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Abstract

We study a quasilinear parabolic equation of forward–backward type in one
space dimension, under assumptions on the nonlinearity which hold for a num-
ber of important mathematical models (for example, the one-dimensional Perona–
Malik equation), using a degenerate pseudoparabolic regularization proposed in
Barenblatt et al. (SIAM J Math Anal 24:1414–1439, 1993), which takes time
delay effects into account. We prove existence and uniqueness of positive solutions
of the regularized problem in a space of Radon measures. We also study qualitative
properties of such solutions, in particular concerning their decomposition into an
absolutely continuous part and a singular part with respect to the Lebesgue mea-
sure. In this respect, the existence of a family of viscous entropy inequalities plays
an important role.

1. Introduction

In this paper and its companion [17] we study the initial-boundary value problem
⎧
⎨

⎩

Ut = [ϕ(U )]xx in �× (0, T ] =: Q
ϕ(U ) = 0 in ∂ �× (0, T ]
U = U0 in �× {0}.

(1.1)

Here � ⊆ R is a bounded interval, T > 0 and ϕ : R → R is a nonmonotone odd
function. Its main feature is that there exists α > 0 such that

(s − α)ϕ′(s) � 0 for any s > 0 (1.2)

(see assumption (H1)). Therefore the first equation in (1.1) is a quasilinear para-
bolic equation of forward–backward type, and problem (1.1) is ill-posed whenever
the solution U takes values where ϕ′ < 0.
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Our motivation comes from the Perona–Malik equation [11] in one space
dimension

ut = [ϕ(ux )]x , (1.3)

which also appears in a mathematical model of oceanography [2]. Typical forms
of ϕ in (1.3) are

ϕ(s) = s

s2 + α
, ϕ(s) = s exp

(
− s

α

)
(α > 0) (1.4)

(usually the first expression in (1.4) with α = 1 is used; observe that it does not
belong to L1(R), thus it does not satisfy assumption (H1)-(i) below).

Formally deriving equation (1.3) with respect to x and setting U := ux gives
the first equation in (1.1). Since a natural function space in which to study (1.3) is
that of real functions of bounded variation [2], the above formal argument suggests
that we study problem (1.1) in the space of bounded Radon measures on �̄, as we
do here.

Let us mention that problem (1.1) independently arises (with ϕ as in (1.4)) in a
model of aggregating populations in population dynamics [10], and with a cubic-
like ϕ in the theory of phase transitions (see [3,4,8] and references therein). In
the latter case ϕ denotes the response function associated with the Landau energy
density, and the first equation in (1.1) is derived from the continuity equation via
the so-called Cahn quasi-equilibrium principle. In the following we shall borrow
some terminology from this interpretation of (1.1), for instance when speaking of
stable and unstable branches of the graph of ϕ.

Our purpose is to study a specific regularization of problem (1.1) (previously
introduced in [2] for equation (1.3)), namely

⎧
⎨

⎩

Ut = [ϕ(U )]xx + ε[ψ(U )]t xx in Q
ϕ(U )+ ε[ψ(U )]t = 0 in ∂�× (0, T ]
U = U0 in �× {0},

(1.5)

and its limit as the regularization parameter ε > 0 goes to zero. The increasing
odd function ψ : R → R in (1.5) is related to ϕ by several assumptions (see (H2)

below); in fact, it arises as the coefficient of a formal first order approximation
to a modified version of (1.1), which takes into account time delay effects ([2];
see also [1] and references therein). As in the theory of hyperbolic conservation
laws, sometimes we shall call problem (1.5) the viscous problem associated with
(1.1), and its limit as ε → 0+ the vanishing viscosity limit. We address the viscous
problem in this paper, while referring the reader to [17] for the vanishing viscosity
limit.

A major feature ofψ is thatψ ′(s) → 0 as s → ∞—therefore, the first equation
in (1.5) is degenerate quasiparabolic [2]. This makes an important difference with
respect to another regularization of (1.1), sometimes called Sobolev regularization,
which formally corresponds to the choiceψ(s) = s [5,9,12–15]. In fact, the behav-
iour ofψ at infinity does not play any role in the case of a cubic-like ϕ, since in this
case any bounded, sufficiently large interval of values of U is an invariant domain
for solutions of problem (1.5) [9]. Instead, for a function ϕ of Perona–Malik type
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(namely, satisfying assumption (H1)) the only bounded invariant domain in R+ is
[0, α], where problem (1.1) is well posed. Therefore, to study (1.1) in the general
case, unbounded values of U must be considered.

Arguing as in [10], it is easily seen that using the Sobolev regularizationψ(U ) =
U gives a unique solution U ∈ C1([0, T ]; C(�)) to problem (1.5) for any initial
data function U0 ∈ C(�). On the contrary, in view of the example given in [2,
Section 8], we can expect that some solution of (1.5) with smooth initial data takes
values in the space of Radon measures for positive times. Clearly, such a loss of reg-
ularity depends on the degenerate character of the regularization used in (1.5). This
seems in satisfactory agreement with the physical interpretation of the model and
reflects the more rigorous derivation (with respect to the Sobolev regularization)
of the first equation of (1.5) in [2].

In the sequel we prove that for any ε > 0 there exists a unique measure-valued
function U (in the sense of the Radon measures on �̄), which solves problem (1.5)
in a suitable sense (see Definition 2.1 and Theorem 2.1 below). The proof makes
use of a family of approximating problems, defined by a regularization of ψ and
U0, and of uniform a priori estimates of their solutions.

Further, we prove that the regular part Ur (with respect to the Lebesgue mea-
sure of�) of the solution U satisfies a family of infinitely many inequalities, which
we call viscous entropy inequalities by analogy with the case of hyperbolic con-
servation laws (see Theorem 2.4). Similar inequalities are known to hold for the
Sobolev regularization, both for a cubic-like ϕ [9] and for a ϕ of Perona–Malik type
[15], and play an important role when studying the vanishing viscosity limit. With
respect to [9,15] we prove here an improved version of these inequalities, which
holds for almost every t ∈ (0, T ) (in this connection, see [16]). This plainly implies
an interesting property of the solution U of problem (1.5), that is, that the support
of its singular part Us (with respect to the Lebesgue measure) is nondecreasing in
time (see Theorem 2.5).

In view of the above monotonicity property, it is natural to ask whether the
support of Us becomes nonempty for some positive time, if the initial data function
U0 is smooth. By the degenerate character of the regularization used in (1.5), it
is easy to conjecture that this will not happen, if ψ ′(s) → 0 “slow enough” as
s → ∞. This is indeed the case, if suitable assumptions on U0 are satisfied (see
Theorem 2.8).

Let us mention for completeness that the main result of the companion paper
[17] is the proof of existence of a properly defined weak solution of the original
problem (1.1) (see [17, Definition 2.2 and Theorem 2.8]). This is the natural gen-
eralization to the present case of the notion of weak solution (in the sense of Young
measures) of problem (1.1), and of the corresponding existence result, given in
[12] for the case of a cubic-like ϕ. However, at variance from the latter case, the
presence of a singular term (that is, of a Radon measure μ �= 0) in the solution
cannot be excluded (see [17].)

The paper is organized as follows. In Section 2 we describe the mathematical
framework and state the main results. A number of preliminary a priori estimates
are stated and proven in Section 3, whereas proofs of the main results are presented
in Sections 4, 5 and 6.
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2. Mathematical Framework and Results

Concerning the functions ϕ andψ , we always make the following assumptions:

(H1)

⎧
⎪⎪⎨

⎪⎪⎩

(i) ϕ ∈ C∞(R) ∩ L1(R), ϕ odd; ϕ(s) > 0 for s > 0;
(ii) ϕ′(s) > 0 for 0 < s < α, ϕ′(s) < 0 for s > α (α > 0);
(iii) ϕ′′(s) � 0 for any s � s0, for some s0 > 0;
(iv) ϕ( j) ∈ L∞(R) for any j ∈ N.

(H2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) ψ ∈ C∞(R), ψ ′ > 0 in R, ψ odd,
ψ(s) → γ as s → ∞ for some γ ∈ (0,∞);

(ii) ψ( j) ∈ L∞(R) for any j ∈ N;
(iii) ψ ′′(s) � 0 for any s � s0, for some s0 > 0;
(iv) |ϕ′| � k1ψ

′ in R for some k1 > 0;
(v)

∣
∣
∣
∣
∣

(
ϕ′

ψ ′

)′∣∣
∣
∣
∣
� k2ψ

′ in R for some k2 > 0;

(vi)
|ϕ′′|
(ψ ′)2

� k3ψ
′ in R for some k3 > 0.

Here ϕ( j), ψ( j) denote the j-th derivatives of the functions ϕ,ψ( j ∈ N); however,
the usual notation ϕ′, ϕ′′, ψ ′, ψ ′′ will be used for the first and second derivatives.
Observe that (H1)-(i) and (ii) imply ϕ(s) → 0 as s → ∞, 0 < ϕ(s) � ϕ(α) for
s > 0, whereas (H2)-(i) implies ψ ′(s) → 0 as s → ∞.

By abuse of notation, we shall also denote byψ the extension ofψ to R defined
by setting ψ(∞) := γ .

We shall denote by M(�) (respectively, M(R)) the space of Radon measures
on � (respectively, on R), and by M+(�) (respectively, M+(R)) the cone of
positive Radon measures on � (respectively, on R). For any μ ∈ M(�) we shall
denote by μr and μs the density of the absolutely continuous part, respectively
the singular part of μ with respect to the Lebesgue measure on �. Moreover, we
shall denote by < ·, · >� (respectively, < ·, · >R) the duality map between the
space M(�) (respectively, M(R)) and the space Cc(�) (respectively, Cc(R)) of
continuous functions with compact support. The restriction to the interval �̄ of any
ζ ∈ Cc(R) will be denoted by ζ�̄.

By M(�̄) (respectively, M+(�̄)) we shall denote the space of Radon measures
μ ∈ M(R) (respectively, the cone of positive Radon measures μ ∈ M+(R)) such
that suppμ ⊆ �̄. For any μ ∈ M(�̄) we set

‖μ‖M(�̄) := ‖μ‖M(R)

(observe that |μ|(R) = |μ|(�̄) < ∞). For any μ ∈ M(�̄) and any ζ ∈ C(�̄) we
also define

〈μ, ζ 〉�̄ := 〈μ, ζ̃ 〉R,
where ζ̃ ∈ Cc(R) is any continuous function with compact support such that ζ̃ = ζ

in �̄. Observe that the above definition is well posed, since the right-hand side does
not depend on the choice of the extension ζ̃ ∈ Cc(R). Also observe that the duality
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map 〈μ, ζ 〉� is well defined for any ζ ∈ C0(�) := {ζ ∈ C(�̄) | ζ = 0 on ∂�},
and there holds

〈μ, ζ 〉� = 〈μ, ζ 〉�̄.

Similar notations will be used for the space of Radon measures on Q, Q̄ and R
2.

To be specific, we shall denote by M(Q̄) the space of Radon measuresμ ∈ M(R2)

such that suppμ ⊆ Q̄ and for any ζ ∈ C(Q̄), μ ∈ M(Q̄) we set

〈μ, ζ 〉Q̄ := 〈μ, ζ̃ 〉R2 ,

where ζ̃ ∈ Cc(R
2) satisfies ζ̃ = ζ in Q̄. For any ζ ∈ Cc(R

2) its restriction to the
rectangle Q̄ will be denoted by ζQ̄ .

Concerning the initial data U0, we shall always assume the following:

(H3)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) U0 ∈ M+(�̄);
(ii) there exists a family {U0κ} ⊆ C∞

c (�),U0κ � 0,
‖U0κ‖L1(�) � ‖U0‖M(�̄) for any κ > 0, such that as k → 0 :
(a)

∫

�

U0κ ζ dx →< U0, ζ >�̄ for any ζ ∈ C(�̄),

(b) ψ(U0κ) ⇀ ψ(U0r ) in H1
0 (�),

(c) κ U0κ ⇀ 0 in H1
0 (�).

Let us observe that assumption (H3)-(i) corresponds to assumption (A3) in [2]
concerning the nondecreasing character of the initial data u0 for equation (1.3),
which is motivated on physical grounds.

A family of initial data satisfying (H3) is exhibited below (see Proposition 2.6).
It is worth observing that conditions (a) and (b) of assumption (H3)-(ii) imply
ψ(U0r ) ∈ H1

0 (�),

supp U0s ⊆ S0 := {x ∈ �̄ | ψ(U0r )(x) = γ },

and U0r ∈ C(�̄ \ S0) (see Proposition 6.1).
We shall denote by L∞((0, T );M+(�̄)) the set of positive Radon measures

U ∈ M+(Q̄) which satisfy the following property: for almost every t ∈ R there
exists a measure U (·, t) ∈ M+(�̄),U (·, t) = 0 if t /∈ [0, T ], such that

(i) for any ζ ∈ C(Q̄) the map t → 〈U (·, t), ζ(·, t)〉�̄ is Lebesgue measurable,
and

〈U, ζ 〉Q̄ =
∫ T

0
〈U (·, t), ζ(·, t)〉�̄dt; (2.1)

(ii) there exists a constant C > 0 such that

ess sup
t∈(0,T )

‖U (·, t)‖M(�̄) � C.
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Denoting by Ur ∈ L1(Q),Ur � 0 and by Us ∈ M+(Q̄) the density of the
absolutely continuous part, respectively the singular part of U with respect to the
Lebesgue measure over R

2, equality (2.1) implies for any ζ ∈ C(Q̄)

〈Ur , ζ 〉Q̄ =
∫∫

Q
Ur ζ dxdt,

〈Us, ζ 〉Q̄ =
∫ T

0
〈Us(·, t), ζ(·, t)〉�̄dt. (2.2)

Now we can state the following definition.

Definition 2.1. By a solution of problem (1.5) we mean any U ∈ M+(Q̄) such
that:

(i) U ∈ L∞((0, T );M+(�̄));
(ii) ϕ(Ur ), ψ(Ur ) ∈ L∞((0, T ); H1

0 (�)), and [ψ(Ur )]t ∈ L2((0, T ); H1
0 (�));

moreover,

ψ(Ur )(x, 0) = ψ(U0r )(x) for any x ∈ �̄; (2.3)

(iii) there holds

supp Us ⊆ S := {
(x, t) ∈ Q̄

∣
∣ ψ(Ur )(x, t) = γ

}; (2.4)

(iv) there holds
∫∫

Q
Urζt dxdt +

∫ T

0
〈Us(·, t), ζt (·, t)〉� dt

=
∫∫

Q

{[ϕ(Ur )]x ζx + ε[ψ(Ur )]t x ζx
}

dxdt − 〈U0, ζ(·, 0)〉� (2.5)

for any ζ ∈ C1([0, T ]; H1
0 (�)), ζ(·, T ) = 0 in �̄.

Remark 2.1. In the above Definition 2.1, as always in the following, we identify
ψ(Ur ) ∈ L∞(Q) with its continuous representative.

This continuous representative w ∈ C(Q̄), ψ(Ur ) ≡ w exists by Definition
2.1-(ii).

Therefore, in view of these remarks the set S defined in (2.4) is closed.
Similarly, since ϕ(Ur ) ≡ ϕ(ψ−1(ψ(Ur ))) in Q, by assumptions (H2)-(iv) and

(v) there holds
[
ϕ(Ur )

]

t ∈ L2((0, T ); H1
0 (�)). Together with Definition 2.1-(ii),

this implies ϕ(Ur ) ∈ C(Q̄). Since ϕ(s) → 0 as s → ∞, equality (2.7) below
implies ϕ(Ur ) = 0 on the set S.

The following existence and uniqueness result will be proven.

Theorem 2.1. Let assumptions (H1)–(H3) be satisfied. Then there exists a unique
solution U of problem (1.5). Moreover,

(i) for almost every t ∈ (0, T ) there holds

‖Ur (·, t)‖L1(�) + ‖Us(·, t)‖M(�̄) � ‖U0‖M(�̄); (2.6)
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(ii) Ur ∈ H1(Q0) for any open subset Q0 ⊆ Q such that dist
(
Q̄0,S

)
> 0.

Moreover, Ur ∈ C(Q̄ \ S) and

lim
dist((x,t),S)→0

Ur (x, t) = ∞. (2.7)

Since Ur ∈ L1(Q), by (2.7) it is reasonable to expect that the set S defined in
(2.4) has zero Lebesgue measure. On this subject we refer the reader to Theorem
2.2 below.

Remark 2.2. It will be proven below (see Lemma 4.6) that the function

Vr := ϕ(Ur )+ ε[ψ(Ur )]t (ε > 0) (2.8)

belongs to L∞(Q) ∩ L2((0, T ); H1
0 (�)). Therefore equality (2.5) reads

∫∫

Q
Urζt dxdt+

∫ T

0
〈Us(·, t), ζt (·, t)〉� dt =

∫∫

Q
Vr x ζx dxdt−〈U0, ζ(·, 0)〉� .

Let describe precisely in which sense the solution U given by Theorem 2.1 sat-
isfies the initial conditions of problem (1.5). Sinceψ(Ur ) ∈ C(Q̄),Ur ∈ C(Q̄ \S)
(see Remark 2.1 and Theorem 2.1-(ii)) and by (2.3) there holds

ψ(U0r )(x) = ψ(Ur )(x, 0) = lim
t→0

ψ(Ur )(x, t) (x ∈ �̄),

we obtain

Ur (x, 0) = lim
t→0

Ur (x, t) = U0r (x) for any x ∈ �̄ \ S0,

where

S0 = {x ∈ �̄ | ψ(U0r )(x) = γ } = {x ∈ �̄ | ψ(Ur )(x, 0) = γ }.
Let us mention that the set S0 is closed and has zero Lebesgue measure (see
Proposition 6.1).

Moreover, since ϕ(Ur ), ψ(Ur )t ∈ L2((0, T ); H1
0 (�)) by Definition 2.1-(ii),

in view of equality (2.5) the map

t → Jζ (t) :=
∫

�

Ur (x, t) ζ(x) dx + 〈Us(·, t), ζ 〉� (t ∈ (0, T ))

belongs to the space H1(0, T ), and

Jζ (0) = lim
t→0

Jζ (t) =
∫

�

U0r (x) ζ(x) dx + 〈U0s, ζ 〉� (2.9)

for any ζ ∈ H1
0 (�).

