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Abstract

We consider Fisher-KPP-type reaction–diffusion equations with spatially
inhomogeneous reaction rates. We show that a sufficiently strong localized inho-
mogeneity may prevent existence of transition-front-type global-in-time solutions
while creating a global-in-time bump-like solution. This is the first example of
a medium in which no reaction–diffusion transition front exists. A weaker local-
ized inhomogeneity leads to the existence of transition fronts, but only in a finite
range of speeds. These results are in contrast with both Fisher-KPP reactions in
homogeneous media as well as ignition-type reactions in inhomogeneous media.

1. Introduction and Main Results

1.1. Fisher-KPP Traveling Fronts in Homogeneous Media

Traveling front solutions of the reaction–diffusion equation

ut = uxx + f (u) (1.1)

are used to model phenomena in a range of applications from biology to social sci-
ences, and have been studied extensively since the pioneering papers of Fisher [7]
and Kolmogorov–Petrovskii–Piskunov [12]. The Lipschitz nonlinearity f is
said to be of KPP-type if

f (0) = f (1) = 0 and 0 < f (u) � f ′(0)u for u ∈ (0, 1), (1.2)

and one considers solutions 0 < u(t, x) < 1. A traveling front is a solution of (1.1)
of the form u(t, x) = φc(x − ct), with the function φc(ξ) satisfying

φ′′
c + cφ′

c + f (φc) = 0, φc(−∞) = 1, φc(+∞) = 0. (1.3)
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Here c is the speed of the front and traveling fronts exist precisely when c � c∗ ≡
2
√

f ′(0). For the sake of convenience we will assume that f ′(0) = 1, which can
be achieved by a simple rescaling of space or time.

The traveling front profile φc(ξ) satisfies φc(ξ) ∼ e−r(c)ξ as ξ → +∞, with
an algebraic correction if c = c∗. The decay rate r(c) can be obtained from the
linearized problem vt = vxx + v, and is given by

r(c) = c − √
c2 − 4

2
. (1.4)

This is the root of both r2 − cr + 1 = 0 and r2 + r
√

c2 − 4 − 1 = 0, and for c 
 1
we have r(c) = c−1 + O(c−3), whence limc→+∞ cr(c) = 1.

1.2. Fisher-KPP Transition Fronts in Inhomogeneous Media and Bump-Like
Solutions

In this paper we consider the inhomogeneous reaction–diffusion equation

ut = uxx + f (x, u) (1.5)

with x ∈ R and a KPP reaction f . That is, we assume that f is Lipschitz, fu(x, 0)
exists,

f (x, 0) = f (x, 1) = 0, and g(u) < f (x, u) � fu(x, 0)u for (x, u) ∈ R × (0, 1),
(1.6)

with g some function such that g(0) = g(1) = 0 and g(u) > 0 for u ∈ (0, 1).
We now define a(x) ≡ fu(x, 0) > 0 and assume that for some C, δ > 0 we have

f (x, u) � a(x)u − Cu1+δ for (x, u) ∈ R × (0, 1). (1.7)

Finally, we will assume here

0 < a− � a(x) � a+ < +∞ for x ∈ R (1.8)

and

lim|x |→∞ a(x) = 1. (1.9)

That is, we will consider media which are at small u localized perturbations of the
homogeneous case.

In this case traveling fronts with a constant-in-time profile cannot exist in gen-
eral, and one instead considers transition fronts, a generalization of traveling fronts
introduced in [3,13,18]. In the present context, a global-in-time solution of (1.5) is
said to be a transition front if

lim
x→−∞ u(t, x) = 1 and lim

x→+∞ u(t, x) = 0 (1.10)

for any t ∈R, and for any ε>0 there exists Lε <+∞ such that for any t ∈R we have

diam{x ∈ R | ε � u(t, x) � 1 − ε} < Lε. (1.11)
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That is, a transition front is a global-in-time solution connecting u = 0 and u = 1
at any time t , which also has a uniformly bounded in time width of the transition
region between ε and 1 − ε.

Existence of transition fronts has been previously established for a class of time-
dependent spatially homogeneous bistable nonlinearities in [18] (and after com-
pletion of the current manuscript also for some classes of time-dependent spatially
homogeneous positive and KPP-type nonlinearities in [4,15]), and for spatially
inhomogeneous ignition nonlinearities in [14,16,20]. See also [5] for examples
of bistable transition fronts in homogeneous media with localized obstacles. The
results in these papers, while non-trivial, are similar in spirit to the situation for
such nonlinearities in homogenous media: transition fronts exist, and for bistable
and ignition nonlinearities are unique (up to a time shift) and asymptotically stable
for the Cauchy problem. In the present paper we will demonstrate that the situation
can be very different for spatially inhomogeneous KPP-type nonlinearities, even in
the case of localized spatial inhomogeneities.

Before we do so, let us define another type of solution to (1.5). We say that a
global-in-time solution 0 < u(t, x) < 1 of (1.5) is bump-like if u(t, ·) ∈ L1(R)

for all t ∈ R. We will show that bump-like solutions can exist for inhomogeneous
KPP-type nonlinearities. What makes such solutions special is that they do not exist
in many previously studied settings, as can be seen from the following proposition.

Proposition 1.1. Assume that either f (x, u) � 0 is an ignition reaction (that is,
f (x, u) = 0 if u ∈ [0, θ(x)] ∪ {1} and f (x, u) > 0 if u ∈ (θ(x), 1), with θ ≡
infx∈R θ(x) > 0; see [14,16,20]) or f (x, u) = f (u) is a spatially homogeneous
KPP reaction satisfying (1.2) and

f (u) ≡ u for u ∈ [0, θ ] (1.12)

for some θ ∈ (0, 1). Then (1.5) does not admit global-in-time bump-like solutions.

Remarks. 1. Hypothesis (1.12) is likely just technical, but we make it for the
sake of simplicity.

2. For homogeneous KPP f which is also concave in u, this result follows from
[9, Theorem 1.5].

1.3. Non-Existence of Transition Fronts for Strong KPP Inhomogeneities

Our first main result shows that a localized KPP inhomogeneity can create
global-in-time bump-like solutions of (1.5) and can prevent existence of any tran-
sition front solutions. This is the first example of a medium in which no reaction–
diffusion transition fronts exist. Moreover, in the case a(x) � 1 and a(x) − 1
compactly supported, Theorems 1.2 and 1.3 together provide a sharp criterion for
the existence of transition fronts. Namely, transition fronts exist when λ < 2 and do
not exist when λ > 2, with λ ≡ sup σ(∂xx + a(x)) the supremum of the spectrum
of the operator L ≡ ∂xx +a(x) on R. One can consider these to be the main results
of this paper.
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Note that (1.9) implies that the essential spectrum of L is (−∞, 1] and so λ � 1.
Hence if λ > 1 then λ is the principal eigenvalue of L and

ψ ′′ + a(x)ψ = λψ (1.13)

holds for the positive eigenfunction 0 < ψ ∈ L2(R), also satisfying ‖ψ‖∞ = 1.
We note that ψ(x) decays exponentially as x → ±∞ due to (1.9).

Theorem 1.2. Assume that f (x, u) is a KPP reaction satisfying (1.6)–(1.9) with
a− = 1. Ifλ > 2, then any global-in-time solution of (1.5) such that 0 < u(t, x) < 1
satisfies (with Cc > 0)

u(t, x) � Cce−|x |+ct (1.14)

for any c < λ/
√
λ− 1 and all (t, x) ∈ R

− × R. In particular, no transition front
exists.

Moreover, bump-like solutions do exist, and if there is θ > 0 such that

f (x, u) ≡ a(x)u for all (x, u) ∈ R × [0, θ ], (1.15)

then there is a unique (up to a time-shift) global-in-time solution 0 < u(t, x) < 1.
This solution satisfies u(t, x) = eλtψ(x) for t  −1.

1.4. Existence and Non-Existence of Transition Fronts for Weak KPP
Inhomogeneities

We next show that transition fronts do exist when λ < 2, albeit in a bounded
range of speeds. If u is a transition front, let X (t) be the rightmost point x such that
u(t, x) = 1/2. If

lim
t−s→+∞

X (t)− X (s)

t − s
= c,

then we say that u has global mean speed (or simply speed) c. Recall that in the
homogeneous KPP case with f ′(0) = 1, traveling fronts exist for all speeds c � 2.

Theorem 1.3. Assume that f (x, u) is a KPP reaction satisfying (1.6)–(1.9) and
a(x) − 1 is compactly supported. If λ ∈ (1, 2), then for each c ∈ (2, λ/

√
λ− 1)

equation (1.5) admits a transition front solution with global mean speed c. More-
over, bump-like solutions also exist.

