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Abstract

Motivated by nonlinear elasticity theory, we study deformations that are
approximately differentiable, orientation-preserving and one-to-one almost every-
where, and in addition have finite surface energy. This surface energy E was used
by the authors in a previous paper, and has connections with the theory of currents.
In the present paper we prove that E measures exactly the area of the surface created
by the deformation. This is done through a proper definition of created surface,
which is related to the set of discontinuity points of the inverse of the deformation.
In doing so, we also obtain an SBV regularity result for the inverse.

1. Introduction

In nonlinear elasticity theory, the total elastic energy of a deformation u : � →
R

n of a body � ⊂ R
n is given by

∫
�

W (x, Du(x)) dx, (1)

where n in the space dimension (which is usually assumed to be 3), and W :
� × R

n×n → R ∪ {∞} is the elastic stored-energy function of the material. The
seminal paper of Ball [6] proves existence of minimizers of (1) in a suitable class
of Sobolev functions u, under certain coercivity and polyconvexity assumptions on
W . When cavitation or fracture are considered, the total energy of a deformation
u will be the sum of the elastic energy (1) plus a term accounting for the energy
needed to produce the cavitation or fracture. From the mathematical point of view,
if one seeks minimizers of energy, that new term should enjoy the appropriate com-
pactness and lower semicontinuity properties in order to make the direct method
of the calculus of variations work.
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Fig. 1. Deformation that interlaces the cavities

In the quasi-static theory of fracture, the typical term accounting for the energy
due to fracture is Hn−1(Ju), where Ju is the set of jump points of u; see the pio-
neering papers [3,15] or the review paper [10] and the references therein. As for
cavitation, the first variational model for cavitation that took into account the full
n-dimensional case (as opposed to the radial case, which was studied earlier by
Ball [7]) was due to Müller and Spector [24]. This model has been influential
in our work, and is explained in the next paragraph.

Müller and Spector [24] proposed the term Per u(�) as an energy due to
cavitation. Here Per denotes the perimeter of a set, and u(�) is the image of �
under u defined in a suitable way. Intuitively, Per u(�) measures the area of the
cavities created by u together with the area of u(∂�). They pointed out, however,
that, in some instances, the term Per u(�) fails to detect the area of the created
cavities. Specifically, they constructed the deformation u : � → R

2 depicted in
Fig. 1. In that example, � is the rectangle (−M,M)× (−1, 1) for some M � 1.
The deformation u is the composition of a first deformation that creates 9 cavities
at each end of the rectangle, and then a deformation that bends the rectangle and
interlaces the cavities in the way shown in the figure. From that figure, we can
see why Per u(�) fails to detect the surface created: because two pieces of created
surface have been put in contact, the common region of contact does not belong to
the (reduced) boundary of u(�). To overcome that inconvenience, they defined a
topological condition which was called (INV) and is related to the invertibility of
the deformation. Then they put the condition (INV) as a constraint in the admissible
set of deformations, and, in this way, they excluded the deformation of Fig. 1 and
other deformations with similar pathological behaviour.

In [18] we took a different approach. Instead of imposing a topological con-
straint, we replaced the term Per u(�) by E(u), which was defined as the supremum,
when f ∈ C∞

c (�× R
n,Rn) and ‖ f ‖∞ � 1, of the quantity

∫
�

[
cof ∇u(x) · Dx f (x, u(x))+ det ∇u(x) div y f (x, u(x))

]
dx. (2)

In [18] we motivated the definition of E as a surface energy, and proved existence
of minimizers for the model

∫
�

W (x, Du(x)) dx + E(u).
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One of the main results of this paper is to provide a full proof of the fact that E(u)
indeed provides the area of the created surface. Prior to that, it is necessary to have
a definition of created surface. In this respect, the example of Fig. 1 shows that
naive definitions such as ‘the boundary of the image minus the image of the bound-
ary’ are inappropriate. In fact, Fig. 1 suggests that there seem to be two kinds of
created surface: visible and invisible. Generically, at a point on a piece of visible
created surface, there is matter on one side of the ‘tangent hyperplane’, and no
matter on the other. In contrast, at a point on a piece of invisible created surface,
there is matter on both sides, but the matter comes from two separated places in
the reference configuration; thus, this piece of surface will not be detected by the
term Per u(�), and hence the name invisible. The example of Fig. 1 also indicates
that the created surface has to do with the set of discontinuity points of the inverse
of the deformation, and that the visible and the invisible surfaces correspond to
two different kinds of discontinuity. Roughly speaking, at a point on an invisible
surface, the inverse of u has a jump discontinuity, whereas at a point on a visible
surface, it is the extension to R

n of the inverse of u by an arbitrary constant that has
a jump discontinuity. Here the second topic of the paper appears: some regularity
properties of the inverse are needed so that the set of its discontinuity points forms
a ‘surface’. We will see that an SBV regularity result for the inverse can be proved
to be a consequence of the assumption E(u) < ∞.

Related results on the regularity of the inverse have appeared recently in [12,19–
23,25]. The kind of results that they prove is that if a homeomorphism is Sobolev
(or BV ) and some extra condition holds, then the inverse is also Sobolev (or BV ).
Although similar in spirit, our result neither implies nor is implied by theirs, and
the techniques are different.

In fact, the result on the SBV regularity of the inverse is natural once the fol-
lowing considerations have been made. The quantity E(u) is known in the theory
of currents as the mass of the vertical part of the boundary of the current carried
by the graph u, and is denoted by M((∂Gu)(n−1)). (For an exposition of the theory
of currents, as well as for the notation and terminology used, we refer the reader
to [16,17]). On the other hand, it is easy to see that M((∂Gu)(n−1)) coincides
with the mass of the horizontal part of the boundary of the current carried by u−1,
which is denoted by M((∂Gu−1)(0)). Now, Ambrosio [2] proved that a BV func-
tion is in SBV if and only if the mass of the horizontal part of the boundary of
the current carried by its graph is finite. Putting these two things together would
give (in principle) that if E(u) < ∞, then u−1 is in SBV . There are, however,
two major difficulties that prevent our SBV regularity result from being just an
immediate application of the two results mentioned above. The first is that the
inverse of u is defined on (an appropriate definition of) u(�), and this set does
not necessarily coincide almost everywhere with an open set. Hence, the func-
tion spaces BV (u(�),Rn) or SBV (u(�),Rn) do not make sense. The second
difficulty is, in fact, a preliminary step in the proof of the SBV regularity, and
consists of previously showing that the inverse (defined in an appropriate way) is
a function of bounded variation. The first difficulty is solved by truncating u in
suitable open set U , and then extending the inverse of u|U to R

n by an arbitrary
constant.
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Although we lack the needed notation, we state one of the main theorems of
the paper in order to give an idea of the results proved here.

Theorem 1. Let � be a bounded open set of R
n such that 0 /∈ �̄. Let u : � → R

n

be a measurable map that is approximately differentiable in almost all �. Sup-
pose that u is one-to-one almost everywhere, det ∇u > 0 almost everywhere,
cof ∇u ∈ L1

loc(�,R
n×n) and E(u) < ∞. Let �V (u) be the visible surface created

by u, and �I (u) the invisible surface created by u, as defined in Definition 9. Then

E(u) = Hn−1(�V (u))+ 2Hn−1(�I (u)). (3)

Suppose, in addition, that det ∇u ∈ L1
loc(�), and choose x ∈ �. Then, for

almost every r ∈ (0, dist(x, ∂�)), the function u−1
B(x,r) defined in Definition 8

is in SBV (Rn,Rn).

The reason there is a factor 2 multiplying Hn−1(�I (u)) in formula (3) is that
the creation of invisible surface involves two pieces of created surface being put
in contact with each other, so the area of the contact region must be accounted for
twice. In particular, formula (3) meets our expectation for the deformation depicted
in Fig. 1. The second result of Theorem 1 is an SBV regularity result for almost
all truncations of the inverse of u.

The assumption that u is one-to-one almost everywhere is not necessary for
E(u) to be well defined or to have good lower semicontinuity and compactness
properties. In contrast, it is essential in Theorem 1 in order to give E(u) the
geometric interpretation of (3).

We now describe the contents of each section of the paper. In Section 2 we
present the definitions and concepts that will be used throughout the paper, as well
as some important preliminary results. In Section 3 we define a precise notion of
the inverse u−1 and of the truncated inverse u−1

U for any U ⊂ �. Instead of working
with the surface energy E defined above, we work with the related functional Ē ,
which satisfies Ē � E and is such that the assumption Ē(u) < ∞ is enough to carry
out the analysis of Section 3. The main result of Section 3 is an SBV regularity
result for u−1

U under the assumption Ē(u) < ∞. In Section 4 we establish the defi-
nitions of created surface �(u), visible surface �V (u) and invisible surface �I (u)
of a deformation u, and show some important properties of these concepts.

From Section 4 onwards, the stronger assumption E(u) < ∞ is made (as
opposed to Ē(u) < ∞). This is essential in order to prove formula (3). We show a
representation of the quantity Eu( f ), defined to be (2), as an integral over �I (u)
and �V (u). That representation formula implies formula (3) and completes the
proof of Theorem 1. Section 5 continues the study of the created surface initiated
in Section 4. We prove some important relationships between several concepts of
surface created by u, the set of discontinuity points of the inverse, the image of the
boundary, and the boundary of the image. In Section 6 we regard E(u) as a positive
Radon measure μu, and show that it provides us with a natural generalization of
the singular part of the distributional determinant. In addition, we prove that μu
satisfies the local counterpart of formula (3), so that μu(U ) measures the area of
the surface created by U in u, for ‘good’ open sets U ⊂ �. Moreover, we find the
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set of singularities of u (in the reference configuration) that are responsible for the
creation of surface. In Section 7, the following intuitive idea is made precise: the
invisible surface can become visible if u is restricted to smaller parts of the body;
for instance, the invisible surface created by the deformation of Fig. 1 becomes
visible if we consider separately the deformation restricted to the left and to the
right halves of the rectangle. In this way, we obtain a representation formula for μu
which states that for any open set U ⊂ �, the quantityμu(U ) equals the supremum,
among all families of ‘good’ disjoint balls B contained in U , of the sum of the area
of the surface created by u in B. Finally, in Section 8 we derive the first variation
for the surface energy E , and, as a consequence, the equilibrium equations for the
models of cavitation and fracture proposed in [18].

2. Notation and preliminaries

In this section we set the general notation of this paper, and state some important
preliminary results. Most of our notation is standard and follows that of [5].

2.1. General notation

We will work in dimension n, and tacitly assume that n � 2. Unless otherwise
stated, expressions such as measurable or almost everywhere refer to the Lebesgue
measure in R

n , which is denoted by Ln . The m-dimensional Hausdorff measure
will be indicated by Hm . Usually, m will be n − 1. Our basic object will be the
deformation, which is a measurable map u : � → R

n satisfying certain conditions,
and where � is a bounded open set of R

n representing the reference configuration
of a body. Vector-valued and matrix-valued quantities will be written in boldface.
Coordinates in the reference configuration will generically be denoted by x, while
coordinates in the deformed configuration by y. The divergence operator in the ref-
erence configuration (so with respect to the x coordinates) is denoted by Div, while
div denotes the divergence operator in the deformed configuration (with respect
to y).

The closure of a set A is denoted by Ā, its boundary by ∂A, and its interior by
Å. Given two open sets U, V of R

n , we will say that U is compactly contained in
V if Ū ⊂ V ; in this case, we will write U ⊂⊂ V . The open ball of radius r > 0
centred at x ∈ R

n is denoted by B(x, r). Unless otherwise stated, a ball will always
be an open ball. Half-spaces are denoted by

H+(a, ν) := {x ∈ R
n : (x − a) · ν � 0}, H−(a, ν) := H+(a,−ν),

for a given a ∈ R
n and a nonzero vector ν ∈ R

n . The set of unit vectors in R
n is

denoted by S
n−1.

The identity matrix is denoted by 1. Given a square matrix A ∈ R
n×n , its trans-

pose is denoted by AT and its determinant by det A. The cofactor matrix of A,
denoted by cof A, is the matrix that satisfies (det A)1 = AT cof A. The transpose
of cof A is the adjoint matrix of A, denoted by adj A. If A is invertible, its inverse
is denoted by A−1, and the transpose of its inverse by A−T . The inner (dot) product
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of vectors will be denoted by ·, and the same notation will be used for the inner
product of matrices. The tensor product of two vectors x, y ∈ R

n is denoted by
x ⊗ y, and is the matrix whose (i, j)th entry is xi y j . The Euclidean norm of a
vector x is denoted by |x|, and the associated matrix norm is also denoted by | · |.

