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Abstract

We prove that there exists an interval of time which is uniform in the vanishing
viscosity limit and for which the Navier–Stokes equation with the Navier boundary
condition has a strong solution. This solution is uniformly bounded in a conormal
Sobolev space and has only one normal derivative bounded in L∞. This allows us
to obtain the vanishing viscosity limit to the incompressible Euler system from a
strong compactness argument.

1. Introduction

We consider the incompressible Navier–Stokes equation

∂t u + u · ∇u + ∇ p = ε�u, ∇ · u = 0, x ∈ �, (1)

in a domain � of R
3. The velocity u is a three-dimensional vector field on � and

the pressure p of the fluid is a scalar function. We add on the boundary the Navier
(slip) boundary condition

u · n = 0, (Su · n)τ = −αuτ , x ∈ ∂�, (2)

where n stands for the outward unit normal to �, S is the strain tensor,

Su = 1

2
(∇u + ∇ut )

and for some vector field v on ∂�, vτ stands for the tangential part of v :
vτ = v − (v · n)n.

The parameter ε > 0 is the inverse of the Reynolds number, whereas α is
another coefficient which measures the tendency of the fluid to slip on the bound-
ary. This type of boundary condition is often used to model rough boundaries; we
refer for example to [3,7] (see also [27] for a derivation from the Maxwell boundary
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condition of the Boltzmann equation through a hydrodynamic limit). It is known
that when ε tends to zero a weak solution of (1), (2) converges towards a solution of
the Euler equation; we refer to [1,6,14,19]. In particular, in the three-dimensional
case, in [14], it is proven by a modulated energy type approach that for a sufficiently
smooth solution of the Euler equation, an L2 convergence holds. The situation for
this problem is thus very different from the case of no-slip boundary conditions,
which is widely open for the Navier–Stokes equation except in the analytic case
[33] (see also [18] for some necessary conditions to get convergence and [22] for
some special cases).

Here, we are interested in the existence of strong solutions of (1), (2) with
uniform bounds on an interval of time independent of ε ∈ (0, 1] and in a topology
sufficiently strong to deduce by a strong compactness argument that the solution
converges strongly to a solution of the Euler equation

∂t u + u · ∇u + ∇ p = 0, ∇ · u = 0, (3)

with the boundary condition u · n = 0 on ∂�. Note that for such an argument
to succeed, we need to work in a functional space where both (1) and (3) are
well-posed.

Let us recall that there are two classical ways to study the vanishing viscosity
limit by compactness arguments. The first consists in trying to pass to the limit
weakly in the Leray solution of the Navier–Stokes system. However, there is a
lack of compactness and one cannot pass to the limit in the nonlinear term. It is,
indeed, an open problem to characterize the weak limit of any sequence of the Na-
vier–Stokes system when the viscosity goes to zero, even in the whole space case
(see [21,24]). The second classical method consists of trying to work with strong
solutions in Sobolev spaces. In the case of the whole space (or the case there is
no boundary) this approach yields a uniform time of existence and convergence
towards a solution of the Euler system (see [17,25,34]). The problem is that due
to the presence of a boundary the time of existence Tε depends on the viscosity,
and one often cannot prove that it stays bounded away from zero. Nevertheless, in
a domain with boundaries, for some special types of Navier boundary conditions
or boundaries, some uniform H3 (or W 2,p, with p large enough) estimates and
a uniform time of existence for Navier–Stokes when the viscosity goes to zero
have recently been obtained (see [4,5,38]). As we shall see below, for these special
boundary conditions, the main part of the boundary layer vanishes, which allows
this uniform control in some limited regularity Sobolev space.

Here, our approach can be seen as intermediate between these two cases, since
we shall get strong solutions but control many tangential derivatives and only one
normal derivative. This control is compatible with the presence of a boundary layer
when the viscosity goes to zero.

To understand the difficulties in the presence of boundaries, one can use for-
mal boundary layer expansions. The solution uε of (1), (2) is expected to have the
following expansion

uε(t, x) = u(t, x)+ √
ε V (t, y, z/

√
ε)+ O(ε) (4)
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(we assume that (y, z) ∈ � = R
2 × (0,+∞) to simplify this heuristic part), where

V is a smooth profile which is rapidly decreasing in its last variable. Note that
rigorous constructions of such expansions have been performed in [15] where it
was also proven that the remainder is indeed O(ε) in L2. With such an expansion,
we immediately get that in the simplest space where the 3-D Euler equation is
well-posed, namely Hs, s > 5/2, the norm of uε cannot be uniformly bounded
because of the profile V . For some special Navier boundary conditions considered
in [4,5,38], the leading profile V vanishes and hence uniform H3 or W 2,p, p > 3
estimates have been obtained. Nevertheless, as pointed out in [15], in the generic
case, V does not vanish.

We shall prove in this paper that, in the general case, we can indeed achieve the
above program by working in anisotropic conormal Sobolev spaces. Again, because
of (4), we can hope for uniform control of one normal derivative of the solution
in L∞ and thus a control of the Lipschitz norm of the solution; hence, it seems
reasonable to be able to recover in the limit the well-posedness of the Euler equa-
tion. The situation is thus also different from the case of the “non-characteristic”
Dirichlet condition where boundary layers are of size ε but of amplitude 1. In this
situation, one can prove the L2 convergence in some stable cases, but since strong
compactness in the normal variable cannot be expected, the proof uses, in a crucial
way, construction of an asymptotic expansion and control of the remainder. We
refer for example to [8–11,23,26,29–31,37]. The drawbacks of this approach are
that it requires a priori knowledge of the well-posedness of the limit problem and
that it requires the solution of the limit problem to be smoother than the one of the
viscous problem (which is not very natural). Finally, let us mention that for some
problems where only the normal viscosity vanishes, it is also possible to use weak
compactness arguments [32].

We shall thus reach a situation where the formal expansion, under the form (4),
is the existence of strong solutions for the viscous and the inviscid problem in the
same appropriate functional framework, and we can justify the vanishing viscosity
limit by a strong compactness argument. In some sense, we want to use the same
approach on a boundary layer problem that is classically used in singular oscil-
latory limits (as the compressible-incompressible limit, see [20,28] for example),
where the existence of a strong solution on an interval of time independent of the
small parameter is proven first, then the convergence is studied in a second step.
To go further in the analogy, we can think of boundary layer problems with formal
expansions as (4) as analogous to well-prepared problems.

We consider a domain � ⊂ R
3 such that there exists a covering of � under

the form � ⊂ �0 ∪n
i=1 �i , where �0 ⊂ � and in each �i there exists a func-

tion ψi such that � ∩ �i = {(x = (x1, x2, x3), x3 > ψi (x1, x2)} ∩ �i and
∂� ∩ �i = {x3 = ψi (x1, x2)} ∩ �i . We say that � is Cm if the functions ψi

are Cm.
To define Sobolev conormal spaces, we consider (Zk)1�k�N a finite set of

generators of vector fields that are tangent to ∂�, and we set

Hm
co(�) = {

f ∈ L2(�), Z I f ∈ L2(�), |I | � m
}
,
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where for I = (k1, . . . , km),

Z I = Zk1 · · · Zkm .

We also set

‖ f ‖2
m =

∑

|I |�m

‖Z I f ‖2
L2 .

For a vector field, u, we shall say that u is in Hm
co(�) if each of its components is

in Hm
co, and thus

‖u‖2
m =

3∑

i=1

∑

|I |�m

‖Z I ui‖2
L2 .

In the same way, we set

‖u‖k,∞ =
∑

|I |�m

‖Z I u‖L∞

and we say that u ∈ W k,∞
co if ‖u‖k,∞ is finite.

Throughout the paper, we shall denote by ‖ ·‖W k,∞ the usual Sobolev norm and
use the notations ‖ · ‖ and (·, ·) for the L2 norms and scalar products. The notation
| · |Hm (∂�) will be used for the standard Sobolev norm of functions defined on ∂�.
Note that this norm involves derivatives only along the boundary.

Inside�, the ‖·‖m norm yields a control of the standard Hm norm, whereas close
to the boundary there is no control of the normal derivatives. The use of conormal
Sobolev spaces has a long history in (hyperbolic) boundary value problems; we
refer for example to [2,12,13,16,35] and references therein.

Let us set Em = {u ∈ Hm
co, ∇u ∈ Hm−1

co }. Our main result is the following:

Theorem 1. Let m be an integer satisfying m > 6 and � be a Cm+2 domain. Con-
sider u0 ∈ Em such that ∇u0 ∈ W 1,∞

co and ∇ · u0 = 0, u0 · n/∂� = 0. Then, there
exists T > 0 such that for every ε ∈ (0, 1) and α, |α| � 1, there exists a unique
uε ∈ C([0, T ], Em) such that ‖∇uε‖1,∞ is bounded on [0, T ] solution of (1), (2)
with initial data u0. Moreover, there exists C > 0 independent of ε and α such that

sup
[0,T ]

(
‖uε(t)‖m + ‖∇uε(t)‖m−1 + ‖∇uε(t)‖1,∞

)

+ ε
∫ T

0
‖∇2uε(s)‖2

m−1 ds � C. (5)

Note that the uniqueness part is obvious since we work with functions with
Lipschitz regularity. The fact that we need to control ‖∇uε‖1,∞ in addition to the
Lipschitz norm is classical in characteristic hyperbolic problems when one tries to
work with the minimal normal regularity; we refer for example to [12]. The same
remark holds for the required regularity; the same restriction on m holds in the case
of general characteristic hyperbolic problems studied in [12]. It may be possible to
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improve this by using the structure of the incompressible equations more precisely.
The fact that we need to control m − 1 conormal derivatives for ∂nuε and not only
m −2 is linked to the control of the pressure in our incompressible framework. The
regularity of the domain that we require is also mainly due to the estimate of the
pressure; this is the classical regularity in order to estimate the pressure in the Euler
equation (see [36] for example). Another important remark is that in proving The-
orem 1, we get a uniform existence time for the solution of (1), (2) without using
the idea that a solution of the Euler equation exists. In particular, we shall obtain,
by passing to the limit, that the Euler equation is well-posed in the same functional
framework. We hope to be able to use this approach on more complicated problems
where it is much easier to prove local well-posedness for the viscous problem than
for the inviscid one.

Note that for the solution of (1) that we construct, the trace on the boundary of
the gradient of the solution is not continuous in time. Therefore, we do not need to
assume that the initial data satisfy the second part of the Navier boundary condition
(2). Nevertheless, it is also possible to prove that in the case in which the initial data
are Hs and satisfy some suitable compatibility conditions, we can deduce from the
estimate (5) and the regularity result for the Stokes problem that uε is in the standard
Hs Sobolev space on [0, T ]. Nevertheless, higher order normal derivatives will not
be uniformly bounded in ε.

The main steps of the proof of Theorem 1 are the following. We shall first find
a conormal energy estimate in Hm

co for the velocity uε which is valid as long as
the Lipschitz norm of the solution is controlled. The second step is to estimate
‖∂nuε‖m−1. In order to obtain this estimate by an energy method, ∂nuε is not a
convenient quantity, since it does not vanish on the boundary. Nevertheless, we
observe that ∂nuε · n can be immediately controlled thanks to the control of uε in
Hm

co and the incompressibility condition. Moreover, due to the Navier condition
(2), it is convenient to study η = (Suε n +αuε

)
τ
. Indeed, it vanishes on the bound-

ary and gives us control of (∂nuε)τ . We shall thus prove a control of ‖η‖m−1 by
performing energy estimates on the equation solved by η. This estimate will be
valid as long as ‖∇uε(t)‖1,∞ remains bounded. The third step is to estimate the
pressure. Indeed, since the conormal fields Zi do not commute with the gradient,
the pressure is not transparent in the estimates. We shall prove that the pressure
can be split into two parts, the first of which has the same regularity as in the Euler
equation and the second of which is linked to the Navier condition. Finally, the last
step is to estimate ‖∇uε(t)‖1,∞ and, actually, ‖(∂nuε)τ‖1,∞, since the other terms
can be controlled by Sobolev embedding. To perform this estimate we shall again
choose an equivalent quantity which satisfies a homogeneous Dirichlet condition
and solves a convection diffusion equation at leading order. The estimate will be
obtained by using the fundamental solution of an approximate equation.

Once Theorem 1 is obtained, we can easily get the inviscid limit:

Theorem 2. Let m be an integer satisfying m > 6 and � be a Cm+2 domain. Con-
sider u0 ∈ Em such that ∇u0 ∈ W 1,∞

co ,∇ · u0 = 0, u0 · n/∂� = 0 and uε the
solution of (1), (2) with initial value u0 given by Theorem 1. Then there exists a
unique solution to the Euler system (3), u ∈ L∞(0, T, Em) such that ‖∇u‖1,∞ is
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bounded on [0, T ] and such that

sup
[0,T ]

(‖uε − u‖L2 + ‖uε − u‖L∞
) → 0

when ε tends to zero.

We shall obtain Theorem 2 by a classical strong compactness argument. Note
that the L∞ convergence was not obtained in [14,15]. It does not seem possible to
obtain such a convergence through a modulated energy type argument.

Note that if � is not bounded, the above convergences hold on every compact
of �.

The paper is organized as follows: in Section 3, we shall first explain the main
steps of the proof of Theorem 1 in the simpler case where � is the half-space
R

2 × (0,+∞). This allows us to present the analytical part of the proof without
complications coming from the geometry of the domain. The general case will be
treated in Section 4. Finally, Section 6 is devoted to the proof of Theorem 2.

