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Abstract

The goal of this article is to derive new estimates for the cost of observability of
heat equations. We have developed a new method allowing one to show that when
the corresponding wave equation is observable, the heat equation is also observable.
This method allows one to describe the explicit dependence of the observability con-
stant on the geometry of the problem (the domain in which the heat process evolves
and the observation subdomain). We show that our estimate is sharp in some cases,
particularly in one space dimension and in the multi-dimensional radially symmet-
ric case. Our result extends those in Fattorini and Russell (Arch Rational Mech
Anal 43:272–292, 1971) to the multi-dimensional setting and improves those avail-
able in the literature, namely those by Miller (J Differ Equ 204(1):202–226, 2004;
SIAM J Control Optim 45(2):762–772, 2006; Atti Accad Naz Lincei Cl Sci Fis
Mat Natur Rend Lincei (9) Mat Appl 17(4):351–366, 2006) and Tenenbaum and
Tucsnak (J Differ Equ 243(1):70–100, 2007). Our approach is based on an explicit
representation formula of some solutions of the wave equation in terms of those of
the heat equation, in contrast to the standard application of transmutation methods,
which uses a reverse representation of the heat solution in terms of the wave one.
We shall also explain how our approach applies and yields some new estimates on
the cost of observability in the particular case of the unit square observed from one
side. We will also comment on the applications of our techniques to controllability
properties of heat-type equations.
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1. Introduction

1.1. Setting

The goal of this article is to study the problem of the cost of observability for
heat type equations. To fix the ideas, we will mainly consider the classical constant
coefficient heat equation, although our methods and results apply to a large class
of parabolic abstract problems.

Let� be a bounded domain and consider the heat equation with state z, solution
of

⎧
⎨

⎩

∂t z −�x z = 0, (t, x) ∈ R
∗+ ×�,

z(t, x) = 0, (t, x) ∈ R
∗+ × ∂�,

z(0, x) = z0(x), x ∈ �.
(1.1)

We analyze the problem of observability, which is dual to the controllability
one, as we shall explain in Section 3 (see also [23]), and consists of getting global
estimates on the solutions in terms of the energy concentrated on some subdomain
of the domain � where the equation evolves.

There is extensive literature on the subject. In particular, using Carleman’s
inequalities as in [15], one can prove that for any subdomain ω ⊂ �, there exist
constants C, γ > 0 and γ̃ > 0 such that any solution z of the heat equation (1.1)
satisfies

∫ ∞

0

∫

�

exp
(
−γ

t

)
|z(t, x)|2 dt dx � C

∫ ∞

0

∫

ω

|z(t, x)|2 dt dx, (1.2)

and for all T > 0,

∫

�

|z(T, x)|2 dt dx � C exp

(
γ̃

T

) ∫ T

0

∫

ω

|z(t, x)|2 dt dx . (1.3)

These are so-called observability inequalities that assert that the energy of solutions
concentrated in ω yields an upper bound of the energy everywhere in �. For that
to happen, because of the strong irreversibility of the heat semigroup, an exponen-
tially vanishing weight is needed at t = 0 in (1.2) and, similarly, the constant in
(1.3) grows exponentially as T → 0.

The constants C, γ and γ̃ on the observability inequality (1.2) depend on the
geometric properties of ω and �.

This paper is mainly devoted to the analysis of the constant γ . Our goal is to
prove a new upper bound on the best constant γ in (1.2) that, throughout this arti-
cle, will be referred to as being the exponential observability cost. Moreover, this
bound will be shown to be sharp in some geometric configurations, particularly
in one dimension, a fact that was unknown until now. As we shall explain later in
Section 2.4, this constant γ characterizes the reachability set for (1.1).

The constant γ̃ is called the finite-time exponential observability cost. Estimates
like (1.3) are particularly relevant in small time T ∼ 0. Note that, according to Lions
[23], estimate (1.3) is equivalent to estimating the cost of null-controllability in time
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t = T , that is, the norm of the map that, to an initial data z0 ∈ L2(�), associates
the control u of minimal L2((0, T )× ω)-norm such that the solution of

⎧
⎨

⎩

∂t z −�x z = u(t, x)χω(x), (t, x) ∈ R
∗+ ×�,

z(t, x) = 0, (t, x) ∈ R
∗+ × ∂�,

z(0, x) = z0(x), x ∈ �
(1.4)

satisfies z(T ) = 0.
There are several previous results on this subject yielding various lower and

upper bounds on γ and γ̃ that we briefly present below. The first remark is that,
obviously,

γ � γ̃ . (1.5)

Lower bounds The following lower bound on the constant γ̃ fulfilling (1.2) was
obtained by comparison with the Green function of the heat equation (see [28]):

γ̃ � d̃2

2
, with d̃ = sup

x0∈�
d(x0, ω). (1.6)

Indeed, the Green function centered at a point x0 in � \ ω at a geodesic distance
d(x0, ω) of the observation region ω, which decays as Ct−N/2 exp(−|x − x0|2/4t)
away from ω, shows that, necessarily, γ̃ � d(x0, ω)

2/2 is needed for all x0 ∈ � in
order to ensure (1.3).

On the other hand, in [13,42], using the functions

zρ(t, x) = 1

(4π t)n/2
sin

(
ρ|x |
2t

)

exp

(
1

4t
(ρ2 − |x |2)

)

, ρ > 0, (1.7)

solutions of the heat equation in R
N , it is shown that

γ � d2

2
, with d = sup{ρ, such that B(x0, ρ) ⊂ �\ω}. (1.8)

Note that, always, d � d̃, but in some geometrical situations, d = d̃. This is
the case, in particular, when �\ω is a ball and ω is a neighborhood of ∂�.

Upper bounds On the other hand, as mentioned above, Carleman’s inequalities
guarantee that (1.3) holds with a finite constant γ̃ > 0, hence also (1.2) for some
constant γ . But this technique does not provide any explicit expression on how the
exponential observability constants γ, γ̃ depend on the geometry of the problem
under consideration.

The existing upper bounds refer mainly to the case where the geometric control
condition (GCC) is satisfied. The GCC asserts that all the rays of geometric optics
in �, reflected according to Descartes’ law on the boundary, enter the domain
ω in some finite uniform time 2S (see [4] for a more precise description of the
GCC). This imposes, of course, important constraints on the geometry of the con-
trol subdomain ω. This condition is sharp in the context of the observability of the
wave equation but, as mentioned above, is not needed to establish the observability
inequality for the heat equation.
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According to [4,5], the GCC is equivalent to the following observability prop-
erty for the corresponding wave equation: there exists C > 0 such that any solution
y of the wave system

{
∂ss y −�x y = 0, (s, x) ∈ R ×�,

y = 0, (s, x) ∈ R × ∂�
(1.9)

satisfies
∫

�

|y(0, x)|2 dx + ‖ys(0, ·)‖2
H−1(�)

� C
∫ S

−S

∫

ω

|y(s, x)|2 dsdx . (1.10)

In (1.9), s stands for the time variable of the wave equation, since it is convenient
to distinguish it from the time t for the heat process.

The time 2S needed for the GCC to hold, in view of the finite velocity of prop-
agation of waves (≡ 1 in the present model), is necessarily such that S � d̃ . This
is the case, since, roughly, in time 2d̃ , one can only guarantee that the ray along
the geodesic path reaches the observation set, after evolving along a back and forth
trajectory, while the GCC requires the same to hold for all the rays. However, there
are many cases in which S 
 d̃ or even S is infinite. This is precisely the case when
ω fails to satisfy the GCC in any finite time. This happens, for instance, when � is
the unit ball andω is a ball centered at the origin and of radius r < 1. However, there
are non-trivial situations in which we can guarantee that S = d̃ = d, particularly
in the one-dimensional setting, as we will explain in Section 4.

Under the GCC, it has been shown that the observability inequality (1.3) holds
for the heat equation for all

γ̃ > γ∗S2/2, (1.11)

with γ∗ = 8(36/37)2 in [28,30]. This upper bound on γ̃ was later improved to
γ∗ = 3 in [39].

As a consequence of this, according to (1.5), the observability inequality (1.2)
holds for any γ satisfying

γ > 3S2/2. (1.12)

But, even when S = d, this upper bound (1.12) on the best observability constant
is larger (by a multiplicative factor 3) than the lower bound (1.8).

A sharp result on γ in one dimension The results in [12] imply that, for one-
dimensional parabolic equations on an interval of length L controlled from one of
the points on the boundary, γ in (1.2) can be chosen to be any constant strictly
larger than L2/2, whereas (1.2) does not hold if γ < L2/2.

This is the unique existing result in the literature on the optimality of γ in (1.2)
as far as we know.

Note that the results in [12] are stated from the point of view of the reachability
set of the heat equation, but this set is fully determined by the constant γ in (1.2),
see Section 2.4.
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The techniques used in [12] are based on a precise study of the biorthogonal
family of (exp(−n2π2t))n�0 in L2(0, T ), which is not available in higher dimen-
sions.

Also note that this seems to indicate that the lower bound (1.8) for γ should be
d̃2/2 instead of d2/2. So far, this is only a conjecture.

As we have stated, the fact that the observability property of waves implies
the observability of the heat equation is well known. But this has not been proved
directly so far, but rather in the context of the dual equivalent controllability prob-
lem. To be more precise, Russell in his pioneering work [37] observed that the
exact controllability property of the wave equation implies the null controllability
of the corresponding heat process. This, by duality, also allows one to show the link
between the observability properties of these two models.

The original approach of Russell was based on the method of moments [37].
Since then, this has been modified and replaced by the so-called transmutation
method [28,30,31], which has been employed to give the quantitative results on the
exponential observability cost mentioned above. Transmutation is easier to apply:
it is inspired in Kannai’s transform, which allows one to write the solutions of the
controlled abstract heat equation in terms of the corresponding controlled solutions
of the wave model. This approach has also been recently used in [33] to derive an
efficient method for numerically computing the control for heat equations.

The main result of this paper ensures that, under the GCC, the observability
inequality (1.2) holds for γ = S2/2 (or very close variants; see Section 4 for more
details). This significantly improves the known estimates (1.12).

According to the lower bound (1.8), we conclude that our result is sharp when
S = d. The latter is true, as we mentioned above, in one space dimension and in
some simple multidimensional geometries: for instance, for any domain � when
the control set ω is a neighborhood of its boundary such that � \ ω is a ball, see
Section 4.

Note that even in the one-dimensional case, it also improves the results in [12]
up to the critical case γ = L2/2.

Our approach is also based on a transmutation method, but applied directly
on the observability context rather than from the control point of view. The
main novelty is that we write solutions of the wave equation as a function of
that of the heat equation, in the opposite sense to the classical Kannai trans-
form. This might seem counterintuitive since solutions of the heat equation prop-
agate at an infinite speed, and this could be an obstruction to get the solutions
of the wave equation, with a finite velocity of propagation. But, in fact, this
may be done since our transform maps solutions of the heat equation into a
class of analytic solutions of the wave one. Once solutions of the wave equa-
tion have been written in terms of those of the heat equation, applying the well
known observability properties of the wave equation under the GCC, one recovers
observability inequalities for the heat equation with sharp exponential observation
cost.

This method will be formulated and presented in an abstract setting containing
the heat equation but also other parabolic problems as, for instance, the fourth-order
diffusion operator.
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1.2. The Main Result

Let X be a Hilbert space and A be a self-adjoint positive definite unbounded
operator on X with dense domain D(A) and compact resolvent.

We then introduce the following abstract heat equation:
{
∂t z + Az = 0, t ∈ R+,
z(0) = z0,

(1.13)

and its corresponding wave equation:
{
∂ss y + Ay = 0, s ∈ R,

y(0) = y0, ∂s y(0) = y1.
(1.14)

The observation is done through an operator B ∈ L(D(A),U ), where U is a
Hilbert space.

As we mentioned above, our approach applies under the assumption that the
observability property holds for this abstract wave equation as made precise below.

Assumption 1. There exist a time S > 0 and a constant Cw = Cwave such that any
solution y of the wave equation (1.14) with initial data (y0, y1) ∈ D(A)×D(A1/2)

satisfies
∥
∥
∥A1/2 y0

∥
∥
∥

2

X
+ ‖y1‖2

X � Cw

∫ S

−S
‖By(s)‖2

U ds. (1.15)

Our main result is the following:

Theorem 1.1. Let A be a self-adjoint unbounded positive definite operator
with dense domain and compact resolvent and B be an observation operator
B ∈ L(D(A),U ) such that Assumption 1 holds.