Remarks. 1. In fact, the constructed fronts will satisfy supt∈R |X (t)− ct | < ∞.
2. Existence of transition fronts with the critical speeds c∗ = 2 and c∗ ≡ λ/

√
λ− 1

is a delicate issue and will also be left for a later work.
3. Existence of fronts for λ ∈ (1, 2) has been extended to general (not necessarily

satisfying (1.9)) KPP-type inhomogeneous nonlinearities in [21] after the com-
pletion of the current paper. Moreover, global-in-time mixtures of these fronts,
analogous to those existing in homogeneous media [8,9] are also constructed
in [21].
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Finally, we show that the upper limitλ/
√
λ− 1 on the front speed in Theorem 1.3

is not due to our techniques being inadequate. Indeed, we will prove non-existence
of fronts with speeds c > λ/

√
λ− 1, at least under additional, admittedly some-

what strong, conditions on f .

Theorem 1.4. Assume that f (x, u) = a(x) f (u)where a is even, satisfies (1.8) with
a− = 1, and a(x)− 1 is compactly supported, and f is such that (1.2) and (1.12)
hold for some θ ∈ (0, 1). In addition, assume that (1.13) has a unique eigenvalue
λ > 1. Then there are no transition fronts with global mean speeds c > λ/

√
λ− 1.

Let us indicate here the origin of the threshold λ/
√
λ− 1 for speeds of transi-

tion fronts. In the homogeneous case f (x, u) = f (u) with f (u) = u for u � θ ,
the traveling front with speed c � 2 satisfies u(t, x) = e−r(c)(x−ct) (up to a time
shift) for x 
 ct . This means that u increases at such x at the exponential rate cr(c)
in t . We have lim|x |→∞ fu(x, 0) = 1, so it is natural to expect similar behavior in
a transition front u (with speed c) at large x . On the other hand, any non-negative
non-trivial solution of (1.5) majorizes a multiple of eλM tψM (x) for t  −1, with
λM and ψM the principal eigenvalue and eigenfunction of ∂xx + a(x) on [−M,M]
with Dirichlet boundary conditions (extended by 0 outside [−M,M]). So u has to
increase at least at the rate λM , and since limM→∞ λM = λ, it follows that one
needs cr(c) � λ in order to expect existence of a transition front with speed c.
Using (1.4), this translates into c � λ/

√
λ− 1.

Finally, after this paper was submitted, we learned about the paper [19] which
claims the existence of transition fronts for a very general class of nonlinearities.
According to our Theorem 1.2, that result cannot hold for all the nonlinearities
considered in [19]. We refer to [21] for a more detailed discussion of [19].

In the rest of the paper we prove Proposition 1.1 and Theorems 1.2, 1.3, 1.4 (in
Sections 2,3, 4, and 5–7, respectively).

2. Non-Existence of Bump-Like Solutions for Ignition Reactions
and Homogeneous KPP Reactions: The Proof of Proposition 1.1

Assume, towards contradiction, that there exists a bump-like solution. We note
that parabolic regularity and f Lipschitz then yield for each t ∈ R,

u, ux → 0 as |x | → ∞.

This will guarantee that differentiations in t of integrals over R and integration by
parts below are valid. Let us define

I (t) ≡
∫

R

u(t, x) dx and J (t) ≡ 1

2

∫

R

u(t, x)2 dx .

Integration of (1.5) and of (1.5) multiplied by u over x ∈ R yields

I ′(t) =
∫

R

f (x, u) dx � 0 and

J ′(t) =
∫

R

f (x, u)u dx −
∫

R

|ux |2 dx � I ′(t)−
∫

R

|ux |2 dx .
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So limt→−∞ I (t) = C � 0 and then limt→−∞
∫
R

|ux |2 dx = 0. Parabolic regu-
larity again gives

u, ux → 0 as t → −∞, uniformly in x .

Thus u(x, t) � θ for all t < t0 and all x ∈ R. Then u in the ignition case
(v(t, x) ≡ e−t u(t, x) in the KPP case) solves the heat equation for t � t0. Since
u � 0 (v � 0) and it is L1 in x , it follows that u = 0 (v = 0), a contradiction.

3. The Case λ > 2: The Proof of Theorem 1.2

We obviously only need to consider c ∈ (2, λ/√λ− 1), so let us assume this.
We will first assume, for the sake of simplicity, that a(x)−1 is compactly supported
and (1.15) holds. At the end of this section we will show how to accommodate the
proof to the general case.

Let us shift the origin by a large enough M so that in the shifted coordinate
frame a(x) ≡ 1 for x /∈ [0, 2M], and the principal eigenvalue λM of ∂xx + a(x)
on (0, 2M) with Dirichlet boundary conditions satisfies λM > 2. This is possible
since

lim
M→+∞ λM = λ.

We let ψM be the corresponding L∞-normalized principal eigenfunction, that is,
‖ψM‖∞ = 1 and

ψ ′′
M + a(x)ψM = λMψM , ψM > 0 on (0, 2M), ψM (0) = ψM (2M) = 0.

(3.1)

It is easy to show that any entire solution u(t, x) of (1.5) such that 0<u(t, x)<1
satisfies limt→−∞ u(t, x) = 0 and limt→+∞ u(t, x) = 1 for any x ∈ R, so after a
possible translation of u forward in time by some t0, we can assume

sup
t�0

u(t,M) < θψM (M) � θ. (3.2)

In that case, (1.14) for this translated u yields u(t, x) � Ce−|x−M|+c(t+t0) when
t < −t0 for the original u, but then the result follows for a larger C from the fact
that Ce−|x−M|+(1+‖a‖∞)(t+t0) is a supersolution of (1.5) on (−t0, 0)× R.

3.1. Non-Existence of Transition Fronts

Assume that u is a global-in-time solution of (1.5). Non-existence of transition
fronts obviously follows from (1.14). The following lemma is the main step in the
proof of (1.14).
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Lemma 3.1. For any c, c′ ∈ (2, λM/
√
λM − 1) with c < c′, there exist C0 > 0

(depending only on a, θ, c, c′) and τ0 > 0 (depending also on u(0,M)) such that

u(t, x) � C0u(0,M)ex+ct (3.3)

holds for all t � −1 and x ∈ [0, c′(−t − 1)], as well as for all t � −τ0 and x � 0.

Remark. This is a one-sided estimate, but by symmetry of the arguments in its
proof, the same estimate holds for u(t, 2M − x).

Let us show how this implies (1.14), despite the fact that (3.3) seemingly goes
in two wrong directions. First, the estimate holds for x � 0 but the exponential on
the right side grows as x → +∞. Second, this exponential is moving to the left
as time progresses in the positive direction, while we are estimating u to the right
of x = 0. The point of (3.3) is that the speed c at which the exponential moves is
larger than 2, the latter being the minimal speed of fronts when a(x) = 1 every-
where. Thus, when looking at large negative times, this gives us a much smaller
than expected upper bound on u at |x | � c|t |. Using this bound and then going
forward in time towards t = 0, we will find that u cannot become O(1) at (0,M).

Given c ∈ (2, λ/√λ− 1), pick M such that c < λM/
√
λM − 1 and then c′ > c

as in Lemma 3.1. Let τ1 ≡ 1+2M/c′ (so τ1 depends on a, θ, c but not on u). By the
first claim of Lemma 3.1 we have

u(t, 2M) � C0u(0,M)e2M+ct (3.4)

for all t � −τ1, because then 2M � c′(−t − 1).
Next, for any t0 � −τ0, we let

vt0(t, x) ≡ C0u(0,M)ex+ct0+2(t−t0) + C0u(0,M)e4M−x+ct .

Then vt0 is a supersolution for (1.5) on (t0,∞) × (2M,∞) since a(x) ≡ 1 for
x > 2M . Moreover, the second claim of Lemma 3.1 and t0 � −τ0 imply that at
the “initial time” t0 we have

u(t0, x) � C0u(0,M)ex+ct0 � vt0(t0, x)

for all x > 2M . Since c > 2, it follows from (3.4) that u(t, 2M) � vt0(t, 2M) for
all t ∈ (t0,−τ1). Since the supersolution vt0 is above u initially (at t = t0) on all
of (2M,∞) and at x = 2M for all t ∈ (t0,−τ1), the maximum principle yields

u(t, x) � vt0(t, x) (3.5)

for all t ∈ [t0,−τ1] and x � 2M . Since c > 2, taking t0 → −∞ in (3.5) gives

u(t, x) � C0u(0,M)e4M−x+ct , (3.6)

for t � −τ1 and x � 2M . Note that unlike our starting point (3.3), the estimate (3.6)
actually goes in the right direction, since the exponential is decaying as x → +∞.

