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Abstract

We consider a variational model introduced in the physical literature to
describe the epitaxial growth of an elastic film over a thick flat substrate when
a lattice mismatch between the two materials is present. We study quantitative and
qualitative properties of equilibrium configurations, that is, of local and global min-
imizers of the free-energy functional. More precisely, we determine analytically the
critical threshold for the local minimality of the flat configuration and we also prove
several results concerning its global minimality. The non-occurrence of singulari-
ties in non-flat global minimizers is also addressed. One of the main results of the
paper is a new sufficient condition for local minimality, which provides the first
extension of the classical criteria based on the positivity of the second variation to
the context of functionals with bulk and surface energies.
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1. Introduction

In recent years, the physical and computational communities have displayed a
growing interest in the study of the morphological instabilities of interfaces between
solids generated by elastic stress, the so-called Stress Driven Rearrangement
Instabilities.

These occur, for instance, in hetero-epitaxial growth of thin films for sys-
tems with a lattice mismatch between film and substrate, such as InGaAs/GaAs or
SiGe/Si, which are useful in the fabrication of nano-structures with specific optic
and electronic properties. When the film is grown on a flat substrate, its profile
remains flat until a critical value of the thickness is reached, after which the free
surface develops corrugations or other kinds of irregularities. This is referred to
as the Asaro–Grinfeld–Tiller (AGT) instability, after the scientists who started the
theoretical investigations on this phenomenon [5,18].

This threshold effect is usually explained in terms of the minimization of two
competing forms of energy: the surface energy and the bulk elastic energy. More
precisely, due to the lattice mismatch between film and substrate, no stress-free
states are admissible and the flat configuration (of the film) bears an amount of
stored elastic energy that is proportional to the volume of the material deposited.
Hence, nontrivial morphologies (such as wavy profiles or formations of strained
islands separated by a thin wetting layer) become favorable when the higher ener-
getic cost in terms of surface tension is compensated by the release of elastic energy.

Several numerical and theoretical studies have been carried out to study qual-
itative properties of equilibrium configurations of strained epitaxial films (see, for
example, [16,23,26,27]). All these works are very insightful. Nevertheless, they
rely upon formal methods that often lack rigorous mathematical content.

The paper [19] by Grinfeld casts the study of AGT instability in a more ana-
lytical perspective. Following the celebrated Gibbs variational approach, the author
considers a suitable free-energy functional (given by the sum of the stored elastic
energy of the film and the interfacial energy of its free surface) and studies when
the second variation is positive definite, establishing various instability results for
the flat morphology of the film. However, existence of minimizers and the prob-
lem of deriving minimality properties from the positive definiteness of the second
variation are not addressed.

A first attempt to provide a sound variational formulation for the existence
problem of minimizing configurations in the context of epitaxial growth has been
carried out in [7], but for an unrealistic one-dimensional model. The determination
of a proper functional setting for the more realistic energy introduced in [19] has
been achieved in [6] and in [15] (for a slightly different model), using relaxation and
geometric measure theory techniques. In both papers the framework is that of linear
elasticity and only two-dimensional morphologies are considered, corresponding to
three-dimensional configurations with planar symmetry (see also [10] for a partial
extension of these relaxation results to higher dimensions). Besides the existence
of minimizing configurations, in [15] a complete regularity theory is obtained and,
in the wetting regime, a rigorous proof of the zero contact angle condition between
film and substrate is achieved, providing an analytical confirmation of the formal
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analysis of [25] (see also [14] dealing with the case of anisotropic surface energy).
Concerning the possible formation of singularities in the film, it is shown that they
can only be finitely many and of cusp type. In fact, the appearance of cusps, possibly
leading to vertical fractures in the material, is observed both numerically and exper-
imentally (see [16,26]). The regularity theory developed in [15] also applies with
minor changes to the model considered in [6] (see Section 2.1). Similar regularity
results for related free boundary problems are also contained in [3,9,22,24].

However, the analysis carried out in [15] leaves out several important issues
concerning the qualitative properties of equilibrium configurations. In this paper
we mainly address the following two issues for the model considered in [6]:

– we seek to prove rigorous minimality results and to perform a detailed analysis
of the energy landscape, focusing, in particular, on the analytical determination
of the critical volume thresholds for the local and global minimality of the flat
configuration;

– we investigate under which conditions cusp singularities or fractures do not
form, once the flat configuration becomes unstable.

These theoretical investigations may be important for those applications where the
formation of corrugations and singularities in the film is undesirable.

We now describe the model studied in [6]. We assume that the reference con-
figuration of the film is

�h :=
{

z = (x, y) ∈ R
2 : 0 < x < b, 0 < y < h (x)

}
,

where h : [0, b] → [0,∞) represents the free-profile of the film. We work within
the theory of small deformations, so that

E (u) := 1

2

(
∇u + ∇T u

)

represents the strain, with u : �h → R
2 the planar displacement. We also pre-

scribe a Dirichlet boundary condition of the form u(x, 0) = (e0x, 0)+ q(x) at the
interface between film and substrate, which models the case of a film growing on
an infinitely rigid substrate. This boundary condition forces the film to be strained,
thus generating elastic energy. The positive constant e0 measures the mismatch
between the lattices of the two materials and q is a b-periodic function. As cus-
tomary in the physical literature and following [6], we also impose the periodicity
conditions h(0) = h(b) and u(b, y) = u(0, y) + (e0b, 0). The energy associated
with a configuration (h, u) when h is smooth is given by

F(h, u) =
∫

Ωh

[
μ|E(u)|2 + λ

2
(divu)2

]
dz + σH1(Γh),

where μ and λ represent the Lamé coefficients of the material, σ is the surface
tension on the profile of the film, Γh is the graph of h, and H1 denotes the one-
dimensional Hausdorff measure. One seeks to minimize F among all admissible
configurations (h, u) satisfying a volume constraint |Ωh | = d. However, smooth
minimizing sequences may converge to irregular configurations, where the profile
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Fig. 1. An irregular profile h and a smooth approximation. The smooth profile surrounds
the vertical cut so that in the limit its length is counted twice

h is just a lower semicontinuous function of bounded variation. In particular, the
(extended) graph of h may contain vertical parts and cuts. The latter can be inter-
preted as vertical cracks in the film (see Fig. 1) and their union will be denoted by
Σh . More precisely,

Σh := {(x, y) : h(x) ≤ y < min{h(x−), h(x+)}},
where h(x±) denote the right and left limit at x . We denote this larger class of (pos-
sibly irregular) reachable configurations by X . Assume without loss of generality
σ = 1. It is proved in [6] through a relaxation procedure that the energy associated
to any pair (h, u) ∈ X is given by

F(h, u) =
∫

Ωh

[
μ|E(u)|2 + λ

2
(divu)2

]
dz + H1(Γh)+ 2H1(Σh). (1.1)

Notice that in this formula the vertical cracks are counted twice since they arise
as limits of regular profiles (see again Fig. 1). Equilibrium configurations are now
identified with global or local minimizers of the energy (1.1) in the aforementioned
larger class X under a prescribed volume constraint.

Coming to the main results of the paper, which are stated in precise form in
Section 2, we first deal with the local minimality of the flat configuration with
the Dirichlet datum u(x, 0) = (e0x, 0). Roughly speaking, by a local minimizer
we mean a configuration (h, u) minimizing the energy among all admissible com-
petitors (g, v) such that |Ωg| = |Ωh | and the two extended graphs Γh ∪ Σh and
Γg ∪Σg are close in the Hausdorff distance. When h is smooth this last condition
is equivalent to requiring that h and g are close in the sup norm. In Theorem 2.9
we prove that if the size of the periodicity interval is sufficiently small, namely if

0 < b � π

4

2μ+ λ

e2
0μ(μ+ λ)

=: b0, (1.2)

then all flat configurations are local minimizers, no matter how thick the film is.
Moreover, when b is larger than b0, we show that the flat configuration remains a
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local minimizer if and only if the thickness of the film is smaller than a critical value
depending on b and analytically determined (see (2.16)). Notice that formula (1.2)
shows that the smaller the mismatch e0, the larger the range of local minimality of
the flat configuration. Also formula (2.16) displays a similar monotone dependence
of the critical thickness on the mismatch.

Qualitatively similar results are shown to hold concerning the global minimali-
ty of the flat configuration. In Theorem 2.11 we prove that there exists 0 < bcrit � b0
such that the flat configuration is the unique global minimizer for all values of the
thickness if and only if 0 < b � bcrit . Moreover, when b > bcrit we are also able
to prove that the flat configuration is the unique global minimizer if and only if the
thickness stays below a critical value, which depends on b. Differently from the
case of local minimizers, here we do not determine the exact value of bcrit and of
the critical thickness, since their existence follows from a more indirect argument.
We also show that for large values of b, the critical thickness for the global mini-
mality is strictly smaller than the one for the local minimality. When this happens
a non-flat global minimizer beside the flat configuration is shown to exist at the
critical level.

As mentioned before, another interesting issue concerns the occurrence of
cusped or fractured configurations. It is important to establish under which circum-
stances (if any) non-flat minimal configurations present neither cusps nor vertical
cracks. Numerical simulations and experiments suggest that this is the case when
the sample is not too large in width and thickness. An analytical confirmation is
provided in the third main result of the paper, Theorem 2.14.

One of the main tools needed to prove the previous results is a local minimality
criterion based on the study of the second variation of F . More precisely, given
a smooth critical configuration (h, u) and a b-periodic variation ϕ ∈ C∞([0, b]),
with

∫ b
0 ϕ dx = 0, one may consider the one-parameter family of configurations

(ht , ut ), where ht := h + tϕ and ut is the elastic equilibrium in Ωht under the
proper Dirichlet and periodic boundary conditions. Then, the second variation at
(h, u) along the direction ϕ is defined as

d2

dt2 F(ht , ut )|t=0.

The result is a non-local quadratic form ∂2 F(h, u), involving also the curvature of
Γh and the trace of the gradient of E(u) on Γh (see formula (3.5)). In Theorem 2.10
we prove that if ∂2 F(h, u) is positive definite, then (h, u) is a local minimizer. This
theorem, together with the explicit calculation of the second variation at the flat con-
figuration, contained in Section 5 and based on [19], allows us to deduce the local
minimality properties of the flat configurations described above. Theorem 2.10 may
be regarded as the counterpart in our framework of the classical sufficient condi-
tions based on the positiveness of the second variation and of the Weierstrass excess
function. However, here we do not resort to a suitably adapted field theory (it is
not clear what the right notion of field would be in our context) but we follow a
rather different approach, as explained below. To the best of our knowledge, this
result provides the first extension of the classical sufficiency theorems for strong
local minimizers to the context of functionals with bulk and surface energies.
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The proof of Theorem 2.10 stretches for Sections 3, 4 and 6. In fact, finding
sufficient minimality conditions is not at all an easy task for functionals with bulk
and surface parts, due to the strong lack of convexity they display. Since this the-
orem is the central result of the paper and its proof is rather complex, we outline
here the overall strategy, giving a flavor of the geometric arguments involved. A
first crucial step consists in showing that the positivity of ∂2 F(h, u) implies that
(h, u) is a local minimizer with respect to W 2,∞-perturbations of the profile. This
minimality property may be regarded as the analog of the classical notion of weak
minimizer for the standard functionals of the Calculus of Variations. Its proof fol-
lows some ideas introduced in [8] to study a similar notion of second variation
for the Mumford–Shah functional. However, the presence of the vectorial elastic
energy in place of the scalar Dirichlet functional requires a much more involved
argument. The key point is to study the continuity properties of the eigenvalues of
the operator associated with the quadratic form ∂2 F(h, u) with respect to W 2,∞-
variations. Since the expression of ∂2 F(h, u) involves the trace of the gradient of
E(u) on Γh , this analysis requires delicate regularity estimates in the appropriate
fractional Sobolev spaces. These estimates are carried out in Section 4.

The remaining part of the proof of Theorem 2.10 is devoted to showing that
the W 2,∞-local minimality is in fact equivalent to the local minimality with respect
to any admissible (possibly irregular) profile sufficiently close in the sup norm. The
argument goes as follows: Assume by contradiction that the W 2,∞-local minimizer
(h, u) is not a local minimizer. Then one can find a sequence of configurations
(kn, wn) with sup[0,b] |h − kn| � 1

n , |Ωkn | = |Ωh |, and F(kn, wn) < F(h, u).
Consider the obstacle problems

min
{

F(g, v)+Λ
∣∣|Ωg| − |Ωh |∣∣ : (g, v) ∈ X, g � h − 1

n

}
, (1.3)

with Λ > 0, and let (gn, vn) be the corresponding minimizing configurations.
Notice that we have replaced the volume constraint by a penalization term. Since
(kn, wn) is an admissible competitor for (1.3), we have in particular

F(gn, vn) � F(gn, vn)+Λ
∣∣|Ωgn | − |Ωh |∣∣ � F(kn, wn) < F(h, u). (1.4)

We conclude by showing that if Λ > Λ0, then gn is regular and gn → h in W 2,∞.
This fact, together with (1.4), gives a contradiction to the W 2,∞-local minimality of
(h, u). The proof of the regularity and convergence of gn is the content of Section 6
and is obtained by refining in a quantitative fashion the regularity estimates for min-
imal configurations proved in [15]. The argument goes as follows. We first show
that if Λ is sufficiently large, then that (h, u) is the unique minimizer to

min
{

F(g, v)+Λ
∣∣|Ωg| − |Ωh |∣∣ : (g, v) ∈ X, g � h

}
.

From this fact we deduce that (gn, vn)must converge (in a suitable sense) to (h, u).
In particular, one can show that

gn → h in L∞(0, b). (1.5)
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Fig. 2. The uniform inner ball condition: for each point of Γgn there is a tangent ball of
radius ρ0 contained in Ω#

gn

Fig. 3. If Γgn contains a cusp or a vertical crack, then, due to the inner ball condition, the
L∞-distance between gn and h is comparable to ρ0, a contradiction to (1.5)

Next, we observe that from the definition (1.1) of F , the profile gn minimizes the
functional

g → H1(Γg)+ 2H1(Σg)+Λ
∣∣|Ωg| − |Ωh |∣∣

among all admissible g such that h − 1
n � g � gn .

This one-sided minimality property alone suffices to provide a lower bound
for the curvature (in a generalized sense) of Γgn ∪Σgn . More precisely, using suit-
able isoperimetric estimates, we show that for all z ∈ Γgn ∪Σgn there exists a ball
Bρ0(z0) ⊂ Ω#

gn
such that z ∈ ∂Bρ0(z0), with ρ0 ≡ ρ0(Λ) independent of n. Here

Ω#
gn

denotes the set obtained by repeating Ωgn periodically in the x-direction (see
Fig. 2 above).

As a purely geometric consequence of this uniform inner ball condition and
of (1.5), we deduce that gn has no cusps nor vertical cuts for n large (see Fig. 3)
and, in fact, gn → h in C1([0, b]).

Owing to this last convergence, we obtain by a blow-up argument the following
decay estimate for the gradients of the displacements vn :

∫

Br (z)∩Ωgn

|∇vn|2 dw � C0r2−δ
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Fig. 4. The dashed line indicates the profile of the modified configuration used as a com-
petitor to deduce the C1,α uniform bounds

for all z ∈ Γgn , r ∈ (0, r0), where C0 and r0 are independent of n and δ is any fixed
small positive constant. With this estimate at hand, the deviation from flatness of
Γgn can be estimated by comparing the energy of (gn, vn) in Br (z)∩Ωgn with that
of the modified configuration obtained by extending vn to the whole ball and by
replacing Γgn ∩ Br (z) with the segments connecting the center z to the points in
Γgn ∩ ∂Br (z) (see Fig. 4).

The comparison argument yields an estimate of the oscillation of the unit nor-
mal vectors to Γgn that implies a uniform bound of the C1,α-norms of {gn} for
α ∈ (0, 1

2 ). In turn, by elliptic regularity, we deduce that {vn} is also uniformly
bounded in the C1,α-norm. This allows us to use the Euler-Lagrange equations to
finally deduce the desired W 2,∞-convergence of gn to h.

The proof of the global minimality properties stated before requires some
additional arguments that are presented in Section 7. Finally, the last section
of the paper collects some definitions and results on fractional Sobolev spaces
and contains the simple proof of a regularity result for the Lamé system with
homogeneous Neumann boundary condition, which is used in the proof of
Theorem 2.10.

We would like to point out that the approach developed in this paper can
be extended to a larger class of free boundary problems. Among these, we men-
tion the one studied in [11], where a nonlocal perturbation of the isoperimetric
problem, arising in the context of microphase separation of diblock copoly-
mers, is considered. In that paper the authors compute the second variation
of the functional and determine sufficient conditions for it to be positive
definite. Even though our results do not apply directly, the overall strategy
has been implemented in [1] to prove local minimality results also for that
model.

We conclude this introduction by observing that the proof of the W 2,∞-local
minimality seems to be adaptable to more general surface and bulk energy densities,
even in higher dimensions, while the arguments leading to local and global mini-
mality rely upon two-dimensional geometric constructions. Hence, the extension
of this last part to higher dimensions requires new ideas and will be the subject of
future work.
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2. Setting of the Problem and Statement of the Results

In this section we present the model studied by Bonnetier and Chambolle
in [6] and the related functional setting. We also recall the regularity theorem proved
in [15]. The main new results concerning local and global minimizers are stated in
Sections 2.2 and 2.3, respectively.

2.1. The Model

We start by introducing the class of admissible profiles over the interval (0, b).
Roughly speaking, it consists of all functions with finite total variation in (0, b)
whose b-periodic extensions are lower semicontinuous in R. For reasons that will
become clear later on, it is convenient to identify such a function with its periodic
extension. This motivates the following definition:

AP(0, b) := {g : R → [0,+∞) : g is lower semicontinuous

and b-periodic, Var(g; 0, b) < +∞} .
Here, Var(g; 0, b) denotes the pointwise total variation of g over the interval (0, b),
defined as

Var(g; 0, b) := sup
k∑

i=1

|g(xi )− g(xi−1)| < +∞,

where the supremum is taken over all finite families x0, x1, . . . , xk , with 0 < x0 <

x1 < · · · < xk < b, k ∈ N. Since g ∈ AP(0, b) is b-periodic, its pointwise total
variation is finite over any bounded interval of R. Therefore, it admits right and left
limits at every x ∈ R denoted by g(x+) and g(x−), respectively. In the following
we use the notation

g+(x) := max{g(x+), g(x−)}, g−(x) := min{g(x+), g(x−)}. (2.1)

We set

Ωg := {(x, y) : x ∈ (0, b), 0 < y < g(x)},
Ω#

g := {(x, y) : x ∈ R, 0 < y < g(x)}. (2.2)

Thus,Ω#
g is the open set obtained by repeatingΩg b-periodically in the x-direction.

We now define

Γg := {(x, y) : x ∈ [0, b), g−(x) � y � g+(x)}, (2.3)

and

Σg := {(x, y) : x ∈ [0, b), g(x) < g−(x), g(x) � y � g−(x)}. (2.4)

We refer to Σg as the the set of vertical cracks. We also set

Γ̃g := Γg ∪Σg,
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and we will use the notation

Γ #
g := {(x, y) ∈ R

2 : x ∈ R, g−(x) � y � g+(x)}.

In the same fashion we define Σ#
g and Γ̃ #

g . Notice that we have decided not to
highlight the dependence on b in the symbols Ωg, Γg , and Σg , since throughout
the most part of the paper b is fixed.

We now introduce a convergence in AP(0, b). To this aim, for any pair (A, B)
of subsets of R

2 we set

dH (A, B) := inf{ε > 0 : B ⊂ Nε(A) and A ⊂ Nε(B)},

where Nε(A) denotes the ε-neighborhood of A. When restricted to the class of
closed subsets, dH reduces to the well-known Hausdorff distance.

We say that hn → h in AP(0, b) if

sup
n

Var(hn; 0, b) < +∞ and dH (R
2+ \Ω#

hn
,R2+ \Ω#

h ) → 0, (2.5)

where R
2+ = {(x, y) ∈ R

2 : y � 0}. Given g ∈ AP(0, b), we denote

L D#(Ωg; R
2):=

{
v ∈ L2

loc(Ω
#
g ; R

2) : v(x, y) = v(x+b, y)

for (x, y) ∈ Ω#
g , E(v)|Ωg ∈ L2(Ωg; R

2)
}
,

where E(v) := 1
2 (∇v + ∇T v), ∇v being the distributional gradient of v and ∇T v

its transpose. Given e0 � 0, we define

Y (e0; 0, b) :=
{
(g, v) : g ∈ AP(0, b), v : Ω#

g → R
2 s.t.

v(·, ·)− (e0·, 0) ∈ L D#(Ωg; R
2)
}

and, given a b-periodic function q of class C2,

X (e0, q; 0, b) := {(g, v) ∈ Y (e0; 0, b) : v(x, 0) = (e0x + q(x), 0) for x ∈ R
}
.

If q ≡ 0 we simply write X (e0; 0, b) in place of X (e0, q; 0, b).
We introduce the following convergence in Y (e0; 0, b).

Definition 2.1. We say that (hn, un) → (h, u) in Y (e0; 0, b) if and only if hn → h
in AP(0, b) and un ⇀ u in H1

loc(Ω
#
h ; R

2).

Notice that the definition is well posed, since by the second equation in (2.5) it
follows that if Ω ′ ⊂⊂ Ω#

h then Ω ′ ⊂⊂ Ω#
hn

for n large enough. The notion of
convergence just introduced is motivated by the following compactness theorem
(see [6,15]).
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Theorem 2.2. Let (hn, un) ∈ X (e0, q; 0, b) be such that

sup
n

{∫

Ωhn

|E(un)|2 dz + Var(hn; 0, b)+ |Ωhn |
}
< +∞.

Then there exist (h, u) ∈ X (e0, q; 0, b) and a subsequence {(hnk , unk )} such that
(hnk , unk ) → (h, u) in Y (e0; 0, b).

We work in the framework of linearized elasticity, and for simplicity we only
consider isotropic and homogeneous materials. Hence, the elastic energy density
Q : M

2×2
sym → [0,+∞) takes the form

Q(ξ) := 1

2
Cξ : ξ = μ|ξ |2 + λ

2

[
tr(ξ)

]2
,

where

Cξ =
(
(2μ+ λ)ξ11 + λξ22 2μξ12

2μξ12 (2μ+ λ)ξ22 + λξ11

)
(2.6)

and the Lamé coefficients μ and λ satisfy the ellipticity condition

μ > 0 and λ > −μ. (2.7)

Since

Q(ξ) � min{μ,μ+ λ}|ξ |2 for all ξ ∈ M
2×2
sym ,

condition (2.7) guarantees that Q is coercive.
We are ready to introduce the energy functional. If (g, v) ∈ Y (e0; 0, b) and g

is Lipschitz it is defined as

G(g, v) :=
∫

�g

Q(E(v)) dz + H1(Γg).

The following result, proved in [6] (see also [15]), gives a representation formula
for the energy in the general case.

Theorem 2.3. For any pair (g, v) ∈ Y (e0; 0, b) define

F(g, v) := inf{lim inf
n

G(gn, vn) : (gn, vn) → (g, v) in Y (e0; 0, b),

gn Lipschitz, vn(x, 0) = v(x, 0) for x ∈ R, |Ωgn | = |Ωg|}.

Then,

F(g, v) =
∫

�g

Q(E(v)) dz + H1(Γg)+ 2H1(Σg). (2.8)



258 N. Fusco & M. Morini

When the extended graph of g contains a vertical segment in {0}×R, by periodicity
the same occurs in {b} × R. Nevertheless, since in the definitions (2.3) and (2.4)
only the part of the graph over the half-open interval [0, b) is considered, the energy
in (2.8) is invariant with respect to horizontal translations of (g, v).

Since by definition F is lower semicontinuous with respect to the convergence
in Y (e0; 0, b), thanks to Theorem 2.2 we have that the minimum problem

min{F(g, v) : (g, v) ∈ X (e0, q; 0, b), |Ωg| = d} (2.9)

always has a solution for any d > 0. Moreover, it is a well known result in relaxation
theory (see [12, Theorem 3.8]) that the minimum value in (2.9) is equal to

inf{G(g, v) : (g, v) ∈ X (e0, q; 0, b), |Ωg| = d, g Lipschitz}
and that limit points of minimizing sequences for the above problem are minimizers
of (2.9).

Definition 2.4. We say that an admissible pair (h, u) ∈ X (e0, q; 0, b) is a b-peri-
odic global minimizer for F if it solves the minimum problem (2.9) for d := |Ωh |.
Moreover, we say that an admissible pair (h, u) ∈ X (e0, q; 0, b) is a b-periodic
local minimizer for F if there exists δ > 0 such that

F(h, u) � F(g, v) (2.10)

for all pairs (g, v) ∈ X (e0, q; 0, b), with |Ωg| = |Ωh | and dH (Γ̃h, Γ̃g) � δ. If, in
addition, when g �= h (2.10) holds with strict inequality, then we say that (h, u) is
an isolated b-periodic local minimizer.

Remark 2.5. Note that if h is continuous, then the above definition of a b-periodic
local minimizer is equivalent to assuming that there exists δ > 0 such that (2.10)
holds for all pairs (g, v) ∈ X (e0, q; 0, b), with |Ωg| = |Ωh | and

sup
x∈[0,b]

|g(x)− h(x)| � δ.

We notice here that a (sufficiently regular) b-periodic local or global minimizer
(h, u) ∈ X (e0, q; 0, b) satisfies the following set of Euler-Lagrange conditions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

div CE(u) = 0 in Ωh ;

CE(u)[ν] = 0 on Γh ∩ {y > 0};
CE(u)(0, y)[ν] = −CE(u)(b, y)[ν] for 0 < y < h(0) = h(b);

k + Q(E(u)) = const on Γh ∩ {y > 0},
(2.11)

where ν denotes the outer unit normal toΩh, k is the curvature of Γh , and the con-
stant appearing on the right-hand side of the last equation may be interpreted as the
Lagrange multiplier associated with the volume constraint. Due to (2.7), equation
(2.11)1 is a linear elliptic system satisfying the Legendre–Hadamard condition.