The identity function in R
n is denoted by id. We will denote by ‖id‖L∞(�,Rn)

the norm of id as an element of L∞(�,Rn), that is, supx∈� |x|.
Given a sequence of sets {Vk}k∈N, its inferior limit is defined as

lim inf
k→∞ Vk :=

⋃
p∈N

⋂
k�p

Vk .

Given two sets A, B of R
n , we will write A ∼⊂ B if Hn−1(A\B) = 0. We will

write A ∼= B if A ∼⊂ B and B ∼⊂ A.
If μ is a measure on a set U , and V is a μ-measurable subset of U , then

the restriction of μ to V , denoted by μ V , is the measure on U that satisfies
μ V (A) = μ(A ∩ V ) for all μ-measurable sets A. The measure |μ| denotes the
total variation of μ. The support of a measure μ or of a function f is denoted by
sptμ or spt f , respectively. As usual, −∫A denotes

∫
A divided by the measure of A.

With 〈·, ·〉 we will indicate the duality product, usually between a measure and
a continuous function, although sometimes between a distribution and a smooth
function.

A set E of R
n is said to be countably Hn−1 rectifiable if for each i ∈ N there

exists a Lipschitz map f i : R
n−1 → R

n such that Hn−1(E\⋃i∈N
f i (R

n−1)) = 0.

2.2. Approximate continuity and differentiability

Given a measurable set A ⊂ R
n and a point x ∈ R

n , the density of A at x is
defined as

D(A, x) := lim
r↘0

Ln(B(x, r) ∩ A)

Ln(B(x, r))
,

if that limit exists. The following notions are essentially due to Federer [14].

Definition 1. Let A be a measurable set in R
n , and u : A → R

n a measurable
function. Let x0 ∈ R

n satisfy D(A, x0) = 1, and let y0 ∈ R
n .

(a) We will say that the approximate limit of u at x0 is y0 when

D
({x ∈ A : |u(x)− y0| � δ}, x0

) = 0 for each δ > 0.

In this case, we will write ap limx→x0
u(x) = y0.

(b) Given a measurable set F ⊂ A with D(F, x0) > 0, we will write

ap lim
x→x0

x∈F

u(x) = y0

when D
({x ∈ F : |u(x)− y0| � δ}, x0

) = 0 for each δ > 0.
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(c) We will say that u is approximately continuous at x0 if x0 ∈ A and
ap limx→x0

u(x) = u(x0). The set Su denotes the set of points at which A
has density 1 and u is not approximately continuous.

(d) We will say that x0 is an approximate jump point of u if there exist a, b ∈ R
n

and ν ∈ S
n−1 such that a �= b, and

ap lim
x→x0

x∈H+(x0,ν)

u(x) = a, ap lim
x→x0

x∈H−(x0,ν)

u(x) = b.

The unit vector ν is uniquely determined up to a sign. When a choice of the
unit vector has been made, we say that it has been oriented, and the chosen unit
vector is called the orientation vector and denoted by νu(x0). The points a and
b are called the lateral traces of u at x0 with respect to the orientation νu(x0),
and are denoted by u+(x0) and u−(x0), respectively. The set of approximate
jump points of u is called the jump set of u, and is denoted by Ju.

(e) We will say that u is approximately differentiable at x0 if x0 ∈ A and there
exists L ∈ R

n×n such that

ap lim
x→x0

x∈A\{x0}

|u(x)− u(x0)− L(x − x0)|
|x − x0| = 0.

In this case, L (which is uniquely determined) is called the approximate differ-
ential of u at x0, and will be denoted by ∇u(x0).

We will say that a map u : � → R
n is approximately differentiable in almost

all � when it is measurable and approximately differentiable at almost each point
of �. The set of approximate differentiability points of u is usually called �d .

2.3. Function spaces, perimeter and boundary

If u : � → R
n is a function locally of bounded variation, Du denotes the distri-

butional derivative of u, which is a Radon measure in�. We will use the decomposi-
tion of Du in the absolutely continuous part Da u, the jump part D j u and the Cantor
part Dcu; the singular part is denoted by Ds u, and satisfies Ds u = Dcu + D j u.
Our notation and definitions follow [5, Ch. 3]. By virtue of the Calderón–Zygmund
theorem (see, for example, [5, Th. 3.83]), the density of Da u with respect to Ln

coincides almost everywhere with the approximate differential ∇u.
Note that we do not identify functions that coincide almost everywhere. The

precise representative ũ : R
n → R

n of the measurable function u : R
n → R

n is
defined as

ũ(x0) :=
{

ap limx→x0
u(x) if ap limx→x0

u(x) exists
0 otherwise.

The Lebesgue L p and Sobolev W 1,p spaces are defined in the usual way. So are
the set of smooth functions C∞, of bounded variation BV and of special bounded
variation SBV ; see, if necessary, [5] for the definitions. The set C∞

c (�,R
n) denotes



582 Duvan Henao & Carlos Mora-Corral

the space of C∞ functions with compact support in�. We will always indicate the
domain and target space, as in, for example, L1(�,Rn), except if the target space
is R, in which case we will simply write L1(�). Sometimes we will use Lebes-
gue spaces in n − 1 dimensional sets; for example, if � is a set with a Lipschitz
boundary, then L1(∂�) denotes the Lebesgue L1 space on ∂� with respect to the
Hn−1 measure. From the context it will be clear that these spaces are defined with
respect to the Hn−1 measure, and not to the Ln measure, so we will not indicate it
explicitly.

The variation of u ∈ L1
loc(�,R

n) in the open set� is denoted by V (u,�), and
defined as

V (u,�) := sup

{∫
�

u(x) · Divφ(x) dx : φ ∈ C∞
c (�,R

n×n), ‖φ‖∞ � 1

}
.

Given a measurable set A ⊂ R
n , its characteristic function will be denoted by χA,

and its perimeter by Per A or Per(A), which is defined as

Per A := sup

{∫
A

div g( y) d y : g ∈ C∞
c (R

n,Rn), ‖g‖∞ � 1

}
.

Definition 2. Let E be a measurable set of R
n . We define the reduced boundary of

E , and denote it by ∂∗E , as the set of points y ∈ R
n for which a unit vector νE ( y)

exists such that

D(E ∩ H−( y, νE ( y)), y) = 1

2
and D(E ∩ H+( y, νE ( y)), y) = 0.

This νE ( y) is uniquely determined and is called the unit outward normal to E .

This definition of reduced boundary, as well as its notation, may differ from
other usual definitions, but thanks to Federer’s [14] theorem (see also [5, Th. 3.61]
or [28, Sect. 5.6]), it coincides Hn−1-almost everywhere with all other definitions
of reduced (or essential or measure-theoretic) boundary for sets of finite perimeter.

2.4. Geometric image

The following definition, due to Conti and De Lellis [11], is an adaptation
of that of Müller and Spector [24].

Definition 3. Let u : � → R
n be approximately differentiable in almost all �

and suppose that det ∇u(x) �= 0 for almost every x ∈ �. Define �0 as the set of
x ∈ � such that u is approximately differentiable at x with det ∇u(x) �= 0, and
there exist w ∈ C1(Rn,Rn) and a compact set K ⊂ � of density 1 at x such that
u|K = w|K and ∇u|K = Dw|K . For any measurable set A of �, we define the
geometric image of A under u as u(A ∩�0), and denote it by imG(u, A).

The condition det ∇u(x) �= 0 for almost everywhere x ∈ � has been included
in the hypotheses so that many pointwise properties of u (such as those of Lemma 1)
hold for every x ∈ �0. As for the remaining part of the definition, the motivation
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comes from the following properties of approximately differentiable maps. First,
the set �d of points of approximate differentiability can be written as the union of
a countable family of measurable sets {A j } j∈N such that u|A j is Lipschitz contin-
uous (Federer [14, Th. 3.1.8]). Combining this with Rademacher’s theorem and
Whitney’s extension theorem, it is possible to find (see [14, Th. 3.1.16]) an increas-
ing sequence of compact sets {K j } j∈N contained in�, and a sequence {w j } j∈N of
maps in C1(Rn,Rn), such that

Ln

⎛
⎝�\

∞⋃
j=1

K j

⎞
⎠ = 0, u|K j = w j |K j , (∇u)|K j = Dw j |K j . (4)

Letting K ′
j denote the set of points of density 1 for K j , it is easy to see that the set

�0 of Definition 3 contains
⋃

j∈N
K ′

j . Thus, the set �0 is of full measure in �.
By Proposition 1 below we have that

Ln(u(N ∩�d)) = 0 whenever Ln(N ) = 0. (5)

Consequently, it is equivalent (up to Lebesgue null sets) to define the geometric
image of A as u(A∩�d) or as u(A∩�0). We have chosen to define it as u(A∩�0)

because there are definite advantages in working with the set of points at which u
has a C1 extension. In this paper, this will be manifest in the definition of the inverse
u−1 of an approximately differentiable map u, in the study of regularity properties
for this inverse, and in the study of the notion of a fracture surface. We shall use,
in particular, the following result due to Müller and Spector [24, Lemma 2.5].

Lemma 1. Let u : � → R
n be approximately differentiable in almost all � and

suppose that det ∇u(x) �= 0 for almost every x ∈ �. Let �0 be as in Definition 3.
Then for every x ∈ �0 and every measurable set A ⊂ �,

D(imG(u, A), u(x)) = 1 whenever D(A, x) = 1.

Moreover, if ν ∈ R
n\{0} and we define ν̄ := (sgn det ∇u(x))(cof ∇u(x))ν, then

for every x ∈ �0,

D(imG(u, A) ∩ H+(u(x), ν̄), u(x)) = 1

2
whenever D(A ∩ H+(x, ν), x) = 1

2
.

2.5. Change of variables in volume and surface integrals

We now recall the area formula of Federer [14, Thms. 3.1.8, 3.2.3 and 3.2.5],
the formulation of which is taken from [24, Prop. 2.6]. In the statement below,
N(u, A, y) denotes the number of preimages under u of a point y in the set A.

Proposition 1. Let u : � → R
n be approximately differentiable in almost all

�, and call �d the set of approximate differentiability points of u. Then, for any
measurable set A ⊂ � and any measurable function ϕ : R

n → R,∫
A
(ϕ ◦ u)| det ∇u| dx =

∫
Rn
ϕ( y)N(u,�d ∩ A, y) d y, (6)
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whenever either integral exists. Moreover, if ψ : A → R is measurable and
ψ̄ : u(�d ∩ A) → R is given by

ψ̄( y) :=
∑

x∈�d∩A
u(x)= y

ψ(x),

then ψ̄ is measurable and
∫

A
ψ(ϕ ◦ u)| det ∇u| dx =

∫
u(�d∩A)

ψ̄ϕ d y (7)

whenever the integral on the left-hand side of (7) exists.

In the analysis of the created surface of Section 5, we will use the (n − 1)-
dimensional change of variables formula for approximately differentiable maps. In
order to state this formula, we recall the notion of tangential approximate differen-
tiability, and some notation from multilinear algebra. We restrict our attention to the
case of maps defined on C1 manifolds, although all what follows also holds, with
a suitable notion of tangent space, for maps defined on countably Hn−1 rectifiable
sets. The following definition is due to Federer [14, Def. 3.2.16].

Definition 4. Let S ⊂ R
n be a C1 differentiable manifold of dimension n − 1, and

let x0 ∈ S. Let Tx0 S be the linear tangent space of S at x0. A map u : S → R
n is

said to be Hn−1 S-approximately differentiable at x0 if there exists L ∈ R
n×n

such that for all δ > 0,

lim
r↘0

r−(n−1)Hn−1
({

x ∈ S ∩ B(x0, r) : |u(x)− u(x0)− L(x − x0)|
|x − x0| � δ

})
= 0.

The linear map L|Tx0 S : Tx0 S → R
n is uniquely determined and called the tan-

gential approximate derivative of u at x0. We denote it by ∇u(x0).

If L : V → R
n is a linear transformation, where V is an (n − 1)-dimensional

subspace of R
n , the transformation 	n−1 L : 	n−1V → R

n is defined by

(	n−1 L)(a1 ∧ · · · ∧ an−1) := La1 ∧ · · · ∧ Lan−1, a1, . . . , an−1 ∈ V .