An identical argument gives u(t, x) � C0u(0,M)e2M+x+ct for t � −τ1 and
x � 0, so

u(t, x) � C0e2M u(0,M)e−|x |+ct (3.7)



224 James Nolen et al.

for t � −τ1 and x ∈ R \ (0, 2M). Harnack’s inequality extends this bound to all
t � −τ1 − 1 and x ∈ R, with some C1 (depending only on a and θ ) in place of
C0e2M :

u(t, x) � C1u(0,M)e−|x |+ct (3.8)

for all t � −τ1 − 1 and x ∈ R. Finally, it follows from (3.8) that

u(t, x) � C1u(0,M)e−|x |+c(−τ1−1)e(1+‖a‖∞)(t−(−τ1−1))

for t � −τ1 − 1 because the right-hand side is a supersolution of (1.5). Since τ1
depends only on a, θ, c (once M, c′ are fixed) and not on u, and since a1 � 1, it
follows that

u(t, x) � C2u(0,M)e−|x |+ct (3.9)

for all t � 0 and x ∈ R, with C2 depending only on a, θ, c. This is (1.14), proving
non-existence of transition fronts when λ > 2, under the additional assumptions
of a(x) − 1 compactly supported and (1.15) (except for the proof of Lemma 3.1
below).

3.2. Bump-Like Solutions and Uniqueness of a Global-in-Time Solution

Existence of a bump-like solution is immediate from (1.15). Indeed, it is obtained
by continuing the solution of (1.5), given by u(t, x) = eλtψ(x) for t  −1, to all
t ∈ R.

In order to prove the uniqueness claim, we note that the same argument as
above, with u(0,M) replaced by u(s,M) and t � s � 0, gives (with the same C2)

u(t, x) � C2u(s,M)e−|x |−2(s−t). (3.10)

We also have ‖u(t, ·)‖∞ � θ for all t � t0 ≡ − 1
2 log C2. Therefore, the function

v(t, x) ≡ u(t, x)e−2t solves the linear equation

vt = vxx + (a(x)− 2)v (3.11)

on (−∞, t0) × R. It can obviously be extended to an entire solution of (3.11) by
propagating it forward in time. Taking t = s in (3.10) gives v(t, x) � C2v(t,M)
for (t, x) ∈ (−∞, t0)× R.

Moreover, it is well known that since λ is an isolated eigenvalue (because λ > 1
and the essential spectrum is (−∞, 1]), the function e−(λ−2)tv(t, x) converges uni-
formly to ψ(x) as t → ∞. It follows that

v(t, x) � C3v(t,M) (3.12)

holds for some C3 > 0 and all (t, x) ∈ R
2.

We can now apply Proposition 2.5 from [10] to (3.11). More precisely, as
a(x) ≡ 1 outside of a bounded interval, Hypothesis A of this proposition is sat-
isfied, while λ > 2 ensures that Hypothesis H1 of [10] holds for the solution
w(t, x) = e(λ−2)tψ(x) of (3.11). Finally, (3.12) guarantees that condition (2.12) of
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[10] holds, too. It then follows from the aforementioned proposition that w(t, x)
is the unique (up to a time shift) global-in-time solution of (3.11), proving the
uniqueness claim in Theorem 1.2.

It remains now only to prove Lemma 3.1 in order to finish the proof of
Theorem 1.2 in the case when a(x)− 1 is compactly supported and (1.15) holds.

3.3. The Proof of Lemma 3.1

We will prove Lemma 3.1 using the following lemma.

Lemma 3.2. For every ε ∈ (0, 1) there exists Cε � 1 (depending also on a, θ , and
λM ) such that

u(t, x) � Cεu(0,M)
√|t |e

√
λM −1 x+(λM −ε)t (3.13)

holds for all t � −1 and x ∈ [0, cε(−t − 1)], with cε ≡ (λM − ε)/
√
λM − 1.

Let us first explain how Lemma 3.2 implies Lemma 3.1. Pick ε > 0 such that
cε = c′. Then there exists C0 > 0 depending only on a, θ, c (via ε, λM ,Cε) such
that for all t � −1 and x ∈ [0, c′(−t − 1)] we have

u(t, x) � Cεu(0,M)
√|t |e

√
λM −1(x+c′t) � Cεu(0,M)

√|t |ex+c′t

� C0u(0,M)ex+ct , (3.14)

the first claim of Lemma 3.1.
Next, let

τ0 ≡ | log(C0u(0,M)e−c)|
c′ − c

+ 1, (3.15)

so that C0u(0,M)ex+ct � 1 for t � −τ0 and x � c′(−t − 1). Since u(t, x) � 1,
this means that (3.3) also holds for all t � −τ0 and x � 0, the second claim of
Lemma 3.1.

Thus we are left with the proof of Lemma 3.2. This, in turn, relies on the
following lemma.

Lemma 3.3. For each m ∈ R and ε > 0 there exists kε > 0 such that if u ∈ [0, 1]
solves (1.5) with u(0, x) � γχ[l−1,l](x) for some γ � θ/2 and l ∈ R, then for
t � 0 and x � l + m − 2t ,

u(t, x) � kεγ e(1−ε)t
∫ l

l−1

e−|x−z|2/4t

√
4π t

dz.

Proof. The result, with 1 in place of 1 − ε, clearly holds when f (x, u) � u for all
x, u. Since f (x, u) � u only for u � θ , we will have to be a little more careful.

It is obviously sufficient to consider l = 0. Let g be a concave function
on [0, 1] such that g(w) = w for w ∈ [0, 1/2] and g(1) = 0 and define
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gγ (w) ≡ 2γ g(w/2γ ) (hence gγ (w) = w for w ∈ [0, γ ], and gγ � f ). The
comparison principle implies that u(x) � w(x), where w(x) solves

wt = wxx + gγ (w) (3.16)

with initial condition w(0, x) = γχ[−1,0](x). It follows from standard results on
spreading of solutions to KPP reaction–diffusion equations (see, for instance, [2])
that for each ε > 0 there exists tε � (m + 1)/2

√
1 − ε such that for all t � tε we

have w(t,−2
√

1 − ε(t − tε) − 1) � γ . The time tε is independent of γ because
w/γ is independent of γ .

Note that the function

v(t, x) = e−2tε γ e(1−ε)t
∫ 0

−1

e−|x−z|2/4t

√
4π t

dz

solves vt = vxx + (1 − ε)v, so v is a sub-solution of (3.16) on any domain where
v(t, x) � γ . We have ‖v(t, ·)‖∞ � e−(1+ε)tε γ � γ for t � tε, as well as

v(t,−2
√

1 − ε(t − tε)− 1) � e−2tε+(1−ε)t− 4(1−ε)(t−tε)2
4t γ � γ

for t � tε. Since v(t, ·) is obviously increasing on (−∞,−1), it follows that v is a
sub-solution of (3.16) on the domain

D ≡ ([0, tε)× R) ∪ {(t, x) | t � tε and x < −2
√

1 − ε(t − tε)− 1}. (3.17)

Moreover, w is a solution of (3.16),

v(0, x) = e−2tε γ χ[−1,0](x) � w(0, x),

and

v(t,−2
√

1 − ε(t − tε)− 1) � γ � w(t,−2
√

1 − ε(t − tε)− 1)

for t � tε. Thus v � w � u on D̄. Since the definition of tε gives −2
√

1 − ε(t −
tε)− 1 � m − 2t for t � 0, we have (t, x) ∈ D̄ whenever t � 0 and x � m − 2t .
The result follows with kε ≡ e−2tε . ��
Proof of Lemma 3.2. Assume that

u(t ′, x) � Cεu(0,M)
√|t ′|e

√
λM −1 x+(λM −ε)t ′

for some t ′ � −1 and x ∈ [0, cε(−t ′ − 1)], let t ≡ t ′ + 1 � 0, and define

β ≡ x

2|t |√λM − 1
� λM − ε

2(λM − 1)
< 1.

By the Harnack inequality and parabolic regularity, there exists c0 ∈ (0, e−λM θ/2)
(depending on a, θ ) such that

u(t, z) � c0Cεu(0,M)
√|t | + 1e

√
λM −1 x+(λM −ε)t (3.18)
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for all z ∈ (x−1, x). Note that the right side of (3.18) is below θ/2 since u(t, x) � 1.
Then Lemma 3.3 with l ≡ x and m ≡ 2M shows that for y ∈ [0, 2M] and
C ′
ε ≡ kεc0Cε (with kε from that lemma and using

√
λM − 1 > 1) we have

u(t + β|t |, y) � C ′
εu(0,M)

√|t | + 1e
√
λM −1 x+(λM −ε)t e(1−ε)β|t |

∫ x

x−1

e−|y−z|2/4β|t |
√

4πβ|t | dz

� C ′
εu(0,M)√

4π
e
√
λM −1 x+λM t− x2

4β|t | +β|t |
.

