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Abstract

We consider the system �u − Wu(u) = 0, where u : R
n → R

n , for a class
of potentials W : R

n → R that possess several global minima and are invari-
ant under a general finite reflection group G. We establish existence of nontrivial
G-equivariant entire solutions connecting the global minima of W along certain
directions at infinity.

1. Introduction

We consider the system

�u − Wu(u) = 0, for u : R
n → R

n, (1)

where W : R
n → R and Wu := (∂W/∂u1, . . . , ∂W/∂un)� is the gradient of W .

We assume that W has N � 2 distinct global minima ai , for i = 1, . . . , N , and
address the problem of finding an entire solution u : R

n → R
n of (1) that connects

the N minima of W , that is, a solution of (1) such that

lim
λ→+∞ u(ληi ) = ai , for i = 1, . . . , N , (2)

for certain unit vectors ηi ∈ S
n−1, where S

n−1 ⊂ R
n is the unit sphere.

System (1) is formally the Euler–Lagrange equation corresponding to the action

J (u) =
∫

Rn

{
1

2
|∇u|2 + W (u)

}
dx . (3)

One of the challenges in the study of (1) is that for dimensions n � 2 the action is
infinite for the class of solutions we are interested in (see [2]).

We now list our assumptions on the potential W .

Nicholas D. Alikakos was supported by Kapodistrias grant No. 15/4/5622 at the
University of Athens.
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Hypothesis 1 (N nondegenerate global minima). The potential W is of class C2

and satisfies W (ai ) = 0, for i = 1, . . . , N , and W > 0 on R
n \ {a1, . . . aN }.

Furthermore, there holds v�∂2W (u)v � c2|v|2, for v ∈ R
n and |u − ai | � q̄, for

some c, q̄ > 0, and for i = 1, . . . , N.

We recall some examples of potentials that have been studied in the past. The case
n = 1, N = 2 is textbook material and the corresponding solution is known as
the heteroclinic connection. In [7], Bronsard, Gui, and Schatzman constructed
a solution for n = 2, N = 3, while recently in [21], Gui and Schatzman con-
structed a solution for n = 3, N = 4; these last two solutions are known as the
triple-junction solution on the plane and the quadruple-junction solution in space,
respectively. Triple-junction and quadruple-junction solutions have additional sig-
nificance of their own and we will comment on them later.

In all these works (for n � 2), the W potentials have been assumed to have
certain symmetries. This takes us to the next hypothesis.

Hypothesis 2 (Symmetry). The potential W is invariant under a finite reflection
group G acting on R

n (Coxeter group), that is,

W (gu) = W (u), for all g ∈ G and u ∈ R
n . (4)

Moreover, we assume that there exists M > 0 such that W (su) � W (u), for s � 1
and |u| = M.

We seek equivariant solutions of system (1), that is, solutions satisfying

u(gx) = gu(x), for all g ∈ G and x ∈ R
n . (5)

In [7] G = H 3
2 , the group of symmetries of the equilateral triangle, with six ele-

ments, and in [21] G = T ∗, the group of symmetries of the tetrahedron, with 24
elements.

The hypothesis next relates the number and location of the minima of W to the
group G. If G is a group, we denote by |G | the order of G .

Hypothesis 3 (Location and number of global minima). Let F ⊂ R
n be a funda-

mental region1 of G. We assume that F (the closure of F) contains a single global
minimum of W, say a1, and let Ga1 be the subgroup of G that leaves a1 fixed. Then,
from the invariance of W, it follows that the number of the minima of W is

N = |G|
|Ga1 |

. (6)

Let us give some examples. For H 3
2 on the plane, we can take as F the π

3 sector. If
a1 ∈ F , then N = 6, while if a1 is on the walls, then N = 3. In higher dimensions
we have more options since we can place a1 in the interior of F , in the interior of a
face, on an edge, and so on. For example, if G = W ∗, the group of symmetries of
the cube in three-dimensional space, then |G| = 48. If the cube is situated with its

1 See [20] or [25] and Section 2.1.
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center at the origin and its vertices at the eight points (±1,±1,±1), then we can
take as F the simplex generated by s1 = e1 + e2 + e3, s2 = e2 + e3, and s3 = e3,
where the ei ’s are the standard basis vectors. We have then the following options:

(i) On the edge s3, N = 6.
(ii) On the edge s1, N = 8.

(iii) On the edge s2, N = 12.
(iv) In the interior of a face, N = 24.
(v) In the interior of the fundamental region, N = 48.

The hypotheses so far have been purely geometric. Our final hypothesis is
analytic.

Hypothesis 4 (Q-monotonicity). We restrict ourselves to potentials W for which
there is a continuous function Q : R

n → R, which, for some constants C± > 0
and a C2 function H : R

n → R, such that H(0) = 0 and Hu(0) = 0, satisfies

Q is convex, (7a)

Q(gu) = Q(u), for u ∈ D, g ∈ Ga1 , (7b)

Q(u + a1) = |u| + H(u), (7c)

Q(u) > 0 and C− � |Qu(u)| � C+, on R
n \ {a1}, (7d)

and, moreover,

〈Qu(u), Wu(u)〉 � 0, in D \ {a1}, (8)

where we have set

D := Int
(
∪g∈Ga1

gF
)

. (9)

For n = 1 and even symmetry, for a double-well potential W , and D = F =
{u > 0}, Q-monotonicity implies that Wu(u)(u − a1) � 0, for u > 0.

For G = H 3
2 on the plane, F the π

3 sector, and a1 = (1, 0), it can be verified
that the triple-well potential

W (u1, u2) = |u|4 + 2u1u2
2 − 2

3
u3

1 − |u|2 + 2

3

satisfies the Q-monotonicity condition in D = {(r, θ) | r > 0, θ ∈ (−π
3 , π

3 )}, with
Q(u) = |u − a1|, where u = (u1, u2).

For n = 3, G = T ∗, F the simplicial cone generated by (
√

2/3, 0, 1/
√

3),

(0,
√

2/3, 1/
√

3), (0, 0, 1/
√

3), and a1 = (
√

2/3, 0, 1/
√

3), we can take as an
example the quadruple-well potential

W (u1, u2, u3) = |u|4 − 4√
3
(u2

1 − u2
2)u3 − 2

3
|u|2 + 5

9
,

with Q(u) = |u−a1|, where u = (u1, u2, u3), and D the simplicial cone generated
by (0,

√
2/3, 1/

√
3), (0,−√

2/3, 1/
√

3), (
√

2/3, 0,−1/
√

3).
As a final example, take G to be the reflection group on R

n generated by
the coordinate planes, F the simplicial cone generated by the standard basis



570 Nicholas D. Alikakos & Giorgio Fusco

e1 = (1, . . . , 0), . . . , en = (0, . . . , 1), and a1 = (α1, . . . , αn), for αi > 0. Then,
the potential

W (u) =
n∑

k=1

Ck(u
2
k(u

2
k − 2α2

k ) + α4
k ), for u = (u1, . . . , un) ∈ R

n,

where Ck are given positive constants, satisfies the Q-monotonicity condition in
D = F with Q = |u − a1|. Note that in this last example a1 is in the interior of F
and, therefore, N = |G| = 2n .

We refer to [5, Proposition 1] for the details of the construction of the triple-
well potential above, as well as for information on the construction of potentials in
general. In [5, Proposition 3] it is established that for any given reflection group G
there exist infinitely-many smooth potentials W satisfying Hypotheses 1–4.

Next we explain2 how the Q-monotonicity is utilized in the proof. If u is C2,
then

�Q(u(x)) = tr{(∂2 Q(u(x)))(∇u(x))(∇u(x))�} + 〈Qu(u(x)),�u(x)〉, (10)

where (∂2 Q) stands for the Hessian of Q. If now u has the property

u(F) ⊂ F (positivity), (11)

then u(D) ⊂ D, and from (10) and convexity it follows that

�Q(u(x)) � 〈Qu(u(x)),�u(x)〉, (12)

and, if u is a solution of (1), for x ∈ D we have

�Q(u(x)) � 〈Qu(u(x)), Wu(u(x))〉 � 0, (13)

from (8). Subharmonicity then provides in D a first global estimate on |u − a1|.
Hence, a key step is to show that the candidate solution u is a positive map, that is,
that it satisfies (11).

We now proceed with the statement of the main results.

Theorem 1. Under Hypotheses 1–4, there exists an equivariant classical solution
to system (1) such that

(i) |u(x) − a1| � K e−kd(x,∂ D), for x ∈ D and for positive constants k, K ,

(ii) u(F) ⊂ F.