Here ∧ denotes the exterior product between vectors in R
n . Since the subspace

	n−1V can be identified with {λv : λ ∈ R}, where v is a unit vector normal to V ,
the linear transformation	n−1 L is determined by the value (	n−1 L)v. This value
can be computed as

(	n−1 L)v = (cof L̃)v, (8)

provided L̃ : R
n → R

n extends L linearly from V to R
n . For a thorough exposition

of the concepts and properties mentioned refer, for example, to [14, Ch. 1] or [26,
Ch. 4].

The following area formula is due to Federer (for the the first part, see [14,
Cor. 3.2.20]; for the second, use the standard technique of approximating non-
negative functions by an increasing sequence of simple functions).
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Proposition 2. Let S ⊂ � be a C1 differentiable manifold of dimension n − 1.

a) Let u : S → R
n be Hn−1 S-approximately differentiable in Hn−1-almost all

S. Denote the set of points of Hn−1 S-approximate differentiability of u by
Sd . Then, for any Hn−1-measurable subset A ⊂ S,

∫
A

|	n−1∇u(x)| dHn−1(x) =
∫

Rn
N(u, Sd ∩ A, y) dHn−1( y),

whenever either integral exists.
b) Let u : � → R

n be approximately differentiable in almost all �, and such that
det ∇u(x) �= 0 for almost every x ∈ �. Let �0 be the set of Definition 3. Sup-
pose that a set Sd ⊂ �0 ∩ S exists such that Hn−1(S\Sd) = 0, and such that for
every x ∈ Sd the restriction u|S is Hn−1 S-approximately differentiable at x,
and ∇(u|S)(x) = ∇u(x)|Tx S. Suppose, further, that cof ∇u ∈ L1(S,Rn×n).
Then, for every bounded and measurable g : R

n → R
n, and any Hn−1-

measurable subset A ⊂ S,
∫

A
g(u(x)) · (cof ∇u(x))ν(x) dHn−1(x) =

∫
u(Sd∩A)

g( y) · ν̃( y) dHn−1( y),

(9)

where ν denotes the unit normal to S, and

ν̃( y) :=
∑

x∈Sd∩A
u(x)= y

(cof ∇u(x))ν(x)
|(cof ∇u(x))ν(x)| , y ∈ u(Sd ∩ A).

Definition 5. Let u : � → R
n be measurable. For each open set U ⊂⊂ � with a

C1 boundary, we denote the set of Hn−1 ∂U -approximate differentiability points
of u|∂U by ∂dU .

2.6. A class of ‘good’ open sets

The following well-known property (see for example, [13, Th. 16.25.2; 27,
p. 112] or [24, p. 48]) allows us to parametrize a tubular neighbourhood of the
boundary of C2 open sets.

Proposition 3. Let U be an open set compactly contained in�with a C2 boundary.
Let ν : ∂U → R

n be the exterior unit normal. Then there exists δ > 0 such that
the map w : ∂U × (−δ, δ) → � given by

w(x, t) = x − tν(x), x ∈ ∂U, t ∈ R,

is a C1 diffeomorphism between ∂U × (−δ, δ) and

N (∂U, δ) := {x ∈ � : dist(x, ∂U ) < δ}. (10)
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Moreover, the function d : � → R given by

d(x) :=
⎧⎨
⎩

dist(x, ∂U ) if x ∈ U
0 if x ∈ ∂U
− dist(x, ∂U ) if x ∈ �\Ū

(11)

is continuous in � and of class C2 in N (∂U, δ), and for every x ∈ ∂U and
t ∈ (−δ, δ),

Dd(x − tν(x)) = −ν(x) = −νt (x − tν(x)), (12)

where νt is the unit exterior normal to Ut . Moreover, for every x ∈ N (∂U, δ) there
exists a unique ξ(x) ∈ ∂U such that |d(x)| = |x − ξ(x)|. Finally, for each x ∈ ∂U
and t ∈ (−δ, δ), we have that d(x − tν(x)) = t and ξ(x − tν(x)) = x.

For each t ∈ (−δ, δ) we define the open set

Ut := {x ∈ � : d(x) > t}. (13)

Then, ∂Ut = {x ∈ � : d(x) = t}, and (Ut )s = Ut+s for all s ∈ (−δ − t, δ − t).
We shall study the behaviour of u in a suitable class of intermediate open sets,

compactly contained in the domain. In Definition 6 we impose certain requirements
that the trace of u on the boundary of those open sets must satisfy, in order to carry
out this analysis. In Lemma 2 we show that the conditions are satisfied for open
sets of the form Ut , for almost every t small enough, with Ut defined as in (13).

Definition 6. Let u : � → R
n be approximately differentiable in almost all�. We

define Uu as the class of nonempty open sets U that are compactly contained in �
and satisfy the following conditions:

i) U has a C2 boundary.
ii) cof ∇u ∈ L1(∂U,Rn×n).

iii) lim j→∞ −∫ 1
j

0

∫
∂Ut

| cof ∇u(x)| dHn−1(x) dt = ‖ cof ∇u‖L1(∂U,Rn×n), where
the sets Ut are defined in (13).

iv) Hn−1(∂U\�0) = 0, where �0 is the set of Definition 3.
v) u|∂U : ∂U → R

n is Hn−1 ∂U -approximately differentiable at x, and
∇(u|∂U )(x) = ∇u(x)|Tx∂U , for Hn−1-almost every x ∈ ∂U .

vi) For every g ∈ C∞
c (R

n,Rn),

lim
j→∞ −
∫ 1

j

0

∣∣∣∣
∫
∂Ut

g(u(x)) · (cof ∇u(x))νt (x) dHn−1(x)

−
∫
∂U

g(u(x)) · (cof ∇u(x))ν(x) dHn−1(x)

∣∣∣∣ dt = 0,

where νt denotes the unit outward normal to Ut for each t ∈ (−δ, δ), the sets
Ut are defined in (13), the number δ is that of Proposition 3, and ν denotes the
unit outward normal to U .
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Lemma 2. Let u : � → R
n be approximately differentiable in almost all �, and

such that cof ∇u ∈ L1
loc(�,R

n×n). Let U be a nonempty open set compactly
contained in � with a C2 boundary. Let δ > 0 and d : � → R be as in Proposi-
tion 3. For every t ∈ (−δ, δ) define Ut as in (13). Then Ut ∈ Uu for almost every
t ∈ (−δ, δ).
Proof. Recall from (10) the definition of N (∂U, δ). By assumption, | cof ∇u| ∈
L1(N (∂U, δ)). Therefore, as a consequence of the coarea formula (see, for exam-
ple, [5, Eq. (2.74)]) and (12), we have that | cof ∇u| ∈ L1(∂Ut ) for almost every
t ∈ (−δ, δ), and

∫
N (∂U,δ)

| cof ∇u(x)| dx =
∫ δ

−δ

∫
∂Ut

| cof ∇u(x)| dHn−1(x) dt.

Property iii) follows from an application of Lebesgue’s differentiation theorem to
the function

(−δ, δ) � t �→
∫
∂Ut

| cof ∇u(x)| dHn−1(x).

Properties iv) and vi) are proved similarly; the latter by using a countable and dense
(in the supremum norm) family of C∞

c (R
n,Rn), and equality (12).

Now we show v). Let {K j } j∈N be the sequence of sets that appears in (4).
As before, for almost every t ∈ (−δ, δ), the set ∂Ut\⋃ j∈N

K j has zero Hn−1

measure, and

lim
r↘0

r−(n−1)Hn−1((∂Ut\K j ) ∩ B(x, r)) = 0

for Hn−1-almost every x ∈ K j and all j ∈ N. This, together with (4), shows
property v). ��

Not all properties of Uu are used throughout the paper; for instance, properties
iv–vi) are used only in Sections 5–7. Note that, in the notation of Definition 6(v),
and using (8), we have that

(	n−1∇(u|∂U )(x))νt (x) = (cof ∇u(x))ν(x),

where ν(x) is the outward unit normal to U at x.

3. SBV regularity of the inverse

Motivated by our analysis of cavitation and fracture, in [18] we considered the
following as a tentative surface energy.

Definition 7. Let u : � → R
n be approximately differentiable in almost all �.

Suppose that cof ∇u ∈ L1
loc(�,R

n×n). Assume that det ∇u ∈ L1
loc(�), or that u is

one-to-one almost everywhere. For each φ ∈ C1
c (�) and g ∈ C1

c (R
n,Rn), define

Ēu(φ, g) :=
∫
�

[g(u(x)) · cof ∇u(x) Dφ(x)+ det ∇u(x) φ(x) div g(u(x))] dx

(14)
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and

Ē(u) := sup
{
Ēu(φ, g) : φ∈C1

c (�), g ∈C1
c (R

n,Rn), ‖φ‖∞ � 1, ‖g‖∞ � 1
}
.

Note that if u is one-to-one almost everywhere, then the integral of the second
term in (14) is well defined, thanks to Proposition 1.

As explained in [18, Sect. 3], Ēu is related to the phenomenon of creation of
surface, whereby the equality u(∂�) = ∂u(�) is not satisfied. It was shown that
its boundedness plays an important role in proving the weak continuity of the
Jacobian determinants, and that the weak limit of one-to-one almost everywhere
maps is also one-to-one almost everywhere. In this paper we prove that Ē(u) < ∞
implies, in addition, the SBV regularity of the inverse, and we explore the geomet-
rical significance of this regularity result in terms of the creation of surface.

Before entering into the technical details, we sketch the main idea of this sec-
tion. We restrict our attention to an open set U compactly contained in the domain,
for reasons to be clarified later (see the remarks after Theorem 2). By Proposition 1,
the second term of the right-hand side of (14) can be written as

∫
imG(u,U )

φ(u−1( y)) div g( y) d y,

provided det ∇u > 0 almost everywhere and u is one-to-one almost everywhere
(u−1 is given a precise meaning in Definition 8). If imG(u,U ) coincided almost
everywhere with an open set, this would be the distributional derivative of φ ◦ u−1,
acting on a test function g. Since the first term in (14) contains no derivatives of
g, it is clear that Ē(u) < ∞ would imply that φ ◦ u−1 ∈ BV (imG(u,U )) for all
φ ∈ C∞

c (�).
Since imG(u,U ) need not coincide almost everywhere with an open set, instead

of working with (u|U )−1 : imG(u,U ) → U directly, we consider an arbitrary
extension of it, denoted by u−1

U , defined to be 0 in the rest of R
n (Definition 8).

This creates an artificial jump across the reduced boundary of imG(u,U ) (a set of
finite perimeter, according to Theorem 2), which can be seen in its distributional
derivative. Indeed, suppose that u is a diffeomorphism from Ū onto its image; then

〈
Du−1

U ,G
〉
=
∫

u(U )
Du−1( y) · G( y)−

∫
∂u(U )

u−1( y) · G( y)ν( y) dHn−1( y),

(15)

G being an R
n×n-valued test function. The above relation continues to hold, for

example, if u is a diffeomorphism except for the opening of a finite number of
cavities at points x1, . . . , xM in U (cf. [18, Prop. 4]). In that case

Ju−1
U

= ∂u(U ) = u(∂U ) ∪ �1 ∪ · · · ∪ �M ,

where �1, . . . , �M are the cavity surfaces. This shows that the jump set of the arbi-
trary extension is related to the created surface, but it is necessary to distinguish
between the points of Ju−1

U
that come from the old boundary [those in u(∂U )] and

those that truly correspond to the created surface.
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Based on the previous ideas it will be possible to show that u−1
U indeed belongs

to BV (Rn,Rn) (in fact, to SBV (Rn,Rn), see Theorem 2), and, in particular, to
define the lateral trace (

u−1
U

)−
( y0) = ap lim

y→ y0
y∈imG(u,U )

u−1
U ( y).

This allows us to distinguish between u(∂U ) and the created surface by considering
separately those points y ∈ Ju−1

U
with (u−1

U )−( y) ∈ U or with (u−1
U )−( y) ∈ ∂U .

A different way of making that distinction is to consider the singular part of the
distributional derivative of φ ◦ u−1

U , with φ ∈ C∞
c (U ), and its connection to the

functional Ēu. Indeed, the absolutely continuous part of D(φ ◦ u−1
U ), in the case of

piecewise smooth functions u, is given by

∇
(
φ ◦ u−1

U

)
( y) = χimG(u,U )( y)∇(u−1( y))T Dφ(u−1( y)).

