
Digital Object Identifier (DOI) 10.1007/s00205-011-0469-0
Arch. Rational Mech. Anal. 203 (2012) 1009–1036

Convergence Rates in L2 for Elliptic
Homogenization Problems

Carlos E. Kenig, Fanghua Lin & Zhongwei Shen

Communicated by The Editors

Abstract

We study rates of convergence of solutions in L2 and H1/2 for a family of
elliptic systems {Lε} with rapidly oscillating coefficients in Lipschitz domains
with Dirichlet or Neumann boundary conditions. As a consequence, we obtain
convergence rates for Dirichlet, Neumann, and Steklov eigenvalues of {Lε}. Most
of our results, which rely on the recently established uniform estimates for the L2

Dirichlet and Neumann problems in Kenig and Shen (Math Ann 350:867–917,
2011; Commun Pure Appl Math 64:1–44, 2011) are new even for smooth domains.

1. Introduction

Let uε ∈ H1(�) be the weak solution of Lε(uε) = F in � subject to the
Dirichlet condition uε = f on ∂�, where F ∈ L2(�), f ∈ H1/2(∂�) and Lε =
−div

[
A(x/ε)∇]

. Assuming that the coefficient matrix A(y) is elliptic and peri-
odic, it is well known that uε → u0 weakly in H1(�) and strongly in L2(�),
where u0 ∈ H1(�) is the weak solution of the homogenized system L0(u0) = F
in� and u0 = f on ∂� (see for example [4]). The same holds under the Neumann
boundary conditions ∂uε

∂νε
= ∂u0

∂ν0
= g ∈ H−1/2(∂�) with <g, 1> = − ∫

�
F , if

one also requires
∫
�

uε = ∫
�

u0 = 0. The primary purpose of this paper is to
study the rate of convergence of ‖uε − u0‖L2(�), as ε → 0, in a bounded Lipschitz
domain � ⊂ R

d . As a consequence, we obtain convergence rates for Dirichlet,
Neumann, and Steklov eigenvalues of Lε. Most of our results, which rely on the
recently established uniform regularity estimates for the L2 Dirichlet and Neumann
problems in [14,15], are new even for smooth domains.
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was supported in part by NSF grant DMS-0700517. Zhongwei Shen was supported in part
by NSF grant DMS-0855294.
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More precisely, we consider a family of elliptic systems in divergence form,

Lε = − ∂

∂xi

[
aαβi j

( x

ε

) ∂

∂x j

]
, ε > 0. (1.1)

We will assume that A(y) = (aαβi j (y)), 1 � i, j � d, 1 � α, β � m is real and
satisfies the ellipticity condition,

μ|ξ |2 � aαβi j (y)ξ
α
i ξ

β
j � 1

μ
|ξ |2 for y ∈ R

d and ξ = (ξαi ) ∈ R
dm, (1.2)

where μ > 0, and the periodicity condition

A(y + z) = A(y) for y ∈ R
d and z ∈ Z

d . (1.3)

We shall also impose the smoothness condition,

|A(x)− A(y)| � τ |x − y|λ for some λ ∈ (0, 1) and τ � 0, (1.4)

and the symmetry condition A = A∗, that is, aαβi j (y) = aβαj i (y) for 1 � i, j � d
and 1 � α, β � m. We say A ∈ �(μ, λ, τ) if it satisfies conditions (1.2), (1.3)

and (1.4).
The following are the main results of the paper.

Theorem 1.1. (Dirichlet condition) Let � be a bounded Lipschitz domain,
A ∈ �(μ, λ, τ) and A∗ = A. Given F ∈ L2(�) and f ∈ H1(∂�), let
uε ∈ H1(�), ε � 0 be the unique weak solution of the Dirichlet problem:
Lε(uε) = F in � and uε = f on ∂�. Then for 0 < ε < (1/2),

‖uε − u0‖L2(�) + ‖M(uε − u0)‖L2(∂�) � C ε‖u0‖H2(�) (1.5)

if u0 ∈ H2(�), and

‖uε − u0‖L2(�) � Cσ ε| ln(ε)| 1
2 +σ {‖F‖L2(�) + ‖ f ‖H1(∂�)

}
,

‖M(uε − u0)‖L2(∂�) � Cσ ε| ln(ε)| 3
2 +σ {‖F‖L2(�) + ‖ f ‖H1(∂�)

} (1.6)

for any σ > 0.

Theorem 1.2. (Neumann condition) Let � be a bounded Lipschitz domain,
A ∈ �(μ, λ, τ) and A∗ = A. Given F ∈ L2(�) and g ∈ L2(∂�) with∫
�

F + ∫
∂�

g = 0, let uε ∈ H1(�), ε � 0 be the unique weak solution of the

Neumann problem: Lε(uε) = F in �, ∂uε
∂νε

= g on ∂� and
∫
�

uε = 0. Then for

0 < ε < (1/2), estimate (1.5) holds if u0 ∈ H2(�), and

‖uε − u0‖L2(�) + ‖uε − u0‖L2(∂�) � Cσ ε| ln(ε)| 1
2 +σ {‖F‖L2(�) + ‖g‖L2(∂�)

}
,

‖M(uε − u0)‖L2(∂�) � Cσ ε| ln(ε)| 3
2 +σ {‖F‖L2(�) + ‖g‖L2(∂�)

}

(1.7)

for any σ > 0.
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Here and thereafter M denotes the radial maximal operator (see Section 2 for
its definition). Note that estimates of M(uε − u0) in L2(∂�) in Theorems 1.1–1.2
imply, in particular, the convergence of uε to u0 in L2(S) uniformly for any “par-
allel boundary” S of �. Also observe that in the case F = 0, estimates (1.6)–(1.7)
give

‖uε − u0‖L2(�) � Cσ ε| ln(ε)| 1
2 +σ‖u0‖H1(∂�), (1.8)

for any σ > 0. The estimate of uε−u0 in L2(�) by u0 and its first-order derivatives
is a natural question in the theory of homogenization (see [10] for a two-dimensional
result). It is not known whether the logarithmic factor in (1.8) is necessary, even
for smooth domains.

We now describe the existing results on L2 convergence and our approach to
Theorems 1.1–1.2. For the scalar equation (m = 1) with the Dirichlet condition, it
is known that

‖uε − u0‖L2(�) � Cε
{
‖∇2u0‖L2(�) + ‖∇u0‖L∞(∂�)

}
(1.9)

holds without any smoothness or symmetry condition on A(y) or smoothness of�.
To see this, one considers

wε(x) = uε(x)− u0(x)− εχ(x/ε)∇u0(x) in �, (1.10)

whereχ(y) is the matrix of correctors for Lε. Letwε(x) = θε(x)+zε(x), where θε is
the solution to the Dirichlet problem: Lε(θε) = 0 in� and θε = −εχ(x/ε)∇u0 on
∂�. It follows from the energy estimates that ‖zε‖H1

0 (�)
� Cε‖∇2u0‖L2(�) (see

[4,12,19] or Remark 3.7 below). This, together with the estimate ‖θε‖L∞(�) �
Cε‖∇u0‖L∞(∂�) obtained by the maximum principle, gives (1.9). For more recent
work on error estimates for scalar equations with the Dirichlet condition uε=u0 =0
on ∂�, we refer the reader to [5,8,9,21]. In particular, it was proved by Griso in
[9] that ‖uε − u0‖L2(�) � Cε‖F‖L2(�), where uε ∈ H1

0 (�) and Lε(uε) = F in a
C1,1 domain �.

For elliptic systems in a C1,α domain with A ∈ �(μ, λ, τ), the uni-
form estimates in [1,2] for the L2 Dirichlet problem imply ‖θε‖L2(�) �
Cε‖∇u0‖L2(∂�) � Cε‖u0‖H2(�). It follows that

‖uε − u0‖L2(�) � ‖zε‖L2(�) + ‖θε‖L2(�) + Cε‖∇u0‖L2(�) � Cε‖u0‖H2(�),

as noted in [19]. Using the recently established uniform L2 estimates in [15], in
the presence of symmetry (A = A∗), we extend this result to the case of Lipschitz
domains in Section 3, where we in fact prove that

‖M(wε)‖L2(∂�) + ‖wε‖H1/2(�) +
{∫

�

|∇wε(x)|2 δ(x) dx

}1/2

� C ε‖u0‖H2(�),

(1.11)

where δ(x) = dist(x, ∂�) (see Theorem 3.4), and deduce (1.5) as a simple corollary
of (1.11).
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The proof of (1.6) is more involved than that of (1.5). Note that with boundary
data f ∈ H1(∂�), one cannot expect u0 ∈ H2(�). Furthermore, if� is Lipschitz,
u0 may not be in H2(�) even if F and f are smooth (it is known that u0 ∈ H3/2(�)

[11]). To circumvent this difficulty, our basic idea is to replace u0 in (1.10) by a
solution vε to the Dirichlet problem for L0 in a slightly larger domain: L0(vε) = F̃
in �ε and vε = fε on ∂�ε, where �ε is a Lipschitz domain such that �ε ⊃ � and
dist(∂�ε, ∂�) ≈ ε. Also, F̃ an extension of F and fε(Q) = f (�−1