2 Since Q is not smooth at a1 by (7c), the calculations below should be interpreted in the
distributional sense: for u ∈ L1

loc(R
n, R

n), �u ∈ L1
loc(R

n, R
n), we have

�(Q(u(x))) � 〈�u(x), Qu(u(x))〉,
with the convention that Qu(0) = 0. This is a straightforward extension of the well-known
Kato inequality (see [24, p. 85]). We thank Alberto Farina for suggesting the relationship.
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In particular, u connects the N = |G|/|Ga1 | global minima of W :

lim
λ→+∞ u(λgη) = ga1, for all g ∈ G,

uniformly for η in compact subsets of D ∩ S
n−1.

We let Bx,R be the ball of radius R > 0 centered at x ∈ R
n and BR be the ball

of radius R > 0 centered at the origin; for A ⊂ R
n we set AR = A ∩ BR and for

A, B ⊂ R
n we let A + B = {a + b | a ∈ A, b ∈ B}. We denote by W 1,2

E (BR; R
n)

the subspace of W 1,2(BR; R
n) of the maps that satisfy the equivariance condition

(5) for x ∈ BR .
The proof of Theorem 1 is based on a family of constrained minimization

problems

min
A R

JBR , where JBR (u) =
∫

BR

{
1

2
|∇u|2 + W (u)

}
dx, (14)

over the set A R ⊂ W 1,2
E (BR, R

n) of admissible maps which is defined in (123).

The admissible set A R ⊂ W 1,2
E (BR, R

n) is defined by imposing two constraints:
the constraint of positivity (11) and the pointwise bound

|u(x) − a1| � q0 < q̄, for x ∈ Ω R + Bδ′/2, (15)

where q̄ is the constant in Hypothesis 1, Ω R ⊂ DR is defined in (100), and q0, δ
′

are suitable positive constants.
Problem (14) provides a family of minimizers {u R ∈ A R}. We seek to construct

the solution by taking the limit, that is,

u(x) = lim
R→∞ u R(x). (16)

For carrying out this procedure and to show that the constraints imposed by mem-
bership in A R are inactive, we need uniform estimates in R.

Our proof consists of a continuity argument (topological part) and a PDE part.
The continuity argument is concerned with positivity; it utilizes the gradient flow

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂t
= �u − Wu(u), in BR × (0,∞),

∂u

∂n
= 0, on ∂ BR × (0,∞), where ∂/∂n is the normal derivative,

u(x, 0) = u0(x), in BR,

(17)

in the Sobolev space of equivariant maps W 1,2
E (BR; R

n). We let t → u(·, t, u0)

be the solution of (17). We establish that the set of positive maps (in the class of
equivariant Sobolev maps)

U Pos := {u ∈ W 1,2
E (BR; R

n) | u(FR) ⊂ F} (18)

is (positively) invariant under the flow (17).
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With the help of this invariance, we establish that there exists an R0 > 0, such
that for R > R0 the minimization problem (14) has a solution that satisfies the
Euler–Lagrange equation �u − Wu(u) = 0 in BR . We do not know if minimizing
freely without restricting our enquiry to the set of positive maps will automatically
render a positive map.

The PDE part of the proof is concerned with the pointwise estimates leading
to the exponential estimate in Theorem 1. To indicate the main ideas we assume
Q(u) = |u − a1| and set qu R = Q(u R). By positivity (11) and by (12),

�qu R � 0, in DR . (19)

On the other hand, by the nondegeneracy condition in Hypothesis 1, we have

�qu R � c2qu R , where qu R � q̄. (20)

Estimate (19) provides a first global bound on qu R in DR , while estimate (20)
implies a stronger exponential bound on qu R in Ω R . For general Q we first have
to develop a global coordinate system in R

n in terms of the level sets of Q. By
suitably combining (19) and (20) we can construct a local comparison function that
enforces (uniformly in R) the estimate |u(x) − a1| � K e−kd(x,∂ DR), for x ∈ DR .

Previous works on special cases of major interest are [7,21]. Our approach
and point of view are different and, in particular, we work with a different set of
assumptions. In [7,21] the authors proceed via Dirichlet problems and build up a
higher-dimensional object out of lower-dimensional solutions. We, instead, pro-
ceed via minimization with two constraints. The solution we construct is a global
minimizer of JBR in the class of positive maps satisfying (15), in addition. The pos-
itivity constraint is removed via the gradient flow. The other constraint is removed
via comparison arguments. We note that by the results of Palais [30], equivariance
is not a constraint, in the sense that a critical point in the equivariance class is
automatically a critical point in W 1,2(Rn; R

n). The paper [4] contains some seeds
of the present work.

Symmetry is a rather restrictive assumption. On the other hand, for general
potentials that are required to satisfy only Hypothesis 1, it may be impossible to
characterize a solution of (1) and (2) via minimization of the action. Indeed, some
of the solutions given by Theorem 1 are expected to be unstable with respect to
compact nonsymmetric perturbations. Particular cases where the existence of solu-
tions of (1) and (2) has been established without assuming symmetry are studied
in Sternberg [37] and in [3] for N = 2, n � 1, and in Sáez Trumper [33] for
N = 3, n = 2, where the existence of a triple junction is shown by utilizing the
gradient flow. A possible approach for removing the assumption of symmetry a
posteriori could be to establish the stability of the constructed solution in the class
of general compact perturbations. This is reasonable for at least those solutions in
Theorem 1 which enjoy extra minimality properties (as, for example, the triple-
junction solution). Finally, in light of [4], uniqueness should not be expected in
general.

The scalar problem related to (1), for u : R
n → R, and without any symmetry

hypotheses on the solution, has been the object of intensive investigation for many
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years, with the De Giorgi conjecture and the related contributions at the center of this
activity (see the expository article of Farina and Valdinoci [13]). On the physical
side, we note that for describing coexistence of three or more phases (N � 3), a
vector-order parameter u is needed. A triple-well potential in R

2 or a quadruple-
well potential in R

3 would be appropriate for modeling coexistence of three or four
phases correspondingly, with the origin x = 0 representing the coexistence point
(or junction). On the geometric side, the rescaled solution uε(x) := u(x/ε) in the
triple and quadruple-well cases is expected to converge, as ε → 0, to the solution
of the corresponding partitioning problem (see Baldo [6]). The boundaries of the
partitioning sets form a system of weighted minimal surfaces meeting in groups of
three along free-boundary curves called ‘liquid edges’, and liquid edges meet in
groups of four at ‘supersingular’ points, the coexistence points mentioned above
(see Dierkes et al. [9,10,29, §4.10.7]).

The relevance of the solutions of (1) in the description of the neighborhood
of the junction was first pointed out in Bronsard and Reitich [8], where also
the formal linking of the diffused and sharp-interface models was established for
n = 2. For rigorous linking, for n = 2, see Sáez Trumper [34]. For the associated
sharp-interface evolution problem involving motion by mean curvature and Pla-
teau angle conditions see [8], for n = 2 in the classical smooth evolutions. See also
Mantegazza, Novaga, and Tortorelli [27] for initiating and partially resolving
globally in time the triple-junction case for n = 2, and Freire [15], Schnürer
and Schulze [36], and Schnürer et al. [35] for related work for n = 2. For
the evolution problem for general n see Freire [14]. Papers of related content are
[1,22,26,28,32].

The paper is structured as follows. In Section 2 we establish the positivity
property of the semigroup that (17) generates. In Section 3 we introduce the Q-
coordinate system and in Sections 4 and 5 we state and prove the comparison
lemmas needed for deriving estimate (i) in Theorem 1. Finally, in Section 6 we
give the proof of Theorem 1.

2. The Positivity Property

2.1. Algebraic Preliminaries

For the general theory of reflection groups we refer to [20,25]. Let G be a
Coxeter group, that is, a finite effective subgroup of the orthogonal group O(Rn),
generated by a set of reflections. A reflection γ ∈ G is associated to the hyperplane
πγ = {x ∈ R

n | 〈x, ηγ 〉 = 0} via

γ x = x − 2〈x, ηγ 〉ηγ , for x ∈ R
n, (21)

where ηγ ∈ S
n−1 is a unit vector. Every finite subgroup of O(Rn) has a fundamental

region, that is, a subset F ⊂ R
n with the following properties:

(i) F is open and convex,
(ii) F ∩ gF = ∅, for I �= g ∈ G, where I is the identity,

(iii) R
n = ∪{gF | g ∈ G}.
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We choose the orientation of ηγ so that F ⊂ P+
γ , where P+

γ = {x ∈ R
n |

〈x, ηγ 〉 > 0}. Then, we have

F = ∩γ∈P+
γ , (22)

where  ⊂ G is the set of all reflections in G. Given A ⊂ R
n , the (pointwise)

stabilizer of A, denoted by Stab[A], is the subgroup of G that fixes A pointwise,
that is,

Stab[A] = {g ∈ G | gx = x, for all x ∈ A}. (23)

Stab[A] is the reflection group generated by the reflections that it contains [25,
p. 23]. In particular, Ga1 defined in Hypothesis 3 is a reflection group. For A ⊂ R

n

a nonempty set, we also define G A ⊂ G to be the subgroup that leaves A fixed as
a set, that is,

G A = {g ∈ G | g A = A}. (24)

We conclude this section with a characterization of G D .