2. A First Energy Estimate

In this section, we first recall the basic a priori L2 energy estimate which holds
for (1), (2).

Proposition 3. Consider a (smooth) solution of (1), (2); then we have for every
ε > 0 and α ∈ R,

d

dt

(1

2
‖u‖2) + 2 ε ‖Su‖2 + 2αε|uτ |2L2(∂�)

= 0.

Note that the notation |v|L2(∂�) stands for |γ v|L2(∂�) where γ is the trace operator
on ∂�.

Proof. By using (1), we obtain:

d

dt

(1

2
‖u‖2) = (ε�u, u)− (∇ p, u)− (u · ∇u, u),

where (·, ·) stands for the L2 scalar product. Next, thanks to integration by parts
and the boundary condition (2), we find

(∇ p, u) =
∫

∂�

p u · n −
∫

�

p ∇ · u = 0,

(u · ∇u, u) =
∫

∂�

|u|2
2

u · n = 0,

(ε�u, u) = 2ε(∇ · Su, u) = −2ε‖Su‖2 + 2ε
∫

∂�

(
(Su) · n

) · u dσ.

Finally, we get from the boundary condition (2) that
∫

∂�

(Su · n) · u =
∫

∂�

(
(Su) · n

)
τ

· uτ = −α
∫

∂�

|uτ |2 dσ.

��
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Remark 4. Note that if � is a Lipschitz domain, we get from the Korn inequality
that for some C� > 0, we have for every H1 vector field u which is tangent to the
boundary that

‖∇u‖2 � C�
(‖S u‖2 + ‖u‖2).

Consequently, we deduce from Proposition 3 that

d

dt

(1

2
‖u‖2) + εc�‖∇u‖2 + αε|uτ |2L2(∂�)

� εC�‖u‖2. (6)

If α � 0, this always provides a good energy estimate.

Remark 5. Even if α � 0, we get from the trace Theorem that there exists C > 0
independent of ε such that

|uτ |2L2(∂�)
� C‖∇u‖ ‖u‖ + ‖u‖2,

and, hence, we find by using the Young inequality

ab � δa2 + 1

4δ
b2, a, b � 0, δ > 0 (7)

that

d

dt

(1

2
‖u‖2) + ε

2
c� ‖∇u‖2 + ε|uτ |2L2(∂�)

� 2 C2ε (α2 + 1)‖u‖2. (8)

Consequently, if α is such that εα2 � 1, we still get a uniform L2 estimate from
the Gronwall Lemma.

3. The Case of a Half-Space: � = R
3+

In order to avoid complications due to the geometry of the domain in obtaining
higher order energy estimates, we shall first give the proof of Theorem 1 in the
case where � is the half space � = R

2 × (0,+∞). We shall use the notation
x = (y, z), z > 0 for a point x in �. To define the conormal Sobolev spaces, it
suffices to use Zi = ∂i , i = 1, 2 and Z3 = ϕ(z)∂z , where ϕ(z) is any smooth
bounded function such that ϕ(0) = 0, ϕ′(0) �= 0 and ϕ(z) > 0 for z > 0 (for
example, ϕ(z) = z(1 + z)−1 fits). Consequently, we have

‖u‖2
m =

∑

|α|�m

‖Zαu‖2
L2 , ‖u‖2

k,∞ =
∑

|α|�k

‖Zαu‖L∞ ,

where Zα = Zα1
1 Zα2

2 Zα3
3 u.

Throughout this section, we shall focus on the proof of a priori estimates for a
sufficiently smooth solution of (1), (2) in order to get (5). We use the symbol � for
� C where C is a positive number which may change from line to line but which
is independent of ε and α for ε ∈ (0, 1) and |α| � 1. We shall use the notation
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z = x3 and y = (y1, y2) = (x1, x2) for x = (y, z) ∈ � = R
2 × (0, 1). We also set

∇y = ∇h = (∂1, ∂2)
t ,�h = �y = ∂2

1 + ∂2
2 .

Note that throughout the paper, the letter α may stand either for the parameter
in the Navier boundary condition (2) or for a multi-index when we use the notation
Zα . The meaning to be chosen should be clear from the context.

The aim of this section is to prove the following a priori estimate in the case of
the half space, which is a crucial step towards the proof of Theorem 1.

Theorem 6. For m > 6, there exists C > 0 independent of ε ∈ (0, 1] andα, |α| � 1
such that, for every sufficiently smooth solution defined on [0, T ] of (1), (2) in
� = R

2 × (0,+∞), we have the a priori estimate

Nm(t) � C
(

Nm(0)+ (1 + t + ε3t2)

∫ t

0

(
Nm(s)+ Nm(s)

2)ds
)
, ∀t ∈ [0, T ],

where

Nm(t) = ‖u(t)‖2
m + ‖∇u(t)‖2

m−1 + ‖∇u‖2
1,∞.

3.1. Conormal Energy Estimate

Proposition 7. For every m � 0, a smooth solution of (1), (2) satisfies the estimate

d

dt
‖u(t)‖2

m + c0 ε ‖∇u‖2
m

� ‖∇ p‖m−1‖u‖m + (
1 + ‖u‖W 1,∞

)(‖u‖2
m + ‖∂zu‖2

m−1

)

for some c0 > 0 independent of ε.

Note that we use the convention that ‖ · ‖k = 0, for k < 0 so that the term
involving the pressure and the last term in the above estimate do not show up when
m = 0.

Proof of Proposition 7 In the proof, we shall use the notation x = (y, z) ∈
R

2 × (0,+∞), u = (uh, u3) ∈ R
2 × R.

The case m = 0 simply follows from Proposition 3 and Remark 5, and the term
containing the pressure does not appear. For higher order derivatives estimates, we
apply Zα to (1) for |α| = m to obtain that

∂t Zαu + u · ∇Zαu + ∇Zα p = ε�Zαu + C, (9)

where the term C involving commutators can be written as

C =
3∑

i=1

Ci ,

where

C1 = −[Zα, u · ∇]u, C2 = −[Zα,∇]p, C3 = ε[Zα,�]u. (10)
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From the divergence free condition in (1), we get

∇ · Zαu = Cd , Cd = −[Zα,∇·]u. (11)

Finally, let us notice that from the boundary condition (2), which in the case of a
half-space reads explicitly

u3 = 0, ∂zuh = 2αuh, x ∈ ∂�, (12)

we get

Zαu3 = 0, ∂z Zαuh = 2αZαuh + Cb, Cb = ([∂z, Zα]uh
)
/∂�
, x ∈ ∂�. (13)

As in the proof of Proposition 3 and Remark 5, we get from the standard energy
estimate and the boundary condition (13):

d

dt

(1

2
‖Zαu‖2) + ε‖∇Zαu‖2 + ε|Zαuh |2L2(∂�)

�
∣
∣(C, Zαu

)∣∣ + ∣
∣(Zα p, Cd

)| + ε|Cb|L2(∂�) |Zαuh |L2(∂�) + ‖u‖2
m . (14)

Indeed, since ∇ · u = 0, u3 = 0, and Zαu3 = 0 on ∂�, we have that
(
u · ∇Zαu, Zαu

) = 0,
(∇Zα p, Zαu

) = −(
Zα p, Cd

)
.

Note that when ∂� is not flat, the boundary condition (2) does not imply that
Zαu · n = 0 on ∂�, thus a boundary term shows up in the integration by parts and
hence the estimate for the term involving the pressure will be worse (see the next
section).

To estimate the third term in the right-hand side of (14), we can use the trace
theorem and the Young inequality as in Remark 5 to obtain

ε|Cb|L2(∂�) |Zαuh |L2(∂�) � 1

2
ε‖∇Zαu‖2 + C‖u‖2

m + Cε|Cb|2L2(∂�)
.

Hence, we find

d

dt

(1

2
‖Zαu‖2) + 1

2
ε‖∇Zαu‖2 + ε|Zαuh |2L2(∂�)

� ‖u‖2
m + ∣

∣(C, Zαu
)∣∣ + ε|Cb|2L2(∂�)

+ ∣
∣(Zα p, Cd

)|. (15)

To conclude, we need to estimate the commutators. First, since

[Z3,∇·]u = −ϕ′∂zu3 = ϕ′∇h · uh

thanks to the divergence free condition and [Zi ,∇·] = 0 for i = 1, 2, we easily
get that for m � 1,

‖Cd‖ � ‖u‖m (16)

and, hence, we obtain
∣
∣(Zα p, Cd

)| � ‖u‖m‖∇ p‖m−1. (17)
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We also get that
([∂z, Zi ]uh

)
/∂�

= 0, i = 1, 2,
([∂z, Z3]uh

)
/∂�

= (
ϕ′∂zuh

)
/∂�
,

since ϕ vanishes on the boundary. Therefore, from (12), we get
([∂z, Z3]uh

)
/∂�

= 2α
(
ϕ′uh

)
/∂�
.

By using this last property and the fact that ϕ vanishes on the boundary, we find

|Cb|L2(∂�) � |u/∂�|Hm−1(∂�)

and, hence, we get from the trace theorem that

ε|Cb|2L2(∂�)
� ε‖∂zu‖m−1 ‖u‖m−1. (18)

It remains to estimate C. First, we observe that

‖C2‖ � ‖∇ p‖m−1. (19)

Next, since we have

[Zi ,�] = 0, [Z3,�]u = −2ϕ′ ∂zzu − ϕ′′∂zu,

we also get, by using this property repeatedly, that
∣
∣(C3, Zαu

)∣∣ � C̃3 + ε‖∂zu‖m−1‖u‖m + ‖u‖2
m,

where C̃3 is given by

C̃3 =
∑

β, 0�|β|�m−1

ε
∣
∣(cβ∂zz Zβ3 u, Zαu

)∣∣

for some harmless functions cβ depending on derivatives of ϕ. To estimate C̃3, we
use integration by parts. If β �= 0, |β| �= 1, since ϕ vanishes on the boundary, we
immediately get that

ε
∣
∣(cβ∂zz Zβ3 u, Zαu

)∣∣ � ε
(‖∂zu‖m + ‖u‖m

) ‖∂zu‖m−1.

For β = 0 or |β| = 1, there is an additional term on the boundary, we have
∣
∣(cβ∂zz Zβu, Zαu

)∣∣ � ε
(‖∂zu‖m + ‖u‖m

) ‖∂zu‖m−1

+ε|∂zuh |L2(∂�) |Zαu|L2(∂�).

From the boundary condition (12) and the trace theorem, we also find

ε|∂zuh |L2(∂�) |Zαu|L2(∂�) � ε|u|L2(∂�) |Zαu|L2(∂�) � ε‖∂zu‖m‖u‖m .

Consequently, we have proved that
∣
∣(C3, Zαu

)∣∣ � ε‖∂zu‖m
(‖∂zu‖m−1 + ‖u‖m

) + ‖u‖2
m + ‖∂zu‖2

m−1. (20)
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It remains to estimate C1. By an expansion, we find that C1 is under the form

C1 =
∑

β+γ=α, β �=0

cβ,γ Zβu · Zγ∇u + u · [Zα,∇]u. (21)

To estimate the last term, we first observe that

‖u · [Zα,∇]u‖ �
∑

|β|�m−1

‖u3∂z Zβu‖, (22)

and then we see that because of the first boundary condition in (12) we have

|u3(t, x)| � ϕ(z)‖u3‖W 1,∞ .

This yields

‖u · [Zα,∇]u‖ � ‖u3‖W 1,∞ ‖u‖m . (23)

To estimate the other terms, we can use the following generalized Sobolev–Gagliardo–
Nirenberg–Moser inequality; we refer for example to [12] for the proof:

Lemma 8. For u, v ∈ L∞ ∩ Hk
co , we have

‖Zα1 u Zα2v‖ � ‖u‖L∞ ‖v‖k + ‖v‖L∞‖u‖k, |α1| + |α2| = k. (24)

For β �= 0, this immediately yields

‖cβ,γ Zβu · Zγ∇u‖
� ‖Zβuh · Zγ∇hu‖ + ‖Zβu3 · Zγ ∂zu‖
� ‖Zu‖L∞ ‖u‖m + ‖Zu‖L∞ ‖∂zu‖m−1 + ‖∂zu‖L∞‖Zu3‖m−1

� ‖∇u‖L∞
(‖u‖m + ‖∂zu‖m−1

)
. (25)

Hence, we find the estimate

‖C1‖ � ‖∇u‖L∞
(‖u‖m + ‖∂zu‖m−1

)
. (26)

From (15) and (17), (18), (19), (20), (26) and the remark (5), we find

d

dt

(1

2
‖u‖2

m

) + 1

2
ε‖∇u‖2

m � ε‖∂zu‖m
(‖∂zu‖m−1 + ‖u‖m

)

+‖u‖2
m + ‖∇ p‖m−1‖u‖m + (

1 + ‖u‖W 1,∞
)(‖u‖2

m + ‖∂zu‖2
m−1

)
.