Testing against g ∈ C∞
c (R

n,Rn) and changing variables we obtain

〈
Da(φ ◦ u−1

U ), g
〉
=
∫

U
g(u(x)) · (∇u(x))−1 Dφ(x) det ∇u(x) dx

=
∫

U
g(u(x)) · cof ∇u(x) Dφ(x) dx.

Hence, by a computation similar to that leading to (15),

Ēu(φ, g) =
∫

U

[
g(u(x)) · cof ∇u(x) Dφ(x)+ det ∇u(x) φ(x) div g(u(x))

]
dx

=
〈
Da
(
φ ◦ u−1

U

)
, g
〉
−
〈
D
(
φ ◦ u−1

U

)
, g
〉
= −
〈
Ds
(
φ ◦ u−1

U

)
, g
〉

=
∫
∂u(U )

φ(u−1( y))g( y) · ν( y) dHn−1( y)

=
[∫

u(∂U )
+
∫
�

]
φ(u−1( y))g( y) · ν( y) dHn−1( y), (16)

where � denotes the created surface. Since φ is compactly supported in U , the
integral on u(∂U ) vanishes.

The previous heuristic considerations will be made rigourous in Theorem 2.
Our final goal is to prove that the two ways of defining the created surface, namely,

� :=
{

y ∈ Ju−1
U

:
(

u−1
U

)−
( y) ∈ U

}
(17)

and � := ∂∗ imG(u,U )\ imG(u, ∂U ), are essentially equivalent. This will follow
from a representation result of the form (16), with� as defined in (17) (the invisible
created surface must also be considered, but we postpone this discussion to the next
section).

The following result, inspired by Müller and Spector [24, Lemma 3.4],
allows us to define a precise notion of inverse.
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Lemma 3. Let u : � → R
n be approximately differentiable in almost all �, one-

to-one almost everywhere, and suppose that det ∇u(x) �= 0 for almost every x ∈ �.
Let �0 be as in Definition 3. Then u|�0 is one-to-one.

Proof. Let x1, x2 be two different points in�0. Let B1, B2 be two disjoint balls in
� containing, respectively, x1 and x2. By assumption, there exists a set �′ of full
measure in � such that u|�′ is one-to-one almost everywhere. Then

imG(u, B1) ∩ imG(u, B2) ⊂ imG(u,�\�′),

and, hence, by property (5),

Ln(imG(u, B1) ∩ imG(u, B2)) = 0. (18)

Now, for each i = 1, 2, the set Bi has density 1 at xi , so by Lemma 1, the set
imG(u, Bi ) has density 1 at u(xi ). Because of (18), we must have u(x1) �= u(x2).

��
Definition 8. Let u : � → R

n be approximately differentiable in almost all �,
one-to-one almost everywhere, and suppose that det ∇u(x) �= 0 for almost every
x ∈ �. Let �0 be as in Definition 3. The inverse u−1 : imG(u,�) → R

n of u is
defined as the function that sends every y ∈ imG(u,�) to the only x ∈ �0 such
that u(x) = y. Analogously, given any nonempty open subset U of �, we define

u−1
U ( y) :=

{
u−1( y) if y ∈ imG(u,U )
0 if y ∈ R

n\ imG(u,U ).

In the sequel, we will distinguish the map u−1 : imG(u,�) → R
n from the

map u−1
� : R

n → R
n . Note that, by Proposition 1, the maps u−1 and u−1

U are
measurable.

Theorem 2. Let u : � → R
n be approximately differentiable in almost all�, one-

to-one almost everywhere, and such that det ∇u > 0 almost everywhere, cof ∇u ∈
L1

loc(�,R
n×n) and Ē(u) < ∞. Assume that 0 /∈ �, and let U ∈ Uu. Then the

following assertions hold:

i) u−1
U ∈ SBVloc(R

n,Rn) and

V
(

u−1
U ,Rn

)
� ‖ cof ∇u‖L1(U,Rn×n) + ‖id‖L∞(U,Rn)‖ cof ∇u‖L1(∂U,Rn×n)

+n‖id‖L∞(U,Rn)Ē(u) < ∞. (19)

If, in addition, det ∇u ∈ L1(U ) then u−1
U ∈ SBV (Rn,Rn).

ii)

Per (imG(u,U )) � Ē(u)+ ‖ cof ∇u‖L1(∂U,Rn×n) < ∞. (20)

iii) For every x0 ∈ �0, the inverse u−1 is approximately differentiable at u(x0),
and its approximate differential equals (∇u(x0))

−1. In addition,
〈
Da u−1

U ,G
〉
=
∫

U
adj ∇u(x) · G(u(x)) dx, for all G ∈ C∞

c (R
n,Rn×n).
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iv) For every φ ∈ C∞
c (�) with spt φ ⊂ U, the map ψ : R

n → R, defined as

ψ( y) :=
{
φ(u−1( y)) if y ∈ imG(u,�)
0 otherwise,

belongs to SBVloc(R
n) (to SBV (Rn) if det ∇u ∈ L1

loc(U )), with V (ψ,Rn) <

∞. Moreover, for all g ∈ C∞
c (R

n,Rn),

Ēu(φ, g) = −〈Dsψ, g〉
=
∫

J
u−1

U

[
φ(
(

u−1
U

)−
( y))− φ(

(
u−1

U

)+
( y))
]

g( y) · νu−1
U
( y) dHn−1( y),

where Ju−1
U

denotes the jump set of u−1
U , and (u−1

U )+, (u−1
U )− denote its lateral

traces in Ju−1
U

with respect to the orientation given by νu−1
U

.

Proof. Fix U ∈ Uu. The proof is divided into five steps.
Step 1: BV regularity of u−1

U . Consider the number δ and the function d of
Proposition 3, and, for each t ∈ (−δ, δ), the set Ut defined in (13).

Fix ε > 0. Choose ϕ ∈ C∞(R) satisfying ϕ(t) = 0 for t � 0, ϕ(t) = 1 for
t � 1, and 0 � ϕ′ � 1 + ε. For each j ∈ N, define the function η j : � → R by

η j (x) := ϕ( j d(x)), x ∈ �. (21)

Note that η j ∈ C1(�) for sufficiently large j , and

lim
j→∞ η j (x) = 1 for every x ∈ U,

η j (x) = 0 for every j ∈ N and x ∈ �\U,

Dη j (x) = j ϕ′( j d(x)) Dd(x) for every j ∈ N and x ∈ N (∂U, δ),

η j (x) = 1 for every j ∈ N and x ∈ U 1
j
. (22)

For j ∈ N large enough, define the functions φ j ∈ C1
c (�,R

n) and ψ j : R
n → R

n

as

φ j (x) := η j (x)x, x ∈ �, (23)

and

ψ j ( y) :=
{
φ j (u

−1( y)) if y ∈ imG(u,�)
0 otherwise.

Clearly, ψ j belongs to L∞(Rn,Rn), and, by Definition 7 and Proposition 1,

〈Dψ j , G〉 = ∫
�

G(u(x)) · Dφ j (x) adj ∇u(x) dx −∑n
α=1 Ēu(φ

α
j , gα)

for all G ∈ C∞
c (R

n,Rn×n), where g1, . . . , gn ∈ C∞
c (R

n,Rn) correspond to the
rows of G, and φ1

j , . . . , φ
n
j ∈ C1

c (�) are the components of φ j . By (23) we have

Dφ j (x) = x ⊗ Dη j (x)+ η j (x)1, x ∈ �,
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hence

〈Dψ j , G〉 =
∫
�

η j (x)G(u(x)) · adj ∇u(x) dx

+
∫
�

x · G(u(x))(cof ∇u(x))Dη j (x) dx −
n∑
α=1

Ēu(φ
α
j , gα).

(24)

Since the functions η j take values in [0, 1], by (22) we have
∣∣∣∣
∫
�

η j (x)G(u(x)) · adj ∇u(x) dx

∣∣∣∣ � ‖G‖∞‖ cof ∇u‖L1(U,Rn×n) (25)

and ∣∣∣∣∣
n∑
α=1

Ēu(φ
α
j , gα)

∣∣∣∣∣ � n‖id‖L∞(U,Rn)‖G‖∞Ē(u). (26)

Using Equations (22) and (12), we find that
∣∣∣∣
∫
�

x · G(u(x))(cof ∇u(x))Dη j (x) dx

∣∣∣∣
� (1 + ε)‖id‖L∞(U,Rn)‖G‖∞ −

∫ 1
j

0

∫
∂Ut

| cof ∇u(x)| dHn−1(x) dt. (27)

By (24), (25), (26) and (27), we thus have that

V (ψ j ,R
n) � ‖ cof ∇u‖L1(U,Rn×n)

+(1 + ε)‖id‖L∞(U,Rn) −
∫ 1

j

0

∫
∂Ut

| cof ∇u(x)| dHn−1(x) dt + n‖id‖L∞(�,Rn)Ē(u).

(28)

Using condition iii) of Definition 6, we find that

lim sup
j→∞

V (ψ j ,R
n) � ‖ cof ∇u‖L1(U,Rn×n)

+(1 + ε)‖id‖L∞(U,Rn)‖ cof ∇u‖L1(∂U,Rn×n) + n‖id‖L∞(�,Rn)Ē(u) < ∞.

Thanks to (22) we have that ψ j → u−1
U pointwise in R

n as j → ∞. With this, the
Poincaré inequality (see, for example, [5, Th. 3.47]) and the embedding of BV into
L1, we conclude that there is a vector a ∈ R

n such that u−1
U + a ∈ BV (Rn,Rn)

and

V (u−1
U ,Rn) � ‖ cof ∇u‖L1(U,Rn×n) + (1 + ε)‖id‖L∞(U,Rn)‖ cof ∇u‖L1(∂U,Rn×n)

+n‖id‖L∞(U,Rn)Ē(u).

In particular, u−1
U ∈ BVloc(R

n,Rn).
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Finally, if det ∇u ∈ L1(U ) then, thanks to Proposition 1, ‖u−1
U ‖L1(Rn ,Rn) �

‖id‖L∞(U,Rn)‖ det ∇u‖L1(U ), so u−1
U ∈ BV (Rn,Rn).

Step 2: Proof of (20). Let g ∈ C∞
c (R

n,Rn) satisfy ‖g‖∞ � 1. Then, by (22)
and dominated convergence,∫

imG(u,U )
div g( y) d y = lim

j→∞

∫
imG(u,U )

η j (u−1( y)) div g( y) d y. (29)

Now, for each j ∈ N, thanks to Proposition 1, (22) and Definition 7, we have that∫
imG(u,U )

η j (u−1( y)) div g( y) d y = Ēu(η j , g)

−
∫
�

g(u(x)) · (cof ∇u(x)) Dη j (x) dx.

Clearly, Ēu(η j , g) � Ē(u) and, as in (27), using Equations (22) and (12), we find
that ∣∣∣∣

∫
�

g(u(x)) · (cof ∇u(x))Dη j (x) dx

∣∣∣∣
� (1 + ε)−

∫ 1
j

0

∫
∂Ut

| cof ∇u(x)| dHn−1(x) dt.

Thus, by (29) and Definition 6 iii),∫
imG(u,U )

div g( y) d y � Ē(u)+ (1 + ε)‖ cof ∇u‖L1(∂U,Rn×n).

As the left-hand side is independent of ε, and the right-hand side is independent of
g, the conclusion follows.

Step 3: Proof of iii). Let x0 ∈ �0, and define y0 := u(x0) and F := ∇u(x0).
Note that F is invertible thanks to Definition 3, and that D(imG(u,�), y0) = 1
thanks to Lemma 1. Define, for each δ > 0,

Eδ :=
{

x ∈ �0\{x0} : |u(x)− u(x0)− F(x − x0)|
|x − x0| < δ

}
.

Since u is approximately differentiable at x0 and the set �0 is of full measure in
�, then D(Eδ, x0) = 1 for all δ > 0.

Call, for each ε > 0,

Aε :=
{

y ∈ imG(u, �)\{u(x0)} : |u−1( y)− x0 − (∇u(x0))
−1( y − u(x0))|

| y − u(x0)| > ε

}
.