Lemma 1. There holds

Ga1 = G D. (25)

Proof. Observe that G D = G D and that by definition, D = ∪{gF | g ∈ Ga1}. It
follows that

gD = D, for all g ∈ Ga1 , (26)

and, therefore, that Ga1 ⊂ G D . To show that G D ⊂ Ga1 , we note that, by property
(ii) of the fundamental region, there is a one-to-one correspondence between Ga1

and the orbit {gF | g ∈ Ga1} of F under Ga1 . Therefore, g′ ∈ G \ Ga1 implies
g′F �∈ {gF | g ∈ Ga1} and, in turn, g′D �= D. ��

2.2. Parabolic Flows and Positivity

We can assume that W is a C2 potential satisfying the global bound

|∂2
ui u j

W (u)| < C, in R
n . (27)

This can be imposed without loss of generality because of the a priori pointwise
bound (125). As before, we denote by u(·, t; u0) the solution of (17) and let U Pos

be the set of equivariant positive maps defined in (18).

Theorem 2. Suppose W satisfies the bound (27) and the symmetry (4). Then, (17)
leaves the positive class U Pos invariant, that is,

U Pos � u0 �→ u(·, t; u0) ∈ U Pos.
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We begin with a lemma.

Lemma 2. Let u : BR → R
n be an equivariant map. Then, u is a positive map if

and only if

u((P+
γ )R) ⊂ P+

γ , for all γ ∈ , (28)

where (P+
γ )R = P+

γ ∩ BR.

Proof. Suppose that (28) holds. Then

u(FR) = u(∩γ∈(P+
γ )R) ⊂ ∩γ∈ u((P+

γ )R) ⊂ ∩γ∈ P+
γ = F .

Hence, u is positive.
Conversely, suppose that u is a positive equivariant map on BR . Then, equiva-

lently, ue defined by

ue(x) :=
{

u(x), for x ∈ BR

0, for x ∈ R
n \ BR

(29)

is a positive equivariant map on R
n . For any g ∈ G, we have from equivariance

and positivity,

ue(g(F)) = g(ue(F)) ⊂ g(F). (30)

Now pick a γ ∈  and take an x ∈ P+
γ and fix it. There is a g ∈ G, denoted

by gx , such that x ∈ gx (F) and gx (F) is also a fundamental region. Since for
each fundamental region F ′ and for each reflection γ we have either F ′ ⊂ P+

γ or
F ′ ⊂ −P+

γ , we conclude that

gx (F) ⊂ P+
γ . (31)

Thus, by (30), ue(P
+
γ ) ⊂ P+

γ , and so (28) follows. ��
We continue with the

Proof (of Theorem 2). Consider (17) with u0 ∈ U Pos. By the regulariz-
ing property of the equation, the solution is classical for t > 0, and by
(27), it exists globally in time and belongs to C([0,+∞); W 1,2(BR; R

n)) ∩
C1((0,+∞); C2+α(BR; R

n) ∩ C(BR; R
n)), for some α ∈ (0, 1) (see [23]). Con-

sider a reflection γ ∈  and set{
ζ(x, t) = 〈u(x, t, u0), ηγ 〉, on BR × (0,∞),

ζ0(x) = 〈u0(x), ηγ 〉, on BR .

By taking the inner product of Eq. (17) with ηγ , we obtain
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ζ

∂t
= �ζ + cζ, in BR × (0,∞),

∂ζ

∂n
= 0, on ∂ BR × (0,∞),

ζ(·, 0) = ζ0,

(32)
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where we have set

c(x, t) = 〈Wu(u(x, t, u0), ηγ 〉
ζ(x, t)

.

From the equivariance of u(·, t, u0) and Wu(γ u) = γ Wu(u) it follows that

ζ(x, t) = −ζ(γ x, t), in BR × (0,∞), (33)

c(x, t) = c(γ x, t), in BR × (0,∞). (34)

From the symmetry of W we also have that u ∈ πγ implies Wu(u) ∈ πγ . From
this we deduce

〈Wu(u), ηγ 〉 = 〈u, ηγ 〉
〈∫ 1

0
Wuu(u + (s − 1)〈u, ηγ 〉ηγ )ηγ ds, ηγ

〉
. (35)

Thus, the coefficient c(x, t) of ζ in (32) is bounded (actually continuous) on BR ×
(0,∞).

Since u0 is a positive map, we have ζ0 � 0 for 〈x, ηγ 〉 � 0. Therefore, by
Lemma 2, for establishing positivity it is sufficient to show that ζ(x, t) � 0, for
x ∈ B+

R = {x ∈ BR | 〈x, ηγ 〉 > 0} and t � 0. We note that by (33) there holds
ζ(x, t) = 0 for x ∈ πγ × [0,∞), hence if ζ is a classical solution of (32), we have
by the maximum principle ([11,16,18]) that ζ(x, t) is nonnegative on B+

R ×[0,∞).
Since mollification preserves positivity [12] and symmetry, the general case follows
by continuous dependence in W 1,2(BR; R

n) for (32) (see [23]).

3. The Coordinate System

Lemma 3. Suppose that Q : R
n → R satisfies (7) in Hypothesis 4. Then, the

following hold.

(i) For each ν ∈ S
n−1, the ODE system

du

dq
= Qu(u)

〈Qu(u), Qu(u)〉 , for u ∈ R
n \ {a1}, (36)

has a unique solution ũ : (0,+∞) → R
n such that

lim
q→0+ ũ(q; ν) = a1 and lim

q→0+
ũ(q; ν) − a1

|ũ(q; ν) − a1| = ν. (37)

(ii) The map ũ and its partial derivatives ũq , ũν with respect to q, ν, extend con-
tinuously to q = 0 and

ũ(0; ν) = a1, ũq(0; ν) = ν, ũν(0; ν) = 0.

Moreover,

C ′− � |ũq(q; ν)| � C ′+,

with C ′− = C−C−2+ , C ′+ = C+C−2− .
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(iii) It results that

ũ(q; gν) = gũ(q; ν), for ν ∈ S
n−1, g ∈ G D = Ga1 . (38)

(iv) The map defined through the solution

(q, ν) �→ ũ(q; ν),

is a C2 diffeomorphism of (0,+∞) × S
n−1 onto R

n \ {a1}.
Proof. For the proof we refer to [5, Proposition 2]. Here we present a proof under
the stronger hypothesis

Q(u) = |u − a1|, for |u − a1| � r0,

with r0 > 0 and small.
From (36) we have that

d

dq
Q(ũ(q)) = 1.

This implies that the left extremum of the interval of existence of ũ is q = 0 and,
furthermore, that

lim
q→0+ ũ(q) = a1. (39)

Moreover, for |u − a1| � r0 we have that Qu(u) = (u − a1)/|u − a1| and (36)
takes the form du/dq = (u − a1)/|u − a1|. Therefore,

d

dq

ũ − a1

|ũ − a1| = 0,

hence, the existence of the second limit in (37) follows. Statements (ii) and (iv)
follow by standard ODE theory. Uniqueness and (7b) imply (iii). ��

We regard the pair (q, ν) as the polar coordinates of u = ũ(q; ν) and associate
to the potential W the function V : (0,+∞) × S

n−1 → R defined by

V (q, ν) := W (ũ(q; ν)), for (q, ν) ∈ (0,+∞) × S
n−1. (40)

From (38) and (4) it follows

V (q, gν) = V (q, ν), for (q, ν) ∈ (0,+∞) × S
n−1, g ∈ G D. (41)

We denote by � ⊂ (0,+∞) × S
n−1 the inverse image of D \ {a1} via the diffeo-

morphism (q, ν) → ũ(q; ν). The set � is of the form

� = {(q, ν) | q ∈ (0, qν), ν ∈ S
n−1}, (42)

where, for each ν ∈ S
n−1, (0, qν) is the interval the map q → ũ(q; ν) spends in

D. We remark that (8) in Hypothesis 4 implies, via (40) and (36),

∂V

∂q
(q, ν) � 0, for (q, ν) ∈ �. (43)
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On the other hand, by Hypothesis 1,