Information about the set S in (2.4) is provided by the following

Theorem 2.2. Let assumptions (H1)–(H3) be satisfied. Let U be the solution of
problem (1.5) given by Theorem 2.1. Then the set S defined by (2.4):
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(i) has zero Lebesgue measure;
(ii) has a strictly positive distance from ∂�× [0, T ] ⊆ ∂Q.

Remark 2.3. In view of Definition 2.1-(iii), Theorem 2.2 gives information about
the support of the singular part of the solution U . Observe that by (2.2) there holds

supp Us(·, t) ⊆ (supp Us)t

for almost every t ∈ (0, T ), (supp Us)t denoting the section at the time t of supp Us .
Therefore,

supp Us(·, t) ⊆ St := {
x ∈ �̄ | ψ(Ur )(x, t) = γ

}
(2.10)

and by Theorem 2.2-(ii) there holds

dist
(
supp Us(·, t), ∂�

)
> 0 (2.11)

for almost every t ∈ (0, T ). Clearly, by Remark 2.1 and Theorem 2.2-(i) the section
St is closed and has zero Lebesgue measure for almost every t ∈ (0, T ).

Observe also that, since ϕ(ψ−1(γ )) = 0, we have

supp Us ⊆ S ⊆ {(x, t) ∈ �× [0, T ] | ϕ(Ur )(x, t) = 0}; (2.12)

(where we have made use of Theorem 2.2-(ii)). Similar inclusions hold for the
sections at the time t , for almost every t ∈ (0, T ).

As a consequence of Theorems 2.1–2.2, we can prove that the density Ur sat-
isfies the first equation of problem (1.5) in a suitable weak sense, out of a set of
arbitrarily small Lebesgue measure. In fact, the following holds.

Theorem 2.3. Let assumptions (H1)–(H3) be satisfied. Let U be the solution of
problem (1.5) given by Theorem 2.1, S the set defined in (2.4) and A ⊆ Q any open
set such that dist

(
Ā,S)

> 0. Then:

(i) Urt , Vr xx ∈ L2(A), and

Urt = Vr xx in L2(A); (2.13)

(ii) for almost every t ∈ (0, T ) there holds

supp Us(·, t) ⊆ St ⊆ {x ∈ � | Vr (x, t) = 0} . (2.14)

Further, we prove that the couple (Ur , Vr ) satisfies in a weak sense infinitely
many entropy inequalities. Define for any g ∈ C1(R)

G(z) :=
∫ z

0
g(ϕ(s))ds (z ∈ R). (2.15)

Then the following holds.
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Theorem 2.4. Let U be the solution of problem (1.5) given by Theorem 2.1. Let
g ∈ C1([0, ϕ(α)]), g′ � 0, g(0) = 0. Then G(Ur ) ∈ C(Q̄), and for any t1, t2 ∈
[0, T ], t1 < t2, there holds

∫

�

G(Ur )(x, t2)ζ(x, t2)dx −
∫

�

G(Ur )(x, t1)ζ(x, t1)dx

�
∫ t2

t1

∫

�

[
G(Ur )ζt − g(Vr )Vr xζx − g′(Vr )(Vr x )

2ζ
]
dxdt (2.16)

for any ζ ∈ C1([0, T ]; H1
0 (�)), ζ � 0.

As already remarked, the existence of a family of viscous entropy inequalities
is an important property of problem (1.5). As a particular consequence of it, we
prove that the singular measure Us(·, t) is nondecreasing in time (see [2, Theorem
3.3] for a related result).

Theorem 2.5. Let assumptions (H1)–(H3) be satisfied. Let U be the solution of
problem (1.5) given by Theorem 2.1. Then for any η ∈ H1

0 (�), η � 0 there holds

〈U0s, η〉� � 〈Us(·, t), η〉� (2.17)

for almost every t ∈ (0, T ), and also

〈Us(·, t1), η〉� � 〈Us(·, t2), η〉� (2.18)

for almost every t1 � t2, t1, t2 ∈ (0, T ).

Therefore, if the singular measure Us(·, t) exists at some time t̄ � 0, then it
also exists at any later time. However, it is natural to ask if the singular measure Us

exists at all.
As shown in [2], Us(·, t) can arise at some time t = t̄ > 0 even if the initial

data U0 are regular. On the other hand, we prove below that for a class of smooth
initial data and for a suitable choice ofψ , the singular measure is always absent (see
Theorem 2.8). Expectedly, this depends on the order of degeneracy of ψ (namely,
on the rate of growth of ψ ′) at infinity.

To address this point, it is informative first to exhibit a class of initial data
U0 ∈ M+(�̄) which satisfy assumption (H3). To this purpose, assume that the
function ψ (beside (H2)) satisfies the following:

(H ′
2)

{
there exist σ > 0 and l1 ∈ (0, γ σ ) such that
l1 � ψ ′(s)(1 + s)(σ+1) � γ σ for any s > 0.

Concerning U0, suppose that either assumption:

(A1)

{
(i) U0 ∈ L1(�),

(ii) ψ(U0) ∈ H1
0 (�),

(A2)

⎧
⎪⎪⎨

⎪⎪⎩

(i) ψ(U0r ) ∈ W 1,∞
0 (�),

(ii) supp U0s ⊆ S0,

(iii) there exist x1, ·, ·, x p ∈ � and α1, ·, ·, αp � 0 such that
U0s = ∑p

i=1 αiδ(· − xi )
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holds true. Observe that by assumption (A2), if U0s contains a delta function
concentrated at x̄ , then limx→x̄ U0r (x) = ∞.

Proposition 2.6. Let ψ satisfy (H2)-(i) and (H ′
2), and U0 ∈ M+(�̄) satisfy either

(A1) or (A2). Then assumption (H3) is satisfied.

By the same token we can prove the following result.

Proposition 2.7. Let ψ satisfy assumptions (H2)-(i) and:

(H ′′
2 )

{
there exist σ ∈ (0, 1/2] and l1 ∈ (0, γ σ ) such that
l1 � ψ ′(s)(1 + s)(σ+1) for any s > 0.

Then for any U0 ∈ M+(�̄) the following conditions are equivalent:

(i) U0 ∈ H1
0 (�);

(ii) ψ(U0r ) ∈ H1
0 (�) and supp U0s ⊆ S0.

The above assumption (H ′′
2 ) ensures that the functionψ “grows slowly at infin-

ity”, thus the effect of the regularization in problem (1.5) is strong. This explains
the following regularity result, which in particular rules out the possibility that the
singular part Us(·, t) arise at some time t > 0.

Theorem 2.8. Let assumptions (H1), (H2) and (H ′′
2 ) be satisfied. Suppose that

U0 ∈ H1
0 (�). Then the corresponding solution U of problem (1.5) has the follow-

ing properties:

(i) U ∈ L∞(Q);
(ii) there holds

max
(x,t)∈Q̄

ψ(U )(x, t) =: γ ∗ < γ ; (2.19)

(iii) U ∈ L∞((0, T ); H1
0 (�)), and Ut ∈ L2((0, T ); H1

0 (�)).

3. A Priori Estimates

To prove the existence part of Theorem 2.1, consider the family of approximating
problems

(Pκ)

⎧
⎨

⎩

Ut = [
ϕ(U )

]

xx + ε
[
ψκ(U )

]

t xx in Q
ϕ(U )+ ε

[
ψκ(U )

]

t = 0 in ∂�× (0, T ]
U = U0κ in �× {0}.

Here U0κ is any family with the properties stated in assumption (H3). Concerning
the family ψκ the following is assumed:

(Ak)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i) ψκ ∈ C∞(R), ψκ → ψ in C3
loc(R) as κ → 0;

(ii) ψκ odd, ψ ′ + κ � ψ ′
κ � ψ ′ + 2κ on R;

(iii) ψ( j)
κ ∈ L∞(R) for any j ∈ N;

(iv) |ϕ′| � k1 ψ
′
κ ,

∣
∣
∣
∣

(
ϕ′
ψ ′
κ

)′∣∣
∣
∣ � k∗

2 ψ
′
κ on R for some k∗

2 > 0.
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Observe that (H3) and (Ak)-(ii) ensure that

ψκ(U0κ) ⇀ ψ(U0r ) in H1
0 (�) (3.1)

as κ → 0. Moreover, it is easily seen that the family

ψκ(s) := ψ(s)+ κs (κ > 0)

has the above properties; the only nontrivial point is to check the second inequality
in (Ak)-(iv). In fact, by assumption (H2)-(v) and (vi) we have

∣
∣
∣
∣
∣

1

ψ ′
κ(s)

(
ϕ′

ψ ′
κ

)′
(s)

∣
∣
∣
∣
∣
=

∣
∣ϕ′′(s)(ψ ′(s)+ κ)− ϕ′(s)ψ ′′(s)

∣
∣

(ψ ′(s)+ κ)3
� k2 + |ϕ′′(s)|

(ψ ′(s))2

� k2 + k3.

Hence, the second inequality in (Ak)-(iv) follows defining k∗
2 := k2 + k3.

Let us state the following

Definition 3.1. For any U0κ satisfying assumption (H3), by a solution to problem
(Pκ)(κ > 0) we mean any Uκ ∈ C1([0, T ]; C(�̄)) such that the function

Vκ := ϕ(Uκ)+ ε [ψκ(Uκ)]t (3.2)

belongs to C([0, T ]; C2(�̄) ∩ H1
0 (�)), and there holds

∫∫

Q

{
Uκζt − [

ϕ (Uκ)+ ε [ψκ (Uκ)]t
]

x ζx
}

dxdt = −
∫

�

U0κζ(x, 0) dx (3.3)

for any ζ ∈ C1([0, T ]; H1
0 (�)), ζ(·, T ) = 0 in �.

Let us prove the following well-posedness result.

Proposition 3.1. Let assumption (Ak) hold. Then for any κ > 0 there exists a
unique solution Uκ to problem (Pκ) in the sense of Definition 3.1. Moreover, for
any l ∈ N there exists Tl ∈ (0, T ] such that Uκ ∈ C1([0, Tl ]; Cl(�̄)). Finally,

(i) Uκ � 0 in Q;
(ii) there holds

Uκ = [ψκ(Uκ)]t = 0 on ∂�× [0, T ]. (3.4)

In addition, the function Vκ defined in (3.2) has the following properties:
(i′) for any t ∈ [0, T ] Vκ(·, t) solves the problem:

{
Vκ(·, t)− ε

[
ψ ′
κ(Uκ(·, t))

]
Vκxx (·, t) = ϕ(Uκ(·, t)) in �

Vκ(·, t) = 0 on ∂�; (3.5)

(ii′) there holds

Uκt = Vκxx in Q; (3.6)

(iii′) for any t ∈ [0, T ]
0 � Vκ(·, t) � ϕ(α) in �; (3.7)
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(iv′) for any t ∈ [0, T ]
∂Vκ
∂ν

(·, t) < 0 on ∂�, (3.8)

where ∂
∂ν

denotes the outer derivative at ∂�.

Proof. (α) Following [9], let us formulate problem (Pκ) as an abstract evolution
problem. In this direction, let Uκ ∈ C1([0, T ]; C(�̄)) be any solution to problem
(Pκ) (in the sense of Definition 3.1), and observe that by assumption (Ak)-(ii)
ψ ′
κ � κ > 0 on R, thus there exists ψ−1

κ ∈ C∞(R). Therefore, setting

wκ := ψκ(Uκ), hκ(wκ) := ϕ(ψ−1
κ (wκ)), (3.9)

we have

hκ(wκ)+ εwκt = Vκ ∈ C([0, T ]; C2(�̄) ∩ H1
0 (�)) (3.10)

(see (3.2)), and equation (3.3) reads

(P ′
κ)

⎧
⎪⎪⎨

⎪⎪⎩

wκt

ψ ′
κ

(
ψ−1
κ (wκ)

) = [hκ(wκ)+ εwκt ]xx in Q

hκ(wκ)+ εwκt = 0 in ∂�× (0, T ]
wκ = w0κ := ψκ(U0κ) in �× {0}

(observe thatw0κ ∈ Cl(�̄) for any l ∈ N). For any t ∈ [0, T ] the first equation can
be rewritten as follows:

wκt (·, t) = ψ ′
κ

(
ψ−1
κ (wκ(·, t))

)[
hκ(wκ(·, t))+ εwκt (·, t)

]

xx

in �, namely

− εψ ′
κ

(
ψ−1
κ (wκ(·, t))

)
Vκxx (·, t)+ Vκ(·, t) = hκ(wκ(·, t)) (3.11)

in � (see (3.10)).
On the other hand, since ψ ′

κ � κ > 0 on R, by standard results on elliptic
equations the problem

{−εψ ′
κ

(
ψ−1
κ ( f )

)
vxx + v = hκ( f ) in �

v = 0 on ∂�
(3.12)

has a unique classical solution v f ∈ C2(�̄)∩ H1
0 (�) for any f ∈ C(�̄). Moreover,

• if f ∈ Cl(�̄) then v f ∈ C2+l(�̄) (l ∈ N), and

‖v f ‖C(�̄) � ‖hκ( f )‖C(�̄) � ϕ(α) (3.13)

(where we have made use of (3.9) and assumption (H1));
• the operator L : Cl(�̄) → Cl(�̄),

L( f ) := 1

ε

[
v f − hκ( f )

]
, (3.14)

is well defined.
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Since Vκ(·, t) ∈ C2(�̄) ∩ H1
0 (�), it follows by (3.11) that for any t ∈ [0, T ]

Vκ(·, t) = vwκ(·,t) in �, (3.15)

where vwκ(·,t) denotes the unique solution of problem (3.12) with f = wκ(·, t).
Then from (3.10) we obtain thatwκ ∈ C1([0, T ]; C(�̄)) solves the abstract Cauchy
problem in the Banach space C(�̄):

{

wκt = L(wκ) = 1

ε

[
vwκ − hκ(wκ)

]
in (0, T )

wκ(0) = w0κ .
(3.16)

Clearly, if Uκ ∈ C1([0, Tl ]; Cl(�̄)) (for some Tl ∈ (0, T ], l ∈ N), arguing as above
we can prove that wκ defined in (3.9) solves problem (3.16) in the Banach space
Cl(�̄) (with T = Tl ).

(β)The above considerations show that for any solutionUκ ∈ C1([0, T ]; Cl(�̄))

of (Pκ) the functionwκ ∈ C1([0, T ]; Cl(�̄)) defined in (3.9) solves problem (3.16)
(l ∈ N). Conversely, ifwκ ∈ C1([0, T ]; Cl(�̄)) is a solution of problem (3.16), the
function Uκ := ψ−1

κ (wκ) ∈ C1([0, T ]; Cl(�̄)) gives a solution of problem (Pκ)
(in the sense of Definition 3.1), which satisfies (3.5) and (3.6).

In fact, by (3.16) there holds

vwκ = hκ(wκ)+ εL(wκ) = hκ(wκ)+ εwκt = Vκ in (0, T ); (3.17)

where for any t ∈ [0, T ] the function vwκ (·, t) ∈ Cl+2(�̄) ∩ H1
0 (�) is the

unique solution of problem (3.12) with f = wκ(·, t). Therefore, by (3.17) we
have Vκ(·, t) = vwκ (·, t) in � and for any t ∈ [0, T ], hence (3.5) follows.
Moreover, since Uκ ∈ C1([0, T ]; C(�̄)), thus both ψ ′

κ(Uκ) and ϕ(Uκ) belong
to the same space, by (3.5) and standard results on elliptic equations there holds
Vκ ∈ C([0, T ]; C2(�̄) ∩ H1

0 (�)) (this follows from (3.20) and (3.22) below with
w1 = wκ(·, t1) andw2 = wκ(·, t2), for any t1, t2 ∈ [0, T ]; see also (3.13)). Further,
by (3.16) and (3.17) there holds

Uκt = wκt

ψ ′
κ(ψ

−1
κ (wκ))

= 1

εψ ′
κ(ψ

−1
κ (wκ))

[
vwκ − hκ(wκ)

] = [
vwκ

]

xx = Vκxx ,

(3.18)

namely equation (3.6) (where we have made use of (3.12) with f = wκ(·, t)).
Finally, by (3.6) and the equality

Uκ(x, 0) = ψ−1
κ (w0κ(x)) = U0κ(x) for any x ∈ �,

equation (3.3) follows.
(γ ) By (α)− (β) above, existence and uniqueness of a solution Uκ ∈

C1([0, T ]; C(�̄)) ∩ C1([0, Tl ]; Cl(�̄)) of problem (Pκ) (for some Tl ∈ (0, T ],
l ∈ N) satisfying (3.5)–(3.6) will follow, if we prove that problem (3.16) is globally
well posed in C1([0, T ]; C(�̄)), and locally well posed in C1([0, T ]; Cl(�̄)) for
any l ∈ N.
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To this purpose, let us show that the operator L : Cl(�̄) → Cl(�̄) is globally
Lipschitz continuous on C(�̄), and locally Lipschitz continuous on Cl(�̄) for any
l ∈ N, l � 1. In this connection, observe that by assumption (Ak)-(ii) and (iii) for

any j ∈ N the derivative h( j)
κ is bounded on R. Then there exists l1 > 0 such that

for any w1, w2 ∈ C(�̄) we have:

‖hκ(w1)− hκ(w2)‖C(�̄) � l1‖w1 − w2‖C(�̄). (3.19)

Moreover, from (3.12) (with f = wi , i = 1, 2) we obtain plainly

− (
vw1

)

xx + (
vw2

)

xx + vw1 − vw2

εψ ′
κ(ψ

−1
κ (w1))

= vw2

(
1

εψ ′
κ(ψ

−1
κ (w2))

− 1

εψ ′
κ(ψ

−1
κ (w1))

)

+ hκ(w1)

εψ ′
κ(ψ

−1
κ (w1))

− hκ(w2)

εψ ′
κ(ψ

−1
κ (w2))

in �. (3.20)

Multiplying the above equality by vw1 − vw2 and integrating on � gives
∫

�

[
vw1 − vw2

]2
x dx +

∫

�

1

εψ ′
κ(ψ

−1
κ (w1))

[
vw1 − vw2

]2 dx

�
∫

�

∣
∣vw2

∣
∣

∣
∣
∣
∣
∣

1

εψ ′
κ(ψ

−1
κ (w1))

− 1

εψ ′
κ(ψ

−1
κ (w2))

∣
∣
∣
∣
∣

∣
∣vw1 − vw2

∣
∣ dx

+
∫

�

∣
∣
∣
∣
∣

hκ(w1)

εψ ′
κ(ψ

−1
κ (w1))

− hκ(w2)

εψ ′
κ(ψ

−1
κ (w2))

∣
∣
∣
∣
∣

∣
∣vw1 − vw2

∣
∣ dx . (3.21)

Since both hκ and 1/ψ ′
κ (ψ

−1
κ ) are Lipschitz continuous in R (recall that ψ ′

κ � κ

in R by assumption (Ak)-(ii)), by (3.13) (with f = w2) and the above inequality
we obtain

‖vw1 − vw2‖H1
0 (�)

� C1

∥
∥
∥
∥
∥

hκ(w1)

ψ ′
κ(ψ

−1
κ (w1))

− hκ(w2)

ψ ′
κ(ψ

−1
κ (w2))

∥
∥
∥
∥
∥

C(�̄)

+ C1

∥
∥
∥
∥
∥

1

ψ ′
κ(ψ

−1
κ (w1))

− 1

ψ ′
κ(ψ

−1
κ (w2))

∥
∥
∥
∥
∥

C(�̄)

� C1C2‖w1 − w2‖C(�̄) (3.22)

for some C1,C2 > 0. Then defining C := l1 + C1C2|�|1/2 gives

‖L(w1)− L(w2)‖C(�̄) � 1

ε

[
‖vw1 − vw2‖C(�̄) + ‖hκ(w1)− hκ(w2)‖C(�̄)

]

� C

ε
‖w1 − w2‖C(�̄)

for anyw1, w2 ∈ C(�̄). This shows that (3.16), hence problem (Pκ), is well posed
in C1([0, T ]; C(�̄)).
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To prove that the operator L is locally Lipschitz continuous on Cl(�̄) for l = 1
(when l > 1 the claim follows by analogous arguments), let us multiply (3.20) by(
vw2 − vw1

)

xx (w1, w2 ∈ C1(�̄)). This gives
∫

�

[
vw1 − vw2

]2
xx dx �

∫

�

1

εψ ′
κ(ψ

−1
κ (w1))

∣
∣vw1 − vw2

∣
∣
∣
∣
[
vw1 − vw2

]

xx

∣
∣ dx

+
∫

�

∣
∣vw2

∣
∣

∣
∣
∣
∣
∣

1

εψ ′
κ(ψ

−1
κ (w1))

− 1

εψ ′
κ(ψ

−1
κ (w2))

∣
∣
∣
∣
∣

∣
∣
[
vw1 − vw2

]

xx

∣
∣ dx

+
∫

�

∣
∣
∣
∣
∣

hκ(w1)

εψ ′
κ(ψ

−1
κ (w1))

− hκ(w2)

εψ ′
κ(ψ

−1
κ (w2))

∣
∣
∣
∣
∣

∣
∣
[
vw1 − vw2

]

xx

∣
∣ dx .