ε (Q)), where
�ε : ∂� → ∂�ε is bi-Lipschitz map. Let w̃ε = uε − vε − εχ(x/ε)∇vε = z̃ε + θ̃ε,
where θ̃ε solves

{
Lε(θ̃ε) = 0 in �,

θ̃ε = f − vε − εχ(x/ε)∇vε on ∂�.
(1.12)

The desired estimates of θ̃ε follow from the estimates for the L2 Dirichlet problem
in [15]. To handle z̃ε, one observes that Lε(̃zε) = ε div(hε) in� and z̃ε = 0 in ∂�,
where |hε| � C |∇2vε| in �. Using weighted norm inequalities for singular inte-
grals, we are able to bound ‖̃zε‖L2(�) and ‖M(̃zε)‖L2(∂�) as well as ‖̃zε‖H1/2(�)

by

Cε

{∫

�

|∇2vε(x)|2δ(x)φa(δ(x)) dx

}1/2

�Cε| ln(ε)| a
2
{‖F‖L2(�)+‖ f ‖H1(∂�)

}
,

for suitable choices of a’s, where φa(t) = {
ln( 1

t + ea)
}a

. See Section 4 for details.
Very few results are known for the convergence rates in the case of the Neumann

boundary conditions. By multiplying by a cut-off function the third term in the right-
hand side of (1.10), one may obtain an O(

√
ε) estimate of ‖uε−u0‖L2(�), regardless

of the boundary condition [4,12]. As far as we know, the only other known results
are contained in [9,20], both of which deal with the scalar equation Lε(uε) = F in
� with ∂uε

∂νε
= 0 on ∂�. In particular, the estimate ‖uε − u0‖L2(�) � Cε‖F‖H2(�)

was proved in [20] for curvilinear convex polygons � in R
2, and in [9] for C1,1

domains with no smoothness condition on A(y). In Section 5 we prove estimate
(1.5) in bounded Lipschitz domains in R

d , d � 2 for the Neumann boundary con-
ditions. The proof uses an explicit computation of the conormal derivative ∂wε

∂νε
on

∂� and relies on the uniform estimates for the L2 Neumann problem in [14,15].
The proof of estimate (1.7), which is given in Section 6 and also uses estimates for
the L2 Neumann problem in [14,15], is similar to that of (1.6). It is interesting to
point out that in this case the function vε, which replaces u0 in (1.10), is a solution
to the Dirichlet problem for L0 in�ε, with boundary data given by a push-forward
of u0|∂�.

By a spectral theorem on collectively compact operators [12,22], the L2 error
estimates of uε − u0 in Theorems 1.1–1.2 lead to error estimates for eigenvalues
of {Lε}. For ε � 0, let {μk

ε} denote the sequence of Neumann eigenvalues in an
increasing order of {Lε} in�. We will show in Section 7 that |μk

ε−μk
0| � Ck ε if�

is C1,1 (or convex in the case m = 1), and |μk
ε − μk

0| � Ck,σ ε| ln(ε)| 1
2 +σ for any

σ > 0 if � is Lipschitz. The same holds for Dirichlet and Steklov eigenvalues. To
the best of the authors’ knowledge, only results for Dirichlet eigenvalues in smooth
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domains [12,19] and Neumann eigenvalues in a two-dimensional curvilinear con-
vex polygon [20] were previously known (see [16,17,23,24] for related homoge-
nized eigenvalue problems).

Finally, in Section 8, we prove several weighted L2 potential estimates, which
are used in earlier sections, for the operators {Lε}. Our proofs use asymptotic esti-
mates of the fundamental solutions for Lε in [3] as well as some classical results
from harmonic analysis.

The summation convention is used throughout this paper. Unless otherwise
stated, we always assume that A ∈ �(μ, λ, τ), A∗ = A, and � is a bounded
Lipschitz domain in R

d , d � 2. Without loss of generality we will also assume
that diam(�) = 1. We will use C and c to denote positive constants that depend at
most on d, m, μ, λ, τ and the Lipschitz character of �.

2. Uniform Regularity Estimates

In this section we recall several uniform regularity estimates for {Lε}, on which
the proofs of our main results rely. We also give definitions of the non-tangential
maximal function and radial maximal operator M.

Let uε be a weak solution of Lε(uε) = 0 in �. Then if B(x, 2r) ⊂ �,

|∇uε(x)| � C

rd+1

∫

B(x,r)
|uε(y)| dy. (2.1)

This uniform gradient estimate was proved in [1] (the symmetry condition A∗ = A
is not needed for this). Let �ε(x, y) = (

�
αβ
ε (x, y)

)
denote the fundamental solu-

tion matrix for Lε in R
d , with pole at y. It follows from the gradient estimate (2.1)

that |�ε(x, y)| � C |x − y|2−d , |∇x�ε(x, y)| + |∇y�ε(x, y)| � C |x − y|1−d and
|∇x∇y�ε(x, y)| � C |x − y|−d (see [3]).

For a function u in a bounded Lipschitz domain�, the non-tangential maximal
function (u)∗ on ∂� is defined by

(u)∗(Q) = sup
{|u(x)| : x ∈ � and |x − Q| < C0 dist(x, ∂�)

}
, (2.2)

where C0, depending on d and the Lipschitz character of �, is sufficiently large.

Theorem 2.1. Let f ∈ L2(∂�) and uε be the unique solution of the L2 Dirichlet
problem: Lε(uε) = 0 in �, uε = f non-tangentially on ∂� and (uε)∗ ∈ L2(∂�).
Then

‖(uε)∗‖L2(∂�) + ‖uε‖H1/2(�) +
{∫

�

|∇uε(x)|2 δ(x) dx

}1/2

� C‖ f ‖L2(∂�),

(2.3)

where δ(x) = dist(x, ∂�). Furthermore, if f ∈ H1(∂�), the solution satisfies the
estimate ‖(∇uε)∗‖L2(∂�) � C‖ f ‖H1(∂�).
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Proof. The non-tangential maximal function estimate ‖(uε)∗‖L2(∂�) � ‖ f ‖L2(∂�)

in Lipschitz domains was proved in B. Dahlberg (1990, personal communication)
for m = 1 and in [15] for m � 1. In the case of smooth domains, the estimate was
obtained earlier in [1,2]. The proof of ‖(∇uε)∗‖L2(∂�) � C‖ f ‖H1(∂�) may be
found in [14] for m = 1 and in [15] for m � 1.

It was also proved in [15] that the solution of the Dirichlet problem with bound-
ary data f in L2(∂�) is given by a double layer potential Dε(gε), where the density
gε satisfies ‖gε‖L2(∂�) � C‖ f ‖L2(∂�). This, together with Proposition 8.5, gives
the square function estimate in (2.3),

{∫

�

|∇uε(x)|2 δ(x) dx

}1/2

� C‖gε‖L2(∂�) � C‖ f ‖L2(∂�).

Finally, the estimate ‖uε‖H1/2(�) � C‖ f ‖L2(∂�) follows from the square function
estimate by real interpolation (see for example [11, pp. 181–182]). �

The next theorem was proved in [15] (the case m = 1 was obtained in [14]).
We refer the reader to [13–15] for references on L p boundary value problems in
Lipschitz domains in non-homogenized settings.

Theorem 2.2. Let g ∈ L2(∂�) with
∫
∂�

g = 0. Let uε ∈ H1(�) be the unique (up
to an additive constant) weak solution of the L2 Neumann problem: Lε(uε) = 0 in
�, ∂uε

∂νε
= g on ∂�. Then ‖(∇uε)∗‖L2(∂�) � C‖g‖L2(∂�).

The radial maximal operator. Given a bounded Lipschitz domain �, one may
construct a continuous family {�t ,−c < t < c} of Lipschitz domains with uni-
form Lipschitz characters such that �0 = � and �t ⊂ �s for t < s. We may
further assume that there exist homeomorphisms �t : ∂� → ∂�t such that
�0(Q) = Q, |�t (Q) − �s(P)| ∼ |t − s| + |P − Q| and |�s(Q) − �t (Q)| �
C0dist(�s(Q), ∂�t ) for any t < s (see for example [26]). For a function u in �,
the radial maximal function M(u) on ∂� is defined by

M(u)(Q) = sup
{|u(�t (Q))| : −c < t < 0

}
. (2.4)

Observe that M(u)(Q) � (u)∗(Q) and if S ⊂ � is a surface near ∂� and
obtained from ∂� by a bi-Lipschitz map, then ‖u‖L2(S) � C‖M(u)‖L2(∂�).
Also, note that ‖u‖L2(�) + ‖M(u)‖L2(∂�) � C‖(u)∗‖L2(∂�), and the converse
holds if u satisfies the interior L∞ estimate ‖u‖L∞(B) � C |2B|−1‖u‖L1(2B)
for any 2B ⊂ �. In particular, if Lε(uε) = 0 in �, then ‖(uε)∗‖L2(∂�) ≈
‖uε‖L2(�) + ‖M(uε)‖L2(∂�).