To get the result, it suffices to use the Young inequality to absorb the term ε‖∂zu‖m

in the left-hand side. This ends the proof of Proposition 7.
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3.2. Normal Derivative Estimates

In this section, we shall provide an estimate for ‖∂zu‖m−1.
A first useful remark is that because of the divergence free condition we have

‖∂zu3‖m−1 � ‖u‖m . (27)

Consequently, it suffices to estimate ∂zuh . Let us introduce the vorticity

ω = curl u =
⎛

⎝
∂2u3 − ∂3u2
∂3u1 − ∂1u3
∂1u2 − ∂2u1

⎞

⎠ ,

which solves

∂tω + u · ∇ω − ω · ∇u = ε�ω, x ∈ �. (28)

On the boundary, we find, thanks to (12), that

ωh = 2α u⊥
h , x ∈ ∂�,

where u⊥
h = (−u2, u1)

t . This leads us to introduce the unknown

η = ωh − 2α u⊥
h .

Indeed, the main advantages of this quantity is that on the boundary, we have

η = 0, x ∈ ∂� (29)

and that we have the estimate

‖∂zuh‖m−1 � ‖u‖m + ‖η‖m−1. (30)

Consequently, we shall estimate ‖η‖m−1 in this section. We have the following
result:

Proposition 9. For every m � 1, every smooth solution of (1), (2), satisfies the
following estimate:

d

dt
‖η(t)‖2

m−1 + c0 ε‖∇η‖2
m−1

� ‖∇ p‖m−1‖η‖m−1 + (
1 + ‖u‖2,∞ + ‖∂zu‖1,∞

)(‖η‖2
m−1 + ‖u‖2

m

)
.
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Proof of Proposition 9 From the definition of η, we find that it solves the equation

∂tη + u · ∇η − ε�η = ω · ∇uh + 2α∇⊥
h p, (31)

with the boundary condition (29). By a standard L2 energy estimate, we find

d

dt

1

2
‖η(t)‖2 + ε‖∇η‖2 �

(
‖∇ p‖ ‖η‖ + ‖ω · ∇uh‖‖η‖

)
.

Furthermore, by using that

‖ω · ∇uh‖ � ‖∇u‖L∞ ‖ω‖ � ‖∇u‖L∞
(‖η‖ + ‖u‖1

)
,

we find the result for m = 1.
Now, let us assume that Proposition (9) is proven for k � m − 2. We shall now

estimate ‖η‖m−1. By applying Zα for |α| = m − 1 to (31), we find

∂t Zαη + u · ∇Zαη − ε�Zαη = Zα
(
ω · ∇uh

) + 2αZα∇⊥
h p + C, (32)

where C is the commutator:

C = C1 + C2, C1 = [Zα, u · ∇]η, C2 = −ε[Zα,�]η.
Since Zαη vanishes on the boundary, the standard L2 energy estimate for (32)
yields

d

dt

1

2
‖η(t)‖2

m−1 + ε‖∇η‖2
m−1

� ‖∇ p‖m−1‖η‖m−1 + ‖ω · ∇uh‖m−1‖η‖m−1 + |(C, Zαη
)∣∣

)
. (33)

To estimate the terms in the right-hand side, we first write, thanks to Lemma 8, that

‖ω · ∇uh‖m−1 � ‖ω‖L∞
(‖uh‖m + ‖∂zuh‖m−1

) + ‖∇uh‖L∞‖ω‖m−1

� ‖∇u‖L∞
(‖u‖m + ‖η‖m−1

)
. (34)

Note that we have again used (30) to get the last line.
Next, we need to estimate the commutator C. As for (20), we first get, from

integration by parts since Zαη vanishes on the boundary, that

|(C2, Zαη
)∣∣ � ε‖∂zη‖m−1

(‖∂zη‖m−2 + ‖η‖m−1
) + ‖η‖2

m−1. (35)

It remains to estimate C1, which is the most difficult term. We can again write

C1 =
∑

β+γ=α, β �=0

cβ,γ Zβu · Zγ∇η + u · [Zα,∇]η.

To estimate the last term, we first observe that

‖u · [Zα,∇]η‖ �
∑

k�m−2

‖u3∂z Zk
3η‖.
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By using again that

|u3(t, x)| � ϕ(z)‖u3‖W 1,∞ , (36)

we find

‖u · [Zα,∇]η‖ � ‖u3‖W 1,∞ ‖η‖m−1.

To estimate the other terms in the commutator, we write

‖cβ,γ Zβu · Zγ∇η‖ � ‖Zβuh · Zγ∇hη‖ + ‖Zβu3 Zγ ∂zη‖.
Thanks to Lemma 8 we have, since β �= 0 that

‖Zβuh · Zγ∇hη‖ � ‖∇u‖L∞‖η‖m−1 + ‖η‖L∞‖Zu‖m−2

� ‖∇u‖L∞
(‖η‖m−1 + ‖u‖m

)
.

The remaining term is the most involved. We want to get an estimate for which ∂zη

does not appear. Indeed, due to the expected behaviour in the boundary layer (4),
one cannot hope for an estimate which is uniform in ε for ‖∂zη‖L∞ or ‖∂zη‖m .We
first write

Zβu3 Zγ ∂zη = 1

ϕ(z)
Zβu3 ϕ(z)Z

γ ∂zη

and then we can expand this term as a sum of terms under the form

cβ̃,γ̃ Z β̃
(

1

ϕ(z)
u3

)
Z γ̃

(
ϕ∂zη

)
,

where β̃ + γ̃ � m − 1, |γ̃ | �= m − 1 and cβ̃,γ̃ is some smooth bounded coefficient.
Indeed, we first notice that Zαϕ has the same properties as ϕ, thus the commutator
[ϕ, Zγ ] can be expanded under the form ϕ̃γ̃ Z γ̃ with |γ̃ | < |γ | where ϕ̃γ̃ have the
same properties as ϕ. Then, we can write

ϕ̃γ̃ Z γ̃ = ϕ̃γ̃

ϕ

(
Z γ̃

(
ϕ · ) + [ϕ, Z γ̃ ]

)
,

where the coefficient ϕ̃γ̃ /ϕ is smooth and bounded. Finally, we reiterate the process
to express the commutators [ϕ, Z γ̃ ]. Hence, after a finite number of steps, we indeed
get that [ϕ, Zγ ] can be expanded as a sum of terms under the form cγ̃ Z γ̃

(
ϕ ·) where

cγ̃ is smooth and bounded. In a similar way, we note that Zα(1/ϕ) has the same
properties as 1/ϕ and hence, by the same argument, we get that the commutator
[1/ϕ, Zβ ] can be expanded as a sum of terms under the form cβ̃ Z β̃

( 1
ϕ

· )
.

If β̃ = 0, and hence |γ̃ | � m − 2, we have
∥
∥
∥
∥Z β̃

(
1

ϕ(z)
u3

)
Z γ̃ Z3η

∥
∥
∥
∥ �

∥
∥
∥
∥

1

ϕ(z)
u3

∥
∥
∥
∥

L∞
‖η‖m−1.
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Moreover, since u3 vanishes on the boundary, we have
∥
∥
∥
∥

1

ϕ(z)
u3

∥
∥
∥
∥

L∞
� ‖u‖W 1,∞ .

We have thus proven that for β̃ = 0,
∥
∥
∥
∥Z β̃

(
1

ϕ(z)
u3

)
Z γ̃ Z3η

∥
∥
∥
∥ � ‖u‖W 1,∞‖η‖m−1.

Next, for β̃ �= 0, we can use Lemma 8 to get
∥
∥
∥
∥Z β̃

(
1

ϕ(z)
u3

)
Z γ̃ Z3η

∥
∥
∥
∥ �

∥
∥
∥
∥Z

(
1

ϕ(z)
u3

)∥
∥
∥
∥

L∞
‖Z3η‖m−2

+
∥
∥
∥
∥Z

(
1

ϕ(z)
u3

)∥
∥
∥
∥

m−2
‖Zη‖L∞ .

And hence, since Zαu3 vanishes on the boundary, we get from the Hardy inequality
that

∥
∥
∥
∥Z

( 1

ϕ(z)
u3

)
∥
∥
∥
∥

m−2
� ‖∂zu3‖m−1.

Indeed, for i = 1, 2, we directly get that
∥
∥
∥
∥Zi

(
1

ϕ(z)
u3

)∥
∥
∥
∥

m−2
=

∥
∥
∥
∥

1

ϕ(z)
Zi u3

∥
∥
∥
∥

m−2
� ‖∂zu3‖m−1.

For i = 3, since Z3(
1
ϕ
) have the same properties as 1/ϕ, we have

∥
∥
∥
∥Z3

(
1

ϕ(z)
u3

)∥
∥
∥
∥

m−2
�

∥
∥
∥
∥

1

ϕ(z)
Z3u3

∥
∥
∥
∥

m−2
+

∥
∥
∥
∥

1

ϕ(z)
u3

∥
∥
∥
∥

m−2

and hence the Hardy inequality yields
∥
∥
∥
∥Z3

(
1

ϕ(z)
u3

)∥
∥
∥
∥

m−2
� ‖∂z Z3u3‖m−2 + ‖∂zu3‖m−2 � ‖∂zu3‖m−1.

By using the divergence free condition again, we get that
∥
∥
∥Z

( 1

ϕ(z)
u3

)∥
∥
∥

m−2
� ‖∂zu3‖m−1 � ‖u‖m .

Consequently, by also using also
∥
∥
∥Z

( 1

ϕ
u3

)∥
∥
∥

L∞ � ‖∂zu3‖1,∞ � ‖u‖2,∞

(where we have used again the first part of the boundary condition in (2) and the
divergence free condition), we obtain that

∥
∥
∥Z β̃

( 1

ϕ(z)
u3

)
Z γ̃ Z3η

∥
∥
∥ �

(‖u‖2,∞ + ‖Zη‖L∞
)(‖η‖m−1 + ‖u‖m

)
.
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We have thus proved that

‖C1‖ �
(‖u‖2,∞ + ‖u‖W 1,∞ + ‖Zη‖L∞

)(‖η‖m−1 + ‖u‖m
)
. (37)

To end the proof of Proposition 9, it suffices to collect (33), (34) (35) and (37).
Note that

‖Zη‖L∞ � ‖u‖2,∞ + ‖∂zu‖1,∞.

3.3. Pressure Estimates

It remains to estimate the pressure and the L∞norms in the right-hand side of
the estimates of Propositions 9 and 7.

The aim of this section is to give the estimate of ‖∇ p‖m−1.

Proposition 10. For every m � 2, there exists C > 0 such that for every ε ∈ (0, 1],
a smooth solution of (1), (2) on [0, T ] satisfies the estimate

‖∇ p(t)‖m−1 � C
(
ε‖∇u(t)‖m−1 + (1 + ‖u(t)‖W 1,∞)

(‖u(t)‖m + ‖∂zu(t)‖m−1

)

for every t ∈ [0, T ].
Note that by combining Proposition 10, Proposition 7, Proposition 9 and (27), (30),
we find that

‖u(t)‖2
m + ‖∂zu(t)‖2

m−1 + ε

∫ t

0

(‖∇u‖2
m + ‖∇2u‖2

m−1

)

� ‖u0‖2
m + ‖∂zu0‖2

m−1 +
∫ t

0

(
1 + ‖u‖2,∞ + ‖∂zu‖1,∞

)(‖∂zu‖2
m−1 + ‖u‖2

m

)
.

(38)

In particular, we see from this estimate that it only remains to control ‖u‖2,∞ +
‖∂zu‖1,∞.

The proof of Proposition 10 relies on the following estimate for the Stokes
problem in a half-space. Consider the system

∂t u − ε�u + ∇ p = F, ∇ · u = 0, z > 0, (39)

with the Navier boundary condition (2), which reads

u3 = 0, ∂zuh = 2αuh, z = 0, (40)

where F is some given source term.
We have the following estimates for the Stokes problem.

Theorem 11. For every m � 2, there exists C > 0 such that for every t � 0, we
have the estimate

‖∇ p‖m−1 � C
(
‖F‖m−1 + ‖∇ · F‖m−2 + ε‖∇u‖m−1 + ‖u‖m−1

)
.

The proof can be obtained from standard elliptic regularity results. Nevertheless,
in the case of a half-space, the proof follows easily from explicit computations in
the Fourier side. We shall thus sketch the proof for the sake of completeness.
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Proof of Theorem 11 By taking the divergence of (39), we get that p solves

�p = ∇ · F, z > 0.

Note that in this proof, the time will be only a parameter; for notational convenience,
we shall not state explicitly that all the involved functions depend on it.

From the third component of the velocity equation, we get that

∂z p(y, 0) = ε∂zzu3(y, 0)+ ε�hu3(y, 0)− ∂t u3(y, 0)+ F3(y, 0). (41)

From the boundary condition for the velocity, we have that

�hu3(y, 0) = 0, ∂t u3(y, 0) = 0.

Moreover, by applying ∂z to the divergence free condition, we get that

∂zzu3(y, 0) = −∇h · ∂zuh(y, 0)

and hence from the second boundary condition in (40), we obtain

∂zzu3(y, 0) = −2α∇h · uh .

Consequently, we can use (41) to express the pressure on the boundary and we
obtain the following elliptic equation with the Neumann boundary condition for
the pressure:

�p = ∇ · F, z > 0, ∂z p(y, 0) = −2αε∇h · uh(y, 0)+ F3(y, 0). (42)

Note that we can express p as p = p1 + p2 where p1 solves

�p1 = ∇ · F, z > 0, ∂z p1(y, 0) = F3(y, 0), (43)

and p2 solves

�p2 = 0, z > 0, ∂z p2(y, 0) = 2αε∇h · uh(y, 0). (44)

The meaning of this decomposition is that p1 corresponds to the gradient part of
the usual Leray–Hodge decomposition of the vector field F , whereas p2 is purely
determined by the Navier boundary condition. The desired estimates for p1 and p2
can be obtained from standard elliptic theory. In the case of our very simple geom-
etry, the proof is very easy thanks to the explicit representation of the solutions in
Fourier space.