Then there exists C > 0 such that for any z solution of (1.13) with initial data
z0 ∈ D(A), the following estimate holds

∫ ∞

0
exp

(

− S2

2t

)

‖z(t)‖2
X dt � C

∫ ∞

0
‖Bz(t)‖2

U dt. (1.16)

Besides, for all T > 0 there exists C(T ) > 0 such that for any z solution of
(1.13) with initial data z0 ∈ D(A), the following is satisfied:

∫ ∞

0
exp

(

− S2

2t

)

‖z(t)‖2
X dt � C(T )

∫ T

0
‖Bz(t)‖2

U dt. (1.17)

The following comments are in order:

• In view of this result, one can take any γ > S2/2 in (1.2) when the GCC is
satisfied, see Section 4 for more details, and even the critical case γ = S2/2
provided the norm in the left-hand side of (1.2) is weakened.

• The finite time estimate (1.17) should be made precise further in the sense that
it would be interesting to get explicit bounds on how the constant C(T ) grows
as T tends to zero. This issue is discussed in Section 3.2 and in Section 5.
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• If B is assumed to be in L(D(A1/2),U ), since A is positive definite, the
right-hand side of (1.16) is finite for any solution of (1.13) with initial data
in X . This is so because solutions z of (1.13) with initial data in X belong to
L2(R+, exp(νt)dt;D(A1/2)), for some ν > 0 smaller than the first eigenvalue
of A. Accordingly, when B ∈ L(D(A1/2),U ), by density, estimate (1.16) can
be extended to any z0 ∈ X .

If B does not belong to L(D(A1/2),U ) but only to L(D(A),U ), one cannot
guarantee a priori that the integrals in (1.16) are finite for any initial data z0 ∈ X
but the inequalities (1.16)–(1.17) make sense for initial data in D(A).

In Section 3, we will explain how our transmutation technique developed for
Theorem 1.1 can be applied directly in a finite-time horizon, using different trans-
mutation kernels that are compactly supported in time t ∈ (0, T ).

In particular, our transmutation method can be used to get a bound on the cost
of controllability γ̃ in (1.3) (see Section 3.2), though the bound we obtain is worse
than the ones in [28,39] when T ∼ 0. We shall explain why our method fails to
improve the bounds in [39].

Our method also identifies an observed quantity for which not only the observ-
ability inequality holds but the reverse is also true (see Section 3.3). In other words,
we will give an explicit norm on the initial data which is equivalent to some norm
of the observation. Note for instance that, although (1.2) holds, the reverse is not
true. This issue is of course of particular interest with respect to the control prob-
lem, as we explain in Section 3.4. In particular, this can be used to determine a
Hilbert uniqueness method algorithm to compute smooth controls. This partially
explains why transmutation allows one to avoid the ill-posedness of the problem
of numerically computing the controls (see [33]).

We also list a number of examples in which our approach applies. In partic-
ular, we focus on the one-dimensional heat equation. We then consider the case
� = (0, 1)2, the unit square, with observation on the boundary, first when the GCC
holds, and then when the observation is done only on one side of the unit square. In
that latter case, though the GCC does not hold, transmutation can be applied and
also yields in that particular case estimates on the exponential observability cost.

The outline of the article is as follows. First, in Section 2, we prove Theorem 1.1.
We also briefly comment in Section 3 how the techniques we have developed for
Theorem 1.1 can be adapted to deal with a finite time horizon, and comment their
control theoretical consequences. In Section 4, we discuss applications of Theo-
rem 1.1 on some examples. Finally, in Section 5, we give some further comments
and open problems.

2. Proof of the Main Result

We proceed in several steps that will be presented in different paragraphs.

2.1. Transmutation: From Heat Processes to Waves

As we have explained above, transmutation has been used so far to transform
results on the control of the wave equation into results on the control of the heat one.
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For that to be done, one has to write the solutions of the heat equation in terms of
those of the wave equation in the spirit of the classical Kannai transform (see, for
instance, [28]).

But here we apply the transmutation method at the level of the observability
property. More precisely, we want to derive observability inequalities for the heat
equation as a consequence of the existing observability inequalities for the wave
equation. For this to be done, one has to write the solutions of the wave equation
in terms of those of the heat equation. Such a transform is rather counterintuitive,
since, in view of the finite velocity of propagation underlying the wave operator,
it might seem unnatural to try to express its solutions in terms of the heat kernel
which diffuses at an infinite speed. But this can be done, indeed, for a suitable class
of initial data and this suffices to our purposes.

The key observation of the present article is as follows:

Theorem 2.1. Let z0 ∈ X and z = z(t) be the solution of the abstract heat equation
(1.13) with initial datum z0.

For any finite S > 0, the solution of the abstract wave equation (1.14) with
initial data

y0 ≡ 0, y1 =
∫ ∞

0

S

4
√
π t3/2

exp

(

− S2

4t

)

z(t) dt, (2.1)

in the time interval −S < s < S can be represented as

y(s) =
∫

R+

1

(4π t)1/2
sin

(
sS

2t

)

exp

(
s2 − S2

4t

)

z(t) dt. (2.2)

Proof of Theorem 2.1. Let us consider z the solution of the abstract heat equation
(1.13) with initial data z0 ∈ X . One can check directly the statement of Theo-
rem 2.1, showing that y given by (2.2) is a solution of (1.14). However, for giving
a better insight to the reader, we rather explain how we got this result, linking the
trajectory z(t) to one of the solutions of the abstract wave equation (1.14).

To do this, we look for a solution y of (1.14) in the form

y(s) =
∫

R+
k(t, s)z(t) dt, (2.3)

where k = k(t, s) is a suitable kernel to be made precise below, describing how the
wave and heat semigroups are related.

In order to identify the kernel k we formally apply the abstract wave operator
to y:

∂ss y(s)+ Ay(s) =
∫

R+
∂ssk(t, s)z(t) dt +

∫

R+
k(t, s)Az(t) dt

=
∫

R+
∂ssk(t, s)z(t) dt −

∫

R+
k(t, s)∂t z(t) dt

=
∫

R+
∂ssk(t, s)z(t) dt+

∫

R+
∂t k(t, s)z(t) dt− lim

t→∞ (k(t, s)z(t))

+ k(0, s)z0.
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This shows that y is a solution of the wave equation (1.14) if k satisfies
⎧
⎨

⎩

∂t k + ∂ssk = 0, t ∈ R+, s ∈ R,

k(0, s) = 0, s ∈ R,

limt→∞ k(t, s) = 0, s ∈ R.

(2.4)

Note that in this system s plays the role of the space variable and that we are deal-
ing with the adjoint heat equation that can be easily transformed into the standard
forward one by the change of variables t → −t .

The existence of such non-trivial kernels k is well known (see, for example,
[18]), even if, of course, problem (2.4) is severely ill-posed. In particular, according
to the uniqueness results in [7], if we assume that, for some constant M ,

|k(t, s)| � M exp(Ms2), t ∈ R+, s ∈ R,

then k ≡ 0. Therefore, the solution we are looking for, k, has to violate this growth
condition.

Note that, formally, for any k satisfying (2.4), we automatically get that y given
by (2.3) is a solution of the abstract wave equation (1.14). But for the estimates we
will derive later to obtain Theorem 1.1, we will need precise estimates on one such
non-trivial kernel k.

A key further observation with respect to the constructions in [17,18] is that, in
the present context, we only need the solution k to be defined for s ∈ (−S, S). We
can then look for k satisfying, instead of (2.4), the following restricted system:

⎧
⎨

⎩

∂t k(t, s)+ ∂ssk(t, s) = 0, t ∈ R+, s ∈ (−S, S),
k(0, s) = 0, s ∈ (−S, S),
limt→∞ |k(t, s)| = 0, s ∈ (−S, S).

(2.5)

Such k satisfying (2.5) can be given explicitly:

k(t, s) = 1

(4π t)1/2
sin

(
sS

2t

)

exp

(
s2 − S2

4t

)

. (2.6)

Furthermore, k satisfies the following identities:

k(t, 0) = 0, t ∈ R+, ∂sk(t, 0) = S

4
√
π t3/2

exp

(

− S2

4t

)

, t ∈ R+.

Summarizing, if z is the solution of the abstract heat equation (1.13), then the
function y given by (2.3) with this kernel k is precisely a solution of the wave
equation (1.14) for s ∈ (−S, S)with initial data (y0, y1) as in (2.1). This concludes
the proof of Theorem 2.1. �

Remark 2.1. Observe also that the function k in (2.6) can be obtained from
the Appell transform (see [40]) out of the separated variable solution v(t, s) =
sin(Ss/2) exp(S2t/4) of the adjoint heat equation ∂tv + ∂ssv = 0.

Also note that this is the same kernel as the one constructed in [13,42] (see
(1.7)) but with t replaced by −t to switch from the heat operator to the present
adjoint one. There, it was used to prove estimates from below for γ .
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2.2. Observability by Transmutation

Using the transmutation formula of the previous paragraph, we can derive a first
observability inequality for the heat equation as a consequence of the corresponding
one for the wave equation.

The following holds:

Theorem 2.2. Let B be an observation operator B ∈ L(D(A),U ).
If Assumption 1 holds and A is self-adjoint, positive definite and with compact

resolvent, for any z solution of (1.13) with initial data z0 ∈ D(A),
∥
∥
∥
∥

∫ ∞

0

S

4
√
π t3/2

exp

(

− S2

4t

)

z(t) dt

∥
∥
∥
∥

2

X

� Cw

∫ S

−S

∥
∥
∥
∥

∫ ∞

0

1

(4π t)1/2
sin

(
sS

2t

)

exp

(
s2 − S2

4t

)

Bz(t) dt

∥
∥
∥
∥

2

U
ds, (2.7)

where Cw is the constant in (1.15).

Proof of Theorem 2.2. Let z0 ∈ D(A) and consider z(t) the corresponding solu-
tion to the abstract heat equation (1.13).

Then Theorem 2.1 yields a solution y of the wave equation on (−S, S), explic-
itly given through identity (2.2). Using (1.15), we immediately obtain

∥
∥
∥A1/2 y0

∥
∥
∥

2

X
+ ‖y1‖2

X � Cw

∫ S

−S

∥
∥
∥
∥

∫

R+
k(t, s)Bz(t)dt

∥
∥
∥
∥

2

U

ds, (2.8)

for those initial data (y0, y1) given by (2.1). This is exactly (2.7). �

Note that, in (2.7), the term on the left constitutes a norm on z0 whereas the

one on the right should be estimated in terms of the norm of the observation Bz(t).
This will be done in the next paragraph.

2.3. Further Estimates

In view of the estimate (2.7) in Theorem 2.2, in order to get the main result in
Theorem 1.1, it is sufficient to estimate the integrals on both sides of (2.7).

For this to be done, it will be convenient to use the spectral decomposition of
the functional space X on the basis of the eigenfunctions of A: since A is a self-
adjoint positive definite operator with compact resolvent, its spectrum consists of a
sequence of positive eigenvalues 0 < μ0 � · · · � μ j � μ j+1 → ∞ and an ortho-
normal (in X ) basis of corresponding eigenvectors � j satisfying A� j = μ j� j .

We now prove classical estimates from below for the left-hand side of (2.7) and
from above for the right-hand side.

Estimates on the left-hand side of (2.7)

Lemma 2.1. There exists a constant C > 0 such that
∫ ∞

0
exp

(

− S2

2t

)

‖z(t)‖2
X dt � C

∥
∥
∥
∥

∫ ∞

0

1

t3/2 exp

(

− S2

4t

)

z(t) dt

∥
∥
∥
∥

2

X
. (2.9)
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To be more precise, if z0 = ∑
a j� j , solutions z of (1.13) with initial data z0

satisfy:

∑

j

|a j |2
exp(−2S

√
μ j )

(1 + μ j )1/2
� C

∥
∥
∥
∥

∫ ∞

0

1

t3/2 exp

(

− S2

4t

)

z(t) dt

∥
∥
∥
∥

2

X
, (2.10)

∫ ∞

0
exp

(

− S2

2t

)

‖z(t)‖2
X dt � C

∑

j

|a j |2
exp(−2S

√
μ j )

(1 + μ j )1/2
. (2.11)

Proof of Lemma 2.1. Expanding z0 on the basis (� j ) as z0 = ∑
j a j� j , the

corresponding solution z of (1.13) is

z(t) =
∑

j

a j� j exp(−μ j t). (2.12)

This implies in particular that

∥
∥
∥
∥

∫ ∞

0

1

t3/2 e− S2
4t z(t) dt

∥
∥
∥
∥

2

X
=

∑

j

|a j |2
(∫ ∞

0

1

t3/2 e− S2
4t −μ j t dt

)2

. (2.13)

We need to determine a lower bound for

F(μ) =
∫ ∞

0

1

t3/2 exp

(

− S2

4t
− μt

)

dt.