Let x ∈ �0\{x0} and call y := u(x). Thanks to Lemma 3, y �= y0. Set
r := y − y0 − F(x − x0). Then

|x − x0 − F−1( y − y0)|
| y − y0| � |F−1| |r|

|x − x0|
|x − x0|
| y − y0|

� |F−1| |r|
|x − x0|

1∣∣∣F
(

x−x0|x−x0|
)∣∣∣− |r|

|x−x0|
.
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This shows that if u(Eδ) ∩ Aε �= ∅ for some δ, ε > 0, then

ε < |F−1| δ

inf{|Fv| : |v| = 1} − δ
. (30)

Fix ε > 0. Then there exists δ > 0 such that (30) does not hold, and, hence,
u(Eδ) ∩ Aε = ∅. As D(Eδ, x0) = 1, then by Lemma 1, D(Rn\u(Eδ), y0) = 0,
and, hence, D(Aε, y0) = 0. This proves that ∇u−1(u(x0)) = (∇u(x0))

−1.
Thanks to the Calderón–Zygmund theorem, u−1

U is approximately differen-
tiable almost everywhere, and Da u−1

U = ∇u−1
U Ln . As u−1

U and u−1 coincide
in imG(u,U ), then ∇u−1

U ( y) = ∇u−1( y) for every approximate differentiability
point y ∈ imG(u,U ) of u−1 such that D(imG(u,U ), y) = 1. Consequently,

∇u−1
U ( y) =

(
∇u(u−1( y))

)−1 = adj ∇u(u−1( y))
det ∇u(u−1( y))

(31)

for almost every y ∈ imG(u,U ), by Lebesgue’s theorem. On the other hand, as
u−1

U = 0 in R
n\ imG(u,U ) then ∇u−1

U ( y) = 0 for every y ∈ R
n\ imG(u,U )

such that D(imG(u,U ), y) = 0. Hence, ∇u−1
U = 0 almost everywhere in

R
n\ imG(u,U ). This and Proposition 1 show that

〈
Da u−1

U ,G
〉
=
∫

imG(u,U )

adj ∇u(u−1( y))

det ∇u(u−1( y))
· G( y) d y =

∫
U

adj ∇u(x) · G(u(x)) dx

for every G ∈ C∞
c (R

n,Rn×n), concluding the proof.
Step 4: Characterization of Ē . Let φ ∈ C∞

c (�) satisfy spt φ ⊂ U . Extending φ
by 0 outside�we have thatψ = φ ◦u−1

U . By the chain rule in BV (see [4, Th. 2.1],
or [5, Th. 3.96]) we obtain that ψ ∈ BVloc(R

n) with V (ψ,Rn) < ∞ and

Daψ = (∇u−1
U )T Dφ

(
u−1

U

)
Ln,

D jψ =
[
φ

((
u−1

U

)+)− φ

((
u−1

U

)−)]
νu−1

U
Hn−1 Ju−1

U
,

Dcψ = Dφ(ũ−1
U ) Dcu−1

U . (32)

As in Step 1, ψ ∈ L1(Rn) if det ∇u ∈ L1
loc(U ).

Fix g ∈ C∞
c (R

n,Rn). Since ∇u−1
U and φ ◦ u−1

U vanish almost everywhere in
R

n\ imG(u,U ), by Proposition 1, (31), and (32) we obtain that

Ēu(φ, g) =
∫

U
[g(u(x)) · cof ∇u(x) Dφ(x)+ φ(x) div g(u(x)) det ∇u(x)] dx

=
∫

imG(u,U )

[
g( y) · (∇u−1

U ( y))T Dφ(u−1( y))+ φ(u−1( y)) div g( y)
]

d y

=
∫
Rn

[
g( y) · (∇u−1

U ( y))T Dφ(u−1
U ( y))+ φ(u−1

U ( y)) div g( y)
]

d y
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= 〈Daψ, g〉 − 〈Dψ, g〉 = −〈Dsψ, g〉
=
∫

J
u−1

U

[
φ

((
u−1

U

)−
( y)
)

− φ
(
(u−1

U )+( y)
)]

g( y) · νu−1
U
( y) dHn−1( y)

−
∫
Rn

Dφ(ũ−1
U ( y))⊗ g( y) · dDcu−1

U ( y).

Step 5: SBV regularity of u−1
U and ψ . By Step 4, it only remains to show that

Dcu−1
U = 0. This essentially follows from the proof of Ambrosio [2, Th. 2.3] (see

also [1; 5, Prop. 4.12]). We show here how to adapt his proof to our case.
From the above characterization of Ē , it follows that

∣∣∣∣∣∣
∫

J
u−1

U

[
φ

((
u−1

U

)−
( y)
)

− φ

((
u−1

U

)+
( y)
)]

g( y) · νu−1
U
( y) dHn−1( y)

−
∫

Rn
Dφ(ũ−1

U ( y))⊗ g( y) · dDcu−1
U ( y)

∣∣∣∣ � ‖φ‖∞‖g‖∞Ē(u) (33)

for all φ ∈ C∞
c (�) and g ∈ C∞

c (R
n,Rn) such that spt φ ⊂ U . Moreover, (32)

tells us that

[
φ

((
u−1

U

)+)− φ

((
u−1

U

)−)]
νu−1

U
Hn−1 Ju−1

U
and Dφ(ũ−1

U ) Dcu−1
U

are finite Borel measures. Since (33) does not contain derivatives of g, it is valid for
all bounded Borel functions g : R

n → R
n (by Lusin’s theorem, approximating g

by a sequence {g j } j∈N ⊂ C∞
c (R

n,Rn) with ‖g j‖∞ � ‖g‖∞). Using the fact that
Hn−1 Ju−1

U
and Dcu−1

U are mutually singular (see, for example, [2, Prop. 1.1] or

[5, Prop. 3.92(c)]), we obtain that

∣∣∣∣
∫

Rn
Dφ(ũ−1

U ( y))⊗ g( y) · dDcu−1
U ( y)

∣∣∣∣ � ‖φ‖∞‖g‖∞Ē(u) (34)

for all bounded Borel functions g : R
n → R

n and all φ ∈ C∞
c (�)with spt φ ⊂ U .

Let A : R
n → R

n×n be the function corresponding to the polar decomposi-
tion of Dcu−1

U , that is, A satisfies |A( y)| = 1 for |Dcu−1
U |-almost every y ∈ R

n ,
and Dcu−1

U = A|Dcu−1
U |. Let Q be a closed cube contained in U , say Q =

[a1, b1] × · · · × [an, bn]. Fix α, β ∈ {1, . . . , n}, and let πα : R
n → R be the

projection onto the α-th coordinate, and παβ : R
n×n → R the projection onto

the (α, β)-th entry. Let ψ ∈ C∞([aα, bα]) and choose φ ∈ C∞
c (�) such that

spt φ ⊂ U , φ|Q = ψ ◦ πα|Q , and ‖φ‖∞ � 1 + ‖ψ‖∞. Define the function
g : R

n → R
n as

πβ ◦ g = χ{ y∈Rn :ũ−1
U ( y)∈Q} sgn

(
ψ ′ ◦ πα ◦ ũ−1

U

)
sgn(παβ ◦ A)
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and πγ ◦ g = 0 for all γ ∈ {1, . . . , n}\{β}. We apply (34) to this choice, and obtain
that
∫

{ y∈Rn :ũ−1
U ( y)∈Q}

|ψ ′(πα(ũ−1
U ( y)))| |παβ(A( y))| d|Dcu−1

U |( y) � (1 + ‖ψ‖∞)Ē(u).

(35)

for every α, β ∈ {1, . . . , n}, everyψ ∈ C∞([aα, bα]), and every cube Q ⊂ U such
that πα(Q) = [aα, bα].

Fix ε > 0. In (35), first we chooseψ(t) := sin(t/ε) and thenψ(t) := cos(t/ε),
for t ∈ [aα, bα]. Then we sum the resulting expressions and use that | sin t | +
| cos t | � 1 for any t ∈ R, to obtain that

1

ε

∫
{ y∈Rn :ũ−1

U ( y)∈Q}
|παβ(A( y))| d|Dcu−1

U |( y) � 4Ē(u).

for every α, β ∈ {1, . . . , n} and every closed cube Q ⊂ U . Now we sum in
α, β ∈ {1, . . . , n} and obtain that

∣∣∣Dcu−1
U

∣∣∣
(
{ y ∈ R

n : ũ−1
U ( y) ∈ Q}

)
� CεĒ(u)

for every closed cube Q ⊂ R
n , and some constant C > 0 depending only on n. As

ε is arbitrary, this shows that |Dcu−1
U |({ y ∈ R

n : ũ−1
U ( y) ∈ Q}) = 0. Since U can

be expressed as a countable union of closed cubes contained in U , then
∣∣∣Dcu−1

U

∣∣∣
({

y ∈ R
n : ũ−1

U ( y) ∈ U
})

= 0. (36)

Now let V ∈ Uu satisfy U ⊂⊂ V . Let S be the set of points y0 ∈ R
n such that

D(imG(u,U ), y0) = 1 and ap lim y→ y0
u−1

U ( y) exists. Clearly,

ap lim
y→ y0

u−1
V ( y) = ap lim

y→ y0

u−1
U ( y), y0 ∈ S.

Consequently, ũ−1
U and ũ−1

V coincide in S. Therefore, by (36) and the locality of
the distributional derivative (see, for example, [5, Rk. 3.93]),
∣∣∣Dcu−1

U

∣∣∣
({

y ∈ S : ũ−1
U ( y) ∈ V

})
=
∣∣∣Dcu−1

V

∣∣∣
({

y ∈ S : ũ−1
V ( y) ∈ V

})
= 0.

(37)

If imG(u,U ) has density zero at some y ∈ R
n , then ũ−1

U ( y) = 0 (since
u−1

U ( y) = 0 for y ∈ R
n\ imG(u,U )). By the locality of the distributional deriva-

tive, this implies that
∣∣∣Dcu−1

U

∣∣∣ ({ y ∈ R
n : D(imG(u,U ), y) = 0}) = 0. (38)

We now have all the ingredients to prove that the Cantor part of the derivative of
u−1

U vanishes. By Theorem 2 and standard continuity properties of BV functions
(see, for example, [28, Th. 5.9.6]), for all y0 ∈ R

n except a set that is σ -finite
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with respect to Hn−1, the limit ap lim y→ y0
u−1

U ( y) exists, and, by definition of the

precise representative, it coincides with ũ−1
U ( y0), which for simplicity we call x0.

By definition of approximate limit, for any r > 0

D
({

y ∈ R
n : u−1

U ( y) ∈ B(x0, r)
}
, y0

)
= 1.

Therefore, if D(imG(u,U ), y0) > 0, there exists a sequence { yk}k∈N in imG(u,U )
such that u−1

U ( yk) converges to x0. In particular, x0 belongs to Ū . Analogously, if
D(Rn\ imG(u,U ), y0) > 0, then x0 = 0. Since 0 /∈ �, only one of the two possi-
bilities occur. The case x0 = 0 is covered by (38). The case x0 ∈ Ū is covered by
(37) (the fact that x0 may lie on ∂U explains the necessity to extend (36) to an open
set V strictly larger than U ). Since Dcu−1

U (which coincides with Dc ũ−1
U ) neglects

sets that are σ -finite with respect to Hn−1 (see, for example, [5, Prop. 3.92]), the
proof is completed. ��

We finish this section with some comments on Theorem 2. Its conclusion is
close to having that u−1 is locally SBV in imG(u,�), the problem being that
imG(u,�) need not coincide almost everywhere with an open set.

Each of the terms of the right-hand side of (19) has a natural interpretation:
the first is related to the absolutely continuous part of Du−1

U , while the second and
third correspond to the artificial jump provoked at ∂∗ imG(u,U ) by extending u−1

arbitrarily by a constant outside imG(u,U ). The second term corresponds to the
image of the old boundary [the L1(∂U,Rn×n) norm of cof Du controls the area of
imG(u, ∂U )], while the third is due to the created surface.

Finally, note that the BV regularity of functions of the form φ ◦ u−1
U is actually

established before the BV regularity of u−1
U . A sequence {φ j } j∈N approximating

the identity is then taken in order to obtain the result for u−1
U itself. This explains

why it is necessary to consider open sets U compactly contained in the domain. If
it were possible to obtain property iii) of Definition 6 for ∂� itself, we would be
able to obtain the global regularity result for u−1 (to be precise, for u−1

� ), and not
only for its truncation to smaller sets.