To estimate p1, we can use an explicit representation of the solution in Fourier
space (we refer for example to the appendix of [26]). By taking the Fourier transform
in the (x1, x2) variable, we get that p̂1 solves

∂zz p̂1 − |ξ |2 p̂1 = iξ · F̂h + ∂z F̂3, z > 0, ∂z p̂1(ξ, 0) = F̂3(ξ, 0). (45)

Consequently the resolution of this ordinary differential equation gives

p̂1(ξ, z) =
∫ +∞

0
Gξ (z, z′)F̂(ξ, z′) dz′,
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where Gξ (z, z′) is defined as

Gξ (z, z′) = −
(

e−|ξ |z′ cosh(|ξ |z)
|ξ | iξ, e−|ξ |z′

cosh (|ξ |z)
)
, z < z′,

−
(

e−|ξ |z cosh(|ξ |z′)
|ξ | iξ, −e−|ξ |zsinh (|ξ |z′)

)
, z > z′.

Note that the product Gξ F̂ has to be understood as the product of a (1, 3) matrix
and a (3, 1) matrix.

In particular, we obtain that

∂z p̂1(ξ, z) =
∫ +∞

0
Kξ (z, z′)F̂(ξ, z′) dz′ + F̂3(ξ, z),

where Kξ (z, z′) is defined by

Kξ (z, z′) =
{
∂zGξ (z, z′), z < z′
∂zGξ (z, z′), z > z′.

Since

sup
z, ξ

(‖Kξ (z, ·)‖L1(0,+∞) + |ξ |‖Gξ (z, ·)‖L1(0,+∞)

)
< +∞

and

sup
z′, ξ

(‖Kξ (·, z′)‖L1(0,+∞) + |ξ |‖Gξ (·, z′)‖L1(0,+∞)

)
< +∞,

we get by using the Schur Lemma that

‖∂z p̂1(ξ, ·)‖L2(0,+∞) + |ξ |‖ p̂1(ξ, ·)‖L2(0,+∞) � C‖F̂(ξ, ·)‖L2(0,+∞),

where C does not depend on ξ . Hence, by using the Bessel identity, we obtain from
the previous estimate that

‖∇ p1‖L2 � ‖F‖L2 .

In a similar way, we get by multiplication in the Fourier side that

‖∇k
h p1‖ � ‖F‖k, ∀k � m − 1.

Moreover, by using (45), we also obtain that

‖∂zz p1‖k � ‖∇ · F‖k, ∀k � m − 2.

Consequently, since [∂zz, Z3] = ϕ′′∂z + 2ϕ′∂zz , the result for p1 follows easily by
applying Zα3

3 to (45) and by induction on α3. This yields, finally,

‖∇ p1‖m−1 � ‖F‖m−1 + ‖∇ · F‖m−2, (46)

which is the desired estimate for p1.
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Let us turn to the estimate of p2. Again, by using the Fourier transform, we can
explicitly solve (44). We obtain that

p̂2(ξ, z) = 2iαε
ξ

|ξ | · ûh(ξ, 0)e−|ξ |z . (47)

In particular, we get that

∣
∣
∣
(

iξ
∂z

)m−1 (
iξ
∂z

)
p2(ξ, ·)

∣
∣
∣
L2(R+)

� ε |α| |ξ |m− 1
2 |ûh(ξ, 0)|,

and hence, the Bessel identity yields

‖∇ p2‖m−1 � ε |α| ‖uh(·, 0)‖
Hm− 1

2 (R2)
.

From the Trace Theorem, we obtain

‖∇ p2‖m−1 � ε |α| ‖∇uh‖
1
2
m−1‖uh‖

1
2
m−1. (48)

Consequently, we can collect (46), (48) to get the result. This ends the proof of
Theorem 11. ��

Proof of Proposition 10 We can first use Theorem 11 with F = −u · ∇u to get

‖∇ p‖m−1 � ‖u · ∇u‖m−1 + ‖∇u · ∇u‖m−2 + ε‖∇u‖m−1 + ‖u‖m−1.

Since, by using Lemma 8 again, we have

‖u · ∇u‖m−1 � ‖u‖W 1,∞
(‖u‖m−1 + ‖∇u‖m−1

)

� ‖u‖W 1,∞
(‖u‖m + ‖∂zu‖m−1

)
,

and

‖∇u · ∇u‖m−2 � ‖∇u‖L∞ ‖∇u‖m−2,

the proof of Proposition 10 follows.

3.4. L∞ Estimates

In this section, we shall provide the L∞ estimates which are needed to estimate
the right-hand sides in the estimates of Propositions 7 and 9. Let us set

Qm(t) = ‖u(t)‖2
m + ‖η(t)‖2

m−1 + ‖η(t)‖2
1,∞. (49)

Note that Qm gives a control of ‖∂zu‖2
m−1, since

‖∂zu‖m−1 � ‖η‖m−1 + ‖u‖m . (50)
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Proposition 12. For m0 > 1, we have

‖u‖W 1,∞ � ‖u‖m0+2 + ‖η‖m0+1 + ‖η‖L∞ � Q
1
2
m(t), m � m0 + 2 (51)

‖u‖2,∞ � ‖u‖m0+3 + ‖η‖m0+2 � Q
1
2
m(t), m � m0 + 3, (52)

‖∇u‖1,∞ � ‖u‖m0+3 + ‖η‖m0+3 + ‖η‖1,∞ � Q
1
2
m(t), m � m0 + 3. (53)

From this proposition and (38), we see that we shall only need to estimate
‖η‖1,∞ in order to conclude.

Proof. We easily get (51), (52) and (53) from the anisotropic Sobolev embedding:

‖ f ‖2
L∞ �

∥
∥| f (·, z)|2Hm0 (R2)

∥
∥

L∞
z

� ‖∂z f ‖m0 ‖ f ‖m0 + ‖ f ‖2
m0
, (54)

where we use the notation
∥
∥| f (·, z)|2Hm0 (R2)

∥
∥2

L∞
z

= sup
z

| f (·, z)|2Hm0 (R2)
,

the divergence free condition which provides

|∂zu3(t, x)| � |∇huh(t, x)|,
and the fact that by definition of η, we have

|∂zuh(t, x)| � |∇hu3(t, x)| + |uh(t, x)| + |η(t, x)|.
��

We shall next estimate ‖η‖L∞ and ‖Zη‖L∞ .Note that we cannot estimate these
two quantities by using (54). Indeed, we do not expect ∂zη ∼ ∂zzu to be uniformly
bounded in conormal spaces in the boundary layer (recall that thanks to (4), u is
expected to behave as

√
εU (z/

√
ε, y) as shown in [15]). Consequently, we need

to use the properties of the equation for η more carefully to get these needed L∞
estimates directly. This is the aim of the following proposition.

Proposition 13. For m > 6, we have the estimate:

‖η(t)‖2
1,∞ � Q(0)+ (1 + t + ε3t2)

∫ t

0

(
Qm(s)

2 + Qm(s)
)

ds.

Proof of Proposition 13 The estimate of ‖η‖L∞ is a consequence of the maximum
principle for the transport-diffusion equation (31). Let us set

F = ω · ∇uh + 2α∇⊥
h p (55)

so that (31) reads

∂tη + u · ∇η = ε�η + F. (56)
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We obtain that

‖η(t)‖L∞ � ‖η0‖L∞ +
∫ t

0
‖F‖L∞ ,

and hence from the Cauchy–Schwarz inequality that

‖η(t)‖2
L∞ � ‖η0‖2

L∞ + t
∫ t

0
‖F‖2

L∞ . (57)

Next, we want to get a similar estimate for Ziη. The main difficulty is the estimate
of Z3η, since the commutator of this vector field with the Laplacian involves two
derivatives in the normal variable.

Let χ(z) be a smooth compactly supported function which takes the value one
in the vicinity of 0 and is supported in [0, 1]. We can write

η = χη + (1 − χ)η := ηb + ηint ,

where ηint is supported away from the boundary and ηb is compactly supported
in z.

Since 1 − χ and ∂zχ vanish in the vicinity of the boundary, and since our
conormal Hm norm is equivalent to the usual Hs norm away from the boundary,
we can write, thanks to the usual Sobolev embedding, that

‖ηint‖1,∞ � ‖κu‖Hs0 , s0 > 2 + 3

2
,

for some κ supported away from the boundary. Hence, we get that

‖ηint (t)‖1,∞ � ‖u‖m � Qm(t)
1
2 , m � 4. (58)

It only remains to estimate ηb. We first notice that ηb solves the equation

∂tη
b + u · ∇ηb = ε�ηb + χF + Cb, (59)

in the half-space z > 0 with the homogeneous Dirichlet boundary condition, where
Cb is the commutator

Cb = −2ε∂zχ ∂zη − ε∂zzχ η + u3∂zχ .

Note that again since ∂zχ and ∂zzχ are supported away from the boundary, we have,
from the usual Sobolev embedding, that

‖Cb‖1,∞ � ‖κu‖W 3,∞ � ‖κu‖Hs0 , s0 > 3 + 3

2
,

and, hence, that

‖Cb‖1,∞ � ‖u‖m � Q
1
2
m, m � 5. (60)

A crucial estimate towards the proof of Proposition (13) is the following:
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Lemma 14. Consider ρ a smooth solution of

∂tρ + u · ∇ρ = ε∂zzρ + S, z > 0, ρ(t, y, 0) = 0 (61)

for some smooth divergence free vector field u such that u · n = u3 vanishes on the
boundary. Assume that ρ and S are compactly supported in z. Then, we have the
estimate:

‖ρ(t)‖1,∞ � ‖ρ0‖1,∞

+
∫ t

0

((‖u‖2,∞ + ‖∂zu‖1,∞
)(‖ρ‖1,∞ + ‖ρ‖m0+3

) + ‖S‖1,∞
)

for m0 > 2.

Let us first explain how we can use the result of Lemma 14 to conclude. By
applying Lemma 14 to (59) with S = χF +Cb +ε�yη

b (where�y is the Laplacian
acting only on the y variable), we immediately get that

‖ηb(t)‖1,∞ � ‖η0‖1,∞

+
∫ t

0

((‖u‖2,∞ + ‖∇u‖1,∞
)(‖η‖1,∞ + ‖η‖m0+3

)

+‖Cb‖1,∞ + ‖F‖1,∞ + ε‖�yη
b‖1,∞

)
. (62)

Note that ‖Cb‖1,∞ is well controlled thanks to (60) and that thanks to Lemma 12,
we have

‖F‖1,∞ � ‖∇h p‖1,∞ + ‖ω‖1,∞‖∇u‖1,∞ � ‖∇h p‖1,∞ + Qm . (63)

From the anisotropic Sobolev embedding (54), we note that

‖∇h p‖1,∞ � ‖∇ p‖m−1

for m − 1 � m0 + 2 > 4. Finally, we also notice that thanks to another use of (54),
we have that

(
ε

∫ t

0
‖�yη

b‖1,∞
)2

� ε2
( ∫ t

0
‖∇2u‖

1
2
m−1 Q

1
4
m

)2 + ε2t
∫ t

0
Qm

� ε2t
( ∫ t

0
‖∇2u‖2

m−1

) 1
2
( ∫ t

0
Qm

) 1
2 + ε2t

∫ t

0
Qm

� ε

∫ t

0
‖∇2u‖2

m−1 + (ε2t + ε3t2)

∫ t

0
Qm

for m � m0 + 4. Consequently, we get from (62), (58) and Proposition 12 that

‖η(t)‖2
1,∞ � ‖η0‖2

1,∞ + Qm(t)+ ε

∫ t

0
‖∇2u‖2

m−1

+ t
∫ t

0

(
Qm(s)

2 + ‖∇ p(s)‖2
m−1

)
ds + (1 + t + ε3t2)

∫ t

0
Qm ds.
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Finally, we get from this last estimate, (38) and Proposition 10 that

‖η(t)‖2
1,∞ � Q(0)+ (1 + t + ε3t2)

∫ t

0

(
Qm(s)+ Qm(s)

2) ds.

This ends the proof of Proposition 13. ��
It remains to prove Lemma 14

Proof of Lemma 14 The estimate of ‖ρ‖L∞ and ‖∂iρ‖L∞ = ‖Ziρ‖L∞ , i = 1, 2
also follow easily from the maximum principle. Indeed, we get that ∂iρ solves the
equation

∂t∂iρ + u · ∇∂iρ = ε∂zz∂iρ + ∂iS − ∂i u · ∇ρ
still with a homogeneous Dirichlet boundary condition. Consequently, by using the
maximum principle again, we find

‖∇hρ‖L∞ � ‖η0‖1,∞ +
∫ t

0

(
‖S‖1,∞ + ‖∂i u · ∇ρ‖L∞

)
. (64)

To estimate the last term in the above expression, we again write

‖∂i u · ∇ρ‖L∞ � ‖u‖1,∞‖ρ‖1,∞ + ‖∂z∂i u3‖L∞‖Z3ρ‖L∞ � ‖u‖2,∞‖ρ‖1,∞,
(65)

by using again the fact that u is divergence free.
It remains to estimate ‖Z3ρ‖L∞ , which is the most difficult term. We cannot

use the same method as previously due to the bad commutator between Z3 and the
Laplacian. We shall use a more precise description of the solution of (59). We shall
first rewrite the equation (61) as

∂tρ + z∂zu3(t, y, 0)∂zρ + uh(t, y, 0) · ∇hρ − ε∂zzρ = S − R := G,

where

R = (
uh(t, x)− uh(t, y, 0)

) · ∇hρ + (
u3(t, x)− z∂zu3(t, y, 0)

)
∂zρ.