3. Homogenization of Elliptic Systems

Let Lε = −div(A(x/ε)∇) with A(y) satisfying (1.2)–(1.3). The matrix of
correctors χ(y) = (χ

αβ
j (y)) for {Lε} is defined by the following cell problem:
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂

∂yi

[
aαβi j + aαγik

∂

∂yk

(
χ
γβ

j

)]
= 0 in R

d , α = 1, . . . ,m,

χ
αβ
j (y) is periodic with respect to Z

d ,
∫

Y
χ
αβ
j dy = 0,

(3.1)

for each 1 � j � d and 1 � β � m, where Y = [0, 1)d � R
d/Zd . The homoge-

nized operator is given by L0 = −div( Â∇), where Â = (âαβi j ) and

âαβi j =
∫

Y

[
aαβi j + aαγik

∂

∂yk

(
χ
γβ

j

)]
dy (3.2)

(see [4]).

Lemma 3.1. Let F = (F1, . . . , Fd) ∈ L2(Y ). Suppose that
∫

Y Fj dy = 0 and

div(F) = 0. Then there exist wi j ∈ H1(Y ) such that wi j = −w j i and Fj = ∂wi j
∂yi

.

Proof. Let f j ∈ H2(Y ) be the solution to the cell problem: � f j = Fj in Y, f j is
periodic with respect to Z

d and
∫

Y f j dy = 0. Since div(F) = 0, we may deduce

that ∂ fi
∂yi

is constant. From this it is easy to see that

wi j = ∂ f j

∂yi
− ∂ fi

∂y j

has the desired properties. �
Let

�
αβ
i j (y) = âαβi j − aαβi j (y)− aαγik (y)

∂

∂yk

(
χ
γβ

j

)
. (3.3)

It follows from (3.2) and (3.1) that
∫

Y
�
αβ
i j dy = 0 and

∂

∂yi

(
�
αβ
i j

) = 0 in R
d.

Hence we may apply Lemma 3.1 to �
αβ
i j (y) (with α, β, j fixed). This gives

�
αβ
ki j ∈ H1(Y ), where 1 � i, j, k � d and 1 � α, β � m, with the property

that

�
αβ
i j = ∂

∂yk

{
�
αβ
ki j

}
and �

αβ
ki j = −�αβik j . (3.4)

Furthermore, it follows from the proof of Lemma 3.1 that if χ ∈ W 1,p(Y ) for some
p > d or χ is Hölder continuous, then � ∈ L∞(Y ).

The next lemma is more or less known (see for example [12, Chapter 1] for the
case m = 1 and vε = u0). We provide the proof for the sake of completeness.
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Lemma 3.2. Let uαε ∈ H1(�), vαε ∈ H2(�) and

wαε (x) = uαε (x)− vαε (x)− εχ
αβ
k (x/ε)

∂v
β
ε

∂xk
, (3.5)

where 1 � α � m. Suppose that Lε(uε) = L0(vε) in �. Then

(Lε(wε)
)α = ε

∂

∂xi

{
bαγi jk

(
x/ε)

∂2v
γ
ε

∂x j∂xk

}
, (3.6)

where

bαγi jk(y) = �
αγ

j ik(y)+ aαβi j (y)χ
βγ

k (y) (3.7)

and �αγj ik(y) is given in (3.4).

Proof. It follows from the assumption Lε(uε) = L0(vε) that

(Lε(wε)
)α = − ∂

∂xi

{
[
âαβi j − aαβi j (x/ε)

]∂vβε
∂x j

}

+ ∂

∂xi

{
aαβi j (x/ε)

∂

∂x j

[
χ
βγ

k (x/ε)
]

× ∂v
γ
ε

∂xk

}
+ ε

∂

∂xi

{
aαβi j (x/ε)χ

βγ

k (x/ε)
∂2v

γ
ε

∂x j∂xk

}

= − ∂

∂xi

{
�
αγ

ik (x/ε)
∂v
γ
ε

∂xk

}
+ ε

∂

∂xi

{
aαβi j (x/ε)χ

βγ

k (x/ε)
∂2v

γ
ε

∂x j∂xk

}
,

where the periodic function �αγik (y) is given by (3.3). Using the first equation in
(3.4), we obtain

(Lε(wε)
)α = −ε ∂2

∂xi∂x j

{
�
αγ

j ik(x/ε)
∂v
γ
ε

∂xk

}

+ε ∂
∂xi

{(
�
αγ

j ik(x/ε)+ aαβi j (x/ε)χ
βγ

k (x/ε)
) ∂2v

γ
ε

∂x j∂xk

}
. (3.8)

By the second equation in (3.4), the first term in the right-hand side of (3.8) is zero.
This gives the equation (3.6). �
Remark 3.3. Under the assumption A ∈ �(μ, λ, τ), it is known that ∇χ is
Hölder continuous. This implies that ∇�αβi jk is Hölder continuous. In particular,

�
αβ
i jk, bαγi jk ∈ L∞(Y ). Furthermore, ‖�αβi jk‖∞ + ‖bαβi jk‖∞ is bounded by a constant

depending only on m, d, μ, λ and τ . Note that in the scalar case (m = 1), the
correctors χk are Hölder continuous by the De Giorgi-Nash estimate. This implies
that �i jk, bi jk are bounded.

Fix F ∈ L2(�) and f ∈ H1/2(∂�). Let uε, u0 ∈ H1(�) solve
{Lε(uε) = F in �,

uε = f on ∂�,
and

{L0(u0) = F in �,
u0 = f on ∂�,

(3.9)

respectively.
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Theorem 3.4. Let� be a bounded Lipschitz domain. Suppose that A ∈ �(μ, λ, τ)
and A∗ = A. Assume further that u0 ∈ H2(�). Then

‖M(wε)‖L2(∂�) + ‖wε‖H1/2(�) +
{∫

�

|∇wε(x)|2δ(x) dx

}1/2

� Cε‖u0‖H2(�),

(3.10)

where wαε (x) = uαε (x)− uα0 (x)− εχ
αβ
k (x/ε)

∂uβ0
∂xk

and δ(x) = dist(x, ∂�).

Observe that

‖uε − u0‖L2(�) + ‖M(uε − u0)‖L2(∂�)

� ‖wε‖L2(�) + ‖M(wε)‖L2(∂�) + Cε
{‖∇u0‖L2(�) + ‖M(∇u0)‖L2(∂�)

}

� ‖wε‖L2(�) + ‖M(wε)‖L2(∂�) + Cε‖u0‖H2(�), (3.11)

where we have used the fact that ‖M(∇u0)‖L2(∂�) � C‖u0‖H2(�), which follows
from the estimate (8.15).

As a corollary of Theorem 3.4, we obtain the following.

Corollary 3.5. Under the same assumptions as in Theorem 3.4, we have

‖uε − u0‖L2(�) + ‖M(uε − u0)‖L2(∂�) � Cε‖u0‖H2(�). (3.12)

Proof of Theorem 3.4. We first observe that by (3.6), wε satisfies
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{Lε(wε)
}α = ε

∂

∂xi

{

bαγi jk(x/ε)
∂2uγ0
∂x j∂xk

}

in �,

wαε = −εχαβk (x/ε)
∂uβ0
∂xk

on ∂�.

(3.13)

Let w = θε + zε, where
⎧
⎪⎨

⎪⎩

{Lε(θε)
}α = 0 in �,

θαε = −εχαβk (x/ε)
∂uβ0
∂xk

on ∂�,
(3.14)

and
⎧
⎪⎪⎨

⎪⎪⎩

{Lε(zε)
}α = ε

∂

∂xi

{

bαγi jk(x/ε)
∂2uγ0
∂x j∂xk

}

in �,

zε ∈ H1
0 (�).

(3.15)

To estimate θε, we apply Theorem 2.1 to obtain

‖M(θε)‖L2(∂�) + ‖θε‖H1/2(�) +
{∫

�

|∇θε(x)|2δ(x) dx

}1/2

� Cε‖∇u0‖L2(∂�).

(3.16)
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Since bαγi jk ∈ L∞(Y ), by the usual energy estimates, we have ‖zε‖H1
0 (�)

�
Cε‖∇2u0‖L2(�). Thus,

‖M(zε)‖L2(∂�) + ‖zε‖H1/2(�) +
{∫

�

|∇zε(x)|2δ(x) dx

}1/2

� Cε‖∇2u0‖L2(�).