4. Created surface and a characterization of E(u)

4.1. Definitions of visible and invisible created surface

As explained in [18], the surface energy Ē and the study of the notion of created
surface were motivated by the example of Müller and Spector [24, Sect. 11] in
which cavities are created and then filled with material from elsewhere in the body
(see Fig. 1). In that example, Per(imG(u,�)) fails to compute the area of all the
created surface, because a great part of it is surrounded by material at both sides.
This makes the surface ‘invisible’, in the sense of not belonging to the reduced
boundary of imG(u,�).

Based on the example of Müller and Spector, and on the analysis of the
previous section, we define the notions of invisible, visible and created surface in
terms of the discontinuities of the inverse.
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Definition 9. Let u : � → R
n be approximately differentiable in almost all �,

one-to-one almost every, and suppose that det ∇u(x) �= 0 for almost everywhere
x ∈ �.

a) We define the invisible surface created by u, denoted �I (u), as the set

�I (u) :=
{

y ∈ Ju−1 : (u−1)+( y) ∈ � and (u−1)−( y) ∈ �
}
.

Analogously, for every open set U ⊂ � we define the invisible surface created
by u in U , and denote it by �I (u,U ), as

�I (u,U ) :=
{

y ∈ Ju−1 : (u−1)+( y) ∈ U and (u−1)−( y) ∈ U
}
.

b) We define the visible surface created by u, and denote it by �V (u), as the set
of points y0 ∈ R

n for which there exists ν ∈ S
n−1 satisfying the following

conditions:
i) D(imG(u,�) ∩ H−( y0, ν), y0) = 1

2 .
ii) The lateral trace

(u−1)−( y0) = ap lim
y→ y0

y∈H−( y0,ν)

u−1( y)

exists and is in �.
iii) D(imG(u,U ) ∩ H+( y0, ν), y0) = 0 for every open set U ⊂⊂ �.
The vector ν is denoted νu−1( y0).

c) We define the surface created by u, and denote it by �(u), as the set

�(u) := �V (u) ∪ �I (u).

Obviously, �I (u) = �I (u,�), and �I (u,U1) ⊂ �I (u,U2) if U1 ⊂ U2 ⊂ �.
Also, in order for a point y to be in �I (u), the set imG(u,�) must have density 1
at y (see Definition 1).

We will see in Proposition 5(vi) that the vector νu−1( y0) of Definition 9 b) is
uniquely determined. In Lemma 5 we will see that �V (u) and �I (u) are Borel sets,
and that the map (u−1)− : �V (u) → S

n−1 is Borel.
Definition 9 is illustrated through the following examples.

(a) Let � be the rectangle (1, 2) × (0, 2π) in R
2, and u : � → R

2 the deforma-
tion given by u(x1, x2) := (x1 cos x2, x1 sin x2). This deformation transforms
� into an annular region, as shown in Fig. 2a, and produces a self-contact. It
is easy to check that �(u) = ∅ and Ē(u) = 0, which corresponds to our intu-
ition, since u does not create any surface because it is smooth. Note also that
D(imG(u,�), y) = 1 for all y ∈ (1, 2) × {0}, despite D(imG(u,U ), y) = 0
for every open set U ⊂⊂ �.

(b) Let � be the square (1, 3)× (−1, 1) in R
2, and let u : � → R

2 be given by

u(x) :=
{

x if x ∈ (1, 2)× (−1, 1)
(5, 0)− x if x ∈ [2, 3)× (−1, 1).
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(a) (b)

Fig. 2. Deformations of the examples a and b

This deformation produces a fracture with self-contact, as shown in Fig. 2b. It
is easy to check that �(u) = �V (u) = {2, 3} × (−1, 1) and �I (u) = ∅. The
reason {2} × (−1, 1) forms part of the visible surface, and not of the invisible
one (perhaps against what the names suggest), is that we have reserved the term
invisible for the case in which the pieces of surface put together are both parts
of the created surface. In this example, one of the two surfaces put in contact
(u({3} × [−1, 1])) was not created, it already existed (it is part of u(∂�)).
Note also that imG(u,�) has density 1 at each point of {2} × (−1, 1). This
example shows that our definition of visible created surface is not equivalent
to { y ∈ Ju−1

�
∩∂∗ imG(u,�) : (u−1)−( y) ∈ �}. That is to say, condition b(iii)

of Definition 9 does not imply that D(imG(u,�) ∩ H+( y0, ν), y0) = 0.
(c) Let u be as in [18, Prop. 4]. Then, following the notation there, we have that

�(u) = �V (u) =⋃M
i=1 �i and �I (u) = ∅.

(d) For each j ∈ N, consider the deformation u j constructed in [24, pp. 51–53],
which we have represented in Fig. 1 for the case j = 3. Then, following the
notation of [18, Sect. 3], we have that

�(u j ) ∼=

⎛
⎜⎝ ⋃

z∈A−
j

C−
j,z

⎞
⎟⎠ ∪
⎛
⎜⎝ ⋃

z∈A+
j

C+
j,z

⎞
⎟⎠ , �I (u j ) ∼=

⎛
⎜⎝ ⋃

z∈A−
j

C−
j,z

⎞
⎟⎠ ∩
⎛
⎜⎝ ⋃

z∈A+
j

C+
j,z

⎞
⎟⎠ ,

�V (u j ) ∼= �(u j )\�I (u j ).

We note that Ē cannot ‘see’ the jumps of u−1 across the image of ∂�, since
the test functions φ of Definition 7 are compactly supported in �. Therefore, it
does not detect, for example, the phenomenon of cavitation at the boundary [24,
Sect. 11]. Neither can the functional E , to be defined in Subsection 4.3.

4.2. A characterization of Ē
One of the main goals of this section is to refine the characterization of Ē

obtained in Theorem 2(iv), so that it is not necessary to restrict our discussion to an
open set U compactly contained in the domain. Proposition 4 shows that, in fact,
Ē is supported on the created surface.

Proposition 4. Let u : � → R
n be approximately differentiable in almost all

�, one-to-one almost every, and such that det ∇u > 0 almost everywhere and
cof ∇u ∈ L1

loc(�,R
n×n). Assume that Ē(u) < ∞ and 0 /∈ �̄. Let νu−1 : �I (u) →
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S
n−1 be a Borel orientation of �I (u), and denote the lateral traces of u−1 with

respect to νu−1 |�I (u) by (u−1)±. Then, for everyφ ∈ C∞
c (�) and g ∈ C∞

c (R
n,Rn),

Ēu(φ, g) =
∫
�V (u)

φ((u−1)−( y)) g( y) · νu−1( y) dHn−1( y)

+
∫
�I (u)

[
φ((u−1)−( y))− φ((u−1)+( y))

]
g( y) · νu−1( y) dHn−1( y)

(39)

The fact that �I (u) admits a Borel orientation and that the traces (u−1)±|�I (u)
are Borel will be established in Lemma 5.

Some technical lemmas are necessary for the proof of Proposition 4, which is
given at the end of this subsection. We begin with the following straightforward
observations. Recall that Ju−1

U
denotes the jump set of u−1

U , and (u−1
U )± its lateral

traces in Ju−1
U

with respect to the orientation νu−1
U

.

Lemma 4. Let u : � → R
n be approximately differentiable in almost all �, one-

to-one almost every, and suppose that det ∇u(x) �= 0 for almost everywhere x ∈ �.
Assume 0 /∈ �̄ and let U be any nonempty open subset of �. Let x0, y0 ∈ R

n and
ν ∈ S

n−1.

i) Suppose that

ap lim
y→ y0

y∈H+( y0,ν)

u−1
U ( y) = x0. (40)

Then x0 ∈ Ū ∪ {0}, and

x0 ∈ Ū if and only if D
(
imG(u,U ) ∩ H+( y0, ν), y0

) = 1

2
;

x0 = 0 if and only if D
(
imG(u,U ) ∩ H+( y0, ν), y0

) = 0.

If x0 ∈ Ū we also have that

ap lim
y→ y0

y∈H+( y0,ν)

u−1
� ( y) = ap lim

y→ y0
y∈H+( y0,ν)

u−1( y) = x0. (41)

ii) If

D
(
imG(u,U ) ∩ H+( y0, ν), y0

) = 1

2
(42)

and (41) holds, then x0 ∈ Ū and (40) is satisfied.
iii) If

D
(
imG(u,U ) ∩ H+( y0, ν), y0

) = 0. (43)

then

ap lim
y→ y0

y∈H+( y0,ν)

u−1
U ( y) = 0.
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iv) Suppose that D(imG(u,�) ∩ H+( y0, ν), y0) = 1
2 and

ap lim
y→ y0

y∈H+( y0,ν)

u−1( y) = x0

with x0 ∈ U. Then D(imG(u,U ) ∩ H+( y0, ν), y0) = 1
2 and

ap lim
y→ y0

y∈H+( y0,ν)

u−1
U ( y) = x0.

v) Suppose that y0 ∈ Ju−1
U

. Then, at least one of the following options occur:

a) D(imG(u,U ) ∩ H+( y0, νu−1
U
( y0)), y0) = 1

2 and

ap lim
y→ y0

y∈H+( y0, νu−1
U

( y0))

u−1
� ( y) =

(
u−1

U

)+
( y0).

b) D(imG(u,U ) ∩ H−( y0, νu−1
U
( y0)), y0) = 1

2 and

ap lim
y→ y0

y∈H−( y0, νu−1
U

( y0))

u−1
� ( y) =

(
u−1

U

)−
( y0).

Proof. Suppose first that (40) holds. Then, for any r > 0,

D
({

y ∈ H+( y0, ν) : u−1
U ( y) ∈ B(x0, r)

}
, y0

)
= 1

2
. (44)

In particular, there exists a sequence { yk}k∈N in R
n such that u−1

U ( yk) converges
to x0. As u−1

U ( y) ∈ U ∪ {0} for every y ∈ R
n , then x0 ∈ Ū ∪ {0}. If x0 = 0, by

choosing r > 0 such that B(0, r) ∩ �̄ = ∅, we infer from (44) that (43) holds.
Analogously, if x0 ∈ Ū , by choosing r > 0 such that 0 /∈ B(x0, r), we infer from
(44) that (42) holds; moreover, since u−1

U = u−1
� = u−1 in imG(u,U ), obviously

(41) follows from (40) and (42).
Conversely, (42) and (41) trivially imply (40), and, thanks to i), x0 ∈ Ū .
To prove iii) we note that u−1

U is identically 0 outside imG(u,U ), so if (43)
holds it is clear that (40) holds too with x0 = 0.

We now prove iv). For any r > 0 we have that D(imG(u, B(x0, r)) ∩
H+( y0, ν)) = 1

2 , so if r is small enough we have in particular that D(imG(u,U )∩
H+( y0, ν)) = 1

2 . As (41) holds, the conclusion follows from ii).
We show v). By Definition 1(d), the vectors (u−1

U )+( y0) and (u−1
U )−( y0) are

different, so one of them is not 0. The conclusion follows from i). ��
As is well known, the orientation vector at a jump point is uniquely determined

up to a sign, and the choice of that sign is somewhat arbitrary [see Definition 1(d)].
In the following definition, we establish a convention on the sign choice of the
vector corresponding to a jump point of the inverse. This convention is based on
Lemma 4, and in particular, it favours option v(b). Recall from Definition 2 the
definition of reduced boundary.
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Definition 10. Let u : � → R
n be approximately differentiable in almost all �,

one-to-one almost everywhere, and suppose that det ∇u(x) �= 0 for almost every
x ∈ �. Assume 0 /∈ �̄ and let U be any nonempty open subset of �. Suppose
that y0 ∈ Ju−1

U
. The orientation of νu−1

U
( y0) [corresponding to Definition 1(d)] is

chosen so that the following properties are satisfied:

i) D(imG(u,U ) ∩ H−( y0, νu−1
U
( y0)), y0) = 1

2 , (u
−1
U )−( y0) ∈ Ū , and

ap lim
y→ y0

y∈H−( y0,νu−1
U

( y0))

u−1
� ( y) = ap lim

y→ y0
y∈H−( y0,νu−1

U
( y0))

u−1( y) =
(

u−1
U

)−
( y0).

ii) If (u−1
U )+( y0) = 0 then

D(imG(u,U ) ∩ H+( y0, νu−1
U
( y0)), y0) = 0 and y0 ∈ ∂∗ imG(u,U ).