By inequalities (3.13), (3.22), and Young’s inequality, from the above inequality
we obtain

‖vw1 − vw2‖C1(�̄) � L1‖vw1 − vw2‖H2(�)

� L2

∥
∥
∥
∥
∥

hκ(w1)

ψ ′
κ(ψ

−1
κ (w1))

− hκ(w2)

ψ ′
κ(ψ

−1
κ (w2))

∥
∥
∥
∥
∥

C(�̄)

+ L2

∥
∥
∥
∥
∥

1

ψ ′
κ(ψ

−1
κ (w1))

− 1

ψ ′
κ(ψ

−1
κ (w2))

∥
∥
∥
∥
∥

C(�̄)

� L3‖w1 − w2‖C(�̄)

for some L3 > 0. On the other hand, using assumption (Ak)-(iv) we have:
∥
∥
[
hκ(w1)

]

x − [
hκ(w2)

]

x

∥
∥

C(�)
�

∥
∥h′

κ(w1)w1x − h′
κ(w1)w2x

∥
∥

C(�)

+ ∥
∥h′

κ(w1)w2x − h′
κ(w2)w2x

∥
∥

C(�) � k1‖w1x − w2x‖C(�)

+ k2 ‖w2x‖C(�)‖w1 − w2‖C(�).

By the above inequalities the operator L is locally Lipschitz continuous in C1(�̄).
The rest of the proof follows by standard calculation; we omit the details. Therefore,
(3.16), hence problem (Pκ), has a unique local solution in C1([0, T1]; C1(�̄)) for
some T1 ∈ (0, T ].

(δ) Since U0κ � 0 in � and ϕ(s) � 0 for s � 0, ϕ(s) < 0 for s < 0 (see
assumptions (H1) and (H3)-(ii)), it is easily seen that the interval [0,∞) is pos-
itively invariant for problem (Pκ). The proof is almost the same as that of [10,
Proposition 3], thus we omit it (see also [2,9], and [15]).

Equalities (3.5) and (3.6) have already been proven (see (3.17) and (3.18)). Fur-
ther, let us address inequality (3.7). To this aim, since ψ ′

κ(Uκ) � κ > 0, observe
that for every t ∈ [0, T ] we can apply the weak maximum principle to the operator

A( f ) := −ψ ′
κ(Uκ(·, t)) fxx + f ( f ∈ C2(�)).

Thus, by the condition 0 � ϕ(Uκ) � ϕ(α) (see assumption (H1) and claim (i)),
for every t ∈ [0, T ] the function Vκ(·, t) ∈ C(�̄) ∩ C2(�) satisfies

0 � A(Vκ(·, t)) � A(ϕ(α)), Vκ(·, t) = 0 on ∂�.
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Hence, inequality (3.7) follows by the weak maximum principle. Since Vκ(·, t) � 0
in � and Vκ(·, t) = 0 on ∂�, we easily obtain that ∂Vκ (·,t)

∂ν
� 0 on ∂� for every

t ∈ [0, T ]. Finally, the strong inequality Vκ(·, t) > 0 in � and (3.8) are a con-
sequence of the strong maximum principle for the operator A (for example, see
[7]).

(ε) Let us finally prove the equalities (3.4). Set � ≡ (ω1, ω2). If t0 = 0 the
claim follows since Uκ(ωi , 0) = U0κ(ωi ) = 0 and Vκ(ωi , 0) = 0(i = 1, 2).
Hence, by contradiction, let there exists t0 ∈ (0, T ] such that

Uκ(ω1, t0) > 0 (3.23)

(the proof for the case Uκ(ω2, t0) > 0 is the same). Since by assumption (H1)-(i)
ϕ > 0 on R

+, inequality (3.23) implies
[
ϕ
(
Uκ

)]
(ω1, t0) > 0. (3.24)

On the other hand, we have
[
ϕ(Uκ)

]
(ω1, t0)+ ε

[
ψκ(Uκ)

]

t (ω1, t0) = Vκ(ω1, t0) = 0 (3.25)

(see (3.2)). Combining (3.23)–(3.25) gives:
[
ψκ(Uκ)

]

t (ω1, t0) < 0.

Also, observe that since U0κ ∈ C∞
c (�) (see (H3)-(ii)) we have ϕ(U0κ)(ω1) = 0,

hence

ε
[
ψκ(Uκ)

]

t (ω1, 0) = Vκ(ω1, 0)− ϕ(U0κ)(ω1) = 0

(recall that Vκ(·, 0) solves problem (3.5) for t = 0, hence belongs to H1
0 (�)).

Therefore, by the continuity of
[
ψκ

(
Uκ

)]

t (ω1, ·) in [0, T ] there exists t1 ∈ [0, t0)
such that

[
ψκ(Uκ)

]

t (ω1, t)

{
< 0 if t ∈ (t1, t0)
= 0 if t = t1.

(3.26)

Since Vκ(ω1, t1) = 0, (3.26) implies
[
ϕ
(
Uκ

)]
(ω1, t1) = 0, namely:

Uκ(ω1, t1) = ψκ(Uκ)(ω1, t1) = 0. (3.27)

Using (3.26) and (3.27) gives:

[
ψκ

(
Uκ

)]
(ω1, t0) =

∫ t0

t1

[
ψκ

(
Uκ

)]

t (ω1, s) ds < 0.

Sinceψκ is odd, the above inequality implies Uκ(ω1, t0) < 0, a contradiction. This
completes the proof. ��

It will be proven below (see Lemma 3.4) that the solution Uκ of problem (Pκ)
given by the above Proposition 3.1 exists globally in the space C1([0, T ]; H1

0 (�)).
The next step is to obtain a priori estimates of the families

{
Uκ

}
and

{
ψκ(Uκ)

}
,

which are uniform with respect to κ > 0. This is the content of the following four
lemmata (in this connection, see [2, Lemma 5.2]).
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Lemma 3.2. Let (Ak) be satisfied. Then there exists a constant C > 0 (independent
of ε) such that for any κ > 0

‖Uκ‖L∞((0,T );L1(�)) � C. (3.28)

Proof. Integrating equality (3.6) on � and using inequality (3.8) we obtain

d

dt

∫

�

Uκ(x, t)dx =
∫

�

Vκxx (x, t)dx � 0 (t ∈ (0, T )),

whence
∫

�

Uκ(x, t)dx �
∫

�

U0κ(x)dx . (3.29)

Since Uκ � 0 (see Proposition 3.1), the result follows. ��
Lemma 3.3. Let (Ak) be satisfied. Then there exists a constant C > 0 (independent
of ε) such that for any κ > 0

‖Vκx‖L2(Q) � C, (3.30)
∫∫

Q

[
ψκ

(
Uκ

)]2
t

ψ ′
κ(Uκ)

dxdt � C

ε
, (3.31)

where the function Vk is defined by (3.2).

Proof. By assumption (Ak)-(ii) the function
[
ψκ(Uκ)

]2
t

ψ ′
κ(Uκ)

= ψ ′
κ(Uκ)(Uκt )

2

is well defined in Q.
Multiplying by ϕ(Uκ) equality (3.6), integrating on � for any fixed t ∈ (0, T )

and using (3.2) we obtain

d

dt

∫

�

dx
∫ Uκ

0
ϕ(s)ds =

∫

�

ϕ(Uκ)Uκt dx = −
∫

�

εψ ′
κ(Uκ)(Uκt )

2dx

−
∫

�

(Vκx )
2dx .

Integrating the above equality with respect to t and using the nonnegativity of Uκ ,
we have

∫∫

Q
(Vκx )

2 + εψ ′
κ(Uκ)(Uκt )

2dxdt

=
∫

�

dx
∫ U0κ (x)

0
ϕ(s)ds −

∫

�

dx
∫ Uκ (x,T )

0
ϕ(s)ds

�
∫

�

dx
∫ U0κ (x)

0
ϕ(s)ds � ϕ(α)‖U0‖M(�̄). (3.32)

(see assumptions (H1) and (H3)). Then the result follows. ��
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Remark 3.1. Observe that by assumptions (H2)-(ii) and (Ak)-(ii) inequality (3.31)
implies

‖ [ψκ(Uκ))]t ‖L2(Q) � C√
ε
. (3.33)

Lemma 3.4. Let (Ak) be satisfied. Then Uκ ∈ C1([0, T ]; H1
0 (�)) and there exists

a constant C > 0(depending on ε > 0, ‖U0‖M(�̄), and ‖ψ(U0r )‖H1
0 (�)

) such that
for any κ > 0

‖ψκ(Uκ)‖L∞((0,T );H1
0 (�))

� C, (3.34)

‖ [ψκ(Uκ)]t x ‖L2(Q) � C, (3.35)

‖ϕ(Uκ )‖L∞((0,T );H1
0 (�))

� C. (3.36)

Proof. Existence and uniqueness of a local solution Uκ ∈ C1([0, τ ]; C1(�̄)) to
problem (Pκ) (κ > 0) for some τ > 0 follow by Proposition 3.1. By stan-
dard argument ψκ(Uκ) ∈ C1([0, T ]; H1

0 (�)), thus Uκ = ψ−1
κ (ψκ(Uκ)) ∈

C1([0, T ]; H1
0 (�)), if we prove the uniform estimate (3.34).

Multiplying equality (3.6) by ψκ(Uκ) and integrating over � for any fixed
t ∈ (0, τ ) gives

∫

�

[ψκ(Uκ)Uκt ] (x, t) dx = −
∫

�

[
ϕ(Uκ)

]

x (x, t)
[
ψκ(Uκ)

]

x (x, t) dx

−ε
∫

�

[
ψκ(Uκ)

]

x (x, t)
[
ψκ(Uκ)

]

t x (x, t) dx

� k1

∫

�

[
ψκ(Uκ)

]2
x (x, t)dx

−ε d

dt

∫

�

[
ψκ(Uκ)

]2
x

2
(x, t) dx;

where we have made use of assumption (Ak)-(iv).
Integrating the above inequality with respect to time, we obtain

ε

2

∫

�

[
ψκ(Uκ)

]2
x (x, t) dx � ε

2

∫

�

[
ψκ(U0κ)

]2
x (x) dx + k1

∫∫

Qt

[
ψκ(Uκ)

]2
x dx

−
∫∫

Qt

ψκ(Uκ)Uκt dxdt (3.37)

(where t ∈ (0, τ ), Qt := � × (0, t)). Since κU0κ → 0 in C(�̄) by assumption
(H3)-(ii), there exists a constant l0 > 0 such that κU0κ(x) � l0 for any x ∈ �̄;
moreover, by assumption (Ak)-(ii) and since ψκ(0) = ψ(0) = 0 there holds:

ψ(s)+ κs � ψκ(s) � ψ(s)+ 2κs (s ∈ R).
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By the above considerations, (H3)-(ii), and (3.1), there exists a constant l1 > 0
such that for any κ > 0 and t ∈ (0, τ )

∫

�

[
ψκ(U0κ)

]2
x (x) dx � l1,

−
∫∫

Qt

ψκ(Uκ)Uκt dxdt =
∫

�

(∫ U0κ (x)

0
ψκ(s) ds

)

dx

−
∫

�

(∫ Uκ (x,t)

0
ψκ(s) ds

)

�
∫

�

(∫ U0κ (x)

0
ψκ(s) ds

)

dx

�
∫

�

(∫ U0κ (x)

0
ψ(s)+ 2κs ds

)

dx � γ ‖U0κ‖L1(�) + l0‖U0κ‖L1(�) � l1

(where we have also used the conditions ψ(s) > 0 for s > 0 and Uκ � 0 in Q).
Combining the above estimates and inequality (3.37) gives

ε

2

∫

�

[
ψκ(Uκ)

]2
x (x, t) dx � k1

∫∫

Qt

[
ψκ(Uκ)

]2
x dx + l1

(
1 + ε

2

)

for any t ∈ (0, τ ), whence by Gronwall’s inequality

∫

�

[
ψκ(Uκ)

]2
x (x, t) dx � 2 l1

ε

(
1 + ε

2

)
e2k1T/ε for any t ∈ (0, τ ).

Therefore τ = T , and inequality (3.34) follows.
Next, by assumption (Ak)-(iv) and inequality (3.34) there holds

∫

�

[
ϕ(Uκ)

]2
x (x, t) dx =

∫

�

[
ϕ′(Uκ)Uκx

]2
(x, t) dx

� k2
1

∫

�

[
ψ ′
κ(Uκ)Uκx

]2
(x, t) dx

= k2
1

∫

�

[
ψκ(Uκ)

]2
x (x, t) � k2

1 C (t ∈ (0, T )) (3.38)

for some constant C > 0. Since ϕ(Uκ) = 0 on ∂� × [0, T ], inequality (3.38)
implies that the family {ϕ(Uκ)} is uniformly bounded in L∞((0, T ); H1

0 (�)), thus
inequality (3.36) follows.

It remains to prove (3.35). Multiplying by
[
ψκ(Uκ)

]

t equality (3.6) and inte-
grating over the rectangle Q gives

∫∫

Q

[
ψκ(Uκ)

]

tUκ t dxdt = −
∫∫

Q

[
ϕ(Uκ)

]

x

[
ψκ(Uκ)

]

t x dxdt

−ε
∫∫

Q

[
ψκ(Uκ)

]2
t x (x, t) dxdt,
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since
[
ψκ(Uκ)

]

t = 0 on ∂�× [0, T ] (see (3.4)). Then

ε

∫ ∫

Q

[
ψκ(Uκ)

]2
t x (x, t) dxdt

� −
∫ ∫

Q

[
ψκ(Uκ)

]2
t

ψ ′
κ(Uκ)

dxdt +
(∫ ∫

Q

[
ϕ(Uκ)

]2
x dxdt

) 1
2

×
(∫ ∫

Q

[
ψκ(Uκ)

]2
t x dxdt

) 1
2

.

The estimate (3.35) follows from the above inequality and (3.36). This completes
the proof. ��

Denote by C1/2(Q) the space of Hölder continuous functions with exponent
1/2 in Q endowed with the usual norm. Then the following holds.

Lemma 3.5. Let (Ak) be satisfied. Then there exists a constant C > 0 (depending
on ε > 0) such that for any κ > 0

‖ψκ(Uκ)‖H1(Q) � C, (3.39)

‖ψκ(Uκ)‖C1/2(Q) � C. (3.40)

Proof. Inequality (3.39) follows from (3.33) and (3.34). To prove (3.40), observe
that by (3.35) there exists C > 0 such that for any κ > 0

∥
∥
[
ψκ

(
Uκ

)]

t

∥
∥

L2((0,T );L∞(�)) � C. (3.41)

Then for any (x1, t1), (x2, t2) ∈ Q̄ we obtain

|ψκ(Uκ)(x2, t2)− ψκ(Uκ)(x1, t1)|
� |ψκ(Uκ)(x2, t2)− ψκ(Uκ)(x1, t2)| + |ψκ(Uκ)(x1, t2)− ψκ(Uκ)(x1, t1)|
�

∥
∥
[
ψκ(Uκ)

]

x

∥
∥

L∞((0,T );L2(�))
|x2 − x1|1/2 +

∣
∣
∣
∣

∫ t2

t1

∣
∣
[
ψκ(Uκ)

]

t (x1, s)
∣
∣ ds

∣
∣
∣
∣

�
∥
∥
[
ψκ(Uκ)

]

x

∥
∥

L∞((0,T );L2(�))
|x2 − x1|1/2

+ ∥
∥
[
ψκ(Uκ)

)]

t

∥
∥

L2((0,T );L∞(�)) |t2 − t1|1/2.
By (3.34), (3.41) and the the above inequality, we obtain (3.40). Then the result
follows. ��

Let us now draw some conclusions from the above estimates.