(3.17)

Since ‖∇u0‖L2(∂�) � C‖u0‖H2(�), the desired estimate (3.10) follows from (3.16)
and (3.17). This completes the proof of Theorem 3.4. �
Remark 3.6. Let� be a C1,α domain in R

d . As we mentioned in the Introduction,
the estimate‖uε−u0‖L2(�) � C ε‖u0‖H2(�)was proved in [19], using the estimates
for the L2 Dirichlet problem in [1,2]. Let θε and zε be given by (3.14) and (3.15)
respectively. It follows from [1, Theorem 3] that ‖θε‖L∞(�) � Cε‖∇u0‖L∞(∂�).
In view of (3.15) we have

|zε(x)| � C ε
∫

�

|∇yGε(x, y)| |∇2u0(y)| dy, (3.18)

where Gε(x, y) denotes the Green function for Lε in �. By [1] we have
|∇yGε(x, y)| � C |x − y|1−d . It follows from (3.18) and Hölder inequality that
‖zε‖L∞(�) � C p ε‖∇2u0‖L p(�) for any p > d. This gives

‖uε − u0‖L∞(�) � C p ε‖u0‖W 2,p(�) for any p > d, (3.19)

where we also used the Sobolev imbedding ‖∇u0‖C(�) � C p‖u0‖W 2,p(�) for
p > d.

Remark 3.7. For scalar equations (m = 1) with bounded measurable coefficients,
since bi jk ∈ L∞(Y ), the estimate ‖zε‖H1

0 (�)
� Cε‖∇2u0‖L2(�) continues to hold.

This, together with ‖θε‖L∞(�) � Cε‖θε‖L∞(∂�) obtained by the maximum princi-
ple, gives the estimate (1.9).

4. Dirichlet Boundary Condition

Let � be a bounded Lipschitz domain. Let �ε ⊃ � and �ε : ∂� → ∂�ε be
defined as in Section 2. Given f ∈ H1(∂�) and F ∈ L2(�), let vε ∈ H1(�ε) be
the weak solution of

{L0(vε) = F̃ in �ε,
vε = fε on ∂�ε,

(4.1)

where F̃ = F in � and zero otherwise, and fε(Q) = f (�−1
ε (Q)) for Q ∈ ∂�ε.

The goal of this section is to prove the following.
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Theorem 4.1. Let� be a bounded Lipschitz domain. Suppose that A ∈ �(μ, λ, τ)
and A∗ = A. Let

wαε (x) = uαε (x)− uα0 (x)− εχ
αβ
k (x/ε)

∂v
β
ε

∂xk
, (4.2)

where vε is given by (4.1). Then, if 0 < ε < (1/2),

‖wε‖L2(�) � Cε| ln(ε)|a {‖F‖L2(�) + ‖ f ‖H1(∂�)

}
, for any a > 1/2, (4.3)

‖M(wε)‖L2(∂�) � Cε| ln(ε)|a {‖F‖L2(�) + ‖ f ‖H1(∂�)

}
, for any a > 3/2,

(4.4)

and

‖wε‖H1/2(�)+
{∫

�

|∇wε(x)|2δ(x) dx

}1/2

�Cε| ln ε| {‖F‖L2(�)+‖ f ‖H1(∂�)

}
,

(4.5)

where C depends only on μ, λ, τ, d, m, a and �.

As a corollary, we obtain the following convergence rates of uε to u0 in L2.

Corollary 4.2. Under the same conditions as in Theorem 4.1, we have

‖uε − u0‖L2(�) � Cε| ln(ε)| 1
2 +σ {‖F‖L2(�) + ‖ f ‖H1(∂�)

}
, (4.6)

‖M(uε − u0)‖L2(∂�) � Cε| ln ε| 3
2 +σ {‖F‖L2(�) + ‖ f ‖H1(∂�)

}
, (4.7)

for any σ > 0.

Without loss of generality we shall assume that ‖F‖L2(�) + ‖ f ‖H1(∂�) = 1 in
the rest of this section. We begin with an estimate on ∇vε.
Lemma 4.3. Let vε be defined by (4.1). Then

‖Mε(∇vε)‖L2(∂�ε)
+ ‖∇vε‖H1/2(�ε)

+
{∫

�ε

|∇2vε(x)|2δε(x) dx

}1/2

� C,

where δε(x) = dist(x, ∂�ε) and Mε(vε)(�ε(Q)) = sup
{|vε(�s(Q))| : −c <

t < ε}.
Proof. Let G = �0 ∗ F̃ in R

d , where �0(x) is the matrix of fundamental solutions
for the operator L0, with pole at the origin. Clearly, ‖G‖H2(Rd ) � C‖F‖L2(�).
This implies that ‖Mε(∇G)‖L2(∂�ε)

+ ‖G‖H1(∂�ε)
� C‖F‖L2(�).

Next, we note that L0(vε−G) = 0 in�ε and vε−G = fε−G on ∂�ε. Hence,
by Theorem 2.1 (see [7] for operators with constant coefficients),

‖(∇(vε−G))∗‖L2(∂�ε)
+‖∇(vε − G)‖H1/2(�ε)

+
{∫

�ε

|∇2(vε − G)|2δε(x) dx

}1/2

� C‖ fε − G‖H1(∂�ε)
� C.
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It follows that

‖Mε(∇vε)‖L2(∂�ε)
+ ‖∇vε‖H1/2(�ε)

+
{∫

�ε

|∇2vε(x)|2δε(x) dx

}1/2

� C + ‖Mε(∇G)‖L2(∂�ε)
+ ‖∇G‖H1/2(�ε)

+
{∫

�ε

|∇2G(x)|2δε(x) dx

}1/2

� C.

Remark 4.4. By Lemma 4.3 we have ‖∇vε‖L2(�) + ‖M(∇vε)‖L2(∂�) � C . It
follows that

‖uε − u0‖L2(�) � ‖wε‖L2(�) + Cε,

‖M(uε − u0)‖L2(∂�) � ‖M(wε)‖L2(∂�) + Cε.
(4.8)

This, together with Theorem 4.1, gives the estimates in Corollary 4.2.

Lemma 4.5. Let fε(Q) = f (�−1
ε (Q)) and vε be defined by (4.1). Then

‖ f − vε‖L2(∂�) � Cε and

‖(vε − u0)
∗‖L2(∂�) + ‖vε − u0‖H1/2(�) +

{∫

�

|∇(vε − u0)|2δ(x) dx

}1/2

� Cε.

Proof. Note that for Q ∈ ∂�,
| f (Q)− vε(Q)| = |vε(�ε(Q))− vε(Q)| � CεMε(∇vε)(�ε(Q)).

This gives ‖ f −vε‖L2(∂�) � Cε‖Mε(∇vε)‖L2(∂�ε)
� Cε, where the last inequal-

ity follows from Lemma 4.3. Since L0(vε − u0) = 0 in � and vε − u0 = vε − f
on ∂�, we may apply Theorem 2.1 (for the case of constant coefficients) to obtain

‖(vε − u0)
∗‖L2(∂�) + ‖vε − u0‖H1/2(�) +

{∫

�

|∇(vε − u0)|2δ(x) dx

}1/2

� C‖vε − f ‖L2(∂�) � Cε.

This completes the proof. �
Let φa(t) = {

ln( 1
t + ea)

}a
.

Lemma 4.6. Let Wε ∈ H1(�) be a solution of Lε(Wε) = div(h) in� and Wε = g
on ∂� for some h ∈ L2(�) and g ∈ H1(∂�). Then

‖Wε‖L2(�) � C‖g‖L2(∂�) + Ca

{∫

�

|h(x)|2δ(x)φa(δ(x)) dx

}1/2

for any a > 1,

(4.9)
{∫

�

|∇Wε(x)|2δ(x) dx

}1/2

�C‖g‖L2(∂�) + C

{∫

�

|h(x)|2δ(x)φ2(δ(x)) dx

}1/2

,

(4.10)
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and

‖M(Wε)‖L2(∂�) � C‖g‖L2(∂�) + Ca

{∫

�

|h(x)|2δ(x)φa(δ(x)) dx

}1/2

(4.11)

for any a > 3.

Proof. Let h = (hαi ) and

Hα
ε (x) = −

∫

�

∂

∂yi

{
�αβε (x, y)

}
hβi (y) dy, (4.12)

where �ε(x, y) = (
�
αβ
ε (x, y)

)
is the matrix of fundamental solutions for Lε in R

d ,
with pole at y. Note that Lε(Wε − Hε) = 0 in � and Wε − Hε = g − Hε on ∂�.
It follows by Theorem 2.1 that

‖Wε − Hε‖L2(�) + ‖(Wε − Hε)
∗‖L2(∂�) +

{∫

�

|∇(Wε − Hε)|2δ(x) dx

}1/2

� C‖g‖L2(∂�) + C‖Hε‖L2(∂�).

Hence,

‖Wε‖L2(�) � C
{‖g‖L2(∂�) + ‖Hε‖L2(∂�)

} + ‖Hε‖L2(�),

‖M(Wε)‖L2(∂�) � C
{‖g‖L2(∂�) + ‖M(Hε)‖L2(∂�)

}
,

{∫

�

|∇Wε|2δ(x) dx

}1/2

�C
{‖g‖L2(∂�)+‖Hε‖L2(∂�)

}+
{∫

�

|∇Hε|2δ(x) dx

}1/2

.

The desired estimates now follow from Propositions 8.1, 8.2, 8.3 and 8.4. �
We are now in a position to give the proof of Theorem 4.1.

Proof of Theorem 4.1. Let

w̃αε = uαε (x)− vαε (x)− εχ
αβ
k (x/ε)

∂v
β
ε

∂xk
= wαε − (vε − u0) (4.13)

in �. In view of Lemma 4.5, it suffices to show that w̃ε satisfies the estimates in
Theorem 4.1.