For this, set Tμ = S/(2
√
μ), and remark that

F(μ) �
∫ ∞

Tμ

1

t3/2 exp

(

− S2

4t
− μt

)

dt

� exp

(

− S
√
μ

2

) ∫ ∞

Tμ

1

t3/2 exp (−μt) dt

� exp

(

− S
√
μ

2

)

μ1/2
∫ ∞

μTμ

1

t3/2 exp (−t) dt.

But, for α ∈ [2,∞),

∫ ∞

α

1

t3/2 exp(−t) dt = 1

α3/2 exp(−α)− 3

2

∫ ∞

α

1

t5/2
exp(−t) dt

and
∣
∣
∣
∣
3

2

∫ ∞

α

1

t5/2
exp(−t) dt

∣
∣
∣
∣ � 3

2

1

α5/2

∫ ∞

α

exp(−t) dt � 3

4

1

α3/2 exp(−α),

which implies in particular, for α � 2, that
∫ ∞

α

1

t3/2 exp(−t) dt � 1

4

1

α3/2 exp(−α).
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Hence, for μ � 16/S2,

F(μ) �
exp(−S

√
μ)

S
√

2Sμ1/4
�

exp(−S
√
μ)

S
√

2S(1 + μ)1/4
.

For μ ∈ [0, 16/S2], one easily checks that F is continuous and does not vanish.
Thus it is bounded from below by some positive constant. We conclude that there
exists c > 0 such that for all μ ∈ R+,

F(μ) � c
exp(−S

√
μ)

(1 + μ)1/4
, (2.14)

which implies (2.10) by (2.13).
Now, using the same notations as in (2.12), let us remark that

∫ ∞

0
exp

(

− S2

2t

)

‖z(t)‖2
X dt =

∑

j

|a j |2
∫ ∞

0
exp

(

− S2

2t
− 2μ j t

)

dt. (2.15)

Estimate (2.11) then follows from the following one: for μ � μ0 > 0, (recall
that μ0 is the smallest eigenvalue of A)

∫ ∞

0
exp

(

− S2

2t
− 2μt

)

dt = S

2
√
μ

∫ ∞

0
exp

(

−S
√
μ

(

t + 1

t

))

dt

� S

2
√
μ

∫ 3

0
exp

(−2S
√
μ

)
dt + S

2
√
μ

∫ ∞

3
exp

(−S
√
μt

)
dt

� S

2
√
μ

(

3 exp
(−2S

√
μ

) + 1

S
√
μ

exp
(−3S

√
μ

)
)

� C
exp(−2S

√
μ)√

μ
� C

exp(−2S
√
μ)√

1 + μ
. (2.16)

Hence, from (2.15)–(2.16), there exists a constant C such that (2.11) holds.
Estimate (2.9) immediately follows from (2.10)–(2.11). This concludes the

proof of Lemma 2.1. �

Estimates on the right-hand side of (2.7)

Lemma 2.2. For all T > 0, there exists a constant C0(T ) such that

∫ S

−S

∥
∥
∥
∥

∫ ∞

T
k(t, s)Bz(t) dt

∥
∥
∥
∥

2

U
ds � C0(T )

∥
∥
∥
∥

∫ ∞

0

1

t3/2 e− S2
4t z(t) dt

∥
∥
∥
∥

2

X
. (2.17)

Moreover,

lim
T →∞ C0(T ) = 0. (2.18)
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Proof of Lemma 2.2. Let T > 0.
Using that, for some constant C independent of T > 0,

∫ ∞

T

dt

t log2(t + 2)
�

∫ ∞

1

dt

t log2(t + 2)
dt +

∫ 1

min{T,1}
dt

t log2(t + 2)

� C

(
T + 1

T

)

,

for each s ∈ (−S, S), we get

∥
∥
∥
∥

∫ ∞

T
k(t, s)Bz(t)dt

∥
∥
∥
∥

2

U

�
(∫ ∞

T
|k(t, s)|2 ‖Bz(t)‖2

U t log2(t + 2) dt

) ∫ ∞

T

dt

t log2(t + 2)

� C

(
T + 1

T

) ∫ ∞

T

1

4π t
sin2

(
sS

2t

)

e
s2−S2

2t ‖Bz(t)‖2
U t log2(t + 2) dt

� C

(
T + 1

T

) ∫ ∞

T
log2(t + 2) ‖Bz(t)‖2

U dt. (2.19)

But B belongs to L(D(A),U ). Thus,
∫ ∞

T
log2(t + 2) ‖Bz(t)‖2

U dt � C
∫ ∞

T
(1 + t)2 ‖z(t)‖2

D(A) dt. (2.20)

Using the same expansion of the heat solutions as in (2.12), we obtain
∫ ∞

T
(1 + t)2 ‖z(t)‖2

D(A) dt �
∑

j

|a j |2
∫ ∞

T
(1 + t)2μ4

j exp(−2tμ j ) dt

� C
∑

j

|a j |2 exp(−2μ j T )μ
3
j (1 + T )2. (2.21)

This shows that, for some C > 0 independent of T ,

∫ S

−S

∥
∥
∥
∥

∫ ∞

T
k(t, s)Bz(t) dt

∥
∥
∥
∥

2

U
ds � C

(1 + T )3

T

∑

j

|a j |2 exp(−2μ j T )μ
3
j .

(2.22)

Thus, for all T > 0, setting

C̃0(T ) = sup
μ�μ0

{

exp(−2μT + 2S
√
μ)(1 + μ)1/2μ3 (1 + T )3

T

}

,

we have

∑

j

|a j |2 exp(−2μ j T )μ
3
j
(1 + T )3

T
� C̃0(T )

∑

j

|a j |2
exp(−2S

√
μ j )

(1 + μ j )1/2
, (2.23)
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and, obviously, limT →∞ C̃0(T ) = 0 because μ0, the smallest eigenvalue of A, is
strictly positive.

Estimate (2.17) and the limit (2.18) then follow immediately from estimates
(2.10), (2.22) and (2.23). �

Lemma 2.3. For all T > 0, there exists a constant C(T ) such that

∫ S

−S

∥
∥
∥
∥

∫ T

0
k(t, s)Bz(t) dt

∥
∥
∥
∥

2

U
ds � C

∫ T

0
‖Bz(t)‖2

U dt. (2.24)

Proof of Lemma 2.3. For each s ∈ (−S, S),

∥
∥
∥
∥

∫ T

0
k(t, s)Bz(t)dt

∥
∥
∥
∥

2

U

�
∫ T

0
|k(t, s)|2 ‖Bz(t)‖2

U

√
t dt

∫ T

0

dt√
t

� C
∫ T

0

1

4π t
sin2

(
sS

2t

)

exp

(
s2 − S2

2t

)

‖Bz(t)‖2
U

√
t dt

� C
∫ T

0

1√
t
‖Bz(t)‖2

U exp

(
s2 − S2

2t

)

dt. (2.25)

Besides, for t ∈ (0, S2),

∫ S

−S
exp

(
s2 − S2

2t

)

ds = 2
∫ S

0
exp

(
s2 − S2

2t

)

ds

=2
∫ S−√

t

0
exp

(
s2−S2

2t

)

ds+2
∫ S

S−√
t
exp

(
s2−S2

2t

)

ds

� 2S exp

(

− S√
t

+ 1

2

)

+ 2
√

t � C
√

t,

and, obviously, whatever t > 0 is,

∫ S

−S
exp

(
s2 − S2

2t

)

ds � 2S.

Combining these two estimates, we deduce that for all t > 0,

∫ S

−S
exp

(
s2 − S2

2t

)

ds � min{2S,C
√

t}.

Thus, integrating (2.25) in s ∈ (−S, S), we obtain the desired estimate (2.24).
�


We are now in position to prove Theorem 1.1.
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Proof of Theorem 1.1. Combining Theorem 2.2, Lemmas 2.2 and 2.3, we obtain

∥
∥
∥
∥

∫ ∞

0

1

t3/2 exp

(

− S2

4t

)

z(t) dt

∥
∥
∥
∥

2

X
� C

∫ T0

0
‖Bz(t)‖2

U dt

+ CC0(T0)

∥
∥
∥
∥

∫ ∞

0

1

t3/2 exp

(

− S2

4t

)

z(t) dt

∥
∥
∥
∥

2

X
. (2.26)

Taking T0 large enough so that

CC0(T0) � 1/2, (2.27)

which can be done by Lemma 2.2, we obtain

∥
∥
∥
∥

∫ ∞

0

1

t3/2 exp

(

− S2

4t

)

z(t) dt

∥
∥
∥
∥

2

X
� C

∫ T0

0
‖Bz(t)‖2

U dt. (2.28)

This implies (1.17) for T0 from (2.9). Estimates (1.17) for T � T0 and (1.16) are
then straightforward.

To prove (1.17) in any time T > 0 (and smaller than T0), we use a compactness
argument to show that for all T > 0, there exists a constant C such that for any z
solution of (1.13) with initial data z0 = ∑

a j� j ∈ D(A),
∥
∥
∥
∥

∫ ∞

0

1

t3/2 exp

(

− S2

4t

)

z(t) dt

∥
∥
∥
∥

2

X
� C

∫ T

0
‖Bz(t)‖2

U dt. (2.29)

We argue by contradiction.
Fix T ∈ (0, T0) and assume that there is no constant C such that (2.29) holds.

Then a sequence zn of solutions of (1.13) with initial data z0,n = ∑
j a j,n� j ∈

D(A) exists such that

∥
∥
∥
∥

∫ ∞

0

1

t3/2 exp

(

− S2

4t

)

zn(t) dt

∥
∥
∥
∥

2

X
= 1, lim

n→∞

∫ T

0
‖Bzn(t)‖2

U = 0. (2.30)

Note that, using the expansion of z on the basis (� j ), for all n ∈ N,

∥
∥
∥
∥

∫ ∞

0

1

t3/2 exp

(

− S2

4t

)

zn(t) dt

∥
∥
∥
∥

2

X
=

∑

j

|a j,n|2β2
j ,

where β j =
∫ ∞

0

1

t3/2 exp

(

− S2

4t
− μ j t

)

dt, (2.31)

and that, according to estimate (2.14), for some C > 0,

β j � C
exp(−S

√
μ j )

(1 + μ j )1/4
. (2.32)

Thus, (a j,nβ j ) is bounded in �2(N) and, extracting a sequence if necessary,
(a j,nβ j ) weakly converges to some sequence (b jβ j ) in �2(N).
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But, due to (2.32), for all ε > 0, there exists a constant cε such that for all
(a j ) ∈ �2(N),

∥
∥
∥
∥
∥
∥

t �→
∑

j

|a j |2 exp(−2μ j t)

∥
∥
∥
∥
∥
∥

L∞(ε,∞)

� cε
∑

j

|a j |2β2
j .

This implies in particular that, setting z̃(t) = ∑
j b j exp(−μ j t)� j for all t > ε, zn

weakly converges to z̃ in L∞(ε,∞; X)weak-∗. Due to the regularizing effect of the
abstract heat equation under consideration, this implies that zn strongly converges
to z̃ in L2(2ε,∞;D(A)) and zn(2ε) strongly converges to z̃(2ε) in D(A).

Therefore, choosing ε < T/3, z̃(·+2ε) solves (1.13) with initial data z̃(2ε) and,
due to (2.30) and the strong convergence of zn to z̃ in L2(2ε,∞;D(A)), Bz̃(t) = 0
for t ∈ (2ε, T ). But solutions of (1.13) are analytic in positive time with values
in D(A). Hence Bz̃(t) = 0 for all t > 2ε, particularly on (2ε, T0 + 2ε). Applying
(1.17) with T0 to z̃(· + 2ε), we deduce that z̃(t) ≡ 0 for all t > 2ε. Hence the limit
sequence (b j ) is identically zero.

