ) dδ

� C
∫ ∞

0
δ−r−1−d

∫
|z|�δ

2

∫
Rd

|h(x + z)− h(x)|ψ(x) dx dz dδ

+C ‖h‖L1(Rd )

(∫ 1

0
δ−r dδ +

∫ ∞

1
δ−r−1 dδ

)
=: A + B, (A.3)

where the integrals on the last line are bounded since r ∈ (0, 1):

B � Cr ‖h‖L1(Rd ) .

Noticing that |z|
δ

� 1
2 ⇒ J ( |z|

δ
) > 0 and using r < s, we have

A � CJ

∫ 1

0
δ−r−1−d

∫
|z|�δ

2

∫
Rd

|h(x + z)− h(x)| J

( |z|
δ

)
ψ(x) dx dz dδ

� CJ

∫ 1

0
δ−sδs−r−1

∫
|z|�δ

2

∫
Rd

|h(x + z)− h(x)| Jδ(z)ψ(x) dx dz dδ

� CJ

(∫ 1

0

1

δ1+r−s
dδ

)
sup

0<δ�1
(δ−s

∫
Rd

∫
Rd

|h(x + z)− h(x)| Jδ(z) dx dz)

� CJ,r,s sup
0<δ�1

(δ−s
∫

Rd

∫
Rd

|h(x + z)− h(x)| Jδ(z) ψ(x) dx dz),

where CJ,r,s = CJ
1

s−r .
Consequently, from (A.1) and (A.3), it follows that, for any δ > 0,

sup
|z|�δ

(∫
Rd

|h(x + z)− h(x)|ψ(x) dx
)

� C δr sup
0<δ�1

(
δ−s

∫
Rd

∫
Rd

|h(x + z)− h(x)| Jδ(z)ψ(x) dx dz
)

+C δr ‖h‖L1(Rd ) , (A.4)

for some finite constant C .
Finally, observe that∫

Rd

∫
Rd

|h(x + z)− h(x)| Jδ(z)ψ(x) dx dz

=
∫

Rd

∫
Rd

|h(x + z)− h(x − z)| Jδ(2z)ψ(x − z) dx dz

= 1

2d

∫
Rd

∫
Rd

|h(x + z)− h(x − z)| J δ
2
(z)ψ(x − z) dx dz

� 1

2d

∫
Rd

∫
Rd

|h(x + z)− h(x − z)| J δ
2
(z)ψ(x) dx dz + I3(δ),
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where I3(δ) denotes the expression

1

2d

∫
Rd

∫
Rd

|h(x + z)− h(x − z)| J δ
2
(z) |ψ(x)− ψ(x − z)| dx dz.

As with I1(δ),

I3(δ) � C ‖h‖L1(Rd ) (δ 10�δ�1(δ)+ 1δ>1(δ)),

which implies

sup
0<δ�1

(
δ−s

∫
Rd

∫
Rd

|h(x + z)− h(x)| Jδ(z)ψ(x) dx dz
)

� C sup
0<δ�1

(
δ−s

∫
Rd

∫
Rd

|h(x + z)− h(x − z)| J δ
2
(z)ψ(x) dx dz

)

+C ‖h‖L1(Rd ) .

We can therefore replace (A.4) by

sup
|z|�δ

∫
Rd

|h(x + z)− h(x)|ψ(x) dx

� C δr sup
0<δ�1

(
δ−s

∫
Rd

∫
Rd

|h(x + z)− h(x)| J δ
2
(z)ψ(x) dx dz

)

+C δr ‖h‖L1(Rd ) ,

for some finite constant C , which implies (44).
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