The idea will be to use an exact representation of Green’s function of the operator
in the left-hand side to perform the estimate. Note that we cannot throw out the
transport term uh · ∇hρ in the right-hand side since the estimate of the ‖ · ‖1,∞
norm of this term would involve the norm ‖ρ‖2,∞.

Let S(t, τ ) be the C0 evolution operator generated by the left-hand side of the
above equation. This means that f (t, y, z) = S(t, τ ) f0(y, z) solves the equation

∂t f + z∂zu3(t, y, 0)∂z f + uh(t, y, 0) · ∇h f − ε∂zz f = 0, z > 0, t > τ,

with the boundary condition f (t, y, 0)=0 and with the initial condition f (τ, y, z)=
f0(y, z). Then we have the following estimate:

Lemma 15. There exists C > 0 such that
∥
∥z∂z S(t, τ ) f0‖L∞ � C

(‖ f0‖L∞ + ‖z∂z f0‖L∞
)
, ∀t � τ � 0.
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We shall postpone the proof of the Lemma until the end of the section.
By using the Duhamel formula, we deduce that

ρ(t) = S(t, τ )ρ0 +
∫ t

0
S(t, τ )G(τ ) dτ. (66)

Consequently, by using Lemma 15, we obtain

‖Z3ρ‖L∞ �
(
‖ρ0‖L∞ + ‖z∂zρ0‖L∞ +

∫ t

0

(‖G‖L∞ + ‖z∂zG‖L∞
))
.

Since ρ and G are compactly supported, we obtain

‖Z3ρ‖L∞ �
(
‖ρ0‖1,∞ +

∫ t

0
‖G‖1,∞

)
. (67)

It remains to estimate the right-hand side. First, let us estimate the term involving R.
Since u3(t, y, 0) = 0, we have

‖R‖L∞ � ‖uh‖L∞‖∇hρ‖L∞ + ‖∂zu3‖L∞‖Z3ρ‖L∞ � ‖u‖1,∞ ‖ρ‖1,∞.

Note that we have used the divergence free condition again to get the last estimate.
Next, in a similar way, we get

‖Z R‖L∞ � ‖u‖2,∞‖ρ‖1,∞ +
∥
∥
∥
(
uh(t, x)− uh(t, y, 0)

) · Z∇hρ

∥
∥
∥

L∞

+
∥
∥
∥
(
u3(t, x)− z∂zu3(t, y, 0)

)
Z∂zρ

∥
∥
∥

L∞ .

By using the Taylor formula and the fact that ρ is compactly supported in z, this
yields

‖Z R‖L∞ � ‖u‖2,∞‖ρ‖1,∞ + ‖∂zuh‖L∞‖ϕ(z)Z∇hρ‖L∞

+‖∂zzu3‖L∞‖ϕ2(z)Z∂zρ‖L∞ .

Consequently, by using the divergence free condition, we get

‖R‖1,∞ �
(‖u‖2,∞ + ‖∂zu‖1,∞

)(‖ρ‖1,∞ + ‖ϕ(z)ρ‖2,∞
)
.

The additional factor ϕ in the last term is crucial to close our estimate. Indeed, by
the Sobolev embedding (54), we have that for |α| = 2,

‖ϕZαρ‖L∞ � ‖Zαρ‖m0 + ‖∂z
(
ϕZαρ

)‖m0

and hence we obtain by definition of Z3 that

‖ϕZαρ‖L∞ � ‖ρ‖m0+3, |α| = 2. (68)

Consequently, we finally get by using Proposition 12 that, for m � m0 + 4,

‖R(t)‖1,∞ �
(‖u‖2,∞ + ‖∂zu‖1,∞

)(‖ρ‖1,∞ + ‖ρ‖m0+3
)
. (69)

Finally, the proof of Lemma 14 follows from the last estimate and (67).
It remains to prove Lemma 15.
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Proof of Lemma 15 Let us set f (t, y, z) = S(t, τ ) f0(y, z); then f solves the
equation

∂t f +z∂zu3(t, y, 0)∂z f +uh(t, y, 0) · ∇h f −ε∂zz f =0, z>0, f (t, y, 0)=0.

We can first transform the problem into a problem in the whole space. Let us define
f̃ by

f̃ (t, y, z) = f (t, y, z), z > 0, f̃ (t, y, z) = − f (t, y,−z), z < 0. (70)

Then f̃ solves

∂t f̃ + z∂zu3(t, y, 0)∂z f̃ + uh(t, y, 0) · ∇h f̃ − ε∂zz f̃ = 0, z ∈ R, (71)

with the initial condition f̃ (τ, y, z) = f̃0(y, z).
We shall get the estimate by using an exact representation of the solution.
To solve (71), we can first define

g(t, y, z) = f (t,�(t, τ, y), z), (72)

where � is the solution of

∂t� = uh(t,�, 0), �(τ, τ, y) = y.

Then, g solves the equation

∂t g + zγ (t, y)∂zg − ε∂zzg = 0, z ∈ R, g(τ, y, z) = f̃0(y, z),

where

γ (t, y) = ∂zu3(t,�(t, τ, y), 0), (73)

which is a one-dimensional Fokker–Planck type equation (note that now y is only
a parameter in the problem). By a simple computation in Fourier space, we find the
explicit representation

g(t, x) =
∫

R

k(t, τ, y, z − z′) f̃0(y, e−�(t)z′) dz′,

with

k(t, τ, y, z − z′)

= 1
√

4πε
∫ t
τ

e2ε(�(t)−�(s)) ds
exp

(
− (z − z′)2

4ε
∫ t
τ

e2ε(�(t)−�(s)) ds

)
,

where �(t) = ∫ t
τ
γ (s, y) ds (note that � depends on y and τ but that for notational

convenience we do not state this dependence explicitly).
Note that k is non-negative and that

∫
R

k(t, τ, y, z) dz = 1; thus, we immedi-
ately recover that

‖g‖L∞ �
∥
∥
∥

∫

R

k(t, τ, y, z′) sup
z

| f̃0(y, e−�(t)(z − z′))|dz′
∥
∥
∥

L∞
t,y

� ‖ f̃0‖L∞ .
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Next, we observe that we can write

z∂zk(t, τ, y, z − z′) = (
z − z′)∂zk(t, τ, y, z − z′)− z′∂z′k(t, τ, y, z − z′)

with
∫

R

∣
∣(z − z′)∂zk

∣
∣dz′ � 1.

By using an integration by parts, we find

‖z∂zg‖L∞ � ‖ f̃0‖L∞ +
∥
∥
∥

∫

R

k(t, τ, y, z − z′)e−�(t)z′(∂z f̃0)(y, e−�(t)z′)dz′
∥
∥
∥

L∞ .

By using (73), this yields

‖z∂zg‖L∞ � ‖ f̃0‖L∞ + ‖z∂z f̃0‖L∞ .

By using (70) and (72), we obtain

‖z∂z f ‖L∞ � ‖z∂z f̃ ‖L∞ � ‖ f̃0‖L∞ + ‖z∂z f̃0‖L∞ � ‖ f0‖L∞ + ‖z∂z f0‖L∞ .

This ends the proof of Lemma 15.

3.5. Final a Priori Estimate

By combining Propositions 13, 12 and (38), the proof of Theorem 6 follows.

4. The Case of a General Domain with Smooth Boundary

4.1. Notations and Conormal Spaces

We recall that � is a bounded domain of R
3 and we assume that there exists a

covering of � under the form

� ⊂ �0 ∪n
i=1 �i , (74)

where�0 ⊂ � and, in each�i , there exists a smooth functionψi such that�∩�i =
{(x = (x1, x2, x3), x3 > ψi (x1, x2)}∩�i and ∂�∩�i = {x3 = ψi (x1, x2)}∩�i .

To define Sobolev conormal spaces, we consider (Zk)1�k�N a finite set of
generators of vector fields that are tangent to ∂� and

Hm
co(�) = {

f ∈ L2(�), Z I ∈ L2(�), |I | � m
}
,

where for I = (k1, . . . , km), we use the notation

‖u‖2
m =

3∑

i=1

∑

|I |�m

‖Z I ui‖2
L2 ,
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and, in the same way

‖u‖k,∞ =
∑

|I |�m

‖Z I u‖L∞ ,

‖∇Zmu‖2 =
∑

|I |�m

‖∇Z I u‖2
L2 .

Note that, by using our covering of �, we can always assume that each vector
field is supported in one of the�i , moreover, in�0 the ‖ · ‖m norm yields a control
of the standard Hm norm, whereas if�i ∩∂� �= ∅, there is no control of the normal
derivatives.

In the proof Ck will denote a number independent of ε ∈ (0, 1] which depends
only on the Ck regularity of the boundary, that is to say, on the Ck norm of the
functions ψi .

By using that ∂� is given locally by x3 = ψ(x1, x2) (we omit the subscript i
for notational convenience), it is convenient to use the coordinates:

� : (y, z) �→ (y, ψ(y)+ z). (75)

A local basis is thus given by the vector fields (∂y1 , ∂y2 , ∂z). On the boundary ∂y1

and ∂y2 are tangent to ∂�, but ∂z is not a normal vector field. We shall sometimes
use the notation ∂y3 for ∂z . By using this parametrization, we can take as suitable
vector fields compactly supported in �i in the definition of the ‖ · ‖m norms:

Zi = ∂yi = ∂i + ∂iψ ∂z, i = 1, 2, Z3 = ϕ(z)
(
∂1ψ ∂1 + ∂2ψ ∂2 − ∂z

)
,

where ϕ is smooth, supported in R+, and such that ϕ(0)=0, ϕ′(0) �=0, ϕ(s) > 0,
s > 0.

In this section, we shall still denote by ∂i , i = 1, 2, 3 or ∇ the derivation with
respect to the standard coordinates of R

n . The coordinates of a vector field u in the
basis (∂yi )1�i�3 will be denoted by ui , thus

u = u1∂y1 + u2∂y2 + u3∂y3 .

We shall still denote by ui the coordinates in the canonical basis of R
3, namely

u = u1∂1 + u2∂2 + u3∂3 (we warn the reader that this convention does not match
with the standard Einstein convention for raising and lowering the indices in dif-
ferential geometry).

We shall also denote by n the unit outward normal which is given locally by

n(�(y, z)) = 1
(
1 + |∇ψ(y)|2) 1

2

⎛

⎝
∂1ψ(y)
∂2ψ(y)
−1

⎞

⎠

(note that n is actually naturally defined in the whole �i and does not depend on
x3) and, in the same way, by � the orthogonal projection

�(�(y, z))X = X − X · n(�(y, z)) n(�(y, z)),

which gives the orthogonal projection onto the tangent space of the boundary.
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By using these notations, the Navier boundary condition (2) reads:

u · n = 0, �∂nu = θ(u)− 2α�u, (76)

where θ is the shape operator (second fundamental form) of the boundary that is
given by

θ(u) = �
(
u · ∇n

)
.

The crucial step in the proof of Theorem 1 is again the proof of an a priori
estimate. We shall prove that:

Theorem 16. For m > 6, and � a Cm+2 domain, there exists Cm+2 > 0 indepen-
dent of ε ∈ (0, 1] and α, |α| � 1 such that for every sufficiently smooth solution
defined on [0, T ] of (1), (2), we have the a priori estimate

Nm(t)�Cm+2

(
Nm(0)+(1+t+ε3t2)

∫ t

0

(
Nm(s)+ Nm(s)

2)ds
)
, ∀t ∈ [0, T ],

where

Nm(t) = ‖u(t)‖2
m + ‖∇u(t)‖2

m−1 + ‖∇u‖2
1,∞.

The steps of the proof of Theorem 16 are the same as in the proof of Theorem 6.
Nevertheless, some new difficulties will appear, mainly due to the fact that n is no
longer a constant vector field.

4.2. Conormal Energy Estimates

Proposition 17. For every m, the solution of (1), (2) satisfies the estimate

‖u(t)‖2
m + ε

∫ t

0
‖∇u‖2

m

� Cm+2

(
‖u0‖2

m +
∫ t

0

(
‖∇2 p1‖m−1 ‖u‖m + ε−1‖∇ p2‖2

m−1

+ (
1 + ‖u‖W 1,∞

)(‖u‖2
m + ‖∇u‖2

m−1

))
,

where the pressure p is split as p = p1 + p2, where p1 is the “Euler” part of the
pressure which solves

�p1 = −∇ · (u · ∇u), x ∈ �, ∂n p1 = −(
u · ∇u

) · n, x ∈ ∂�,
and p2 is the “Navier Stokes part” which solves

�p2 = 0, x ∈ �, ∂n p2 = ε�u · n, x ∈ ∂�.
Note that the estimate involving the pressure is worse than in Proposition 7. Indeed,
since Zαu · n does not vanish on the boundary, we cannot gain one derivative in
the estimate of the Euler part of the pressure by using an integration by parts.
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4.3. Proof of Proposition 17

The estimate for m = 0 is already given in Proposition 3. Assuming that it is
proven for k � m −1, we shall prove it for k = m � 1. By applying Z I for |I | = m
to (1) as before, we obtain that

∂t Z I u + u · ∇Z I u + Z I ∇ p = εZ I�u + C1, (77)

where C1 is the commutator defined as

C1 = [
Z I , u · ∇]u.