But zn strongly converges to z̃ ≡ 0 in L2(T, T0;D(A)). Since B ∈
L(D(A); U ), we deduce that Bzn strongly converges to Bz̃ ≡ 0 in L2(T, T0; U ).
Consequently, due to (2.30), Bzn strongly converges to zero in L2(0, T0; U ). But
then, according to (2.28), (a j,nβ j ) strongly converges to zero in �2(N), which
contradicts (2.30).

Hence we have proved (2.29) for any positive time T > 0.
Estimate (2.9) then yields (1.17) in any time T > 0 and concludes the proof of

Theorem 1.1. �


Remark 2.2. The regularizing effect of the abstract heat semigroup also allows one
to show that for all p > 0 and γ > S2/2, any solution z of (1.13) satisfies

∫ ∞

0
exp

(
−γ

t

)
‖z(t)‖2

D(Ap) dt � C(γ, p)
∫ ∞

0
‖Bz(t)‖2

U dt (2.33)

with a constant C = C(γ, p) > 0. Indeed, writing z(t) = ∑
j a j� j exp(−μ j t)

and using (2.16), we get

∫ ∞

0
exp

(
−γ

t

)
‖z(t)‖2

D(Ap) dt � C
∑

j

|a j |2μ2p
j

exp(−2
√

2γ
√
μ j )

(1 + μ j )1/2
, (2.34)

which easily yields the claimed result (2.33) by (2.38) and the estimates (2.32).

Remark 2.3. For convenience, we have assumed that B is bounded from D(A)
to U , but our arguments apply similarly when the operator B is unbounded from
D(Ap) to U , whatever p ∈ N is. The proofs are the same, except for Lemma 2.2
and the compactness argument used in the proof of (2.29), where straightforward
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modifications need to be applied. This allows one to deal with weaker observability
properties, such as pointwise observations, as we will explain in Section 4.

Remark 2.4. It would be interesting to know if the following observability
inequality holds: for all T > 0, there exists a constant C(T ) such that solutions z
of (1.13) satisfy

∥
∥
∥
∥

∫ ∞

0

1

t3/2 exp

(

− S2

4t

)

z(t) dt

∥
∥
∥
∥

2

X
� C(T )

∫ S

−S

∥
∥
∥
∥

∫ T

0
k(t, s)Bz(t) dt

∥
∥
∥
∥

2

U
ds,

(2.35)

where k is the function given by (2.6).
Using Theorem 2.2 and Lemma 2.2, we immediately get that this is true for

T > T1 for T1 large enough.
However, for T > 0, the compactness argument used in the proof of Theo-

rem 1.1 cannot be applied directly and requires the following unique continuation
property: if z denotes a solution of the abstract heat equation (1.13),

(

∀s ∈ (−S, S),
∫ T

0
k(t, s)Bz(t) dt = 0

)

�⇒ ∀t ∈ (0, T ), Bz(t) = 0.

(2.36)

Whether or not this unique continuation property holds for any time T > 0 is an
open problem.

Of course, using that k solves (2.5), this is equivalent to prove that solutions y of

∂ss y + Ay = −k(T, s)z(T ), s ∈ (−S, S) (2.37)

with initial data as in (2.1) satisfying By(s) = 0 for all s ∈ (−S, S) vanish identi-
cally. Of course, the source term in (2.37) makes the classical unique continuation
results of no use for that particular problem.

2.4. A First Application to Control

Let us remark that, under the assumptions of Theorem 1.1, the proof of Theo-
rem 1.1 yields (2.29). Hence, for any time T > 0, there exists a constant C such
that for all z solution of (1.13) with initial data z0 = ∑

a j� j ,

∑

j

|a j |2β2
j � C

∫ T

0
‖Bz(t)‖2

U dt, (2.38)

with β j as in (2.31).
This can be used to show that the reachability space RT , which is the set of all

functions that can be obtained as z(T ) for z solution of the abstract control system

z′ + Az = B∗u(t), t � 0, z(0) = 0, (2.39)
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with u ∈ L2(0, T ; U ), contains the set of all data zT = ∑
j a j� j satisfying

∑

j

|a j |2 1

β2
j

< ∞. (2.40)

Of course, from the estimates (2.32), this is implied by
∑

j

|a j |2(1 + μ j )
1/2 exp(2S

√
μ j ) < ∞. (2.41)

In a more concise form, this means that A−1/4 exp(−S
√

A)X ⊂ RT .
Indeed, following [23,30], let us introduce the functional J defined for ϕT ∈ X

by

J (ϕT ) = 1

2

∫ T

0
‖Bϕ(t)‖2

U dt − 〈ϕT , zT 〉X ,

where ϕ is the solution of the adjoint heat equation

−∂tϕ + Aϕ = 0, t ∈ (0, T ), ϕ(T ) = ϕT .

Then define the completion X̄T of {ϕT ∈ X} with respect to the norm

‖ϕT ‖2
obs =

∫ T

0
‖Bϕ(t)‖2

U dt.

Due to estimate (2.38), if zT = ∑
a j� j satisfies (2.40), the functional J is well-

defined, continuous, convex and coercive in X̄T . It, therefore, has a unique mini-
mizerψT ∈ X̄T , which defines a control function u(t) = Bψ(t) (or, more precisely,
u(t) = BψT , where B is the unique continuous extension of the map ϕT �→ Bϕ(t)
on X̄T ). As one can check by writing the Euler–Lagrange equation satisfied byψT ,
the corresponding solution z of (2.39) satisfies z(T ) = zT .

Note that, in [38] (see also [30]), it is proved that the reachability set is indepen-
dent of T > 0, which is consistent with the fact that the subspace of the reachability
set we have found does not depend on time.

Remark also that our results improve the ones in [12], where it was proved
using biorthogonals that exp(−(S + ε)

√
A)X ⊂ RT for any T > 0 and ε > 0 for

the case of one-dimensional heat equation observed from one boundary.
Indeed, using the estimates in Section 2.3, one can rewrite the results in [12]

as follows: one can take any γ > S2/2 in (1.2) in 1-d when controlling from one
boundary. However, the techniques used in [12] are restricted to the 1-d case con-
trolled from one boundary, in which case the control problem can be formulated
explicitly as a moment problem.

Therefore other situations (distributed controls in 1-d or any case in higher
dimension) do not seem to be handled by the techniques in [12].

Our result also improves some other existing ones in higher dimension, as for
instance those in [31, Appendix A], stating that exp(−α√

A)X ⊂ RT for any
T > 0 for any α > 4

√
2(36/37)S.
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3. Observability and Controllability in Finite Time

So far our approach has been presented in an infinite time horizon, in the sense
that the transmutation kernel k in (2.6) is not compactly supported in time t ∈ R+.
Below, we explain that there are many possible choices of transmutation kernels,
and among them, many that are compactly supported in time t ∈ (0, T ). However,
as we shall explain below, they are less explicit as before; therefore the estimates
we obtain that way are worse than the ones in the literature. Despite of this, the use
of these finite time horizon kernels yields new results for a broad class of abstract
heat equations.

3.1. Transmutation in Finite Time Horizon

Here, our goal is to show that there are many kernel functions k(t, s), vanishing
after some time T > 0, that can be used to transmute from heat to waves.

Following the proof of Theorem 2.1, given T > 0, one should then construct a
nontrivial solution kT of

⎧
⎨

⎩

∂t kT (t, s)+ ∂sskT (t, s) = 0, t ∈ (0, T ), s ∈ (−S, S),
kT (0, s) = 0, s ∈ (−S, S),
kT (T, s) = 0, s ∈ (−S, S).

(3.1)

Such kT can be constructed following the classical method of Tychonoff (see [17,
p. 211] and [18]). The idea is to look for a solution kT as a power series expansion
in s of the form

kT (t, s) =
∑

n

sn

n! gn(t), (3.2)

where the functions gn are smooth and supported on [0, T ].
A necessary condition for such expansion to solve (3.1) is to have

g2n = (−1)ng(n)0 , g2n+1 = (−1)ng(n)1 , n ∈ N. (3.3)

Such a function kT can be constructed by taking g0(t) ≡ 0 and g1(t) of the
form

g1(t) =
⎧
⎨

⎩

exp

(

−α
(

1

t
+ 1

T − t

))

, t ∈ (0, T ),

0 t ∈ R \ (0, T ),
(3.4)

where α > 0 is some positive parameter.
It is well known that g1 is a smooth function, but to guarantee the convergence

of the power series expansion (3.2), we need more precise estimates, which can be
derived using Cauchy’s formula (see [17, Pb.3 p. 73]):

Lemma 3.1. For each δ ∈ (0, 1), for all n ∈ N and t ∈ (0, T ),

|g(n)1 (t)| � n!
(δmin{t, T − t})n exp

(

− α

(1 + δ)min{t, T − t}
)

. (3.5)
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Proof of Lemma 3.1. Note that, due to the fact that g1 is symmetric in T/2, we
can restrict ourselves to prove (3.5) only for t ∈ (0, T/2).

Fix t ∈ (0, T/2). Note that g1 is real analytic in a neighborhood of t and can
then be extended to an holomorphic function in a neighborhood of t , for instance
in the ball B(t, δt) of center t and radius δt, δ ∈ (0, 1). Thus, the Cauchy formula
yields

g1(t) = 1

2iπ

∫

�(t,δt)

g1(τ )

τ − t
dτ, (3.6)

where �(t, δt) denotes the circle of center t and radius δt .
We then obtain that

g(n)1 (t) = n!
2iπ

∫

�(t,δt)

g1(τ )

(τ − t)n+1 dτ. (3.7)

Now, explicit computations easily yield that, for t ∈ (0, T/2) and τ ∈ �(t, δt)

|g1(τ )| = exp

(

−αRe

(
1

τ
+ 1

T − τ

))

� exp

(

− α

t (1 + δ)

)

,

where Re(τ ) denotes the real part of τ ∈ C and estimate (3.5) follows immediately.
�


Lemma 3.1 allows one to prove the convergence of the series (3.2) and to obtain
the estimate (similarly as in [17, p. 212])

|kT (t, s)| � |s| exp

(
1

min{t, T − t}
(

s2

δ
− α

(1 + δ)

))

. (3.8)

For (3.8) to be well defined on (−S, S) for t → 0 and t → T and for kT to
solve the time boundary conditions in (3.1), we need that, for some δ ∈ (0, 1),
α � S2(1 + 1/δ), that is α > 2S2.

We thus have the following:

Proposition 3.1. For any finite S > 0, for any α > 2S2, there exists a function kT

satisfying (3.1) with kT (t, 0) = 0 and ∂skT (t, 0) = g1(t) given by (3.4) such that
for any δ ∈ (0, 1) satisfying α > S2(1 + 1/δ), for any (t, s) ∈ (0, T ) × (−S, S),
estimate (3.8) holds and, for all p ∈ N,

|∂ p
t kT (t, s)| � p! |s|

(δmin{t, T − t})p
exp

(
1

min{t, T − t}
(

s2

δ
− α

(1 + δ)

))

.

(3.9)

Only (3.9) has not been proved, but it follows from Lemma 3.1 and identity (3.2)
immediately. Details are left to the reader.

Of course, such kT can be used for transmutation, similarly as in Theorem 2.1.
To be more precise, if z0 ∈ X and z = z(t) is the solution of the abstract heat

equation (1.13) with initial datum z0, the function y = y(s) given by

y(s) =
∫ T

0
kT (t, s)z(t) dt, s ∈ (−S, S), (3.10)
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is a solution of the abstract wave equation (1.14) on (−S, S) with initial data

y0 ≡ 0, y1 =
∫ T

0
exp

(

−α
(

1

t
+ 1

T − t

))

z(t) dt. (3.11)

Let us finally emphasize that any kernel kT solution of (3.1) can be used for
transmutation, which illustrates the flexibility of this approach.

3.2. Exponential Observability Cost in Finite Time

As we recalled in the introduction, estimates on the cost γ̃ of controllability
in small time in (1.3) for heat like equations are available in the literature (see
[30,39]).

The goal of this paragraph is to explain that our approach also applies to that
particular issue, using, for instance, the function kT given by Proposition 3.1 but,
so far, yields a weaker result (but with an easier proof ) than the ones in the articles
[28,39]. More precisely, we claim that for all solutions of the abstract heat equation
(1.13), the finite time observability inequality (1.3) holds with γ̃ > 16S2 for all
T > 0 with a constant C independent of T > 0.