If (u−1
U )+( y0) ∈ Ū then

D
(

imG(u,U ) ∩ H+( y0, νu−1
U
( y0)), y0

)
= 1

2
,

D(imG(u,U ), y0) = D(imG(u,�), y0) = 1, and

ap lim
y→ y0

y∈H+( y0, νu−1
U

( y0))

u−1
� ( y) = ap lim

y→ y0
y∈H+( y0, νu−1

U
( y0))

u−1( y) =
(

u−1
U

)+
( y0).

iii) If both (u−1
U )+( y0) and (u−1

U )−( y0) are in Ū , but one is in U and the other is
in ∂U , then (u−1

U )−( y0) ∈ U .

As an immediate consequence of Definition 10, we have that

if
(

u−1
U

)−
( y0) ∈ ∂U then

(
u−1

U

)+
( y0) /∈ U. (45)

Thus, the following consequence of Lemma 4(v) holds.

Corollary 1. Let u : � → R
n be approximately differentiable in almost all �,

one-to-one almost everywhere, and suppose that det ∇u(x) �= 0 for almost every
x ∈ �. Assume 0 /∈ �̄ and let U be any nonempty open subset of �. Suppose that
y ∈ Ju−1

U
. Let νu−1

U
( y) have the orientation according to Definition 10. Then:

i) y ∈ ∂∗ imG(u,U ) if and only if (u−1
U )+( y) = 0. Moreover, in this case, νu−1

U
( y)

equals the unit outward normal to imG(u,U ) (according to Definition 2).
ii) If both (u−1

U )+( y) and (u−1
U )−( y) are in Ū , then y ∈ Ju−1

�
∩ Ju−1 and there

exist s1, s2 ∈ {−1, 1} such that νu−1
U
( y) = s1νu−1

�
( y) = s2νu−1( y).
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Note that in Corollary 1(ii), no specific orientation of νu−1
�
( y) or νu−1( y) was

chosen.
An important step in the proof of Proposition 4 is to establish the connection

between the created surface �(u) and the jump set of truncated inverses of the form
u−1

Vk
, for a suitable increasing sequence {Vk}k∈N of open sets compactly contained

in �.

Definition 11. Let u : � → R
n be approximately differentiable in almost all �,

one-to-one almost everywhere, and suppose that det ∇u(x) �= 0 for almost every
x ∈ �, and cof ∇u ∈ L1

loc(�,R
n×n). Fix a sequence {Vk}k∈N in Uu such that

V̄k ⊂ Vk+1 for all k ∈ N, and � = ⋃∞
k=1 Vk . For each k ∈ N, the function

u−1
Vk

: R
n → R

n of Definition 8 will be denoted by vk .

The existence of {Vk}k∈N can be easily obtained by using Uryshon functions,
Sard’s lemma and Lemma 2. Throughout the rest of the paper, the sets Vk and the
functions vk of Definition 11 will be fixed.

In the following proposition, we list some interesting properties of the visible
and invisible surfaces, and relate them to the sequence {Jvk }k∈N. The main idea is
the following: for a fixed k ∈ N, the jump set of vk has two parts, one corresponding
to the surface created in Vk , the other corresponding to the image of ∂Vk . The first
part will appear in the jump set of v�, for all � > k. In contrast, the second part,
which is due to having defined vk by 0 outside imG(u, Vk) (see Definitions 8 and
11), will no longer be contained in Jv� for � > k. Thus, the created surface �(u)
can be obtained as the set of points that are in all but finitely many of the Jvk .

Proposition 5. Let u : � → R
n be approximately differentiable in almost all

�, one-to-one almost everywhere, and such that det ∇u(x) �= 0 for almost every
x ∈ �. Assume that cof ∇u ∈ L1

loc(�,R
n×n) and 0 /∈ �̄. Consider the sets Vk and

the functions vk of Definition 11. Then the following statements hold:

i) �I (u,U ) ⊂ Ju−1
U

for any open subset U of �.

ii) �(u) = lim infk→∞ Jvk .
iii) �V (u) = �(u) ∩ lim infk→∞ ∂∗ imG(u, Vk).
iv) �I (u) =⋃k∈N

�I (u, Vk) = lim infk→∞ �I (u, Vk).
v) �V (u) ∩ �I (u) = ∅.

vi) For each y ∈ �V (u) there exists p ∈ N such that for all k � p, the vector ν
of Definition 9b) coincides with the orientation vector νvk ( y) of Jvk accord-
ing to Definition 10, and with the outward normal to imG(u, Vk) according to
Definition 2.

Proof. Statement iv) is obvious, and statement i) follows from Lemma 4(iv). For
the rest of the statements, apply the convention of Definition 10 to the functions
vk . Fix y ∈ lim infk→∞ Jvk , and let p ∈ N be such that y ∈ Jvk for all k � p. If

v+
k ( y) = 0 for all k � p (46)

then y ∈ ∂∗ imG(u, Vk) for all k � p, according to Corollary 1(i), and we obtain
that y ∈ lim infk→∞ ∂∗ imG(u, Vk) as a consequence. If (46) does not hold, then
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we must have, by Definition 10(ii), that D(imG(u, Vk), y) = 1 and y ∈ Ju−1 , with
(u−1)+( y) and (u−1)−( y) both in V̄k ⊂ �, for some k � p. Thus

lim inf
k→∞ Jvk ⊂

(
lim inf
k→∞ ∂∗ imG(u, Vk)

)
∪ �I (u). (47)

Now suppose that y ∈ �I (u). Since (u−1)+( y) and (u−1)−( y) are in �, there
exists p ∈ N such that for all k � p the traces (u−1)+( y) and (u−1)−( y) are in
Vk . Using i) we obtain that

y ∈ lim inf
k→∞ �I (u, Vk) ⊂ lim inf

k→∞ Jvk .

Moreover, thanks to (47) we obtain that

lim inf
k→∞ Jvk = lim inf

k→∞
(
Jvk ∩ ∂∗ imG(u, Vk)

) ∪ �I (u). (48)

For each k ∈ N, by Lemma 4(iv), D(imG(u, Vk), y) = 1 for every
y ∈ �I (u, Vk), and, hence, �I (u, Vk) ∩ ∂∗ imG(u, Vk) = ∅. Thanks to iv), this
shows that

�I (u) ∩ lim inf
k→∞ ∂∗ imG(u, Vk) = ∅. (49)

Hence, it only remains to prove that

�V (u) = lim inf
k→∞

(
Jvk ∩ ∂∗ imG(u, Vk)

)
,

and to verify that vi) is satisfied.
Suppose y ∈ �V (u), let p ∈ N be such that (u−1)−( y) ∈ Vp, and let k � p.

Then, by Lemma 4(i) we have that v−
k ( y) = (u−1)−( y), whereas by Lemma 4(iii)

we have that v+
k ( y) = 0, whence y ∈ Jvk . Here we have taken the lateral traces with

respect to the vector ν( y) of Definition 9(b). This also shows that ν( y) = ν Jvk
( y),

according to Definition 10. Now, by Corollary 1(i), we have that y ∈ ∂∗ imG(u, Vk)

and ν( y) = νimG(u,Vk )( y), according to Definition 2. In total, we have proved vi)
and showed that y ∈ lim infk→∞(Jvk ∩ ∂∗ imG(u, Vk)).

Conversely, suppose that y0 ∈ lim infk→∞(Jvk ∩ ∂∗ imG(u, Vk)). Then, by
Corollary 1(i) and Lemma 4, a natural number p exists such that

a) y0 ∈ Jvk for all k � p;
b) D(imG(u,�) ∩ H−( y0, νv p ( y0)), y0) = D(imG(u, Vp) ∩ H−( y0, νv p ( y0)),

y0) = 1
2 ;

c) the lateral trace

(u−1)−( y0) = ap lim
y→ y0

y∈H−( y,νv p ( y0))

u−1( y)

exists and coincides with v−
p ( y0), which is in V̄p ⊂ �; and

d) D(imG(u, Vk) ∩ H+( y0, νv p ( y0)), y0) = 0 for all k � p,

which implies that y0 ∈ �V (u). ��
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In the following lemma, we establish a convention on the orientation of �(u)
analogous to the convention of Definition 10.

Lemma 5. Let u : � → R
n be approximately differentiable in almost all �, one-

to-one almost everywhere, and such that det ∇u(x) �= 0 for almost every x ∈ �,
and cof ∇u ∈ L1

loc(�,R
n×n). Assume 0 /∈ �̄. Then the sets �(u), �I (u) and

�V (u) are Borel.
Moreover, consider the sets Vk and the functions vk of Definition 11. Then for

each k ∈ N there exists an orientation of Jvk satisfying the convention of Defini-
tion 10 and such that the resulting maps

νvk : Jvk → S
n−1, v−

k : Jvk → V̄k, v+
k : Jvk → V̄k ∪ {0}

are Borel, and there exist Borel maps

νu−1 : �(u) → S
n−1, (u−1)− : �(u) → �, (u−1)+ : �I (u) → �

with the following properties:

i) For every y0 ∈ �I (u) and every k ∈ N such that y0 ∈ Jvk , we have that

ap lim
y→ y0

y∈H+( y0,νu−1 ( y0))

u−1( y) = (u−1)+( y0),

ap lim
y→ y0

y∈H−( y0,νu−1 ( y0))

u−1( y) = (u−1)−( y0) = v−
k ( y0)

and νu−1( y0) = νvk ( y0).
ii) For every y0 ∈ �V (u), we have that

a) D(imG(u,�) ∩ H−( y0, νu−1( y0)), y0) = 1
2 .

b) ap lim
y→ y0

y∈H−( y0,νu−1 ( y0))

u−1( y) = (u−1)−( y0).

c) For every open set U ⊂⊂ � containing (u−1)−( y0),

y0 ∈ ∂∗ imG(u,U ) ∩ Ju−1
U
, νu−1( y0) = νimG(u,U )( y0) = νu−1

U
( y0)

and
(

u−1
U

)−
( y0) = (u−1)−( y0),

where Ju−1
U

has been oriented according to Definition 10.

Proof. As Jvk is a Borel set for every k ∈ N (see, for example, [5, Prop. 3.69]),
then �(u) is a Borel set. Analogously, Ju−1 is a Borel set, and, hence, �I (u) is a
Borel set. Finally, �V (u) is a Borel set since, by Proposition 5, it coincides with
�(u)\�I (u).

Now, for each k ∈ N, fix a Borel orientation νvk : Jvk → S
n−1 for the jump

set Jvk such that the convention of Definition 10 is respected, and that whenever
y ∈ Jvk1

∩ Jvk2
for some k1, k2 ∈ N, the orientating vectors νvk1

( y) and νvk2
( y)

coincide. Let νu−1 : �(u) → S
n−1 be defined by νu−1( y) := νk( y)( y), for each

y ∈ �(u), where k( y) is the first integer k ∈ N such that y ∈ Jvk . The resulting
maps are Borel because so are νvk , and it is clear that i) and ii) hold. ��
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We note that if det ∇u > 0 almost everywhere and Ē(u) < ∞, then �V (u) and
�I (u) are not only Borel, but also countably Hn−1 rectifiable. This follows from
Theorem 2, Proposition 5, and the rectifiability properties of jump sets (see, for
example, [5, Th. 3.78]).

Suppose U ⊂ � is an open set and φ is a C∞
c (�) function with support in U .

Recall that we are assuming, by the convention of Definition 10, that (45) holds.
Consequently, if

φ

((
u−1

U

)−
( y)
)

− φ

((
u−1

U

)+
( y)
)

�= 0

then y ∈ Ju−1
U

and (u−1
U )−( y) ∈ U . Based on this idea, we compare in the following

lemmas the set �(u) with the set of y ∈ Ju−1
U

such that (u−1
U )−( y) ∈ U . We also

compare the lateral traces of u−1
U with the traces of u−1, and the orientation vector

νu−1
U

with νu−1 . Recall from Definition 1(c) the notation Sv for the approximate

discontinuity set of the function v, and from Section 2.1 the notation ∼⊂.

Lemma 6. Let u : � → R
n be approximately differentiable in almost all �, one-

to-one almost everywhere, and suppose that det ∇u(x) �= 0 for almost every x ∈ �.
Let U be an open set compactly contained in �. Assume 0 /∈ �̄. Then

�(u)\Ju−1
U

⊂ (Su−1
U

\Ju−1
U
) ∪ { y ∈ �V (u) : (u−1)−( y) ∈ �\U }

∪{ y ∈ �I (u) : (u−1)+( y), (u−1)−( y) ∈ �\U }. (50)

Now apply to u−1
U the convention of Definition 10. If, in addition,

det ∇u > 0 almost everywhere, cof ∇u ∈ L1
loc(�,R

n×n), Ē(u) < ∞, U ∈ Uu,

(51)

and φ ∈ C∞
c (�) satisfies spt φ ⊂ U, then Hn−1-almost every y in

�(u)\
{

y ∈ Ju−1
U

:
(

u−1
U

)−
( y) ∈ U

}
(52)

is such that φ((u−1)+( y)) = φ((u−1)−( y)) = 0.