Definition 2.6. Let (h, u) ∈ X (e0, q; 0, b) be such that h ∈ C2([0, b]). We say
that the pair (h, u) is a critical point for F if it satisfies (2.11).
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The regularity theory developed in [15] also applies with minor changes to the
model under consideration. To recall the main result, for g ∈ AP(0, b) we denote
the set of cusp points by

Σg,c := {(x, g(x)) : x ∈ [0, b), g−(x) = g(x), and

g′+(x) = −g′−(x) = +∞}, (2.12)

where g− is defined in (2.1), while g′+ and g′− denote the right and left derivatives,
respectively.

As usual, the set Σ#
g,c is obtained by replacing [0, b) by R in the previous

formula and coincides with the b-periodic extension of Σg,c.

Theorem 2.7. (Regularity of local minimizers, see [15]) Let (h, u) ∈ X (e0, q; 0, b)
be a b-periodic local minimizer for F. Then the following regularity results hold:

(i) cusp points and vertical cracks are at most finite in [0, b); that is,

card
({x ∈ [0, b) : (x, y) ∈ Σh ∪Σh,c for some y � 0}) < +∞;

(ii) the curve Γ #
h is of class C1 away from Σ#

h ∪Σ#
h,c and

lim
x→x±

0

h′(x) = ±∞ for every x0 ∈ Σ#
h ∪Σ#

h,c;

(iii) Γ #
h ∩ {y > 0} is of class C1,α away from Σ#

h ∪Σ#
h,c for all α ∈ (0, 1/2);

(iv) let A := {x ∈ R : h(x) > 0 and h is continuous at x}. Then A is an open
set of full measure in {h > 0} and h is analytic in A.

Statement (ii) of Theorem 2.7 implies in particular that the zero contact angle con-
dition between film and substrate holds. Though the regularity results proved in
[15] refer to a slightly different model and to a slightly stronger notion of local
minimality, the theorem above can be deduced from that paper. In particular, as in
[15, Proposition 3.5], (i) follows from the inner ball condition that for our model
has an even simpler proof (see Corollary 6.4 and Lemma 6.7 in this paper). Con-
cerning (ii), the C1 regularity of Γ #

h ∪ {y > 0} can be proved exactly as in [15,
Theorem 3.14]. Only the contact angle condition at {y = 0} requires extra care
due to the presence of the Dirichlet condition, which is proven in [13] in the case
q ≡ 0. However, the same proof given in [13] applies with minor modifications to
the general case q ∈ C2. Finally (iii) and (iv) are proved exactly as [15, Theorems
3.17 and 3.19], respectively.

Remark 2.8. If h > 0, Γh is of class C1,α for all α ∈ (0, 1/2), and (h, u) ∈
X (e0, q; 0, b) satisfies the first three equations in (2.11), then the elliptic regularity
(see Proposition 8.9) implies that u ∈ C1,α(�h) for all α ∈ (0, 1/2). Moreover,
if also (2.11)4 holds in the distributional sense, then the results contained in
[21, Subsection 4.2] imply that (h, u) is analytic.
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2.2. Local Minimizers

In this subsection we state the main results of the paper concerning local
minimizers.

Given d > 0, the pair (h, ue0) ∈ X (e0; 0, b) defined as

h ≡ d

b
, ue0(x, y) :=

(
e0x,

−λe0

2μ+ λ
y
)
, (2.13)

will be referred to as the flat configuration with volume d. With a slight abuse
of notation we simply write (d/b, ue0) to denote such a configuration. Note that
(d/b, ue0) is a critical point for the functional F , that is, it satisfies (2.11). We warn
the reader that whenever the flat configuration comes into play it is understood that
the Dirichlet datum is u0(x, 0) = (e0x, 0).

For the applications it is important to know when the film starts developing
irregularities and corrugations. When the growth of the film is quasistatic, this cor-
responds to determining the critical thickness at which the flat configuration ceases
to be a (local) minimizer.

One of the main results of the paper is the exact description of the the local
minimality threshold. This is done in terms of the Grinfeld function K defined for
y � 0 by

K (y) := max
n∈N

1

n
J (ny), (2.14)

where

J (y) := y + (3 − 4νp) sinh y cosh y

4(1 − νp)2 + y2 + (3 − 4νp) sinh2 y
,

νp being the Poisson modulus of the elastic material, that is,

νp := λ

2(λ+ μ)
. (2.15)

It turns out (see Corollary 5.3) that K is strictly increasing and continuous, K (y) �
Cy and lim

y→+∞ K (y) = 1, for some positive constant C .

Theorem 2.9. (Local minimality of the flat configuration) Let dloc : (0,+∞) →
(0,+∞] be defined as dloc(b) := +∞, if 0 < b � π

4
2μ+λ

e2
0μ(μ+λ) , and as the solution

to

K
(2πdloc(b)

b2

)
= π

4

2μ+ λ

e2
0μ(μ+ λ)

1

b
, (2.16)

otherwise. Then the flat configuration (d/b, ue0) is an isolated b-periodic local
minimizer for F in the sense of Definition 2.4 if 0 < d < dloc(b).

The threshold dloc is critical; indeed, for d > dloc(b) there exists (g, v) ∈
X (e0; 0, b), with |Ωg| = d, and sup[0,b] |g − d/b| arbitrarily small such that
F(g, v) < F(d/b, ue0).
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In particular, if 0 < b � π
4

2μ+λ
e2

0μ(μ+λ) , then the flat configuration is always a local

minimizer. It is an open problem to establish whether (dloc(b)/b, ue0) remains a
local minimizer or not.

We remark that the last part of the statement was already established in [19]
where the function (2.14) has been computed in connection with a certain notion
of the second variation of the energy functional F . Instead, the first part of the
statement, that is, the local minimality result below the critical threshold, is new.
It is achieved by establishing a new criterion for local minimality expressed in
terms of the positive definiteness of a suitable quadratic form. More precisely, let
(h, u) ∈ X (e0, q; 0, b) be a critical point, with h ∈ C∞

# ([0, b]) and h > 0.1 Given

ψ ∈ C∞
# ([0, b])with

∫ b
0 ψ dx = 0, for t ∈ R we set ht := h + tψ , we let ut be the

elastic equilibrium corresponding toΩht under the usual periodicity and boundary
conditions, and we define the second variation of F at (h, u) along the direction
ψ to be the value of

d2

dt2 F(ht , ut )|t=0. (2.17)

If (2.17) is positive for all ψ ∈ C∞
# ([0, b]), with

∫ b
0 ψ dx = 0 and ψ �= 0, then we

say that the second variation of F at the critical point (h, u) is positive definite.
The main result of Section 6 is the following.

Theorem 2.10. (Local minimality criterion) Let (h, u) ∈ X (e0, q; 0, b) be a crit-
ical point for F, with h ∈ C∞

# ([0, b]) and h > 0, and assume that the second
variation of F at (h, u) is positive definite. Then (h, u) is an isolated b-periodic
local minimizer in the sense of Definition 2.4.

Note that the regularity assumption on h is not so restrictive, thanks to Remark
2.8. To the best of our knowledge, Theorem 2.10 provides the first extension of the
classical local minimality criteria based on the second variation to the framework
of functionals with bulk and surface energies.

2.3. Global Minimizers

We describe here further qualitative properties that we are able to prove for
global minimizers. The first question we deal with is whether the flat configuration
is an absolute minimizer. We shall show two types of results: (1) given b > 0,
the flat configuration is the unique b-periodic global minimizer, provided that the
thickness d/b is small enough; (2) if the period b is sufficiently small then the flat
configuration is the unique b-periodic global minimizer no matter how thick the
film is. More precisely, we have the following.

1 Throughout the paper the notation Ck
# ([0, b]), k ∈ N ∪ {∞}, stands for the space of

functions in Ck([0, b]) that admit a b-periodic extension in Ck(R). The space Ck
# (Γh) is

defined similarly.
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Theorem 2.11. (Global minimality of the flat configuration) The following two
statements hold.

(i) For every b > 0, there exists 0 < dglob(b) � dloc(b) (see Theorem 2.9) such
that the flat configuration (d/b, ue0) is a b-periodic global minimizer if and
only if 0 < d � dglob(b). Moreover, if 0 < d < dglob(b), then (d/b, ue0) is
the unique b-periodic global minimizer.2

(ii) There exists 0 < bcrit � π
4

2μ+λ
e2

0μ(μ+λ) such that dglob(b) = +∞ if and only if

0 < b � bcrit, that is, the flat configuration (d/b, ue0) is the unique b-periodic
global minimizer for all d > 0 if and only if 0 < b � bcrit.

The results of Theorem 2.11 are more qualitative in nature than those of
Theorem 2.9. In particular, the function dglob and the constant bcrit are not
analytically determined and it is an open problem to establish whether or not
bcrit <

π
4

2μ+λ
e2

0μ(μ+λ) and dglob(b) < dloc(b). However, the next result shows that

the latter inequality holds, at least for b large.

Proposition 2.12. (dglob(b) < dloc(b) for b large) There exists a constant c0 ≡
c0(λ, μ) > 0 such that

dloc(b)

b
� c0

e2
0

for all b > 0. (2.18)

Moreover,

lim
b→∞

dglob(b)

b
= 0.

As a consequence of the previous proposition, we have a non-uniqueness
result.

Theorem 2.13. (Non-uniqueness) Let b > 0 such that dglob(b) < dloc(b). Then the
minimum problem (2.9) with d = dglob(b) has at least another solution besides the
flat configuration (dglob(b)/b, ue0).

Next, we address the occurrence of regular non-flat minimal configurations. The
following theorem gives an analytical confirmation of the numerical and experi-
mental observations that singularities do not form when the sample is not too large
in width and thickness.

Theorem 2.14. (Regular non-flat minimal configurations) Let bcrit be the constant
introduced in Theorem 2.11. Then the following two statements hold.

(i) If bcrit < b < 2μ+λ
e2

0μ(μ+λ) , then for every b-periodic non-flat global minimizer

(h, u) ∈ X (e0; 0, b) we have h ∈ C1([0, b]).

2 The function dglob, as well as dloc and the constant bcrit introduced in the second part of
the statement, depend also on the data μ, λ, and e0 but this dependence is not highlighted
since such quantities are considered here to be fixed.
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(ii) Assume λ � − 17
18μ. There exist breg >

2μ+λ
e2

0μ(μ+λ) and d0 > 0 with the

following property: If 2μ+λ
e2

0μ(μ+λ) � b < breg and dglob(b) � d < dglob(b)+d0,

then for every b-periodic global minimizer (h, u) ∈ X (e0; 0, b) with |Ωh | =
d we have h ∈ C1([0, b]).

In both cases (h, u) satisfies all the conclusions of Theorem 2.7, withΣ#
h =Σ#

h,c =∅.

Remark 2.15. Note that in statement (ii) of the previous theorem we impose a
condition on the Lamé coefficients that is slightly more restrictive than (2.7).

The last result that we want to highlight deals with the existence of nontrivial ana-
lytic minimal configurations. It states that if b is small enough, then b-periodic
non-flat global minimizers are analytic.

Theorem 2.16. (Analytic non-flat minimal configurations) Let bcrit be the constant
introduced in Theorem 2.11. There exists η0 > 0 such that if b = bcrit + η, with
η ∈ (0, η0), and (h, u) ∈ X (e0; 0, b) is any non-flat b-periodic global minimizer,
then (h, u) is analytic; more precisely, h is strictly positive and analytic over R

and, in turn, u is analytic in Ω
#
h.

3. Computation of the Second Variation

In this section we study a suitable notion of the second variation for the func-
tional F . We look at regular configurations, where the displacement minimizes the
elastic energy. More precisely, throughout this section we assume that (h, u) ∈
X (e0, q; 0, b), h ∈ C∞

# ([0, b]), h > 0, and u satisfies

∫

Ωh

CE(u) : E(w) dz = 0 for all w ∈ A(Ωh), (3.1)

where

A(Ωh) := {w ∈ L D#(Ωh; R
2) : w(·, 0) ≡ 0}.

Given ψ ∈ C∞
# ([0, b]) with

∫ b
0 ψ dx = 0, for t ∈ R we set ht := h + tψ and we

let ut be the elastic equilibrium corresponding to Ωht under the usual periodicity
and boundary conditions, that is, (ht , ut ) ∈ X (e0, q; 0, b) and

∫

Ωht

CE(ut ) : E(w) dz = 0 for all w ∈ A(Ωht ). (3.2)

We define the second variation of F at (h, u) along the direction ψ to be the value
of

d2

dt2 F(ht , ut )|t=0.
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It is convenient to introduce the following subspace of H1(Γh):

H̃1
# (Γh) :=

{
ϕ ∈ H1(Γh) : ϕ(0, h(0)) = ϕ(b, h(b)),

∫

Γh

ϕ dH1 = 0
}
.

In the following we will make use of the following notational convention: For any
one-parameter family of function {gt }t the symbol ġt (x) denotes the partial deriv-
ative with respect to t of the function (t, x) �→ gt (x). We omit the subscript when
t = 0. In particular we let

u̇t := ∂ut

∂t
u̇ := ∂ut

∂t

∣∣∣∣
t=0

We denote by ν the exterior normal to Ωh and we let τ := ν⊥ be the unit tangent
vector to Γh , where ⊥ stands for the clockwise rotation by π

2 . As usual, ∂τ , ∂ν
denote the tangential and normal derivatives, while Dτ , Dν stand for the tangential
and normal gradient, respectively. If α is a vector field from Γh to R

2, we denote
its (distributional) tangential divergence by divτ α. Recall that if α is sufficiently
smooth and α(0, h(0)) = α(b, h(b)), then

∫

Γh

divτ α dH1 =
∫

Γh

k(α · ν) dH1,

where k = divτ ν is the scalar curvature of Γh . In particular, if α is a tangential field
and ϕ is a sufficiently regular scalar function such that ϕ(0, h(0)) = ϕ(b, h(b)),
then ∫

Γh

ϕdivτ α dH1 = −
∫

Γh

Dτ ϕ · α dH1. (3.3)

Remark 3.1. Formula (3.3) still holds when ϕ(0, h(0)) �= ϕ(b, h(b)), provided the
tangential field vanishes at the points of Γh , that is, α(0, h(0)) = α(b, h(b)) = 0.

We are now ready to state one of the main results of this section.

Theorem 3.2. Let (h, u), ψ , and (ht , ut ) be as above, let π1 : R
2 → R be the

orthogonal projection on the x-axis, and let ϕ ∈ H̃1
# (Γh) be defined as ϕ :=

ψ√
1+h′2 ◦ π1. Then the function u̇ belongs to A(Ωh) and satisfies the equation

∫

Ωh

CE(u̇) : E(w) dz =
∫

Γh

divτ (ϕ CE(u)) · w dH1 (3.4)

for allw ∈ A(Ωh). Moreover, the second variation of F at (h, u) along the direction
ψ is given by

d2

dt2 F(ht , ut )|t=0 = −2
∫

Ωh

Q(E(u̇)) dz

+
∫

Γh

(∂τ ϕ)
2 dH1 +

∫

Γh

(∂ν[Q(E(u))] − k2)ϕ2 dH1

−
∫

Γh

(Q(E(u))+ k)∂τ
(
(h′ ◦ π1)ϕ

2) dH1. (3.5)
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Proof. It is convenient to introduce the one-parameter family of C∞-
diffeomorphisms �t : R

2 → R
2, �t (x, y) := (x, y + tψ(x)). We will make

repeated use of the following fact: There exists ε0 > 0 such that the map
(t, x) �→ ut ◦ �t (x) is of class C∞ in (−ε0, ε0) × Ωh . This can be proved by
quite standard elliptic estimates arguing, for instance, as in [8, Proposition 8.1].

We divide the proof into several steps.

Step 1 We prove (3.4). Fix w ∈ A(Ωh) ∩ C∞(Ωh). Then w may be extended
outside Ωh in such a way that w ∈ A(Ωht ) ∩ C∞(Ωht ) for t small. Hence we can
differentiate (3.2) with respect to t and evaluate the result at t = 0 to obtain

0 =
∫

Ωh

CE(u̇) : E(w) dz +
∫ b

0
ψ(x) [CE(u) : E(w)](x, h(x)) dx

=
∫

Ωh

CE(u̇) : E(w) dz +
∫

Γh

ϕ CE(u) : E(w) dH1. (3.6)

Since CE(u)[ν] = 0, by (3.3) the second integral in the above formula can be
rewritten as∫

Γh

ϕ CE(u) : E(w) dH1 =
∫

Γh

ϕ CE(u) : ∇w dH1

=
∫

Γh

ϕ CE(u) : Dτw dH1 = −
∫

Γh

divτ (ϕ CE(u)) · w dH1.

If w is any function in A(Ωh) we conclude by approximation.

Step 2 In this step we introduce suitable functions carrying useful geometric infor-
mation and we prove some identities for later use. Let dt denote the signed distance
function from Γ #

ht
; more precisely,

dt (z) :=
{

−dist(z, Γ #
ht
) if z ∈ Ω#

ht
,

dist(z, Γ #
ht
) if z �∈ Ω#

ht
.

By our assumptions on h and ψ there exist ε0 > 0 and a tubular neighborhood
N of Γ #

h such that the map (t, z) �→ dt (z) is smooth in (−ε0, ε0) × N . For
(t, z) ∈ (−ε0, ε0)× N we set νt (z) := ∇dt (z) and kt (z) := (divνt )(z). Note that
by construction νt |Γht

coincides with the outer unit normal to Ωht , while kt |Γht
represents the curvature of Γht . More precisely, since νt points outward we have

kt |Γht
=
(

− h′ + tψ ′
√

1 + (h′ + tψ ′)2
)′
. (3.7)

We recall that we omit the subscript t when t = 0; in particular, we write ν and k
instead of ν0 and k0, respectively. Differentiating the identity |ν|2 = 1 with respect
to ν we get Dν[ν] = 0. This immediately yields

Dν = Dτ ν = kτ ⊗ τ and divν = divτ ν on Γh . (3.8)

The same relations clearly hold for νt on Γht . Moreover, differentiating the iden-
tity Dν[ν] = 0 we obtain that 0 = ∑2

j=1(∂
2
jkνiν j + ∂ jνi∂kν j ) for k, i = 1, 2,
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where ∂1, ∂2 stand for the partial derivative with respect to x and with respect
to y, respectively. Hence,

(
∂ν(Dν)

)
ik = ∑2

j=1 ∂
2
jkνiν j = −∑2

j=1 ∂ jνi∂kν j =
−((Dν)2)ik for k, i = 1, 2. From the last identity, recalling that k = (divν)(z) =
tr(Dν), we deduce

∂νk = ∂ν
(
tr(Dν)

) = tr
(
∂ν(Dν)

) = tr
(−(Dν)2) = −k2, (3.9)

where the last equality follows from (3.8). Note now that

νt ◦�t =
(

− h′ + tψ ′
√

1 + (h′ + tψ ′)2
,

1√
1 + (h′ + tψ ′)2

)
.

Differentiating this equality with respect to t and evaluating at t = 0, we get

ν̇ + ∂2ν(ψ ◦ π1) = −
( ψ ′

1 + (h′)2
◦ π1

)
τ on Γh .

Multiplying both sides by τ and using (3.8), we obtain

ν̇ · τ + kτ2ψ ◦ π1 = − ψ ′

1 + (h′)2
◦ π1,

that is,

ν̇ · τ = −∂τϕ on Γh . (3.10)

Step 3 We start by computing the first variation. Straightforward computations
lead to

d

dt
F(ht , ut ) =

∫

Ωht

CE(ut ) : E(u̇t ) dz

+
∫ b

0
(Q ◦ E(ut ))(x, ht (x))ψ(x) dx +

∫ b

0

(h′ + tψ ′)ψ ′
√

1 + (h′ + tψ ′)2
dx .

Since u̇t ∈ A(Ωht ), by (3.2) the first integral in the previous formula vanishes.
Hence, integrating by parts and recalling (3.7), we obtain

d

dt
F(ht , ut ) =

∫ b

0

[
(Q ◦ E(ut ))(x, ht (x))+ kt (x, ht (x))

]
ψ(x) dx . (3.11)
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Step 4 We finally compute the second variation. Differentiating (3.11) with respect
to t and evaluating the result at t = 0, we get

d2

dt2 F(ht , ut )|t=0

= d

dt

(∫ b

0

[
(Q ◦ E(ut ))(x, ht (x))+ kt (x, ht (x))

]
ψ(x) dx

)∣∣∣∣
t=0

=
∫ b

0

(
CE(u) : E(u̇)

)
(x, h(x))ψ(x) dx

+
∫ b

0
∇(Q ◦ E(u))(x, h(x)) · (0, ψ(x))ψ(x) dx

+
∫ b

0
k̇(x, h(x))ψ(x) dx +

∫ b

0
∇k(x, h(x)) · (0, ψ(x))ψ(x) dx

=: I1 + I2 + I3 + I4. (3.12)

We now treat each integral Ii separately. From (3.6) we obtain

I1 =
∫

Γh

CE(u) : E(u̇)ϕ dH1 = −
∫

Ωh

CE(u̇) : E(u̇)ϕ dz

= −2
∫

Ωh

Q(E(u̇)) dz. (3.13)

Writing ∇(Q ◦ E(u)) = ∂ν[Q(E(u))]ν + ∂τ [Q(E(u))]τ we have

I2 =
∫

Γh

∂ν[Q(E(u))]ϕ2 dH1 +
∫

Γh

∂τ [Q(E(u))](h′ ◦ π1)ϕ
2 dH1

=
∫

Γh

∂ν[Q(E(u))]ϕ2 dH1 −
∫

Γh

Q(E(u))∂τ
(
(h′ ◦ π1)ϕ

2) dH1, (3.14)

where the last integration by parts is justified thanks to the periodicity of the func-
tions involved. Analogously, using also (3.9), we may rewrite

I4 =
∫

Γh

∂νkϕ2 dH1 +
∫

Γh

∂τ k(h′ ◦ π1)ϕ
2 dH1

= −
∫

Γh

k2ϕ2 dH1 −
∫

Γh

k∂τ
(
(h′ ◦ π1)ϕ

2) dH1. (3.15)

Differentiating the identity ν̇ · ν = 0 and recalling (3.8) we obtain ∂νν̇ · ν =
−ν̇ · ∂νν = 0 that, in turn, implies k̇ = divν̇ = divτ ν̇. Hence,

I3 =
∫

Γh

divτ ν̇ϕ dH1 = −
∫

Γh

ν̇ · τ∂τϕ dH1 =
∫

Γh

(∂τ ϕ)
2 dH1, (3.16)

where in the last equality we have used (3.10). Collecting (3.12)–(3.16) we finally
obtain (3.5).
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Remark 3.3. If (h, u) is a critical pair for F , then Q(E(u))+k is constant along Γh .
This implies that the last integral in (3.5) vanishes since the function (h′ ◦ π1)ϕ

2

takes the same values at the endpoints of Γh .

The theorem together with the previous remark suggests that we may associate with
every critical pair (h, u) ∈ X (e0, q; 0, b) the quadratic form ∂2 F(h, u) defined for
all ϕ ∈ H̃1

# (Γh) as

∂2 F(h, u)[ϕ] := −2
∫

Ωh

Q(E(vϕ)) dz +
∫

Γh

(∂τ ϕ)
2 dH1

+
∫

Γh

(∂ν[Q(E(u))] − k2)ϕ2 dH1, (3.17)

where vϕ is the unique solution in A(Ωh) to the equation
∫

Ωh

CE(vϕ) : E(w) dx =
∫

Γh

divτ (ϕ CE(u)) · w dH1 (3.18)

for all w ∈ A(Ωh). Our purpose is to provide necessary and sufficient conditions
for local minimality in terms of such a quadratic form. We immediately have the
following corollary.

Corollary 3.4. Let (h, u) ∈ X (e0, q; 0, b) be a local minimizer. Then

∂2 F(h, u)[ϕ] � 0 for all ϕ ∈ H̃1
# (�h). (3.19)

Proof. If ϕ ∈ H̃1
# (�h) ∩ C∞

# (Γh) then (3.19) is a consequence of Theorem 3.2

and Remark 3.3. The conclusion follows by approximating any ϕ ∈ H̃1
# (�h) with

functions in H̃1
# (�h) ∩ C∞

# (Γh) and observing that the map ϕ �→ ∂2 F(h, u)[ϕ] is

continuous with respect to the strong convergence in H̃1
# (�h).

In one of the main theorems of the paper we will show that if the quadratic
form is in fact positive definite; that is,

∂2 F(h, u)[ϕ] > 0 for all ϕ ∈ H̃1
# (�h) \ {0}, (3.20)

then (h, u) is an isolated local minimizer. The next proposition starts paving the
way for this result. It provides two different equivalent formulations of condition
(3.20): The first one is related to the first eigenvalue of a suitable compact operator,
while the second one is expressed in terms of a dual minimum problem. To this
aim, we fix a critical pair (h, u) ∈ X (e0, q; 0, b) and we introduce the following
bilinear form, defined for every ϕ,ψ ∈ H̃1

# (�h):

(ϕ, ψ)∼ :=
∫

Γh

a ϕψ dH1 +
∫

Γh

∂τϕ ∂τψ dH1, (3.21)

where a := ∂ν[Q(E(u))] − k2. It is easy to check that whenever

(ϕ, ϕ)∼ > 0 for all ϕ ∈ H̃1
# (�h) \ {0}, (3.22)

the bilinear form (3.21) defines an equivalent scalar product on H̃1
# (�h).
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Remark 3.5. Note that for the flat configuration (d/b, ue0) the coefficient a
vanishes, and thus (3.22) is always satisfied.

Proposition 3.6. The following statements are equivalent.