∂V

∂q
(q, ν) � c2〈ũq(q; ν), ũq(q; ν)〉p, for 0 � p � q � q̄, ν ∈ S

n−1. (44)

We show in (125) and (126) that we can restrict our enquiry to bounded values of q.
Therefore, by changing the definition of V (q, ν) if necessary, we can also assume

∂V

∂q
(q, ν) � 0, for q � 1. (45)

Given u ∈ W 1,2(BR; R
n), set Su := {x ∈ BR | u(x) = a1}. The diffeomorphism

defined in Lemma 3 associates to the restriction to DR \ Su of any positive equi-
variant map u ∈ U Pos a polar representation (qu, νu) : DR \ Su → R × S

n−1 as
follows

u|DR
↔ (qu, νu), where u(x) = ũ(qu(x); νu(x)), x ∈ DR \ Su . (46)

From (38) and the equivariance of u it follows that the maps qu : DR \ Su → R
n

and νu : DR \ Su → S
n−1 satisfy

qu(gx) = qu(x) and νu(gx) = gνu(x), (47)

for all x ∈ DR \ Su and all g ∈ G D .
From (46) we calculate

uxi (x) = ũqqu
xi

(x) + ũνν
u
xi

(x),

thus, utilizing (52) below,

|∇u|2 = 〈ũq , ũq〉|∇qu |2 +
n∑

j=1

〈ũνν
u
x j

, ũνν
u
x j

〉, (48)

where |T | denotes the Euclidean norm of the matrix T . From u ∈ W 1,2(BR; R
n)

it follows that the Euclidean norm |u − a1| belongs to W 1,2(BR; R), hence

qu ∈ W 1,2(DR; R).

From (48) and (40) we obtain that, under the standing assumption u ∈ U Pos, the
action takes the form

JBR (u) = N
∫

DR

{
1

2
|∇u|2 + W (u)

}
dx

= N
∫

DR∩{|u−a1|>0}

{
1

2
|∇u|2 + W (u)

}
dx

= N
∫

DR∩{qu>0}

⎧⎨
⎩

1

2

⎛
⎝〈ũq , ũq〉|∇qu |2+

n∑
j=1

〈ũνν
u
x j

, ũνν
u
x j

〉
⎞
⎠ + V (qu, νu)

⎫⎬
⎭ dx,

where N = |G|/|Ga1 | and we have used |∇u| = 0 almost everywhere on the
measurable set {x | u(x) = a1}.
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Lemma 4. Consider the mapping (q, ν) �→ ũ(q; ν) as defined in Lemma 3. Then,
for any fixed vector t ⊥ ν, the quadratic form

ω(α, β) = −〈ũqq , ũq〉α2 + 〈ũqν t, ũν t〉β2 − 2〈ũqν t, ũq〉αβ, for α, β ∈ R

(49)

is positive semidefinite.

Proof. By differentiating the identity

Q(ũ(q; ν)) = q, (50)

with respect to q, we obtain

〈Qu, ũq〉 = 1. (51)

On the other hand, differentiating (50) with respect to ν in direction t , we obtain,
using also (36),

〈Qu, ũν t〉 = 0 ⇔ 〈ũq , ũν t〉 = 0, (52)

and differentiating once more gives

〈ũqν t, ũν t〉 + 〈ũq , ũνν(t, t)〉 = 0. (53)

Now, differentiating (51) with respect to q yields, via (36),

〈Quuũq , ũq〉 + 〈Qu, ũqq〉 = 0 ⇔ 〈ũqq , ũq〉
〈ũq , ũq〉 = −〈Quuũq , ũq〉, (54a)

while differentiating with respect to ν in direction t yields

〈Quuũν t, ũq〉 + 〈Qu, ũqν t〉 = 0 ⇔ 〈ũqν t, ũq〉
〈ũq , ũq〉 = −〈Quuũν t, ũq〉. (54b)

Finally, differentiating (52) with respect to ν yields, using also (53),

〈Quuũν t, ũν t〉 + 〈Qu, ũνν(t, t)〉 = 0

⇔ 〈ũqν t, ũν t〉
〈ũq , ũq〉 = −〈ũνν(t, t), ũq〉

〈ũq , ũq〉 = 〈Quuũν t, ũν t〉. (54c)

The convexity of Q implies

〈Quuv, v〉 � 0, for all v ∈ R
n . (55)

From this and (54c), we obtain

〈ũqν t, ũν t〉 � 0, (56)

while from (55) and (54a) we obtain

− 〈ũqq , ũq〉 � 0. (57)



580 Nicholas D. Alikakos & Giorgio Fusco

From (55), by the same argument that proves the Schwarz inequality, we have

〈Quuv,w〉2 � 〈Quuv, v〉〈Quuw,w〉, for all v,w ∈ R
n . (58)

Thus, from (54) and (58), it follows,

−〈ũqq , ũq〉〈ũqν t, ũν t〉 − 〈ũqν t, ũq〉2 � 0,

which, together with (56) and (57), concludes the proof. ��
Lemma 5. Assume that b > 0 and that u ∈ U Pos satisfy the following.

(i) The set Ab ⊂ DR defined by Ab := {x ∈ DR | qu > b} is open,
(ii) qu ∈ L∞(Ab) and νu : Ab → S

n−1 is C1 smooth.

Moreover, let F : Ab × R × R
n → R be the function defined by

F(x, q, z) := 1

2

⎧⎨
⎩〈ũq(q; νu), ũq(q, νu)〉|z|2+

n∑
j=1

〈ũν(q; νu)νu
x j

, ũν(q, νu)νu
x j

〉
⎫⎬
⎭,

(59)

for x ∈ Ab, z ∈ R
n, and q � 0, while for q < 0 let

F(x, q, z) := F(x,−q, z).

Then, the functionals KAb and EAb := KAb + VAb , where

KAb (ρ) :=
∫

Ab

F(x, ρ,∇ρ) dx, (60)

VAb (ρ) :=
∫

Ab

V (|ρ|, νu) dx, (61)

admit a nonnegative minimizer ρ ∈ W 1,2(Ab)∩ L∞(Ab) that satisfies the Dirichlet
condition ρ = qu, for x ∈ ∂ Ab and the invariance condition

ρ(gx) = ρ(x), for x ∈ Ab, g ∈ G Ab . (62)

Proof. The smoothness of νu implies that the function F defined in (59) is contin-
uous on Ab × R × R

n and convex in z for each fixed (x, q) ∈ Ab × R. From this
and the boundary condition it follows that F satisfies all assumptions in Theorems
4.5 and 4.6 in [19]. Therefore, the existence of a minimizer ρ ∈ W 1,2(Ab) follows
from Theorem 4.6 in [19]. To show that a minimizer ρ of KAb is in L∞(Ab) we
set ρ− := min{ρ, ‖qu‖L∞(Ab)} and observe that

∇ρ− = 0, on {ρ > ρ−}
and

〈ũqν(q, νu)νu
x j

, ũν(q, νu)νu
x j

〉 � 0 (from (54c))

imply

KAb (ρ
−) � KAb (ρ).

The L∞ bound for a minimizer ρ of EAb follows from assumption (45) and a similar
argument. Finally, the evenness of F and of V (| · |, νu) in q imply we can assume
ρ � 0. ��
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4. The Comparison Function σ

We prove three lemmas leading to the construction of a map σ that we use
systematically as a comparison function in the proof of Theorem 1. We let χA be
the characteristic function of a set A.

Given numbers l, λ > 0, set L = l + λ and let ϕ = χBl
ϕ1 + χBL\Bl

ϕ2, where

ϕ1 : Bl → R, ϕ2 : BL \ Bl → R are defined by{
�ϕ1 = c2ϕ1, in Bl ,

ϕ1 = q̄, on ∂ Bl ,
(63)

and ⎧⎨
⎩

�ϕ2 = 0, in BL \ Bl ,

ϕ2 = q̄, on ∂ Bl ,

ϕ2 = Q, on ∂ BL ,

(64)

where c, q̄ , and M , below, are the constants defined in Hypotheses 1 and 2 and

Q = max
u∈D, |u|�M

Q(u), (65)

(see Hypothesis 4). The map ϕ is radial, that is, ϕ j (x) = φ j (|x |), for j = 1, 2.

Classical properties of Bessel functions imply that φ1 : [0, l] → R is positive and
increasing together with the first derivative φ′

1. The function φ2 : [l, L] → R is
increasing with decreasing first derivative φ′

2, by explicit calculation.

Lemma 6. The following hold.