The normalization ‖ψM‖∞ = 1 and the comparison principle then give

u(0, z) � min

{
θ, eλM (1−β)|t | C ′

εu(0,M)√
4π

e
√
λM −1 x−λM |t |− x2

4β|t | +β|t |
}
ψM (z)

= min

{
θ,

C ′
εu(0,M)√

4π

}
ψM (z)

for any z ∈ R. Taking z = M and Cε = 4
√
π/kεc0ψM (M), it follows that

u(0,M) � min{θψM (M), 2u(0,M)},
which contradicts (3.2) and u(0,M) > 0. Thus, (3.13) holds for this Cε. ��

3.3.1. The Case of General Inhomogeneities We now dispense with the assump-
tions of a(x)−1 compactly supported and (1.15). The proof of (1.14) easily extends
to the case of (1.7) and (1.9). First, pick ε ∈ (0, c − 2) (recall that c > 2) such
that (λ− 2ε)/

√
λ− 1 > c and then θ > 0 such that f (x, u) � (a(x)− ε/2)u for

u � θ . Next, choose M large enough so that a(x) � 1 + ε outside (0, 2M) (after
a shift in x as before) and the principal eigenvalue λM (< λ− ε/2) of the operator

∂xx + a(x)− ε/2

on (0, 2M) with Dirichlet boundary conditions satisfies λM > λ − ε. Thus cε ≡
(λM − ε)/

√
λM − 1 > c, so we can again let c′ ≡ cε > c.

Then Lemma 3.3 holds for the chosen ε, θ without a change in the proof, even
though now we have only f (x, u) � (1 − ε/2)u for u � θ . Lemmas 3.2 and 3.1
are also unchanged. The only change in the proof of non-existence of fronts in
Theorem 1.2 is that one has to take

vt0(t, x) ≡ C0u(0,M)ex−ct0+(2+ε)(t+t0) + C0u(0,M)e4M−x+ct .

Since c > 2 + ε, we again obtain

u(t, x) � C2u(0,M)e−|x |+ct

for t � 0 and x ∈ R, so (1.14) as well as non-existence of fronts follow.
A bump-like solution is now obtained as a limit of solutions un(t, x) defined

on (−n,∞)×R with initial data u(−n, x) = Cnψ(x). Here 0 < Cn → 0 are cho-
sen so that un(0, 0) = 1/2, and parabolic regularity ensures that a global-in-time
solution u of (1.5) can be obtained as a locally uniform limit on R

2 of un , at least
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along a subsequence. Since Cneλ(t−n)ψ(x) is a supersolution of (1.5), we have
Cneλ � Cn−1. Since Cne(λ−εn)(t−n)ψ(x) is a subsolution of (1.5) on [−n,−n +1]
provided

εn ≡ sup
(x,u)∈R×(0,Cneλ)

[
a(x)− f (x, u)

u

]
(� CCδ

neλδ by (1.7))

and using ‖ψ‖∞ = 1, we have Cneλ−εn � Cn−1. Thus Cn decays exponentially
and then so does εn . As a result, Cneλn → C∞ ∈ (0,∞) and so un(t, x) �
2C∞eλtψ(x) for all large n and all (t, x). Thus the limiting solution u also satisfies
this bound and it is therefore bump-like.

The proof of uniqueness of global solutions also extends to (1.9), but this time
(1.15) is necessary in order to obtain (3.11) and to then apply Proposition 2.5
from [10].

4. Fronts with Speeds c ∈ (2, λ/
√

λ − 1): The Proof of Theorem 1.3

First note that the proof of existence of bump-like solutions from Theorem 1.2
works for any a− > 0 and extends to λ < 2, so we are left with proving existence
of fronts.

Assume that a(x) = 1 outside [−M,M] and also (for now) that (1.15) holds.
Consider any c ∈ (2, λ/

√
λ− 1). We will construct a positive solution v and a

sub-solution w to the PDE

ut = uxx + a(x)u,

such that w � min{v, θ} and both move to the right with speed c (in a sense to
be specified later). It follows that v and w are a supersolution and a subsolution
to (1.5), and we will see later that this ensures the existence of a transition front
u ∈ (w, v) for (1.5).

For any γ ∈ (λ, 2) let φγ be the unique solution of

φ′′
γ + a(x)φγ = γφγ , (4.1)

with φγ (x) = e−√
γ−1 x for x � M . We claim that then

φγ > 0. (4.2)

Indeed, assume φγ (x0) = 0 and let ψγ be the solution of (4.1) with ψγ (x) =
e
√
γ−1 x for x � M . Then φγ − εψγ would have at least two zeros for all small

ε (near x0 and at some x1 
 M). Since γ > λ = sup σ(∂2
xx + a(x)), this would

contradict the Sturm oscillation theory, so (4.2) holds. Since there are αγ , βγ such
that

φγ (x) = αγ e−√
γ−1 x + βγ e

√
γ−1 x

for x � −M , it follows that αγ > 0.
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This means that the function

v(t, x) ≡ eγ tφγ (x) > 0

is a supersolution of (1.5) (if we define f (x, u) ≡ 0 for u > 1). Notice that in the
domain x > M , the graph of v moves to the right at exact speed γ /

√
γ − 1 as time

increases. This is essentially true also for x  −M (since φγ (x) ≈ αγ e−√
γ−1 x

there), so v is a supersolution moving to the right at speed γ /
√
γ − 1 in the sense

of Remark 1 after Theorem 1.3.
Next let 0 < ε′ � ε and A > 0 be large, and define

w(t, x) ≡ eγ tφγ (x)− Ae(γ+ε)tφγ+ε′(x).

Then w satisfies

wt = wxx + a(x)w − (ε − ε′)Ae(γ+ε)tφγ+ε′(x). (4.3)

If we define f (x, u) ≡ 0 for u < 0, then w will be a subsolution of (1.5) if
sup(t,x) w(t, x) � θ , due to (1.15). We will now show that we can choose ε, ε′, A
so that this is the case.

For large t such that suppw+ ⊆ (M,∞) (namely, t > ε−1(
√
γ + ε′ − 1 M −√

γ − 1 M − log A)), the maximum maxx w(t, x) is attained at x such that

√
γ − 1eγ t e−√

γ−1 x = A
√
γ + ε′ − 1e(γ+ε)t e−√

γ+ε′−1 x , (4.4)

that is, at

xt ≡ 1
√
γ + ε′ − 1 − √

γ − 1

[

εt + log

(

A

√
γ + ε′ − 1√
γ − 1

)]

. (4.5)

If we define

κ = κ(ε′, γ ) ≡
√
γ − 1

√
γ + ε′ − 1 − √

γ − 1
> 0,

then we have

w(t, xt ) = e(γ−εκ)t A−κ
(√

γ + ε′ − 1√
γ − 1

)−κ−1 (√
γ + ε′ − 1√
γ − 1

− 1

)

(4.6)

for t 
 1. So if ε � ε′ are chosen so that εκ = γ (this is possible because
γ > 2(γ − 1)), then maxx w(t, x) is constant for t 
 1.

The same argument works for t  −1, with Aαγ+ε′/αγ in place of A in
(4.4)—(4.6), as well as with all three equalities holding only approximately due
to the term βγ e

√
γ−1 x . Nevertheless, the equalities hold in the limit t → −∞,

and maxx w(t, x) has a positive limit as t → −∞. Therefore maxx w(t, x) is
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uniformly bounded in t , and this bound converges to 0 as A → ∞, due to (4.6).
We can therefore pick A large enough so that sup(t,x) w(t, x) � θ , so thatw is now
a subsolution of (1.5). Note that εκ = γ also implies that xt (and hence w) moves
to the right with speed

ε
√
γ + ε′ − 1 − √

γ − 1
= γ√

γ − 1

(in the sense of supt |xt − γ t/
√
γ − 1| < ∞).

So, given c ∈ (2, λ/
√
λ− 1) let us pick γ ∈ (λ, 2) such that c = γ /

√
γ − 1

(and then choose ε, ε′, A as above). We then have a subsolution w and a super-
solution v of (1.5) with v > max{w, 0},maxx w(t, x) bounded below and above
by positive constants, with the same decay as x → ∞, and with v → ∞ and
w → −∞ as x → −∞. Moreover, v and w are moving at the same speed c to
the right, in the sense that points where maxx w(t, x) is achieved and where, say,
v(t, x) = 1/2, both move to the right with speed c (exact for t 
 1 and almost
exact for t  −1).

A standard limiting argument (see, for instance, [6]) now recovers a global-
in-time solution to (1.5) that is sandwiched between v and w. Indeed, we obtain it
as a locally uniform limit (along a subsequence if needed) of solutions un of (1.5)
defined on (−n,∞)× R, with initial condition un(−n, x) ≡ min{v(−n, x), 1}, so
that u ∈ (max{w, 0},min{v, 1}) by the strong maximum principle. Another stan-
dard argument based on the same speed c of v and w, and uniform boundedness
below of maxx w(t, x) in t coupled with positivity of g from (1.6) on (0, 1), shows
that u has to be a transition front moving with speed c, the latter in the sense of
Remark 1 after Theorem 1.3.