(i) ∂2 F(h, u) satisfies (3.20).
(ii) Condition (3.22) holds and the compact monotone self-adjoint operator T

acting from (H̃1
# (�h),∼) to itself, defined by duality as

(Tϕ,ψ)∼ :=
∫

Ωh

CE(vϕ) : E(vψ) dz =
∫

Ωh

CE(vψ) : E(vϕ) dz (3.23)

for all ϕ,ψ ∈ H̃1
# (�h), satisfies

λ1 := max‖ϕ‖∼=1
(Tϕ, ϕ)∼ = ‖T ‖∼ < 1. (3.24)

Here vϕ and vψ are defined as in (3.18).
(iii) Condition (3.22) holds and, setting

μ1 := min
{

2
∫

Ωh

Q(E(v)) dz : v ∈ A(Ωh), ‖�v‖∼ = 1
}
, (3.25)

where �v is the unique solution in H̃1
# (�h) to

∫

Γh

∂τ�v ∂τψ dH1+
∫

Γh

a�v ψ dH1 =
∫

Γh

divτ (ψ CE(u)) · v dH1 (3.26)

for all ψ ∈ H̃1
# (�h), we have

μ1 = 1

λ1
> 1.

Proof. Assume now (3.20). As

∂2 F(h, u)[ϕ] = (ϕ, ϕ)∼ − (Tϕ, ϕ)∼, (3.27)

we have (ϕ, ϕ)∼ > (Tϕ, ϕ)∼ � 0 whenever ϕ �= 0. Hence, (·, ·)∼ defines a scalar
product on H̃1

# (�h) that is equivalent to the standard one, as observed before. The
monotonicity and the self-adjointness of T are evident from the definition.

We first observe that if ψn ⇀ ψ weakly in H̃1
# (�h), then divτ (ψn CE(u)) ⇀

divτ (ψ,CE(u)) weakly in L2(Γh). Hence, recalling (3.18) and using Korn’s
inequality we get that vψn ⇀ vψ weakly in AΩh . Then, by the compactness of
the trace operator, we conclude that

ψn ⇀ ψ weakly in H̃1
# (�h) �⇒ vψn → vψ strongly in L2(Γh). (3.28)

To check the compactness of T let ϕn ⇀ ϕ weakly in H̃1
# (�h). Recalling (3.18)

again, we have
∫

Γh

divτ (ϕn CE(u)) · vψ dH1 →
∫

Γh

divτ (ϕ CE(u)) · vψ dH1,
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that is,

(Tϕn, ψ)∼ → (Tϕ,ψ)∼. (3.29)

Thus, Tϕn ⇀ Tϕ weakly in H̃1
# (�h). Choosing ψ = Tϕn in (3.29) and recall-

ing that by (3.28) vTϕn → vTϕ in L2(Γh), we discover that ‖Tϕn‖∼ → ‖Tϕ‖∼
and, in turn, Tϕn → Tϕ strongly in H̃1

# (�h). We conclude that T is compact so
that λ1 in (3.24) is well-defined and coincides with the first eigenvalue of T . By
(3.27) the condition λ1 < 1 is equivalent to (3.20). This concludes the proof of the
equivalence of (i) and (ii).

To finish up the proof of the proposition it is enough to show that under (3.22)
we haveμ1 = 1

λ1
. First of all, arguing as before, one can check that the map v �→ �v

is a linear compact operator from A(Ωh) to H̃1
# (�h). Exploiting this observation,

the existence of a solution to (3.25) can be established by the direct method of the
Calculus of Variations.

Let now ϕ ∈ H̃1
# (�h) be such that ‖ϕ‖∼ = 1 and Tϕ = λ1ϕ. Then by (3.18),

(3.21), and (3.23) we have

λ1

∫

Γh

∂τϕ ∂τψ dH1+λ1

∫

Γh

a ϕ ψ dH1 =
∫

Γh

divτ (ψ CE(u)) · vϕ dH1 (3.30)

for all ψ ∈ H̃1
# (�h). Hence, recalling (3.26), �vϕ = λ1ϕ. Moreover, choosing

ψ = ϕ in (3.30) and using (3.18), we have

λ1 = λ1‖ϕ‖2∼ = 2
∫

Ωh

Q(E(vϕ)) dz.

We conclude that vϕ/λ1 is admissible for problem (3.25) and

μ1 � 2
∫

Ωh

Q
(

E
(vϕ
λ1

))
dz = 1

λ1
.

To show the converse inequality, let v̄ be a solution of (3.25). Then there exists
a Lagrange multiplier μ0 such that

∫

Ωh

CE(v̄) : E(w) dz = μ0(�v̄,�w)∼ for all w ∈ A(Ωh). (3.31)

Choosingw = v̄ we immediately deduce μ0 = μ1. Moreover, recalling (3.26), we
get from (3.31)
∫

Ωh

CE(v̄) : E(w) dz = μ1

∫

Γh

divτ (�v̄CE(u)) · w dH1 for all w ∈ A(Ωh),

which means, by (3.18), v̄/μ1 = v�v̄ . Hence, by (3.23), (3.18), and (3.26) we have
for all ψ ∈ H̃1

# (�h),

(T�v̄,ψ)∼ =
∫

Ωh

CE
( v̄
μ1

)
: E(vψ) dz =

∫

Ωh

CE(vψ) : E
( v̄
μ1

)
dz

=
∫

Γh

divτ (ψCE(u)) · v̄
μ1

dH1 = 1

μ1
(�v̄, ψ)∼.
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We conclude that 1/μ1 is an eigenvalue of T and thus 1/μ1 � λ1.

Corollary 3.7. Assume (3.20). Then there exists a constant C > 0 such that

∂2 F(h, u)[ϕ] � C‖ϕ‖2
H1(Γh)

for every ϕ ∈ H̃1
# (�h).

Proof. By Proposition 3.6, (3.24) holds. Hence, recalling (3.27), we have

∂2 F(h, u)[ϕ] = ‖ϕ‖2∼ − (Tϕ, ϕ)∼ � ‖ϕ‖2∼ − ‖T ‖∼‖ϕ‖2∼
= (1 − λ1)‖ϕ‖2∼ � C‖ϕ‖2

H1(Γh)
,

which proves the corollary.

Corollary 3.8. For d > 0 let λ1(d) be the first eigenvalue of the operator T asso-
ciated with the quadratic form ∂2 F(d/b, ue0), according to Proposition 3.6 (see
Remark 3.5). Then λ1 is a strictly increasing function of d.

Proof. Let 0 < d1 < d2 and let v1 ∈ A((0, b)×(0, d1/b)
)

be a solution to problem
(3.25), with h ≡ d1/b. Observe that the function

v2(x, y) :=

⎧⎪⎨
⎪⎩

0 if 0 < y <
d2 − d1

b
,

v1

(
x, y − d2 − d1

b

)
if

d2 − d1

b
� y <

d2

b

belongs to A((0, b)×(0, d2/b)
)

and is an admissible competitor for problem (3.25),
with h ≡ d2/b. Moreover, v2 cannot be a minimizer, since otherwise it would be 0
everywhere by analyticity. Hence, by Proposition 3.6(iii),

1

λ1(d1)
=
∫ b

0

∫ d1/b

0
Q(E(v1)) dydx =

∫ b

0

∫ d2/b

0
Q(E(v2)) dydx >

1

λ1(d2)
,

which concludes the proof.

4. Second Variation and W2,∞-Local Minimality

We now come to a crucial point of the paper, namely the proof that condition
(3.20) implies the W 2,∞-local minimality. This is essentially achieved in Propo-
sition 4.5 from which Theorem 4.6 quickly follows. The section also contains a
variant of this theorem which will be used in Section 7 to prove the second state-
ment in Theorem 2.11. We start with some technical lemmas. In the representation
formula (3.17) of the second variation, the last term involves the normal derivative
of Q(E(u)) onΓh , where u is the elastic equilibrium inΩh . Therefore, an important

step in the proof is provided by Lemma 4.1, which shows that the H− 1
2 (Γh)-norm of

the trace of ∇CE(u) can be controlled uniformly with respect to C2-perturbations
of the boundary. Lemma 4.3 deals with the construction of a suitable harmonic lift-
ing from Γh toΩh , which is then used in Lemma 4.4 to prove a higher integrability
result for E(u).

For the definitions and the properties of fractional Sobolev spaces needed in
this section we refer to the Appendix.
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Lemma 4.1. Let (g, v) ∈ Y (e0; 0, b) be such that g > 2c0 > 0 in [0, b], g ∈
C2

# ([0, b]) and
∫

Ωg

CE(v) : E(w) dz =
∫

Ωg

d : ∇w dz for all w ∈ A(Ωg),

where d ∈ C1(Ω
#
g; M

2×2) is b-periodic in x. Then, setting D := Ωg \ Ωg−c0 ,

D′ := Ωg \Ωg−2c0 , for all p > 1

‖E(v)‖W 1,p(D;M2×2)+ ‖∇CE(v)‖
H

− 1
2

# (Γg;T)
� C(‖E(v)‖L2(D′;M2×2) + ‖d‖C1(D

′;M2×2)
),

where T denotes the space of third order tensors and C is a positive constant
depending only on the C2-norm of g, on c0 and p.

Proof. Without loss of generality we may assume that d is C2 in Ωg . For i, j ∈
{1, 2} we define

σi j x =
(
CE
(∂v
∂x

))
i j
, di j x =

(∂d

∂x

)
i j

and similarly for σi j y, di j y . Let ϕ ∈ H
1
2

# (Γg). With the same letter we denote
a lifting of ϕ such that (ϕ, 0) ∈ A(Ωg), ϕ vanishes in Ωg−c0 and ‖ϕ‖H1(Ωg)

�
C‖ϕ‖

H
1
2 (Γg)

, with C depending only on the C1-norm of g, p and on c0. Such a lift-

ing exists thanks to Theorem 8.5. Differentiating the equation div(CE(v)) = divd
with respect to x , multiplying by ϕ, and integrating by parts, we get
∫

Γg

(σ11x , σ12x ) · νϕ dH1 =
∫

D
div(d11x , d12x )ϕ dz +

∫

D
(σ11x , σ12x ) · ∇ϕ dz

=
∫

D
(σ11x − d11x , σ12x − d12x ) · ∇ϕ dz +

∫

Γg

(d11x , d12x ) · νϕ dH1

� C(‖∇E(v)‖L2(D;T) + ‖d‖C1(D;M2×2))(‖∇ϕ‖L2(D;R2) + ‖ϕ‖L2(Γg)
)

� C(‖∇E(v)‖L2(D;T) + ‖d‖C1(D;M2×2))‖ϕ‖
H

1
2 (Γg)

.

Therefore, setting α := (σ11x , σ12x ) · ν, from the inequality above we deduce that

‖α‖
H

− 1
2

# (Γg)
� C(‖∇E(v)‖L2(D;T) + ‖d‖C1(D;M2×2)), (4.1)

where C depends only on the C1-norm of g, on p, and on c0. Similarly,

‖β‖
H

− 1
2

# (Γg)
+ ‖γ ‖

H
− 1

2
# (Γg)

+ ‖δ‖
H

− 1
2

# (Γg)

� C(‖∇E(v)‖L2(D;T) + ‖d‖C1(D;M2×2)), (4.2)

where

β := (σ12x , σ22x ) · ν, γ := (σ11y, σ12y) · ν, δ := (σ12y, σ22y) · ν.
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Recall that by Theorem 8.6, if σ ∈ H1(D) is b-periodic in x , then

‖∂τ σ‖
H

− 1
2

# (Γg)
� C‖∇σ‖L2(D;R2)

for some constant C depending only on the C1-norm of g, on p, and on c0. Hence,
setting η := ∂τ (CE(v))11 and ϑ := ∂τ

(
∂v1
∂y

)
, we have

‖η‖
H

− 1
2

# (Γg)
+ ‖ϑ‖

H
− 1

2
# (Γg)

� C‖∇CE(v)‖L2(D;T) + ‖∇
(
∂v1

∂y

)
‖L2(D;R2)

� C‖∇CE(v)‖L2(D;T)
� C‖∇E(v)‖L2(D;T), (4.3)

where we also used the fact that

∂2v1

∂y2 = 4(μ+ λ)σ12y + λσ11x − (2μ+ λ)σ22x

4μ(μ+ λ)
,

∂2v1

∂x∂y
= (2μ+ λ)σ11y − λσ22y

4μ(μ+ λ)
.

(4.4)

Observe that ϑ = ∂2v1
∂x∂y ν2 − ∂2v1

∂y2 ν1. Therefore, recalling also (4.4), σi j x , σi j y, i,
j ∈ {1, 2} satisfy the following linear system

A

⎛
⎜⎜⎜⎜⎜⎜⎝

σ11x

σ12x

σ22x

σ11y

σ12y

σ22y

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

α

β

γ

δ

η

4μϑ(μ+ λ)

⎞
⎟⎟⎟⎟⎟⎟⎠
,

with

A :=

⎛
⎜⎜⎜⎜⎜⎜⎝

ν1 ν2 0 0 0 0
0 ν1 ν2 0 0 0
0 0 0 ν1 ν2 0
0 0 0 0 ν1 ν2
ν2 0 0 −ν1 0 0

−λν1 0 (2μ+ λ)ν1 (2μ+ λ)ν2 −4(μ+ λ)ν1 −λν2

⎞
⎟⎟⎟⎟⎟⎟⎠

A lengthy but elementary computation yields that the determinant of the 6 × 6
matrix of the system is (2μ + λ)ν2

2 > c > 0, where c is a constant depending
only on the C1-norm of g. Thus, σi j x , σi j y can be written as linear combinations
of α, β, γ, δ, η, ϑ with coefficients given by suitable polynomials in ν1, ν2 divided
by ν2

2 . Then from (4.1)–(4.3), using Lemma 8.8, it follows that

‖∇CE(v)‖
H

− 1
2

# (Γg;T)
� C(‖∇E(v)‖L2(D;T) + ‖d‖C1(D;M2×2)), (4.5)

with a constant C depending on c0 and the C1-norm of ν1, ν2, hence on the C2-
norm of g. It remains to estimate ‖E(v)‖W 1,p(D;M2×2). To this aim fix p > 1, set
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D′′ = Ωg \ Ωg−3c0/2, and fix a ball B ⊂⊂ D′′ \ D. By adding an infinitesimal
rigid motion, if necessary, we may assume without loss of generality that

∫

B
(∇v − ∇T v) dx = 0 and

∫

B
v dx = 0. (4.6)

Then standard elliptic regularity results (see [2, Section 10.2]) imply

‖E(v)‖W 1,p(D;M2×2) � C
(‖v‖W 1,p(D′′;R2) + ‖d‖C1(D

′′;M2×2)

)

� C
(‖E(v)‖L p(D′′;M2×2) + ‖d‖C1(D

′′;M2×2)

)

� C
(‖E(v)‖H1(D′′;M2×2) + ‖d‖C1(D

′′;M2×2)

)
, (4.7)

where the second inequality follows from Korn’s inequality and (4.6), while in the
last one we used the Sobolev imbedding and the fact that we are in dimension two.
Arguing similarly with D and D′′ replaced by D′′ and D′, respectively, by elliptic
regularity and Korn’s inequality, we get

‖E(v)‖H1(D′′;M2×2) � C
(‖E(v)‖L2(D′;M2×2) + ‖d‖C1(D

′;M2×2)

)
. (4.8)

The conclusion of the lemma then follows by combining (4.5), (4.7), and (4.8).

Remark 4.2. An obvious modification of the final part of the previous proof also
shows that if v ∈ A(Ωg), then

‖E(v)‖W 1,p(Ωg;M2×2) + ‖∇CE(v)‖
H

− 1
2

# (Γg;T)
� C(‖v‖H1(Ωg;M2×2) + ‖d‖C1(Ωg;M2×2)) (4.9)

holds with a constant depending only on the C2-norm of g, on c0, and p.

Lemma 4.3. Let g, D be as in Lemma 4.1 and let p > 1. Given ψ ∈ C1
#(Γg; R

2),

a ∈ C1
#(Γg), there exists a harmonic function f ∈ W 1,p(D) such that ∇ f is

b-periodic in x and ∂ν f = a divτψ on Γg. Moreover,

‖∇ f ‖L p(D;R2) � C‖ψ‖
W

1− 1
p ,p(Γg;R2)

, (4.10)

where C is a constant depending only on the C2-norm of g and on the C1-norm of a.

Proof. Write a divτψ = ∂τ (aψ1τ1 + aψ2τ2) − ψ1∂τ (aτ1) − ψ2∂τ (aτ2). Thanks
to Theorem 8.5 there exists a function� ∈ W 1,p(D), b-periodic in x , whose trace
on Γg is aψ1τ1 + aψ2τ2 and such that

‖�‖W 1,p(D) � C‖ψ‖
W

1− 1
p ,p(Γg;R2)

,

with C depending only on the C2-norm of g and on the C1-norm of a. Let G̃ ∈
W 1,p(Γg) be such that G̃(0, g(0)) = 0 and ∂τ G̃ = ψ1∂τ (aτ1) + ψ2∂τ (aτ2) and
denote by G the function in W 1,p(D) obtained by extending G̃ inΩ by G(x, y) :=
G̃(x, g(x)). Clearly ∇G is b-periodic in x and we have the estimate

‖G‖W 1,p(D) � C‖ψ‖
W

1− 1
p ,p(Γg;R2)

,
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again with a constant depending only on the C2-norm of g and on the C1-norm of
a. Let v ∈ H1

0,#(D) denote the solution of the following problem
∫

D
∇v · ∇w dz =

∫

D
(∇� − ∇G) · ∇w dz for all w ∈ H1

0,#(D),

where

H1
0,#(D) := {w ∈ H1(D) :

w(x, g(x)) = w(x, g(x)− c0) = 0, w(0, y) = w(b, y)}.
By classical regularity results we have that v ∈ W 1,p(D) and ‖v‖W 1,p(D) �
C‖∇� − ∇G‖L p(D;R2), with a constant C depending only on the C2-norm of g.
Settingw := �−G−v, thenw is harmonic in D, ∇w is b-periodic, ∂τw = adivτψ
and ‖∇w‖L p(D;R2) � C‖ψ‖

W
1− 1

p ,p(Γg;R2)
. The conclusion then follows by letting

f be a harmonic conjugate of w.

Lemma 4.4. Let g, c0, D, and D′ be as in Lemma 4.1, let p > 2, and let M ∈
C1

#(Γg; M
2×2). There exist δ and C > 0, depending only on p, c0, and on the

C2-norm of g, such that if v ∈ A(Ωg) is the solution to the problem
∫

Ωg

CE(v) : E(w) dz =
∫

Γg

divτ M · w dH1

for all w ∈ A(Ωg), then the following estimate holds:

‖E(v)‖L2+δ(D;M2×2) � C
(‖E(v)‖L2(D′;M2×2) + ‖M‖

W
1− 1

p ,p(Γg;M2×2)

)
.

Proof. Adding an infinitesimal rigid motion, if necessary, we may assume with-
out loss of generality that (4.6) holds for some ball B ⊂⊂ D′ \ D. Let f ∈
W 1,p(D′; R

2) be the harmonic map whose components f1 and f2 are constructed
in Lemma 4.3, with D replaced by D′ and taking a = 1 and ψ coinciding with the
rows M1 and M2 of M , respectively. From the assumption, integrating by parts, we
get that

∫

Ωg

CE(v) : E(w) dz =
∫

Ωg

∇ f : ∇w dz

for all w ∈ A(Ωg) vanishing in Ωg \ D′. Then by a standard argument (see [17,
Chapter V]) one obtains that there exists r0 > 0, depending on the C1-norm of g
and on c0 such that if z0 ∈ D# and r < r0∫

Br (z0)∩Ω#
g

|∇v|2 dz � C

r2

(∫

B2r (z0)∩Ω#
g

|∇v| dz
)2 + C

∫

B2r (z0)∩Ω#
g

|∇ f |2 dz,

where the constant C depends on c0 and the C1-norm of g. Setting α :=
|∇v|2χΩ#

g
, β := |∇ f |2χΩ#

g
, the above inequality reads

−
∫

Br (z0)

α dz � C

(
−
∫

B2r (z0)

√
α dz

)2

+ C −
∫

B2r (z0)

β dz
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for all z0 ∈ D# and r < r0. Sinceβ ∈ L p/2(D′), a standard application of Gehring’s
Lemma (see [17, Proposition 1.1]) yields that

‖∇v‖L2+δ(D;M2×2) � C(‖∇v‖L2(D′;M2×2) + ‖∇ f ‖L p(D′;M2×2)).

Hence the conclusion follows from Korn’s Inequality and (4.10).

The next proposition will be crucial in proving Theorem 2.10.

Proposition 4.5. Let (h, u) ∈ X (e0, q; 0, b) be a critical point for F such that
h > 2c0 > 0 in [0, b], h ∈ C∞

# ([0, b]) and

∂2 F(h, u)[ϕ] � C1‖ϕ‖2
H1(Γh)

(4.11)

for all ϕ ∈ H̃1
# (�h) with C1 > 0. Let (gn, vn) be any sequence in X (e0, q; 0, b)

such that gn ∈ C∞
# ([0, b]), ∫ b

0 gn dx = ∫ b
0 h dx, and gn → h in C2([0, b]) and

let ψn ∈ H̃1
# (�gn ) be defined as ψn := gn−h√

1+g′
n

2
◦ π1. Then there exists a constant

C2 > 0 depending only on h, such that

F(h, u)+ C2‖ψn‖2
H1(Γgn )

� F(gn, vn) (4.12)

for n large enough.

Proof. In order to prove (4.12) we may assume without loss of generality that vn is
the elastic equilibrium inΩgn , that is, the solution to (3.1) with h replaced by gn . We
will use the bilinear form (·, ·)∼ : H̃1

# (�h) × H̃1
# (�h) → R, introduced in (3.21).

We also introduce the bilinear forms (·, ·)∼,gn : H̃1
# (�gn )× H̃1

# (�gn ) → R defined
as in (3.21) with Γh and a replaced by Γgn and agn := ∂νgn

[Q(E(vn))] − k2
gn

.
Here νgn denotes the outer unit normal vector to Ωgn while kgn is the curvature
of Γgn . Finally, let �n : Ωh → Ωgn be a diffeomorphism of class C2(Ωh; R

2),
such that �n − I d is b-periodic in x together with its first and second derivatives,
�n(x, 0) = (x, 0) for all x ∈ [0, b], ‖�n − I d‖C2(Ωh;R2) � 2‖gn −h‖C2([0,b]) and

�n(x, y) := (x, y + gn − h) in a neighborhood of Γ h . Finally, to avoid confusion
we shall denote by νh the outer unit normal to Ωh on Γh and we will write ah to
denote the quantity a defined in (3.21).

We now split the proof of the proposition into several steps.

Step 1 From the equations satisfied by u and vn and an easy change of variable,
we obtain that for all w ∈ A(Ωgn )

∫

Ωgn

C(E(u ◦�−1
n )− E(vn)) : E(w) dz =

∫

Ωgn

dn : ∇w dz, (4.13)

where

‖dn‖C1(Ωgn ;M2×2) � C‖�n − I d‖C2(Ωh;R2) � C‖gn − h‖C2([0,b]),
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and C is a constant depending only on the C2-norm of u. From (4.9) and Korn’s
inequality (notice that u ◦�−1

n − vn = 0 on {y = 0}), we get that for all p > 1

‖E(u ◦�−1
n )− E(vn)‖W 1,p(Ωgn ;M2×2)

+‖∇C(E(u ◦�−1
n )− E(vn))‖

H
− 1

2
# (Γgn ;T)

� C
(‖E(u ◦�−1

n )− E(vn)‖L2(Ωgn ;M2×2) + ‖gn − h‖C2([0,b])
)

� C‖gn − h‖C2([0,b]), (4.14)

for a constant C depending only on p > 1 and the C2-norms of h and u. Note that
the last of the previous chain of inequalities follows by choosingw = u ◦�−1

n −vn

in (4.13) and by Korn’s inequality. Using Lemma 8.8, from (4.14), we conclude
that

‖E(u)− E(vn) ◦�n‖W 1,p(Ωh;M2×2) � C‖gn − h‖C2([0,b]) (4.15)

and

‖∇CE(u)− (∇CE(vn)) ◦�n‖
H

− 1
2

# (Γh;T)
� C‖gn − h‖C2([0,b]). (4.16)

Let νhn and νgn denote the outer normal unit vectors along Γh and Γgn , respectively,

and J1�n :=
√

1+g′
n

2√
1+h′2 be the 1-dimensional Jacobian of �n on Γh . We claim that

‖∂νgn

[
Q(E(vn))

] ◦�n J1�n − ∂νh

[
Q(E(u))]]‖

H
− 1

2
# (Γh)

→ 0. (4.17)

Indeed, we have for all ϕ ∈ H
1
2

# (Γh)∫

Γh

[ ∂
∂x

Q(E(u))−
( ∂
∂x

Q(E(vn))
)

◦�n

]
ϕ dH1

=
∫

Γh

[
CE
( ∂
∂x

u
)
−
(
CE
( ∂
∂x
vn

))
◦�n

]
:(E(vn) ◦�n)ϕ dH1

+
∫

Γh

CE
( ∂
∂x

u
)
:(E(u)−E(vn) ◦�n

)
ϕ dH1

� C‖∇CE(u)− (∇CE(vn)) ◦�n‖
H

− 1
2

# (Γh;T)
‖(E(vn) ◦�n)ϕ‖

H
1
2 (Γh;M2×2)

+‖E(u)− E(vn) ◦�n‖L∞(Γh;M2×2)‖ϕ‖L2(Γh)
, (4.18)

where the constant C depends only on the C2-norms of u and h and on the length
of Γh . Fix p > 2. Recalling the definition of Gagliardo seminorm (8.1) and using

Hölder’s inequality, the Sobolev Imbedding Theorem 8.3 (notice that H
1
2 (Γh) is

continuously imbedded in L p(Γ ) for all p > 1), and the trace Theorem 8.4, one
obtains that

‖(E(vn) ◦�n)ϕ‖
H

1
2 (Γh;M2×2)

� C‖E(vn) ◦�n‖L∞(Γh ;M2×2)‖ϕ‖
H

1
2 (Γh)

+‖ϕ‖L p(Γh)‖E(vn) ◦�n‖
W

p+2
2p ,

2p
p−2 (Γh ;M2×2)

� C(‖E(vn) ◦�n‖L∞(Γh ;M2×2)+‖E(vn) ◦�n‖
W

1, 2p
p−2 (Ωh;M2×2)

)‖ϕ‖
H

1
2 (Γh)

,
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where the constant C depends only on p and on the C1-norm of h. From the last
inequality and (4.18), using (4.15) and (4.16), and performing a similar estimate
for the derivative with respect to y, we conclude

‖∇(Q(E(vn))) ◦�n − ∇Q(E(u))‖
H

− 1
2

# (Γh)
� C‖gn − h‖C2([0,b]) → 0.

Hence, (4.17) follows, taking into account that ‖νgn ◦�n −νh‖C1(Γh)
→ 0, ‖�n −

I d‖C2(Ωh;R2) → 0, and using Lemma 8.8.