By using Lemma 8 again, we obtain that

‖C1‖ � Cm+1‖u‖W 1,∞
(‖u‖m + ‖∂zu‖m−1

)
. (78)

Indeed, we can perform this estimate in each coordinate patch. In�0, this is a direct
consequence of the standard tame Gagliardo–Nirenberg–Sobolev inequality. Close
to the boundary, we first notice that u ·∇u = u1∂1u +u2∂2u +u3∂3u can be written

u · ∇u = u1∂y1 u + u2∂y2 u + u · N ∂zu,

where ui , i = 1, 2 and 3 are the coordinates of u in the standard canonical basis
of R

n , and N is defined by

N =
⎛

⎝
−∂1ψ

−∂2ψ

1

⎞

⎠ .

Note that when the boundary is given by x3 = ψ(x1, x2),N is a normal (non-
unitary) vector field. Moreover, we also have that Z I = ∂

α1
y1 ∂

α2
y2 (ϕ(z)∂z)

α3 . Since
u · N vanishes on the boundary z = 0, we can use the same estimates as in (21),
(22), (23), (25), with u3 replaced by u · N. Note that we have the estimate

‖u · N‖m � Cm+1‖u‖m,

which explains the dependence in Cm+1 in (78) and also that

‖∂zu‖m−1 � Cm‖∇u‖m−1.

Consequently, a standard energy estimate for (77) yields

d

dt

1

2
‖Z I u‖2 � ε

∫

�

Z I�u · Z I u −
∫

�

Z I ∇ p · Z I u

+ Cm+1‖u‖W 1,∞
(‖u‖m + ‖∂zu‖m−1

)‖u‖m . (79)

We shall first estimate the first term above in the right-hand side. To evaluate this
term through integration by parts, we shall need estimates of the trace of u on the
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boundary. At first, thanks to the Navier boundary condition under the form (76),
we have that

|�∂nu|Hm (∂�) � |θ(u)|Hm(∂�) + 2α|u|Hm(∂�) � Cm+2|u|Hm(∂�), ∀m � 0.

(80)

To estimate the normal part of ∂nu, we can use that ∇ · u= 0. Indeed, we have

∇ · u = ∂nu · n + (
�∂y1 u

)1 + (
�∂y2 u

)2 (81)

and, hence, we immediately get that

|∂nu · n|Hm−1(∂�) � Cm |u|Hm(∂�). (82)

Note that by combining these two last estimates, we have in particular that

|∇u|Hm−1(∂�) � Cm+1|u|Hm (∂�). (83)

Finally, let us notice that since u · n = 0 on the boundary, we have that

|(Zαu) · n|H1(∂�) � Cm+2|u|Hm(∂�), |α| = m. (84)

Next, we can write that

ε

∫

�

Z I�u · Z I u = 2ε
∫

�

(∇ · Z I Su
) · Z I u + 2ε

∫

�

([Z I ,∇·]Su
) · Z I u

= 2I + 2I I.

By integration by parts, we get for the first term that

I = −ε
∫

�

Z I Su · ∇Z I u + ε

∫

∂�

(
(Z I Su) · n

) · Z I u,

and we note that

−ε
∫

�

Z I Su · ∇Z I u = −ε‖S(Z I u)‖2 + ε

∫

�

[Z I , S]u · ∇Z I u.

Consequently, thanks to the Korn inequality, there exists c0 > 0 (depending only
C1) such that

−ε
∫

�

Z I Su · ∇Z I u � −c0ε‖∇(Z I u)‖2 + C1‖u‖2
m + ε

∫

�

[Z I , S]u · ∇Z I u.

Moreover, the commutator term can be bounded by
∣
∣
∣ε

∫

�

[Z I , S]u · ∇Z I u
∣
∣
∣ � Cm+1 ε‖∇Z I u‖ ‖∇u‖m−1.

It remains to estimate the boundary term in the expression for I . We can first notice
that

∫

∂�

(
(Z I Su) · n

) · Z I u =
∫

∂�

Z I (�
(
Su · n

)) ·�Z I u

+
∫

∂�

Z I (∂nu · n
)

Z I u · n + Cb,
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where the commutator term Cb can be bounded by

|Cb| � Cm+1|∇u|Hm−1(∂�)|u|Hm(∂�) � Cm+1|u|2Hm (∂�)

thanks to a new use of (83). For the main term, we write that thanks to the Navier
boundary condition (2) we have

∣
∣
∣
∫

∂�

Z I (�
(
Su · n

)) ·�Z I u
∣
∣
∣ � Cm+1|u|2Hm (∂�),

and that by integrating by parts once along the boundary, we have that

∣
∣
∣
∫

∂�

Z I (∂nu · n
)

Z I u · n
∣
∣
∣� |∂nu · n|Hm−1(∂�) |Z I u · n|H1(∂�)�Cm+2|u|2Hm (∂�),

where the last estimate comes from (82), (84).
We have thus proven that

ε

∣
∣
∣
∫

∂�

(
(Z I Su) · n

) · Z I u
∣
∣
∣ � Cm+2 ε |u|2Hm (∂�).

This yields

I �−εc0‖∇Z I u‖2+Cm+2
(
ε‖∇Zmu‖(‖u‖m +‖∇u‖m−1

)+|u|2Hm (∂�)

)
. (85)

Note that we use the notation

‖∇Zmu‖2 =
∑

|I |=m

‖∇Z I u‖2.

It remains to estimate I I . We can expand [Z I ,∇·] as a sum of terms under the form
βk∂k Z Ĩ with | Ĩ | � m − 1 and |βk |L∞ � Cm+1. Consequently, we need to estimate

∫

�

βk∂k
(
Z Ĩ Su

) · Z I u.

By using an integration by parts, we get that

ε

∣
∣
∣
∫

�

βk∂k
(
Z Ĩ Su

) · Z I u
∣
∣
∣

� Cm+2 ε
(
‖∇Zm−1u‖ |∇Zmu‖ + ‖u‖2

m + |∇u|Hm−1(∂�) |u|Hm (∂�)

)
.

Consequently, from a new use of (83) we get that

|I I | � Cm+2 ε
(
‖∇Zm−1u‖ ‖∇Zmu‖ + ‖u‖2

m + |u|2Hm(∂�)

)
. (86)

To estimate the term involving the pressure in (79), we write

∣
∣
∣
∫

�

Z I ∇ p · Z I u
∣
∣
∣ � ‖∇2 p1‖m−1 ‖u‖m +

∣
∣
∣
∫

�

Z I ∇ p2 · Z I u
∣
∣
∣.
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For the last term, we have

∣
∣
∣
∫

�

Z I ∇ p2 · Z I u
∣
∣
∣ �

∣
∣
∣
∫

�

∇Z I p2 · Z I u
∣
∣
∣ + Cm+1‖∇ p2‖m−1 ‖u‖m,

and we can integrate by parts to get

∣
∣
∣
∫

�

∇Z I p2 · Z I u
∣
∣
∣ � ‖∇ p2‖m−1 ‖∇Z I u‖ +

∣
∣
∣
∫

∂�

Z I p2 Z I u · n
∣
∣
∣.

To control the boundary term, when m � 2, we integrate by parts once along the
boundary to obtain

∣
∣
∣
∫

∂�

Z I p2 Z I u · n
∣
∣
∣ � C2‖Z Ĩ p2‖L2(∂�) ‖Z I u · n‖H1(∂�),

where Ĩ = m − 1. Next, we use (84) and the trace Theorem which reads

|u|2Hm(∂�) � ‖∇u‖m‖u‖m + ‖u‖2
m (87)

to get that

∣
∣
∣
∫

�

Z I ∇ p2 · Z I u
∣
∣
∣ � Cm+2‖∇ p2‖m−1

(‖∇Z I u‖ + ‖u‖m
)
.

We have thus proven that

∣
∣
∣
∫

�

Z I ∇ p · Z I u
∣
∣
∣ � Cm+2

(
‖∇2 p1‖m−1 ‖u‖m + ‖∇ p2‖m−1

(‖∇Z I u‖ + ‖u‖m
))
.

Consequently, by collecting the previous estimates, we deduce from (79) that

d

dt

1

2
‖u‖2

m + ε c0 ‖∇Zmu‖2

� Cm+2

(
ε‖∇Zmu‖ (‖u‖m + ‖∇Zm−1u‖)+ |u|2Hm(∂�) + ‖∇2 p1‖m−1 ‖u‖m

+‖∇ p2‖m−1
(‖∇Zmu‖ + ‖u‖m

) + (
1 + ‖u‖W 1,∞

)(‖u‖2
m + ‖∂zu‖m−1

)2
)
.

By using the Trace Theorem and the Young inequality, we finally get that

d

dt

1

2
‖u‖2

m + c0

2
ε‖∇Zmu‖2 � Cm+2

(
ε‖∇Zm−1u‖2 + ‖∇2 p1‖m−1‖u‖m

+ ε−1‖∇ p2‖2
m−1 + (

1 + ‖u‖W 1,∞
)(‖u‖2

m + ‖∂zu‖2
m−1

))
,

and the result follows by using the induction assumption to control ε‖∇Zm−1u‖2
m .

This ends the proof of Proposition 17. ��
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4.4. Normal Derivative Estimates

In view of Proposition 17, we shall now provide an estimate for ‖∇u‖m−1. Of
course, the only difficulty is to estimate ‖χ ∂zu‖m−1 or ‖χ ∂nu‖m−1, where χ is
compactly supported in one of the�i and with value one in a vicinity of the bound-
ary. Indeed, we have by definition of the norm that ‖χ ∂yi u‖m−1 � Cm‖u‖m, i =
1, 2. We shall thus use the local coordinates (75).

At first, thanks to (81), we immediately get that

‖χ∂nu · n‖m−1 � Cm‖u‖m . (88)

It thus remains to estimate ‖χ�(∂nu)‖m−1. Let us set

η = χ�
((∇u + ∇ut)n

)
+ 2αχ�u = χ�

(
2Su n

)
+ 2αχ�u. (89)

In view of the Navier condition (2), we obviously have that η satisfies a homoge-
neous Dirichlet boundary condition on the boundary:

η/∂� = 0. (90)

Moreover, since an alternative way to write η in the vicinity of the boundary is

η = χ�∂nu + χ�
(
∇(u · n)− Dn · u − u × (∇ × n)+ 2αu

)
, (91)

we immediately get that

‖χ �∂nu‖m−1 � Cm+1
(‖η‖m−1 + ‖u‖m + ‖∂nu · n‖m−1

)
.

and hence, thanks to (88), that

‖χ�∂nu‖m−1 � Cm+1
(‖η‖m−1 + ‖u‖m

)
. (92)

As before, it is thus equivalent to estimate ‖�∂nu‖m−1 or ‖η‖m−1. Note that
we have taken a slightly different definition for η in comparison with the half
space case. The reason is that it is better to compute the evolution equation for η
with the expression (89) than with the expression (91) or with the expression involv-
ing the vorticity. Indeed, these last two forms require a boundary with more regu-
larity. The price to pay will be that since we do not use the vorticity, the pressure
will again appear in our estimates.

We shall establish the following conormal estimates for η:

Proposition 18. For every m � 1, we have that

‖η(t)‖2
m−1 + ε

∫ t

0
‖∇η‖2

m−1 � Cm+2
(‖u(0)‖2

m + ‖∇u(0)‖2
m−1

)

+ Cm+2

∫ t

0

((‖∇2 p1‖m−1 + ‖∇ p‖m−1
)‖η‖m + ε−1‖∇ p2‖2

m−1

+ (
1 + ‖u‖2,∞ + ‖∇u‖1,∞

)(‖η‖2
m−1 + ‖u‖2

m + ‖∇u‖2
m−1

))
. (93)



562 Nader Masmoudi & Frédéric Rousset

Note that by combining Proposition 17, Proposition 18 and (88), (92), we imme-
diately obtain the global estimate

‖u(t)‖2
m + ‖∇u(t)‖2

m−1 + ε

∫ t

0
‖∇η‖2

m−1

� Cm+2
(‖u(0)‖2

m + ‖∇u(0)‖2
m−1

)

+ Cm+2

∫ t

0

(
‖∇2 p1‖m−1

(‖u‖m + ‖∇u‖m−1
) + ε−1‖∇ p2‖2

m−1 (94)

+ (
1 + ‖u‖2,∞ + ‖∇u‖1,∞

)(‖u‖2
m + ‖∇u‖2

m−1

))

for m � 2.