To this end, we first observe that by Lemma 3.2,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(Lε(w̃ε)
)α = ε

∂

∂xi

{
bαγi jk(x/ε)

∂2v
γ
ε

∂x j∂xk

}
, in �

w̃αε = f α − vαε − εχ
αβ
k (x/ε)

∂v
β
ε

∂xk
on ∂�.

Let w̃ε = θ̃ε + z̃ε, where Lε(θ̃ε) = 0 in �, θ̃ε = w̃ε on ∂�, and z̃ε satisfies
⎧
⎪⎨

⎪⎩

(Lε(̃zε)
)α = ε

∂

∂xi

{
bαγi jk(x/ε)

∂2v
γ
ε

∂x j∂xk

}
in �

z̃ε ∈ H1
0 (�).
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To estimate θ̃ε, we apply Theorem 2.1 to obtain

‖θ̃ε‖L2(�) + ‖M(θ̃ε)‖L2(∂�) +
{∫

�

|∇ θ̃ε|2δ(x) dx

}1/2

� C‖θ̃ε‖L2(∂�)

= C‖w̃ε‖L2(∂�) � C
{‖ f − vε‖L2(∂�) + ε‖∇vε‖L2(∂�)

}
� Cε,

where the last inequality follows from Lemmas 4.3 and 4.5.
Finally, we use Lemma 4.6 to handle z̃ε. In particular, this gives

‖̃zε‖L2(�) � Cε

{∫

�

|∇2vε|2δ(x)φa(δ(x)) dx

}1/2

. (4.14)

for any a > 1. Note that φa(t) is decreasing and tφa(t) is increasing on (0,∞) for
any a � 0. Hence, for any x ∈ � and 0 < ε < c0,

δ(x)φa(x) � δε(x)φa(δε(x)) � δε(x)φa(ε/C) � Cδε(x)| ln(ε)|a,
where δε(x) = dist(x, ∂�ε). In view of (4.14) we obtain

∫

�

|∇2vε|2δ(x)φa(δ(x)) dx � Cε| ln(ε)|a
∫

�

|∇2vε|2δε(x) dx

� Cε| ln(ε)|a
∫

�ε

|∇2vε|2δε(x) dx

� Cε| ln(ε)|a, (4.15)

for any a > 1, where the last inequality follows from Lemma 4.3. Thus ‖̃zε‖L2(�) �
Cε| ln(ε)|a/2 for ant a > 1. This, together with the estimates of θ̃ε and vε − u0 in
L2(�), gives (4.3). Estimates (4.4) and (4.5) follow from Lemma 4.6 in the same
manner. We omit the details. �
Proof of Theorem 1.1. Estimate (1.5) is given in Corollary 3.5 and estimate (1.6)
in Corollary 4.2. �

5. Neumann Boundary Condition, Part I

Fix F ∈ L2(�) and g ∈ L2(∂�). Suppose that
∫
�

F + ∫
∂�

g = 0. Let
uε, u0 ∈ H1(�) solve

{Lε(uε) = F in �,
∂uε
∂νε

= g on ∂�,
and

{L0(u0) = F in �,
∂u0
∂ν0

= g on ∂�,
(5.1)

respectively. Recall that

(
∂uε
∂νε

)α
= ni (x)a

αβ
i j (x/ε)

∂uβε
∂x j

and

(
∂u0

∂ν0

)α
= ni (x)â

αβ
i j

∂uβ0
∂x j

, (5.2)

where n = (n1, . . . , nd) denotes the outward unit normal to ∂�.
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Lemma 5.1. Let wαε = uαε − vαε − εχ
αβ
k (x/ε) ∂v

β
ε

∂xk
, where uε ∈ H1(�) and vε ∈

H2(�). Then

(
∂wε

∂νε

)α
= ni (x)a

αβ
i j (x/ε)

∂uβε
∂x j

− ni (x)â
αβ
i j
∂v
β
ε

∂x j

+ ε

2

{
ni (x)

∂

∂x j
− n j (x)

∂

∂xi

} {
�
αγ

j ik(x/ε)
∂v
γ
ε

∂xk

}

− εni (x)b
αγ

i jk(x/ε)
∂2v

γ
ε

∂x j∂xk
,

(5.3)

where �αγj ik(y) and bαγi jk(y) are the same as in Lemma 3.2.

Proof. A direct computation shows that

ni (x)a
αβ
i j (x/ε)

∂w
β
ε

∂x j
= ni (x)a

αβ
i j (x/ε)

∂uβε
∂x j

− ni (x)â
αβ
i j
∂v
β
ε

∂x j

+ni (x)�
αγ

ik (x/ε)
∂v
γ
ε

∂xk

−εni (x)a
αβ
i j (x/ε)χ

βγ

k (x/ε)
∂2v

γ
ε

∂x j∂xk
, (5.4)

where �αγik (y) is defined by (3.3). By (3.4), we obtain

ni (x)�
αγ

ik (x/ε)
∂v
γ
ε

∂xk
= εni (x)

∂

∂x j

{
�
αγ

j ik(x/ε)
∂v
γ
ε

∂xk

}

−εni (x)�
αγ

j ik(x/ε)
∂2v

γ
ε

∂x j∂xk

= ε

2

{
ni (x)

∂

∂x j
− n j (x)

∂

∂xi

} {
�
αγ

j ik(x/ε)
∂v
γ
ε

∂xk

}

−εni (x)�
αγ

j ik(x/ε)
∂2v

γ
ε

∂x j∂xk
. (5.5)

Equation (5.3) now follows from (5.4) and (5.5). �
Theorem 5.2. Let� be a bounded Lipschitz domain. Suppose that A ∈ �(μ, λ, τ)
and A∗ = A. Let (uε, u0) be a solution of (5.1) with

∫
∂�

uε = ∫
∂�

u0 = 0. Assume
further that u0 ∈ H2(�). Then

‖M(wε)‖L2(∂�) + ‖wε‖H1/2(�) +
{∫

�

|∇wε(x)|2δ(x) dx

}1/2

� Cε‖u0‖H2(�),

(5.6)

where wαε = uαε (x)− uα0 (x)− εχ
αβ
k (x/ε)

∂uβ0
∂xk

.
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As in the case of Dirichlet boundary conditions, Theorem 5.2 gives the following
convergence rate of uε to u0 in L2. As we mentioned in the Introduction, the esti-
mate ‖uε − u0‖L2(�) � Cε‖u0‖H2(�) was proved in [20] when � is a curvilinear
convex domain in R

2.

Corollary 5.3. Under the same assumptions as in Theorem 5.2, we have

‖uε − u0‖L2(�) + ‖M(uε − u0)‖L2(∂�) � Cε‖u0‖H2(�). (5.7)

Proof of Theorem 5.2. In view of Lemmas 3.2 and 5.1, we may write wε = θε +
zε + ρ, where
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Lε(θε) = 0 in �,
(
∂θε

∂νε

)α
= ε

2

{
ni (x)

∂

∂x j
− n j (x)

∂

∂xi

}{

�
αγ

j ik(x/ε)
∂uγ0
∂xk

}

on ∂�,

θε ∈ H1(�) and
∫

∂�

θε = 0,

(5.8)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Lε(zε))α = ε
∂

∂xi

{

bαγi jk(x/ε)
∂2uγ0
∂x j∂xk

}

in �,

(
∂zε
∂νε

)α
= −εni (x)b

αγ

i jk(x/ε)
∂2uγ0
∂x j∂xk

on ∂�

zε ∈ H1(�) and
∫

�

zε = 0,

(5.9)

and

ρ = 1

|∂�|
∫

∂�

(wε − zε)

is a constant. It follows from the energy estimates that ‖zε‖H1(�) � Cε‖u0‖H2(�).
Also note that

|ρ| � C
∫

∂�

|zε| + Cε
∫

∂�

|∇u0| � Cε‖u0‖H2(�),

where we have used the condition
∫
∂�

uε = ∫
∂�

u0 = 0. Thus it remains only to
estimate θε.

To this end we use a duality argument and consider the L2 Neumann problem
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Lε(�ε) = 0 in �,

∂�ε

∂νε
= h on ∂�,

�ε ∈ H1(�) and
∫

∂�

�ε = 0,

(5.10)

where h ∈ L2(∂�) and
∫
∂�

h = 0. It follows from integration by parts that
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∣∣∣
∫

∂�

θε · h
∣∣∣ =

∣∣∣
∫

∂�

θε · ∂�ε
∂νε

∣∣∣ =
∣∣∣
∫

∂�

�ε · ∂θε
∂νε

∣∣∣

= ε

2

∣∣
∣∣

∫

∂�

{
ni

∂

∂x j
− n j

∂

∂xi

}
�αε ·�αγj ik(x/ε)

∂uγ0
∂xk

∣∣
∣∣

� Cε‖∇�ε‖L2(∂�)‖∇u0‖L2(∂�), (5.11)

where we have used the fact that ni
∂
∂x j

− n j
∂
∂xi

is a tangential derivative for 1� i,

j � d. In view of Theorem 2.2 we have ‖∇�ε‖L2(∂�) � C‖h‖L2(∂�). Hence, by
(5.11) and duality, we obtain ‖θε‖L2(∂�) � Cε‖∇u0‖L2(∂�). Here we also use the
fact

∫
∂�
θε = 0.