Step 2 We show that for n large enough

‖ϕ‖2
H1(Γgn )

� 3C−1
1 ‖ϕ‖2∼,gn

for all ϕ ∈ H̃1
# (�gn ) (4.19)

(C1 is the constant appearing in (4.11)).
Note that by (3.17) and (4.11) we have

‖ϕ‖2∼ � ∂2 F(h, u)[ϕ] � C1‖ϕ‖2
H̃1

# (�h)
(4.20)

for all ϕ ∈ H̃1
# (�h). Given ϕ ∈ H̃1

# (�gn ), we set

ϕ̃ := (ϕ ◦�n)J1�n .

Then ϕ̃ ∈ H̃1
# (�h) and

‖ϕ‖2
H1(Γgn )

=
∫

Γh

(|ϕ ◦�n|2 + |(∂τgn
ϕ) ◦�n|2)J1�n dH1

� (1 + δn)

∫

Γh

(
ϕ̃2 + (∂τh ϕ̃)

2) dH1

� (1 + δn)C
−1
1 ‖ϕ̃‖2∼, (4.21)

where in the last inequality we used (4.20). The constant δn appearing in the above
formulas depends only on ‖gn − h‖C2([0,b]) and tends to zero as n → ∞. To
continue, note that from (4.17) and Lemma 8.8 we have

‖(agn ◦�n)J1�n − ah(J1�n)
2‖

H
− 1

2
# (Γh)

→ 0. (4.22)

Moreover, we have

‖ϕ̃‖2∼ =
∫

Γh

(
ah ϕ̃

2 + (∂τh ϕ̃)
2) dH1

�
∫

Γh

(agn ◦�n)(ϕ ◦�n)
2 J1�n dH1 +

∫

Γgn

(∂τgn
ϕ)2 dH1 + δn‖ϕ‖2

H1(Γgn )

+‖(agn ◦�n)J1�n − ah(J1�n)
2‖

H
− 1

2
# (Γh)

‖(ϕ ◦�n)
2‖

H
1
2 (Γh)

= ‖ϕ‖2∼,gn
+ ‖(agn ◦�n)J1�n − ah(J1�n)

2‖
H

− 1
2

# (Γh)
‖(ϕ ◦�n)

2‖
H

1
2 (Γh)

+δn‖ϕ‖2
H1(Γgn )

, (4.23)
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where, as before, δn depends only on ‖gn −h‖C2([0,b]) and tends to zero as n → ∞.
Finally, note that

‖(ϕ ◦�n)
2‖

H
1
2 (Γh)

� C ′‖(ϕ ◦�n)
2‖H1(Γh)

� C ′′‖ϕ ◦�n‖2
H1(Γh)

� C ′′(1 + δn)‖ϕ‖2
H1(Γgn )

, (4.24)

with δn as before and C ′′ independent of n. Note that the second inequality in
the above formula can be proved taking into account the imbedding of H1(Γh)

into L∞(Γh). Combining (4.23) with (4.21) and taking into account (4.22) and
(4.24), we conclude that for n large enough ‖ϕ‖2

H1(Γgn )
� 3C−1

1 ‖ϕ‖2∼,gn
for all

ϕ ∈ H̃1
# (�gn ).

Step 3 Let Tgn be the operators defined by (3.23) with (·, ·)∼ and h replaced by
(·, ·)∼,gn and gn , respectively. Let Th be the operator corresponding to h. Note that
the definition of Tgn is well-posed, thanks to (4.19). Denote the first eigenvalues of
Th and Tgn (see (3.24)) by λ1,h and λ1,gn , respectively. We claim that

lim sup
n→∞

λ1,gn � λ1,h . (4.25)

Assume without loss of generality that lim supn→∞ λ1,gn = limn→∞ λ1,gn =: λ∞.
Then there exist ϕn ∈ C∞

# (Γgn ) ∩ H̃1
# (�gn ), with ‖ϕn‖∼,gn = 1, and vϕn ,gn ∈

A(Ωgn ), solution to
∫

Ωgn

CE(vϕn ,gn ) : E(w) dz =
∫

Γgn

divτgn
(ϕnCE(vn)) · w dH1 (4.26)

for all w ∈ A(Ωgn ), such that

(Tgnϕn, ϕn)∼,gn = 2
∫

Ωgn

Q(E(vϕn ,gn )) dz → λ∞. (4.27)

Note that by (4.19)

sup
n

‖ϕn‖H1(Γgn )
< +∞. (4.28)

By the Imbedding Theorem 8.3 and the C2-equiboundedness of the functions
gn it follows that supn ‖ϕn‖

W
3
4 ,4(Γgn )

< +∞. From (4.15) it follows that

supn ‖CE(vn)‖C0,α(Γgn ;M2×2) < ∞ for all α ∈ (0, 1). Then, using the defini-

tion of the Gagliardo seminorm of W
3
4 ,4(Γgn ) and the α-Hölder continuity with α

sufficiently close to 1 (compare with Lemma 8.8 where α is taken equal to 1), one
can check that

sup
n

‖ϕnCE(vn)‖
W

3
4 ,4(Γgn ;M2×2)

< +∞. (4.29)

Using Lemma 4.4 we then have that

‖E(vϕn ,gn )‖L2+δ(Ωgn \Ωgn−c0 ;M2×2)

� C(‖E(vϕn ,gn )‖L2(Ωgn \Ωgn−2c0 ;M2×2) + ‖ϕnCE(vn)‖
W

3
4 ,4(Γgn )

) (4.30)
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for some δ and C independent of n. Choosing w = vϕn ,gn in equation (4.26) we
have, thanks to Corollary 8.7 and trace Theorem 8.4,

∫

Ωgn

|E(vϕn ,gn )|2 dz

� C‖divτgn
(ϕnCE(vn))‖

W
− 1

4 ,4
# (Γgn ;R2)

‖vϕn ,gn ‖W
1
4 ,

4
3 (Γgn ;R2)

� C‖ϕnCE(vn)‖
W

3
4 ,4(Γgn ;R2)

‖vϕn ,gn ‖W 1, 4
3 (Ωgn ;R2)

� C‖E(vϕn ,gn )‖L
4
3 (Ωgn ;R2)

� C‖E(vϕn ,gn )‖L2(Ωgn ;R2), (4.31)

where the last inequality follows from (4.29) and Korn’s inequality with a constant
independent on n. Hence, from (4.30), we deduce that

sup
n

‖E(vϕn ,gn )‖L2+δ(Ωgn \Ωgn−c0 ;M2×2) < ∞.

We may extend vϕn ,gn to a function in A(Ωgn ∪Ωhn ) in such a way that

sup
n

‖E(vϕn ,gn )‖L2+δ((Ωgn ∪Ωh)\Ωgn−c0 ;M2×2) < +∞. (4.32)

We finally set ϕ̃n := �n(ϕn ◦ �n)J1�n , where �n := ‖(ϕn ◦ �n)J1�n‖−1∼ . From
(4.23) applied with ϕn in place of ϕ and ϕ̃ replaced by ϕ̃n

�n
and recalling (4.28), we

deduce that

�n → 1. (4.33)

Let vϕ̃n ,h defined as in (3.18) with ϕ replaced by ϕ̃n . Arguing as before, we may
extend vϕ̃n ,h to a function in A(Ωgn ∪Ωh) in such a way that

sup
n

‖E(vϕ̃n ,h)‖L2+δ((Ωgn ∪Ωh)\Ωgn−c0 ;M2×2) < +∞. (4.34)

To conclude the proof of (4.25) it will be enough to show that

lim
n→∞

∫

Ωh

Q(E(vϕ̃n ,h − vϕn ,gn )) dz = 0. (4.35)

Indeed, by (4.27) this would imply

λ1,h � lim
n→∞ (Th ϕ̃n, ϕ̃n)∼ = lim

n→∞ 2
∫

Ωh

Q(E(vϕ̃n ,h)) dz

= lim
n→∞ 2

∫

Ωh

Q(E(vϕn ,gn )) dz

= lim
n→∞ 2

∫

Ωgn

Q(E(vϕn ,gn )) dz = λ∞,

where in the third equality we have used the equi-integrability of the functions
Q(E(vϕn ,gn )) (implied by (4.32)) together with the fact that |Ωgn �Ωh | → 0. In
order to prove (4.35) we observe that vϕ̃n ,h − vϕn ,gn ∈ A(Ωh) ∩ A(Ωgn ) is an
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admissible test function for (4.26) and for the equation satisfied by vϕ̃n ,h . Using
such a test function and subtracting the two equations, we obtain

2
∫

Ωh

Q(E(vϕ̃n ,h − vϕn ,gn )) dz

= −
∫

Ωh\Ωgn

CE(vϕn ,gn ) : E(vϕ̃n ,h − vϕn ,gn ) dz

+
∫

Ωgn \Ωh

CE(vϕn ,gn ) : E(vϕ̃n ,h − vϕn ,gn ) dz

+
∫

Γh

divτh (ϕ̃nCE(u)) · (vϕ̃n ,h − vϕn ,gn ) dH1

−
∫

Γh

[
divτgn

(ϕnCE(vn)) · (vϕ̃n ,h − vϕn ,gn )
] ◦�n J1�n dH1

=: I 1
n + I 2

n + I 3
n + I 4

n .

Thanks to (4.32), (4.34), and the fact that |Ωgn �Ωh | → 0, we get I 1
n + I 2

n → 0.
Note now that I 4

n can be rewritten as

−
∫

Γh

|∇�n[τh]|−1∂τh (ϕnCE(vn) ◦�n)[τgn ◦�n] · (vϕ̃n ,h −vϕn ,gn ) ◦�n J1�n dH1.

Notice that by (4.31) vϕn ,gn is bounded in H1(Ωh) (and similarly for vϕ̃n ,h). There-

fore, by the trace Theorem 8.4, vϕ̃n ,h − vϕn ,gn is bounded in H
1
2 (Γh). We may

now apply Lemma 8.8 to deduce ‖ |∇�n[τh]|−1(vϕ̃n ,h − vϕn ,gn ) ◦ �n J1�n −
(vϕ̃n ,h − vϕn ,gn )‖H

1
2 (Γh)

→ 0. Hence, (4.35) is proved once we show that

‖divτh (ϕ̃nCE(u)) − ∂τh (ϕnCE(vn) ◦ �n)[τgn ◦ �n]‖
H

− 1
2

# (Γh)
→ 0. This, in turn,

follows from Theorem 8.6 and Lemma 8.8 if we check that

‖ϕ̃nCE(u)− ϕnCE(vn) ◦�n‖
H

1
2 (Γh)

→ 0. (4.36)

Recall that, also thanks to (4.33),

‖ϕ̃n − ϕn ◦�n‖H1(Γh)
→ 0. (4.37)

Moreover, by (4.15),

‖CE(u)− CE(vn) ◦�n‖C0,α(Γh;M2×2) → 0 for all α ∈ (0, 1). (4.38)

Combining (4.37) and (4.38), claim (4.36) easily follows from the Gagliardo defi-

nition of the H
1
2 - seminorm.
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Step 4 For t ∈ [0, 1] consider (hn,t , un,t ) ∈ X (e0, q; 0, b), where hn,t := h +
t (gn −h) and un,t is the corresponding elastic equilibrium. Note that (hn,1, un,1) =
(gn, vn). Let (·, ·)∼,hn,t , Thn,t , and λ1,hn,t be the corresponding bilinear forms, oper-
ators, and first eigenvalues. Let �n,t : Ωh → Ωhn,t defined as at the beginning of
the proof with gn replaced by hn,t . We claim that for n large enough and for all
t ∈ [0, 1]

‖ϕ‖2
H1(Γhn,t )

� 3C−1
1 ‖ϕ‖2∼,hn,t

for all ϕ ∈ H̃1
# (�hn,t ), (4.39)

that

lim sup
n→∞

sup
t∈(0,1]

λ1,hn,t � λ1,h, (4.40)

and that for all p > 1

sup
t∈[0,1]

‖E(u)− E(un,t ) ◦�n,t‖W 1,p(Ωh;M2×2) → 0. (4.41)

Indeed if not, then we may find a subsequence (not relabeled), tn ∈ (0, 1], and ϕn

such that

‖ϕn‖2
H1(Γhn,tn )

> 3C−1
1 ‖ϕn‖2∼,hn,tn

. (4.42)

Since the sequence (hn,tn , un,tn ) satisfies the same assumptions as (gn, vn), we may
apply all the previous steps. In particular, by Step 3 we contradict (4.42) and con-
clude that (4.39) holds. In a similar fashion we may prove (4.40) and (4.41), using
(4.25) and (4.15), respectively.

Step 5 We are now in a position to conclude the proof of the proposition. Let
fn(t) := F(hn,t , un,t ). We claim that

f ′′
n (t) >

1

24
C1(1 − λ1,h)‖ψn‖2

H1(Γgn )
. (4.43)

By Theorem 3.2 and the definition of Thn,t and (·, ·)∼,hn,t we have

f ′′
n (t) = − (Thn,tψn,t , ψn,t )∼,hn,t + ‖ψn,t‖2∼,hn,t

−
∫

Γhn,t

(Q(E(un,t ))+ khn,t )∂τhn,t

(
(h′

n,t ◦ π1)ψ
2
n,t

)
dH1, (4.44)

where ψn,t := gn−h√
1+(h′

n,t )
2

◦ π1. By (4.40)

1 − λ1,hn,t >
1 − λ1,h

2
(4.45)

for n large enough. Moreover, since supt∈(0,1] ‖hn,t − h‖C2([0,b]) → 0, for n suffi-
ciently large and for all t ∈ (0, 1], we also have

1

2
‖ψn‖2

H1(Γgn )
� ‖ψn,t‖2

H1(Γhn,t )
� 2‖ψn‖2

H1(Γgn )
. (4.46)
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From the definition of λ1,hn,t and using (4.39), (4.45), and (4.46), we deduce

−(Thn,tψn,t , ψn,t )∼,hn,t + ‖ψn,t‖2∼,hn,t
� (1 − λ1,hn,t )‖ψn,t‖2∼,hn,t

>
1 − λ1,h

2
‖ψn,t‖2∼,hn,t

� C1(1 − λ1,h)

6
‖ψn,t‖2

H1(Γhn,t )

� C1(1 − λ1,h)

12
‖ψn‖2

H1(Γgn )
. (4.47)

Recall that (h, u) is a critical point, and thus there exists a constant Λ such that
Q(E(u))+ kh ≡ Λ on Γh . Using (4.41) it is then easy to see that

sup
t∈(0,1]

‖Q(E(un,t ))+ khn,t −Λ‖L∞(Γhn,t )
→ 0. (4.48)

Hence,
∫

Γhn,t

(Q(E(un,t ))+ khn,t )∂τhn,t

(
(h′

n,t ◦ π1)ψ
2
n,t

)
dH1

=
∫

Γhn,t

(Q(E(un,t ))+ khn,t −Λ)∂τhn,t

(
(h′

n,t ◦ π1)ψ
2
n,t

)
dH1

� −C‖Q(E(un,t ))+ khn,t −Λ‖L∞(Γhn,t )
‖ψn,t‖2

H1(Γhn,t )

� −2C‖Q(E(un,t ))+ khn,t −Λ‖L∞(Γhn,t )
‖ψn‖2

H1(Γgn )
, (4.49)

where C > 0 is independent of n and the last inequality follows from (4.46).
Combining (4.44), (4.47), (4.49), and taking into account (4.48), we obtain (4.43).
Hence, since f ′

n(0) = 0, we have

F(h, u) = fn(0) = fn(1)−
∫ 1

0
(1 − t) f ′′

n (t) dt

< fn(1)− 1

24
C1(1 − λ1,h)‖ψn‖2

H1(Γgn )

∫ 1

0
(1 − t) dt

= F(gn, vn)− 1

48
C1(1 − λ1,h)‖ψn‖2

H1(Γgn )
,

that is, (4.12) with C2 := 1
48 C1(1 − λ1,h).

Theorem 4.6. Let (h, u) ∈ X (e0, q; 0, b) satisfy the assumptions of Proposition 4.5.
Let (gn, vn) be any sequence in X (e0, q; 0, b) such that

∫ b
0 gn dx =∫ b

0 h dx, gn �=h,
and ‖gn − h‖W 2,∞(0,b) → 0. Then, F(h, u) < F(gn, vn) for n large enough.

Proof. For every n let g̃n := h + ρεn ∗ (gn − h), where ρεn (x) = 1
ε
ρ
( x
εn

)
and ρ

is a standard mollifier and let ṽn be the associated elastic equilibrium. Notice that∫ b
0 g̃n dx = ∫ b

0 h dx, g̃n ∈ C∞
# ([0, b]), ‖g̃n −h‖C2([0,b]) � ‖gn −h‖W 2,∞(0,b) and

that εn can be chosen so small that

F(g̃n, ṽn) � F(gn, vn)+ C2

2
‖ψ̃n‖2

H1(Γg̃n )
, (4.50)
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where C2 is the constant appearing in (4.12) and ψ̃n is defined as in Proposition 4.5,
with gn replaced by g̃n . Since the sequence (g̃n, ṽn) satisfies the assumptions of
Proposition 4.5, by (4.12) we have

F(h, u)+ C2‖ψ̃n‖2
H1(Γg̃n )

� F(g̃n, ṽn)

and the conclusion follows from (4.50).

We now prove a variant of Proposition 4.5 where (h, u) is replaced by a sequence
of flat configurations (dn/b, uen ) ∈ X (en; 0, b), with dn → d ∈ (0,+∞] and
en → e0 > 0. To this aim, define

H̃1
0 (Γh) :=

{
ϕ ∈ H1(Γh) :

ϕ(0, h(0)) = ϕ(b, h(b)) = 0,
∫

Γh

ϕ dH1 = 0
}
. (4.51)

Proposition 4.7. Let (dn/b, uen ) ∈ X (en; 0, b) such that dn → d ∈ (0,+∞] and
en → e0 > 0. Assume that

∂2 F(dn/b, uen )[ϕ] � C1‖ϕ‖2
H1(Γdn/b)

(4.52)

for all ϕ ∈ H̃1
0 (Γdn/b) and with C1 independent of n. Let (gn, vn) be any sequence

in X (en; 0, b) such that gn ∈ C∞
# ([0, b]), ∫ b

0 gn dx = dn, gn(0) = gn(b) = dn/b

and ‖gn−dn/b‖C2([0,b]) → 0, and letψn ∈ H̃1
0 (�gn ) be defined asψn := gn−dn/b√

1+g′
n

2
◦

π1. Then, there exists a constant C2 > 0 depending only on C1, such that

F(dn/b, uen )+ C2‖ψn‖2
H1(Γgn )

� F(gn, vn)

for n large enough.

Proof. We deal only with the case d = ∞, since the other one is similar and, in
fact, easier. Indeed, many technical difficulties in the unbounded case arise from
the fact that we need uniform estimates on domains which become larger and
larger. Moreover, since the proof of the present proposition is very similar to that
of Proposition 4.5, we shall indicate only the main changes needed.

We will use the same notation introduced in the proof of Proposition 4.5,
unless otherwise stated. In the rest of the proof, for simplicity, we will write hn

and un in place of dn/b and uen . As before, we may assume that vn ∈ X (en; 0, b)
is the elastic equilibrium in Ωgn . In addition to the bilinear forms (·, ·)∼,gn , we
also consider the bilinear forms corresponding to the functions hn denoted by
(·, ·)∼,hn : H̃1

0 (�hn ) × H̃1
0 (�hn ) → R. Finally, let �n : Ωhn → Ωgn be a diffe-

omorphism of class C2(Ωhn ; R
2) such that �n − I d is b-periodic in x together

with its first and second derivatives, �n ≡ I d in Ωhn−3, ‖�n − I d‖C2(Ωhn ;R2) �
2‖gn −hn‖C2([0,b]), and�n(x, y) := (x, y + gn −hn) in [0, b]×[dn/b −2, dn/b].

As before, we split the proof of the proposition into several steps.
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Step 1 We show that

sup
n

∫

Ωgn \Ωgn−3

Q(E(vn)) dz < +∞. (4.53)

Note that by the minimality of un in (0, b)×(0, inf gn−3) and denoting the constant
strain E(un) by En , we have

∫ b

0
dx
∫ inf gn−3

0
Q(E(vn)) dy � Q(En)b(inf gn − 3). (4.54)

On the other hand, by the minimality of vn in Ωgn we also have
∫

Ωgn

Q(E(vn)) dz � Q(En)|Ωgn |.

Combining with (4.54) we easily obtain
∫

Ωgn \Ωgn−3

Q(E(vn)) dz � Q(En)(3 + osc gn)b,

which, in turn, gives (4.53).
We claim that for all p > 1

‖En − E(vn) ◦�n‖W 1,p(Ωhn \Ωhn−1;R2) → 0. (4.55)

To this aim, note that by (4.53) and Lemma 4.1 (which holds uniformly in n since
the C1-norms of the functions g′

n are equibounded) we infer that for all p > 1

sup
n

‖E(vn)‖W 1,p(Ωgn \Ωgn−2)
< +∞.

Since the functions gn have first and second derivatives equibounded in L∞(0, b),
for all n we may extend vn toΩgn+1 in such a way that the resulting functions, still
denoted by vn , are b-periodic in the x-variable and satisfy the estimate

sup
n

‖E(vn)‖W 1,p(Ωgn+1\Ωgn−2)
< +∞. (4.56)

Since un −vn ∈ A(Ωhn )∩ A(Ωgn ) and recalling that un and vn are elastic equilibria
in Ωhn and in Ωgn , respectively, we have

∫

Ωhn

CE(un) : E(un − vn) dz = 0 (4.57)

and
∫

Ωhn

CE(vn) : E(un − vn) dz =
∫

Ωhn \Ωgn

CE(vn) : E(un − vn) dz

−
∫

Ωgn \Ωhn

CE(vn) : E(un − vn) dz.

(4.58)
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Subtracting (4.58) from (4.57), by (4.56) and recalling that |Ωhn �Ωgn | → 0 we
deduce

∫

Ωhn

Q(E(un − vn)) dz → 0.

Since ‖�n − I d‖C2(Ωhn ;R2) → 0 and �n = I d in Ωhn−3, we conclude

∫

Ωhn

|En − E(vn) ◦�n|2 dz → 0. (4.59)

Having established this estimate, we obtain (4.55), arguing exactly as in Step 1 of
Proposition 4.5. More precisely, the same estimate used there in Ωgn holds now,
in a local version, in the domain Ωgn \Ωgn−1 thanks to (4.59) and to the fact that
the functions hn are all constants and the gradients of un are uniformly bounded
constants. Again, the same argument used to prove (4.17) gives now

‖(∇(Q ◦ E(vn)) · νgn ) ◦�n J1�n − ∂νhn
[Q(E(un))]‖

H
− 1

2
# (Γhn )

→ 0.

Step 2 For n large enough

‖ϕ‖2
H1(Γgn )

� 3C−1
1 ‖ϕ‖2∼,gn

for all ϕ ∈ H̃1
0 (�gn ) (4.60)

(C1 is the constant appearing in (4.52)). The proof of this estimate goes exactly as
the proof of estimate (4.19).

Step 3 The proof of this step is very similar to the proof of Step 3 of Propo-
sition 4.5, apart from a subtle point at the end of the argument. For the reader’s
convenience we give the whole proof in detail. Let C3 be a positive constant such
that

‖ϕ‖2∼,hn
� C3‖ϕ‖2

H1(Γhn )
for all ϕ ∈ H̃1

0 (�hn ), (4.61)

where C3 is independent of n. As in Step 3 of the proof of Proposition 4.5, we intro-
duce Thn and Tgn , the operators associated with hn and gn , respectively. Define the
first eigenvalues of Thn and Tgn on H̃1

0 (�hn ) and H̃1
0 (�gn ), respectively, as

λ1,hn = max{(Thnϕ, ϕ)∼,hn : ϕ ∈ H̃1
0 (�hn ), ‖ϕ‖∼,hn = 1},

λ1,gn = max{(Tgnϕ, ϕ)∼,gn : ϕ ∈ H̃1
0 (�gn ), ‖ϕ‖∼,gn = 1}.

By (4.52) and (4.61), taking as ϕ an eigenfunction corresponding to λ1,hn , we have

∂2 F(hn, un)[ϕ] = ‖ϕ‖2∼,hn
− (Thnϕ, ϕ)∼,hn

= (1 − λ1,hn )‖ϕ‖2∼,hn
� C1C−1

3 ‖ϕ‖2∼,hn
,

which implies

0 < C1C−1
3 < 1 and λ1,hn � 1 − C1C−1

3 . (4.62)
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for n large enough. We claim that

lim sup
n→∞

λ1,gn � 1 − C1C−1
3 . (4.63)

Without loss of generality we assume that

lim sup
n→∞

λ1,gn = lim
n→∞ λ1,gn =: λ∞.

Then there exist ϕn ∈ C∞
# (Γgn ) ∩ H̃1

0 (�gn ), with ‖ϕn‖∼,gn = 1, and vϕn ,gn ∈
A(Ωgn ), solution to

∫

Ωgn

CE(vϕn ,gn ) : E(w) dz =
∫

Γgn

divτgn
(ϕnCE(vn)) · w dH1 (4.64)

for all w ∈ A(Ωgn ), such that

(Tgnϕn, ϕn)∼,gn = 2
∫

Ωgn

Q(E(vϕn ,gn )) dz → λ∞. (4.65)

Note that by (4.60)

sup
n

‖ϕn‖H1(Γgn )
< +∞.