Proof of Proposition 18 Note that M = ∇u solves the equation

∂t M + u · ∇M − ε�M = −M2 − ∇2 p,

where ∇2 p denotes the Hessian matrix of the pressure. Consequently, we get that
η solves the equation

∂tη + u · ∇η − ε�η = F − χ�
(∇2 p n

)
, (95)

where the source term F can be decomposed into

F = Fb + Fχ + Fκ , (96)

where

Fb = −χ�(
(∇u)2 + (∇ut )2

)
n − 2αχ�∇ p, (97)

Fχ = −ε�χ
(
�Su n + 2α�u

)
− 2ε∇χ · ∇

(
�Su n + 2α�u

)

+ (u · ∇χ)�
((

Su n + 2αu
)
,

Fκ = χ
(
u · ∇�)(

Su n + 2αu
)

+ χ�
(
Su

(
u · ∇n

))
(98)

−εχ(
��

)(
Su n + 2αu

) − 2εχ∇� · ∇(
Su n + 2αu

)

−εχ�
(

Su�n + 2∇Su · ∇n
)
.

Let us start with the proof of the L2 energy estimate, which is the case m = 1
in Proposition 18. By multiplying (95) by η, we immediately get that

d

dt

1

2
‖η‖2 + ε‖∇η‖2 =

∫

�

F · η −
∫

�

χ�
(∇2 p n

) · η. (99)

To estimate the right-hand side, we note that

‖Fb‖m−1 � Cm

(
‖u‖W 1,∞‖∇u‖m−1 + ‖∇ p‖m−1

)
, (100)
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and also that

‖Fχ‖m−1 � Cm+1

(
ε‖∇u‖m + (

1 + ‖u‖W 1,∞
)‖u‖m

)
. (101)

Note that we have used the idea that since all the terms in Fχ are supported away
from the boundary, we can control all the derivatives by the ‖ · ‖m norms. Finally,
we also have that

‖Fκ‖m−1 � Cm+2

(
ε‖u‖m + ε‖∇u‖m−1 + ε‖χ∇2u‖m−1

+‖u‖W 1,∞(‖u‖m−1 + ‖∇u‖m−1)
)
. (102)

To estimate the last term in the right-hand side of (95), we split the pressure to get
∣
∣
∣
∫

�

χ�
(∇2 p n

) · η
∣
∣
∣ � ‖∇2 p1‖ ‖η‖ +

∣
∣
∣
∫

�

χ�
(∇2 p2 n

) · η
∣
∣
∣.

Since η vanishes on the boundary, we can integrate by parts the last term to obtain
∣
∣
∣
∫

�

χ�
(∇2 p2 n

) · η
∣
∣
∣ � C2‖∇ p2‖

(‖∇η‖ + ‖η‖).

Consequently, by plugging these estimates into (99), we immediately get that

d

dt

1

2
‖η‖2 + ε‖∇η‖2

� C3

((
ε‖∇u‖1 + ε‖χ∇2u‖) ‖η‖ + ‖∇ p2‖

(‖∇η‖ + ‖η‖)

+ (‖∇2 p1‖ + ‖∇ p1‖
)‖η‖ + (1 + ‖u‖W 1,∞)

(‖u‖1 + ‖∇u‖)
)
. (103)

To conclude, we only need to estimate ε‖χ∇2u‖. Note that we have that

ε‖χ∇2u‖ � ε‖χ∇∂nu‖ + εC2‖∇u‖1,

and hence, by using (88) and (91) that

‖χ∇∂nu‖ � C3

(
‖∇η‖ + ‖∇u‖1 + ‖u‖1

)
.

Consequently, by using (103) and the Young inequality, we finally get that

d

dt

1

2
‖η‖2 + ε

2
‖∇η‖2

� C3

(
ε‖∇u‖1 ‖η‖ + (‖∇ p‖ + ‖∇2 p1‖

)‖η‖ + ε−1‖∇ p2‖2

+ (1 + ‖u‖W 1,∞)
(‖u‖1 + ‖∇u‖)

)
.

Since ε‖∇u‖1 is already estimated in Proposition 17, this yields (93) for m = 1.
To prove the general case, let us assume that (93) is proven for k � m − 2.We

get from (95) for |α| = m − 1 that

∂t Zαη + u · ∇Zαη − εZα�η = ZαF − Zα
(
χ�(∇2 p n)

) + C,
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where

C = −[Zα, u · ∇]η.
A standard energy estimate yields

d

dt

1

2
‖Zαη‖2 � ε

∫

�

Zα�η · Zαη + (‖F‖m−1 + ‖C‖) ‖η‖m−1

−
∫

�

Zα
(
χ�(∇2 p n)

) · Zαη. (104)

To estimate the first term in the right-hand side, we need to estimate

Ik =
∫

�

Zα∂kkη · Zαη, k = 1, 2, 3.

Towards this end, we write

Ik =
∫

�

∂k Zα∂kη · Zαη +
∫

�

[Zα, ∂k]∂kη · Zαη

= −
∫

�

|∂k Zαη|2 −
∫

�

[Zα, ∂k]η · ∂k Zαη +
∫

�

[Zα, ∂k]∂kη · Zαη.

Note that there is no boundary term in the integration by parts since Zαη vanishes
on the boundary. To estimate the last two terms above, we need to use the structure
of the commutator [Zα, ∂k]. By using the expansion

∂k = β1∂y1 + β2∂y2 + β3∂y3,

in the local basis, we get an expansion under the form

[Zα, ∂k] f =
∑

γ,|γ |�|α|−1

cγ ∂z Zγ f +
∑

β, |β|�|α|
cβ Zβ f,

where the Cl norm of the coefficients is bounded by Cl+m . This yields the estimates

∣
∣
∣
∫

�

[Zα, ∂k]η · ∂k Zαη
∣
∣
∣ � Cm

(
‖∇η‖m−2 ‖∇Zm−1η‖ + ‖η‖2

m−1

)

and
∣
∣
∣
∫

�

[Zα, ∂k]∂kη · Zαη
∣
∣
∣

�
∑

|γ |�m−2

∣
∣
∣
∫

�

cγ ∂z Zγ ∂kη · Zαη
∣
∣
∣ + Cm‖∇η‖m−1 ‖η‖m−1.

Since Zαη vanishes on the boundary, this yields, thanks to an integration by parts,

∣
∣
∣
∫

�

[Zα, ∂k]∂kη · Zαη
∣
∣
∣ � Cm+1‖∇η‖m−1

(‖∇η‖m−2 + ‖η‖m−1
)
.
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Consequently, we get from (104) by summing over α and a new use of the Young
inequality that

d

dt

1

2
‖η‖2

m−1 + ε

2
‖∇Zm−1η‖2

� Cm+1

(
ε‖∇η‖2

m−2 + ‖η‖2
m−1 + (‖F‖m−1 + ‖C‖) ‖η‖m−1

)

−
∫

�

Zα
(
χ�(∇2 p n)

) · Zαη. (105)

To estimate the right-hand side, we first notice that to control the term involving F ,
we can use (100), (101) and (102). This yields

‖F‖m−1 � Cm+2

((
ε‖∇u‖m + ε‖χ∇2u‖m−1 + ‖∇ p‖m−1

)‖η‖m

+ (1 + ‖u‖W 1,∞)
(‖u‖m + ‖∇u‖m−1

))
. (106)

It remains to estimate ε‖χ∇2u‖m−1. We can first use that

ε‖χ∇2u‖m−1 � ε‖χ∇∂nu‖m−1 + εCm+1
(‖∇u‖m + ‖u‖m

)
.

Next, thanks to (91) and (88), we also get that

ε‖χ∇∂nu‖m−1 � Cm+2

(
ε‖∇u‖m + ‖u‖m + ‖∇η‖m−1

)
,

and, hence, we obtain the estimate

‖F‖m−1 � Cm+2

((
ε‖∇u‖m + ε‖∇η‖m−1 + ‖∇ p‖m−1

)‖η‖m

+ (1 + ‖u‖W 1,∞)
(‖u‖m + ‖∇u‖m−1

))
. (107)

In view of (105), it remains to estimate ‖C‖ and the pressure. Note that by using
the local coordinates, we can expand:

u · ∇η = u1∂y1η + u2∂y2η + u · N ∂zη.

Consequently, the estimate (37) also holds for this term, we thus get that

‖C‖ � Cm

(
‖u‖2,∞ + ‖u‖W 1,∞ + ‖Zη‖L∞

)(‖η‖m−1 + ‖u‖m
)
. (108)

Finally, it remains to estimate the last term involving the pressure in the right-
hand side of (105). As before, we use the split p = p1 + p2 and we integrate by
parts the term involving p2. This yields

∣
∣
∣
∫

�

Zα
(
χ�(∇2 p n)

) · Zαη
∣
∣
∣ � Cm+2

(‖∇2 p1‖m−1 ‖η‖m

+‖∇ p2‖m−1
(‖∇Zmη‖ + ‖η‖m

))
. (109)

By combining (105), (107), (108), (109) and by using the induction assumption
and the Young inequality, we end the proof of Proposition 18.
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4.5. Pressure Estimates

Proposition 19. For m � 2, we have the following estimate for the pressure:

‖∇ p1‖m−1 + ‖∇2 p1‖m−1 � Cm+2
(
1 + ‖u‖W 1,∞

)(‖u‖m + ‖∇u‖m−1
)
, (110)

‖∇ p2‖m−1 � Cm+2 ε
(‖∇u‖m−1 + ‖u‖m

)
. (111)

Note that thanks to (111), we have that

ε−1‖∇ p2‖2
m−1 � Cm+2

(‖u‖2
m + ‖∇u‖2

m−1

)
.

Consequently, by combining (94) and Proposition 19, we get that

‖u(t)‖2
m + ‖∇u(t)‖2

m−1 + ε

∫ t

0
‖∇2u‖2

m−1 (112)

� Cm+2
(‖u0‖2

m + ‖∇u0‖2
m

)

+ Cm+2

∫ t

0

((
1 + ‖u‖2,∞ + ‖∇u‖1,∞

)(‖u‖2
m + ‖∇u‖2

m−1

))
.

Proof We recall that we have p = p1 + p2 where

�p1 =−∇ · (u · ∇u)=−∇u · ∇u, x ∈ �, ∂n p1 =−(u · ∇u) · n, x ∈ ∂�
(113)

and

�p2 = 0, x ∈ �, ∂n p2 = ε�u · n, x ∈ ∂�. (114)

From standard elliptic regularity results with Neumann boundary conditions, we
get that

‖∇ p1‖m−1 + ‖∇2 p1‖m−1 � Cm+1

(
‖∇u · ∇u‖m−1 + ‖u · ∇u‖

+ |(u · ∇u
) · n|

Hm− 1
2 (∂�)

)
.

Since u · n = 0 on the boundary, we note that

(u · ∇u
) · n = −(

u · ∇n
) · u, x ∈ ∂�,

and hence that

|(u · ∇u
) · n|

Hm− 1
2 (∂�)

� Cm+2|u ⊗ u|
Hm− 1

2 (∂�)
.

Consequently, thanks to the trace inequality (87), we obtain that

|(u · ∇u) · n|
Hm− 1

2 (∂�)
� Cm+2

(‖∇u · ∇u‖m−1 + ‖u · ∇u‖ + ‖u ⊗ u‖m−1
)
.

Thanks to a new use of Lemma 8, this yields

‖∇ p1‖m−1 + ‖∇2 p1‖m−1 � Cm+2

((
1 + ‖u‖W 1,∞

)(‖u‖m + ‖∇u‖m−1
))
.
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It remains to estimate p2. By using the elliptic regularity for the Neumann problem
again, we get that for m � 2,

‖∇ p2‖m−1 � εCm |�u · n|
Hm− 3

2 (∂�)
. (115)

To estimate the right-hand side, we shall again use the Navier boundary condition
(2). Since

2�u · n = ∇ · (
Su n)−

∑

j

(
Su ∂ j n

)
j ,

we first get that

|�u · n|
Hm− 3

2 (∂�)
� |∇ · (Su n)|

Hm− 3
2 (∂�)

+ Cm+1|∇u|
Hm− 3

2 (∂�)
,

and, hence, thanks to (81) and (76) that

|�u · n|
Hm− 3

2 (∂�)
� |∇ · (

Su n)|
Hm− 3

2 (∂�)
+ Cm+1|u|

Hm− 1
2 (∂�)

.

To estimate the first term, we can use the expression (81) to get

|∇ · (
Su n)|

Hm− 3
2 (∂�)

� |∂n
(
Su n) · n|

Hm− 3
2 (∂�)

+Cm+1

(
|�(

Su n
)|

Hm− 1
2 (∂�)

+ |∇u|
Hm− 3

2 (∂�)

)
,

and hence by using (81), (76) and (2) again, we obtain that

|∇ · (Su n)|
Hm− 3

2 (∂�)
� |∂n

(
Su n) · n|

Hm− 3
2 (∂�)

+ Cm+1|u|
Hm− 1

2 (∂�)
.

The first term above in the right-hand side can be estimated by

|∂n
(
Su n) · n|

Hm− 3
2 (∂�)

� |∂n
(
∂nu · n

)|
Hm− 3

2 (∂�)
+ Cm+1|∇u|

Hm− 3
2 (∂�)

� |∂n
(
∂nu · n

)|
Hm− 3

2 (∂�)
+ Cm+1|u|

Hm− 1
2 (∂�)

.

Finally, taking the normal derivative of (81), we get that

|∂n
(
∂nu · n

)|
Hm− 3

2 (∂�)
� |�∂nu|

Hm− 1
2 (∂�)

+ Cm+1|∇u|
Hm− 3

2 (∂�)

� Cm+2 |u|
Hm− 1

2 (∂�)
,

where the last line comes from a new use of (76). Note that this is the estimate of
this term which requires greater regularity of the boundary.