(i) The function φ′
1(l) is strictly increasing for l ∈ (0,+∞) and

lim
l→+∞ φ′

1(l) = cq̄. (66)

(ii) There exists a strictly increasing function h : (0,+∞) → (0,+∞) such that

φ1(r) � eh(l)(r−l)φ1(l), for r ∈ [0, l], (67)

and liml→+∞ h(l) = c.
(iii) There is a constant C0, independent of l, such that

φ′′
1 (r) � C0, for r ∈ [0, l]. (68)

Proof. (i) and (ii) are proved in [17, Lemma 2.4]. From the bound provided by
(67) for φ1 and standard arguments it follows that

φ′′
1 (r) � C0, for r ∈ [0, min{l, 1}]. (69)

If l > 1, from the proof of Lemma 2.4 in [17], it follows that φ′
1(r) � C , for

r ∈ [1, l], where C is a constant independent of l. This, together with inequality
(67), implies

φ′′
1 (r) � C0, for r ∈ [1, l], l > 1. (70)

��
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An explicit computation yields, for r ∈ [l, L],

φ′
2(r) =

⎧⎪⎪⎨
⎪⎪⎩

Q − q̄

r log(L/ l)
, for n = 2,

(n − 2)
ln−2(Q − q̄)

rn−1(1 − (l/L)n−2)
, for n > 2.

(71)

Lemma 7. The following hold.

(i) Let the ratio l/L be fixed. Then,

lim
l→+∞ φ′

2(l) = 0. (72)

(ii) Let the difference L − l = λ be fixed. Then, φ′
2(l) is a decreasing function of

l ∈ (0,+∞) and

lim
l→+∞ φ′

2(r) = Q − q̄

λ
, for r ∈ [l, l + λ]. (73)

Moreover, there exists a constant C0, independent of l ∈ [1,+∞), such that

|φ′′
2 (r)| � C0

l
, for r ∈ [l, l + λ]. (74)

Proof. (i) is a straightforward consequence of (71). We prove (ii) for n > 2. The
case n = 2 is similar. To show that φ′

2(l) is decreasing, we prove that the map
f (l) = l(1 − (l/(l + λ))n−2) is increasing. Setting ξ = l/(l + λ) we have

f ′(l) = d(ξ) := 1 − (n − 1)ξn−2 + (n − 2)ξn−1, for ξ ∈ [0, 1),

and f ′(l) > 0, for l ∈ (0,+∞), follows from d(0) = 1, d(1) = 0, and d ′(ξ) < 0,
for ξ ∈ (0, 1). The limit (73) follows from (71). The last statement of the lemma
follows from

φ′′
2 (r) = −(n − 1)

ln−1

rn
φ′

2(l).

��
Let ϕ be as before and let δ > 0 be a small number. Denote by ϑ : Bl+δ\Bl−δ →

R the solution of the problem (Fig. 1)
{

�ϑ = 0, in Bl+δ \ Bl−δ,

ϑ = ϕ, on ∂(Bl+δ \ Bl−δ).
(75)

We have ϑ(x) = θ(|x |)), where θ : [l − δ, l + δ] → R satisfies

θ ′(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ2(l + δ) − φ1(l − δ)

r log l−δ
l−δ

, for n = 2,

(n − 2)
(l − δ)n−2(φ2(l + δ) − φ1(l − δ))

rn−1(1 − ( l−δ
l+δ

)n−2)
, for n > 2.

(76)
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Fig. 1. The comparison functions ϕ1, ϕ2, and ϑ

Lemma 8. There exist positive constants l0, λ, δ, q̄ ′ < q̄, δ′, μ, such that l �
l0, L = l + λ implies

(i) φ′
1(l) > φ′

2(l) + μ,

(ii) ϑ < ϕ, in Bl+δ \ Bl−δ,

(iii) The map σ : BL → R defined by σ = χBl−δ∪(BL\Bl+δ)
ϕ+χBl+δ\Bl−δ

ϑ satisfies

σ � q̄ ′ < q̄, in Bl+δ′ . (77)

Proof. Letting the ratio ρ = l/L be fixed, then (66) and (72) imply that there is an
l0 such that (i) holds for l = l0 and some μ > 0. Fixing λ = l0((μ/ρ) − 1), then
(i) holds for all l � l0. This follows from Lemmas 6 and 7(ii), which imply that
φ′

1(l) is increasing and φ′
2(l) is decreasing for fixed λ. From (76), the relation

φ2(l + δ) − φ1(l − δ) = (φ′
2(l) + φ′

1(l))δ + o(δ),

which holds uniformly in l since φ1(l) = φ2(l) = q̄ , and

log
l + δ

l − δ
= 2

δ

l
+ o(δ),

(
l − δ

l + δ

)n−2

= 1 − 2(n − 2)
δ

l
+ o(δ),

it follows that∣∣∣∣θ ′(r) − 1

2
(φ′

2(l) + φ′
1(l))

∣∣∣∣ � Cδ, for r ∈ [l − δ, l + δ], (78)

|θ ′′| � C

l
, for r ∈ [l − δ, l + δ] (79)

for some constant C > 0, independent of l ∈ [l0,+∞). From (i) and (78), and
the bounds on φ′′

1 , φ′′
2 , θ ′′, it follows that there is a small δ > 0, independent of

l ∈ [l0,+∞), such that{
θ ′(r) < φ′

1(r), for r ∈ [l − δ, l],
θ ′(r) > φ′

2(r), for r ∈ [l, l + δ].
This and θ(l − δ) = φ1(l − δ), θ(l + δ) = φ2(l + δ), prove (ii). The existence of
the number q̄ ′ < q̄ and 0 < δ′ < δ, independent of l ∈ [l0,+∞), follows by the
same arguments and from the existence of the limits (66) and (73). ��
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5. The Replacement Lemmas

We divide this section into two parts. In the first part we give conditions on a set
A ⊂ DR which allow for a map defined on A to be extended to an equivariant map
defined on BR . In particular, we analyze the case where A is a ball Bx,r and show
that, except for a neighborhood of ∂ DR, DR can be covered by balls Bx,r , with
r � L0 = l0 + λ, that satisfy the condition ensuring the possibility of equivariant
extension. These results are utilized in the second part where we prove Proposi-
tions 1 and 2, which are basic for showing that u R satisfies (15) with the sign of
strict inequality.

5.1. Equivariant Extension and the Set Ω R

Let  ⊂ G and πγ , γ ∈ , and G A as in Section 2.1. We let A =  ∩ G A.

For x ∈ R
n , we set Gx = G{x}, x = {x}. Gx coincides with Stab[{x}] and it is

generated by x (see [25]).

Lemma 9. Let A be an open and connected subset of R
n . Assume that for all γ ∈ ,

γ A ∩ A �= ∅ implies γ A = A. (80)

Then, the following hold.

(i) For all g ∈ G

g A ∩ A �= ∅ implies g A = A. (81)

(ii) G A is the reflection group generated by

∗
A = {γ ∈  | A ∩ πγ �= ∅}. (82)

Proof. For each pair of fundamental regions Fa, Fb, there is a unique g ∈ G that
satisfies

gFa = Fb. (83)

Therefore, if Fi , for 1 � i � N , are the distinct fundamental regions with the
property that Ai = A ∩ Fi �= ∅, there is a unique gi ∈ G such that gi F1 = Fi .
Step 1. There exist γ j ∈ ∗

A, for 1 � j � M , such that gi = γM · · · γ1. Since A is
connected, given xi ∈ Ai , for 1 � i � N , there is an arc [0, 1] � s → x(s) ∈ A,
such that x(0) = x1, x(1) = xi . Since A is open, by slightly deforming x(s) if
necessary, we can assume that there are sequences s j , for 1 � j � M , and Ai j , for
1 � j � M + 1, such that

x(s) ∈ Ai j , for s j−1 < s < s j , and 1 � j � M + 1, (84)

x(s j ) ∈ πγ j , for 1 � j � M, (85)

where s0 = 0, sM+1 = 1, and where γ j is the reflection associated to the plane πγ j

on the common boundary between Fi j and Fi j+1 . This shows that gi = γM · · · γ1
and, therefore, that gi belongs to the group generated by ∗

A.
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Step 2. We now prove that g = γM · · · γ1, with γ j ∈ ∗
A, for 1 � j � M , is a nec-

essary and sufficient condition in order that g A = A. From the definition of ∗
A it is

plain that the condition is sufficient. On the other hand, g A = A implies gFh = Fk ,
for some 1 � h, k � N , and therefore, by Step 1, we have that g = gk g−1

h is the
product of reflections in ∗

A.
Step 3. To complete the proof of (i) we show that gFi ∩ A = ∅ implies g A∩ A = ∅.
Indeed, if this is not the case, there exist Fh, Fk , such that gFh = Fk . It follows that
g = gk g−1

h and therefore, by Step 1, gFi = gk g−1
h Fi = Fj , for some 1 � j � N ,

in contradiction with the assumption. ��
We denote by � the union of all planes πγ of all reflections γ ∈ G and define

�x = � \ �̃x , where �̃x = ∪γ∈\x πγ . (86)

Note that �̃x is the union of the planes of the reflections that do not fix x .