Finally, we use the estimates for the L2 Dirichlet problem in Theorem 2.1 to
see that

‖θε‖L2(�) + ‖M(θε)‖L2(�) +
{∫

�

|∇θε(x)|2δ(x) dx

}1/2

� C‖θε‖L2(∂�) � Cε‖∇u0‖L2(∂�) � Cε‖u0‖H2(�).

This, together with the estimates of zε and ρ, completes the proof of Theorem 5.2.
�

Remark 5.4. The estimates in Theorem 5.2 and Corollary 5.3 also hold under
the condition

∫
�

uε = ∫
�

u0 = 0. In this case the constant ρ is given by
ρ = 1

|�|
∫
�
(wε − θε), and we have

|ρ| � Cε
∫

�

|∇u0| + C
∫

�

|θε| � Cε‖u0‖H2(�).

This will be used in the proof of the error estimate for the Neumann eigenvalues
for Lε.

6. Neumann Boundary Condition, Part II

In this section we extend the results on convergence rates in Section 4 to the
case of Neumann boundary conditions.

Construction of the first-order term. Fix F ∈ L2(�) and g ∈ L2(∂�) such that∫
�

F + ∫
∂�

g = 0. Let (uε, u0) be the solution of (5.1) with
∫
∂�

uε = ∫
∂�

u0 = 0.
Consider

wαε = uαε − uα0 − εχ
αβ
k (x/ε)

∂v
β
ε

∂xk
, (6.1)

where vε is the solution of (4.1) in �ε with f given by u0|∂� and fε(Q) =
f (�−1

ε (Q)). Note that by Theorem 2.2 (for operators with constant coefficients),

‖ f ‖H1(∂�) � C
{‖g‖L2(∂�) + ‖F‖L2(∂�)

}
. (6.2)
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Theorem 6.1. Let� be a bounded Lipschitz domain. Suppose that A ∈ �(μ, λ, τ)
and A∗ = A. Let wε be defined by (6.1). Then, if 0 < ε < (1/2),

‖wε‖L2(∂�)+‖wε‖L2(�)�Cε| ln(ε)|a {‖F‖L2(�)+‖g‖L2(∂�)

}
, for any a>1/2,

(6.3)

‖M(wε)‖L2(∂�) � Cε| ln(ε)|a {‖F‖L2(�) + ‖g‖L2(∂�)

}
, for any a > 3/2,

(6.4)

and

‖wε‖H1/2(�) +
{∫

�

|∇wε(x)|2δ(x) dx

}1/2

� Cε| ln ε| {‖F‖L2(�) + ‖g‖L2(∂�)

}
,

(6.5)

where C depends only on μ, λ, τ, d, m, a and �.

Observe that

‖∇vε‖L2(�) + ‖M(∇vε)‖L2(∂�) � C
{‖F‖L2(�) + ‖ f ‖H1(∂�)

}

� C
{‖F‖L2(�) + ‖g‖L2(∂�)

}
.

Thus, as a corollary of Theorem 6.1, we obtain the following convergence rates of
uε to u0 in L2.

Corollary 6.2. Under the same conditions as in Theorem 6.1, we have

‖uε − u0‖L2(∂�) + ‖uε − u0‖L2(�) � Cε| ln(ε)| 1
2 +σ {‖F‖L2(�) + ‖g‖L2(∂�)

}
,

(6.6)

‖M(uε − u0)‖L2(∂�) � Cε| ln ε| 3
2 +σ {‖F‖L2(�) + ‖g‖L2(∂�)

}
, (6.7)

for any σ > 0.

Without loss of generality we will assume that ‖F‖L2(�) + ‖g‖L2(∂�) � 1 in
the rest of this section. We remark that because of (6.2), the estimates of ∇vε in
Lemmas 4.3 and 4.5 continue to hold.

Proof of Theorem 6.1. We proceed as in the case of the Dirichlet condition and
write

wαε = w̃αε + {
vαε − uα0

}
and w̃αε = uαε (x)− vαε (x)− εχ

αβ
k (x/ε)

∂v
β
ε

∂xk
.

The desired estimates for vε − u0 follow directly from Lemmas 4.3–4.5 and (6.2).
Next we let w̃ε = θ̃ε + z̃ε + ρ, where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Lε(θ̃ε) = 0 in �,
(
∂θ̃ε

∂νε

)α
= ε

2

{
ni

∂

∂x j
− n j

∂

∂xi

}{
�
αγ

j ik(x/ε)
∂v
γ
ε

∂xk

}
on ∂�,

θ̃ε ∈ H1(�) and
∫

∂�

θ̃ε = 0,

(6.8)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(Lε(̃zε))α = ε
∂

∂xi

{
bαγi jk(x/ε)

∂2v
γ
ε

∂x j∂xk

}
in �,

(
∂ z̃ε
∂νε

)α
= −εni (x)b

αγ

i jk(x/ε)
∂2v

γ
ε

∂x j∂xk
on ∂�

z̃ε ∈ H1(�) and
∫

∂�

z̃ε = 0,

(6.9)

and

ρ = 1

|∂�|
∫

∂�

w̃ε = 1

|∂�|
∫

∂�

wε − 1

|∂�|
∫

∂�

(vε − u0)

is a constant. Note that

|ρ| � Cε‖∇vε‖L2(∂�) + C‖vε − u0‖L2(∂�) � Cε,

where we have used the fact
∫
∂�

uε = ∫
∂�

u0 = 0 as well as Lemmas 4.3 and 4.5.
By a duality argument similar to that in the proof of Theorem 5.2, we have

‖θ̃ε‖L2(∂�) � Cε‖∇vε‖L2(∂�) � Cε.

It then follows from the estimates for the L2 Dirichlet problem in Theorem 2.1 that

‖M(θ̃ε)‖L2(∂�) + ‖θ̃ε‖H1/2(�) +
{∫

�

|∇ θ̃ε|2δ(x) dx

}1/2

� C‖θ̃ε‖L2(∂�) � Cε.

The estimates of z̃ε also relies on a duality estimate. Indeed, let�ε ∈ H1(�) be
the solution of (5.10) with h ∈ L2(∂�) and

∫
∂�

h = 0. It follows from integration
by parts that

∣∣∣∣

∫

∂�

z̃ε · h

∣∣∣∣ =
∣∣∣∣

∫

∂�

z̃ε · ∂�ε
∂νε

∣∣∣∣

=
∣∣∣
∣

∫

�

aαβi j (x/ε)
∂ z̃αε
∂xi

· ∂�
β
ε

∂x j

∣∣∣
∣

= ε

∣
∣∣∣

∫

�

bαγi jk(x/ε)
∂2v

γ
ε

∂x j∂xk
· ∂�

α
ε

∂xi

∣
∣∣∣. (6.10)

By the Cauchy inequality this gives
∣∣∣
∣

∫

∂�

z̃ε · h

∣∣∣
∣

� ε

{∫

�

|∇2vε|2δ(x)φa(δ(x)) dx

}1/2

{∫

�

|∇�ε|2 dx

δ(x)φa(δ(x))

}1/2

. (6.11)
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Observe that if a > 1,
{∫

�

|∇�ε|2 dx

δ(x)φa(δ(x))

}1/2

� C‖(∇�ε)∗‖L2(∂�) � C‖h‖L2(∂�).

Hence, by (6.11) and duality, we obtain

‖̃zε‖L2(∂�) � Cε

{∫

�

|∇2vε|2δ(x)φa(δ(x)) dx

}1/2

(6.12)

for any a > 1. With (6.12) at our disposal we may apply Lemma 4.6 to obtain

‖̃zε‖L2(�) � Cε

{∫

�

|∇2vε|2δ(x)φa(δ(x)) dx

}1/2

� Cε| ln(ε)|a/2,

where we have used (4.15) for the last inequality. This, together with estimates of
θ̃ε, ρ and vε − u0, gives (6.3). Estimates (6.4) and (6.5) follow from Lemma 4.6
and (6.12) in the same manner. This completes the proof of Theorem 6.1. �
Remark 6.3. The estimates in Theorem 6.1 and Corollary 6.2 continue to hold
under the condition

∫
�

uε = ∫
�

u0 = 0. In this case one has

ρ= 1

|�|
∫

�

{
w̃ε−θ̃ε− z̃ε

}= 1

|�|
∫

�

wε − 1

|�|
∫

�

{
vε−u0

} − 1

|�|
∫

�

{
θ̃ε + z̃ε

}
.

Hence,

|ρ| � Cε‖∇vε‖L2(�) + C‖vε − u0‖L2(�) + C‖θ̃ε‖L2(�) + C ‖̃zε‖L2(�)

� Cε| ln(ε)|a/2,
for any a > 1. The rest of the proof is the same.