Proposition 3.6. Let assumption (Ak) be satisfied. Then there exists a sequence
κ j → 0 with the following properties:

(i) there exists U ∈ M+(Q̄) such that
∫∫

Q
Uκ j ζ dxdt → 〈U, ζQ̄〉Q̄ (3.42)

for any ζ ∈ Cc(R
2);
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(ii) there exists w ∈ L∞((0, T ); H1
0 (�)) ∩ H1(Q) ∩ C(Q̄), 0 � w � γ in Q,

with wt ∈ L2((0, T ); H1
0 (�)), such that

ψκ j

(
Uκ j

)
⇀ w in H1(Q), (3.43)

ψκ j

(
Uκ j

) → w in C(Q̄), (3.44)
[
ψκ j

(
Uκ j

)]

t
⇀ wt in L2((0, T ); H1

0 (�)); (3.45)

(iii) there holds

ψ(Uκ j ) → w in L∞((0, T ); L1(�)), (3.46)

ψ(Uκ j ) → w almost everywhere in Q, (3.47)

Uκ j → ψ−1(w) almost everywhere in Q. (3.48)

Proof. (i) For simplicity, set

Ũκ(x, t) :=
{

Uκ(x, t) if (x, t) ∈ Q̄
0 if (x, t) ∈ R

2 \ Q̄.

It follows that ‖Ũκ‖L1(R2) = ‖Uκ‖L1(Q) � C (see (3.28)), hence there exist a

subsequence
{

Ũκ j

}
⊆ {Ũκ}, and a Radon measure U ∈ M+(R2) such that

Ũκ j

∗
⇀ U in M(R2).

Clearly, supp U ⊆ Q̄, and the above convergence reads:

lim
j→∞

∫∫

Q
Uκ j ζ dxdt = lim

j→∞

∫∫

R2
Ũκ j ζ dxdt

= 〈U, ζ 〉R2 = 〈U, ζQ̄〉Q̄

for any ζ ∈ Cc(R
2). Then (3.42) holds.

(ii) The existence of w ∈ L∞((0, T ); H1
0 (�)) ∩ H1(Q) ∩ C(Q̄), with the

asserted properties (see (3.43)–(3.45)) is a consequence of estimates (3.34), (3.35),
(3.39), and (3.40) (see also (3.4)).

(iii) Assumption (Ak)-(ii) and the equality ψκ(0) = ψ(0) = 0 (recall that both
ψκ and ψ are odd) imply

ψ(Uκ j )+ κ jUκ j � ψκ j (Uκ j ) � ψ(Uκ j )+ 2κ jUκ j . (3.49)

Since Uκ j � 0, there holds

‖ψ(Uκ j )− ψκ j (Uκ j )‖L∞((0,T );L1(�))

= sup
t∈(0,T )

∫

�

[
ψκ j (Uκ j )− ψ(Uκ j )

]
(x, t)dx � 2κ j‖Uκ j ‖L∞((0,T );L1(�)).

Using (3.28), (3.44), from the above inequality we obtain (3.46).
From (3.46) (possibly extracting a subsequence, still denoted by {Uκ j }) we also

obtain (3.47), whence (3.48) follows (recall that we have set ψ−1(γ ) = ∞).
Finally, observe that the left inequality in (3.49) and (3.44) imply w � 0 in Q̄

(since Uκ j � 0), whereas (3.47) and the fact that w ∈ C(Q̄) give w � γ in Q̄.
This proves the result. ��
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Remark 3.2. It will be shown below that the solution to problem (1.5) is unique
(see Proposition 4.5). Therefore the convergences in (3.43)–(3.48) hold as κ → 0,
since the limiting values are the same along any converging sequence.

4. Proof of Well-Posedness

4.1. Proof of Theorems 2.1–2.2

The following result plays an important role in the sequel.

Proposition 4.1. Let assumptions (H1)–(H3) be satisfied. Let U ∈ M+(Q̄) and
w ∈ L∞((0, T ); H1

0 (�)) ∩ H1(Q) ∩ C(Q̄) as in Proposition 3.6. Then the set

S̃ := {
(x, t) ∈ Q̄ | w(x, t) = γ

}
(4.1)

has zero Lebesgue measure. Moreover,

supp Us ⊆ S̃, (4.2)

Ur (x, t) = ψ−1(w(x, t)) for almost every (x, t) ∈ Q̄ \ S̃. (4.3)

Proof. (i) Set:

Bn :=
{
(x, t) ∈ Q | w(x, t) � γ − 1

n

}
(n ∈ N). (4.4)

Then

Bn+1 ⊆ Bn, S̃ =
∞⋂

n=1

Bn, |S̃| = lim
n→∞ |Bn|, (4.5)

where | · | denotes the Lebesgue measure. Let us prove that:

lim
n→∞ |Bn| = 0. (4.6)

Since by Proposition 3.6 there exists a sequence
{
ψκ j

(
Uκ j

)}
such thatψκ j

(
Uκ j

) →
w uniformly in Q, thus in Bn (see (3.44)), there holds

sup
(x,t)∈Bn

∣
∣ψκ j

(
Uκ j

)
(x, t)− w(x, t)

∣
∣ <

1

n
(4.7)

for any κ j > 0 sufficiently small. On the other hand, by (3.28) there exists a sub-
sequence, denoted again

{
κ j

}
, such that κ jUκ j → 0 almost everywhere in Q;

thus, by the Severini–Egorov Lemma for any σ > 0 there exists Qσ ⊆ Q such
that |Q \ Qσ | � σ and κ jUκ j → 0 uniformly in Qσ . From inequalities (4.7) and
(3.49), for any σ > 0 we obtain:

Uκ j > ψ−1
(

γ − 2

n
− 2κ jUκ j

)

in Bn ∩ Qσ (4.8)
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for any j sufficiently large (such that γ − 2/n − 2κ jUκ j � −γ in Qσ ). Moreover,
the above considerations ensure that

ψ−1
(

γ − 2

n
− 2κ jUκ j

)

→ ψ−1
(

γ − 2

n

)

almost everywhere in Bn ∩ Qσ . Then by the Lebesgue Theorem we have:
∫∫

Bn∩Qσ

ψ−1
(

γ − 2

n
− 2κ jUκ j

)

dxdt → ψ−1
(

γ − 2

n

)

|Bn ∩ Qσ | (4.9)

for any n ∈ N. By (4.8)–(4.9), we obtain

ψ−1
(

γ − 2

n

)

|Bn| = ψ−1
(

γ − 2

n

)
(|Bn \ Qσ | + |Bn ∩ Qσ |)

= ψ−1
(

γ − 2

n

)

|Bn \ Qσ | + lim
κ j →0

∫∫

Bn∩Qσ

ψ−1
(

γ − 2

n
− 2κ jUκ j

)

dxdt

� ψ−1
(

γ − 2

n

)

σ + lim inf
κ j →0

∫∫

Bn

Uκ j dxdt � ψ−1
(

γ − 2

n

)

σ + C

for some constant C > 0. Thus, by the arbitrariness of σ we have

|Bn| < C

ψ−1
(
γ − 2

n

) (4.10)

for any n ∈ N. Letting n → ∞ in the previous inequality gives (4.6), whence
|S̃| = 0 by (4.5).

(ii) Let R ⊆ Q be the open set defined as follows:

R := {
(x, t) ∈ Q | w(x, t) < γ

}
. (4.11)

We now claim that

〈Us, ζ 〉Q =
∫∫

Q

{
ψ−1(w)− Ur

}
ζ dxdt for any ζ ∈ Cc(R). (4.12)

Fix any ζ ∈ Cc(R), denote by K ⊂ R the support of ζ and set:

MK := max
(x,t)∈K

w(x, t) < γ, δK := γ − MK .

Since ψκ j

(
Uκ j

) → w uniformly in C(Q̄) (see (3.44)), there holds:

max
K

ψκ j

(
Uκ j

)
� MK + δK

2
= γ − δK

2

for any κ j sufficiently small. By the left inequality in (3.49), this plainly implies

Uκ j � ψ−1
(

γ − δK

2

)

in K ,
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if κ j is sufficiently small. From the latter inequality and the limit (3.48), by the
Lebesgue Theorem we obtain:

∫∫

Q
Uκ j ζ dxdt →

∫∫

Q
ψ−1(w)ζ dxdt for any ζ ∈ Cc(R) (4.13)

(recall that by definition w(x, t) < γ for any (x, t) ∈ R, and w(x, t) � MK =
γ − δK for any (x, t) ∈ K ). On the other hand, by (3.28) and (3.42), there holds

∫∫

Q
Uκ j ζ dxdt → 〈U, ζ 〉Q =

∫∫

Q
Urζ dxdt + 〈Us, ζ 〉Q (4.14)

for any ζ ∈ Cc(Q). From (4.13)–(4.14) we obtain (4.12).
(iii) Let us now prove (4.2). By (4.12) we have Us(K ) = 0 for any compact

subset K ⊆ R, hence Us(R) = 0. This implies that supp Us ⊆ Q̄ \ R (recall that
supp Us ⊆ Q̄). Since

Q̄ \ R = S̃ ∪ {
∂Q \ {S̃ ∩ ∂Q

}}
,

the claim will follow if we show that any point (x0, t0) ∈ ∂Q \ {S̃ ∩ ∂Q
}

does not
belong to supp Us .

In fact, by the very definition of S̃ (see (4.1)) for any such (x0, t0) there holds
w(x0, t0) < γ . Since w ∈ C(Q̄) (see Proposition 3.6-(ii)), for any δ > 0 suffi-
ciently small there exists an open neighbourhood U0,δ ⊆ R

2 such that (x0, t0) ∈
U0,δ,U 0,δ ∩ S̃ = ∅, and

w(x, t) � w(x0, t0)+ δ � γ − δ

for any (x, t) ∈ U0,δ ∩ Q̄. Arguing as in (ii) above, by the uniform convergence
(3.44) and the left inequality in (3.49), we obtain

Uκ j � ψ−1
(

γ − δ

2

)

in U0,δ ∩ Q̄

for any κ j small enough. As above, by such an estimate we obtain the convergence
in (4.13) for any ζ ∈ Cc(U0,δ), hence in view of (3.42) we have

〈Us, ζQ̄〉Q̄ =
∫∫

Q

{
ψ−1(w)− Ur

}
ζ dxdt (4.15)

for any ζ ∈ Cc(U0,δ), whence Us(K ∩ Q̄) = 0 for any compact subset K ⊆ U0,δ .
Thus the claim follows.

(iv) Finally we prove (4.3). Observe that

Q̄ \ S̃ = R ∪ {
∂Q \ {S̃ ∩ ∂Q

}}
.

Since supp Us ⊆ S̃, by (4.12)–(4.15) and the above equality we have
∫∫

Q

{
ψ−1(w)− Ur

}
ζ dxdt = 0

for any ζ ∈ Cc(R
2) such that supp ζ ∩ S̃ = ∅. Then the conclusion follows. ��
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A useful disintegration of the singular term Us ∈ M+(Q̄) with respect to the
Lebesgue measure on (0, T ) is the content of the following

Proposition 4.2. Let Us ∈ M+(Q̄) be the singular term of the measure U ∈
M+(Q̄) given by Proposition 3.6. Then:

(i) for almost every t ∈ R there exists a measure Us(·, t) ∈ M+(�̄)(hence in
particular supp Us(·, t) ⊆ �̄),U (·, t) = 0 if t /∈ [0, T ], such that

Us(E) =
∫ T

0
Us(·, t)(Et ) dt, (4.16)

where E ⊆ R
2 is any Borel set and Et := {x ∈ R | (x, t) ∈ E} its section at

the time t. Moreover, for any ζ ∈ Cc(R
2) the map t → 〈Us(·, t), ζ(·, t)�̄〉�̄ is

Lebesgue measurable and there holds

〈Us, ζQ̄〉Q̄ =
∫ T

0
〈Us(·, t), ζ(·, t)�̄〉�̄dt; (4.17)

(ii) for almost every t ∈ (0, T ) inequality (2.6) holds.

Proof. (i) Since Us ∈ M+(Q̄)—namely, Us ∈ M(R2) and supp Us ⊆ Q̄—there
exists a measure λ ∈ M+(R), supp λ ⊆ [0, T ], and for λ-a.e. t ∈ R a measure
γt ∈ M+(R), supp γt ⊆ �̄, with the following properties (for example, see [6,
Vol. I, Proposition 8 on p. 35]):

(a) for any Borel set E ⊆ R
2 we have

Us(E) =
∫

R

γt (Et ) dλ(t) =
∫

[0,T ]
γt (Et ) dλ(t); (4.18)

(b) for any ζ ∈ Cc(R
2) there holds

〈Us, ζ 〉R2 =
∫

R

dλ(t)
∫

R

ζ(x, t) dγt =
∫

[0,T ]
dλ(t)

∫

�̄

ζ(x, t) dγt . (4.19)

Moreover, since Us(Q̄) < ∞ (because Us is a Radon measure on R
2), and

supp Us ⊆ Q̄, we have Us(R
2) < ∞. Therefore we can choose λ and γt such

that λ(I ) = Us(R × I ) for any Borel set I ⊆ R, and γt (R) = γt (�̄) = 1 for
λ-a.e. t ∈ R.

Let us prove that the measure λ is absolutely continuous with respect to the
Lebesgue measure. To this purpose, fix any 0 < t0 < T (the cases t0 = 0 and
t0 = T can be treated in an analogous way), then choose r > 0 and σ > 0 such that
Ir+σ := [t0 − r − σ, t0 + r + σ ] ⊆ [0, T ]. Moreover, fix any ηr,σ ∈ C1

c (R) such
that ηr+σ ≡ 1 in [t0 − r, t0 + r ], 0 � ηr+σ � 1 and supp ηr+σ ⊆ Ir+σ . Finally set:

η̃r+σ (t) := −
∫ t0+r+σ

t
ηr+σ (s) ds (t ∈ R).
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As before, let Uκ j be the solution of problem (Pκ j ) and Vκ j the function defined
by (3.2) with κ = κ j > 0. By equality (3.6), inequality (3.8) and assumption (H3)

there holds
∫∫

Q
Uκ j (x, t)ηr+σ (t) dxdt = −

∫ T

0
η̃r+σ (t) dt

∫

�

Vκ j xx dx

− η̃r+σ (0)
∫

�

U0κ j dx �(2r +2σ)
∫

�

U0κ j dx �(2r +2σ)‖U0‖M(�̄) (4.20)

(observe that η̃r+σ (t) = 0 for any t � t0 + r + σ ). In view of (3.42), passing to
the limit in (4.20) as κ j → 0, and using (4.18) we obtain:

∫ t0+r

t0−r

∫

�

Ur (x, t) dxdt +
∫

[t0−r,t0+r ]
dλ(t)

=
∫ t0+r

t0−r

∫

�

Ur (x, t) dxdt +
∫

[t0−r,t0+r ]
γt (�̄) dλ(t)

=
∫ t0+r

t0−r

∫

�

Ur (x, t) dxdt + Us
(
�̄× [t0 − r, t0 + r ])

�
∫∫

Q
Ur (x, t)ηr+σ (t) dxdt + 〈Us, ηr+σ 〉R2 � (2r + 2σ)‖U0‖M(�̄)

(recall that γt (�̄) = 1 for λ-a.e. t ∈ R). By the arbitrariness of σ the above
inequality implies

∫ t0+r

t0−r
dt

∫

�

Ur (x, t) dt +
∫

[t0−r,t0+r ]
dλ(t) � 2r‖U0‖M(�̄), (4.21)

hence
∫

[t0−r,t0+r ]
dλ(t) � 2r‖U0‖M(�̄) (4.22)

since Ur � 0 almost everywhere in Q. This proves the claim.
Therefore, there exists h ∈ L1(R), supp h ⊆ [0, T ], such that dλ(t) = h(t)dt .

Moreover, since Us ∈ M+(Q̄) is a positive Radon measure, from (4.22) we have

0 � h(t) � ‖U0‖M(�̄) for almost every t ∈ (0, T ),

hence h ∈ L∞(R). Finally, claim (i) follows defining

Us(·, t) := h(t)γt . (4.23)

(ii) By (4.23) and the positivity of Us , for almost every t0 ∈ (0, T ) there holds

h(t0) = Us(·, t0)(�̄) = ‖Us(·, t0)‖M(�̄)

(recall that γt0 is a probability measure). Then inequality (4.21) reads

1

2r

∫ t0+r

t0−r

∫

�

Ur (x, t) dxdt + 1

2r

∫ t0+r

t0−r
‖Us(·, t)‖M(�̄) dt � ‖U0‖M(�̄),

whence inequality (2.6) follows, letting r → 0. This completes the proof. ��
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Now we can prove the existence part of Theorem 2.1. This is the content of the
following

Proposition 4.3. Let assumptions (H1)–(H3) be satisfied. Then there exists a solu-
tion U of problem (1.5), which has the properties asserted in Theorem 2.1.

Proof. Let us show that the Radon measure U ∈ M+(Q̄)mentioned in Proposition
3.6-(i) is a solution U of problem (1.5) with the asserted properties.

(i) Claim (i) of Theorem 2.1 follows by Proposition 4.2, thus in particular
U ∈ L∞((0, T );M+(�̄)).

(ii) Consider the functionw ∈ L∞((0, T ); H1
0 (�))∩H1(Q)∩C(Q̄)mentioned

in Proposition 3.6-(ii). Since the set S̃ defined in (4.1) has zero Lebesgue measure
and ψ(Ur ) = w almost everywhere in Q \ S̃ by Proposition 4.1, w is the unique
continuous representative of the functionψ(Ur ) ∈ L∞(Q). Identifyingψ(Ur )with
w in Q̄ (see Remark 2.1), we obtain that ψ(Ur ) ∈ C(Q̄) ∩ L∞((0, T ); H1

0 (�))

and [ψ(Ur )]t ∈ L2((0, T ); H1
0 (�)) by Proposition 3.6-(ii).

Moreover, observe that for any κ > 0

ψκ(Uκ(x, 0)) = ψκ(U0κ)(x) for any x ∈ �̄,

Uκ being the unique solution of problem (Pκ)). Therefore, since ψκ(U0κ) →
ψ(U0r ) in C(�̄) by assumption (H3)-(ii) (see also (3.1)), and ψκ(Uκ) → w ≡
ψ(Ur ) in C(Q̄) by Proposition 3.6-(ii)—hence ψκ(Uκ)(·, 0) → ψ(Ur )(·, 0) in
C(�̄)—we obtain

[
ψ(Ur )

]
(x, 0) = ψ(U0r )(x) for any x ∈ �̄.