This proves the existence-of-front part of Theorem 1.3 when (1.15) holds. In that
case we could even have chosen ε′ = ε so that εκ = γ because then limε→0 εκ =
2
√
γ − 1 < γ < ∞ = limε→∞ εκ . If we have only (1.7), we need to pick ε′ < ε

such that εκ = γ and the last term in (4.3) to be larger than Cw(t, x)1+δ where
w(t, x) > 0, so that w stays a subsolution of (1.5). For the latter it is sufficient if

(ε − ε′)Ae(γ+ε)t e−√
γ+ε′−1 x � C1e−(1+δ)√γ−1 x (4.7)

where w(t, x) > 0, with some large C1 depending on C, φγ , φγ+ε′ . If we let
y ≡ x − ct = x − γ t/

√
γ − 1 and use εκ = γ , this boils down to

√
γ + ε′ − 1 y < (1 + δ)

√
γ − 1 y + log

(ε − ε′)A
C1

(4.8)

when w(t, ct + y) > 0. Notice that for, say, A = 1, the leftmost point where
w(x, t) = 0 stays uniformly (in t) close to ct (say distance d(t) � d0), and only
moves to the right if we increase A. Therefore we only need to pick ε′ < ε such
that

√
γ + ε′ − 1 � (1 + δ)

√
γ − 1 and εκ = γ , and then A > 1 large enough so

that (4.8) holds for any y � −d0. The rest of the proof is unchanged. ��
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5. Non-Existence of Fronts with Speeds c > λ/
√

λ − 1:
The Proof of Theorem 1.4

Assume a(x) ≡ 1 outside [−M0,M0] and let us denote the roots of r2 − cr +1
= 0 by

r±(c) = c ± √
c2 − 4

2
.

Notice that if λ � 2 and c > λ/
√
λ− 1, then

0 < r−(c) <
√
λ− 1 and r+(c) >

1√
λ− 1

. (5.1)

Also recall that we denote by X (t) the right-most point x such that u(t, x) = 1/2.
The proof of Theorem 1.4 relies on the following upper and lower exponential
bounds on the solution ahead of the front (at x � X (t)).

Lemma 5.1. Let c > 2 and u(t, x) be a transition front for (1.5) moving with
speed c. Then for any ε > 0 there exists Cε > 0 such that

u(t, x) � Cεe
−(r−(c)−ε)(x−X (t)) for x � X (t). (5.2)

Lemma 5.2. Assume that the function a(x) is even and that (1.13) has a unique
eigenvalue λ > 1. Let c > λ/

√
λ− 1 and u(t, x) be a transition front for (1.5)

moving with speed c. Then for all ε > 0, there is Cε > 0 and T > 0 such that:

u(t, x) � Cεe
−(r−(c)+ε)(x−X (t)) for t � T and x � X (t).

Proof of Theorem 1.4. Let us assume λ ∈ (1, 2], since the case λ > 2 has already
been proved in Theorem 1.2. Assume that there exists a transition front u(t, x)with
speed

c > λ/
√
λ− 1. (5.3)

We first wish to prove the following estimate: for all ε > 0, there exists Cε > 0
such that

u(t, x) � Cεe
(λ−ε)t−√

λ−ε−1 x for all x � 0 and t � 0. (5.4)

From Lemma 3.2, the estimate is true for x = 0 and, more generally, on every
bounded subset of R+, so let us extend it to the whole half-line. For this, we notice
that, for all t � 0, we have

u(t, x) � Cet , for x � 0. (5.5)

Indeed, the function

α(t) =
∫ +∞

M0

u(t, x) dx,
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which is finite due to Lemma 5.1, solves

α′ − α = −ux (t,M0)−
∫ +∞

M0

(u(t, x)− f (u(t, x)) dx .

From parabolic regularity and (5.4) for x on compact intervals, we have
|ux (t,M0)| � Ce(λ−ε)t for t � 0. From Lemma 5.1, the fact that u travels with
a positive speed, and a(x) = 1 for x � M0, we have f (u(t, x)) = u(t, x) for
x � M0 and t  −1. Hence we have

α′ − α = O(e(λ−ε)t )

for t  −1, which implies α(t) = O(et ) for t � 0 since λ > 1. Estimate (5.5)
then follows from parabolic regularity.

Then, we set

w(t, x) = e−t u(t, x)− Cεe
(λ−ε−1)t−√

λ−ε−1(x−M−1).

Since (5.4) holds on compact subsets of R+, we have

wt − wxx � 0 for t � 0, x � M0,

w(t,M0) � 0 for t � 0.

From (5.5) (and λ > 1) the function w is bounded on R− × [M0,+∞). Con-
sequently, it cannot attain a positive maximum, and there cannot be a sequence
(tn, xn) such that w(tn, xn) tends to a positive supremum. This implies that w is
negative, hence estimate (5.4) for x � M0 follows. It also holds on [0,M0] due to
parabolic regularity.

Let us now turn to positive times. The function v(t, x) = u(t, x + ct) solves

vt − vxx − cvx � v for t � 0, x � M0,

v(t,M0) � 1 for t � 0,

v(0, x) � Cεe
−√

λ−1−ε x ,

the last inequality due to (5.4). Since for small enough ε > 0 we have r−(c) <√
λ− ε − 1 < r+(c), the stationary function e−√

λ−1−ε x is a supersolution to

vt − vxx − cvx = v.

This in turn implies v(t, x) � Cεe−√
λ−1−ε x for small ε > 0. Therefore,

u(t, x) � Cεe
−√

λ−1−ε(x−ct)

holds for all t � 0 and x � ct + M0. However, this contradicts Lemma 5.2 since
r−(c) <

√
λ− 1. ��

The rest of the paper contains the proofs of Lemmas 5.1 and 5.2.
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6. An Upper Bound for Fronts with Speed c > λ/
√

λ − 1:
The Proof of Lemma 5.1

It is obviously sufficient to prove that for any ε > 0 there exists xε such that
for any t ∈ R we have

u(t, x) � e−(r−(c)−ε)(x−X (t)) for x � X (t)+ xε. (6.1)

Therefore assume, towards contradiction, that there exists ε > 0 and Tn ∈ R, xn →
+∞ such that

u(Tn, X (Tn)+ xn) � e−(r−(c)−ε)xn .

By the Harnack inequality, there is a constant δ > 0 such that

u(Tn − 1, X (Tn)+ x) � δe−(r−(c)−ε)xn for x ∈ [xn, xn + 1]. (6.2)

As u satisfies (1.11) and moves with speed c, we know that for every α > 0 we
have

lim
s→+∞ sup

T ∈R, x�X (T )+(c+α)s
u(T + s, x) = 0.

Therefore, for every α > 0 there is xα > 0 such that for any T ∈ R,

f (u(t, x)) = u(t, x) for t � T and x � X (T )+ (c + α)(t − T )+ xα

Then from u � 1 we have for t � T

ut − uxx = a(x)u + a(x)( f (u)− u) � u − C1x�X (T )+(c+α)(t−T )+xα

with C = ‖a‖∞. Thus we have

u(t, x) � et
∫

R

e− (x−y)2

4(t−T )√
4π(t − T )

u(T, y) dy−C
∫ t

T

∫ xα+(c+α)s

−∞
e− (x−y)2

4(t−s) +(t−s)

√
4π(t − s)

dy ds

=: I (t, x)− II (t, x).

We are going to evaluate I (t, x) and II (t, x) for T = Tn − 1 at

(t, x) = (tn, zn) :=
(

Tn − 1 + xn√
c2 − 4

, X (Tn)+ cxn√
c2 − 4

)
,

and show that I (tn, zn) → +∞ faster than II (tn, zn), provided α > 0 is small
enough, giving a contradiction with u(t, x) � 1.

Fix n and, for the sake of simplicity, assume Tn = 1 and X (Tn) = 0 (this can
be achieved by a translation in space and time). So T = 0 and by (6.2) we have

I (tn, zn) � etn

∫ xn+1

xn

e− (zn−y)2

4tn√
4π tn

u(0, y) dy

� δ√
4π tn

etn−(r−(c)−ε)xn

∫ 1

0
e− (zn−xn−z)2

4tn dz.
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Note that for z ∈ [0, 1] we have

(zn − xn − z)2

tn
= (zn − xn)

2

tn
+ O(1),

thus with some n-independent q > 0 we have

I (tn, zn) � qδ√
4π tn

e− (zn−xn )2
4tn

+tn−(r−(c)−ε)xn .