Proof of Theorem 1.2. Estimate (1.5) for the Neumann boundary conditions is
given in Corollary 5.3 and estimate (1.7) in Corollary 6.2. �

7. Convergence Rates for Eigenvalues

In this section we study the convergence rates for Dirichlet, Neumann, and
Steklov eigenvalues associated with {Lε}. Our approach relies on the following
theorem, whose proof may be found in [12, pp. 338–345].

Theorem 7.1. Let {Tε, ε � 0} be a family of bounded, positive, self-adjoint, com-
pact operators on a Hilbert space H. Suppose that (1) ‖Tε‖ � C and ‖Tε f −
T0 f ‖ → 0 as ε → 0 for all f ∈ H; (2) {Tε fε, ε > 0} is pre-compact in H,
whenever { fε} is bounded in H. Let {uk

ε} be an orthonormal basis of H consist-
ing of eigenvectors of Tε with the corresponding eigenvalues {μk

ε} in a decreasing
order,

μ1
ε � μ2

ε � · · · � μk
ε � · · · > 0.
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Then μk
ε � ck > 0, and if ε > 0 is sufficiently small,

|μk
ε − μk

0| � 2 sup
{‖Tεu − T0u‖ : u ∈ N (μk

0, T0) and ‖u‖ = 1
}
,

where N (μk
0, T0) is the eigenspace of T0 associated with eigenvalue μk

0.

Dirichlet eigenvalues. Given f ∈ H = L2(�), let T D
ε ( f ) = uε ∈ H1

0 (�) be the
weak solution of Lε(uε) = f in �. It is easy to see that {T D

ε , ε � 0} satisfies the
assumptions in Theorem 7.1. Recall that λε is a Dirichlet eigenvalue for Lε in� if
there exists a nonzero uε ∈ H1

0 (�) such that Lε(uε) = λεuε in �. Let {λk
ε} denote

the sequence of Dirichlet eigenvalues in an increasing order for Lε. Then {(λk
ε)

−1}
is the sequence of eigenvalues in a decreasing order for T D

ε on L2(�). It follows
from Theorem 7.1 that if ε is sufficiently small,

∣∣∣∣∣
1

λk
ε

− 1

λk
0

∣∣∣∣∣
� 2 sup

{‖uε − u0‖L2(�)

}
, (7.1)

where the supremum is taken over all uε, u0 ∈ H1
0 (�) with the property that

λk
0‖u0‖L2(�) = 1 and Lε(uε) = L0(u0) = λk

0u0 in �. Note that if � is C1,1 (or
convex in the case m = 1), then ‖u0‖H2(�) � Ck by the standard regularity the-
ory for second-order elliptic systems with constant coefficients. Also, by Theorem
7.1, we see that λk

ε � Ck . Hence, we may deduce from (7.1) and Corollary 3.5
that |λk

ε − λk
0| � ck ε (see for example [12, p. 347]). However, if � is a general

Lipschitz domain, u0 ∈ H2(�) no longer holds. Nevertheless, Corollary 4.2 gives
us the following.

Theorem 7.2. Let 0 � ε � (1/2) and {λk
ε} be the sequence of Dirichlet eigenvalues

in an increasing order of Lε in a bounded Lipschitz domain. Then for any σ > 0,

|λk
ε − λk

0| � c ε| ln(ε)| 1
2 +σ ,

where c depends on k and σ , but not ε.

Neumann eigenvalues. Given f ∈ L2(�) with
∫
�

f = 0, let T N
ε ( f ) = uε ∈

H1(�) be the weak solution of the Neumann problem: Lε(uε) = f in�, ∂uε
∂νε

= 0

on ∂� and
∫
�

uε = 0. Again, it is easy to verify that the family of operators {T N
ε }

on the Hilbert space { f ∈ L2(�) : ∫
�

f = 0} satisfies the assumptions of Theorem
7.1. Recall that ρε is a Neumann eigenvalue for Lε in � if there exists a nonzero
uε ∈ H1(�) such that Lε(uε) = ρεuε in � and ∂uε

∂νε
= 0 on ∂�. Let {ρk

ε } be
the sequence of nonzero Neumann eigenvalues in an increasing order for Lε in �.
Then {(ρk

ε )
−1} is the sequence of eigenvalues in a decreasing order for T N

ε . Thus,
in view of Theorems 7.1 and Remarks 5.4 and 6.3, we obtain the following.

Theorem 7.3. Let 0 � ε � (1/2) and {ρk
ε } denote the sequence of nonzero

Neumann eigenvalues in an increasing order for Lε in a bounded Lipschitz domain
�. Then for any σ > 0,

|ρk
ε − ρk

0 | � c ε| ln(ε)| 1
2 +σ ,

where c depends on k and σ , but not ε. Furthermore, the estimate |ρk
ε −ρk

0 | � ck ε

holds if � is C1,1 (or convex in the case m = 1).
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Steklov eigenvalues. We say sε is a Steklov eigenvalue for Lε in � if there exists
a nonzero uε ∈ H1(�) such that Lε(uε) = 0 in � and ∂uε

∂νε
= sε|∂�|−1uε on

∂�. Note that sε|∂�|−1 is also an eigenvalue of the Dirichlet-to-Neumann map
associated with Lε. Given g ∈ L2(∂�) with

∫
∂�

g = 0, let Sε(g) = uε|∂�, where

uε is the weak solution to the L2 Neumann problem: Lε(uε) = 0 in �, ∂uε
∂νε

= g

on ∂� and
∫
∂�

uε = 0. It is not hard to verify that the family of operators {Sε} on
the Hilbert space {g ∈ L2(∂�) : ∫

∂�
g = 0} satisfies the assumptions in Theorem

7.1. Consequently, the L2(∂�) convergence estimates in Corollaries 5.3 and 6.2
give the following.

Theorem 7.4. Let 0 � ε � (1/2) and {sk
ε } denote the sequence of nonzero Steklov

eigenvalues in an increasing order for Lε in a bounded Lipschitz domain �. Then
for any σ > 0,

|sk
ε − sk

0 | � c ε| ln(ε)| 1
2 +σ ,

where c depends on k and σ , but not ε. Furthermore, the estimate |sk
ε − sk

0 | � ck ε

holds if � is C1,1 (or convex in the case m = 1).

Remark 7.5. The operator Sε introduced above is, in fact, the inverse of the
Dirichlet–Neumann map associated with Lε. Note that by Corollaries 5.3 and 6.2,

‖Sε − S0‖L2(∂�)→L2(∂�) �
{

C ε if � is C1,1,

Cσ ε| ln(ε)| 1
2 +σ if � is Lipschitz,

(7.2)

for any σ > 0.

8. Weighted Potential Estimates

Let Hε(x) = (H1
ε (x), . . . , Hm

ε (x)) be defined by

Hα
ε (x) =

∫

�

∂

∂yk

{
�αβε (x, y)

}
hβ(y) dy, (8.1)

where h = (h1, . . . , hm) ∈ L2(�). It follows from [3] that ‖∇Hε‖L2(Rd ) �
C‖h‖L2(�).

Proposition 8.1. The estimate

‖Hε‖L2(∂�) � Ca

{∫

�

|h(x)|2δ(x)φa(δ(x)) dx

}1/2

(8.2)

holds for any a > 1.
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Proof. Recall that δ(x) = dist(x, ∂�) and φa(t) = {
ln( 1

t + ea)
}a . Let g =

(g1, . . . , gm) ∈ L2(∂�) and uε = (u1
ε, . . . , um

ε ), where

uβε (y) =
∫

∂�

∂

∂yk

{
�αβε (x, y)

}
gα(x) dσ(x).

It follows from [15, Theorem 4.3] that ‖(uε)∗‖L2(∂�) � C‖g‖L2(∂�). Observe that
∣∣∣∣

∫

∂�

Hα
ε (x)g

α(x) dσ(x)

∣∣∣∣ =
∣∣∣∣

∫

�

hβ(y)uβε (y) dy

∣∣∣∣

�
{∫

�

|h(y)|2δ(y)φa(δ(y)) dy

}1/2 {∫

�

|uε(y)|2 {δ(y)φa(δ(y))}−1 dy

}1/2

(8.3)

and that if a > 1,
∫

�

|uε(y)|2 {δ(y)φa(δ(y))}−1 dy �C
∫

∂�

|(uε)∗|2 dσ(y)�C‖g‖2
L2(∂�)

. (8.4)

Estimate (8.2) follows from (8.3)–(8.4) by duality. �
Proposition 8.2. The estimate

‖Hε‖L2(�) � Ca

{∫

�

|h(x)|2δ(x)φa(δ(x)) dx

}1/2

(8.5)

holds for any a > 1.

Proof. Let K ⊂ K1 be two compact subsets of � such that dist(K ,� \ K1) �
c0 > 0. Since |∇y�ε(x, y)| � C |x − y|1−d , we have

|Hε(x)| � C
∫

K1

|h(y)| dy

|x − y|d−1 + C
∫

�\K1

|h(y)| dy for any x ∈ K .