This, of course, follows from the estimate (3.8) and similar estimates as the
ones in Section 2.3. The proof is left to the reader.

Let us now explain why this result is so far from the bounds obtained in [30,39].
This is due to the fact that we have very rough estimates on the function kT ,

which is expected to be highly oscillatory, similarly as k in (2.6).
In particular, one could look for a solution kα of (2.5) of the form (3.2) with

g0(t) = 0 and

g1(t) =
⎧
⎨

⎩

√
α√

4π t3/2
exp

(
−α

t

)
, t > 0,

0, t � 0,
α > 0.

Though such function kα corresponds to the explicit solution

kα(t, s) = 1√
4π t

exp

(
s2/4 − α

t

)

sin

(
s
√
α

t

)

, (3.12)

estimates on g1(t) and its derivatives will only yield that, for all δ ∈ (0, 1),

|kα(t, s)| � |s| exp

(
1

t

(
s2

δ
− α

1 + δ

))

. (3.13)

Of course, estimate (3.13) only guarantees the existence of kα for t ∈ R+ and
s ∈ (−√

α/2,
√
α/2)whereas on the explicit formula (3.12), one immediately sees

that kα is well-defined on (t, s) ∈ R+ × (−2
√
α, 2

√
α).

This indicates that the above estimates do not take into account in a satisfactory
way the strong oscillating behavior of the function kα and the conjectured ones
of the functions kT . This also explains why our technique fails to provide sharp
estimates on the finite time exponential observability cost γ̃ in (1.3).
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3.3. Two-Sided Inequalities

When dealing with the wave equation, one often obtains two-sided inequalities
of the following form: there exist some strictly positive constants cw,Cw, such that
any y solution of (1.14) satisfies

cw

∫ S

−S
‖By(s)‖2

U ds �
∥
∥
∥A1/2 y0

∥
∥
∥

2

X
+‖y1‖2

X � Cw

∫ S

−S
‖By(s)‖2

U ds. (3.14)

This states, in addition to (1.15), an admissibility result, always true when
B ∈ L(D(A1/2),U ), but consequence of a more subtle hidden regularity property
when this is not the case (and in particular when considering boundary observa-
tion through the normal derivative of solutions for the Dirichlet Laplacian), see for
example [23].

Inequality (3.14) can be combined with any kernel kT solution of (3.1) (such
kernel exists, see Proposition 3.1) to obtain a two-sided observability inequality for
the heat equation. To simplify the presentation, we further assume that kT is odd
in the variable s. (Otherwise, replace kT by kT (t, s)− kT (t,−s).)

Then the transmutation technique applies and yields:

cw

∫ S

−S

∥
∥
∥
∥

∫ T

0
kT (t, s)Bz(t) dt

∥
∥
∥
∥

2

U
ds

�
∥
∥
∥
∥

∫ T

0
∂skT (t, 0)z(t) dt

∥
∥
∥
∥

2

X
� Cw

∫ S

−S

∥
∥
∥
∥

∫ T

0
kT (t, s)Bz(t) dt

∥
∥
∥
∥

2

U
ds. (3.15)

Concerning the observed quantity on the initial datum, observe that for
z0 = ∑

j a j� j , we have

∥
∥
∥
∥

∫ T

0
∂skT (t, 0)z(t) dt

∥
∥
∥
∥

2

X
=

∑

j

|a j |2(β j (kT ))
2,

where β j (kT ) =
∫ T

0
∂skT (t, 0) exp(−μ j t) dt. (3.16)

We thus define the set of observable states with kT as the Hilbert space given
by

O(kT ) =
⎧
⎨

⎩
z =

∑

j

a j� j , ‖z‖2
O(kT )

=
∑

j

|a j |2(β j (kT ))
2 < ∞

⎫
⎬

⎭
. (3.17)

Let us emphasize that this space depends on the kernel transmutation function kT .
Rewriting (3.15) using this norm, we deduce that there exist two strictly positive

constants c1, c2 such that

c1 ‖z0‖2
O(kT )

�
∫ S

−S

∥
∥
∥
∥

∫ T

0
kT (t, s)Bz(t) dt

∥
∥
∥
∥

2

U
ds � c2 ‖z0‖2

O(kT )
. (3.18)



Sharp Observability Estimates for Heat Equations 997

Remark 3.1. The same can be done with the kernel k as in (2.6), β j as in (2.31)
and O(k) as

O(k) =
⎧
⎨

⎩
z =

∑

j

a j� j , ‖z‖2
O(k) =

∑

j

|a j |2β2
j < ∞

⎫
⎬

⎭
, (3.19)

if T is large enough.
Indeed, according to Remark 2.4 and Lemma 2.2, for T1 large enough, for any

T � T1, for any z solution of the abstract heat equation (1.13), it holds

c1 ‖z0‖2
O(k) �

∫ S

−S

∥
∥
∥
∥

∫ T

0
k(t, s)Bz(t) dt

∥
∥
∥
∥

2

U
ds � c2 ‖z0‖2

O(k). (3.20)

Note that in (3.19), the space O(k) is independent of the time T > 0.
But whether or not estimate (3.20) holds in arbitrarily small values of T > 0 is

an open problem, see Remark 2.4.

Remark 3.2. Let us remark that this is not the first time that one derives such
equivalence of norms between an observation and the solutions. Indeed, the
by-now classical Fursikov–Imanuvilov’s Carleman estimate derived in [15] also
yields, for some weights η = η(t, x) (whose definition is given in an intricate way
that reflects the geometrical setting, see [15] for the detailed definition of η), that,
given T > 0,� andω, there exists a constant C such all solutions z of (1.1) satisfies

∫ T

0

∫

�

η(t, x)2|z(t, x)|2 dt dx � C
∫ T

0

∫

ω

η(t, x)2|z(t, x)|2 dt dx, (3.21)

and of course, the reverse inequality also holds true.

3.4. Application to Control

In the sequel, we assume that (3.14) holds for the abstract wave equation, a
fact that is well known to be true in many relevant situations. For the solutions
of the corresponding heat equation it then follows that the two-sided inequalities
(3.18) are true. These inequalities can be used to deal precisely with the dual control
problem.

A technical assumption For what follows, it is interesting to further assume that
there exists a constant C such that for any z solution of the abstract heat equation
(1.13),

‖z(T )‖X � C ‖z0‖O(kT ). (3.22)

This is automatically fulfilled in most applications because of the strong regulariz-
ing effect of heat-like equations.

Estimate (3.22) means that the map z0 �→ z(T ) is continuous from the set of
observable states with kT to X . In particular, (3.22) and (3.18) imply

‖z(T )‖2
X � C

∫ S

−S

∥
∥
∥
∥

∫ T

0
kT (t, s)Bz(t) dt

∥
∥
∥
∥

2

U
ds.
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Writing (3.22) on the basis of eigenfunctions of A and recalling the definition
(3.17) of the space O(kT ) and of the coefficients β j (kT ), one easily checks that
(3.22) holds if and only if there exists a constant C such that for all μ > 0,

exp(−μT ) � C
∫ T

0
∂skT (t, 0) exp(−μt) dt. (3.23)

Note that the kernel function kT given in Proposition 3.1 satisfies 3.23 (or equiv-
alently (3.22) or (3.25) below): indeed, when t ∈ (0, T ) �→ ∂skT (t, 0) is non-trivial
and non-negative

∫ T

0
∂skT (t, 0)e−μt dt � e−μT

∫ T

0
∂skT (t, 0) dt,

and then C in (3.23) can be taken as C = 1/
∫ T

0 ∂skT (t, 0) dt .
We emphasize that many of the non-trivial kernels kT solutions of (3.1) satisfy

assumption (3.22). This is the case for instance for the kernels kT given by Prop-
osition 3.1. Namely, for any non-trivial non-negative g1 such that the expansion
(3.2) converges, (3.22) holds using the same arguments as above.

In the following, the transmutation kernel kT solution of (3.1) is fixed and
assumed to satisfy (3.22).

The reachability set Define the reachability set (its name will be justified hereafter)

R(kT ) =
⎧
⎨

⎩
z =

∑

j

a j� j , ‖z‖2
R(kT )

=
∑

j

|a j |2 1

(β j (kT ))2
< ∞

⎫
⎬

⎭
, (3.24)

which is the dual space of O(kT ).
Note that, using this spectral representation of solutions of the heat equation

(1.13), one immediately sees that estimate (3.22) (equivalently (3.23)) is equivalent
to the existence of a constant C such that for any z solution of the abstract heat
equation (1.13),

‖z(T )‖R(kT ) � C ‖z0‖X . (3.25)

In particular, this implies that, if z0 ∈ X , then z(T ) belongs to the reachability set
R(kT ), meaning that all free trajectories of the heat semigroup belong to R(kT ).

Let us then consider the following control problem: for z0 ∈ X, zT ∈ R(kT ),
to find a control u so that the solution z of

∂t z + Az = B∗u, t ∈ (0, T ), z(0) = z0, (3.26)

satisfies

z(T ) = zT . (3.27)
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To deal with this problem, in view of the previous two-sided observability
inequalities, following the ideas in Section 2.4, we introduce the functional J on
O(kT ) as

J (ϕT ) = 1

2

∫ S

−S

∥
∥
∥
∥

∫ T

0
kT (T − t, s)Bϕ(t) dt

∥
∥
∥
∥

2

U
ds

+〈ϕ(0), z0〉X − 〈ϕT , zT 〉O(kT )×R(kT ), (3.28)

where ϕ is the solution of the adjoint heat equation

− ∂tϕ + Aϕ = 0, t ∈ (0, T ), ϕ(T ) = ϕT . (3.29)

For convenience, we introduce the free heat equation

∂t z̃ + Az̃ = 0, t ∈ (0, T ), z̃(0) = z0. (3.30)

Using this function z̃, multiplying (3.30) by ϕ solution of (3.29), we immediately
get

〈z0, ϕ(0)〉X = 〈z̃(T ), ϕT 〉O(kT )×R(kT ). (3.31)

Besides, estimate (3.25) implies that

‖z̃(T )‖R(kT ) � C ‖z0‖X . (3.32)

Setting

ZT = zT − z̃(T ), (3.33)

the functional J can be rewritten as

J (ϕT ) = 1

2

∫ S

−S

∥
∥
∥
∥

∫ T

0
kT (T − t, s)Bϕ(t) dt

∥
∥
∥
∥

2

U
ds − 〈ϕT , ZT 〉O(kT )×R(kT ).

(3.34)

Since ZT ∈ R(kT ) (see (3.32)), using (3.18), we deduce that the functional J is
continuous and coercive in the space O(kT ). Since it is strictly convex, it has a
unique minimum ψT ∈ O(kT ) which satisfies

‖ψT ‖O(kT )
� C ‖ZT ‖R(kT ) � C

(‖zT ‖R(kT ) + ‖z0‖X
)
. (3.35)

Writing the Euler–Lagrange equation satisfied by ψT , setting, for s ∈ (−S, S),

v(s) =
∫ T

0
kT (T − t, s)Bψ(t) dt = B

(∫ T

0
kT (T − t, s)ψ(t) dt

)

, (3.36)

where ψ is the solution of the abstract heat equation (3.29) corresponding to ψT ,
we obtain that for all ϕT ∈ O(kT ),
∫ S

−S
〈v(s),

∫ T

0
kT (T −t, s)Bϕ(t) dt〉U ds−〈ϕT , ZT 〉O(kT )×R(kT ) = 0, (3.37)



1000 Sylvain Ervedoza & Enrique Zuazua

or, equivalently,

∫ T

0

〈∫ S

−S
kT (T − t, s)v(s) ds, Bϕ(t)

〉

U
dt

+〈ϕ(0), z0〉X − 〈ϕT , zT 〉O(kT )×R(kT ) = 0. (3.38)

This implies that the function

u(t) =
∫ S

−S
kT (T − t, s)v(s) ds, where v is as in (3.36), (3.39)

is an admissible control function for (3.26): indeed, multiplying (3.26) byϕ solution
of (3.29), we obtain that, for all ϕT ∈ O(kT ),

∫ T

0
〈u(t), Bϕ(t)〉U dt + 〈ϕ(0), z0〉X − 〈ϕT , z(T )〉O(kT )×R(kT ) = 0,

which, according to (3.38), implies that z(T ) = zT .
This control has to have some added advantages with respect to the standard

ones since it has been derived using a subtle two-sided observability inequality. In
particular, as we describe now, the controls obtained by this method have added
regularity properties.