The exponent is easily evaluated using the relations xn = √
c2 − 4 tn, zn − xn =

2r−(c)tn , and r−(c)2 + √
c2 − 4 r−(c)− 1 = 0, leading to

I (tn, zn) � qδ√
4π tn

e(ε
√

c2−4−α)tn . (6.3)

To estimate II (tn, zn), notice that we have (using zn = ctn and with z := y−zn)

II (tn, zn) � C
∫ tn

0

∫ xα+(c+α)s−zn

−∞
etn−s− z2

4(tn−s)√
4π(tn − s)

dz ds

= C
∫ tn

0

(∫ xα−c(tn−s)+αs

xα−c(tn−s)
+

∫ xα−c(tn−s)

−∞

)
etn−s− z2

4(tn−s)√
4π(tn − s)

dz ds

=: II1(tn, zn)+ II2(tn, zn).

Using the estimate

∫ xα−c(tn−s)

−∞
e− z2

4(tn−s)√
tn − s

dz � Cα
e− c2(tn−s)

4√
tn − s

and c > 2, we have II2(tn, zn) = O(1) as n → +∞. In order to estimate II1(tn, zn),
we represent ζ := z + c(tn − s) ∈ [xα, xα + αs] so that

tn − s − z2

4(tn − s)
= tn − s − c2(tn −s)2+ζ 2−2c(tn −s)ζ

4(tn − s)
� cζ

2
� cxα + cαtn .

It follows that

II1(tn, zn) � αtnecxα+cαtn

∫ tn

0

ds√
4π(tn − s)

� Cαt3/2
n ecxα+cαtn � Cαe2cαtn .

We now choose α > 0 so that ε
√

c2 − 4 − α > 2cα. Using (6.3), it follows that
u(tn, zn) = I (tn, zn)− II (tn, zn) > 1 for all large n, a contradiction. This finishes
the proof of Lemma 5.1. ��
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7. A Lower Bound for Fronts with Speed c > λ/
√

λ − 1:
The Proof of Lemma 5.2

7.1. A Heat Kernel Estimate

We will need rather precise information on the behavior, for large x and t , of
the solutions of the Cauchy problem

ut − uxx − A(x)u = 0, t > 0, x ∈ R, (7.1)

u(0, x) = u0(x).

The function B(x) = A(x)− 1 is assumed to be non-negative and to have compact
support in an interval [L − M0, L + M0]. Basically, A should be thought of as
a translate of the function a: in the proof of Lemma 5.2 below, the number M0
will be of fixed size, the number L will vary arbitrarily. A lot—most probably,
including our estimate below—is known about solutions of (7.1). See, for instance,
[17] and the references therein. However, we were not able to find in the literature
an estimate of the type (7.3) below. Moreover, the proof is short, so it is worth
presenting in reasonable detail. Denote by G(t, x, y) the heat kernel of (7.1), that
is, the function such that the solution u(t, x) is

u(t, x) =
∫ +∞

−∞
G(t, x, y)u0(y) dy.

Let us also denote by H(t, z) the standard heat kernel:

H(t, z) = e−z2/4t

√
4π t

.

Proposition 7.1. Assume the function B(x − L) to be even and non-negative, and
that the eigenvalue problem

φ′′
0 + (1 + B(x − L))φ0 = λφ0

has a unique eigenvalue λ > 1. Let φ0 > 0 be the eigenfunction with ‖φ0‖2 = 1.
Then we have

G(t, x, y) � et H(t, x − y) (7.2)

for all x, y ∈ R. Conversely, if x < L − M0 and y > L + M0, or y < L − M0 and
x > L + M0, then there is a smooth function ψ0 such that ψ0(x) = O(e−√

λ−1|x |)
for |x − L| � 2M0, and such that, for all ε > 0 we have

|G(t, x, y)− (eλtφ0(x)φ0(y)+ et (H(t, .) ∗ ψ0)(x − y))|
� Cet+C|x−y|/t H(t, x − y). (7.3)

Also, there exists C > 0, depending on M0 but not on L, such that if x, y < L − M0
or x, y > L + M0, we have

G(t, x, y)− (eλtφ0(x)φ0(y)+ et (H(t, .) ∗ ψ0)(x + y − 2L))

� Cet+C|x+y−2L|/t H(t, x + y − 2L). (7.4)
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Proof. The lower bound (7.2) is obvious, because A(x) � 1. So, let us examine
the upper bound. First, we may without loss of generality assume L = 0, the result
will follow by translating x and y by the amount L . Also, it is enough to replace
A(x) by B(x) (thus we deal with a compactly supported potential), at the expense
of multiplying the final result by et . Our proof will use some basic facts of eigen-
function expansions, see [11], that we recall now. For k ∈ R

∗, let us denote by
f (x, k) the solution of

− φ′′ = (B(x)+ k2)φ, x ∈ R (7.5)

satisfying

f (x, k) = eikx for x � M0 (7.6)

and let us denote by g(x, k) the solution of (7.5) such that

g(x, k) = e−ikx for x � −M0. (7.7)

Denoting by W (u(x), v(x)) the Wronskian of two solutions u and v of (7.5), let us
set

a(k) = − 1

2ik
W ( f (x, k), g(x, k)), b(k) = 1

2ik
W ( f (x, k), g(x,−k))

and

c(k) = −b(−k), d(k) = a(k). (7.8)

We have

f (x, k) = a(k)g(x,−k)+ b(k)g(x, k)

g(x, k) = c(k) f (x, k)+ d(k) f (x,−k), (7.9)

and |a(k)|2 = 1 + |b(k)|2, b(−k) = b(k), and a(−k) = a(k). The following
decompositions hold:

δ(x − y) = φ0(x)φ0(y)+ 1

2π

∫ +∞

−∞
f (x, k) f (y, k) dk

− 1

2π

∫ +∞

−∞
f (x, k) f (y, k)

b(−k)

a(k)
dk, (7.10)

and

δ(x − y) = φ0(x)φ0(y)+ 1

2π

∫ +∞

−∞
g(x, k)g(y, k) dk

+ 1

2π

∫ +∞

−∞
g(x, k)g(y, k)

b(k)

a(k)
dk. (7.11)
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These decompositions may also be viewed as a consequence of Agmon’s limiting
absorption principle, see [1], Theorem 4.1. Consequently, we have the representa-
tion

G(t, x, y) = e(λ−1)tφ0(x)φ0(y)+ 1

2π

∫ +∞

−∞
e−tk2

f (x, k) f (y, k) dk

− 1

2π

∫ +∞

−∞
e−tk2

f (x, k) f (y, k)
b(−k)

a(k)
dk

= e(λ−1)tφ0(x)φ0(y)+ 1

2π

∫ +∞

−∞
e−tk2

g(x, k)g(y, k) dk

+ 1

2π

∫ +∞

−∞
e−tk2

g(x, k)g(y, k)
b(k)

a(k)
dk. (7.12)

Now we prove (7.3). If y < −M0 and x > M0, the identity (7.9) and the first
equality in (7.12) implies that

G(t, x, y) = e(λ−1)tφ0(x)φ0(y)+ 1

2π

∫ +∞

−∞
e−tk2

a(−k)
eik(x−y) dk

= e(λ−1)tφ0(x)φ0(y)+ (H(t, ·) ∗ F1)(x − y), (7.13)

where F1 is the inverse Fourier transform of 1
a(−k) . By using the second equality

in (7.12), we see that the same holds for y > M0 and x < −M0. This function F1
may be estimated by (7.10) and (7.9) if y < −M0 and x > M0:

− φ0(x)φ0(y) = 1

2π

∫ +∞

−∞
f (x, k)

(
f (y, k)− f (y, k)

b(−k)

a(k)

)
dk

= 1

2π

∫ +∞

−∞
(a(k)eikx + b(k)e−ikx )

(
e−iky − eiky b(−k)

a(k)

)
dk

= 1

2π

∫ +∞

−∞
|a(k)|2 − |b(k)|2

a(−k)
eik(x−y) dk

= 1

2π

∫ +∞

−∞
eik(x−y)

a(−k)
dk.

The same is true for y < −M0 and x > M0; one just has to use (7.11) and (7.9).
Therefore,

F1 = ψ0 + T0, (7.14)

where ψ0(x) = c0e−√
λ−1|x | for |x | � 2M0, T0 is a compactly supported distribu-

tion, and where we have made the abuse of notation consisting in using the argument
x in a distribution. Combining this with (7.13) we obtain

G(t, x, y) = e(λ−1)tφ0(x)φ0(y)+ (H(t, .) ∗ ψ0)(x − y)+ (H(t, .) ∗ T0)(x − y)
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and estimate (7.3) is concluded by a standard distributional computation. Now we
prove (7.4). If x and y are on the same side, say x � M and y � M , then (7.12)
implies

G(t, x, y) = e(λ−1)tφ0(x)φ0(y)+ 1

2π

∫ +∞

−∞
e−tk2+ik(x−y) dk

− 1

2π

∫ +∞

−∞
e−tk2+ik(x+y) b(−k)

a(k)
dk

= e(λ−1)tφ0(x)φ0(y)+ H(t, x − y)+ (H(t, ·) ∗ F2)(x + y),

for x � M, y � M, (7.15)

where F2 is the inverse Fourier transform of the function b(−k)/a(k). Similarly,

G(t, x, y) = e(λ−1)tφ0(x)φ0(y)+ 1

2π

∫ +∞

−∞
e−tk2−ik(x−y) dk

− 1

2π

∫ +∞

−∞
e−tk2−ik(x+y) b(k)

a(k)
dk

= e(λ−1)tφ0(x)φ0(y)+ H(t, x − y)+ (H(t, ·) ∗ F3)(x + y),

for x � −M, y � −M, (7.16)

where F3 is the Fourier transform of the function b(k)/a(k). It follows from [11],
that F2 and F3 are W 1,1 functions. From the relations (7.9) and decomposition
(7.10), we find that

F2(x+y)= 1

2π

∫ +∞

−∞
eik(x+y) b(−k)

a(k)
dk = φ0(x)φ0(y), for x � M0, y � M0.