By the Imbedding Theorem 8.3 and the L∞-equiboundedness of the functions
g′

n it follows that supn ‖ϕn‖
W

3
4 ,4(Γgn )

< +∞. From (4.55) it follows that

supn ‖CE(vn)‖C0,α(Γgn ;M2×2) < ∞ for all α ∈ (0, 1). Then, using the definition of

the Gagliardo seminorm of W
3
4 ,4(Γgn ), it is easy to check that

sup
n

‖ϕnCE(vn)‖
W

3
4 ,4(Γgn ;M2×2)

< +∞. (4.66)

Using Lemma 4.4 we then have that

‖E(vϕn ,gn )‖L2+δ(Ωgn \Ωgn−1;M2×2)

< C
(
‖E(vϕn ,gn )‖L2(Ωgn \Ωgn−2;M2×2) + ‖ϕnCE(vn)‖

W
3
4 ,4(Γgn )

)
(4.67)

for some δ > 0 and C > 0 independent of n. Set v̂ϕn ,gn = vϕn ,gn + zn , where zn is
a suitable infinitesimal rigid motion such that

∫

Ωgn \Ωgn−1

(∇v̂ϕn ,gn − ∇T v̂ϕn ,gn

)
dz = 0,

∫

Ωgn \Ωgn−1

v̂ϕn ,gn dz = 0.
(4.68)
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Choosing w = vϕn ,gn in equation (4.64) and recalling that CE(vn)[νgn ] = 0 and
ϕn(0, gn(0)) = ϕn(b, gn(b)) = 0, also by Remark 3.1, we have

2
∫

Ωgn

Q(E(vϕn ,gn )) dz =
∫

Γgn

divτgn
(ϕnCE(vn)) · vϕn ,gn dH1

=
∫

Γgn

divτgn
(ϕnCE(vn)) · v̂ϕn ,gn dH1

� ‖divτgn
(ϕnCE(vn))‖

W
− 1

4 ,4
# (Γgn ;R2)

‖v̂ϕn ,gn ‖W
1
4 ,

4
3 (Γgn ;R2)

� C‖ϕnCE(vn)‖
W

3
4 ,4(Γgn ;R2)

‖v̂ϕn ,gn ‖W 1, 4
3 (Ωgn \Ωgn−1;R2)

� C‖E(vϕn ,gn )‖L
4
3 (Ωgn \Ωgn−1;R2)

� C‖E(vϕn ,gn )‖L2(Ωgn ;R2), (4.69)

where the third inequality follows from (4.66) and Korn’s inequality with a con-
stant independent of n. Note that Korn’s inequality may be applied thanks to the
normalization conditions imposed in (4.68). Note also that the second inequality
follows from Corollary 8.7 and the trace Theorem 8.4. Moreover, the assumption
that ϕn vanishes at the endpoints ofΓgn is crucial in order to get the second equality.
Hence, from (4.67), we deduce that

sup
n

‖E(vϕn ,gn )‖L2+δ(Ωgn \Ωgn−1;M2×2) < ∞.

We may extend vϕn ,gn to a function in A(Ωgn ∪Ωhn ) in such a way that

sup
n

‖E(vϕn ,gn )‖L2+δ((Ωgn ∪Ωh)\Ωgn−1;M2×2) < +∞. (4.70)

We finally set ϕ̃n := �n(ϕn ◦�n)J1�n , where �n := ‖(ϕn ◦�n)J1�n‖−1
∼,hn

. Arguing
as in the proof of (4.33), it readily follows that

�n → 1.

Let vϕ̃n ,hn defined as in (3.18) with ϕ replaced by ϕ̃n . Arguing as before, we may
extend vϕ̃n ,hn to a function in A(Ωgn ∪Ωhn ) in such a way that

sup
n

‖E(vϕ̃n ,hn )‖L2+δ((Ωgn ∪Ωhn )\Ωgn−1;M2×2) < +∞. (4.71)

To conclude the proof of (4.63) it will be enough to show that

lim
n→∞

∫

Ωhn

Q(E(vϕ̃n ,hn − vϕn ,gn )) dz = 0. (4.72)

Indeed, by (4.62) and (4.65) this would imply

1 − C1C−1
3 � lim

n→∞ (Thn ϕ̃n, ϕ̃n)∼,hn = lim
n→∞ 2

∫

Ωhn

Q(E(vϕ̃n ,hh )) dz

= lim
n→∞ 2

∫

Ωhn

Q(E(vϕn ,gn )) dz

= lim
n→∞ 2

∫

Ωgn

Q(E(vϕn ,gn )) dz = λ∞



Epitaxially Strained Elastic Films: Qualitative Properties of Solutions 289

where in the third equality we have used the equi-integrability of the functions
Q(E(vϕn ,gn )) (implied by (4.70)) together with the fact that |Ωgn �Ωhh | → 0. In
order to prove (4.72) we observe that vϕ̃n ,hn − vϕn ,gn ∈ A(Ωhn ) ∩ A(Ωgn ) is an
admissible test function for (4.64) and for the equation satisfied by vϕ̃n ,hn . Using
such a test function and subtracting the two equations, we obtain

2
∫

Ωhn

Q(E(vϕ̃n ,hn − vϕn ,gn )) dz

= −
∫

Ωhn \Ωgn

CE(vϕn ,gn ) : E(vϕ̃n ,hn − vϕn ,gn ) dz

+
∫

Ωgn \Ωhn

CE(vϕn ,gn ) : E(vϕ̃n ,hn − vϕn ,gn ) dz

+
∫

Γhn

divτhn
(ϕ̃nCEn) · (v̂ϕ̃n ,hn − v̂ϕn ,gn ) dH1

−
∫

Γhn

[
divτgn

(ϕnCE(vn)) · (v̂ϕ̃n ,hn − v̂ϕn ,gn )
] ◦�n J1�n dH1

=: I 1
n + I 2

n + I 3
n + I 4

n ,

where v̂ϕ̃n ,hn are obtained by adding to vϕ̃n ,hn suitable infinitesimal rigid motions in
such a way that supn ‖v̂ϕ̃n ,hn ‖H1((Ωhn ∪Ωgn )\Ωgn−1;R2) < ∞ and v̂ϕn ,gn are defined
as above. In particular, we also have

sup
n

‖v̂ϕn ,gn ‖H1((Ωhn ∪Ωgn )\Ωgn−1;R2) < ∞.

Note that we have used, as in (4.69), the invariance of I 3
n and I 4

n under addition of
infinitesimal rigid motions to the functions vϕ̃n ,hn and vϕn ,gn .

As in Step 3 of Proposition 4.5, I 1
n + I 2

n → 0 due to (4.70), (4.71), and the fact
that |Ωgn �Ωhn | → 0. The proof that I 3

n + I 4
n → 0 can be obtained exactly as in the

final part of Step 3 of Proposition 4.5, replacing vϕ̃n ,h − vϕn ,gn by v̂ϕ̃n ,hn − v̂ϕn ,gn .

Step 4 For t ∈ [0, 1] consider (hn,t , un,t ) ∈ X (en; 0, b), where hn,t := hn +
t (gn−hn) and un,t is the corresponding elastic equilibrium. Note that (hn,1, un,1) =
(gn, vn). Let (·, ·)∼,hn,t , Thn,t , and λ1,hn,t be the corresponding bilinear forms, oper-
ators, and first eigenvalues on H̃1

0 (Γhn,t ). Set �n,t (x, y) := (x, y + hn,t − hn) in
[0, b] × [dn/b − 2, dn/b]. We claim that for n large enough and for all t ∈ [0, 1]

‖ϕ‖2
H1(Γhn,t )

� 3C−1
1 ‖ϕ‖2∼,hn,t

for all ϕ ∈ H̃1
# (�hn,t ), (4.73)

that

lim sup
n→∞

sup
t∈(0,1]

λ1,hn,t � 1 − C1C−1
3 , (4.74)

and that for all p > 1

sup
t∈[0,1]

‖En − E(un,t ) ◦�n,t‖W 1,p(Ωhn \Ωhn−1;M2×2). (4.75)

The claim can be proved by contradiction as in Step 4 of Proposition 4.5.
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Step 5 We are now in a position to conclude the proof of the proposition. Let
fn(t) := F(hn,t , un,t ). We claim that

f ′′
n (t) >

1

24
C2

1C−1
3 ‖ψn‖2

H1(Γgn )
.

This can be proved using the estimates (4.73), (4.74) and (4.75) and arguing exactly
as in Step 5 of Proposition 4.5. We only mention the fact that, since the curvatures
khn are all zero, equation (4.48) still holds with Λ replaced by Q(En), which is
bounded.

Remark 4.8. We remark that the conclusion of Proposition 4.7 also holds if the
sequence {gn} does not satisfy the condition gn(0) = gn(b) = dn/b. Indeed, if the
sequence (gn, vn) satisfies all the remaining assumptions stated in Proposition 4.7,
since

∫ b
0 gn dx = dn for all n, there exists an ∈ [0, b) such that gn(an) = dn/b. Con-

sider the functions ḡn(x) = gn(x + an) and v̄n(x, y) = vn(x + an, y)− (enan, 0),
and observe that (ḡn, v̄n) ∈ X (en; 0, b), ḡn(0) = ḡn(b) = dn/b, F(gn, vn) =
F(ḡn, v̄n) by periodicity, and ‖ḡn − dn/b‖C2([0,b]) = ‖gn − dn/b‖C2([0,b]) → 0.

From the previous remark and Proposition 4.7, arguing as in Theorem 4.6, we
have the following result.

Theorem 4.9. Let (dn/b, uen ) ∈ X (en; 0, b) be as in Proposition 4.7, and let

(gn, vn) ∈ X (en; 0, b) be such that
∫ b

0 gn dx = dn, gn �= dn/b, and ‖gn − dn/

b‖W 2,∞(0,b) → 0. Then F(dn/b, uen ) < F(gn, vn) for n large enough.

5. Second Variation of the Flat Configuration

Using Theorem 3.2, we can now calculate the second variation of the flat con-
figuration (d/b, ue0) evaluated at an admissible variation ϕ. In view of Remark 4.8
it is enough to consider variations ϕ belonging to the space H̃1

0 (Γd/b) defined in
(4.51). Clearly, such a space can be identified with

H̃1
0 (0, b) =

{
ϕ ∈ H1(0, b) : ϕ(0) = ϕ(b) = 0,

∫ b

0
ϕ dx = 0

}
.

Notice that for every admissible displacement u, by (2.6), we have

CE(u) =
⎛
⎜⎝
(2μ+ λ)

∂u1

∂x
+ λ

∂u2

∂y
μ
(∂u1

∂y
+ ∂u2

∂x

)

μ
(∂u1

∂y
+ ∂u2

∂x

)
(2μ+ λ)

∂u2

∂y
+ λ

∂u1

∂x

⎞
⎟⎠ . (5.1)

In particular, recalling (2.13),

CE(ue0) =
(
τ 0
0 0

)
, where τ := e0

4μ(μ+ λ)

2μ+ λ
. (5.2)
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Observing that divτ (CE(ue0)ϕ) = div(CE(ue0)ϕ) = τ(ϕ′, 0), we get

∂2 F
(d

b
, ue0

)
[ϕ] = −2

∫

Ωh

Q(E(vϕ)) dz +
∫ b

0
ϕ′2 dx, (5.3)

where h ≡ d/b, Ωh = (0, b) × (0, d/b) and vϕ ∈ A(Ωh) is the unique solution
to the equation

∫

Ωh

CE(vϕ) : E(w) dz = τ

∫ b

0
w1(x, d/b)ϕ′(x) dx (5.4)

for all w ∈ A(Ωh).
The next theorem deals with the positive definiteness of ∂2 F(d/b, ue0). We

follow the same argument used in [19] to express the second variation in terms of
the Fourier coefficients of ϕ.

Theorem 5.1. Let K be the function defined in (2.14). Then,

∂2 F
(d

b
, ue0

)
is positive definite ⇐⇒ K

(2πd

b2

)
<
π

4

2μ+ λ

e2
0μ(μ+ λ)

1

b
.

Conversely,

K
(2πd

b2

)
>
π

4

2μ+ λ

e2
0μ(μ+ λ)

1

b
⇒ ∂2 F

(d

b
, ue0

)
[ϕ] < 0 for some ϕ ∈ H̃1

0 (0, b).

Proof. We set

ṽϕ(x, y) := 2π

b
vϕ

( b

2π
x,

b

2π
y
)
, ϕ̃(x) := 2π

b
ϕ
( b

2π
x
)
.

Then, ṽϕ satisfies (5.4) in the interval (0, 2π), with ϕ replaced by ϕ̃. Moreover, by
(5.3), we get

∂2 F
(d

b
, ue0

)
[ϕ] = b2

4π2

[
−2
∫

Ωh̃

Q(E(ṽϕ)) dz + 2π

b

∫ 2π

0
ϕ̃′2 dx

]
, (5.5)

where h̃(x) ≡ 2πd/b2.
In order to compute the second variation, let us now solve equation (5.4) in

Ωh̃ = (0, 2π) × (0, h̃) by considering the expansion in Fourier series of ṽϕ(·, y)

for all y ∈ (0, h̃). To this aim, we set for all y and n ∈ Z

an(y) := 1√
2π

∫ 2π

0
e−inx ṽϕ 1(x, y) dx, bn(y) := 1√

2π

∫ 2π

0
e−inx ṽϕ 2(x, y) dx,

and

ϕ̃n := 1√
2π

∫ 2π

0
e−inx ϕ̃(x) dx,
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where ṽϕ 1, ṽϕ 2 are the components of ṽϕ . Recalling (5.1) and (5.2), equation (5.4)
becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2μ+ λ)
∂2ṽϕ 1

∂x2 + μ
∂2ṽϕ 1

∂y2 + (λ+ μ)
∂2ṽϕ 2

∂x∂y
= 0 in Ωh̃ ,

μ
∂2ṽϕ 2

∂x2 + (2μ+ λ)
∂2ṽϕ 2

∂y2 + (λ+ μ)
∂2ṽϕ 1

∂x∂y
= 0 in Ωh̃ ,

∂ṽϕ 1

∂y
+ ∂ṽϕ 2

∂x
= τ

μ
ϕ̃′, λ

∂ṽϕ 1

∂x
+ (2μ+ λ)

∂ṽϕ 2

∂y
= 0 on {y = h̃},

ṽϕ = 0 on {y = 0}.
Therefore, the Fourier coefficients an, bn satisfy the following system of ODEs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μa′′
n − in(λ+ μ)b′

n − (2μ+ λ)n2an = 0 in (0, h̃),

(2μ+ λ)b′′
n − in(λ+ μ)a′

n − μn2bn = 0 in (0, h̃),

a′
n(h̃)− inbn(h̃) = − τ

μ
inϕ̃n,

−inλan(h̃)+ (2μ+ λ)b′
n(h̃) = 0,

an(0) = bn(0) = 0.

(5.6)

From these equations it follows that there exist constants Ci , Ki , i = 1, . . . , 4,
such that

an(y) = C1eny + C2e−ny + C3 yeny + C4 ye−ny,

bn(y) = K1eny + K2e−ny + K3 yeny + K4 ye−ny .

Inserting these expressions in (5.6), after some lengthy but straightforward com-
putations, we obtain that

C1 = −i K1 − i K3
n (3 − 4νp), C2 = i K2 − i K4

n (3 − 4νp),

C3 = −i K3, and C4 = i K4,

where νp is defined as in (2.15). Setting γ1 := K1 + K2, γ2 := K1 − K2, γ3 :=
K3 + K4, γ4 := K3 − K4, we may write

an(y) = −iγ1 sinh(ny)− iγ2 cosh(ny)− iγ3
[3 − 4νp

n
cosh(ny)+y sinh(ny)

]

−iγ4
[3 − 4νp

n
sinh(ny)+y cosh(ny)

]

bn(y) = γ1 cosh(ny)+ γ2 sinh(ny)+ γ3 y cosh(ny)+ γ4 y sinh(ny).

Imposing the condition an(0) = bn(0) = 0, we get

γ1 = 0, γ2 = −3 − 4νp

n
γ3. (5.7)
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Enforcing a′
n(h̃)− inbn(h̃) = − τ

μ
inϕ̃n , we deduce

γ3

[
2h̃ cosh(nh̃)− 2(1 − 2νp)

n
sinh(nh̃)

]

+γ4

[
2h̃ sinh(nh̃)+ 4(1 − νp)

n
cosh(nh̃)

]
= τ

μ
ϕ̃n .

Finally, the condition −inλan(h̃)+ (2μ+ λ)b′
n(h̃) = 0 implies

γ3

[
−2(λ+ 2μ)(1 − 2νp)

n
cosh(nh̃)+ 2μh̃ sinh(nh̃)

]

+γ4

[ 2μ2

n(λ+ μ)
sinh(nh̃)+ 2μh̃ cosh(nh̃)

]
= 0.

Solving the last two equations in γ3, γ4, we deduce

γ3 = τ

2μ
nϕ̃n

nh̃ cosh(nh̃)+ (1 − 2νp) sinh(nh̃)

n2h̃2 + 4(1−νp)2 + (3−4νp) sinh2(nh̃)
,

γ4 = τ

2μ
nϕ̃n

−nh̃ sinh(nh̃)+ 2(1 − νp) cosh(nh̃)

n2h̃2 + 4(1−νp)2 + (3−4νp) sinh2(nh̃)
.

From these equalities, (5.5), (5.7), and (5.4) we finally obtain

∂2 F
(d

b
, ue0

)
[ϕ] = b2

4π2

[
−2
∫

Ωh̃

Q(E(ṽϕ)) dz + 2π

b

∫ 2π

0
ϕ̃′2 dx

]

= b2

4π2

∫ 2π

0

[
−τ ṽϕ1(x, h̃)ϕ̃′(x)+ 2π

b
ϕ̃′2] dx

= b2

4π2

∑
n∈Z

[
−τ inan(h̃)ϕ̃−n + 2π

b
n2ϕ̃n ϕ̃−n

]

= b

2π

∑
n∈Z

n2ϕ̃n ϕ̃−n

[
1 − τ 2(1 − νp)bJ (nh̃)

2πμn

]
.

=
∑
n∈Z

n2ϕnϕ−n

[
1 − τ 2(1 − νp)bJ (2πnd/b2)

2πμn

]
, (5.8)

where the ϕn’s are the Fourier coefficients of ϕ in the interval (0, b) and J is the
function introduced in (2.14). Also using (2.15) and (5.2) we have

sup
n∈Z

τ 2(1 − νp)bJ (2πnd/b2)

2πμn
≷ 1 ⇐⇒ K

(2πd

b2

)
≷ π

4

2μ+ λ

e2
0μ(μ+ λ)

1

b
,

and the conclusion follows from (5.8).
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Remark 5.2. From (5.8) it follows that

∂2 F
(d

b
, ue0

)
[ϕ] � C1‖ϕ′‖2

L2(0,b),

with

C1 :=
[
1 − 4e2

0μ(μ+ λ)b

π(2μ+ λ)
K
(2πd

b2

)]
.

Corollary 5.3. The function K defined in (2.14) is strictly increasing and continu-
ous, K (y) � Cy for some positive C, and lim

y→+∞ K (y) = 1.

Proof. The fact that K is strictly increasing is an easy consequence of Theorem 5.1,
together with Proposition 3.6 and Corollary 3.8. The fact that limy→+∞ K (y) = 1
follows from the same property for J after observing that K (y) = J (y) for y
large. Also, the growth condition follows from the same property for J . Finally,
the continuity of K is a consequence of the fact that if y varies in a set bounded
from above and away from zero, then the maximum defining K can be restricted
to a finite subset of N.

6. Local Minimizers: Proofs

This section is mainly devoted to proving that W 2,∞-local minimizers are, in
fact, local minimizers in the sense of Definition 2.4. This fact, together with the
results of Sections 4 and 5, will lead to the proof of Theorem 2.9. For the general
strategy of the proof we refer to the introduction. We start with some technical
lemmas. The first one is an approximation lemma proved in [6].

Lemma 6.1. Given (g, v) ∈ X (e0, q; 0, b), there exists a sequence of Lipschitz
b-periodic functions gn, such that gn ↑ g pointwise and F(gn, v) → F(g, v). In
particular,

H1(Γgn ) → H1(Γg)+ 2H1(Σg).

The next lemma states a well-known approximation property for one-
dimensional BV -functions.

Lemma 6.2. Let h : [0, b] → R be a lower semicontinuous function with finite
total variation. Then, there exists a sequence of Lipschitz functions gn : [0, b] → R

such that gn(0) = h(0), gn(b) = h(b), gn → h in L1(0, b) such that

H1(Γgn ) → H1(Γh ∩ ((0, b)× R))+ |h(0+)− h(0)| + |h(b−)− h(b)|.
The next lemma and the subsequent corollary show that minimizing under the
volume constraint is equivalent to minimizing with a sufficiently large penalization
term.
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Lemma 6.3. Let h0 ∈ L∞(0, b) be nonnegative, let d, e0 > 0, and let (g, v) ∈
X (e0, q; 0, b) be a minimizer for the problem

min
{

F(k, w)+Λ
∣∣|Ωk | − d

∣∣ : (k, w) ∈ X (e0, q; 0, b), k � h0 in [0, b]
}
,

with Λ > Q0, where

Q0 := 1

b

∫ b

0
Q(E0 + E((q, 0))) dx, and E0 := E(ue0).

Then |Ωg| � d. Moreover, if h0 ≡ c, with c a nonnegative constant such that
cb � d, then |Ωg| = d.

Proof. We argue by contradiction. If |Ωg| < d, we set g̃ = g + (d − |Ωg|)/b and
for all (x, y) ∈ Ωg̃

ṽ(x, y)=

⎧⎪⎪⎨
⎪⎪⎩

(
e0x,

−λe0

2μ+ λ
y
)

+ (q(x), 0) if 0 < y <
d − |Ωg|

b

v
(

x, y − d − |Ωg|
b

)
+
(

0,
−λe0(d − |Ωg|)

b(2μ+ λ)

)
if y � d − |Ωg|

b
.

Then

F(g̃, ṽ)+Λ
∣∣|Ωg̃| − d

∣∣− F(g, v)−Λ
∣∣|Ωg| − d

∣∣
= Q0(d − |Ωg|)−Λ(d − |Ωg|) < 0,

which is a contradiction to the minimality of (g, v).
Assume now that h0 ≡ c. If |Ωg| > d, then we may truncate g in such a way

that the resulting function g̃ satisfies the constraints |Ωg̃| = d and g̃ � h0. Then,
we would get

F(g̃, v)+Λ
∣∣|Ωg̃| − d

∣∣ < F(g, v)+Λ
∣∣|Ωg| − d

∣∣,
which is again a contradiction to the minimality of (g, v).

An immediate consequence of the previous lemma is stated in the following
corollary.

Corollary 6.4. Let (h, u) ∈ X (e0, q; 0, b) be a b-periodic global minimizer for the
problem (2.9). Then, for all Λ > Q0 we have that (h, u) is a minimizer for the
problem

min
{

F(k, w)+Λ
∣∣|Ωk | − d

∣∣ : (k, w) ∈ X (e0, q; 0, b)
}
.

Proof. Apply Lemma 6.3 with h0 ≡ 0.

The next lemma will be used to prove the isoperimetric inequality stated in
Lemma 6.6 and the unilateral minimality property (1.4) stated in the introduction.



296 N. Fusco & M. Morini

Lemma 6.5. Let h be a function in C2
# ([0, b]). Then,

H1(Γk)+Λ0

∫ b

0
|k − h| dx � H1(Γh)

for all k ∈ AP(0, b), where

Λ0 :=
∥∥∥∥
( h′
√

1 + h′2
)′∥∥∥∥

L∞(0,b)
.

Proof. Assume first that k ∈ Lip([0, b]), k(0) = k(b). Then,

H1(Γk)− H1(Γh) =
∫ b

0

(√
1 + k′2 −

√
1 + h′2) dx

�
∫ b

0

(k′ − h′)h′
√

1 + h′2 dx

= −
∫ b

0
|k − h|

( h′
√

1 + h′2
)′

sign(k − h) dx (6.1)

� −Λ0

∫ b

0
|k − h| dx .

Assume now that k ∈ AP(0, b). IfΣk = ∅, then the result follows from the approx-
imation Lemma 6.1. IfΣk �= ∅, one reduces to the previous case by replacing k by
the function k− ∈ AP(0, b) defined in (2.1) for which Γk = Γk− and Σk− = ∅.

The isoperimetric inequality proved in the following lemma is crucial to
deduce the uniform inner ball condition stated in Lemma 6.7.

Lemma 6.6. Let k ∈ AP(0, b) be nonnegative, let Bρ(z0) be a ball such that
Bρ(z0) ⊂ {(x, y) : x ∈ (0, b) and y < k(x)}, and let z1 = (x1, y1) and z2 =
(x2, y2) be points in ∂Bρ(z0) ∩ (Γk ∪ Σk). Let γ be the shortest arc on ∂Bρ(z0)

connecting z1 and z2 (any of the two possible arcs if z1 and z2 are antipodal) and
let γ ′ be the arc on Γk ∪Σk connecting z1 and z2. Then

H1(γ ′)− H1(γ ) � 1

ρ
|D|,

where D is the region enclosed by γ ∪ γ ′.

Proof. Denote by h the function whose graph coincides with γ . We observe that
if k ∈ Lip([x1, x2]), since k(x1) = h(x1) and k(x2) = h(x2), the same proof of

(6.1), together with the fact that −
( h′
√

1 + h′2
)′ = 1

ρ
, yields

H1(Γk ∩ [(x1, x2)× R])− H1(Γh ∩ [(x1, x2)× R]) � 1

ρ

∫ x2

x1

|k − h| dx,

which is the conclusion when k ∈ Lip([x1, x2]). The general case follows by
approximating k in [x1, x2] with a sequence kn of Lipschitz functions according to
Lemma 6.2 and by passing to the limit in the above formula.
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Lemma 6.7. Let h0 be a nonnegative function in C2
# ([0, b]), let Λ > 0, d > 0,

and let (g, v) ∈ Y (e0; 0, b) be a minimizer of the problem

min
{

F(k, w)+Λ
∣∣|Ωk | − d

∣∣ : (k, w) ∈ Y (e0; 0, b),

w(x, 0) = v(x, 0) for all x ∈ (0, b) k � h0

}
.