Smoothness of controls Choosing ϕT = ψT in (3.37), we obtain

∫ S

−S
‖v(s)‖2

U ds = 〈ψT , ZT 〉O(kT )×R(kT ).

Estimates (3.35) and (3.18) then show that

‖v‖L2(−S,S;U ) � C ‖ZT ‖R(kT ) � C
(‖zT ‖R(kT ) + ‖z0‖X

)
. (3.40)

In view of (3.39) and (3.40), estimates on kT and its time derivatives (in t) allow
one to recover estimates on the control u in Hk(0, T ; U )-norms.

In particular, according to (3.9), for the functions kT constructed in (3.2), for all
p ∈ N, ∂

p
t kT ∈ L∞((0, T )× (−S, S)). Therefore, the control function u in (3.39)

satisfies the following: for all p ∈ N, there exist constants C p,1,C p,2 such that

‖u‖H p(0,T ;U ) � C p,1 ‖v‖L2(−S,S;U )
� C p,2 ‖ZT ‖R(kT ) � C p,2

(‖zT ‖R(kT ) + ‖z0‖X
)
. (3.41)

Note that this result is specific to the controls we have constructed using the
kernels kT . Indeed, the recent results in [26] show that the classical controls of
minimal L2(0, T ; U )-norm fail to have such a property.

However, remark that the controls constructed in [15] using a minimization
process of a functional based on the Carleman weights also enjoy nice regular-
ity properties. We refer to [15] for precise statements in that direction for heat
equations, and to [8, Propositions 2 and 3] for the Stokes equations.
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To better understand the nature of the control for the heat equation constructed
by minimization of the functional J in (3.28), we analyze in more detail the function
v in (3.36).

For ϕT = ∑
j a j� j , setting y(s) = ∫ S

−S kT (T − t, s)ϕ(t) dt, y(0) = 0 and
∂s y(0) = ∑

j a j� jβ j (kT ), identity (3.37) reads as

∫ S

−S
〈v(s), By(s)〉U ds − 〈∂s y(0), Y0〉X = 0, (3.42)

where Y0 is given by

Y0 =
∑

j

z j

β j (kT )
� j , for ZT =

∑

j

z j� j . (3.43)

Remark that

‖Y0‖2
X = ‖ZT ‖2

R(kT )
, ‖∂s y(0)‖2

X = ‖ϕT ‖2
O(kT )

.

Therefore, the map

ϕT =
∑

j

a j� j �→ ∂s y(0) =
∑

j

a j� jβ j (kT )

is an isomorphism from O(kT ) to X , and (3.42) is satisfied for any y solution of
(1.14) with initial data (y(0), ∂s y(0)) = (y0, y1) ∈ {0} × X .

Besides, according to (3.36), v can be written as B ỹ, where ỹ(s) is given by

ỹ(s) =
∫ T

0
kT (T − t, s)ψ(t) dt.

Of course, due to the properties of the kernel kT , ỹ is a solution of the abstract wave
equation (1.14) with initial data (0, ∂s ỹ(0)) ∈ {0} × X .

Hence, by (3.42), ỹ1 = ∂s ỹ(0) is a critical point of the functional J̃ defined by

J̃ (y1) = 1

2

∫ S

−S
‖By(s)‖2

U ds − 〈y1,Y0〉X , (3.44)

for y1 ∈ X , where y is the solution of

∂ss y + Ay = 0, s ∈ (−S, S), (y(0), ∂s y(0)) = (0, y1). (3.45)

Due to (3.14), the functional J̃ is continuous, coercive and strictly convex in X ,
and then has a unique minimizer, given by ỹ1.

To sum up, v, extended as an odd function on (−S, S), can be computed on
(0, S) by minimization of a suitable functional J̃ defined entirely on the wave
equation.

Actually, the function v(s) can also be viewed as the control of minimal
L2(0, S; U )-norm such that the solution Y of

{
∂ssY + AY = 2B∗v, s ∈ R,

Y (S) = 0, ∂sY (S) = 0
(3.46)
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satisfies the control requirement

Y (0) = Y0, where Y0 is given by (3.43). (3.47)

To see that, first remark that, when y0 = 0, solutions y of (1.14) are odd in the time
variable s. Thus, J̃ can be written as

J̃ (y1) =
∫ S

0
‖By(s)‖2

U − 〈y1,Y0〉X .

Writing the Euler–Lagrange equation satisfied by J̃ at ỹ1, one easily derives that Y
solution of (3.46) with v = B ỹ satisfies (3.47).

Once the control v of the abstract wave equation is characterized in this man-
ner, the results obtained in [10] can be easily modified to deal with this case (using
in particular that, for any τ > 0, if y is a solution of (1.14) with y0 = 0, so
is yτ (s) = (y(s + τ) − 2y(s) + y(s − τ))/τ 2 since y is odd). In particular,
when B belongs to L(D(A1/2),U ) and B∗ B ∈ ∩p>0L(D(Ap)) (otherwise, a time-
dependent smooth weight function η(s) should be introduced within the functional
J in (3.28), see [10]), it follows that for all � � 0, there exists a constant C� such
that

‖v‖H�(−S,S;U ) +
∥
∥
∥A� ỹ1

∥
∥
∥

X
� C�

∥
∥
∥A�Y0

∥
∥
∥

X
= C�

∥
∥
∥A�ZT

∥
∥
∥R(kT )

. (3.48)

We emphasize that (3.48) concerns the regularity properties of v = v(s). The con-
trol u for the heat equation given by (3.39) is always smooth in time provided the
functions ∂ p

t kT all belong to L∞((0, T )× (−S, S)), without these extra regularity
assumptions on B (see (3.41)).

Also note that, as explained in [10], the extra time-regularity properties of v
imply extra space regularity properties.

To sum up, we have proved the following:

Theorem 3.1. Let T > 0 and kT ∈ L∞((0, T ) × (−S, S)) be a solution of (3.1)
satisfying (3.22). Assume that (3.14) holds for solutions of the abstract wave equa-
tion (1.14). Let z0 ∈ X and zT ∈ R(kT ) (defined in (3.24)).

Construction of the control The functional J in (3.28) has a unique minimizerψT

on O(kT ) (defined in (3.17)), which yields a control u solving the control problem
(3.26)–(3.27), given by

u(t) =
∫ S

−S

∫ T

0
kT (T − t, s)kT (T − τ, s)Bψ(τ) dτds, (3.49)

and there exists a constant C such that

‖ψT ‖O(kT )
+ ‖u‖L2(0,T ;U ) � C

(‖z0‖X + ‖zT ‖R(kT )

)
. (3.50)

Another way to compute the control u is the following: find the minimizer ỹ1 ∈ X
of the functional J̃ defined on the solutions of the wave equation (3.45) (with Y0 as
in (3.43)–(3.33)), set v(s) = B ỹ(s). Then the control function u is given by (3.39).
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Smoothness properties of the control function

• For any p ∈ N, if ∂ p
t kT ∈ L∞((0, T ) × (−S, S)), u belongs to H p(0, T ; U )

and satisfies (3.41).
• If for some � ∈ N, A�ZT ∈ R(kT ) and B B∗ ∈ ∩p��L(D(Ap)), then A� ỹ1 ∈

X, (3.48) holds and v belongs to the space

V� = �∩
p=0

C p([−S, S]; B∗D(A�−p)). (3.51)

This automatically yields the following corollary:

Corollary 3.1. Under the assumptions of Theorem 3.1 and with the same notations,
if for all p ∈ N, ∂

p
t kT ∈ L∞((0, T )× (−S, S)), B B∗ ∈ ∩p∈NL(D(Ap)), and for

some � ∈ N, A�ZT ∈ R(kT ), the source term B∗u satisfies

B∗u ∈ C∞([0, T ];D(A�)), (3.52)

and therefore Z = z − z̃, with z solution of the control problem (3.26)–(3.27) and
z̃ as in (3.30), solution of the control problem

Z ′ + AZ = B∗u, t ∈ (0, T ), Z(0) = 0, Z(T ) = ZT , (3.53)

satisfies

Z ∈ C∞([0, T ];D(A�+1/2)). (3.54)

All the results in this Corollary except for the regularity property (3.54) have
been already explained. This latest statement can be deduced immediately from the
regularity (3.52) of the source term in (3.53) by induction (see also [10, Corollary
1.5] where similar results are obtained). Details of the proof of Corollary 3.1 are
left to the reader.

Note that the regularity result in (3.54) concerns Z , the solution of (3.53). To
recover the controlled trajectory z solution of (3.26)–(3.27), one has to add Z and
z̃, solution of (3.30), whose regularity depends only on the initial data to be con-
trolled z0 ∈ X . In particular, if z0 only is in X, z̃ cannot be continuous on [0, T ]
with values in D(A), despite the parabolic regularization effects. That explains why
we need to decouple the regularity properties coming from the initial data from the
ones coming from the control.

The regularity results in Theorem 3.1 indicate that this control u, obtained
through two-sided observability inequalities, and characterized as the minimizer of
the quadratic functional (3.28), could be of use to avoid the numerical ill-posedness
of the effective computation of the controls of the heat equation (see [33]). This
subject needs of further investigation.

Actually the method of transmutation of [30] has been already used in [33] to
derive effective methods for computing the controls of the heat equation. But there
it has been applied in the classical manner, following [30], writing the controls of
the heat equation in terms of those of the wave one, but not as in the present paper,
exploiting the new two-sided observability inequalities we have derived here.
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Let us also emphasize that the controls given by our approach and the ones
provided by the method in [30] are different. Indeed, the transmutation technique
used in [30] consists of writing the trajectories of the heat in terms of the waves. We
are doing the reverse. Hence the conditions on the transmutation kernels in [30] are
different than ours. For instance, in our case, the control function v needs only to
control one component of the wave equation. Also note that the control given by the
transmutation of [30] is based on a null-control for the wave equation with initial
data z0, whereas with our approach, it is based on a control for the wave equation
with the data Y0 (in the sense of (3.46)–(3.47)) given by (3.43), hence constructed
using ZT and the kernel kT . Roughly speaking, this explains why our method has
more flexibility than the one presented in [30].

Remark 3.3. Theorem 3.1 and Corollary 3.1 still hold with k as in (2.6) when the
time T is large enough, since the key estimate (3.20) holds for T large enough (see
Remark 3.1), and k obviously satisfies (3.22).

However, whether or not Theorem 3.1 with k as in (2.6) holds in any finite time
T > 0 is an open problem, see Remark 2.4.

4. Examples

4.1. The One-dimensional Case

Internal observation Let � = (0, 1) and ω = (α1, α2) be a non-empty subinter-
val. Define X = H−1(�) = H−1(0, 1), A = −�with domain D(A) = H1

0 (�) =
H1

0 (0, 1), and B = χω, where χω is the characteristic function of the set ω. Then
B is continuous from D(A1/2) = L2(�) = L2(0, 1) to U = L2(ω).

In this case, it is classical that the wave equation is observable in any time 2S
with S > d̃ = max{α1, 1 − α2}, see for instance [23].

Applying Theorem 1.1, for any S > d̃ = max{α1, 1 − α2}, we automatically
get that any solution z of the heat equation (1.1) with initial data z0 ∈ H−1(0, 1)
satisfies

∫ ∞

0
exp

(

− S2

2t

)

‖z(t)‖2
H−1(0,1) dt � C

∫ ∞

0

∫

ω

|z(t)|2 dt dx, (4.1)

for some C > 0 independent of the initial data z0.
Of course, this is not exactly (1.2), since the norm in the left-hand side is the

H−1(0, 1)-norm instead of the L2(0, 1)-one.
Using Remark 2.2 with p = 1/2, we immediately get (1.2) for any γ > d̃2/2 =

max{α1, 1 − α2}2/2.
There is no evidence so far that this result is sharp since the lower bound (1.8)

yields only γ � d2/2 = d̃2/8.
However, when ω = (0, α1)∪ (α2, 1), our results apply and yield (4.1) for any

S > d = d̃ = (α2 − α1)/2, which is sharp from the lower bound (1.8) on the
observability constant in (1.2).
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Fig. 1. Squares with and without the GCC: In bold, the observation region. Left the GCC
holds in time 2S = 2

√
2. Right the GCC does not hold

Boundary observation Again, let � = (0, 1). Define X = L2(�), A = −� with
domain D(A) = H2 ∩ H1

0 (�) = H2 ∩ H1
0 (0, 1), and B from D(A) to U = R

given by Bz = ∂x z(x = 1).
In this context the classical results on the observability of the wave equation

(see, for example, [23]) show that the corresponding wave equation is observable
in time 2S = 2.