(7.17)

Consequently, F2(z) = c1e−√
λ−1|z| for z > 2M0. In the same fashion we have,

from the decomposition (7.11),

F3(x + y)=− 1

2π

∫ +∞

−∞
e−ik(x+y) b(k)

a(k)
dk =φ0(x)φ0(y) for x �−M0, y �−M0.

(7.18)

From the evenness of B and the relations (7.8), the function b(k) is purely imag-
inary, so b(−k)/a(k) = b(k)/a(k) = −b(k)/a(k). Thus, F3(z) = F2(−z). And
so, similarly to (7.14), there holds

Fi = ψ0 + Ti , i ∈ 2, 3

where T2 and T3 are W 1,1 functions supported in (−∞, 2M0) and (−2M0,∞),
respectively. So, for x � M0 and y � M0, estimate (7.4) now follows from (7.15),
since

|(H(t, ·) ∗ T2)(x + y)| =
∣
∣
∣
∣

∫ 2M0

−∞
H(t, x + y − z)T2(z) dz

∣
∣
∣
∣

� H(t, x + y − 2M0)‖T2‖1

The same argument is valid for x � −M0 and y � −M0 using (7.16). ��
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Proposition 7.1 admits the following corollary, which takes care of what hap-
pens when y is in the support of B.

Corollary 7.2. Let ψ0 be defined as in Proposition 7.1. There is a constant C such
that if y ∈ [L − M0, L + M0] and x /∈ [L − M0, L + M0], we have

G(t, x, y)−(eλtφ0(x)φ0(y)+(et H(t, .) ∗ ψ0)(x−L))�Cet+C|x−L|/tH(t, x−L).

(7.19)

The proof is similar to that of the proposition, and is omitted.

7.2. Proof of Lemma 5.2

Assume the conclusion of Lemma 5.2 to be false. Then there exists a sequence
Tn → +∞, and a sequence xn → +∞ such that

u(Tn, X (Tn)+ xn) � e−(r−(c)+ε)xn . (7.20)

7.2.1. Extending (7.20) to a Large Interval We are going to apply the Harnack
inequality in the following way: if u(t, x) is a global solution (in time and space)
of a linear parabolic equation on (t, x) ∈ R × R, there exists a universal constant
ρ ∈ (0, 1) such that

u(t, x) � ρu(t − 1, x + ξ), for all t, x ∈ R and all ξ ∈ [−1, 1].
Thus, for all ξ ∈ [−1, 1] and all t ∈ R and x ∈ R, and any non-negative integer
p ∈ N we have

u(t, x) � ρ pu(t − p, x + pξ). (7.21)

Then, assumption (7.20) on u together with (7.21) translate into

u(Tn − p, X (Tn)+ xn + pξ) � ρ−pe−(r−(c)+ε)xn

= ρ−pe−(r−(c)+ε)[X (Tn−p)−X (Tn)]e−(r−(c)+ε)(xn−[X (Tn−p)−X (Tn)]), (7.22)

for all ξ ∈ [−1, 1]. Note that, as u(t, x) is a front moving with the speed c, there
exists a constant B > 0 so that

X (Tn)− 2c(p + B) � X (Tn − p) � X (Tn)+ c

2
(−p + B). (7.23)

We are going to choose p as a small fraction of xn , that is, p = [ηxn] where [x]
denotes the integer part of x , and η > 0 is small. Then, for any x ∈ [(1−η)xn, (1+
η)xn] we rewrite (7.22), using also (7.23) as

u(Tn − p, X (Tn)+ x) � ρ−pe−(r−(c)+ε)[X (Tn−p)−X (Tn)]

×e−(r−(c)+ε)(x−[X (Tn−p)−X (Tn)])+(r−(c)+ε)(x−xn)

� Cρ−pe2c(r−(c)+ε)(p+B)e−(r−(c)+ε)(x−[X (Tn−p)−X (Tn)])+(r−(c)+ε)p

� C exp

[(
−r−(c)−ε+ K p

x− [X (Tn − p)−X (Tn)]
)
(x− [X (Tn − p)−X (Tn)])

]
,
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with a constant K that depends on c, ρ and B but not on p or x . As p = [ηxn], xn →
+∞, and X (Tn − p) � X (Tn)+cB/2, choosing η = ε/(1+2K ) so that Kη/(1−
η) < ε/2 ensures that

K p

x − [X (Tn − p)− X (Tn)] � ε

2
for all x ∈ [(1 − qε)xn, (1 + qε)xn],

for n large enough. Here we have set q = 1/(1 + 2K ).
Let us now shift the origin of time and space placing it at (t, x) = (Tn − p,

X (Tn − p)). And thus, in the new coordinates we have

u0(x) := u(0, x) � Ce−(r−(c)+ε/2)x for x ∈ [(1 − qε)xn, (1 + qε)xn]. (7.24)

The support of a − 1 is also shifted accordingly: it is supported in an interval
[L − M0, L + M0], with L = −X (Tn − p) < −M0 for large n.

7.2.2. Reduction of u(t, x) We start from

u(t, x) = Sa(t)u0(x)−
∫ t

0
Sa(t − s)a(u − f (u)) ds � Sa(t)u0(x)

−
∫ t

0
S1(t − s)a(u − f (u)) ds,

which we shall evaluate for a well chosen (t, x) ∈ R+ × R+. Here Sa denotes the
semi-groups generated by the operator ∂2

xx + a(x), and S1 is the semigroup gener-
ated by the operator ∂2

xx + 1, with a(x) appropriately shifted to our new coordinate
frame. Because x > 0, it is outside of supp(a − 1) = [L − M0, L + M0]; we will
use Proposition 7.1 and Corollary 7.2 to deal with Sa(t)u0(x). We have

Sa(t)u0(x) � et
∫

H(t, x − y)((u0 ∗ ψ0)(y)+ CeC|x−y|/t u0(y)) dy

+et
∫

E(t, x, y)((u0 ∗ ψ0)(y)+ CeC|x−y|/t u0(y)) dy + eλt 〈φ0, u0〉φ0(x)

= u1(t, x)+ u2(t, x)+ u3(x), (7.25)

where E(t, x, y) = 0 if y < L − M0 (since x > L + M0), while

E(t, x, y) = C
e−|x+y−2L|2/(t+1)

√
4π(t + 1)

if y > L − M0. We will also set

u4(t, x) =
∫ t

0
S1(t − s)a(u − f (u)) ds. (7.26)

We will estimate each of u1, u2, u3 and u4 separately at an appropriately chosen
point (tn, zn) and show that u4 is much larger than u1 + u2 + u3, giving a contra-
diction.
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7.2.3. Estimate of u1(t, x) This is the most involved, the estimates of u2 and
u3 being simpler or similar. First, we anticipate that u1 will be evaluated at a point
(t, x) such that t and x are both large, and x and t of the same order of magnitude.
Also, in the integral expressing u1, the integrands will be maximized at points y
such that |x − y| is of order t . Hence, from standard convolutions between expo-
nentials (and the fact that r−(c) <

√
λ− 1), we do not lose any generality if we

assume the existence of a function w0(x) and a constant C > 0 such that

(i) the function w0 is bounded on R,
(ii) there is a constant C > 0 such that (even if it means restricting q a little)

for all δ > 0, there is Cδ > 0 such that w0(x)�Cδe
−(r−(c)−δ)x for x>0,

w0(x) � Cδe
−(r−(c)+ε)x for x ∈ [(1 − qε)xn, (1 + qε)xn],

(iii) and we have
∫

H(t, x−y)((u0 ∗ ψ0)(y)+CeC|x−y|/t u0(y)) dy �
∫

H(t, x−y)w0(y) dy
∫

E(t, x, y)((u0 ∗ ψ0)(y)+CeC|x−y|/t u0(y)) dy �
∫

H(t, x−y)w0(y) dy.