Then ρ < min{1/Λ, 1/‖h′′
0‖∞} implies that for all z ∈ Γg ∪Σg there exists a ball

Bρ(z0) ⊂ Ω#
g ∪ (R × (−∞, 0]) such that ∂Bρ(z0) ∩ (Γg ∪Σg) = {z}.

Proof. We start by observing that if ρ < 1/‖h′′
0‖∞, z0 = (x0, y0) is the center

of a ball of radius ρ and S+
ρ (z0) := ∂Bρ(z0) ∩ {y � y0}, then an elementary

argument shows that there cannot exist two points z1 = (x1, y1), z2 = (x2, y2) ∈
S+
ρ (z0)∩�h0 such thatΓh0 lies above S+

ρ (z0) in (x1, x2)×R. Now fixρ < 1/‖h′′
0‖∞

and assume that there exists a ball Bρ(z0) ⊂ Ω#
g ∪(R× (−∞, 0]) such that S+

ρ (z0)

intersects Γg ∪Σg in two points z1 = (x1, y1) and z2 = (x2, y2). From the above
observations it follows that the arc γ on S+

ρ (z0) connecting z1 and z2 lies above
the graph of h0. Hence we may modify g by replacing it with the function g̃, which
coincides with g in [0, b) \ (x1, x2) and whose graph on (x1, x2) is given by γ .
Denote by γ ′ the arc onΓg ∪Σg connecting z1 and z2, and by D the region enclosed
by γ ′ ∪ γ . Then we have

F(g̃, v)+Λ∣∣|Ωg̃|−d
∣∣−F(g, v)−Λ∣∣|Ωg|−d

∣∣ � H1(γ )−H1(γ ′)+Λ|D| < 0,

where the last inequality is a consequence of Lemma 6.6 and the fact that ρ < 1/Λ.
From this contradiction to the minimality of (g, v) the conclusion then follows
arguing as in [9, Lemma 2] or [15, Proposition 3.3, Step 2].

Remark 6.8. Let (g, v) ∈ X (e0, q; 0, b) be a b-periodic global minimizer and
fix z ∈ Γ #

g . Then, by Corollary 6.4 and Lemma 6.7 (applied with h0 ≡ 0), for
ρ < 1/Q0 there exists a ball Bρ(z0) ⊂ Ω#

g ∪(R×(−∞, 0]) such that z ∈ ∂Bρ(z0).
Letting ρ ↑ ρ0 := 1/Q0, we conclude that there exists a ball Bρ0(z0) ⊂ Ω#

g ∪(
R × (−∞, 0]) such that z ∈ ∂Bρ0(z0).

In the following theorem it is proved that the profiles gn of solutions to the obstacle
problems mentioned in the introduction (see (1.3)) converge to h in W 2,∞, when
(h, u) is a critical point. The theorem, in fact, deals with a slightly more general
situation, which will be needed in the proof of statement (ii) of Theorem 2.11.

Theorem 6.9. Let h ∈ C2
# ([0, b]), h > 0 in [0, b], and Λ > Λ0, where Λ0 is

defined in Lemma 6.5. Let (gn, vn) ∈ Y (e0; 0, b) be a solution to the following
problem:

min
{

F(g, v)+Λ
∣∣|Ωg| − |Ωh |∣∣ : (g, v) ∈ Y (e0; 0, b),

v(x, 0) = vn(x, 0) for all x ∈ (0, b) g � h − an

}
,
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where an is a sequence of positive numbers converging to zero. Also assume that
gn → h in L1(0, b),

lim
n→∞ H1(Γgn ∪Σgn ) = H1(Γh) and sup

n

∫

Ωgn

Q(E(vn)) dz < +∞.

Then for all α ∈ (0, 1
2 ) and for n large enough gn ∈ C1,α([0, b]), the sequence

{∇vn} is equibounded in C0,α(U ∩Ωgn ; M
2×2), where U is any open set containing

Γh such that U ∩{y = 0} = ∅, and gn → h in C1,α([0, b]). Moreover, if ∇vn ⇀ ∇u
in L2

loc(Ωh; M
2×2) for some u ∈ H1(Ωh; R

2) such that (h, u) ∈ X (e0, q; 0, b) is
a critical point, then gn ∈ W 2,∞(0, b) for n large and gn → h in W 2,∞(0, b).

Proof. Step 1 Up to a subsequence, we may assume that Γgn ∪Σgn converge
in the Hausdorff metric to some compact connected set K . It can be easily seen
that Γh ⊂ K . Hence, by Goła̧b’s theorem and observing that H1(Γgn ∪Σgn ) =
H1(Γgn ∪Σgn ), we have

H1(Γh) � H1(K ) � lim
n→∞ H1(Γgn ∪Σgn ) = H1(Γh).

Therefore, H1(K \ Γh) = 0. Since K is the Hausdorff limit of graphs, for all
x ∈ [0, b] the section K ∩ ({x} × R) is connected. Hence, K = Γ h . From this
equality, the definition of Hausdorff convergence and the continuity of h in [0, b],
we get that sup[0,b] |gn − h| → 0 as n → ∞.

Step 2 We claim gn ∈ C0([0, b]) and Σgn ,c = ∅ (see (2.12)) for n large
enough.

Fixρ < min{1/Λ, 1/‖h′′‖∞}. By Lemma 6.7 for all n and for all z ∈ Γgn ∪Σgn

there exists a ball Bρ(z0) ⊂ Ω#
gn

∪(R×(−∞, 0]) such that ∂Bρ(z0)∩(Γgn ∪Σgn ) =
{z}. We show that for n large enough gn is continuous, by proving that its extended
graph does not contain vertical segments. Indeed, assume by contradiction that
there exists x ∈ [0, b) such that gn(x) < g+

n (x) and take z = (x, gn(x)). Then
we may find a ball Bρ(z0) ⊂ Ω#

gn
∪ (R × (−∞, 0]), which is tangent at z to the

vertical segment connecting z and (x, g+
n (x)). Without loss of generality we may

assume z0 = z + (ρ, 0). Let us now set M := ‖h′‖∞. Then,

z + ρ

(
1 − M√

1 + M2
,

1√
1 + M2

)
=: z + ρ(w1, w2) ∈ ∂B+

ρ (z0).

Therefore, gn(x + ρw1) � gn(x) + ρw2. On the other hand, h(x + ρw1) �
h(x)+ ρMw1 � gn(x)+ εn + Mρw1, where εn := sup[0,b) |h − gn| → 0. Hence,

gn(x+ρw1)−h(x+ρw1) � ρw2−Mρw1−εn =ρ(
√

1 + M2−M)−εn > εn,

where the last inequality, which holds for n large enough, gives a contradiction and
proves the continuity of gn . An entirely similar argument shows that Σgn ,c = ∅
for n sufficiently large, say n � n0.
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Step 3 We now claim that gn ∈ C1([0, b]) for all n > n0.
To this aim, observe that the uniform inner ball condition recalled in the previ-

ous step, the result proved in [15, Proposition 3.5], and the fact thatΣgn ∪Σgn ,c = ∅,
imply that gn is a Lipschitz function such that its right and left derivatives exist
everywhere and are right and left continuous, respectively. From this it follows that
for all z0 ∈ Γgn there exist cn > 0, a radius rn , and an exponent αn ∈ (1/2, 1)
(depending possibly also on z0) such that

∫

Br (z0)∩Ωgn

|∇vn|2 dz � cnr2αn

for all r ∈ (0, rn). The proof of this decay estimate relies only on the fact that
vn minimizes the elastic energy in Ωgn and on the fact that Γgn admits right and
left tangents at z0 and can be obtained repeating word for word the proof of [15,
Theorem 3.13] (see also the proof of Theorem 6.10 in the present paper). Notice
that actually, in our case, the proof is even simpler: indeed, by taking n sufficiently
large, we may assume that gn > 0 so that Step 5 of the same proof is not needed.

Let us now prove that gn is of class C1. To this aim, notice that since gn is
Lipschitz we may extend vn outsideΩgn in such a way that, denoting this extension
by ṽn , we have

∫

Br (z0)

|∇ṽn|2 dz � cnr2αn . (6.2)

For r < rn denote by z′
r and z′′

r ∈ Γgn ∩ ∂Br (z0) two points such that the open sub-
arcs of Γgn , γ

′
r and γ ′′

r , of endpoints z′
r , z0 and z′′

r , z0, respectively, are contained
in Γgn ∩ Br (z0). Setting z′

r := (x ′
r , gn(x ′

r )), z′′
r := (x ′′

r , gn(x ′′
r )), define g̃n as

g̃n(x) :=
{

gn(x) x ∈ [0, b) \ (x ′
r , x ′′

r ),

max{h(x)− an, s(x)} t ∈ [x ′
r , x ′′

r ],
where s is the affine function whose graph connects z′

r and z′′
r . By (6.2) and the

minimality of (gn, vn), we then obtain

0 � F(gn, vn)+Λ
∣∣|Ωgn | − |Ωh |∣∣− F(g̃n, ṽn)−Λ

∣∣|Ωg̃n | − |Ωh |∣∣

� H1(γ ′
r ∪ γ ′′

r )−
∫ x ′′

r

x ′
r

√
1 + (g̃′

n)
2 dx

−
∫

Br (z0)

Q(E(ṽn)) dz −Λ|Ωgn �Ωg̃n |
� |z′

r − z0| + |z′′
r − z0| − |z′

r − z′′
r |

−
∫ x ′′

r

x ′
r

(

√
1 + (g̃′

n)
2 −

√
1 + (s′)2) dx − cnr2αn −Λπr2.

Then, from the previous chain of inequalities we obtain that

2r − |z′
r − z′′

r | �
∫

(x ′
r ,x

′′
r )∩{h>s+an}

(
√

1 + (h′)2 −
√

1 + (s′)2) dx + c′
nr2αn .
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Since h(x ′
r ) � s(x ′

r )+an, h(x ′′
r ) � s(x ′′

r )+an , either the set (x ′
r , x ′′

r )∩{h > s+an}
is empty or, by Lagrange Theorem, there exists x̄r ∈ (x ′

r , x ′′
r ) such that h′(x̄r ) = s′.

Therefore, dividing both sides of the inequality above by r , we deduce

2 − |z′
r − z′′

r |
r

� 2 osc
(x ′

r ,x
′′
r )

h′ + c′
nr2αn−1.

Letting r → 0, since h′ is continuous and αn > 1/2, we obtain

lim
r→0+

|z′
r − z′′

r |
r

= 2,

thus showing that the left and right tangent lines at z0 coincide. This concludes the
proof of the C1-regularity of gn .

Step 4 We claim that gn → h in C1([0, b]). To this aim fix ε > 0 and find δ > 0
so small that

‖h′′‖∞δ < ε,

z′ · z′′

ρ2 > 1 − ε for all z′, z′′ ∈ ∂Bρ(0) with |z′ − z′′| < C0
√
δ,

(6.3)

where ρ, C0 = C0(ρ) > 0 will be fixed later. Let us now consider the δ-tubular
neighborhood Nδ(Γh−an ) of Γh−an . By Step 1 we have Γgn ⊂ Nδ(Γh−an ) if n is
sufficiently large. Now take z = (x, gn(x)) and the corresponding ball Bρ(z0) ⊂
Ω#

gn
∪ (R × (−∞, 0]) touching Γgn tangentially at z, with ρ chosen in such a way

that 2ρ < min{1/Λ, 1/‖h′′‖∞}. If h(x) − an = gn(x), then h′(x) = g′
n(x) since

gn � h − an . Otherwise, arguing as in the proof of Lemma 6.7 and recalling that
2ρ < 1/‖h′′‖∞, we infer that the set ∂Bρ(z0) ∩ {(x, y) : y � h(x) − an} is
connected. Let us denote this subarc by γ . Note that γ ⊂ Nδ(Γh−an ). Let z1 ∈ γ
be a such that

dist (z1, Γh−an ) = max
w∈γ dist (w, Γh−an ).

Since z1 belongs to the relative interior of γ , the normal to ∂Bρ(z0) at z1 coin-
cides with the normal to Γh−an at the point z2 = (x2, y2) such that |z2 − z1| =
dist (z1, Γh−an ), that is,

z1 − z0

ρ
=
(

− h′(x2)√
1 + (h′(x2))2

,
1√

1 + (h′(x2))2

)
. (6.4)

We claim that H1(γ ) � C0
√
δ, for some C0 > 0 depending only on ρ. To prove

this, consider the ball B2ρ(z̃0) tangent to ∂Bρ(z0) at z1 and such that Bρ(z0) ⊂
B2ρ(z̃0). Then the ball B2ρ(z̃0 + z2 − z1) is tangent to Γh−an at z2 and is con-
tained inΩ#

h−an
∪ (R× (−∞, 0]) since 2ρ < 1/‖h′′‖∞. Denote by γ ′ the smallest

arc on ∂Bρ(z0) whose endpoints are given by the intersection of ∂Bρ(z0) with
∂B2ρ(z̃0 + z2 − z1). Since B2ρ(z̃0 + z2 − z1) ⊂ Ω#

h−an
, we clearly have γ ⊂ γ ′.
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Moreover, as |z2 − z1| � δ, an elementary calculation shows that H1(γ ′) � C0
√
δ,

for a suitable C0 > 0 depending only on ρ. Hence, the claim follows. In particular,

|z − z1| � H1(γ ) � C0
√
δ.

Thus, observing that

z − z0

ρ
=
(
− g′

n(x)√
1 + (g′

n(x))
2
,

1√
1 + (g′

n(x))
2

)
,

from the the second inequality in (6.3) and from (6.4) we obtain

(1 + g′
n(x)h

′(x2))
2

(1 + (g′
n(x))

2)(1 + (h′(x2))2)
> (1 − ε)2 > 1 − 2ε,

or, equivalently,

(h′(x2)−g′
n(x))

2<2ε(1 + (h′(x2))
2)(1 + (g′

n(x))
2)<2ε(1+M2)(1 + (g′

n(x))
2),

where M = ‖h′‖∞. Taking ε sufficiently small, we first deduce that |g′
n(x)| is

bounded by a constant M1 independent of x and n for n sufficiently large. In turn,
recalling the first inequality in (6.3), we infer

|g′
n(x)− h′(x)| � |g′

n(x)− h′(x2)| + |h′(x2)− h′(x)|
<

√
2ε(1 + M2)(1 + M2

1 )+ ε,

for n sufficiently large. By the arbitrariness of ε the claim stated at the beginning
of the step follows.

Step 5 We claim that for all α ∈ (0, 1/2), the sequence gn converges to h in
C1,α([0, b]), vn ∈ C1,α(U ∩Ωgn ; R

2) for all α ∈ (0, 1/2) and for any open set U
containing Γh and such that U ∩ {y = 0} = ∅, and supn ‖vn‖C1,α(U∩Ωgn ;R2) < ∞.

To prove the first claim, it will be enough to show that for all σ ∈ (1/2, 1) the

sequence g′
n is equibounded in C0,σ− 1

2 ([0, b]). Fix any such σ . Then by Step 4 and
Theorem 6.10 below, we know that for all n > n0 and for all z0 ∈ Γgn

∫

Br (z0)∩Ωgn

|∇vn|2 dz � c0r2σ , (6.5)

for all r ∈ (0, r0), where c0 and r0 are independent of n. Let 0 < r < r0
M1

,
where M1 := supn>n0

‖g′
n‖∞. Fix any point x0 ∈ [0, b) and any n. As in Step 3,

using (6.5), we may extend vn outside Ωgn in such a way that, denoting by ṽn this
extension, we have

∫

B2M1r (z0)

|∇ṽn|2 dz � c1r2σ , (6.6)



302 N. Fusco & M. Morini

where z0 := (x0, gn(x0)) and c1 is independent of n. Denote by γr the open arc
contained in Γgn of endpoints (x0 + r, gn(x0 + r)) and z0, and define g̃n as

g̃n(x) :=
{

gn(x) x ∈ [0, b) \ (x0, x0 + r),

max{h(x)− an, s(x)} x ∈ [x0, x0 + r ],
where s is the affine function connecting z0 and (x0 + r, gn(x0 + r)). Using the
decay estimate (6.6), the minimality of (gn, vn), and the fact that the graph of gn

over (x0, x0 + r) is contained in B2M1r (z0), we obtain, arguing as in Step 3
∫ x0+r

x0

√
1 + g′2

n dx � cr2σ +
∫ x0+r

x0

√
1 + g̃′2

n dx,

for some constant c depending only on c1, Λ, and M1. This inequality can be
equivalently written as

∫ x0+r

x0

√
1 + g′2

n dx −
√
(gn(x0 + r)− gn(x0))2 + r2

� cr2σ +
∫ x0+r

x0

(√
1 + g̃′2

n −
√

1 + s′2) dx

= cr2σ +
∫

(x0,x0+r)∩{h−an>s}
(√

1 + h′2 −
√

1 + s′2) dx

= cr2σ+
∫

(x0,x0+r)∩{h−an>s}
(√

1 + h′2−
√

1 + h′2(x̄)
)

dx � c′r2σ . (6.7)

Note that in the second equality we used the Lagrange theorem to find x̄ ∈(x0, x0+r)
∩ {h − an > s} such that h′(x̄) = s′, while in the last one we used the fact that h′
is Lipschitz. On the other hand, using the elementary inequality

√
1 + b2 −

√
1 + a2 � a(b − a)√

1 + a2
+ (b − a)2

2(1 + max{a2, b2})3/2

with a := −∫ x0+r
x0

g′
n dx and b := g′

n(x), and integrating the result in (x0, x0 + r),
we get

1

2(1 + M2
1 )

3/2
−
∫ x0+r

x0

(
g′

n(x)− −
∫ x0+r

x0

g′
n ds

)2
dx

� 1

r

∫ x0+r

x0

√
1 + g′2

n dx − 1

r

√
(gn(x0 + r)− gn(x0))2 + r2 � c′r2σ−1,

where we also used (6.7). Thus, in particular,

−
∫ x0+r

x0

∣∣∣g′
n(x)− −

∫ x0+r

x0

g′
n ds

∣∣∣ dx � c′′rσ− 1
2 .

A similar inequality also holds in the interval (x0 − r, x0). Hence, by [4, Theo-

rem 7.51] we conclude that the sequence gn is bounded in C1,σ− 1
2 ([0, b]) for all

σ ∈ (1/2, 1), as claimed.
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To show the second claim, recall that vn is a solution to the Lamé system (2.11)
in Ωgn . Therefore, from what we have just proved and from the elliptic estimates
proved in Proposition 8.9 we conclude that for n sufficiently large, the sequence
∇vn is uniformly bounded in C0,α(U ∩ Ωgn ; M

2×2) for all α ∈ (0, 1/2) and for
any open set U containing Γh and such that U ∩ {y = 0} = ∅.

Step 6 Let us now prove the second part of the statement. As gn → h in
C1,α([0, b]) by Step 5, for any n > n0 there exists a C1,α-diffeomorphism
�n : Ωgn → Ωh such that �n → I d in C1,α . From the local weak convergence
of ∇vn to ∇u and by Step 5, we have that

∇vn ◦�−1
n → ∇u in C0,α(U ∩Ωh; M

2×2) for all α ∈
(

0,
1

2

)
(6.8)

for any open set U containing Γh and such that U ∩ {y = 0} = ∅. We now set

Kn := {x ∈ [0, b] : gn(x) = h(x)− an
}
,

and we assume without loss of generality that An := (0, b) \ Kn is not empty.
Notice that, since g′

n and h′
n are continuous functions and gn � h − an , from the

definition of Kn it follows that

g′
n(x) = h′(x) for all x ∈ Kn . (6.9)

By the minimality of (gn, vn) we have that for all x ∈ An
(

g′
n(x)√

1 + g′2
n (x)

)′
= Q(E(vn)(x, gn(x))+ λn, (6.10)

for some Lagrange multiplier λn ∈ R (see the last equation in (2.11)). Note that λn

is the same for all connected components of An . Since (h, u) is a critical point, a
similar equation holds for h, that is, for all x ∈ [0, b]

(
h′(x)√

1 + h′2(x)

)′
= Q(E(u)(x, h(x))+ λ, (6.11)

for a suitable Lagrange multiplier λ. We claim that λn → λ. Indeed, splitting each
open An into the union of its connected components (αi,n, βi,n), integrating (6.10),
and using (6.11), we obtain

λn|An| +
∫

An

Q(E(vn)(x, gn(x)) dx =
∑

i

∫ βi,n

αi,n

(
g′

n√
1 + g′2

n

)′
dx

=
∑

i

(
g′

n(βi,n)√
1 + g′2

n (βi,n)
− g′

n(αi,n)√
1 + g′2

n (αi,n)

)

=
∑

i

(
h′(βi,n)√

1 + h′2(βi,n)
− h′(αi,n)√

1 + h′2(αi,n)

)

=
∫

An

(
h′

√
1 + h′2

)′
dx

= λ|An| +
∫

An

Q(E(u)(x, h(x)) dx,
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which, in turn, gives

λn − λ = −
∫

An

[
Q(E(u)(x, h(x))− Q(E(vn)(x, gn(x))

]
dx .

From (6.8) one easily deduces

Q(E(vn)(·, gn(·)) → Q(E(u)(·, h(·)) uniformly in [0, b].
Hence the convergence of λn to λ follows.

To conclude the proof, notice that (6.9) and (6.10) imply that g′
n is a Lipschitz

function for all n. Then, the same equations, together with the convergence of λn

to λ and the uniform convergence of Q(E(vn)(·, gn(·)) to Q(E(u)(·, h(·)) also
yield that

(
g′

n(·)√
1 + g′2

n (·)
)′

→
(

h′(·)√
1 + h′2(·)

)′
uniformly in [0, b].

Hence, g′′
n → h′′ in L∞(0, b) and this concludes the proof of the theorem.

We are now in a position to prove Theorem 2.10.

Proof of Theorem 2.10. Recall that by Theorem 4.6, (h, u) is an isolated local
minimizer with respect to sufficiently small W 2,∞-perturbations of h. Hence, it
is enough to show that W 2,∞-local minimality of (h, u) implies the local mini-
mality in the sense of Definition 2.4. We prove this by contradiction assuming
that for every n there exists (g̃n, ṽn) ∈ X (e0, q; 0, b), with |�g̃n | = |�h |, such that
F(g̃n, ṽn) � F(h, u) and 0 < sup[0,b] |g̃n−h| � 1/n. Let (gn, vn) ∈ X (e0, q; 0, b)
be solutions of the following problems

min
{

F(g, v)+Λ∣∣|Ωg|−|Ωh |∣∣ : (g, v) ∈ X (e0, q; 0, b), g � h−1/n in [0, b]
}
,

with Λ > max{Λ0, Q0} and Λ0 defined as in Lemma 6.5.
Assume first that (up to a non-relabeled subsequence) F(gn, vn)<F(g̃n, ṽn) �

F(h, u). By the compactness Theorem 2.2 we may assume that (gn, vn) converges
in X (e0, q; 0, b) to some pair (k, v).

Fix (g, w) ∈ X (e0, q; 0, b), with g � h. By lower semicontinuity and the
minimality of (gn, un), we get

F(k, v)+Λ
∣∣|Ωk | − |Ωh |∣∣ � lim inf

h→∞

[
F(gn, vn)+Λ

∣∣|Ωgn | − |Ωh |∣∣
]

� F(g, w)+Λ
∣∣|Ωg| − |Ωh |∣∣. (6.12)

Since k � h, by applying the above inequality with (g, w) = (h, v) we obtain, in
particular, that

H1(Γk)+Λ

∫ b

0
|k − h| � H1(Γh).

Recalling thatΛ > Λ0, by Lemma 6.5 it follows that k = h. Notice that, in particu-
lar, we have just proved that gn → h in L1(0, b) and that (h, v)minimizes F in the
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class of all (g, w) ∈ X (e0, q; 0, b) such that g � h. In particular, v must coincide
with the elastic equilibrium u. By the lower semicontinuity of g �→ H1(Γg) with
respect to the L1-convergence and the lower semicontinuity of the elastic energy
with respect to the weak H1

loc- convergence, applying (6.12) with (g, w) = (h, u)
again, we deduce

H1(Γh)= lim
n→∞ H1(Γgn ∪Σgn ),

∫

Ωh

Q(E(u)) dz = lim
n→∞

∫

Ωgn

Q(E(vn)) dz.

From Theorem 6.9 we obtain that gn → h in W 2,∞(0, b). By the choice of Λ and
by Lemma 6.3 it follows that |Ωgn | � |Ωh | for all n. Therefore, by replacing gn

with ĝn = gn − (|Ωgn | − |Ωh |)/b, we have

|Ωĝn | = |Ωh |, F(ĝn, vn) < F(h, u) for all n, and ĝn → h in W 2,∞(0, b),

a contradiction to the strict W 2,∞-local minimality of (h, u).
If, instead, F(gn, vn) = F(g̃n, ṽn), we may reproduce the same argument with

(gn, vn) replaced by (g̃n, ṽn) to deduce that ĝn := g̃n − (|Ωg̃n |− |Ωh |)/b converge
to h in W 2,∞(0, b). Note that either ĝn = g̃n or F(ĝn, ṽn) < F(g̃n, ṽn) � F(h, u).
In all cases ĝn �= h, thus giving a contradiction.

The proof of Theorem 2.9 is now immediate.

Proof of Theorem 2.9. The conclusion of the theorem is an easy consequence of
Theorems 2.10 and 5.1.

We conclude this section by proving the following regularity theorem, which
was used in the proof of Theorem 6.9.

Theorem 6.10. Let gn ∈ C1
#([0, b]) such that gn → h in C1

#([0, b]), where h > 0,
and let vn be the solution to

min
{∫

Ωgn

Q(E(v)) dz : (gn, v) ∈ Y (e0; 0, b),

v(x, 0) = vn(x, 0) for all x ∈ (0, b)
}
.