Lemma 10. Let A be a subset of R
n and v : A → R

n a map that satisfy the
following conditions.

(i) For all g ∈ G, g A ∩ A �= ∅ implies g A = A.
(ii) There holds v(gx) = gv(x), for all x ∈ A, g ∈ G A.

Then,

ṽ(x) = gv(g−1x), for all x ∈ g A, g ∈ G, (87)

extends v to an equivariant map ṽ : Ã → R
n, where Ã = ∪g∈G g A.

Proof. We first prove that ṽ is well defined. Assume x = g1x1 = g2x2, for some
x1, x2 ∈ A and g1, g2 ∈ G. Then, we have x2 = g−1

2 g1x1 and, therefore, g−1
2 g1 A∩

A �= ∅, which implies g−1
2 g1 A = A by (i). Thus, g−1

2 g1 ∈ G A and (ii) yields that
g−1

2 g1v(x1) = v(x2). From this and the definition (87) of ṽ, we conclude that

ṽ(x) = g1v(g−1
1 x) = g1v(x1) = g2v(x2) = g2v(g−1

2 x) = ṽ(x). (88)

To prove that ṽ is equivariant, given x ∈ Ã and g ∈ G, from (87) we have that
ṽ(x) = g1v(x1), ṽ(gx) = g2v(x2), for some x1, x2 ∈ A and g1, g2 ∈ G, such
that x = g1x1, gx = g2x2. Therefore, arguing as before, we deduce v(x2) =
g−1

2 gg1v(x1) and conclude that

ṽ(gx) = g2v(x2) = gg1v(x1) = gṽ(x). (89)

��
The following corollary concerns the particular case where A is a ball.

Corollary 1. Assume that the ball Bx,r satisfies the condition

Bx,r ∩ �̃x = ∅. (90)

Let α : Bx,r → R be a scalar function that depends only on the distance from
the center x of Bx,r and w : Bx,r → R

n be a map that satisfies condition (ii) in
Lemma 10. Then, (87) extends the product v = αw : Bx,r → R

n to an equivariant
map ṽ : ∪g∈G gBx,r → R

n .
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Proof. Since it results that γ Bx,r = Bx,r , for all γ ∈ Gx , the ball Bx,r satisfies (80)
in Lemma 9 if and only if it has an empty intersection with πγ , for all γ ∈  \ x .
From this and Lemma 9 it follows that (90) is a necessary and sufficient condition
in order that A = Bx,r satisfies condition (i) in Lemma 10. From the assumptions
on α and w it is obvious that v satisfies (ii). ��
Lemma 11. Let l0 and λ be as in Lemma 8. There exist d > 0 and R0 > 0 such
that, if R � R0, then, for each x ∈ DR that satisfies

d(x, ∂ DR) � d, (91)

there are x̂ ∈ DR, and L � L0 = l0 + λ, such that

(i) Bx̂,L ⊂ DR,

(ii) Bx̂,L ∩ �̃x̂ = ∅,

(iii) x ∈ Bx̂,L−λ.

Proof. Assume the lemma is false. Then, there are sequences R j , for x j ∈
DR j , 1 � j � · · ·, such that

{
lim j→+∞ R j = +∞,

lim j→+∞ d j := d(x j , ∂ DR j ) = +∞,
(92)

and

Bx̂,L ∩ �̃x̂ �= ∅, for all x̂, L such that L � L0, Bx̂,L ⊂ DR j , |x j − x̂ | < L − λ.

By passing to a subsequence, we can assume that, for each γ ∈ a1 = D there
exists αγ ∈ [0,+∞] such that

lim
j→+∞

d(x j , πγ )

d(x j , ∂ DR j )
= αγ . (93)

We distinguish two cases.
Case 1. Let αγ > 0, γ ∈ a1 . Then, provided j is sufficiently large, (92) and (93)
imply

d(x j , πγ ) >
1

2
ᾱd j > L0, for γ ∈ a1, (94)

where ᾱ := min{min{1, αγ } | αγ > 0, for γ ∈ a1}. This shows that the ball
Bx j ,

1
2 ᾱd j

⊂ DR j has an empty intersection with �, in contradiction with the
assumptions on the sequences {R j }, {x j }.
Case 2. Let αγ = 0, for some γ ∈ a1 . Let π0 = ∩αγ =0πγ and let ξ j ∈ π0 be the
orthogonal projection of x j on π0. Then, there is a constant C > 0 such that

|x j − ξ j | � C max
αγ =0

d(x j , πγ ) � Cd jα
0
j , (95)

where

α0
j := max

αγ =0

d(x j , πγ )

d j
→ 0, as j → +∞.
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Therefore, if γ̄ ∈ a1 has αγ̄ > 0, we obtain, for j sufficiently large,

d(ξ j , πγ̄ ) � d(x j , πγ̄ ) − |x j − ξ j | � d j

(
1

2
αγ̄ − Cα0

j

)
>

1

4
ᾱd j , (96)

d(ξ j , ∂ D) � d(x j , ∂ D) − |x j − ξ j | � d j (1 − Cα0
j ) >

1

2
d j . (97)

From (95) and (96), (97), it follows that, for j sufficiently large, x j ∈
Bξ j ,

1
4 ᾱd j −λ, the ball Bξ j ,

1
4 ᾱd j

is contained in DR j and has an empty intersection with

�̃ξ j = ∪γ∈\ξ j
πγ . This is in contradiction with the assumptions on {R j }, {x j }.

��
Assume R � R0, with R0 as in Lemma 11 and let

ℵR = {(x, L) | L � L0, Bx,L ⊂ DR, Bx,L ∩ �̃x = ∅}. (98)

From Lemma 11 and the compactness of the set {x ∈ DR | d(x, ∂ DR) � d} it
follows that there is a number K and (x̂ j , L j ) ∈ ℵR , for j = 1, . . . , K , that depend
on R and are such that

{x ∈ DR | d(x, ∂ DR) � d} ⊂ ∪K
j=1 Bx̂ j ,L j −λ. (99)

Define the set Ω R ⊂ DR by

Ω R = ∪K
j=1 Bx̂ j ,L j −λ. (100)

The set Ω R is open and we can assume that the sequence {Bx̂ j ,L j −λ}K
j=1 contains

gBx̂ j ,L j , for all g ∈ G D, j = 1, . . . , K , so that

GΩ R = G D = Ga1 . (101)

5.2. The Replacement Lemmas

Let q̄ ′ > 0 be the constant in Lemma 8 and let c > 0 as before in (63). Assume
R � R0 and Ω R as in (100).

Lemma 12. Let q : Ω R → R be the solution of{
�q = c2q, in Ω R,

q = q̄ ′, on ∂Ω R .
(102)

Then,

q(gx) = q(x), for all g ∈ GΩ R = G D = Ga1 . (103)

Moreover,

q(x) � K e−kd(x,∂Ω R), for x ∈ Ω R, (104)

and, in particular, if d > 0 is as in Lemma 11,

q(x) � K e−kd(x,∂ DR), whenever Bx,d ⊂ DR . (105)

for some constants K , k > 0 independent of R.
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Proof. The invariance follows from uniqueness. The maximum principle implies
q � q̄ ′. It follows that if ϕ is the solution of Eq. (102) on the ball with center x
and radius d(x, ∂Ω R) with boundary condition ϕ = q̄ , we have q � ϕ. This and
the estimate (67) in Lemma 6 imply (104) for some K , k > 0 independent of R.
The last estimate follows from d(x, ∂ DR) � d(x, ∂Ω R) + d, after changing K to
K ekd . ��
Lemma 13. Let A ⊂ DR be an open connected set with Lipschitz boundary and
let Φ the solution of the problem

{
�Φ = 0, in A,

Φ = f, on ∂ A,
(106)

for a smooth function f : ∂ A → R. Assume that f > 0 so that

Φm = min
x∈A

Φ(x) > 0.

Assume also that A, f, u ∈ U Pos, and 0 < b � Φm satisfy the following.

(a) A satisfies (i) in Lemma 10.
(b) f is the trace of a smooth map f ∗ that satisfies

f ∗(gx) = f ∗(x), for all x ∈ A, g ∈ G A.

(c) qu ∈ L∞(DR) and qu |∂ A � f , on ∂ A.
(d) The set Ab := {x ∈ A | qu(x) > b} is open and νu |Ab

is C1 smooth.