By Proposition 3.6 (see (3.48)) and equality (4.3), we have Uκ j → Ur almost
everywhere in Q. Therefore,

ϕ(Uκ j ) → ϕ(Ur ) almost everywhere in Q. (4.24)

Hence, by estimate (3.36) we see that any subsequence of
{
ϕ(Uκ j )

}
admits a

sub-subsequence which converges weakly to ϕ(Ur ) in L p((0, T ); H1
0 (�)) for

any p ∈ [1,∞) (where we have made use of (4.24)). Moreover, since the
sequence {ϕ(Uκ j )} is uniformly bounded in L∞((0, T ); H1

0 (�)), there also holds
ϕ(Ur ) ∈ L∞((0, T ); H1

0 (�)).
(iii) Clearly, the identification ψ(Ur ) ≡ w in Q̄ implies S = S̃ (see (4.1) and

the very definition of S in (2.4)). Then the property (2.4) follows from (4.2).
(iv) It remains to prove equality (2.5). To this purpose, consider for any κ j > 0

the solution Uκ j of problem (Pκ j ). For any ρ ∈ H1
0 (�) set

Iκ j ,ρ(t) :=
∫

�

Uκ j (x, t)ρ(x) dx (t ∈ [0, T ]).

By equality (3.6) we have

I ′
κ j ,ρ

(t) := −
∫

�

Vκ j x (x, t)ρ′(x) dx,
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thus Iκ j ,ρ ∈ H1(0, T ) (where Vκ j is the function defined by (3.2); recall that
Vκ j ∈ C([0, T ]; C2(�̄))). Moreover, by (3.28) and (3.30) there exists a constant
Cρ > 0 such that for any κ j > 0

∥
∥Iκ j ,ρ

∥
∥

C([0,T ])�Cρ, (4.25)

∣
∣Iκ j ,ρ(t2)− Iκ j ,ρ(t1)

∣
∣=

∣
∣
∣
∣

∫ t2

t1

∫

�

Vκ j x (x, t)ρ′(x) dxdt

∣
∣
∣
∣�Cρ |t2 − t1|1/2 (4.26)

for any t1, t2 ∈ [0, T ]. Estimates (4.25)–(4.26) imply that the sequence
{Iκ j ,ρ

}

is uniformly bounded in C([0, T ]) and equicontinuous. Therefore, by the Ascol-
i–Arzelá Theorem there exist a subsequence

{
κ jl

} ⊆ {
κ j

}
and a function Iρ ∈

C([0, T ]) such that:

Iκ jl ,ρ
→ Iρ in C([0, T ]) as l → ∞. (4.27)

On the other hand, for any k ∈ Cc(0, T ) we have:

lim
l→∞

∫ T

0
k(t) dt

∫

�

Uκ jl
(x, t)ρ(x) dx

=
∫ T

0
k(t) dt

{∫

�

Ur (x, t)ρ(x) dx + 〈Us(·, t), ρ〉�
}

(4.28)

(where we have made use of (3.42) and Proposition 4.2-(i)). By the arbitrariness
of the function k, combining (4.27) and (4.28) gives

Iρ(t) =
∫

�

Ur (x, t)ρ(x) dx + 〈Us(·, t), ρ〉� (4.29)

for almost every t ∈ (0, T ). It is easily seen that the same limit is reached along
any converging subsequence

{Iκ jm ,ρ

} ⊆ {Iκ j ,ρ

}
. Therefore, we have:

lim
j→∞

∫

�

Uκ j (x, t)ρ(x) dx =
∫

�

Ur (x, t)ρ(x) dx + 〈Us(·, t), ρ〉� (4.30)

for any ρ ∈ H1
0 (�) and for almost every t ∈ (0, T ).

We can now prove equality (2.5). Recall that for any κ j > 0 and for any
ζ ∈ C1([0, T ]; H1

0 (�)), ζ(·, T ) = 0 in � there holds

∫∫

Q

{
Uκ j ζt −

[
ϕ
(
Uκ j

)]

x
ζx −ε [ψκ j

(
Uκ j

)]

t x
ζx

}
dxdt =−

∫

�

U0κ j ζ(x, 0) dx

(4.31)

(see (3.3)). By (3.28) and (4.30) we obtain respectively

∣
∣
∣
∣

∫

�

Uκ j (x, t)ζt (x, t) dx

∣
∣
∣
∣ � C‖ζt‖C(Q̄), (4.32)
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and

lim
j→∞

∫

�

Uκ j (x, t)ζt (x, t) dx =
∫

�

Ur (x, t)ζt (x, t) dx + 〈Us(·, t), ζt (·, t)〉�
(4.33)

for almost every t ∈ (0, T ). Therefore, by the Lebesgue Theorem there holds

lim
j→∞

∫∫

Q
Uκ j (x, t)ζt (x, t) dxdt =

∫∫

Q
Ur (x, t)ζt (x, t) dxdt

+
∫ T

0
〈Us(·, t), ζt (·, t)〉� dt. (4.34)

Finally, by assumption (H3)-(ii), Proposition 3.6-(ii) and the weak convergence
of the sequence {ϕ (

Uκ j

)} to ϕ(Ur ) in L p((0, T ); H1
0 (�)), (p ∈ [1,∞); see (ii)

above), letting j → ∞ in equality (4.31) and using (4.34) we obtain equality (2.5).
(v) Let us finally prove claim (ii) of Theorem 2.1. For any open subset Q0 ⊆ Q

such that dist
(
Q̄0,S

)
> 0, by the continuity of the function ψ(Ur ) in Q̄ and by

the very definition of the set S there exists 0 < γ0 < γ such that

max
(x,t)∈Q0

ψ(Ur )(x, t) � γ0,

hence

ess sup(x,t)∈Q0
Ur (x, t) � ψ−1(γ0) < ∞,

ess inf(x,t)∈Q0

[
ψ ′(Ur )

]
(x, t) � a

for some a > 0 (see assumption (H2)-(i)). Since ψ(Ur ) ∈ H1(Q) by the identi-
fication w ≡ ψ(Ur ) (see Proposition 3.6-(ii)), from the above estimates and the
identification Ur ≡ ψ−1(ψ(Ur )) we obtain that Ur ∈ H1(Q0).

To prove that Ur ∈ C(Q̄ \ S), fix any (x̃, t̃) ∈ Q̄ \ S. By the very defini-
tion of S, there holds ψ(Ur )(x̃, t̃) = γ̃ < γ . Since ψ(Ur ) ∈ C(Q̄), for any
ε ∈ (0, γ − γ̃ ) there exists a neighbourhood of (x̃, t̃) where ψ(Ur ) < γ̃ + ε. On
the other hand, ψ−1 is well defined and continuous in (0, γ̃ + ε), for γ̃ + ε < γ .
Hence Ur ≡ ψ−1

(
ψ(Ur )

)
is continuous in the same neighbourhood, and the claim

follows.
Since ψ(Ur ) ∈ C(Q̄), for any ε ∈ (0, γ ) there exists δ > 0 such that

0 < dist ((x, t),S) < δ ⇒ ψ(Ur ) > γ − ε ⇒ Ur > ψ−1(γ − ε).

Then by assumption (H2)-(i) we obtain (2.7). This completes the proof. ��
Remark 4.1. Since the limiting value in (4.24) does not depend on the (the choice
of any subsequence of the) sequence

{
Uκ j

}
, the arguments in part (ii) of the above

proof show that as κ j → 0

ϕ(Uκ j ) ⇀ ϕ(Ur ) in L p((0, T ); H1
0 (�)) (1 � p < ∞). (4.35)
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It can be further observed that

ϕ
(
Uκ j

) → ϕ(Ur ) in C(Q̄) (4.36)

as κ j → 0. In fact,

∣
∣
[
ϕ(Uκ j )

]

t

∣
∣ = ∣

∣ϕ′(Uκ j )Uκ j t
∣
∣ � k1

∣
∣
∣ψ

′
κ j
(Uκ j )Uκ j t

∣
∣
∣ = k1

∣
∣
[
ψκ j (Uκ j )

]

t

∣
∣

by assumption (Ak)-(iv). From the above estimate and inequality (3.41) we obtain
∥
∥
∥
[
ϕ
(
Uκ j

)]

t

∥
∥
∥

L2((0,T );L∞(�))
� C (4.37)

for some constant C > 0. Arguing as in the proof of (3.40), with (3.34) and (3.41)
replaced by (3.36) and (4.37), respectively, we obtain

‖ϕ(Uκ j

)‖C1/2(Q) � C.

Hence there exists a subsequence (denoted again
{
ϕ(Uκ j )

}
for simplicity) uniformly

converging in Q̄. Then by (4.24) we obtain (4.36).

Let us proceed to prove the uniqueness part of Theorem 2.1. To this purpose
we need the following lemma, whose proof is postponed.

Lemma 4.4. Let U ∈ L∞((0, T );M+(�̄)) be a solution of problem (1.5). Then
for any ζ ∈ C([0, T ]; L2(�)), ζt ∈ L2(Q),
(i) the function

Jζ (t) :=
∫

�

[
ψ(Ur )

]

x (x, t) ζ(x, t) dx (t ∈ (0, T )) (4.38)

belongs to H1(0, T ), with weak derivative

J ′
ζ (t) =

∫

�

{[
ψ(Ur )

]

t x (x, t) ζ(x, t)+ [
ψ(Ur )

]

x (x, t) ζt (x, t)
}

dx; (4.39)

(ii) there holds:

Jζ (0) =
∫

�

[
ψ(U0r )

]

x (x) ζ(x, 0) dx . (4.40)

Proposition 4.5. Let assumptions (H1)–(H3) be satisfied. Then there exists at most
one solution U of problem (1.5).

Proof. (i) Let U1,U2 be two solutions to problem (1.5). Then the difference U1−U2
satisfies the equality

∫∫

Qτ

[
U1r − U2r

]
ζt dxdt +

∫ τ

0

〈
U1s(·, t)− U2s(·, t), ζt (·, t)

〉

�
dt

=
∫∫

Qτ

{[
ϕ(U1r )− ϕ(U2r )

]

x + ε
[
ψ(U1r )− ψ(U2r )

]

t x

}
ζx dxdt

=
∫∫

Qτ

[
V1r − V2r

]

xζx dxdt (4.41)
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for any ζ ∈ C1([0, τ ]; H1
0 (�)), ζ(·, τ ) = 0 (see (2.5)). Here Vjr is defined by

(2.8) ( j = 1, 2), and Qτ := �× (0, τ ) with τ > 0 to be chosen.
By standard regularization arguments, we can use in (4.41) the test function

ζ̃ (x, t) := −
∫ τ

t

[
ψ(U1r )− ψ(U2r )

]
(x, s) ds

(
(x, t) ∈ Qτ

)
.

Then we obtain

∫∫

Qτ

[
U1r − U2r

][
ψ(U1r )− ψ(U2r )

]
dxdt

+
∫ τ

0

〈
U1s(·, t)− U2s(·, t), ψ(U1r )(·, t)− ψ(U2r )(·, t)

〉

�
dt

= −
∫∫

Qτ

[
V1 − V2

]

x

(∫ τ

t

[
ψ(U1r )− ψ(U2r )

]

x (x, s) ds

)

dxdt. (4.42)

Let us study the three terms separately:

I1 :=
∫∫

Qτ

[
U1r − U2r

][
ψ(U1r )− ψ(U2r )

]
dxdt,

I2 :=
∫ τ

0

〈
U1s(·, t)− U2s(·, t), ψ(U1r )(·, t)− ψ(U2r )(·, t)

〉

�
dt,

I3 := −
∫∫

Qτ

[
V1 − V2

]

x

(∫ τ

t

[
ψ(U1r )− ψ(U2r )

]

x (x, s) ds

)

dxdt.

We have:

I1 =
∫∫

Qτ

[
ψ−1 (ψ(U1r ))− ψ−1 (ψ(U2r ))

][
ψ(U1r )− ψ(U2r )

]
dxdt

� 1

‖ψ ′‖L∞(R)

∫∫

Qτ

[
ψ(U1r )− ψ(U2r )

]2dxdt; (4.43)

I2 =
∫ τ

0

〈
U1s(·, t), ψ(U1r )(·, t)− ψ(U2r )(·, t)

〉

�
dt

+
∫ τ

0

〈
U2s(·, t), ψ(U2r )(·, t)− ψ(U1r )(·, t)

〉

�
dt

=
∫ τ

0

〈
U1s(·, t),

[
γ − ψ(U2r )(·, t)

] 〉

�
dt

+
∫ τ

0

〈
U2s(·, t),

[
γ − ψ(U1r )(·, t)

] 〉

�
dt � 0 (4.44)



116 Flavia Smarrazzo & Alberto Tesei

by the characterization (2.4), since U1s, U2s ∈ M+(Q̄);

I3 = −
∫∫

Qτ

[
ϕ(U1r )− ϕ(U2r )

]

x

(∫ τ

t

[
ψ(U1r )− ψ(U2r )

]

x (x, s) ds

)

dxdt

+ ε
∫ τ

0

d

dt

∫

�

[
ψ(U1r )− ψ(U2r )

]

x ζ̃x dxdt

− ε
∫ τ

0

∫

�

[
ψ(U1r )− ψ(U2r )

]

x ζ̃xt dxdt

= −
∫∫

Qτ

[
ϕ(U1r )− ϕ(U2r )

]

x

(∫ τ

t

[
ψ(U1r )− ψ(U2r )

]

x (x, s) ds

)

dxdt

− ε
∫∫

Qτ

[
ψ(U1r )− ψ(U2r )

]2
x dxdt (4.45)

by Lemma 4.4 (observe that ψ(U1r ), ψ(U2r ) ∈ L∞((0, T ); H1
0 (�)) imply that

ζ̃x ∈ C([0, τ ]; L2(�)) and ζ̃xt ∈ L2(Qτ )).
(ii) From (4.42)–(4.45) we obtain

1

‖ψ ′‖∞

∫∫

Qτ

[
ψ(U1r )− ψ(U2r )

]2dxdt + ε

∫∫

Qτ

[
ψ(U1r )− ψ(U2r )

]2
x dxdt

� −
∫∫

Qτ

[
ϕ(U1r )− ϕ(U2r )

]

x

(∫ τ

t

[
ψ(U1r )− ψ(U2r )

]

x (x, s) ds

)

dxdt.

(4.46)

Concerning the right-hand side of the above inequality, there holds
∫∫

Qτ

∣
∣
∣
∣

[
ϕ(U1r )− ϕ(U2r )

]

x

(∫ τ

t

[
ψ(U1r )− ψ(U2r )

]

x (x, s) ds

)∣
∣
∣
∣ dxdt

� 1

2δ

∫∫

Qτ

(∫ τ

t

[
ψ(U1r )− ψ(U2r )

]

x (x, s) ds

)2

dxdt

+ δ

2

∫∫

Qτ

[
ϕ(U1r )− ϕ(U2r )

]2
x dxdt � τ 2

2δ

∫∫

Qτ

[
ψ(U1r )− ψ(U2r )

]2
x dxdt

+ δ

2

∫∫

Qτ

[
ϕ(U1r )− ϕ(U2r )

]2
x dxdt (4.47)

for any δ > 0. On the other hand, writing ϕ(Uir ) = (
ϕ ◦ ψ−1

)
(ψ(Uir ))(i = 1, 2)

and using assumptions (H2)-(iv), (v) we easily find

1

2

∫∫

Qτ

[
ϕ(U1r )− ϕ(U2r )

]2
x dxdt � k2

1

∫∫

Qτ

[
ψ(U1r )− ψ(U2r )

]2
x dxdt

+ k2
2

∫∫

Qτ

[
ψ(U2r )

]2
x

[
ψ(U1r )−ψ(U2r )

]2 � k2
1

∫∫

Qτ

[
ψ(U1r )−ψ(U2r )

]2
x dxdt

+ k2
2 sup
t∈(0,τ )

(∫

�

[
ψ(U2r )

]2
x (x, t)dx

)∫ τ

0

∥
∥
∥
[
ψ(U1r )− ψ(U2r )

]2
(·, t)

∥
∥
∥

C(�̄)
dt.

(4.48)
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Since
[
ψ(U1r ) − ψ(U2r )

]
(·, t) ∈ H1

0 (�) for almost every t ∈ (0, τ ), there also
holds

∥
∥
∥
[
ψ(U1r )− ψ(U2r )

]2
(·, t)

∥
∥
∥

C(�̄)

� 2
∫

�

∣
∣
[
ψ(U1r )− ψ(U2r )

]
(ξ, t)

∣
∣
∣
∣
[
ψ(U1r )− ψ(U2r )

]

x (ξ, t)
∣
∣ dξ

�
∫

�

[
ψ(U1r )− ψ(U2r )

]2
(ξ, t) dξ +

∫

�

[
ψ(U1r )− ψ(U2r )

]2
x (ξ, t) dξ.