Applying Theorem 1.1, we immediately get that any solution z of the heat
equation (1.1) with initial data z0 ∈ H1(0, 1) satisfies

∫ ∞

0

∫ 1

0
exp

(

− 1

2t

)

|z(t, x)|2 dt dx � C
∫ ∞

0
|∂x z(t, 1)|2 dt. (4.2)

Due to [12], estimate (4.2) is sharp.

4.2. The Multi-Dimensional Case

Optimality of the results The one-dimensional examples above can be easily
extended to the multi-dimensional setting. Indeed, given any domain �, if ω is
a neighborhood of its boundary such that � \ ω is a ball of radius R, the GCC (in
time 2S) holds for any S > R (again, see, for instance, [23]), whereas d = d̃ = R.

Applying Theorem 1.1, the lower bound (1.8) on the observability constant in
(1.2) is shown to be sharp in this case. We conclude that the observability constant
γ in (1.2) can be taken to be any constant larger than d2/2 = d̃2/2.

Non optimal results Note that it is easy to build multi-dimensional examples in
which the GCC holds but S > d̃ > d, or in which simply the GCC does not hold.

The unit square observed from two consecutive sides Let � = (0, 1)2 be the
unit square and observe the normal derivative of the solution on two consecutive
sides of its boundary, see Fig. 1, left. In that case, the GCC holds, and S can be
taken to be any constant larger than

√
2 but d̃ = 1 and d = 1/2. Thus, the bounds

we get on the observability constant in (1.2) are of the form

1

8
= d2

2
� γ � S2

2
= 1+, whereas

d̃2

2
= 1

2
. (4.3)
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Although this improves the previously existing results, it does not produce a
complete identification of the best observability constant.

This example shows that, even if the GCC holds, the direct application of the
approach of this paper, using the transformation from waves to heat equations,
cannot yield in general a sharp upper bound.

The unit square observed from only one side Here, we consider the heat equa-
tion in the unit square � = (0, 1)2, observed from one side of the boundary � =
{0} × (0, 1), see Fig. 1 right.

In that case, the wave equation is not observable, since any vertical line corre-
sponds to a trapped ray that does not meet the control region �.

Though, as we will see next, in this very precise situation, our approach can be
slightly modified to yield some estimates on the exponential observability cost.

4.3. Some Further Examples

Theoretical remarks The transmutation technique developed in Section 2 also
applies in the context of very weak observability properties.

To be more precise, one could replace Assumption 1 by the following one: there
exists a norm ‖·‖∗ and a time S̃ > 0 such that the following weak observability
inequality is satisfied: there exists a constant C such that for any solution y of (1.14)
with initial data (y0, y1) ∈ {0} × R(k),

‖y1‖2∗ � C
∫ S̃

−S̃
‖By(s)‖2

U ds. (4.4)

Indeed, in that case, if z0 = ∑
j a j� j ∈ X , using the transmutation technique of

Theorem 2.1 with S replaced by S̃, we obtain a solution y of the wave (1.14), where
initial data y0 = 0 and

∂s y(0)=
∫ ∞

0
∂sk(t, 0)z(t) dt = S̃

4
√
π

∑
a j� j

∫ ∞

0

1

t3/2 exp

(

− S̃2

4
− μ j t

)

dt.

Applying (4.4), we immediately get, similarly as in Theorem 2.2,

∥
∥
∥
∥
∥
∥

∑

j

a j� jβ j

∥
∥
∥
∥
∥
∥

2

∗
� C

∫ S̃

−S̃

∥
∥
∥
∥

∫ ∞

0
k(t, s)Bz(t) dt

∥
∥
∥
∥

2

U
ds, (4.5)

where z is the solution of (1.13) with initial data z0 = ∑
a j� j ∈ X .

Using estimate (2.19) and Lemma 2.3 with T = 1, one can even get

∥
∥
∥
∥
∥
∥

∑

j

a j� jβ j

∥
∥
∥
∥
∥
∥

2

∗
� C

∫ ∞

0
log2(t + 2) ‖Bz(t)‖2

U dt. (4.6)
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However, getting rid of the logarithm in the right-hand side of (4.6) requires more
information on the norm ‖·‖∗. In particular, if the norm ‖·‖∗ is determined by a
sequence ω j by

∥
∥
∥
∥
∥
∥

∑

j

a j� jβ j

∥
∥
∥
∥
∥
∥

2

∗
=

∑

j

|a j |2β2
jω

2
j , (4.7)

and β2
jω

2
j � exp(−2μ j T0) for all j ∈ N, for some T0 large enough, then the

logarithm in (4.6) can be removed easily. Actually, in this case, similarly as in
Lemma 2.2, for some time T1, one can prove that

∥
∥
∥
∥
∥
∥

∑

j

a j� jβ j

∥
∥
∥
∥
∥
∥

2

∗
� C

∫ T1

0
‖Bz(t)‖2

U dt.

An important remark is that, for (4.6) to be useful in practice, one should have
a good understanding of the norm ‖·‖∗ on the spectral components, similarly as in
(4.7) above. We will present such a case below. But we should also emphasize that
getting a norm ‖·‖∗ as in (4.7) for the observability property (4.4) of the solutions
of the wave equation would imply its spectral controllability, a fact which is not
known to hold in general, see Section 5.

Also note that if one wants to derive finite-time horizon estimates or estimates
on the cost of controllability, one can also use the kernels kT solutions of (3.1) used
in Section 3 and easily derive

∥
∥
∥
∥
∥
∥

∑

j

a j� jβ j (kT )

∥
∥
∥
∥
∥
∥

2

∗
� C

∫ S̃

−S̃

∥
∥
∥
∥

∫ T

0
kT (t, s)Bz(t) dt

∥
∥
∥
∥

2

U
ds. (4.8)

Pointwise observation in dimension 1 Let � = (0, 1), X = H−1(�), A = −�
with domain D(A) = H1

0 (0, 1).
Now, let x0 ∈ (0, 1) be such that x0 /∈ Q.
Define B by Bz = z(x = x0). As one can check, B is continuous from

D(A3/4+ε) to R for any ε > 0.
Solutions y of the one-dimensional wave equation with y0 = 0 can be written

as

y(s, x) =
∞∑

j=1

a j sin( jπx)
1

jπ
sin( jπs).

Hence, using Parseval’s identity:

∫ 1

−1
|By(s)|2 ds = 2

∞∑

j=1

|a j |2 sin2( jπx0)

j2π2 .



1008 Sylvain Ervedoza & Enrique Zuazua

Thus, since x0 /∈ Q, (4.4) holds with
∥
∥
∥
∥
∥
∥

∞∑

j=1

a j sin( jπx)

∥
∥
∥
∥
∥
∥

2

∗
=

∞∑

j=1

|a j |2 sin2( jπx0)

j2π2 . (4.9)

Therefore, one can conclude that, if z solves the one-dimensional heat equation
on (0, 1) with initial data z0(x) = ∑∞

j=1 z j sin( jπx),

∞∑

j=1

|z j |2β2
j
sin2( jπx0)

j2π2 � C
∫ ∞

0
|z(t, x0)|2 log2(t + 2) dt, (4.10)

where the coefficients β j are given by (2.31).
Using (2.32), we find that this yields

∞∑

j=1

|z j |2 exp(−2π j)
sin2( jπx0)

j3π3 � C
∫ ∞

0
|z(t, x0)|2 log2(t + 2) dt. (4.11)

Whether or not this result is sharp is an open problem. A priori, with no further
assumption, whether or not the logarithmic dependence of time in the right-hand
side is needed is not clear.

Note that, when x0 is so that there exists C > 0 such that for all k ∈ N,

inf
p∈Z

{|kx0 − p|} � C

k
, (4.12)

(according to [19, p. 124], the set of such x0 is uncountable, thus non-empty) then

sin2( jπx0) � C

j2 , j ∈ N\{0}.

One can then go further than (4.11), and prove, similarly as in Theorem 1.1, that
for all T > 0, there exists C(T ) such that

∞∑

j=1

|z j |2 exp(−2π j)
sin2( jπx0)

j3π3 � C
∫ T

0
|z(t, x0)|2 dt. (4.13)

Using Remark 2.2 and especially equation (2.34), one can reformulate that esti-
mate into the following form: for any γ > 1/2, solutions of the one-dimensional
heat equation satisfy

∫ ∞

0

∫ 1

0
exp

(
−γ

t

)
|z(t, x)|2 dt dx � C

∫ T

0
|z(t, x0)|2 dt. (4.14)

Remark 4.1. Note that here the constant γ does not seem to depend significantly on
the position of x0 on (0, 1). This is due to the fact that the technique used to prove
(4.5) with the norm ‖·‖∗ in (4.9) is based on the direct application of Ingham’s
inequality yielding only observability in time 2 for the wave equation on (0, 1),
independently of the observation subset which, of course, is suboptimal in general.



Sharp Observability Estimates for Heat Equations 1009

The unit square observed from only one side Here, we come back to the heat
equation in the unit square � = (0, 1)2, observed from one side of the boundary
� = {0} × (0, 1), see Fig. 1 right.

In that case, the wave equation is not observable, since any vertical line cor-
responds to a trapped ray that does not meet the control region �. However, the
solutions y of the wave equation (1.9) satisfy the following unique continuation
property (Holmgren Uniqueness Theorem): for any S > 1,

∂1 y(s, 0, x2) = 0, (s, x2) ∈ (−S, S)× (−1, 1) ⇒ y ≡ 0. (4.15)

Here, and in what follows, we have denoted by ∂1 the derivative with respect to x1
to simplify the notations.

This unique continuation property indicates that the L2(−S, S; L2(0, 1))-norm
of ∂1 y(s, 0, x2) is a norm on the solutions y of the wave equation for S > 1. Of
course, this does not provide any further information if we are not able to describe
more precisely this norm, or any non-trivial weaker one ‖·‖∗ as in (4.4).

It turns out that in this geometric configuration � = (0, 1)2, � = {0} × (0, 1),
a norm ‖·‖∗ satisfying (4.4) can be derived explicitly (see [16]). For that to be done,
write the solutions y of (1.9) as

y(s, x1, x2) = √
2

∞∑

j=1

y j (s, x1) sin( jπx2). (4.16)

This can be done of course since the functions (x �→ sin( jπx)) j∈N form a basis
of L2(0, 1).

Then one immediately gets that

∫ S

−S

∫ 1

0
|∂1 y(s, 0, x2)|2 dx2ds =

∞∑

j=1

∫ S

−S
|∂1 y j (s, 0)|2 ds (4.17)

and that

∂ss y j − ∂11 y j + j2π2 y j = 0, s ∈ R, j ∈ N, y j (s, 0) = y j (s, 1) = 0.

(4.18)

In other words, using this decomposition, we decouple the contributions of each y j .
Note that equation (4.18) is a simple one-dimensional wave equation with a

potential. Hence, to prove its observability, we use the classical technique of lateral
propagation of the energy (widely used in the context of one-dimensional semi-lin-
ear wave equation, see, for example, [41]). In our case, this reads as follows: for
smooth solutions of (4.18), introduce the quantity

Fj (x1) =
∫ S−x1

x1−S

(
|∂s y j (s, x1)|2 + |∂1 y j (s, x1)|2 + j2π2|y j (s, x1)|2

)
ds,
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and differentiate it. After straightforward computations, we get

∂1 Fj (x1)�2
∫ S−x1

x1−S
∂1 y j (s, x1)

(
−∂ss y j (s, x1)+∂11 y j (s, x1)+ j2π2 y j (s, x1)

)
ds

� 4 j2π2
∫ S−x1

x1−S
∂1 y j (s, x1)y j (s, x1) ds � 2 jπFj (x1).