Then, there is a v ∈ U Pos such that

(i) νv = νu, on DR \ Su, Su = {x ∈ DR | qu = 0}.
(ii) qv � Φ, in A.

(iii) v|BR\ Ã = u|BR\ Ã, Ã = ∪g∈G g A.
(iv) JBR (v) � JBR (u).

Proof. Lemma 5 implies the existence of a minimizer ρ ∈ W 1,2(Ab) ∩ L∞(Ab)

of KAb on the subset of the functions that satisfy the Dirichlet condition

ρ = qu, on ∂ Ab, (107)

and the invariance condition

ρ(gx) = ρ(x), for x ∈ Ab, g ∈ G Ab . (108)

Let A∗
b := {x ∈ Ab | ρ(x) > Φ}. Then we have that ρ satisfies

∫
A∗

b

⎧⎨
⎩〈ũqq(ρ, νu), ũq(ρ, νu)〉|∇ρ|2 +

n∑
j=1

〈ũqν(ρ, νu)νu
x j

, ũν(ρ, νu)νu
x j

〉
⎫⎬
⎭ η dx

+
∫

A∗
b

〈ũq(ρ, νu), ũq(ρ, νu)〉∇ρ∇η dx = 0, (109)
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Fig. 2. The functions ρ and Φ

for all η ∈ W 1,2
0 (Ab) ∩ L∞(Ab) that satisfy (108) and vanish on {ρ � Φ} (Fig. 2).

Taking ω = ω j in (49), with α = ρx j , β = 1, and t = νu
x j

, we obtain, for η � 0,

⎛
⎝ n∑

j=1

ω j

⎞
⎠ η =

⎛
⎝−〈ũqq , ũq 〉|∇ρ|2 +

n∑
j=1

〈ũqνν
u
x j

, ũνν
u
x j

〉 − 2
n∑

j=1

〈ũqνν
u
x j

, ũq 〉ρx j

⎞
⎠ η � 0.

(110)

Integrating (110) and subtracting from (109) gives
∫

A∗
b

∇ρ∇(〈ũq , ũq〉η) dx � 0, (111)

for all nonnegative η ∈ W 1,2
0 (Ab) ∩ L∞(Ab) that satisfy (108) and vanish on the

set {ρ � Φ}. On the other hand, the definition of Φ implies
∫

A
∇Φ∇ζ dx = 0, (112)

for all ζ ∈ W 1,2
0 (A). We take η = (ρ − Φ)+/〈ũq , ũq〉 and ζ = (ρ − Φ)+ and

subtract (112) from (111) to obtain∫
A∗

b

|∇(ρ − Φ)+|2 dx � 0,

and, therefore, using also ρ � Φ for x ∈ Ab \ A∗
b,

ρ � Φ, in Ab. (113)

Define qv : A → R by setting

qv(x) =
{

min{ρ(x), qu(x)}, for x ∈ Ab,

qu(x), for x ∈ A \ Ab,
(114)

and observe that (ii) follows from this, from the inequality (113) and qu � b � Φm

in A \ Ab. Observe also that

qv = qu, for x ∈ ∂ A. (115)
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A ⊂ DR implies G A ⊂ G D . This and (47) imply that qu and therefore also qv

satisfies (108). It follows that, if we set

νv = νu, on A \ Su, (116)

and recall (38) and (47), then the map v : A → R
n defined by

v(x) =
{

ũ(qv(x); νu(x)), for x ∈ A \ Su,

0, for x ∈ A ∩ Su,

satisfies (i) and (ii) in Lemma 10. Therefore, v can be extended to an equivariant
map v : Ã → R

n, Ã = ∪g∈G g A. From (115) and (116) we see that v and u have
the same trace on ∂ Ã. It follows that, if we extend v to the whole BR by setting
v = u, on BR \ Ã, then we have a well-defined equivariant map v ∈ W 1,2

E (BR; R
n).

This in particular proves (iii). Moreover, v is a positive map because u is and, by
definition, qv � qu . It remains to prove (iv). We argue as follows. The definition
of v implies

JBR (v) = JÃ(v) + JBR\ Ã(u), with JÃ(v) = |G|
|G A| JA(v).

Let Ab
+ ⊂ Ab be the subset Ab

+ := {x ∈ Ab | qu(x) > ρ(x)} and observe that

JAb
+(v) = KAb

+(ρ) + VAb
+(ρ) � KAb

+(qu) + VAb
+(qu) = JAb

+(u),

where we have used the minimality of ρ and (43). Therefore, recalling that v = u
on A \ Ab

+ we obtain

JA(v) = JAb
+(v) + JA\Ab

+(u) � JA(u).

��
Lemma 14. Let c, q̄ be as in Hypothesis 1 and A as in Lemma 13, and let � be the
solution of the problem

{
�� = c2�, in A,

� = h, on ∂ A,
(117)

for a smooth function h : ∂ A → R. Assume that h > 0 so that

�m = min
x∈A

�(x) > 0.

Assume that A, h, u ∈ U Pos, and 0 < b � �m satisfy the following.

(a) A satisfies (i) in Lemma 10.
(b) h is the trace of a smooth map h∗ that satisfies

h∗(gx) = h∗(x), for all x ∈ A, g ∈ G A.
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(c) There holds

qu(x) � q̄, for x ∈ A,

and

qu |∂ A � h � q̄, on ∂ A.

(d) The set Ab := {x ∈ A | qu(x) > b} is open and νu |Ab
is C1 smooth.

Then, there is a v ∈ U Pos such that

(i) νv = νu, on DR \ Su.
(ii) qv � �, in A.

(iii) v|BR\ Ã = u|BR\ Ã, Ã = ∪g∈G g A.
(iv) JBR (v) � JBR (u).

Proof. The proof parallels the proof of Lemma 13. We minimize the functional EAb

on the weakly closed subset of W 1,2(Ab) defined by (107) and (108) in the proof of
Lemma 13 and obtain that, if ρ is a minimizer of EAb and A∗

b = {x ∈ Ab | ρ > �},
then we have∫

A∗
b

{∇ρ∇(〈ũq(ρ; νu), ũq(ρ; νu)〉η) + Vq(ρ, νu)η} dx � 0, (118)

for all nonnegative η ∈ W 1,2
0 (Ab) ∩ L∞(Ab) that satisfy (108) and vanish on the

set {ρ � �}. From (118) and (44) it follows
∫

A∗
b

{∇ρ∇(〈ũq(ρ; νu), ũq(ρ; νu)〉η) + c2〈ũq(ρ; νu), ũq(ρ; νu)〉ρη} dx � 0,

(119)

From (117) we also have

∫
A

∇�∇ζ + c2�ζ = 0, for ζ ∈ W 1,2
0 (A). (120)

If we set η = (ρ − �)+/〈ũq(ρ, νu), ũq(ρ, νu)〉 in (119) and subtract (120) with
ζ = (ρ − �)+ from (119), we obtain

∫
A∗

b

|∇(ρ − �)+|2 + c2(ρ − �)+2
dx � 0. (121)

From this it follows that A∗
b has zero measure and therefore we have

ρ � �, in Ab. (122)

The remaining proof is analogous to the proof of Lemma 13. ��
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Proposition 1. Let λ, l0, l � l0, δ, L = l + λ, and σ be as in Lemma 8. Let

σm = min
x∈BL

σ(x) > 0.

and set σx̂ := σ(· − x̂). Assume that Bx̂,L ⊂ DR satisfies Bx̂,L ∩ ̃x̂ = ∅ and also
assume that u ∈ U Pos and 0 < b � σm satisfy

(a) qu � Q, for x ∈ BL (cf. (65)),
(b) qu � q̄, for x ∈ Bx̂,L−λ,

(c) the set A◦
b := {x ∈ DR | qu(x) > b} is open and νu |A◦

b
is C1 smooth.

Then, there exists v ∈ U Pos such that

(i) νv = νu, on DR \ Su,

(ii) qv � σx̂ , for x ∈ Bx̂,L ,

(iii) v = u, for x ∈ BR \ B̃x̂,L , B̃x̂,L = ∪g∈G Bx̂,L ,

(iv) JBR (v) � JBR (u).

Proof. Set ϕ j,x̂ = ϕ(·− x̂), for j = 1, 2, and ϑx̂ = ϑ(·− x̂) with ϕ j , for j = 1, 2,
as in (63), (64), and ϑ as in (75). From Lemma 13, with A = Bx̂,L \ Bx̂,L−λ, Ab =
A◦

b∩A, and Φ = ϕ2,x̂ and also utilizing Corollary 1, we can replace u with a map v ∈
W 1,2

E (BR; R
n) that satisfies (i), (iii), and (iv), and qv � ϕ2,x̂ , for x ∈ Bx̂,L \ Bx̂,L−λ.