Inserting the above inequality into the last term of (4.48) gives

1

2

∫∫

Qτ

[
ϕ(U1r )− ϕ(U2r )

]2
x dxdt � k2

1

∫∫

Qτ

[
ψ(U1r )− ψ(U2r )

]2
x dxdt

+ k2
2 sup

t∈(0,τ )

(∫

�

[
ψ(U2r )

]2
x (x, t)dx

)∫∫

Qτ

[
ψ(U1r )− ψ(U2r )

]2dxdt

+ k2
2 sup

t∈(0,τ )

(∫

�

[
ψ(U2r )

]2
x (x, t)dx

)∫∫

Qτ

[
ψ(U1r )− ψ(U2r )

]2
x dxdt. (4.49)

(iii) We can now conclude the proof. By (4.47) and (4.49), inequality (4.46) reads:

1

‖ψ ′‖∞

∫∫

Qτ

[
ψ(U1r )− ψ(U2r )

]2 + ε

∫∫

Qτ

[
ψ(U1r )− ψ(U2r )

]2
x dxdt

� τ 2

2δ

∫∫

Qτ

[
ψ(U1r )− ψ(U2r )

]2
x dxdt + δk2

1

∫∫

Qτ

[
ψ(U1r )− ψ(U2r )

]2
x dxdt

+ δk2
2 sup

t∈(0,τ )

(∫

�

[
ψ(U2r )

]2
x (x, t)dx

)∫∫

Qτ

[
ψ(U1r )− ψ(U2r )

]2dxdt

+ δk2
2 sup

t∈(0,τ )

(∫

�

[
ψ(U2r )

]2
x (x, t)dx

)∫∫

Qτ

[
ψ(U1r )− ψ(U2r )

]2
x dxdt,

whence

C1

∫∫

Qτ

[
ψ(U1r )− ψ(U2r )

]2dxdt + C2

∫∫

Qτ

[
ψ(U1r )− ψ(U2r )

]2
x dxdt � 0,

where

C1 := 1

‖ψ ′‖∞
− δk2

2 sup
t∈(0,τ )

(∫

�

[
ψ(U2r )

]2
x (x, t)dx

)

, (4.50)

C2 := ε − τ 2

2δ
− δk2

1 − δk2
2 sup

t∈(0,τ )

(∫

�

[
ψ(U2r )

]2
x (x, t)dx

)

. (4.51)

Choosing δ and τ so that
⎧
⎪⎪⎨

⎪⎪⎩

δk2
2 supt∈(0,τ )

(∫

�

[
ψ(U2r )

]2
x (x, t)dx

)
< ‖ψ ′‖−1∞ ,

τ 2 < δε,

δk2
1 + δk2

2 supt∈(0,τ )
(∫

�

[
ψ(U2r )

]2
x (x, t)dx

)
< ε/2,
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we obtain C1 > 0,C2 > 0. Then by (4.50)

‖ψ(U1r )− ψ(U2r )‖L2((0,τ );H1
0 (�))

� 0,

whence the result follows. ��
Proof of Lemma 4.4. Let U ∈ L∞((0, T );M+(�̄)) be a solution of prob-
lem (1.5). Then ψ(Ur ) ∈ L∞((0, T ); H1

0 (�)), thus Jζ ∈ L2(0, T ) for any
ζ ∈ C([0, T ]; L2(�)). Moreover, since

[
ψ(Ur )

]

t ∈ L2((0, T ); H1
0 (�)), it is eas-

ily seen that for any ζ ∈ C∞(Q̄) with ζ(·, t) ∈ C∞
c (�) and for any h ∈ C1

c (0, T )
there holds

∫ T

0
h(t) dt

∫

�

{[
ψ(Ur )

]

t x (x, t) ζ(x, t)+ [
ψ(Ur )

]

x (x, t) ζt (x, t)
}

dx

= −
∫ T

0
ht (t)Jζ (t)dt. (4.52)

Since
[
ψ(Ur )

]

t x ∈ L2(Q) and
[
ψ(Ur )

]

x ∈ L∞((0, T ); L2(�)), by standard
regularization results the above equality holds for any ζ ∈ C([0, T ]; L2(�)),
ζt ∈ L2(Q), and we have

∫ T

0

(∫

�

{[
ψ(Ur )

]

t x (x, t) ζ(x, t)+ [
ψ(Ur )

]

x (x, t) ζt (x, t)
}

dx

)2

dt

� 2
∫ T

0

(∫

�

[
ψ(Ur )

]

t x (x, t) ζ(x, t) dx

)2

dt+2
∫ T

0

(∫

�

[
ψ(Ur )

]

x (x, t) ζt (x, t) dx

)2

dt

� 2
∫ T

0

(∫

�

[
ψ(Ur )

]2
t x (x, t) dx

)(∫

�

ζ 2(x, t) dx

)

dt

+ 2
∫ T

0

(∫

�

[
ψ(Ur )

]2
x (x, t) dx

)(∫

�

ζ 2
t (x, t) dx

)

dt

� 2‖ζ‖2
L∞((0,T );L2(�))

∥
∥
[
ψ(Ur )

]

t x

∥
∥2

L2(Q)

+ 2
∥
∥
[
ψ(Ur )

]

x

∥
∥2

L∞((0,T );L2(�))
‖ζt‖2

L2(Q) � C.

Therefore, the map

t �−→
∫

�

{[
ψ(Ur )

]

t x (x, t) ζ(x, t)+ [
ψ(Ur )

]

x (x, t) ζt (x, t)
}

dx

belongs to L2(0, T ), whence by equality (4.52)

Jζ ∈ H1(0, T ) (4.53)

for any ζ as above. This proves claim (i).
Concerning (ii), observe that by its very definition

Jζ (t) = −
∫

�

[ψ(Ur )](x, t) ζx (x, t) dx (4.54)
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for any ζ ∈ C([0, T ]; H1
0 (�)), ζt ∈ L2(Q) and t > 0. Then by the continuity of

ψ(Ur ) in the rectangle Q̄ and the initial condition there holds

Jζ (0) = lim
t→0

Jζ (t) = −
∫

�

ψ(U0r )(x) ζx (x, t) dx =
∫

�

[ψ(U0r )]x (x) ζ(x, 0) dx,

(here we have made use of assumption (H3)). Finally, by regularization results the
above equality holds for any ζ ∈ C([0, T ]; L2(�)), ζt ∈ L2(Q). This completes
the proof. ��
Proof of Theorem 2.1. The existence of a solution to problem (1.5) with the
asserted properties in (i)–(ii) follows by Proposition 4.3, whereas the uniqueness
of this solution has been proven in Proposition 4.5 above. ��

Let us now prove Theorem 2.2.

Proof of Theorem 2.2. Claim (i) follows from Proposition 4.1 and the identifica-
tion ψ(Ur ) ≡ w, whereas (ii) is a consequence of the very definition of S and the
boundary condition ψ(Ur ) = 0 on ∂�×[0, T ] (see Definition 2.1-(ii)), for the set
S is closed (see Remark 2.1). ��

4.2. Proof of Theorem 2.3

To prove Theorem 2.3 we need some preliminary results.

Lemma 4.6. The function Vr defined by (2.8) belongs to the space L∞(Q) ∩
L2((0, T ); H1

0 (�)). Moreover,

(i) there exists C > 0 (independent of ε) such that

‖Vr x‖L2(Q) � C; (4.55)

(ii) there holds

0 � Vr � ϕ(α). (4.56)

Proof. Let {κ j } be the sequence in Proposition 3.6. Since ϕ(Ur ) ∈ L∞((0, T );
H1

0 (�)) and
[
ψ(Ur )

]

t ∈ L2((0, T ); H1
0 (�)), we have that Vr ∈ L2((0, T ); H1

0 (�))

and

Vκ j ⇀ Vr in L2((0, T ); H1
0 (�)) (4.57)

(see Proposition 3.6-(ii) and (4.35)). Then inequality (4.55) follows from (3.30) by
the lower semicontinuity of the norm. On the other hand, inequality (4.56) imme-
diately follows from (3.7), observing that

0 � lim
κ j →0

∫∫

Q

{
ϕ(α)− Vκ j

}
ζdxdt =

∫∫

Q

{
ϕ(α)− Vr

}
ζdxdt

for any ζ ∈ L2(Q), ζ � 0. Hence the result follows. ��
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Lemma 4.7. There exists a constant C > 0 such that for any ε > 0 there holds:

∫∫

Q

[
ψ(Ur )

]2
t

ψ ′(Ur )
dxdt � C

ε
. (4.58)

Proof. First observe that by (3.31) there exist a sequence κ j → 0 and g ∈ L2(Q)
such that

[
ψκ j

(
Uκ j

)]

t√
ψ ′
κ j
(Uκ j )

⇀ g in L2(Q). (4.59)

Let S̃ and Bn be the sets defined by (4.1), (4.4). Denote by An the complement of
Bn in Q, namely

An :=
{
(x, t) ∈ Q | ψ(Ur ) < γ − 1

n

}
(4.60)

(recall that by choice w ≡ ψ(Ur ) in Q, thus S̃ = S; see (2.4)). Then An ⊆
An+1, Bn ∩ Q = Q \ An for any n ∈ N. For any j ∈ N sufficiently large there
holds:

Uk j � ψ−1
(

γ − 1

2n

)

in An . (4.61)

In fact, since ψk j (Uk j ) → ψ(Ur ) in C(Q̄) as k j → 0 (see (3.44) and (4.3)), we
have

ψk j (Uk j ) � γ − 1

2n
in An

for any κ j sufficiently small. Then inequality (3.49) and the nonnegativity of Uk j

give

ψ(Uk j ) � k jUk j + ψ(Uk j ) � ψk j (Uk j ) � γ − 1

2n
in An .

By inequality (4.61), (H2)-(i) and (Ak)-(ii), there exists Cn > 0 such that

ψ ′
κ j
(Uκ j ) � κ j + ψ ′(Uκ j ) � 1

Cn
in An,

thus

0 � 1

ψ ′
κ j
(Uκ j )

� Cn in An, (4.62)

for any j ∈ N large enough.
Moreover, since An is open, and ∪n An = Q \ S, for any ζ ∈ C1

c (Q \ S) there
exists n ∈ N such that supp ζ ⊆ An . Since ψ ′

κ j
→ ψ ′ in Cloc(R) (see assumption

(Ak)-(i)), by (3.48), (4.3), and inequality (4.62) there holds

1
√
ψ ′
κ j
(Uκ j )

→ 1√
ψ ′(Ur )

in L2(supp ζ ).
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On the other hand, by (3.45)
[
ψκ j

(
Uκ j

)]

t ⇀
[
ψ(Ur )

]

t in L2(Q).

Therefore
∫∫

Q

[
ψκ j

(
Uκ j

)]

t√
ψ ′
κ j
(Uκ j )

ζ dxdt →
∫∫

Q

[
ψ(Ur )

]

t√
ψ ′(Ur )

ζ dxdt

for any ζ ∈ C1
c (Q \ S). Since |S| = 0, in view of (4.59) we obtain

g =
[
ψ(Ur )

]

t√
ψ ′(Ur )

a.e. in Q. (4.63)

Then inequality (4.58) follows from (3.31), (4.59) and (4.63) by the lower semi-
continuity of the norm. This proves the result. ��
Proposition 4.8. For any n ∈ N Urt , Vr xx ∈ L2(An), where An is the open set
defined by (4.60), and there holds

Urt = Vr xx in L2(An). (4.64)

Moreover,

Urt =
[
ψ(Ur )

]

t

ψ ′(Ur
) a.e. in An . (4.65)

Proof. Let κ j → 0 be any sequence such that Uκ j → Ur almost everywhere in Q
(this sequence exists by Proposition 3.6-(iii); see (3.48) and (4.3)). By the equality

Vκ j xx = Uκ j t = [ψκ j (Uκ j )]t

ψ ′
κ j
(Uκ j )

(4.66)

and inequalities (3.33), (4.62) (which holds for any j ∈ N sufficiently large), we
have

∫∫

An

(Uκ j t )
2dxdt =

∫∫

An

(Vκ j xx )
2dxdt

=
∫∫

An

( [ψκ j (Uκ j )]t

ψ ′
κ j
(Uκ j )

)2

dxdt � C2
n

∥
∥[ψκ j (Uκ j )]t

∥
∥2

L2(Q)
� C2

n
C

ε
.

Therefore the families
{
Uκ j t

}
,
{

Vκ j xx
}

are uniformly bounded in L2(An), thus
Urt , Vr xx ∈ L2(An) and

Uk j t ⇀ Urt , Vk j xx ⇀ Vr xx in L2(An) (n ∈ N). (4.67)

Hence (4.64) follows from the first equality in (4.66).
Finally, arguing as in the proof of Lemma 4.7 we obtain

[ψκ j (Uκ j )]t

ψ ′
κ j
(Uκ j )

⇀

[
ψ(Ur )

]

t

ψ ′(Ur
) in L2(An).

By the second equality in (4.66), the above convergence gives equality (4.65). Then
the conclusion follows. ��
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Remark 4.2. By Proposition 4.8 the distributions Urt , Vr xx ∈ D′(Q) “restricted
to the open set Q \ S” can be identified with the function [ψ(Ur )]t

ψ ′(Ur )
∈ L1

loc(Q \ S),
namely

Urt ≡ Vr xx ≡ [ψ(Ur )]t

ψ ′(Ur )
in D′(Q \ S). (4.68)

In fact, using (4.64)–(4.65), the very definition of the sets S and An (see (2.4) and
(4.60), respectively) and the continuity of the functionψ(Ur ) in Q̄, it is easily seen
that

Urt (ζ ) = Vr xx (ζ ) =
∫

Q\S
[ψ(Ur )]t

ψ ′(Ur )
ζ dxdt (4.69)

for any ζ ∈ C∞
c (Q \ S).

Since the set S has zero Lebesgue measure, in view of (4.68) we can associate
to the distributions Urt , Vr xx ∈ D′(Q) two measurable functions, again denoted
Urt , Vr xx for simplicity, which “represent” the distributions Urt , Vr xx in Q \ S in
the sense of (4.69), such that

Vr xx (x, t) = Urt (x, t) = [ψ(Ur )]t

ψ ′(Ur )
(x, t) (4.70)

for almost every (x, t) ∈ Q. Keeping in mind the above considerations, in the
following we shall always use the notations Urt , Vr xx to indicate the measurable
functions in (4.70) (in particular, see Propositions 4.10 and 5.1).

To prove Theorem 2.3 we also need the following technical lemma, whose
standard proof is omitted.

Lemma 4.9. Let ζ ∈ L2((0, T ); H1(�)), where � ⊆ R is a bounded interval.
Then:

(i) for any x0 ∈ � the function ζ(x0, ·) : (0, T ) → R belongs to the space
L1(0, T );

(ii) there exists a set H ⊆ (0, T ) of Lebesgue measure |H | = 0 such that for
any t0 ∈ (0, T ) \ H and for any x0 ∈ �

lim
h→0

1

h

∫ t0+h

t0
ζ(x0, t) dt = ζ(x0, t0). (4.71)

Let us remark that the null set H ⊆ (0, T )which we exclude in the limit (4.71)
is independent of the choice of x0 ∈ �.

Proof of Theorem 2.3. (i) Let A ⊆ Q be any open set such that dist
(

Ā,S)
> 0.

By the continuity of ψ(Ur ) in Q̄ and the very definition of the set S, there exists
An such that A ⊆ An (where An is the set defined in (4.60)). Then by Proposition
4.8 the claim follows.
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(ii) Since Vr and
[
ψ(Ur )

]

t belong to L2((0, T ); H1
0 (�)), there exists a set

H ⊆ (0, T ) of zero Lebesgue measure such that for any t ∈ (0, T ) \ H there holds
Vr (·, t) ∈ H1

0 (�),
[
ψ(Ur )

]

t (·, t) ∈ H1
0 (�) ⊆ C(�̄) and

lim
h→0

1

h

∫ t0+h

t0

[
ψ(Ur )

]

t (x0, t)dt = [
ψ(Ur )

]

t (x0, t0) (4.72)

for any x0 ∈ �.
Set

Bδ(t) := {
x ∈ � | Vr (x, t) � δ

}
(δ > 0; t ∈ (0, T )). (4.73)

Arguing by contradiction, let there exist t0 ∈ (0, T ) \ H and x0 ∈ � such that
x0 ∈ Bδ(t0) ∩ St0 for some δ > 0. For any r > 0 and any h > 0 sufficiently small
we have

1

r

∫

Ir (x0)

ψ(Ur )(x, t0 + h)dx − 1

r

∫

Ir (x0)

ψ(Ur )(x, t0)dx

= 1

r

∫ t0+h

t0

∫

Ir (x0)

[ψ(Ur )]t (x, t)dxdt,

where Ir (x0) ≡ (x0 − r, x0 + r). Since ψ(Ur ) ∈ C(Q̄),
[
ψ(Ur )

]

t ∈
L2((0, T ); H1

0 (�)), thus
[
ψ(Ur )

]

t x ∈ L2(Q), and
[
ψ(Ur )

]

t (x0, ·) ∈ L1(0, T )
by Lemma 4.9-(i), letting r → 0 in the above equality plainly gives:

ψ(Ur )(x0, t0 + h)− ψ(Ur )(x0, t0) =
∫ t0+h

t0
[ψ(Ur )]t (x0, t) dt. (4.74)

Since ψ(Ur ) � γ in Q̄ and ψ(Ur )(x0, t0) = γ by assumption, the left-hand side
of the above equality is nonpositive. Then by (4.72) we have

lim
h→0

1

h

∫ t0+h

t0
[ψ(Ur )]t (x0, t)dt = [

ψ(Ur )
]

t (x0, t0) � 0.

On the other hand, there holds ϕ(Ur )(x0, t0) = 0 (see Remark 2.1). Therefore, we
obtain

0 < δ � Vr (x0, t0) = ϕ(Ur )(x0, t0)+ ε[ψ(Ur )]t (x0, t0) � 0.

The contradiction proves that

Bδ(t) ∩ St = ∅ (4.75)

for any δ > 0 and for any t ∈ (0, T ) \ H ; here Bδ(t) is the set defined in (4.73).
Then, since supp Us(·, t) ⊆ St and St ⊆ � by the boundary condition ψ(Ur ) = 0
in ∂�× [0, T ], by the arbitrariness of δ > 0 the claim follows. This completes the
proof. ��

Let us prove, for further purposes, an additional result concerning the regularity
of the function Vr (·, t) for almost every fixed t ∈ (0, T ). The following proposition
can be regarded as a pointwise version (with respect to t) of Proposition 4.8.
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Proposition 4.10. Let Urt , Vr xx be the functions defined in Remark 4.2. Then there
exists a null set F ⊆ (0, T ), |F | = 0, such that for any t ∈ (0, T ) \ F and for any
n ∈ N there holds Urt (·, t), Vr xx (·, t) ∈ L2(At

n), Vr (·, t) ∈ H2(At
n) and

Urt (·, t) = Vr xx (·, t) = [Vr (·, t)]xx a.e. in At
n, (4.76)

where

At
n :=

{

x ∈ � | ψ(Ur )(x, t) < γ − 1

n

}

(n ∈ N, t ∈ (0, T )). (4.77)

Proof. (i) Since the functions Urt , Vr xx are measurable in Q and Vr ,
[
ψ(Ur )

]

t ∈
L2((0, T ); H1

0 (�)) ⊆ L1(Q), it is easily seen that there exists a set F ⊆
(0, T ), |F | = 0, such that for any t ∈ (0, T ) \ F

• Urt (·, t) and Vr xx (·, t) are measurable in � and the equalities in (4.70) hold
for almost every x ∈ �;

• Vr (·, t),
[
ψ(Ur )

]

t (·, t) ∈ H1
0 (�);

• for any ζ ∈ C(�̄)

lim
R→0

1

2R

∫ t+R

t−R

∫

�

Vr (x, s)ζ(x) dxds =
∫

�

Vr (x, t)ζ(x) dx, (4.78)

lim
R→0

1

2R

∫ t+R

t−R

∫

�

[
ψ(Ur )

]

t (x, s)ζ(x) dxds =
∫

�

[
ψ(Ur )

]

t (x, t)ζ(x) dx,

(4.79)

lim
R→0

1

2R

∫ t+R

t−R

∫

�

∣
∣
[
ψ(Ur )

]

t (x, s)
∣
∣ζ(x) dxds =

∫

�

∣
∣
[
ψ(Ur )

]

t (x, t)
∣
∣ζ(x) dx .