This implies that ‖Hε‖L2(K ) is bounded by the right-hand side of (8.5) if a > 1.
To estimate ‖Hε‖L2(�\K ), it suffices to show that ‖Hε‖L2(∂�t )

is bounded uni-
formly in t by the right-hand side of (8.5) for −c < t < 0, where �t is defined in
Section 2. This may be done by a duality argument, as in the proof of Proposition
8.1. Indeed, the argument reduces the problem to the following estimate

∫

�

|uε,t (y)|2
{
δ(y)φa(δ(y))

}−1 dy � C
∫

∂�t

|g|2 dσ, (8.6)

where

uβε,t (y) =
∫

∂�t

∂

∂yk

{
�αβε (x, y)

}
gα(x) dσ(x).

Finally, the estimate (8.6) follows from the observation that ‖uε,t‖L2(K ) �
CK ‖g‖L2(∂�t )

for compact K ⊂ �t , and that ‖uε,t‖L2(∂�s )
� C‖(uε,t )∗‖L2(∂�t )

�
C‖g‖L2(∂�t )

for −c < t, s < 0. This completes the proof. �
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Proposition 8.3. The estimate
{∫

�

|∇Hε(x)|2 δ(x)φa(δ(x)) dx

}1/2

� Ca

{∫

�

|h(x)|2δ(x)φa+2(δ(x)) dx

}1/2

(8.7)

holds for any a � 0.

Proof. Using |∇x∇y�ε(x, y)| � C |x−y|−d and a partition of unity, we may reduce
the estimate (8.7) to the case where � = {(x ′, xd) : x ′ ∈ R

d−1 and xd > ψ(x ′)}
is the region above a Lipschitz graph and δ(x) is replaced by δ̃(x) = |xd −ψ(x ′)|.
Since �ε(x, y) = ε2−d�1(x/ε, y/ε), by a rescaling argument, we may further
reduce the problem to the following weighted L2 inequality for a singular integral
operator,

∫

Rd
|T ( f )|2 ω1 dx � C

∫

Rd
| f |2 ω2 dx, (8.8)

where ω1(x) = δ̃(x)φa(εδ̃(x)), ω2(x) = δ̃(x)φa+2(εδ̃(x)) and

T ( f )(x) =
∫

Rd
∇x∇y�1(x, y) f (y) dy. (8.9)

We point out that the constant C in (8.8) should depend only on d, m, μ, λ, τ, a
and ‖∇ψ‖∞.

To establish (8.8), we first use the asymptotic estimates on ∇x∇y�1(x, y) for
|x − y| � 1 and |x − y| � 1 in [3] to obtain

|T ( f )(x)| � C
{|T ∗

1 (g1)(x)| + |T ∗
2 (g2)(x)| + M( f )(x)

}
, (8.10)

where T ∗
1 , T ∗

2 are L2 bounded maximal singular integral operators with standard
Calderón–Zygmund kernels, M( f ) is the Hardy–Littlewood maximal function of
f in R

d , and |g1|, |g2| are bounded pointwise by C | f |. Next we observe that ω1
is an A∞ weight in R

d . This allows us to use a classical result of Coifman and
Fefferman [6] and (8.10) to deduce that

∫

Rd
|T ( f )|2 ω1 dx � C

∫

Rd
|M( f )|2 ω1 dx . (8.11)

As a result, it remains only to show that
∫

Rd
|M( f )|2 ω1 dx � C

∫

Rd
| f |2 ω2 dx . (8.12)

This is a two-weight norm inequality for the Hardy–Littlewood maximal opera-
tor, which has been studied extensively. In particular, Sawyer [25] was able to
characterize all pairs of (ω1, ω2) for which (8.12) holds.

Finally, to prove (8.12), by a bi-Lipschitz transformation, we may assume that
ψ = 0. Consequently, it suffices to consider the case d = 1. This is because
M( f ) � M1 ◦ M2 ◦ · · · ◦ Md( f ), where Mi denotes the Hardy–Littlewood maxi-
mal function in the xi variable. Furthermore, by rescaling, we may assume ε = 1.
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With ω1(x) = |x |φa(|x |) and ω2(x) = |x |φ2+a(|x |) in R, it is not very hard to
verify that (ω1, ω2) satisfies the necessary and sufficient condition in [25] for any
a � 0. We omit the details. �
Proposition 8.4. The estimate

‖M(Hε)‖L2(∂�) � Ca

{∫

�

|h(x)|2δ(x)φa(δ(x)) dx

}1/2

(8.13)

holds for any a > 3.

Proof. By the fundamental theorem of calculus and definition of the radial maximal
operator, it is easy to see that for any Q ∈ ∂�,

M(u)(Q) � C
∫ 0

−c

{|∇u(�t (Q))| + |u(�t (Q)|
}

dt

� Ca

{∫ 0

−c

{|∇u(�t (Q))|2+|u(�t (Q)|2
}|t |φa(|t |) dt

}1/2

, (8.14)

for any a > 1. This yields that
∫

∂�

|M(u)|2 dσ � Ca

∫

�

{|∇u(x)|2 + |u(x)|2}δ(x)φa(δ(x)) dx . (8.15)

Letting u(x) = Hε(x) in (8.15), we obtain estimate (8.13) by Propositions 8.2–8.3.
�

Proposition 8.5. Let f = ( f 1, . . . , f m) ∈ L2(∂�) and uε = (u1
ε, . . . , um

ε ) be
given by

uαε (x) =
∫

∂�

∂

∂yk

{
�αβε (x, y)

}
f β(y) dσ(y).

Then
{∫

�

|∇uε(x)|2 δ(x) dx

}1/2

� C‖ f ‖L2(∂�). (8.16)

Proof. By a partition of unity we may assume that � = {(x ′, xd) : x ′ ∈
R

d−1 and xd > ψ(x ′)} is the region above a Lipschitz graph. By a rescaling argu-
ment we may further assume that ε = 1.

We first estimate the integral of |∇u1(x)|2δ(x) on

D = �+ (0, . . . , 1) = {(x ′, xd) : xd > ψ(x ′)+ 1}.
By the asymptotic estimates of ∇x∇y�1(x, y) for |x − y| � 1 in [3, p. 906], we
may deduce that if x ∈ D,

|∇u1(x)− W (x)| � C
∫

∂�

| f (y)| dσ(y)

|x − y|d+η (8.17)
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for some η > 0, where W (x) is a finite sum of functions of form

ei j (x)
∫

∂�

∂2

∂xi∂y j

{
�
αβ
0 (x, y)

}
gβ(y) dσ(y),

with |ei j (x)| � C and |gβ | � C | f |. Recall that �0(x, y) is the matrix of fun-
damental solutions for the operator L0 (with constant coefficients), for which the
estimate (8.16) is well known [7]. It follows that

∫

�

|W (x)|2 δ(x) dx � C
∫

∂�

| f |2 dσ. (8.18)

Let I (x) denote the integral in the right-hand side of (8.17). By the Cauchy
inequality,

|I (x)|2 � C
{
δ(x)

}−1−η
∫

∂�

| f (y)|2 dσ(y)

|x − y|d+η .

This gives
∫

D |I (x)|2 δ(x) dx � C‖ f ‖2
L2(∂�)

and thus
∫

D |∇u1(x)|2 δ(x) dx �
C‖ f ‖2

L2(∂�)
.

To handle ∇u1 in � \ D, we let

�(r) = {
(x ′, ψ(x ′)) : |x ′| < r

}
,

T (r) = {
(x ′, xd) : |x ′| < r and ψ(x ′) < xd < ψ(x ′)+ C0r

}
.

(8.19)

We will show that if L1(u) = 0 in the Lipschitz domain T (2) and (u)∗ ∈ L2, then
∫

T (1)
|∇u(x)|2 |xd − ψ(x ′)| dx � C

∫

�(2)
|u|2 dσ + C

∫

T (2)
|u|2 dx, (8.20)

which is bounded by C
∫
�(2) |(u)∗|2 dσ . By a simple covering argument one may

deduce from (8.20) that
∫

�\D
|∇u1|2 δ(x) dx � C

∫

∂�

|(u1)
∗|2 dσ � C

∫

∂�

| f |2 dσ, (8.21)

where the last inequality was proved in [15].
Finally, to see (8.20), we use the square function estimate for L1 on T (r) for

3/2 < r < 2,
∫

T (r)
|∇u(x)|2dist(x, ∂T (r)) dx � C

∫

∂T (r)
|u|2 dσ, (8.22)

to obtain
∫

T (1)
|∇u(x)|2 |xd − ψ(x ′)| dx � C

∫

�(2)
|u|2 dσ + C

∫

∂T (r)\�(2)
|u|2 dσ.

(8.23)

Estimate (8.20) follows by integrating both sides of (8.23) in r ∈ (3/2, 2). We
remark that under the condition A ∈ �(μ, λ, τ), the square function estimate
(8.22) follows from the double layer potential representation obtained in [15] for
solutions of the L2 Dirichlet problem by a T (b)-theorem argument (see for example
[18, pp. 9–11]). This completes the proof. �
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