Assume also that

sup
n

∫

Ωgn

Q(E(vn)) dz < ∞

and let σ ∈ (1/2, 1). Then there exist c0, r0 > 0, independent of n, such that for
all r ∈ (0, r0) and for all z0 ∈ Γgn

∫

Br (z0)∩Ωgn

|∇vn|2 dz � c0r2σ . (6.13)
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Proof. The proof is very similar to [15, Theorem 3.16]. For the reader’s
convenience we give the details in order to show that the estimates can be made
independent of n.

We begin by showing that there exists c1 > 0 such that, for all τ ∈ (0, 1),
there exists a radius rτ > 0 such that whenever r ∈ (0, rτ ) and z0 ∈ Γgn

∫

Bτr (z0)∩Ωgn

|∇vn|2 dz � c1τ
2
∫

Br (z0)∩Ωgn

|∇vn|2 dz. (6.14)

We argue by contradiction, assuming that (6.14) is false for some τ ∈ (0, 1). Hence,
we may find a (not relabeled) subsequence of gn , a sequence of radii rn → 0, zn =
(xn, gn(xn)) converging to some z0 = (x0, h(x0)) such that

∫

Bτrn (zn)∩Ωgn

|∇vn|2 dz > c1τ
2
∫

Brn (zn)∩Ωgn

|∇vn|2 dz. (6.15)

Define the sets

Bn := 1

rn

[
−zn + Brn (zn) ∩Ωgn

]

and observe that χBn → χB∞ in L2(R2), where B∞ := {(x, y) ∈ B1(0) : y <
h′(x0)x}. This is true since gn → h in C1([0, b]). We now also rescale the function
vn by setting for z ∈ Bn

wn(z) := vn(zn + rnz)− an

λnrn
,

where

an := −
∫

Brn (zn)∩Ωgn

vn dz, λ2
n := −

∫

Brn (zn)∩Ωgn

|∇vn|2 dz.

Note that

−
∫

Bn

|∇wn|2 dz = 1,
∫

Bn

wn dz = 0.

By Poincaré Inequality and a standard extension argument we may extend each
function wn to the ball B1(0) in such a way that the resulting function, still
denoted wn , satisfies ‖wn‖H1(B1(0)) � C , with C independent of n. Without loss
of generality we may assume that the sequence wn ⇀ w∞ ∈ H1(B1(0); R

2).
Moreover, it is easy to see that the functions wn satisfy the equation

∫

Bn

C(E(wn)) : E(ϕ) dz = 0 (6.16)

for every ϕ ∈ C1
0(B1(0); R

2).
We claim that for all functions ψ ∈ C1

0 (B1(0))we have

lim
n→∞

∫

Bn

ψ2 |∇wn − ∇w∞|2 dz = 0. (6.17)



Epitaxially Strained Elastic Films: Qualitative Properties of Solutions 307

From (6.16), and the fact that χBn → χB∞ in L2 (B1(0)) , wn ⇀ w∞ in
H1
(
B1(0); R

2
)
, we get that

∫

B∞
CE (w∞) : E (ϕ) dz = 0 (6.18)

for all ϕ ∈ C1
0(B1(0); R

2). Fix ψ ∈ C1
0 (B1(0)) and choose ϕ := ψ2wn in (6.16)

(ϕ := ψ2w∞ in (6.18) respectively), thus obtaining
∫

Bn

ψ2
CE (wn) : E (wn) dz

= −
∫

Bn

ψ CE (wn) : (wn ⊗ ∇ψ + (wn ⊗ ∇ψ)T ) dz (6.19)

and
∫

B∞
ψ2

CE (w∞) : E (w∞) dz

= −
∫

B∞
ψ CE (w∞) : (wn ⊗ ∇ψ + (w∞ ⊗ ∇ψ)T ) dz. (6.20)

Letting n → ∞ in (6.19) and using the fact that the right-hand side converges to
the right-hand side of (6.20), we obtain that

lim
n→∞

∫

Bn

ψ2
CE (wn) : E (wn) dz =

∫

B∞
ψ2

CE (w∞) : E (w∞) dz,

from which we easily get

lim
n→∞

∫

Bn

CE (ψ(wn − w∞)) : E (ψ(wn − w∞)) dz = 0.

Hence the claim follows from the Korn’s inequality stated in [15, Theorem 4.2].
It follows from (6.18) that w∞ is a weak solution of the problem

μ�w∞ + (λ+ μ)∇ (divw∞) = 0 in B∞[
μ
(
∇w∞ + ∇wT∞

)
+ λ (divw∞) I

]
ν = 0 on Γg∞ ∩ B1(0),

where g∞(x) := h′(x0)x . By [15, Theorem 3.7] it follows that there exists c > 0
such that

sup
1
2 B∞

|∇w∞|2 dz � c
∫

B∞
|∇w∞|2 dz.

Hence, we have
∫

τ B∞
|∇w∞|2 dz � cτ 2

∫

B∞
|∇w∞|2 dz � c2τ

2,
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where we have used the fact that
∫

B∞ |∇w∞|2 dz � |B∞|. By (6.17) we then have
that

lim
n→∞

∫

τ Bn

|∇wn|2 dz =
∫

τ B∞
|∇w∞|2 dz

and so

lim
n→∞

∫
Bτrn (zn)∩Ωgn

|∇vn|2 dz
∫

Brn (zn)∩Ωgn
|∇vn|2 dz

= 1

|B∞| lim
n→∞

∫

τ Bn

|∇wn|2 dz � c2

|B∞|τ
2

which contradicts (6.15), provided we take

c1 � 2
c2

|B∞| .

This proves (6.14).
We are now in a position to prove (6.13). Fix σ ∈ (1/2, 1) and choose τ such

that

c1τ
2 � τ 2σ .

Fix 0 < r < rτ and find k ∈ N such that τ k+1rτ � r � τ krτ . By iterating (6.14)
and by the choice of τ , for every n and for every z0 ∈ Γgn we have

∫

Br (z0)∩Ωgn

|∇vn|2 dz �
∫

B
τkrτ

(z0)∩Ωgn

|∇vn|2 dz

� τ 2kσ
∫

Brτ (z0)∩Ωgn

|∇vn|2 dz

� r2σ

(τrτ )2σ

∫

Ωgn

|∇vn|2 dz

and this concludes the proof of the theorem.

7. Global Minimizers: Proofs

This section is devoted to the proof of all results concerning global minimiz-
ers. Here we will often work with sequences (hn, un) of global minimizers having
different periods bn ; for this reason we shall consider the energy F over varying
intervals. When needed, we will underline the dependence on the interval (0, bn) by
writing Fbn instead of F . More precisely, Fbn (g, v) will denote the energy defined
in (2.8) with Ωg, Γg , and Σg as in (2.2), (2.3), and (2.4), respectively, with (0, b)
replaced by (0, bn). Moreover, throughout this section the function q appearing in
the Dirichlet datum is assumed to be zero.

We start by stating the following simple generalization of the Compactness
Theorem 2.2.
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Theorem 7.1. Let (hn, un) ∈ X (en; 0, bn) be such that

sup
n

{∫

Ωhn

|E(un)|2 dz + Var(hn; 0, bn)+ |Ωhn |
}
< +∞,

where Ωhn := {(x, y) : x ∈ (0, bn), 0 < y < hn(x)}. Assume that bn → b0 > 0
and en → e0 � 0. Then there exist (h, u) ∈ X (e0, q; 0, b) and a subsequence (not
relabeled) such that

dH (R
2+ \Ω#

hn
,R2+ \Ω#

h ) → 0 and un ⇀ u in H1
loc(Ω

#
n ; R

2). (7.1)

Moreover,

Fb(h, u) � lim inf
n→∞ Fbn (hn, un). (7.2)

The compactness part follows from the same argument used in [6] to prove
Theorem 2.2, hence we omit its proof. Concerning the lower semicontinuity, it
easily follows from the fact that for any positive δ the functional Fb−δ is lower
semicontinuous with respect to the convergence given in (7.1).

As a consequence of the previous compactness result, we have the follow-
ing lemma showing that global minimizers with possibly different periodicities
converge to a global minimizer.

Lemma 7.2. Let bn → b > 0, en → e0, dn → d > 0. Let (hn, un) ∈
X (en; 0, bn) be a sequence of bn-periodic global minimizers with

∫ bn
0 hn dx = dn.

Then there exist a b-periodic global minimizer (h, u) ∈ X (e0; 0, b) and a subse-
quence (hnk , unk ) such that (7.1) holds.

Proof. By Theorem 7.1 there exist (h, u) ∈ X (e0; 0, b) and a subsequence (not
relabeled) such that (7.1) holds. Let (g, v) ∈ X (e0; 0, b), with g Lipschitz and∫ b

0 g dx = d, and define

gn(x) := bdn

dbn
g

(
b

bn
x

)
, vn(x, y) := bnen

be0
v

(
b

bn
x,

dbn

bdn
y

)
.

Then, (gn, vn) ∈ X (en; 0, bn),
∫ bn

0 gn dx = dn , and Fbn (gn, vn) → Fb(v, g). Thus,
by the minimality of (hn, un) and by (7.2), we have

Fb(h, u) � lim inf
n→∞ Fbn (hn, un) � lim

n→∞ Fbn (gn, vn) = Fb(g, v).

We conclude by applying the approximation Lemma 6.1.

The following lemma deals with the uniqueness part of Theorem 2.11.

Lemma 7.3. Let b, d > 0 such that the minimum problem

min
{

F(g, v) : (g, v) ∈ X (e0; 0, b), |Ωg| = d
}

(7.3)

has a non-flat solution. Then, for all d ′ > d the flat configuration is not a global
minimizer for the minimum problem

min
{

F(g, v) : (g, v) ∈ X (e0; 0, b), |Ωg| = d ′}.
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Proof. Let d ′ > d and let (g, v) be a non-flat minimizer for (7.3). We set g̃ :=
g + (d ′ − d)/b and

ṽ(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩

(
e0x,

−λe0

2μ+ λ
y
)

if 0 � y � d ′ − d

b

v
(

x, y − d ′ − d

b

)
+
(

0,
−λe0

2μ+ λ

d ′ − d

b

)
if y � d ′ − d

b
.

Let (d ′/b, ue0) be the flat configuration and denote by ũ the minimizer of the elastic
energy in Ωg̃ under the usual periodicity and boundary condition. Note that

∫

Ωg̃

Q(E(ũ)) dz <
∫

Ωg̃

Q(E(ṽ)) dz. (7.4)

Indeed, if not, then ṽ would be a solution of the Lamé system coinciding in an open
set with

(
e0x, −λe0

2μ+λ y
)
, and therefore, by analyticity, it would coincide with this

function everywhere. Hence, by the minimality of (g, v) we would have

Q0d + H1(Γg)+ 2H1(Σg) = F(g, v) � F(d/b, ue0) = Q0d + b,

where, we recall, Q0 = Q(E0) and E0 = E(ue0) (see Lemma 6.3). The above
inequality would then imply that g = d/b, which is impossible. Thus, from (7.4),
we conclude that

F(g̃, ũ) < F(g̃, ṽ) = F(g, v)+ Q0(d
′ − d) � F(d ′/b, ue0),

thus showing that the flat configuration (d ′/b, ue0) cannot be a global minimizer.

We are now in a position to prove part (i) of Theorem 2.11.

Proof of Theorem 2.11(i). We fix b and we first show that there exists d0 > 0
such that if 0 < d < d0 then (d/b, ue0) is a b-periodic global minimizer. To this
aim, we argue by contradiction by assuming that there exist a sequence dn ↓ 0, a
sequence (kn, wn) ∈ X (e0; 0, b) minimizing F under the constraint |Ωkn | = dn ,
such that F(kn, wn) < F(dn/b, ue0).

Let ε > 0 be such that ∂2 F(ε, ue0) is positive definite. This is possible thanks
to Theorem 5.1. Then, by Theorem 2.10 the flat configuration (ε, ue0 ) is a an isolated
local minimizer for F . We set

εn := ε − dn

b

and we denote by (gn, vn) a sequence of minimizers of the following problems

min
{

F(g, v)+Λ
∣∣|Ωg| − εb

∣∣ : (g, v) ∈ X (e0; 0, b), g � εn

}
,

where Λ > Q0. Arguing as in the second part of the proof of Theorem 2.10, we
deduce that gn → ε in L1(0, b) and limn→∞ H1(Γgn ∪ Σgn ) = b. This, in turn,
implies sup[0,b] |gn − ε| → 0.
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Still arguing as in the second part of the proof of Theorem 2.10, we may
conclude that |Ωgn | � εb and the functions g̃n := gn − (|Ωgn | − εb)/b satisfy
sup[0,b] |g̃n − ε| → 0 and F(g̃n, vn) � F(gn, vn).

Therefore, setting k̃n := kn + εn and

w̃n(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩

(
e0x,

−λe0

2μ+ λ
y
)

if 0 � y � εn

wn(x, y − εn)+
(

0,
−λe0

2μ+ λ
εn

)
if y � εn,

we have

F(g̃n, vn) � F(k̃n, w̃n) = F(kn, wn)+ F(εn, ue0)

< F(dn/b, ue0)+ F(εn, ue0) = F(ε, ue0).

Since sup[0,b] |g̃n − ε| → 0, the inequality above contradicts the local minimal-
ity of ε, thus proving that there exists d0 > 0 such that if 0 < d < d0 the flat
configuration is an absolute minimizer. Then, setting

dglob(b) := sup
{

d > 0 :
(d

b
, ue0

)
is a minimizer of (2.9)

in the interval (0, b)
}
,

from Lemma 7.3 we also obtain that for d ∈ (0, dglob(b)) the flat configuration is
the unique minimizer. Finally, (dglob(b)/b, ue0) is also a global minimizer since it
is the limit of global minimizers (see Lemma 7.2).

Before proving part (ii) of Theorem 2.11, we need to show that the map
b �→ dglob(b) is upper semicontinuous.

Lemma 7.4. The function dglob : (0,+∞) → (0,+∞] is upper semicontinuous.

Proof. Let bn a sequence of positive numbers converging to b > 0. It is enough to
show that if d < lim supn dglob(bn) then dglob(b) � d. Without loss of generality
we may assume that the limsup is in fact a limit. By Theorem 2.11(i) we then have
that ( d

bn
, ue0) is a bn-global minimizer of F for n large. By Lemma 7.2 it follows

that (d/b, ue0) is a b-periodic global minimizer, thus proving dglob(b) � d.

Proof of Theorem 2.11(ii). By Theorem 4.9 and Remark 5.2, if 0 < b � b0 :=
π
16

2μ+λ
e2

0μ(μ+λ) , there exists δ > 0 (possibly depending on b) such that for all d >

0, (g, v) ∈ X (te0; 0, b), and t ∈ ( 1
2 , 2), we have

0 <
∥∥∥g − d

b

∥∥∥
W 2,∞(0,b)

< δ and
∫ b

0
g dx = d

�⇒ Fb(g, v) > Fb

(d

b
, tue0

)
. (7.5)
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Step 1 We claim that there exists δ̄ > 0 such that for all b ∈ [b0/2, b0] and all
(g, v) ∈ X (e0; 0, b) we have

0 < sup
[0,b]

∣∣∣g− d

b

∣∣∣ < δ̄, and
∫ b

0
g dx = d �⇒ Fb(g, v) > Fb

(d

b
, ue0

)
. (7.6)

To prove this claim we argue by contradiction, assuming that there exist δn ↓
0, bn → b ∈ [b0/2, b0], dn → d ∈ [0,∞], (g̃n, ṽn) ∈ X (e0; 0, bn) such that

0< sup
[0,bn ]

∣∣∣g̃n − dn

bn

∣∣∣<δn,

∫ bn

0
g̃n = dn, and Fbn (g̃n, ṽn) � Fbn

(dn

bn
, ue0

)
. (7.7)

We will provide a proof only in the case d = ∞, the other cases being similar and
easier. We start by rescaling all the functions to the fixed interval (0, b), namely,
we set

ĝn(x) := b

bn
g̃n

( xbn

b

)
, v̂n(x, y) :=

√
b

bn
ṽn

( xbn

b
,

ybn

b

)
.

Notice that from (7.7) we get

0 < sup
[0,b]

∣∣∣ĝn − bdn

b2
n

∣∣∣ < bδn

bn
,

∫ b

0
ĝn = b2dn

b2
n
, (7.8)

Fb(ĝn, v̂n) = b

bn
Fbn (g̃n, ṽn) � b

bn
Fbn

(dn

bn
, ue0

)

= Fb

(bdn

b2
n
,

√
bn

b
ue0

)
. (7.9)

Choose Λ > Q0 and denote by (gn, vn) ∈ X (e0; 0, b) a minimizer to the problem

min
{

Fb(g, v)+Λ

∣∣∣|Ωg| − b2dn

b2
n

∣∣∣ :

(g, v) ∈ X
(√bn

b
e0; 0, b

)
, g � bdn

b2
n

− bδn

bn

}
.

We start by assuming that, up to a not-relabeled subsequence,

Fb(gn, vn) < Fb(ĝn, v̂n) � Fb

(bdn

b2
n
,

√
bn

b
ue0

)
.

By Lemma 6.3 we have that |Ωgn | = (b2dn)/b2
n , where

Ωgn := {(x, y) : x ∈ (0, b), 0 < y < gn(x)}.
Thus, by the minimality of vn in Ωgn

∫

Ωgn

Q(E(vn)) dz �
∫

Ωgn

Q
(

E
(√bn

b
ue0

))
dz = bdn

bn
Q0. (7.10)
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By the minimality of
√

bn
b ue0 in (0, b)× (0, bdn

b2
n

− bδn
bn
) we have

∫

Ωgn

Q(E(vn)) dz �
∫ b

0
dx
∫ bdn

b2
n

− bδn
bn

0
Q(E(vn)) dy

� bdn

bn
Q0 − δnbQ0.

Using this inequality and the fact that, by (7.8) and (7.9),

Fb(gn, vn) < Fb(ĝn, v̂n) � Fb

(bdn

b2
n
,

√
bn

b
ue0

)
,

we also obtain

H1(Γgn )+ 2H1(Σgn )− δnbQ0 � b. (7.11)

From (7.11) and the trivial inequality b � H1(Γgn )+ 2H1(Σgn ), we deduce

lim
h→∞

(H1(Γgn )+ 2H1(Σgn )
) = b.

Since ‖gn − bdn
b2

n
+ 1

b ‖L1(0,b) = 1, from the above equality we easily get that

gn − bdn
b2

n
+ 1

b → 1
b in L1(0, b).

We now translate the functions gn, vn by setting

hn(x) := gn(x)− bdn

b2
n

+ 1

b
, wn(x, y) = vn

(
x, y + bdn

b2
n

− 1

b

)
.

Notice that (hn, wn) solves the minimum problem

min
{

Fb(g, v)+Λ
∣∣|Ωg| − 1

∣∣ : (g, v) ∈ Y (e0; 0, b),

v(x, 0) = wn(x, 0) for all x ∈ (0, b), g � 1

b
− bδn

bn

}
.

We are now going to apply Theorem 6.9 to (hn, wn). To this aim, notice that by
what we have proved above, we have that hn → 1

b in L1(0, b) and H1(Γhn ∪Σhn )

converges to b. On the other hand, since by the minimality of
√

bn
b ue0 in (0, b) ×

(0, bdn
b2

n
− 1

b ) we have

(bdn

b2
n

− 1

b

)
bn Q0 �

∫ b

0
dx
∫ bdn

b2
n

− 1
b

0
Q(E(vn)) dy,

recalling also (7.10), we infer
∫

Ωhn

Q(E(wn)) dz � bn

b
Q0.
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Thus we may apply the first part of Theorem 6.9 to deduce that for all α ∈
(0, 1

2 ), hn → 1
b in C1,α([0, b]) and ∇wn is equibounded in C0,α(Ωhn ). Let us

now show that ∇wn → ∇ue0 in L2
loc((0, b)× (0, 1

b ); M
2×2) and that

lim
h→∞

∫

Ωhn

Q(E(wn)) dz = Q0. (7.12)

This will enable us to use also the second part of the statement of Theorem 6.9. To
this aim, notice that we may extend vn in (0, b0)× ( dn

b0
+2δn) in such a way that the

the gradients of these extensions are equibounded in C0,α([0, b0]×[ dn
b0

−2δn,
dn
b0

+
2δn]). We shall still denote by vn the resulting extensions. By the minimality of vn

in Ωgn and of
√

bn
b ue0 in (0, b)× ( bdn

b2
n

− bδn
bn
), we get

∫

Ωgn

CE(vn) : E
(
vn −

√
bn

b
ue0

)
dz = 0,

∫ b

0
dx
∫ bdn

b2
n

− bδn
bn

0
C

[√bn

b
E0

]
: E
(
vn −

√
bn

b
ue0

)
dy = 0

and thus, subtracting the two equations,

∫ b

0
dx
∫ bdn

b2
n

− bδn
bn

0
Q
(

E(vn)−
√

bn

b
E0

)
dy

= −
∫ b

0
dx
∫ gn(x)

bdn
b2

n
− bδn

bn

CE(vn) : E
(
vn −

√
bn

b
ue0

)
dy.

By using the uniform bounds on the C0,α-norm of ∇vn we first deduce that

∫ b

0
dx
∫ 1

b − bδn
bn

0
Q
(

E(wn)−
√

bn

b
E0

)
dy → 0.

Again using the uniform bounds on the C0,α-norm of ∇wn and the fact that hn → 1
b

in L1(0, b), we conclude

lim
n→∞

∫

Ωhn

Q(E(wn)− E0) dz = 0,

which, in turn, implies (7.12) and, by Korn’s inequality, that ∇wn → ∇ue0 in
L2

loc((0, b) × (0, 1
b ); M

2×2). Therefore, from the second part of Theorem 6.9 we

may deduce that hn → 1
b in W 2,∞(0, b), or, equivalently, ‖gn− bdn

b2
n

‖W 2,∞(0,b) → 0.

Recalling that Fb(gn, vn) < Fb(
bdn
b2

n
,

√
bn
b ue0), we have a contradiction to (7.5). If

instead Fb(gn, vn) = Fb(ĝn, v̂n), we may reproduce the same argument as before,
with gn replaced by ĝn , to deduce that ‖ĝn − bdn

b2
n

‖W 2,∞(0,b) → 0. Again, we have

reached a contradiction to (7.5), since ĝn �= bdn
b2

n
.
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Step 2 We now prove that for all b ∈ (0, b0] and all (g, v) ∈ X (e0; 0, b) the
implication (7.6) holds with the same δ̄. To this aim, let us fix b ∈ (0, b0/2), (g, v) ∈
X (e0; 0, b)with sup[0,b] |g−d/b| < δ̄ and let m the smallest integer such that mb ∈
[b0/2, b0]. Let us now extend g by periodicity to the interval (0,mb) and denote this
extension by g̃. Similarly, let us extend v to {(x, y) : x ∈ (0,mb), 0 < y < g̃(x)},
by setting

ṽ(x, y) := ue0(x, y)+
(
v
(

x −
[ x

b

]
b, y
)

− ue0

(
x −

[ x

b

]
b, y
))
,

where
[ x

b

]
denotes the integer part of x

b . Clearly sup[0,mb] |g̃ − d/b| < δ̄ and

Fmb(g̃, ṽ) = m Fb(g, v).

Therefore, since by Step 1 Fmb(g̃, ṽ) > Fmb(d/b, ue0) = m Fb(d/b, ue0), we
conclude that Fb(g, v) > Fb(d/b, ue0), as claimed.

Step 3 Let us now prove that for b < b0 sufficiently small and for all d > 0
the flat configuration (d/b, ue0) is a global minimizer for Fb. To this aim, let us
fix ρ := 1/Q0. Without loss of generality we may assume δ̄ in (7.6) to be smaller
than ρ.

We argue by contradiction, by assuming that there exists a non-flat minimal
configuration (g, v) ∈ X (e0; 0, b) such that

∫ b
0 g = d. By Steps 1 and 2 it then

follows that sup[0,b] |g − d/b| � δ̄. Moreover, since
∫ b

0 g dx = d, there exists
x ∈ [0, b) such that g(x) = d/b. Hence,

osc[0,b) g � δ̄. (7.13)

Let (x0, y0) ∈ Γg be such that y0 = max{y : (x, y) ∈ Γg, x ∈ [0, b)}. By trans-
lation invariance of F , we may assume that x0 = b/2. By Remark 6.8 and the
choice of ρ, we know that there exists a ball Bρ(z) ⊂ �#

g such that z0 ∈ ∂Bρ(z).
Thus Bρ(z) touches z0 at its highest point, that is, z = (b/2, y0 − ρ). Call g̃
the function whose graph represents the upper half of ∂Bρ(z). If b < 2ρ then
g̃ � g � y0 = g̃(b/2) and, in turn, an elementary calculation

osc[0,b) g � osc[0,b) g̃ = ρ −
√
ρ2 − b2

4
< δ̄,

where the last inequality holds provided that b < 2
√

2ρδ̄ − δ̄2. Since this contra-
dicts (7.13), the claim is proved.

Step 4 Set

bcrit := sup{b > 0 : dglob(b) = +∞}.
By Step 3 and Theorem 2.9 we have 0 < bcrit � π

4
2μ+λ

e2
0μ(μ+λ) . To conclude the proof

of the theorem it is enough to show that

dglob(b) = +∞ for all 0 < b � bcrit . (7.14)
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We introduce the following temporary notation. Given b > 0 and γ > 0, we let
Fb,γ be the functional defined on X (e0; 0, b) as

Fb,γ (g, v) :=
∫

Ωg

Q(E(v)) dz + γH1(Γg)+ 2γH1(Σg),

with Ωg, Γg , and Σg defined as in (2.2), (2.3), and (2.4), respectively.
Note now that by Lemma 7.4 and from the definition of bcrit we have

dglob(bcrit) = +∞. (7.15)

Let γ ∈ (0, 1), and for all (g, v) ∈ X (e0; 0, bcrit) let (gγ , vγ ) ∈ X (e0; 0, γ bcrit)

be defined as

gγ (x) := γ g
( x

γ

)
vγ (x, y) := γ v

( x

γ
,

y

γ

)
.