(4.80)

Also observe that for any n ∈ N there exists δ > 0 (depending on n) such that
for any t ∈ (0, T )

Qt
n := At

n × (t − δ, t + δ) ⊆ A2n (4.81)

(where A2n ⊆ Q is the set in (4.60)). In fact, by Lemma 3.5, (3.43)–(3.45) and
(4.3), there holds ψ(Ur ) ∈ C1/2(Q̄). Hence there exists C > 0 such that for any
(x1, t1), (x2, t2) ∈ Q̄ there holds:

|ψ(Ur )(x2, t2)− ψ(Ur )(x1, t1)| � C
(
|x2 − x1|1/2 + |t2 − t1|1/2

)
. (4.82)

Then for any x ∈ At
n (n ∈ N fixed) and for any s ∈ (0, T ) we have

ψ(Ur )(x, s) � C |s − t |1/2 + ψ(Ur )(x, t) < C |s − t |1/2 + γ − 1

n
. (4.83)

Set δ := ( 1
2nC

)2
. Then the above inequality gives

ψ(Ur )(x, s) < γ − 1

2 n

for any x ∈ At
n and any s ∈ (t − δ, t + δ), thus the claim follows.
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(ii) Fix any n ∈ N, t ∈ (0, T ) \ F . Let At
n ⊆ � be the corresponding set

defined by (4.77). Clearly, Vr (·, t) ∈ H1(At
n) and [Vr (·, t)]x = Vr x (·, t) almost

everywhere in�, for Vr (·, t) ∈ H1
0 (�). Therefore the conclusion will follow, if we

show that Urt (·, t) ∈ L2(At
n) and

∫

At
n

Urt (x, t) ζ(x) dx =
∫

At
n

Vr (x, t) ζ ′′(x) dx (4.84)

for any ζ ∈ C∞
c (A

t
n) (let us also recall that Vr xx (·, t) = Urt (·, t) almost everywhere

in � by (4.70)).
To this purpose, observe that

Ur (x, t) � ψ−1(γ − 1/n)

for almost every x in the closure Āt
n of the set At

n . Since ψ(Ur )(·, t) ∈ H1
0 (�) ⊆

C(�̄) and ψ−1 ∈ C1([0, γ − 1/n]), it follows that

Ur (·, t) ≡ ψ−1(ψ(Ur )(·, t)) ∈ C( Āt
n).

Moreover, the function ψ ′(Ur (·, t)) is bounded away from zero in Āt
n , hence

1

ψ ′(Ur )
(·, t) ∈ C( Āt

n) ⊆ L∞(At
n).

Since
[
ψ(Ur )

]

t (·, t) ∈ H1
0 (�), by the very definition of the functions Urt , Vr xx in

Remark 4.2 (in particular, see (4.70)) we obtain

Vr xx (·, t) = Urt (·, t) =
[
ψ(Ur )

]

t

ψ ′(Ur
) (·, t) ∈ L2(At

n). (4.85)

It remains to prove (4.84). To this purpose, fix any ζ ∈ C∞
c (A

t
n) and choose

δ = δ(n) > 0 as in (i) above, so that (4.81) holds. Then by Proposition 4.8
Urt , Vr xx ∈ L2(Qt

n) and

Urt = Vr xx in L2(Qt
n). (4.86)

In particular, using (4.65) there holds

1

2R

∫ t+R

t−R
ds

∫

At
n

[
ψ(Ur )

]

t

ψ ′(Ur )
(x, s) ζ(x) dx = 1

2R

∫ t+R

t−R
ds

∫

At
n

Vr (x, s) ζ ′′(x) dx

(4.87)

for any R ∈ (0, δ) and ζ ∈ C∞
c (A

t
n).

The left-hand side of the above equality can be rewritten as follows:

1

2R

∫ t+R

t−R
ds

∫

At
n

[
ψ(Ur )

]

t

ψ ′(Ur )
(x, s) ζ(x) dx

= 1

2R

∫ t+R

t−R
ds

∫

At
n

[
ψ(Ur )

]

t (x, s)
ζ(x)

ψ ′(Ur )(x, t)
dx

+ 1

2R

∫ t+R

t−R
ds
∫

At
n

{
ζ(x)

[
ψ ′(Ur )

]
(x, s)

− ζ(x)
[
ψ ′(Ur )

]
(x, t)

}
[
ψ(Ur )

]

t (x, s)dx . (4.88)
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Since Qt
n ⊆ A2n , arguing as in the proof of (4.85), we have

1

ψ ′(Ur )
∈ C(Q̄t

n) ⊆ L∞(Qt
n).

In particular, the function 1/ψ ′(Ur ) is uniformly continuous in the compact set
Q̄t

n . Hence for any ε > 0 there exists 0 < σε � δ such that for any x ∈ At
n and

s ∈ (t − δ, t + δ) there holds

∣
∣
∣
∣
∣

1
[
ψ ′(Ur )

]
(x, t)

− 1
[
ψ ′(Ur )

]
(x, s)

∣
∣
∣
∣
∣
� ε

whenever |s − t | � σε . Hence for any R sufficiently small

1

2R

∫ t+R

t−R
ds

∫

At
n

∣
∣
∣
∣
∣

ζ(x)
[
ψ ′(Ur )

]
(x, s)

− ζ(x)
[
ψ ′(Ur )

]
(x, t)

∣
∣
∣
∣
∣

∣
∣
[
ψ(Ur )

]

t (x, s)
∣
∣ dx

� ε
1

2R

∫ t+R

t−R
ds

∫

At
n

∣
∣
[
ψ(Ur )

]

t (x, s)ζ(x)
∣
∣ dx

� ε
1

2R

∫ t+R

t−R
ds

∫

�

∣
∣
[
ψ(Ur )

]

t (x, s)ζ(x)
∣
∣ dx .

By (4.80) and the arbitrariness of ε, letting R → 0 in the above inequality gives

lim
R→0

1

2R

∫ t+R

t−R
ds
∫

At
n

∣
∣
∣
∣
∣

ζ(x)
[
ψ ′(Ur )

]
(x, s)

− ζ(x)
[
ψ ′(Ur )

]
(x, t)

∣
∣
∣
∣
∣

∣
∣
[
ψ(Ur )

]

t (x, s)
∣
∣ dx =0.

(4.89)

Moreover, the function φ := ζ(·)[
ψ ′(Ur )

]
(·,t) belongs to Cc(At

n) ⊆ C(�̄). Therefore

by (4.79), (4.88) and (4.89) we have

lim
R→0

1

2R

∫ t+R

t−R
ds

∫

At
n

[
ψ(Ur )

]

t

ψ ′(Ur )
(x, s) ζ(x) dx =

∫

At
n

Urt (x, t) ζ(x) dx

(see (4.70)). On the other hand, by (4.78) we also have

lim
R→0

1

2R

∫ t+R

t−R
ds

∫

At
n

Vr (x, s) ζ ′′(x) dx =
∫

At
n

Vr (x, t) ζ ′′(x) dx .

Then letting R → 0 in equality (4.87) the conclusion follows (see also (4.85)). ��
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5. Proof of Entropy Inequalities

To prove Theorem 2.4 we need the following result.

Proposition 5.1. Let G be the function defined by (2.15), with g ∈ C1([0, ϕ(α)])
g(0) = 0. Then G(Ur ) ∈ C(Q̄). Moreover, if g = 0 in [0, Sg] for some
Sg ∈ (0, ϕ(α)), then

(i) G(Uκ j ) → G(Ur ) almost everywhere in Q, {κ j } being the sequence
mentioned in Proposition 3.6;

(ii)
[
G(Ur )]t ∈ L2(Q) and

[
G(Ur )

]

t = g(ϕ(Ur ))Urt almost everywhere in Q, (5.1)

where Urt is the function defined in Remark 4.2. Moreover,

[G(Uκ j )]t ⇀
[
G(Ur )

]

t in L2(Q). (5.2)

Proof. For almost every (x, t) ∈ Q we have

|G(Ur (x, t))| �
∫ ∞

0
|g(ϕ(s))| dx � ‖g′‖∞

∫ ∞

0
ϕ(s) ds < ∞,

since ϕ ∈ L1(R) by assumption (H1)-(i). Therefore, G(Ur ) ∈ L∞(Q). By Theo-
rem 2.1-(ii) the function

Ḡ(x, t) :=
⎧
⎨

⎩

G(Ur ) in Q̄ \ S,∫ ∞

0
g(ϕ(s)) ds in S (5.3)

is a continuous representative in Q̄ of G(Ur ), again denoted G(Ur ) for simplicity
(recall that |S| = 0 and G is continuous by definition).

Claim (i) follows from (3.48), (4.3) and the continuity of G. To prove (ii), let 0 <
s1(Sg) < s2(Sg) denote the roots of the equation ϕ(z) = Sg , with Sg ∈ (0, ϕ(α)).
Set

Eκ j := {
(x, t) ∈ Q

∣
∣Uκ j (x, t) < s2(Sg)

}
.

Since g = 0 in [0, Sg], we have

[
G(Uκ j )

]

t =
{

g(ϕ(Uκ j ))Uκ j t in Eκ j ,

0 otherwise.

Therefore
[
G(Uκ j )

]

t ∈ L2(Q) (recall that Uκ j t ∈ L2(Q) by definition) and

∫∫

Q

[
G(Uκ j )

]

tζ dxdt =
∫∫

Eκ j

[
G(Uκ j )

]

tζ dxdt (5.4)

for any ζ ∈ L2(Q).
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We shall prove the following

Claim There exists n ∈ N (possibly depending on g) such that Eκ j ⊆ An for any
j ∈ N sufficiently large, An being the open set defined in (4.60).

Since

• Uk j t ⇀ Urt in L2(An) by (4.67) (see also Remark 4.2),
• ϕ(Uk j ) → ϕ(Ur ) uniformly in Ān (see Remark 4.1),
• g is continuous,

the above Claim and equality (5.4) imply claim (ii). Hence the conclusion follows.
It remains to prove the Claim. To this purpose, observe that by assumptions

(Ak)-(i), (ii)

Eκ j = {
(x, t) ∈ Q

∣
∣ψκ j (Uκ j )(x, t) < ψκ j (s2(Sg))

}
,

ψκ j (s2(Sg)) → ψ(s2(Sg)).

Therefore there exists κ > 0 such that for any κ j < κ̄

ψκ j (s2(Sg)) � ψ(s2(Sg))+ σ,

where σ := γ−ψ(s2(Sg))

4 . Hence

Eκ j ⊆ {
(x, t) ∈ Q

∣
∣ψκ j (Uκ j )(x, t) < ψ(s2(Sg))+ σ

}
(5.5)

for any κ j < κ̄ . On the other hand, since by (3.44) and (4.3)

ψκ j

(
Uκ j

) → ψ(Ur ) in C(Q̄),

there exists κ̃ > 0 such that for any κ j < κ̃ and any (x, t) ∈ Q

ψκ j

(
Uκ j (x, t)

)
� ψ(Ur )(x, t)− σ.

Therefore by (5.5)

Eκ j ⊆ {
(x, t) ∈ Q

∣
∣ψ(Ur )(x, t)− σ < ψ(s2(Sg))+ σ

}
(5.6)

for any κ j < min{κ̄, κ̃}. It is easily checked that for any n >
[ 1

2σ

]

{
(x, t) ∈ Q

∣
∣ψ(Ur )(x, t)− σ < ψ(s2(Sg))+ σ

} ⊆ An . (5.7)

Then by (5.6)–(5.7) the Claim follows. This completes the proof. ��
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Now we can prove Theorem 2.4.

Proof of Theorem 2.4. It follows by Proposition 5.1 that G(Ur ) ∈ C(Q̄). Let us
prove inequalities (2.16), assuming first g = 0 in [0, Sg] for some Sg ∈ (0, ϕ(α))
(steps (i)–(iii)). This assumption will be removed in step (iv).

(i) Let F ⊆ (0, T ), |F | = 0, be the set considered in Proposition 4.10. Fix
any t ∈ (0, T ) \ F and any g ∈ C1([0, ϕ(α)]) such that g′ � 0, g = 0 in [0, Sg]
for some Sg ∈ (0, ϕ(α)). Then g(ϕ(Ur ))(·, t) ∈ C(�̄) ( see Remark 2.1) and there
holds:

supp g(ϕ(Ur )(·, t)) ⊆ {
x ∈ �̄ | ϕ(Ur )(x, t) � Sg

}

⊆ {
x ∈ � |ϕ(Ur )(x, t)> Sg/2

} ⊆ {
x ∈� | ψ(Ur )(x, t)<ψ(s2(Sg/2))

}
(5.8)

(where s2(Sg/2) is the second root of the equation Sg/2 = ϕ(z), Sg ∈ (0, ϕ(α)));
here we have made use of the equality ϕ(Ur ) = 0 on ∂�×(0, T ) and of the proper-
ties of the functions ϕ,ψ . Sinceψ(s2(Sg/2)) < γ , by the continuity ofψ(Ur )(·, t)
in � there exists n ∈ N such that

{
x ∈ � | ψ(Ur )(x, t) < ψ(s2(Sg/2))

} ⊆ At
n . (5.9)

From (5.8)–(5.9) we obtain supp g(ϕ(Ur )(·, t)) ⊆ At
n, thus g(ϕ(Ur ))Urt ∈ L2(�)

by Proposition 4.10.
(ii) Let Vr xx be the function defined in Remark 4.2. Arguing as in (i) above,

using (4.75) and the boundary condition Vr (·, t) = 0 on ∂�, it is similarly seen
that

supp g(Vr (·, t)) ⊆ At
ng

(5.10)

for some ng ∈ N sufficiently large. Then, since Vr ∈ H2(At
n) and [Vr (·, t)]xx =

Vr xx (·, t) almost everywhere in At
n for any n by Proposition 4.10, the function

Fg(x) :=
{

g(Vr (x, t))Vr xx (·, t) for x ∈ At
ng

0 for x ∈ � \ At
ng

belongs to the space L2(�); moreover, a standard calculation shows that for any
η ∈ H1

0 (�)

∫

�

{
g(Vr (x, t)) η′(x) Vr x (x, t)+ η(x) g′(Vr (x, t)) V 2

r x (x, t)
}

dx

= −
∫

�

η(x) g(Vr (x, t)) Vr xx (x, t) dx . (5.11)

(iii) By equalities (4.76) and (5.11) we have
∫

�

[g(ϕ(Ur ))Urt ζ ] (x, t) dx

=
∫

�

{
[
g(ϕ(Ur ))− g(Vr )

] [ψ(Ur )]t

ψ ′(Ur )
ζ

}

(x, t) dx
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+
∫

�

[
g(Vr )Vr xxζ

]
(x, t) dx

=
∫

�

{
[
g(ϕ(Ur ))− g(Vr )

]Vr − ϕ(Ur )

εψ ′(Ur )
ζ

}

(x, t) dx

−
∫

�

[
g′(Vr )(Vr x )

2ζ + g(Vr )Vr xζx
]
(x, t) dx

� −
∫

�

[
g′(Vr )(Vr x )

2ζ + g(Vr )Vr xζx
]
(x, t)dx (5.12)

for any t as above and any ζ ∈ C1([0, T ]; H1
0 (�)), ζ � 0 (where we have made

use of (4.70) and of the assumption g′ � 0).
Observe that the right-hand side of inequality (5.12) belongs to the space

L1(0, T ), since Vr ∈ L2((0, T ); H1
0 (�)) ∩ L∞(Q). Moreover, by Proposition

5.1-(ii) for any ζ ∈ C1([0, T ]; H1
0 (�)) the map

t �−→
∫

�

[
G(Ur ) ζ

]
(x, t) dx =: G(t)

belongs to the space H1(0, T ), with weak derivative

G′(t) =
∫

�

[g(ϕ(Ur ))Urtζ ] (x, t) dx +
∫

�

[
G(Ur ) ζt

]
(x, t) dx .

Integrating the above equality between t1 and t2, with 0 � t1 < t2 � T , we obtain
∫

�

G(Ur )(x, t2)ζ(x, t2) dx −
∫

�

G(Ur )(x, t1)ζ(x, t1) dx

=
∫ t2

t1

∫

�

{g(ϕ(Ur ))Urtζ + G(Ur )ζt } dxdt (5.13)

for any g and ζ as above. Combining (5.12) and (5.13) we obtain inequalities (2.16)
for any smooth, nondecreasing g such that g = 0 in [0, Sg] for some Sg ∈ (0, ϕ(α)).
(iv) Finally, let us remove the auxiliary assumption g = 0 in [0, Sg](Sg ∈
(0, ϕ(α))). To this purpose, fix any g ∈ C1([0, ϕ(α)]), g′ � 0, g(0) = 0. Choose
any sequence {gn} ⊆ C1([0, ϕ(α)]) such that g′

n � 0, gn = 0 in [0, Sn] for some
Sn ∈ (0, ϕ(α)), and

gn → g in C1([0, ϕ(α)]). (5.14)

By the Dominated Convergence Theorem it is easily seen that

gn(ϕ) → g(ϕ) in L1(R), (5.15)
[
Gn(Ur )

]
(·, t) → [

G(Ur )
]
(·, t) in L1(�) (t ∈ [0, T ]), (5.16)

Gn(Ur ) → G(Ur ) in L1(Q). (5.17)

Moreover, we also have:

gn(Vr )Vr x → g(Vr )Vr x in L2(Q), (5.18)

g′
n(Vr ) → g′(Vr ) in L2(Q). (5.19)
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On the other hand, the above steps of the proof ensure that
∫

�

Gn(Ur )(x, t2)ζ(x, t2)dx −
∫

�

Gn(Ur )(x, t1)ζ(x, t1)dx

�
∫ t2

t1

∫

�

[
Gn(Ur )ζt − gn(Vr )Vr xζx − g′

n(Vr )(Vr x )
2ζ

]
dxdt

for any ζ ∈ C1([0, T ]; H1
0 (�)), ζ � 0. In view of (5.15)–(5.19), letting n → ∞

in the above inequality the conclusion follows. ��
Proof of Theorem 2.5. Consider the sequence

{
gn

} ⊆ C1([0, ϕ(α)]), defined as
follows:

gn(s) =
⎧
⎨

⎩

0 if s ∈ [0, 1/2n]
2ns − 1 if s ∈ (1/2n, 1/n)
1 if s ∈ [1/n, ϕ(α)].