Hence we obtain, for any S > 1, that Fj (x1) � exp(2 jπx1)Fj (0) for all x1 ∈
(0, 1). Integrating, we obtain

∫ 1

0
Fj (x1) dx1 � exp(2 jπ)

2 jπ
Fj (0) = exp(2 jπ)

2 jπ

∫ S

−S
|∂1 y j (s, 0)|2 ds. (4.19)

But of course, the energy

E j (s) = 1

2

∫ 1

0

(
|∂s y j (s, x1)|2 + |∂1 y j (s, x1)|2 + j2π2|y j (s, x1)|2

)
dx1

of y j solution of (4.18) is constant in time. Therefore, due to (4.19), solutions y j

of (4.18) satisfy, for any S > 1,

4 jπ(S − 1)E j (0) exp(−2 jπ) �
∫ S

−S
|∂1 y j (s, 0)|2 ds. (4.20)

Using (4.16), (4.17), and estimates (4.20) for solutions of (4.18), we obtain
(4.4) for any time S > 1 with the norm ‖·‖∗ given by

∥
∥
∥
∥
∥
∥

√
2

∞∑

j=1

y j (x1) sin( jπx2)

∥
∥
∥
∥
∥
∥

2

∗
=

∞∑

j=1

j exp(−2π j)
∫ 1

0
|y j (x1)|2 dx1. (4.21)

Indeed, if y is a solution of the wave (1.9) with initial data y0 = 0, y1 =√
2

∑
j y1, j (x1) sin( jπx2), the corresponding y j in (4.16) satisfy y j (s = 0) = 0,

∂s y j (s = 0) = y1, j , and the energy E j (0), respectively, reduces to the L2(0, 1)-
norm of y1, j .

The norm ‖·‖∗ can then be easily written for functions expanded on the basis
of the eigenfunctions of the Dirichlet Laplace operator:

∥
∥
∥
∥
∥
∥

2
∞∑

j,�=1

a�, j sin(�πx1) sin( jπx2)

∥
∥
∥
∥
∥
∥

2

∗
=

∞∑

j=1

∞∑

�=1

j exp(−2π j)|a�, j |2. (4.22)

Due to the explicit form (4.22) of ‖·‖∗, solutions z of the heat equation with
initial data

z0(x1, x2) = 2
∑

�, j

a j,� sin(�πx1) sin( jπx2)
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satisfy

∞∑

j=1

∞∑

�=1

j exp(−2π j)|a�, j |2β2
�, j

� C
∫ ∞

0

∫ 1

0
log2(t + 2)|∂x z(t, 0, x2)|2 dx2ds, (4.23)

where

β�, j =
∫ ∞

0

1

t3/2 exp

(

− S2

4t
− π2(�2 + j2)t

)

dt,

which, according to (2.14), satisfy

β�, j � C
exp(−Sπ

√
�2 + j2)

(1 + π
√
�2 + j2)1/4

.

Using (4.23), we deduce

∞∑

j=1

∞∑

�=1

|a�, j |2 exp(−2(S + 1)π
√
�2 + j2)

(1 + π
√
�2 + j2)1/2

� C
∫ ∞

0

∫ 1

0
log2(t + 2)|∂1z(t, 0, x2)|2 dx2dt. (4.24)

Of course, in (4.24), the norm in the left-hand side is very similar to the one in
the left-hand side of (2.10). Hence all the estimates done in Section 2.3 apply. In
particular, for any S > 1, we can get that, for any time T > 0, there exists a constant
C(T ) such that all the solutions z of the heat equation (1.1) in the square (0, 1)2

satisfy:
∫ ∞

0
exp

(

− (S + 1)2

2t

)

‖z(t)‖2
L2((0,1))2 dt � C

∫ T

0

∫ 1

0
|∂x z(t, 0, x2)|2 dx2dt.

(4.25)

Note that estimate (4.25) yields an upper bound on γ in (1.2) of the form
γ � (S + 1)2/2 = 2+. This is still far away from the lower bound in (1.6)–(1.8),
which yield here γ̃ � 1/2 and γ � 1/8.

Note that, using [29, Lemma 2.2] and [39], one can prove that inequality (1.3)
holds in the square with γ̃ = 3+. This, as we said, implies in particular that γ � 3+
in (1.2) in this geometric configuration.

Though, our approach is developed directly on the weakly observable wave
equation. To our knowledge, this is the first time that such case is addressed directly
using a transmutation technique.

Note also that there should be some links with the estimates on the class of
analyticity of functions that are controllable in time T that have been derived in [3].
We also point out the recent work [24], which studies the observability problem in
the square using biorthogonals.
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Other examples Let us also emphasize that our assumptions (4.4) are also satisfied
in other non-trivial cases, and in particular on cylinders [2,3] and on networks of
strings, for which under suitable assumptions (on the length of the strings and the
pattern of the network) one can derive norms of the form (4.7) for which (4.4)
holds, see [9].

4.4. Arbitrary Geometry

Despite the previous examples, the arguments developed here do not seem to
yield any explicit observability estimates for the heat equation out of the existing
unique continuation results for the wave equation in general, except in some special
geometries as the ones above, where a non-trivial norm ‖·‖∗ satisfying (4.4) can be
made explicit.

In particular, situations in which the norm ‖·‖∗ has the form in (4.7) are particu-
larly interesting. But this would imply (actually, these two properties are equivalent)
spectral controllability for the wave equation, a property which, to our knowledge,
is not known so far in general geometries.

Also note that, when the GCC fails, the existing unique continuation results on
the wave equation refer to estimates in classes of analytic solutions (see [20]) or
yield observability estimates depending on the frequency function of the solution
(see [34,36]).

Let us also point out that, so far, there is no evidence of multi-dimensional sit-
uation in which the best observability constant γ needs to be different from d̃2/2.
The results of this paper show that in some cases, namely when S = d̃ = d, this
constant is sharp, but do not give any hint of those possible pathological situations.

5. Further Comments and Open Problems

• The singular heat kernel. The equation (2.5) on k is ill-posed. However, we
have managed to find out an explicit solution. As mentioned in Section 3.1,
in finite time horizons, such kernels kT solving (3.1) can be obtained using
the classical construction by Tychonoff on non-standard heat kernels, see for
example the textbook by John [17], and some other related ones as those in
[13,18]. However, the estimates we have derived on the kernels functions kT

solution of (3.1) do not seem to be optimal, thus explaining why our approach
fails to provide sharp bounds on the finite time observability exponential cost.

• Lower bound for γ . In view of the results in [12], the lower bound (1.8) on γ
does not seem to be sharp. An interesting open question would be to improve
this lower bound on γ . As we have seen, a reasonable conjecture would be
γ � sup{d(x0, ω)

2/2, x0 ∈ �}, but this is still an open problem so far.
Of course, that would in particular imply that the results given in Theorem 1.1
are sharp when S = d̃ .

• Exponential observability and control cost for T ∼ 0. The problem of char-
acterizing the best constant C(T ) such that

∫ T

0
exp

(

− S2

2t

)

‖z(t)‖2
X dt � C(T )

∫ T

0
‖Bz(t)‖2

U dt (5.1)
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holds is open. The constant C(T ) in (5.1) is obviously bounded by the one
obtained in (1.17), but the latter is not explicit either when T ∼ 0, since it has
been deduced from a compactness argument. However, for times T � T0 for
T0 large enough (see (2.27)), the constant C(T ) in (1.17) and hence in (5.1)
can be chosen to be C(T0), which can be made explicit, following the details
of the proof of (2.28).
One could expect the constant C(T ) in (5.1) not to blow up exponentially when
T goes to zero. If this were true, according to [31], we would obtain (1.3) with
the optimal constant γ̃ = (S2/2)+, but this is a widely open subject, as we have
explained in Section 3.2. So far, the best constant in (1.3) is γ̃ = (3S2/2)+, as
obtained in [39] (Note that [12] does not yield any estimate on γ̃ , but only on γ
in (1.2) when considering the 1-d heat equation observed from one boundary).
Observe also that, as pointed out in [43] and recently further developed in [27],
these estimates and their optimality are intimately related with the spectral
estimates by Lebeau and Robbiano [22] on the observability of packets of
eigenfunctions.

• One-dimensional heat equations with rough coefficients. Our results apply
for abstract heat and wave equations. Accordingly they can be used in the con-
text of heat equations with variable coefficients as well. For instance, in one
space dimension, as observed in [14], taking into account that sidewise energy
estimates provide explicit observability constants for one-dimensional wave
equations with BV variable coefficients in an optimal characteristic time, one
can obtain explicit observability estimates of the form (1.2) for the heat equa-
tion with BV coefficients too. Note, however, that the one-dimensional heat
equation is known to be observable for bounded measurable coefficients [1].
But that case cannot be treated by transmutation since the optimal assumption
for the wave equation being observable is the BV -regularity of the coefficients
[6]. Therefore it needs to be treated directly. As far as we know, the obtention
of sharp estimates on the observability constant is widely open in that case.

• On the GCC condition.
1. Our result applies and yields a sharp observability constant under the GCC

and when S can be taken to be arbitrarily close to d. However, there are
cases in which the GCC holds but in a time S much larger than d and others
in which the GCC simply does not hold. Whether the lower bound (1.8) is
sharp in those cases is an interesting open problem.

2. In the absence of GCC the wave equation satisfies a unique continua-
tion property (Holmgren’s uniqueness theorem) stating that the observation
measures some very weak norm on the data. For instance, observability may
hold within the class of solutions generated by a finite number of eigen-
functions but with an observability constant that depends exponentially on
the frequency function (see [21,34–36]).

In that case, using the recent results in [34], our transmutation technique and
the iteration argument developed in [27] (see also [22] for the origin of this
idea), one can derive observability estimates for the heat equation (see [11]).
However, the weak observability estimates developed in [34] are given with
constants that are not given explicitly in terms of the geometry, thus yielding
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another question: Can we estimate precisely the constants coming into play
within the quantification of the unique continuation property for the wave equa-
tion without the GCC?
Another important question in that context is to understand whether or not
spectral controllability for the wave equation holds for the wave equation in
general geometry. To our knowledge, this is still an open problem, see [34,36]
for some partial results in that direction.

• Higher order parabolic equations. Our results also apply to the case of higher
order parabolic equations. For instance, the plate equation, given by

{
∂ss y +�2 y = 0, (s, x) ∈ R ×�,

y = �y = 0, (s, x) ∈ R × ∂�,
(5.2)

is known to be observable through ω in any time 2S > 0 when GCC holds in
some time S0 > 0 (see, for example, [23]).
Thus, in view of the results of the present paper, assuming that (ω,�,S0) sat-
isfies the GCC for some finite S0, for any γ > 0, there exists a constant Cγ
such that solutions z of

{
∂t z +�2z = 0, (t, x) ∈ R+ ×�,

z = �z = 0, (t, x) ∈ R × ∂�
(5.3)

satisfy
∫ ∞

0
exp

(
−γ

t

)
‖z(t)‖2

X dt � Cγ

∫ ∞

0
‖Bz(t)‖2

U dt. (5.4)

The fact that γ can be chosen arbitrarily small reflects that, very likely, in
this case, the observability inequality can be obtained with a less degenerate
weight function. Note that in the case of the heat equation the weights of the
form exp (−γ /t) are optimal because of the scaling of the heat kernel.
This also shows the impossibility of getting observability properties for the
heat equation out of those on the Schrödinger equation by the methods in this
paper. Indeed, the observability of the Schrödinger equation is equivalent to
that of the plate equation (see [21]) and the latter, as mentioned above, leads to
the observability of the fourth order parabolic equation but not to the heat one.

• Fractional order parabolic equations. One could try to apply the same
method to fractional order parabolic equations of the form:

{
∂t z + (−�)αz = 0, (t, x) ∈ R ×�,

z = 0, (t, x) ∈ R × ∂�,
(5.5)

with 0 < α < 1. This equation is well known to be null controllable for
α > 1/2 and the control property to fail for α � 1/2 [25,32].
But our transmutation method does not apply in this case in the sense that,
even if one can write the solutions of this system in terms of those of the
corresponding wave-like equation

{
∂ss y + (−�)α y = 0, (s, x) ∈ R ×�,

y = 0, (s, x) ∈ R × ∂�,
(5.6)
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the latter fails to be controllable for α < 1. This can be easily seen in one-space
dimension by analyzing the spectrum of the fractional power of the Laplacian
that shows a growth of order λ(n) ∼ Cn2α as n → ∞ so that the classical
uniform gap condition for

√
λ(n) ∼ C1/2nα , which is sharp for the control of

one-dimensional wave models of this form by means of Ingham type inequal-
ities, fails.
This is a further example of the fact that there are control results in the par-
abolic context that cannot be obtained from the hyperbolic one by means of
transmutation.

Acknowledgments. The authors thank Sorin Micu, Luc Miller, Luc Robbiano and Kim
Dang Phung for interesting discussions and comments related to this work.
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