Fix d > 0 and note that ((d/bcrit)γ , (ue0)γ ) = (γ d/bcrit, ue0). As (d/bcrit, ue0) is
a bcrit-periodic global minimizer for Fbcrit,1 thanks to (7.15), a rescaling argument
yields

Fγ bcrit,γ (γ d/bcrit, ue0) � Fγ bcrit,γ (gγ , vγ ) (7.16)

for all (g, v) ∈ X (e0; 0, bcrit) with
∫ bcrit

0 g dx = d. Since

Fγ bcrit,γ (γ d/bcrit, ue0) = Q0γ
2d + γ 2bcrit,

it follows from (7.16) and the trivial inequality

γ bcrit � H1(Γgγ )+ 2H1(Σgγ )

that

Fγ bcrit,1(γ d/bcrit, ue0) � Fγ bcrit,1(gγ , vγ )

for all (g, v) ∈ X (e0; 0, bcrit), with
∫ bcrit

0 g dx = d; that is, (γ d/bcrit, ue0) is a
global minimizer for Fγ bcrit,1 among all pairs (k, w) ∈ X (e0; 0, γ bcrit) such that∫ γ bcrit

0 k dx = γ 2d. From the arbitrariness of d > 0 it follows that dglob(γ bcrit) =
+∞. As this is true for all γ > 0, we have established (7.14) and we have concluded
the proof of the theorem.

Let us now prove that the critical thickness for the global minimality of the
flat configuration dglob(b)/b tends to zero as b → ∞, while the critical thickness
for the local minimality dloc(b)/b is always bounded away from zero.

Proof of Proposition 2.12. From Corollary 5.3, there exists a constant c(λ, μ)
such that K (y) � c(λ, μ)y. Therefore, from (2.16) we get that if b > π

4
2μ+λ

e2
0μ(μ+λ) ,

then

dloc(b)

b2 � 1

2πc(λ, μ)
K
(2πdloc(b)

b2

)
= c0(λ, μ)

be2
0

,

thus proving (2.18).
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Let us now show that the critical thickness dglob(b)/b for the global minimality
tends to zero as b → +∞. Given a constant s > 0, we have to prove that the flat con-
figuration (s, ue0) is not a global minimizer over X (e0; 0, b) if b is large enough. For
α ∈ (0, 1) (to be chosen later) we consider the competitor (gb, ub) ∈ X (e0; 0, b)
defined as

gb(x) :=

⎧⎪⎪⎨
⎪⎪⎩

0 for x = 0,
s

α
if 0 < x < αb,

0 if αb � x < b

and ub(x, y) := (e0wb(x, y), 0)+ ue0(x, y),

wherewb(x, y) := −η s

α cosh
(
α2b

s

) sinh
(
αx
s

)
sin
(απy

s

)
, with η ∈ (0, 1) to be chosen

later. Note that

Fb(gb, ub) =
∫ s

α

0

∫ αb

0

(
μ|E(ub)|2 + λ

2
(divub)

2
)

dx dy + 2s

α
+ b,

while

Fb(s, ue0) =
(
μ|E0|2 + λ

2
(divue0)

2
)

sb + b.

Therefore, to prove that Fb(gb, ub) < Fb(s, ue0) for b large enough it suffices to
show that

Gap(b) :=
∫ s

α

0

∫ αb

0

(
μ
(|E(ub)|2 − |E0|2

)+ λ

2

(
(divub)

2 − (divue0)
2)) dx dy

< −2s

α
. (7.17)

Indeed, using the definition of wb, after some lengthy but straightforward compu-
tations, we get

Gap(b)

e2
0

=
(
μ+ λ

2

)∫ s
α

0

∫ αb

0

(
∂wb

∂x

)2

dx dy + μ

2

∫ s
α

0

∫ αb

0

(
∂wb

∂y

)2

dx dy

+4μ(μ+ λ)

2μ+ λ

∫ s
α

0

∫ αb

0

∂wb

∂x
dx dy

=
(
μ+ λ

2

)
η2

cosh2
(
α2b

s

)
∫ αb

0
cosh2

(αx

s

)
dx
∫ s

α

0
sin2

(απy

s

)
dy

+μ
2

η2π2

cosh2
(
α2b

s

)
∫ αb

0
sinh2

(αx

s

)
dx
∫ s

α

0
cos2

(απy

s

)
dy

−4μ(μ+ λ)

2μ+ λ

η

cosh
(
α2b

s

)
∫ αb

0
cosh

(αx

s

)
dx
∫ s

α

0
sin
(απy

s

)
dy

=
(
μ+ λ

2

)
η2

cosh2
(
α2b

s

)
[

s

2α
sinh

(
α2b

s

)
cosh

(
α2b

s

)
+ αb

2

]
s

2α
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+μ
2

η2π2

cosh2
(
α2b

s

)
[

s

2α
sinh

(
α2b

s

)
cosh

(
α2b

s

)
− αb

2

]
s

2α

−8μ(μ+ λ)

2μ+ λ

η

cosh
(
α2b

s

) s2

α2π
sinh

(
α2b

s

)
.

Letting b → +∞ we obtain

lim
b→+∞ Gap(b) = ηe2

0s2

α2

[(
μ+ λ

2

)
η

4
+ μπ2η

8
− 8μ(μ+ λ)

2μ+ λ

1

π

]
. (7.18)

We choose η ∈ (0, 1) so small that

cη := −
[(
μ+ λ

2

)
η

4
+ μπ2η

8
− 8μ(μ+ λ)

2μ+ λ

1

π

]
> 0.

It is now clear that if we also choose α <
ηe2

0cηs
2 , by (7.18) we obtain (7.17).

The next lemma is needed in the proof of Theorem 2.14. This is the only point
of the paper where we assume the condition λ � − 17

18μ.

Lemma 7.5. Assume λ � − 17
18μ and set b0 := 2μ+λ

e2
0μ(μ+λ) . Then

dloc(b0) <
π

8
b2

0.

Proof. By Theorem 2.9

K
(2πdloc(b0)

b2
0

)
= π

4
.

Since the function K is strictly increasing by Corollary 5.3, it is enough to show
that

K
(2π

b2
0

π

8
b2

0

)
= K

(π2

4

)
>
π

4
.

By the definition of K (see (2.14)), this inequality is true if J (π2/4) > π/4. In
turn, since under our assumptions νp ∈ [−8.5, 1/2), this amounts to proving that

ψ(νp) := π(1 − νp)
2

+
[π

4
sinh2

(π2

4

)
− sinh

(π2

4

)
cosh

(π2

4

)]
(3 − 4νp)+ π5

64
− π2

4
< 0

for all νp ∈ [−8.5, 1/2). Since ψ is convex, the conclusion follows from the fact
that both ψ(−8.5) and ψ(1/2) are negative, as can be checked by elementary
calculations.
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Proof of Theorem 2.14. We start by proving part (i). Recall that by Remark 6.8, if
(h, u) is a b-global minimizer for some b > 0, then Ω#

h ∪ (R × (−∞, 0]) satisfies
an interior ball condition with radius ρ = 1

Q0
, that is, for every z ∈ Γ̃ #

h there exists

a ball Bρ(z0) ⊂ Ω#
h ∪ (R × (−∞, 0]) such that z ∈ ∂Bρ(z0). Notice that the

assumption on b is equivalent to Q0 = 2e2
0
μ(μ+λ)
2μ+λ < 2

b . Assume now that either
z ∈ Σh or z ∈ Γh with a vertical tangent. In both cases the tangent inner ball can
be chosen with z0 = z ± (ρ, 0). Without loss of generality, z0 = z + (ρ, 0). Since
ρ > b

2 , the point z + (b, 0) belongs to the interior of Bρ(z0), a contradiction to the
fact that by periodicity z + (b, 0) ∈ Γ #

h . This contradiction shows that Γ̃h does not
contain vertical segments. Due to Theorem 2.7(ii), part (i) of the statement follows.

To prove part (ii) we argue by contradiction. Assume that there exist bn →
2μ+λ

e2
0μ(μ+λ) with bn � 2μ+λ

e2
0μ(μ+λ) , dn ∈ [dglob(bn), dglob(bn)+ 1

n ), bn-periodic global

minimizers (hn, un) with |Ωhn | = dn , and balls Bρ(zn) ⊂ Ω#
hn

∪ (R × (−∞, 0])
with ρ = 1

Q0
= 2μ+λ

2e2
0μ(μ+λ) , such that at least one of the points zn + (ρ, 0) and

zn − (ρ, 0) belongs to Γ̃ #
hn

. By Lemma 7.2 we may assume that there exists a

b0-global minimizer (h, u) ∈ X (e0; 0, b0), with b0 = 2μ+λ
e2

0μ(μ+λ) , such that (7.1)

holds. Moreover, there exists a ball Bρ(z0) ⊂ Ω#
h ∪ (R × (−∞, 0]) such that

both points z0 + (ρ, 0) and z0 − (ρ, 0) belong to Γ̃ #
h (here we are using the fact

that 2ρ = b0 and the b0-periodicity). Without loss of generality, by translation
invariance we may assume that z0 = ( b0

2 , y0). Hence, in particular, the upper half
ball B+

ρ (z0) ⊂ Ωh . On the other hand, by Lemmas 7.4 and 7.5 we have that
limn dn = |Ωh | � dglob(b0) � dloc(b0) <

π
8 b2

0 = |B+
ρ (z0)|, a contradiction.

Next we show the existence of nontrivial analytic configurations.

Proof of Theorem 2.16. We start by proving that

lim
b→b+

crit

dglob(b) = +∞. (7.19)

Recall that since bcrit � π
4

2μ+λ
e2

0μ(μ+λ) , by Remark 5.2 and using the fact that 0<K <1

(see Corollary 5.3), for M > 0 there exists cM > 0 such that for all d ∈ [0,M]
and ϕ ∈ H̃1

# (0, bcrit)

∂2 F
( d

bcrit
, ue0

)
[ϕ] � cM‖ϕ‖2

H1(0,bcrit)
. (7.20)

Assume by contradiction that there exist a sequence bn → b+
crit such that

dglob(bn) < M/2 for all n and for some M > 0. Then, Remark 5.2, together
with (7.20), implies

∂2 F
( d

bn
, ue0

)
[ϕ] � cM

2
‖ϕ‖2

H1(0,bn)

for all d ∈ [0,M] and ϕ ∈ H̃1
# (0, bn), provided that n is large enough. Arguing

as in the proof of Theorem 2.11(ii), we may conclude that there exists δ > 0 such
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that if d ∈ [0,M] and (h, u) ∈ X (e0; 0, bn) with 0 < sup[0,bn ] |h − d/bn| < δ,
then F(d/bn, ue0) < F(h, u), provided n is sufficiently large. Fix M/2 < d <

M and let (hn, un) ∈ X (e0; 0, bn) be a non-flat minimal configuration such that∫ bn
0 hn dx = d. In particular, sup[0,bn ] |hn − d/bn| � δ for n large enough. By

Lemma 7.2, we deduce the existence of a bcrit-periodic global minimizer (h, u)
such that (up to a subsequence) (7.1) holds and sup[0,bcrit] |h − d/bcrit| � δ. This
contradicts the fact that dglob(bcrit) = +∞ and concludes the proof of (7.19).

To prove the theorem choose b1 ∈ (bcrit, b0), where b0 := 2μ+λ
e2

0μ(μ+λ) , such that

dglob(b)b0√
(dglob(b))2 + b4

0

> b for all b ∈ (bcrit, b1). (7.21)

Note that this is possible thanks to (7.19). Now fix any such b and let (h, u) be a
non-flat b-periodic global minimizer, with |Ωh | =: d > dglob(b). If h > 0 then h
is analytic by Theorems 2.14(i) and 2.7. If h(x) = 0 for some x ∈ [0, b), since
max[0,b] h � d/b and h is of class C1 by Theorem 2.14, there exists x̄ ∈ [0, b) such
that h′(x̄) = d/b2. By Remark 6.8, there exists a ball Bρ(z0) ∈ Ω#

h ∪(R×(−∞, 0])
such that (x̄, h(x̄)) ∈ ∂Bρ(z0)withρ = b0/2. SinceΓh and ∂Bρ(z0) share the same
tangent at (x̄, h(x̄)), an elementary calculation shows that the horizontal chord of
Bρ(z0) starting from (x̄, h(x̄)) has length equal to db0√

d2+b4 . As

db0√
d2 + b4

>
dglob(b)b0√

(dglob(b))2 + b4
0

> b

by (7.21), we obtain a contradiction to the fact that the chord must lie inside Ω#
h .

Finally, we prove the nonuniqueness result stated in Theorem 2.13.

Proof of Theorem 2.13. The argument is similar to the one used in the sec-
ond part of the previous proof. Since under our assumption the second variation
∂2 F(d/b, ue0) is uniformly positive definite as d varies in a sufficiently small
neighborhood of dglob(b), choosing dn := dglob(b) + 1

n any non-flat b-periodic
global minimizer (hn, un), with |Ωhn | = dn , satisfies sup[0,b] |hn − dn/b| � δ for
some δ > 0 and for n large enough. Therefore, up to a subsequence, by Lemma 7.2
the sequence (hn, un) converges to a non-flat b-periodic global minimizer (h, u)
with |Ωh | = dglob(b).
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8. Appendix

8.1. Fractional Sobolev Spaces and Trace Theorems

Throughout this section h denotes a strictly positive b-periodic function
belonging to C1(R). To simplify the notation introduced in Section 2.1, we write
Γ and Γ # in place of Γh and Γ #

h , respectively. For p � 1 we let L p(Γ ) denote the
space of all functions u : Γ → R such that

∫
Γ

|u|p dH1 < ∞.

Definition 8.1. Let 0 < s < 1 and 1 < p < ∞. We denote by W s,p(Γ ) the
fractional Sobolev space consisting of all functions u ∈ L p(Γ ) such that

[u]s,p,Γ :=
(∫

Γ

∫

Γ

|u(z)− u(w)|p

|z − w|1+sp
dH1(w) dH1(z)

) 1
p
< ∞, (8.1)

and we set ‖u‖W s,p(Γ ) := ‖u‖L p(Γ ) + [u]s,p,Γ . We shall refer to [u]s,p,Γ as the
Gagliardo seminorm of u.

By W s,p
# (Γ ), we denote the subspace (endowed with the same norm) of all

functions in W s,p(Γ ) whose b-periodic extension to Γ # belongs to W s,p
loc (Γ

#).

The spaces W −s, p
p−1 (Γ ) and W

−s, p
p−1

# (Γ ) are defined as the dual spaces of
W s,p(Γ ) and W s,p

# (Γ ), respectively.

Remark 8.2. Notice that from the very definition of fractional spaces it follows
that if −1 � t � s < 1 and p > 1, then W s,p(Γ ) is continuously imbedded in
W t,p(Γ ).

When p = 2 we often write Hs(Γ ) and Hs
# (Γ ) instead of W s,2(Γ ) and W s,2

# (Γ ).
A similar notation will be used for their dual spaces. We recall the following clas-
sical imbedding theorem. Notice that we use the convention W 0,p(Γ ) := L p(Γ ).

Theorem 8.3. Let −1 � t � s � 1, q � p such that s − 1/p � t − 1/q. Then
W s,p(Γ ) is continuously imbedded in W t,q(Γ ). Moreover, the imbedding constant
depends only on s, t, p, q, b and on the C1-norm of h.

This theorem can be easily deduced from [20, Theorem 1.4.4.1], with a simple
change of variable, using Remark 8.2. From [20, Theorem 1.5.1.2] we also have
the following trace theorem.

Theorem 8.4. Let c0 be a positive constant such that min[0,b] h � c0. If p > 1, then

there exists a continuous linear operator T : W 1,p(Ωh) �→ W 1− 1
p ,p(Γ ) such that

T u = u|Γ whenever u is continuous on Ωh. Moreover, the norm of T is bounded
by a constant depending only on c0, ‖h‖C1([0,b]), b and p.

As an immediate consequence of the previous theorem we have that if

u ∈ W 1,p(Ωh) is b-periodic in the x-variable, then T u ∈ W
1− 1

p ,p

# (Γ ). Conversely,

any function in W
1− 1

p ,p

# (Γ ) is the trace of a b-periodic function in W 1,p(Ωh). More
precisely, we have the following result.



322 N. Fusco & M. Morini

Theorem 8.5. Let c0 be as in Theorem 8.4 and p > 1. Then, for allϕ ∈ W
1− 1

p ,p

# (Γ )

there exists u ∈ W 1,p(Ωh), b-periodic in the x-variable, such that T u = ϕ and

‖u‖W 1,p(Ωh)
� C‖ϕ‖

W
1− 1

p ,p(Γ )

for some constant C depending only on c0, ‖h‖C1([0,b]), b, and p.

This result is more or less standard except for the fact that here we have to guarantee
the periodicity of the lifting u. This follows from the fact that u can be explicitly
defined as

u(x, y) = 1

h(x)− y

∫

R

ρ
( t − x

h(x)− y

)
ϕ(t, h(t)) dt,

whereρ is a standard mollifier. The estimate of ‖u‖W 1,p(Ωh)
can be obtained arguing

as in [20, Lemma 1.4.1.4].
The next result is a simple consequence of Theorem 8.5.

Theorem 8.6. Let c0 and p be as above. Then, for all u ∈ W 1,p(Ωh), b-periodic
in the x-variable,

‖∂τu‖
W

− 1
p ,p

# (Γ )

� C‖∇u‖L p(Ωh;R2)

for some constant C depending only on c0, ‖h‖C1([0,b]), b, and p.

Proof. By a density argument we may assume u ∈ C2(Ωh). Fix ϕ ∈ W
1
p ,

p
p−1

# (Γ ).

By Theorem 8.5 we may find a lifting in W 1, p
p−1 (Ωh) (still denoted by ϕ),

b-periodic in the x-variable, such that ‖ϕ‖
W

1, p
p−1 (Ωh)

� C‖ϕ‖
W

1
p ,

p
p−1 (Γ )

.

Moreover, by replacing C with a possibly larger constant, we may also assume
that ϕ(x, 0) = 0. Hence,

∫

Γ

∂τuϕ dH1 =
∫

Γ

ϕ
(
−∂u

∂y
,
∂u

∂x

)
· ν dH1

=
∫

Ωh

div
(
−ϕ ∂u

∂y
, ϕ
∂u

∂x

)
dz =

∫

Ωh

∇u ·
(∂ϕ
∂y
,−∂ϕ

∂x

)
dz

� ‖∇u‖L p(Ωh;R2)‖∇ϕ‖
L

p
p−1 (Ωh;R2)

� C‖∇u‖L p(Ωh;R2)‖ϕ‖
W

1
p ,

p
p−1 (Γ )

,

where in the second equality we have used the b-periodicity of ϕ, u and h. This
concludes the proof.

Combining the previous result with the lifting Theorem 8.5, we deduce the follow-
ing corollary.

Corollary 8.7. Let p > 1. Then, for all u ∈ W
1− 1

p ,p

# (Γ ) we have

‖∂τu‖
W

− 1
p ,p

# (Γ )

� C‖u‖
W

1− 1
p ,p(Γ )

,

for some constant C depending only on ‖h‖C1([0,b]), b, and p.
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We conclude this subsection by stating a lemma that is used several times in
Section 4.

Lemma 8.8. Let −1 < s < 1, p > 1, and let u be a smooth function. The following
two statements hold.

(i) If a ∈ C1(Γ ), then

‖ua‖W s,p(Γ ) � C‖a‖C1(Γ )‖u‖W s,p(Γ ),

for some constant C depending only on s and p.
(ii) If � : Γ → �(Γ ) is a C1-diffeomorphism, then

‖u ◦�−1‖W s,p(�(Γ )) � C‖u‖W s,p(Γ ),

for some constant C depending only on the C1-norms of � and �−1, on s,
and on p.

If s is positive, the two statements follow from the definition (8.1) of the Gagliardo
seminorm. If s is negative, they follow from the previous case by duality. We leave
the easy details to the reader.

8.2. A Regularity Result for the Lamé System

We prove here a regularity result for the Lamé system with homogeneous
Neumann boundary conditions, which is used in the proof of Theorem 6.9.

Proposition 8.9. Let (h, u) ∈ Y (e0; 0, b) satisfy the first three equations in (2.11).
Assume that there exist z0 = (x0, h(x0)) ∈ Γh and r0 ∈ (0, h(x0)/2) such that
h ∈ C1,α([x0 − 2r0, x0 + 2r0]) for some 0 < α < 1. Then, there exists a constant
C depending only on λ,μ, the C1,α-norm of h in [x0 − 2r0, x0 + 2r0], on r0, and
on the L2-norm of E(u) in �h ∩ B2r0(z0), such that

‖∇u‖C0,α(�h∩Br0 (z0))
� C.

Proof. Let � be a C1,α diffeomorphism from �h ∩ B2r0(z0) onto U , where U is
an open set contained in R × (0,∞), such that �(Γh ∩ B2r0(z0)) = S is an open
segment contained in {y = 0} and the C1,α-norms of � and �−1 are controlled
from above by the C1,α-norm of h and r0. Setting ũ := u ◦ �−1, then it is easily
checked that ũ solves a linear system of the type

∫

U
A(z)∇ũ : ∇w dz = 0, (8.2)

for all w ∈ H1(U ; R
2) vanishing in a neighborhood of ∂U ∩ {y > 0}, where the

fourth order tensor A is of class C0,α in U , with the C0,α-norm controlled by the
C1,α-norm of h.

Let us now fix z ∈ S and R > 0 such that the half ball B+
2R(z) ⊂ U .
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For any point z0 ∈ B
+
R (z) and any 0 < r < R, denote by v the unique solution

to the constant coefficients system
∫

B+
r (z0)

A(z0)∇v : ∇w dz = 0 (8.3)

for all w ∈ H1(B+
r (z0); R

2), with w = 0 on ∂B+
r (z0) \ S, such that v = ũ on

∂B+
r (z0) \ S. Subtracting the two equations (8.2), (8.3), choosing w = ũ − v and

using the fact that A is C0,α , one easily gets that
∫

B+
r (z0)

|∇ũ − ∇v|2 dz � cr2α
∫

B+
r (z0)

|∇ũ|2 dz, (8.4)

for some positive constant c. Moreover, since v solves a linear system with constant
coefficients, standard elliptic estimates yield that for all 0 < ρ < r ,

∫

B+
ρ (z0)

|∇v|2 dz � c
(ρ

r

)2
∫

B+
r (z0)

|∇v|2 dz,
∫

B+
ρ (z0)

|∇v − (∇v)ρ,z0 |2 dz � c
(ρ

r

)4
∫

B+
r (z0)

|∇v − (∇v)r,z0 |2 dz.
(8.5)

Thus, from the first equation in (8.5), recalling (8.4), we get that for all 0 < ρ < r
∫

B+
ρ (z0)

|∇ũ|2dz � 2
∫

B+
ρ (z0)

|∇v|2dz + 2
∫

B+
ρ (z0)

|∇ũ − ∇v|2dz

� c
(ρ

r

)2
∫

B+
r (z0)

|∇v|2dz + cr2α
∫

B+
r (z0)

|∇ũ|2dz

� c′(ρ
r

)2
∫

B+
r (z0)

|∇ũ|2dz + c′r2α
∫

B+
2R(z)

|∇ũ|2dz, (8.6)

for some constant c′ depending ultimately only on R,λ,μ, and the C1,α-norm of h.
From this estimate, a standard iteration argument (see for instance [4, Lemma 7.54])
yields that for any δ > 0 there exists a constant c depending only on c′, α, δ, such
that for all 0 < r < R one has∫

B+
r (z0)

|∇ũ|2 dz � cr2−δ
∫

B+
2R(z)

|∇ũ|2dz. (8.7)

Using this estimate and the second inequality in (8.5), and arguing as in the proof
of (8.6), we then get that for all z0 ∈ B

+
R (z) and all 0 < ρ < r < R

∫

B+
ρ (z0)

|∇ũ − (∇ũ)ρ,z0 |2dz

� c
∫

B+
ρ (z0)

|∇v − (∇v)ρ,z0 |2dz + c
∫

B+
ρ (z0)

|∇ũ − ∇v|2dz

� c
(ρ

r

)4
∫

B+
r (z0)

|∇v − (∇v)r,z0 |2dz + cr2α
∫

B+
r (z0)

|∇ũ|2dz

� c
(ρ

r

)4
∫

B+
r (z0)

|∇ũ − (∇ũ)r,z0 |2dz + cr2+2α−δ
∫

B+
2R(z)

|∇ũ|2dz. (8.8)
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From this estimate, the iteration lemma used above yields that
∫

B+
r (z0)

|∇ũ − (∇ũ)r,z0 |2dz � cr2+2α−δ
∫

B+
2R(z)

|∇ũ|2dz

for all 0 < r < R. From this inequality, another standard iteration argument (see
[4, Theorem 7.51]) implies that ũ ∈ C1,α−δ/2(B+

R (z)) and that

‖∇ũ‖
C0,α−δ/2(B+

R (z))
� c

(∫

B+
2R(z)

|∇ũ|2dz

) 1
2

.

Finally, from this inequality it is clear that (8.7) holds in a stronger form, namely
that for all z0 ∈ B

+
R (z) and and all 0 < r < R
∫

B+
r (z0)

|∇ũ|2 dz � cr2
∫

B+
2R(z)

|∇ũ|2dz,

which, in turn, implies (see (8.8)) that for all 0 < ρ < r < R
∫

B+
ρ (z0)

|∇ũ − (∇ũ)ρ,z0 |2dz

� c
(ρ

r

)4
∫

B+
r (z0)

|∇ũ − (∇ũ)r,z0 |2dz + cr2+2α
∫

B+
2R(z)

|∇ũ|2dz.

This last inequality implies the C0,α regularity of ∇ũ, since [4, Theorem 7.51] gives
that

‖∇ũ‖
C1,α(B

+
R (z))

� c

(∫

B+
2R(z)

|∇ũ|2dz

) 1
2

.

Hence, the proof of the proposition is concluded.
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