Thus, we start with

u1(t, x) � Cet

√
t

∫

R

e− (x−y)2

4t w0(y) dy. (7.27)

And, as in the proof of Lemma 5.1, we are going to estimate u1(t, x) at the points

tn = xn√
c2 − 4

, zn = ctn .

Observe that for n sufficiently large, L + M0 < 0, so zn > L + M0. Thus zn /∈
supp(a − 1) and the estimate (7.27) applies. Let us decompose

u1(tn, zn) = Cetn
√

tn

(∫ 0

−∞
+

∫ (1−qε)xn

0
+

∫ (1+qε)xn

(1−qε)xn

+
∫ +∞

(1+qε)xn

)
e− (zn−y)2

4tn w0(y) dy

:= u11(tn, zn)+ u12(tn, zn)+ u13(tn, zn)+ u14(tn, zn).

As zn − y � ctn for y � 0, tn � 1, and 0 � w0(y) � 1, we have

u11(tn, zn) � Ce(1− c2
4 )tn → 0 as n → +∞, (7.28)

since c > 2. By Lemma 5.1 we have, for every δ > 0

u12(tn, zn) � Cδ

∫ (1−qε)xn

0
etn− (ctn−y)2

4tn
−(r−(c)−δ)y dy√

tn
. (7.29)

The integrand above is maximized at the point

yδ = (c − 2r + 2δ)tn = (
√

c2 − 4 + 2δ)tn = xn + 2δ√
c2 − 4

xn,
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that is, O(δxn) close to xn—this is, indeed, why tn was chosen as above. Here we
have used (1.4). As yδ > xn , the integrand in (7.29) on the interval [0, (1 − εq)xn]
is maximized at the upper limit, leading to

u12(tn, zn) � C
∫ (1−qε)xn

0
e(1−(r−(c)+qε

√
c2−4/2)2)tn−(r−(c)−δ)(1−qε)xn

dy√
tn

� C
√

tne[−q2(c2−4)ε2/4+δ(1−qε)
√

c2−4]tn .

Recall that ε < 1. Hence, if we choose δ � q2ε2

100

√
c2 − 4 we have

−q2 (c
2 − 4)ε2

4
+ δ(1 − qε)

√
c2 − 4 � −q2 (c

2 − 4)ε2

8
,

and therefore

u12(tn, zn) � Cδ
√

tne−q2ε2(c2−4)tn/8 → 0 as n → +∞. (7.30)

Consider now u14(tn, zn):

u14(tn, zn) � Cetn
√

tn

+∞∫

(1+qε)xn

e− (zn−y)2

4tn
−(r−(c)−δ)ydy

= Cetn

[∫ zn

(1+qε)xn

+
∫ +∞

zn

]
e− |zn−y|2

4tn
−(r−(c)−δ)y

√
tn

dy

= u′
14(tn, zn)+ u′′

14(tn, zn).

For u′′
14 we have:

u′′
14(tn, zn) = Cetn

∫ +∞

zn

e− (y−zn )2

4tn
−(r−(c)−δ)y

√
tn

dy � Cetn−(r−(c)−δ)ctn

= Ce−(r−(c)2−δ)tn → 0,

as n → +∞, while for u′
14 we have

u′
14(tn, zn) � Cetn

∫ zn

(1+qε)xn

e− (zn−y)2

4tn
−(r−(c)−δ)y

√
tn

dy,

and this term can be estimated exactly as u12(tn, zn).
We turn to u13(tn, zn)—it is here that we use the crucial assumption (7.24). It

follows from this bound on w0(y) inside the interval of integration that

u13(tn, zn) � C
∫ (1+qε)xn

(1−qε)xn

etn− (ctn−y)2−C |ctn−y|
4tn

−(r−(c)+ε/2)y
√

4π tn
dy

� C
∫ (1+qε)xn

(1−qε)xn

etn− (ctn−y)2

4tn
−(r−(c)+ε/2)y

√
4π tn

dy. (7.31)
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Now, the maximum of the integrand is achieved at the point

yn = xn − ε√
c2 − 4

xn .

At the expense of possibly decreasing q so that q < 1/
√

c2 − 4, we have yn <

(1 − qε)xn . Then the integrand in (7.31) is maximized at y = (1 − qε)xn , and we
have, for all y ∈ [(1 − qε)xn, (1 + qε)xn]:

− (ctn − y)2

4tn
−

(
r−(c)+ ε

2

)
y � − (ctn − (1−qε)xn)

2

4tn
−

(
r−(c)+ ε

2

)
(1−qε)xn

�
(
−1 − ε

2

√
c2 − 4 + O(ε2)

)
tn . (7.32)

This gives, for ε > 0 sufficiently small,

u13(tn, zn) � Cxne−εtn
√

c2−4/4, (7.33)

and, all in all, we have the following upper bound for u1(tn, zn):

u1(tn, zn) � C
√

tne−εtn
√

c2−4/4 + Cδ
√

tne−q2ε2(c2−4)tn/8. (7.34)

7.2.4. The Estimate for u2(tn, zn) The quantity L + M0 is bounded from above
by a universal constant, so

u2(tn, zn) � Cetn
√

tn

∫ ∞

L−M0

e− |zn+y−2L|2
4tn w0(y) dy

= Cetn

∫ ∞

(zn−(L+M0))/
√

4tn
e−y2

dy � Cetn−z2
n/(4tn)

� Ce(1−c2/4)tn . (7.35)

This will decay exponentially fast since c > 2.

7.2.5. Estimate of u3(tn, zn) The last term we need to consider is the eigenvalue
contribution:

u3(t, x) = eλtφ0(x)
∫
φ0(y)w0(y) dy,

and this is also easy: we have

u3(tn, zn) � Ceλtn−√
λ−1zn = Ce(λ−c

√
λ−1)tn , (7.36)

and this quantity will also decay exponentially fast because c > λ/
√
λ− 1.
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7.2.6. The Estimate for u4(tn, zn) We wish to show that u4(tn, zn) goes to 0 as
n → +∞ slower than the first three terms. As the front is moving with speed c,
for any small δ > 0, there exists a large xδ > 0 such that

u(t, x) � 1

2
for x � (c − δ)t − xδ and t � 0.

By our assumption on f (u) there is a constant C > 0 such that u − f (u) � C for
all u ∈ [1/2, 1]. Therefore, as a(x) � a0 > 0, we have

u4(tn, zn) � a0

∫ tn

0

∫

R

etn−s− (ctn−y)2

4(tn−s)√
4π(tn − s)

(u(s, y)− f (u(s, y))) dsdy

� C
∫ tn

0

∫ (c−δ)s−xδ

(c−δ)s−xδ−1

etn−s−(ctn−y)2/4(tn−s)

√
(tn − s)

dsdy. (7.37)

The change of variables y = (c − δ)s − xδ + z in the last integral yields

u4(tn, zn) � C√
tn − s

∫ tn

0

∫ 0

−1
etn−s−(c(tn−s)+δs+xδ−z)2/4(tn−s) ds dy.

We have, for z ∈ (−1, 0) and 0 � s < tn − 1:

�δ(s, tn, z) := tn − s − (c(tn − s)+ δs + xδ − z)2

4(tn − s)

=
(

1 − c2

4

)
(tn − s)− cδs

2
− δ2s2

4(tn − s)
− 2(xδ − z)

c(tn − s)+ δs

4(tn − s)

− (xδ − z)2

4(tn − s)
.

We evaluate the integral on the time interval (1 − γ1)tn � s � (1 − γ2)tn with
0 < γ2 < γ1  1 to be chosen. There exists a constant Cδ,γ that depends on γ1,2
and δ but not on n such that for all z ∈ [−1, 0] and all s in this interval we have

�δ(s, tn, z) �
(

1 − c2

4

)
(tn − s)− cδs

2
− δ2s2

4(tn − s)
− Cδ,γ

�
((

1 − c2

4

)
γ1 − c

2
δ− δ

2(1−γ2)
2

4γ2

)
tn − Cδ,γ :=−Aδ,γ tn − Cδ,γ .

Therefore

u4(tn, zn) � C
√

tne−Aδ,γ tn−Cδ,γ . (7.38)

Gathering (7.34), (7.35), (7.36) and (7.38) we have, for a constant C > 0 depending
only on δ:

u(tn, zn) � Cδ(−e−Aδ,γ tn−Cδ,γ + e−εctn + e−εtn
√

c2−4/4 + e(1− c2
4 +o(1))tn

+ e− q2

2 ε
2(c2−4)tn + e(λ−c

√
λ−1)tn ).
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Choosing γ1 and γ2 small enough, and then δ = γ2 makes the constant Aδ,γ arbi-
trarily small. In particular, we may ensure that it is much smaller than the coefficients
in front of tn in the last five exponential terms above. This yields

u(tn, zn) < 0

for large n which is the contradiction. ��
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