Denote by �n the function (2.15) with g = gn , namely

�n(z) :=
∫ z

0
gn(ϕ(s))ds (z ∈ R).

Since �n(Ur ) and ψ(Ur ) are continuous in Q̄, and since ψ(Ur )(·, 0) = ψ(U0r ) in
�̄ (see Definition 2.1-(ii)), we obtain:

[
�n(Ur )

]
(x, 0) = �n(U0r (x))

for almost every x ∈ �. Thus, although gn /∈ C1([0, ϕ(α)]), by standard convolu-
tion arguments, writing the entropy inequalities (2.16) for g = gn and t1 = 0 and
t2 = T gives:

∫∫

Q
[�n(Ur )ζt − gn(Vr )Vr xζx ]dxdt (5.20)

� −
∫

�

[�n(U0r )](x)ζ(x, 0) dx

for any ζ ∈ C1([0, T ]; H1
0 (�)), ζ � 0, ζ(·, T ) = 0 in �.

Since 0 � �n(Ur ) � Ur ,Ur belongs to L1(Q) and �n(Ur ) → Ur almost
everywhere in Q, by the Lebesgue Theorem we obtain

∫∫

Q
�n(Ur )ζt dxdt →

∫∫

Q
Urζt dxdt (5.21)

for any ζ as above. Moreover, there holds

gn(Vr )Vr x =
[∫ Vr

0
gn(s)ds

]

x
, (5.22)

and

‖gn(Vr )Vr x‖L2(Q) � ‖Vr x‖L2(Q).
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Therefore the sequence
{
gn(Vr )Vr x

}
is weakly relatively compact in L2(Q). By

(5.22), since for almost every (x, t) ∈ Q there holds
∫ Vr (x,t)

0
gn(s)ds → Vr (x, t)

as n → ∞, we obtain

gn(Vr )Vr x ⇀ Vr x in L2(Q). (5.23)

Using (5.21) and (5.23), passing to the limit as n → ∞ in (5.20) gives:
∫∫

Q
{Urζt − Vr xζx } dxdt � −

∫

�

U0r (x) ζ(x, 0) dx (5.24)

for any ζ ∈ C1([0, T ]; H1
0 (�)), ζ � 0, ζ(·, T ) = 0 in � (in fact, it can be easily

seen that �n(U0r ) → U0r in L1(�) as n → ∞). Combining (2.5) and (5.24), this
gives

∫ T

0
〈Us(·, t), ζt (·, t)〉� dt � −〈U0s, ζ(·, 0)〉� , (5.25)

for any ζ as above.
Let us prove (2.18), the proof of (2.17) being formally analogous. Fix any

0 < t1 < t2 < T and consider χr ∈ Lip([0, T ]) defined as follows:

χr (t) :=

⎧
⎪⎪⎨

⎪⎪⎩

1
r (t − t1 + r

2 ) if t ∈ (t1 − r
2 , t1 + r

2 )

1 if t ∈ [t1 + r
2 , t2 − r

2 ]
− 1

r (t − t2 − r
2 ) if t ∈ (t2 − r

2 , t2 + r
2 )

0 otherwise,

with r ∈ (0, t2 − t1) such that [t1 − r
2 , t2 + r

2 ] ⊂ (0, T ). For any η ∈ H1
0 (�), η � 0,

choose η(x)χr (t) as test function in inequality (5.25). We obtain:

1

r

∫ t1+ r
2

t1− r
2

〈Us(·, t), η〉� dt � 1

r

∫ t2+ r
2

t2− r
2

〈Us(·, t), η〉� dt.

For almost every 0 < t1 < t2 < T , letting r → 0 in the above inequality gives:

〈Us(·, t1), η〉� � 〈Us(·, t2), η〉�
for any η as above. Then the conclusion follows. ��

6. Proof of Regularity Results

Let us first prove Proposition 2.6.

Proof of Proposition 2.6. We shall distinguish two cases: (α)U0 satisfies (A1), or
(β)U0 satisfies (A2).

(α) In this case U0s ≡ 0,U0 ≡ U0r ∈ L1(�) and ψ(U0) ∈ H1
0 (�). Let us first

prove the following
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Claim Let σ ∈ (0, 1/2]. Then U0 ∈ H1
0 (�).

Clearly, by standard regularization results the above Claim implies the conclu-
sion (if σ ∈ (0, 1/2]). In order to prove this, define for any κ > 0

Ũ0κ(x) := T1/κ(U0(x)), (x ∈ �) (6.1)

where

T1/κ(s) :=
{

s if s ∈ [0, 1/κ),
1/κ if s ∈ [1/κ,∞).

(6.2)

Defining

Lκ(z) := T1/κ (ψ
−1(z)) =

{
ψ−1(z) if z ∈ [0, ψ(1/κ)),
1/κ if z ∈ [ψ(1/κ), γ ],

we also have

Ũ0κ(x) = Lκ
(
ψ(U0)(x)

)
(6.3)

for almost every x ∈ �. Moreover, Lκ is Lipschitz continuous in [0, γ ] and
Lκ(0) = 0 (recall that the function ψ−1 ∈ C1([0, ψ(1/κ)]) since ψ ′ > 0
in R by assumption (H2)-(i)). By standard results on Sobolev functions, since
ψ(U0) ∈ H1

0 (�), equality (6.3) and the above considerations guarantee that
Ũ0κ ∈ H1

0 (�) for any κ > 0, with weak derivative

Ũ0κx =
[
ψ(U0)

]

x

ψ ′(U0)
χEκ , Eκ := {x ∈ � | ψ(U0)(x) < ψ(1/κ)}. (6.4)

Set

zκ(x) := ln
[
1 + Ũ0κ(x)

]
(x ∈ �).

Then zκ ∈ H1
0 (�) for any κ > 0 and

∫

�

|zκx | dx =
∫

�

|Ũ0κx |
1 + Ũ0κ

dx =
∫

Eκ

∣
∣
[
ψ(U0)

]

x

∣
∣ (1 + U0)

σ

ψ ′(U0) (1 + U0)
σ+1 dx

� 1

l1

∫

�

(1 + U0)
σ
∣
∣
[
ψ(U0)

]

x

∣
∣ dx

� 1

l1

(∫

�

(1 + U0)
2σ dx

)1/2 (∫

�

[
ψ(U0)

]2
x dx

)1/2

(6.5)

(where we have made use of assumption (H ′
2)). Since by assumption σ � 1/2,

there holds
∫

�

(1 + U0)
2σ dx �

∫

�

(1 + U0) dx � C. (6.6)

Then from (6.5) we obtain ‖zκx‖L1(�) � C for some C > 0. Since zκ = 0

on ∂�, it follows that the family {zκ} is uniformly bounded in W 1,1
0 (�), thus in
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L∞(�). By the very definition of zκ , we also have ‖Ũ0κ‖L∞(�) � C̄ for some
constant C̄ > 0. Therefore, there exists κ̄ > 0 such that for any κ < κ̄ we have
U0 = Ũ0κ almost everywhere in � (see (6.1)). Since Ũ0κ ∈ H1

0 (�) for any κ , the
above equality implies that U0 ∈ H1

0 (�). This proves the Claim.
Let us now suppose σ > 1/2. In this case we construct a family {Ũ0κ } ⊆ H1

0 (�)

along which the convergences in (H3)-(ii) hold. By standard regularization argu-
ments, this guarantees the existence of a family of smooth functions with the same
properties. Hence the conclusion follows in this case, too.

For any κ > 0 set

Ũ0κ(x) := T1/κθ (U0(x)) (x ∈ �),
where the function T1/κθ is defined by (6.2) with 1/κ replaced by 1/κθ , θ > 0 to

be chosen. Arguing as in the case σ ∈ (0, 1/2] shows that Ũ0κ ∈ H1
0 (�) for any

κ > 0, with weak derivative given by (6.4) where 1/κ is replaced by 1/κθ . Since
Ũ0κ → U0 as κ → 0 almost everywhere in �, and Ũ0κ � U0 ∈ L1(�) for any
κ > 0, there holds

Ũ0κ → U0 in L1(�). (6.7)

Hence
∫

�

U0κ ζ dx → 〈U0, ζ 〉�̄ for any ζ ∈ C(�̄)

namely, condition (a) in (H3)-(ii) follows.
Let us address condition (b) therein. To this purpose, observe that by (6.1), (6.2)

and (6.4) with κ replaced by κθ , there holds
∫

�

[
ψ(Ũ0κ)

]2
x dx =

∫

E
κθ

[
ψ(U0)

]2
x dx �

∫

�

[
ψ(U0)

]2
x dx . (6.8)

Therefore, the family {ψ(Ũ0κ)} is weakly relatively compact in H1
0 (�). Moreover,

by (6.7) for any converging subsequence {ψ(Ũ0κ j )} ⊆ {ψ(Ũ0κ)} there holds

ψ(Ũ0κ j
) ⇀ ψ(U0) in H1

0 (�).

Hence condition (b) follows.
It remains to prove condition (c). To this end, observe that by (6.4) and

assumption (H ′
2)

∥
∥κŨ0κ

∥
∥2

H1
0 (�)

= κ2
∫

E
κθ

[
ψ(U0)

]2
x

[
ψ ′(U0)

]2 dx

� κ2

l2
1

∫

E
κθ

[
ψ(U0)

]2
x (1 + U0)

2σ+2 dx

� κ2

l2
1

(

1 + 1

κθ

)2σ+2 ∫

�

[
ψ(U0)

]2
x dx . (6.9)
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Choosing θ < 1/(σ + 1), from the above inequality we obtain the convergence in
part (c) of (H3)-(ii). This concludes the proof in case (α).

(β) Assume for simplicity that

U0s = δ(· − x0) (x0 ∈ �).
For any κ > 0 set

Iκ := [x0 − κθ , x0 + κθ ],
with θ > 0 to be chosen. Then, since ψ(U0r ) ∈ W 1,∞

0 (�) and ψ(U0r )(x0) = γ

by the condition supp U0s ⊆ S0, there exists L > 0 such that for any x ∈ Iκ

ψ(U0r )(x) � γ − Lκθ . (6.10)

On the other hand, by assumption (H ′
2) we also have

l1σ
−1 − l1σ−1

(1 + s)σ
� ψ(s) � γ − γ

(1 + s)σ

for any s � 0. Hence by inequality (6.10) we obtain for almost every x ∈ Iκ

1 + U0r (x) �
(
γ L−1

)1/σ

κθ/σ
= Cσ κ

−θ/σ . (6.11)

Next, for any κ > 0 and almost every x ∈ � set

Ũ0rκ(x) := TCσ κ−θ/σ−1(U0r (x));

Ũ0sκ(x) :=
⎧
⎨

⎩

κ−2θ
(
x − x0 + κθ

)
if x ∈ [x0 − κθ , x0],

κ−2θ
( − x + x0 + κθ

)
if x ∈ (x0, x0 + κθ ],

0 otherwise;
Ũ0κ(x) := Ũ0rκ(x)+ Ũ0sκ(x)

(θ > 0 to be chosen).
As in the above case (α) we have Ũ0rκ ∈ H1

0 (�) and Ũ0sκ = 0 on ∂�, thus
Ũ0sκ ∈ H1

0 (�), for any κ sufficiently small. Let us show that the family {Ũ0κ}
satisfies the convergences in (H3)-(ii). Arguing as in (6.7), by the definition of the
family {Ũ0sκ } there holds

Ũ0rκ → U0r in L1(�), (6.12)

Ũ0sκ
∗
⇀ δ(· − x0) in M(R) (6.13)

as κ → 0. From (6.12) and (6.13), the convergence in (a) follows.
Concerning (b), observe that since supp Ũ0sκ ⊆ Iκ and Ũ0rκ = Cσ κ−θ/σ − 1

in Iκ (see (6.11)), there holds

[ψ(Ũ0κ)]x (x) =
{
ψ ′(Ũ0rκ(x))Ũ0rκx (x) if x /∈ Iκ ,
ψ ′(Ũ0rκ(x)+ Ũ0sκ(x))Ũ0sκx (x) if x ∈ Iκ .

(6.14)
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Using (6.14) and arguing as in (6.8) we get:
∫

�\Iκ

[
ψ(Ũ0κ)

]2
x dx =

∫

�

[
ψ(Ũ0rκ)

]2
x dx � ‖ψ(U0r )‖2

H1
0 (�)

. (6.15)

On the other hand, by assumption (H ′
2) and (6.14) we have

∫

Iκ

[
ψ(Ũ0κ)

]2
x dx =

∫

Iκ

[
ψ ′(Ũ0κ)

]2
(Ũ0sκx )

2 dx

� 1

κ4θ

∫

Iκ
γ 2σ 2(1 + Ũ0rκ + Ũ0sκ

)−2(σ+1)dx

� 2 γ 2σ 2

κ4θ

∫ x0+κθ

x0

(
Cσ κ

−θ/σ + κ−θ + κ−2θ x0 − κ−2θ x
)−2(σ+1) dx

= 2 γ 2σ 2

(2σ + 1)κ2θ

[
1

(
Cσ κ−θ/σ )2σ+1 − 1

(
Cσ κ−θ/σ + κ−θ )2σ+1

]

� C̃κθ/σ (6.16)

for some C̃ > 0. By (6.15) and (6.16) the family {ψ(Ũ0κ)} is uniformly bounded
in H1

0 (�), hence the convergence (b) follows. To prove (c), observe that by (H ′
2),

arguing as in (6.9) we obtain

κ2
∥
∥Ũ0rκ

∥
∥2

H1
0 (�)

� κ2

l2
1

(
Cσ
κθ/σ

)2σ+2 ∫

�

[
ψ(U0r )

]2
x dx

and

κ2
∥
∥Ũ0sκ

∥
∥2

H1
0 (�)

= κ2
∫

Iκ
(Ũ0sκx )

2 dx = 2κ2−3θ .

Choosing θ < min
{
σ/(σ + 1), 2/3

}
the convergence (c) follows. This completes

the proof. ��
Now we can prove Proposition 2.7.

Proof of Proposition 2.7. (i) ⇒ (ii) Obvious.
(ii) ⇒ (i) The same proof of the Claim in the proof of Proposition 2.6 shows that
U0r = Ũ0κ̄ for some κ̄ > 0, where Ũ0κ := T1/κ (U0r ) (κ > 0; see (6.1)). Hence
U0r ∈ H1

0 (�), and

max
x∈�̄

[
ψ(U0r )

]
(x) = ψ

(
1

κ̄

)

< γ.

Hence

S0 = ∅ ⇒ supp U0s = ∅.
Therefore U0s = 0, thus the conclusion follows. ��
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Let us prove Theorem 2.8.

Proof of Theorem 2.8. Arguing by contradiction, and using the continuity of
ψ(Ur ) in the rectangle Q̄ (see Remark 2.1), let there exist (x0, t0) ∈ Q̄, t0 > 0
such that

ψ(Ur )(x0, t0) = γ

(observe that ψ(Ur )(x, 0) = ψ(U0(x)) < γ for any x ∈ �̄, since U0 ∈ H1
0 (�)).

Observe that by the continuity of ψ(Ur ) in Q̄ and by Definition 2.1, for any ε > 0
there exists t1 ∈ (0, T ) such that

ψ(Ur )(x0, t1) � γ − ε, (6.17)

and

ψ(Ur )(·, t1) ∈ H1
0 (�).

Then the argument used to prove the Claim in the proof of Proposition 2.6 shows
that

Ur (·, t1) = T1/κ̄ (Ur (·, t1)),

where

1

κ̄
= exp

{

l−1
1

(∫

�

(1 + Ur (x, t1))dx

)1/2 (∫

�

[ψ(Ur )]2
x (x, t1)dx

)1/2
}

− 1

� exp
{

l−1
1 ‖1 + U0‖M(�̄) + l−1

1 ‖ψ(Ur )‖L∞(0,T ;H1
0 (�))

}
− 1 =: L̄

(see (6.5)). Hence Ur (·, t1) ≡ ψ−1(ψ(Ur )(·, t1)) ∈ H1
0 (�) and

max
x∈�̄

[
ψ(Ur )(x, t1)

]
� ψ

(
L̄
)
< γ − ε

for any ε > 0 sufficiently small. From the contradiction (see (6.17)) we have
S = ∅—hence Us = 0 in M(Q̄) by (2.4)—and claim (ii) follows. Claim (i) is a
consequence of (2.19), since

‖U‖L∞(Q) � ψ−1(γ ∗) < ∞.

Concerning (iii) observe that, since ψ(U ) = ψ(Ur ) ∈ L∞((0, T ); H1
0 (�)) (see

Definition 2.1) and ψ ′ is strictly positive on every bounded subset of R,

‖U (·, t)‖L∞((0,T );H1
0 (�))

=
∥
∥
∥ψ

−1 {[ψ(U )
]
(·, t)

}∥∥
∥

L∞((0,T );H1
0 (�))

� 1

mins∈[0,ψ−1(γ ∗)] ψ ′(s)
∥
∥
[
ψ(U )

]
(·, t)

∥
∥

L∞((0,T );H1
0 (�))

� C.

Since U ∈ L∞(Q) and
[
ψ(U )

]

t ∈ L2((0, T ); H1
0 (�)), it is similarly seen that

Ut ∈ L2((0, T ); H1
0 (�)). This completes the proof. ��
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Let us finally mention the following result. The proof is analogous to that of
Theorem 2.1 and Proposition 4.1, thus we omit it.

Proposition 6.1. Let μ ∈ M+(�̄) and ψ ∈ C∞(R) satisfy assumption (H2). Let
there exists a family {μκ } ⊆ C∞

c (�), μκ � 0(κ > 0), such that as κ → 0

ψ(μκ) ⇀ ψ(μr ) in H1
0 (�), (6.18)

∫

�

μκ(x)ζ(x) dx → 〈μ, ζ 〉�̄ (6.19)

for any ζ ∈ C(�̄). Then:

(i) ψ(μr ) ∈ H1
0 (�);

(ii) the set Sμ := {
x ∈ �̄ | [

ψ(μr )
]
(x) = γ

}
is closed and has zero

Lebesgue measure;
(iii) supp μs ⊆ Sμ;
(iv) μr ∈ C(�̄ \ Sμ).
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