Consequently, we have proven that

|�u · n|
Hm− 3

2 (∂�)
� Cm+2|u|

Hm− 1
2 (∂�)

and hence by using (115) and the trace Theorem (87), we get that

‖∇ p2‖m−1 � Cm+2ε
(‖u‖m + ‖∇u‖m−1

)
.

This ends the proof of Proposition 19.
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4.6. L∞ Estimates

In order to close the estimates, we need an estimate of the L∞ norms in the
right-hand side. As before, let us set

Nm(t) = ‖u(t)‖2
m + ‖∇u(t)‖2

m−1 + ‖∇u‖2
1,∞.

Proposition 20. For m0 > 1, we have

‖u‖2,∞ � Cm
(‖u‖m + ‖∇u‖m−1

)
, m � m0 + 3, (116)

‖u‖W 1,∞ � Cm
(‖u‖m + ‖∇u‖m−1

)
, m � m0 + 2. (117)

Proof It suffices to use local coordinates and Proposition 12.
In view of this Proposition, we still need to estimate ‖∇u‖1,∞.

Proposition 21. For m > 6, we have the estimate

‖∇u(t)‖2
1,∞ � Cm+2

(
Nm(0)+ (1 + t + ε3t2)

∫ t

0

(
Nm(s)+ Nm(s)

2) ds.

Proof Away from the boundary, we clearly have by the classical isotropic Sobolev
embedding that

‖χ∇u‖1,∞ � ‖u‖m, m � 4. (118)

Consequently, by using a partition of unity subordinated to the covering (74) we
only have to estimate ‖χi∇u‖L∞ , i > 0. For notational convenience, we shall
denote χi by χ . Towards this goal, we want to proceed as in the proof of Propo-
sition 13. An important step in that proof was to use Lemma 15. It is thus crucial
to choose a system of coordinates in which the Laplacian has a convenient form.
In this section, we shall use a local parametrization in the vicinity of the boundary
given by a normal geodesic system:

�n(y, z) =
(

y
ψ(y)

)
− z n(y),

where

n(y) = 1
(
1 + |∇ψ(y)|2) 1

2

⎛

⎝
∂1ψ(y)
∂2ψ(y)
−1

⎞

⎠

is the unit outward normal. We have not used this coordinate system to estimate
the conormal derivatives because it requires more regularity on the boundary. Nev-
ertheless, it does not yield any restrictions on the regularity of the boundary here,
since we need to estimate a lower number of derivatives. As before, we can extend
n and � in the interior by setting

n(�n(y, z)) = n(y), �(�n(y, z)) = �(y).
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Note that n(y) and�(y) have different definitions from the ones used before. The
interest of this parametrization is that in the associated local basis of R

3(∂y1, ∂y2 , ∂z),
we have ∂z = ∂n and

(
∂yi

)

/�n(y,z)
·
(
∂z

)

/�n(y,z)
= 0.

The scalar product on R
3 thus induces in this coordinate system the Riemannian

metric g under the form

g(y, z) =
(

g̃(y, z) 0
0 1

)
. (119)

Consequently, the Laplacian in this coordinate system reads:

� f = ∂zz f + 1

2
∂z

(
ln |g|)∂z f +�g̃ f, (120)

where |g| denotes the determinant of the matrix g and �g̃ , which is defined by

�g̃ f = 1

|g̃| 1
2

∑

1�i, j�2

∂yi

(
g̃i j |g̃| 1

2 ∂y j f
)
,

involves only tangential derivatives.
Next, we can observe that thanks to (81) (in the coordinate system that we have

just defined) and Proposition 20 we have that

‖χ∇u‖1,∞ � C3
(‖χ�∂nu‖1,∞ + ‖u‖2,∞

)

� C3
(‖χ�∂nu‖1,∞ + ‖u‖m + ‖∇u‖m−1

)
. (121)

Consequently, we need to estimate ‖χ�∂nu‖1,∞. To estimate this quantity, it is
useful to introduce the vorticity

ω = ∇ × u.

Indeed, by definition, we have

�
(
ω × n

) = 1

2
�

(∇u − ∇ut )n

= 1

2
�

(
∂nu − ∇(u · n)+ u · ∇n + u × (∇ × n)

)
. (122)

Consequently, we find that

‖χ�∂nu‖1,∞ � C3

(
‖χ�(ω × n)‖1,∞ + ‖u‖2,∞

)
,

and hence by a new use of Proposition 20, we get that

‖χ�∂nu‖1,∞ � C3

(
‖χ�(

ω × n
)‖1,∞ + ‖u‖m + ‖∇u‖m−1

)
. (123)
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In other words, we only need to estimate ‖χ�(
ω × n

)‖1,∞ in order to conclude.
Note that ω solves the vorticity equation

∂tω + u · ∇ω − ε�ω = ω · ∇u = Fω. (124)

Consequently, by setting in the support of χ

ω̃(y, z) = ω(�n(y, z)), ũ(y, z) = u(�n(y, z)),

we get that

∂t ω̃ + ũ1∂y1 ω̃ + ũ2∂y2 ω̃ + ũ · n ∂zω̃ = ε
(
∂zzω̃ + 1

2
∂z

(
ln |g|)∂zω̃ +�g̃ω̃

) + Fω

(125)

and

∂t ũ + ũ1∂y1 ũ + ũ2∂y2 ũ + ũ · n ∂z ũ

= ε
(
∂zz ũ + 1

2
∂z

(
ln |g|)∂z ũ +�g̃ ũ

) − (∇ p
) ◦�n . (126)

Note that we use the same convention as before for a vector u, ui denotes the com-
ponents of u in the local basis (∂y1 , ∂y2 , ∂z), whereas ui denotes its components
in the canonical basis of R

3. The vectorial equations (125) and (126) have to be
understood component by component in the standard basis of R

3.
By using (122) on the boundary and the Navier boundary condition (76), we

get that for z = 0

�(ω̃ × n) = �
(
ũ · ∇n − αũ

)
.

Consequently, we set

η̃(y, z) = χ�
(
ω̃ × n − ũ · ∇n + αũ

)
. (127)

We thus get that

η̃(y, 0) = 0 (128)

and that η̃ solves the equation

∂t η̃ + ũ1∂y1 η̃ + ũ2∂y2 η̃ + ũ · n ∂z η̃

= ε
(
∂zz η̃ + 1

2
∂z

(
ln |g|)∂z η̃

) + χ�Fω × n + Fu + Fχ + Fκ , (129)

where the source terms are given by

Fu = χ�
(
∇ p · ∇n − α∇ p

)
◦�n, (130)

Fχ =
((

ũ1∂y1 + ũ2∂y2 + u · n ∂z
)
χ

)
�

(
ω̃ × n − ũ · ∇n + αũ

)
(131)

−ε
(
∂zzχ + 2ε∂zχ∂z + ε

1

2
∂z

(
ln |g|)∂zχ

)
�

(
ω̃ × n − ũ · ∇n + αũ

)
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Fκ =
((

ũ1∂y1 + ũ2∂y2
)
�

)
ω̃ × n − ũ · ∇n + αũ +�

(
ω̃

(
ũ1∂y1 + ũ2∂y2

)
n
)

−�
(((

ũ1∂y1 + ũ2∂y2
)∇n

)
u
)

−ε�g̃

(
χ�

(
ω̃ × n − ũ · ∇n + αũ

))
. (132)

Note that in computing the source terms, and in particular Fκ which contains all
the commutators coming from the fact that� and n are not constant, we have used
the idea that in the coordinate system that we have chosen,� and n do not depend
on the normal variable. By using that �g̃ involves only tangential derivatives and
that the derivatives of χ are compactly supported away from the boundary, we get
the estimates

‖Fu‖1,∞ � C3‖�∇ p‖1,∞,

‖Fχ‖1,∞ � C3

(
‖u‖1,∞‖u‖2,∞ + ε‖u‖3,∞

)
,

‖Fκ‖1,∞ � C4

(
‖u‖1,∞‖∇u‖1,∞ + ε

(‖∇u‖3,∞ + ‖u‖3,∞
))
.

Note that the fact that the term (∇ p · ∇)n in (130) contains only tangential deriv-
atives of the pressure comes from the block diagonal structure of the metric (119)
and the fact that n does not depend on the normal variable z.

Consequently, by using Proposition 20, we get that

‖F‖1,∞ � C4

(
‖�∇ p‖1,∞ + Qm + ε‖∇u‖3,∞

)
, m � m0 + 4 (133)

where F = Fu + Fχ + Fκ .
In order to be able to use Lemma 14, we shall perform a last change of unknown

in order to eliminate the term ∂z
(

ln |g|)∂z η̃ in (129). We set

η̃ = 1

|g| 1
4

η = γ η.

Note that we have

‖η̃‖1,∞ � C3‖η‖1,∞, ‖η‖1,∞ � C3‖η̃‖1,∞ (134)

and that, moreover, η solves the equation

∂tη + ũ1∂y1 η̃ + ũ2∂y2η + ũ · n ∂zη − ε∂zzη

= 1

γ

(
χ�Fω × n+Fu +Fχ+Fκ+ε∂zzγ η+ ε

2
∂z ln |g| ∂zγ η − (ũ · ∇γ ) η

)

:= S. (135)

Consequently, by using Lemma 14, we get that

‖η(t)‖1,∞

� ‖η0‖1,∞ +
∫ t

0

((‖ũ‖2,∞ + ‖∂z ũ‖1,∞
)(‖η‖1,∞ + ‖η‖m0+3

) + ‖S‖1,∞
)

� ‖η0‖1,∞ + C3

∫ t

0

((‖u‖2,∞ + ‖∇u‖1,∞
)(‖η‖1,∞+‖η‖m0+3

)+‖S‖1,∞
)
.
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Consequently, we can use (123), (127), (134), (133) and Proposition 20 to get, as
in the proof of Proposition 13, that

‖χ�∂nu(t)‖2
1,∞ � Cm+1

(
‖u(t)‖2

m + ‖∇u(t)‖2
m−1 + Nm(0)+ ε

∫ t

0
‖∇2u‖2

m−1

+(1 + t + ε3t2)
∫ t

0

(
Nm(s)+ N 2

m(s)+ ‖�∇ p‖2
1,∞

)
ds.

Since �∇ p involves only tangential derivatives, we get thanks to the anisotropic
Sobolev embedding that for m � 4

‖�∇ p‖2
1,∞ � Cm‖∇ p‖2

m−1.

Consequently, the proof of Proposition 21 follows by using (112) and Proposition 19.

4.7. Proof of Theorem 16

It suffices to combine Proposition 21 and the estimate (112).

5. Proof of Theorem 1

To prove that (1), (2) is locally well-posed in the function space Em ∩ Lip, one
can, for example, smooth the initial data in order to use a standard well-posedness
result and then use the a priori estimates given in Theorem 16 and a compactness
argument to prove the local existence of a solution (we shall not give more details
since the compactness argument is almost the same as the one needed for the proof
of Theorem 2). The uniqueness of the solution is clear since we work with functions
with Lipschitz regularity. The fact that the lifetime of the solution is independent of
the viscosity ε then follows by again using Theorem 16 and a continuous induction
argument.

6. Proof of Theorem 2

Thanks to Theorem 1, the a priori estimate (5) holds on [0, T ]. In particular, for
each t, uε(t) is bounded in Hm

co and ∇uε(t) is bounded in Hm−1
co . This yields that

for each t , uε(t) is compact in Hm−1
co . Next, by using the equation (1), we get that

∫ T

0
‖∂t u

ε(t)‖2
m−1 �

∫ T

0

(
ε2‖∇2uε‖2

m−1 + ‖∇ pε‖2
m−1 + ‖uε · ∇uε‖2

m−1

)
ds,

and hence by using Lemma 8 and Proposition 19, we get that

∫ T

0
‖∂t u

ε(t)‖2
m−1 �

∫ T

0

(
ε2‖∇2uε‖2

m−1

+ (
1+‖u‖2

m +‖∇u‖2
m−1+‖∇u‖2

L∞
)(‖u‖2

m +‖∇u‖2
m−1

)
ds.
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Consequently, thanks to the uniform estimate (5), we get that ∂t uε is uniformly
bounded in L2(0, T, Hm−1

co ).
From the Ascoli Theorem, we thus get that uε is compact in C([0, T ], Hm−1

co

)
.

In particular, there exists a sequence εn and u ∈ C([0, T ], Hm−1
co

)
such that uεn

converges towards u in C([0, T ], Hm−1
co

)
. By using the uniform bounds (5) again,

we get that u ∈ Lip. Thanks to the anisotropic Sobolev embedding (54), we also
have that for m0 > 1

sup
[0,T ]

‖uεn (t)− u(t)‖2
L∞ � sup

[0,T ]
(‖∇(

uεn − u
)‖m0‖uεn − u

∥
∥

m0
+ ‖uεn − u

∥
∥2

m0

)
,

and hence again thanks to the uniform bound (5), we get that uεn converges uni-
formly towards u on [0, T ] × �. Moreover, it is easy to check that u is a weak
solution of the Euler equation.

Finally since u ∈ L∞([0, T ], L2 ∩ Lip
)
, u is actually unique and hence we get

that the whole family uε converges towards u. This ends the proof of Theorem 2. ��
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