Similarly, from Corollary 1 and Lemma 14, with A = Bx̂,L−λ, Ab = A◦
b ∩ A, and

� = ϕ1,x̂ , we can replace u with a map v ∈ W 1,2
E (BR; R

n) that satisfies (i), (iii),
and (iv), and qv � ϕ1,x̂ in Bx̂,L−λ. Finally, a further application of Corollary 1 and
Lemma 13, with A = Bx̂,L−λ+δ \ Bx̂,L−λ−δ, Ab = A◦

b ∩ A, and Φ = ϑx̂ , concludes
the proof. ��
Proposition 2. Assume R � R0,Ω

R ⊂ DR, and q : Ω R → R as in Lemma 12.
Let

qm = min
x∈Ω R

q(x) > 0.

Assume that u ∈ W 1,2
E (BR; R

n) and 0 < b � qm satisfy

(a) qu � q̄ ′, for x ∈ Ω R, where q̄ ′ < q̄ is the constant in Lemma 8,
(b) the set Ab := {x ∈ A | qu(x) > b} is open and νu |Ab

is C1 smooth.

Then, there is a v ∈ W 1,2
E (BR; R

n) such that

(i) νv = νu, on DR \ Su,

(ii) qv � q, for x ∈ Ω R,

(iii) v = u, for x ∈ BR \ Ω̃ R, Ω̃ R = ∪g∈GΩ R,

(iv) JBR (v) � JBR (u).

Proof. It suffices to apply Lemma 14 with A = Ω R and � = q and Lemma 10,
taking into account that GΩ R = G D = Ga1 . ��
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6. Proof of Theorem 1

Let R > R0,Ω
R, q̄, q̄ ′ < q̄ , and FR be as before. Fix a number q0 ∈ (q̄ ′, q̄)

and define the admissible set A R ⊂ W 1,2
E (BR; R

n) by setting

A R := {u ∈ W 1,2
E (BR, R

n) | u(FR) ⊂ F; qu � q0, for x ∈ Ω R + Bδ′/2},
(123)

where δ′ is the constant in Lemma 8.
Step 1. There exists a minimizer u R ∈ W 1,2

E (BR; R
n) of the problem

min
u∈A R

JBR (u). (124)

Moreover,

|u| � M, (125)

where M is the constant in Hypothesis 2.
For u ∈ W 1,2

E (BR; R
n) we have JBR (u) = J{|u|>M}(u) + JBR\{|u|>M}(u). Set

ν = u/|u|, for |u| �= 0; then

J{|u|>M}(u) =
∫

{|u|>M}

⎧⎨
⎩

1

2

⎛
⎝|∇|u||2 + |u|2

n∑
j=1

〈νx j , νx j 〉
⎞
⎠ + W (|u|ν)

⎫⎬
⎭ dx

>

∫
{|u|>M}

⎧⎨
⎩

1

2
M2

n∑
j=1

〈νx j , νx j 〉 + W (Mν)

⎫⎬
⎭ dx

= J{|u|>M}(Mν),

where we have also used Hypothesis 2. This proves that minimizers satisfy the L∞
bound (125) and therefore that we can restrict ourselves to the subset of A R of the
maps u that satisfy

qu � Q, for x ∈ DR, where Q = max
u∈D, |u|�M

Q(u). (126)

Define

uaff(x) :=
{

d(x; ∂ D)a1, for x ∈ DR and d(x; ∂ D) � 1,

a1, for x ∈ DR and d(x; ∂ D) � 1.
(127)

The map uaff trivially satisfies condition (ii) in Lemma 10 and therefore extends to
an equivariant map on BR . Clearly, uaff ∈ A R . By the nonnegativity of W and a
simple calculation,

0 � inf
u∈A R

JBR (u) < JBR (uaff) < C Rn−1, (128)

for some constant C independent of R.
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Let {uk}∞k=1 ⊂ A R be a minimizing sequence. Without loss of generality, we
may assume that (125) holds for each value of k. We have

1

2

∫
BR

|∇uk |2 dx < JBR (uaff) < C Rn−1 and
∫

BR

|uk |2 dx < CR, (129)

where CR denotes a constant depending on R. By standard arguments, we obtain,
possibly along a subsequence,

uk → u R, almost everywhere, (130)

where u R ∈ A R is a minimizer of (124). Clearly, qu R � q0 on Ω R + Bδ′/2 and
|u R(x)| � M on BR . This finishes the proof of Step 1.
Step 2. The minimizer u R , for R � R0, satisfies

u(·, t, u R) = u R, t > 0, (131)

where, as before, u(·, t, u R) is the solution of (17) with initial condition u0 = u R .
Before proving (131), we observe that (131) implies that u R is a classical solu-

tion of �u − Wu(u) = 0 on the ball BR with the Neumann boundary condition.
Moreover, by Theorem 2, u R ∈ U Pos.

We argue by contradiction. Assume that (131) does not hold. There is a sequence
t̃ > 0 that converges to 0 and it is such that

JBR (ũ R) < JBR (u R), (132)

where we have set ũ R = u(·, t̃, u R). If t̃ > 0 is sufficiently small, we also have

qũ R � q̄, for x ∈ Ω R . (133)

This follows from u R ∈ A R , which implies qu R � q0 < q̄ , for x ∈ Ω R + Bδ′/2.
We now fix t̃ as above. From the definition of A R , Theorem 2, and the fact that
(17) preserves the pointwise bound (125), it follows that

ũ R ∈ U Pos and qũ R � Q, for x ∈ DR . (134)

Let σm be as in Proposition 1 and let L̄ = max{L | Bx,L ⊂ DR}. Observe that σm

is a nonincreasing function of L ∈ [L0, L̄] and that there is a σ̄ > 0 such that

σm � σ̄ , L ∈ [L0, L̄]. (135)

Since ũ R ∈ C2(BR; R
n), given 0 < b � σ̄ , the set A◦

b = {x ∈ DR | qũ R > b}
is open and ν ũ R |A◦

b
is C2. Assume that q0 < qũ R � q̄ on some subset of Ω R and

let Bx̂ j ,L j , for j = 1, . . . , K be the sequence in the definition (100) of Ω R . Since

we also have that Bx̂,L ∩ �̃x̂ = ∅, we see that ũ R, Bx̂1,L1 , A◦
b, satisfy all assump-

tions of Proposition 1, therefore, recalling that qv � σx̂ implies qv � q̄ ′ < q0,
for x ∈ Bx̂1,L1+δ′−λ, by applying Proposition 1 we conclude that there exists a
v1 ∈ U Pos with JBR (v1) � JBR (ũ R) < JBR (u R) and

qv1 � q̄ ′ < q0, x ∈ Bx̂1,L1+δ′−λ. (136)
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The map v1 given by Proposition 1 satisfies the same assumptions as ũ R , therefore
we can again apply Proposition 1 with v1, Bx̂2,L2 , A◦

b to obtain the existence of a
map v2 that belongs to U Pos, has qv2 � qv1 , and satisfies

qv2 � q̄ ′ < q0, for x ∈ ∪2
j=1 Bx̂ j ,L j +δ′−λ (137)

together with JBR (v2) � JBR (v1) � JBR (ũ R) < JBR (u R). After K similar steps
we end up with a map vK ∈ U Pos that satisfies

qvK � q̄ ′ < q0, for x ∈ ∪K
j=1 Bx̂ j ,L j +δ′−λ (138)

together with all the other requirements for membership in A R and, moreover,

JBR (vK ) � JBR (ũ R) < JBR (u R). (139)

This contradicts the minimality of u R and establishes (131). The proof of Step 2 is
concluded.
Step 3 (Conclusion). From (138) it follows that we can apply Proposition 2 to
conclude that qu R (x) � q(x), for x ∈ Ω R and therefore that, by Lemma 12 and
(126),

|u R(x) − a1| � K e−kd(x,∂ DR), for x ∈ DR, (140)

for some constants k, K > 0 independent of R. As remarked earlier, u R satisfies

�u − Wu(u) = 0, on BR, for R > R0, (141)

and the exponential bound (140).
Finally, the uniform bound (125) and elliptic regularity, via a diagonal argument,

allow us to pass to the limit along a subsequence in R and capture a function

u(x) = lim
Rn→∞ u Rn . (142)

The uniform bounds (138), (140) imply that the limit function u satisfies the expo-
nential bound in Theorem 1 and that it is a solution of

�u − Wu(u) = 0, on R
n . (143)

This concludes the proof of Theorem 1. ��
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