Proof. Let y0 ∈ �(u)\Ju−1
U

satisfy that one of (u−1)+( y0), (u−1)−( y0) belongs

to U . In order to prove (50), it suffices to show that u−1
U is not approximately

continuous at y0. By Lemma 4(iv) we have that

D (imG(u,U ), y0) �= 0. (53)

Let p ∈ N be such that y0 ∈ Jvk and U ⊂ Vk for all k � p. If y0 were an approx-
imate continuity point for u−1

U with ap lim y→ y0
u−1

U ( y) �= 0, then, by Lemma 4,
y0 would be a point of approximate continuity for vk , a contradiction, whereas if
ap lim y→ y0

u−1
U ( y) = 0 then, by Lemma 4(i), D(imG(u,U ), y0) = 0, a contra-

diction with (53). This shows (50).
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Now note that, thanks to Definition 10(i), (u−1
U )−( y) ∈ Ū for every y ∈ Ju−1

U
,

and, hence

�(u)\
{

y ∈ Ju−1
U

:
(

u−1
U

)−
( y) ∈ U

}

= (�(u)\Ju−1
U
) ∪
{

y ∈ Ju−1
U

∩ �(u) :
(

u−1
U

)−
( y) ∈ ∂U

}
.

Thus, by (50) and (45), every y in (52) satisfies that y ∈ Su−1
U

\Ju−1
U

or both

(u−1)+( y), (u−1)−( y) are in R
n\U . Therefore, if, in addition, the assumptions

(51) hold, then u−1
U ∈ SBVloc(R

n,Rn) by Theorem 2, and, hence, by the Federer–
Vol’pert theorem (see, for example, [5, Th. 3.78]), Hn−1(Su−1

U
\Ju−1

U
) = 0. ��

Lemma 7. Let u : � → R
n be approximately differentiable in almost all �, and

such that cof ∇u ∈ L1
loc(�,R

n×n). Suppose that det ∇u(x) �= 0 for almost every
x ∈ �, and u is one-to-one almost everywhere. Let U be an open set compactly
contained in �. Assume 0 /∈ �̄, consider a point y0 ∈ Ju−1

U
and orient the normal

vector at y0 according to Definition 10. Suppose that (u−1
U )−( y0) ∈ U. Consider

the sets Vk and the functions vk of Definition 11. Then the following properties
hold:

i) If (u−1
U )+( y0) ∈ U then y0 ∈ �I (u,U ) ⊂ �I (u).

ii) If (u−1
U )+( y0) ∈ ∂U then y0 ∈ �I (u)\�I (u,U ).

iii) If (u−1
U )+( y0) = 0 then y0 ∈ �(u) ∪⋃k∈N

(Svk \Jvk ).

If, in addition, det ∇u > 0 almost everywhere, U ∈ Uu and Ē(u) < ∞ then{
y ∈ Ju−1

U
:
(

u−1
U

)−
( y) ∈ U

}
∼⊂ �(u).

Proof. Statements i) and ii) clearly follow from Lemma 4(i).
Let (u−1

U )+( y0) = 0. By Corollary 1(i), y0 ∈ ∂∗ imG(u,U ) and νu−1
U
( y0) =

νimG(u,U )( y0). There are two possibilities: either

D(imG(u, Vk) ∩ H+( y0, νu−1
U
( y0)), y0) = 0 (54)

for all k such that U ⊂⊂ Vk , or there exists k ∈ N such that U ⊂⊂ Vk and Equa-
tion (54) does not hold. In the first case we have that y0 ∈ �V (u), and, in particular,
y0 ∈ �(u). In the second case we have to consider two further possible scenarios.
Note first that if the approximate limit

v+
k ( y0) = ap lim

y→ y0
y∈H+( y0,νu−1

U
( y0))

vk( y)

exists, it cannot be 0, since in that case we would have, thanks to Definition 10(ii),
that equality (54) holds. Therefore, if it exists, by Lemma 4(i), we must have that

D(imG(u,�) ∩ H+( y0, νu−1
U
( y0)), y0) = 1

2
(55)
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and that

v+
k ( y0) = ap lim

y→ y0
y∈H+( y0,νu−1

U
( y0))

vk( y) = (u−1)+( y0) = ap lim
y→ y0

y∈H+( y0,νu−1
U

( y0))

u−1( y).

Furthermore, as (u−1
U )+( y0) = 0, we have, by Lemma 4(i), that

D(imG(u,U ) ∩ H+( y0, νu−1
U
( y0)), y0) = 0. (56)

Now, Equations (55), (56) and Lemma 4(iv) imply that v+
k ( y0) /∈ U . Since, on the

other hand, v−
k ( y0) = (u−1

U )−( y0) ∈ U (by Lemma 4) we conclude that, if (54)
does not hold then y0 cannot be a point of approximate continuity for vk . Therefore,
if (54) does not hold then either y0 ∈ Svk \Jvk or

y0 ∈ Jvk , v+
k ( y0) = (u−1)+( y0) ∈ V̄k ⊂ � and y0 ∈ �I (u) ⊂ �(u),

the last relation being due to Corollary 1(ii). This finishes the proof of iii).
In particular, { y ∈ Ju−1

U
: (u−1

U )−( y) ∈ U } ⊂ �(u) ∪⋃k∈N
(Svk \Jvk ). There-

fore, if, in addition, det ∇u > 0 almost everywhere and Ē(u) < ∞, then, by
Theorem 2 and the Federer–Vol’pert theorem (see, for example, [5, Th. 3.78]),
Hn−1(Svk \Jvk ) = 0 for each k ∈ N. This concludes the proof. ��
Proof (of Proposition 4). Apply to u−1

U the convention of Definition 10. Call, for
simplicity,

FU ( y) :=
[
φ

((
u−1

U

)−
( y)
)

− φ

((
u−1

U

)+
( y)
)]

g( y) · νu−1
U
( y),

GU ( y) := φ

((
u−1

U

)−
( y)
)

g( y) · νu−1
U
( y),

for Hn−1-almost every y ∈ Ju−1
U

.

Since φ(x) = 0 for all x /∈ U , by virtue of (45) and Lemma 7, we have that∫
J

u−1
U

FU ( y) dHn−1( y) =
∫

{ y∈J
u−1

U
∩�(u):

(
u−1

U

)−
( y)∈U }

FU ( y) dHn−1( y).

Moreover, thanks to Proposition 5 and Lemma 4(i), we have that∫
J

u−1
U

FU ( y) dHn−1( y) =
∫

{ y∈J
u−1

U
∩�V (u):

(
u−1

U

)−
( y)∈U }

GU ( y) dHn−1( y)

+
∫

{ y∈J
u−1

U
∩�I (u):

(
u−1

U

)−
( y)∈U }

FU ( y) dHn−1( y).

Now call, for Hn−1-almost every y ∈ Ju−1 ,

F( y) :=
[
φ((u−1)−( y))− φ((u−1)+( y))

]
g( y) · νu−1( y),

G( y) := φ((u−1)−( y)) g( y) · νu−1( y).
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Due to Lemma 5 we have that∫
{ y∈J

u−1
U

∩�V (u):
(

u−1
U

)−
( y)∈U }

[GU ( y)− G( y)] dHn−1( y)

=
∫

{ y∈J
u−1

U
∩�I (u):

(
u−1

U

)−
( y)∈U }

[FU ( y)− F( y)] dHn−1( y) = 0.

Moreover, by Lemma 6, F vanishes Hn−1-almost everywhere in �(u)\{ y ∈ Ju−1
U

:
(u−1

U )−( y) ∈ U }, so we obtain that
∫

J
u−1

U

FU ( y) dHn−1( y) =
∫
�V (u)

G( y) dHn−1( y)+
∫
�I (u)

F( y) dHn−1( y).

The conclusion then follows from Theorem 2(iv). ��

4.3. A characterization of E

As discussed in [18, Sect. 3], Ē(u) measures correctly, in many cases, the
area of the created surface. However, examples were given of one-to-one almost
everywhere deformations at which Ē behaves unexpectedly [18, Sect. 6]. For those
examples, it was shown that a more suitable definition of the area of the created
surface was the following.

Definition 12. Let u : � → R
n be approximately differentiable in almost all �.

Suppose that cof ∇u ∈ L1
loc(�,R

n×n). Assume that det ∇u ∈ L1
loc, or that u is

one-to-one almost everywhere. For every f ∈ C1
c (�× R

n,Rn), define

Eu( f ) :=
∫
�

[∇x f (x, u(x)) · cof ∇u(x)+ div y f (x, u(x)) det ∇u(x)
]

dx

and

E(u) := sup
{
Eu( f ) : f ∈ C1

c (�× R
n,Rn), ‖ f ‖∞ � 1

}
.

The notation Dx f (x, y) refers to the derivative of the map f (·, y) evaluated at x,
while div y f (x, y) denotes the divergence of the map f (x, ·) evaluated at y. As in
Definition 7, if u is one-to-one almost everywhere then Eu( f ) is well defined by
Proposition 1.

In the language of the theory of Cartesian currents, we are defining E(u) to
be the mass M((∂Gu)(n−1)) of the vertical part of the boundary of the current Gu
carried by the graph of u. We refer the reader to [16,17] for an exposition of the
theory of currents.

The functionals Ēu and Eu are related in the following manner: if φ ∈ C1
c (�),

g ∈ C1
c (R

n,Rn), and we define f (x, y) := φ(x)g( y), then Ēu(φ, g) = Eu( f ).
Furthermore, Ē � E , and if Ē(u) = 0 then E(u) = 0. Nevertheless, as shown in
[18, Sect. 6], Ē �= E .
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Theorem 3 gives a characterization of E(u) in terms of our notion of created
surface. This justifies the use of this functional in the existence theory of [18],
finishes the proof of Theorem 1, and constitutes one of the main results of this
paper.

Theorem 3. Let u : � → R
n be approximately differentiable in almost all �,

one-to-one almost everywhere, and such that det ∇u > 0 almost everywhere and
cof ∇u ∈ L1

loc(�,R
n×n). Assume E(u) < ∞ and 0 /∈ �̄. Let νu−1 : �I (u) →

S
n−1 be a Borel orientation of �I (u), and denote the lateral traces of u−1 with

respect to νu−1 |�I (u) by (u−1)±. Then

Eu( f ) =
∫
�V (u)

f ((u−1)−( y), y) · νu−1( y) dHn−1( y)

+
∫
�I (u)

[
f ((u−1)−( y), y)− f ((u−1)+( y), y)

]
· νu−1( y) dHn−1( y).

(57)

for all f ∈ C∞
c (�× R

n,Rn). Furthermore,

E(u) = Hn−1(�V (u))+ 2Hn−1(�I (u)). (58)

Proof. As E(u) < ∞, by Riesz’ representation theorem, there exists an R
n-valued

Borel measure � in �× R
n such that |�|(�× R

n) = E(u) and

Eu( f ) =
∫
�×Rn

f (x, y) · d�(x, y), f ∈ C∞
c (�× R

n). (59)

Using (59), (33), and the fact that Du−1
U has no Cantor part, we obtain that

∫
J

u−1
U

[
φ ◦
(

u−1
U

)− − φ ◦
(

u−1
U

)+]
g · νu−1

U
dHn−1 =

∫
�×Rn

φ(x) g( y) · d�(x, y)

(60)

for all bounded Borel functions g : R
n → R

n and all φ ∈ C∞
c (�)with spt φ ⊂ U .

Recall that the orientation of Ju−1
U

is subjected to the convention of Definition 10.

Let F ⊂ Ju−1
U

be a Borel set such that Hn−1(F) < ∞, and consider the

R
n-valued measure

λF :=
[((

u−1
U

)− �� id
)
�

−
((

u−1
U

)+ �� id
)
�

](
νu−1

U
Hn−1 F

)
.

Here, the operator � denotes the push-forward of a measure (see, for example, [5,
Def. 1.70]), and the function (u−1

U )± �� id : Ju−1
U

→ R
n × R

n is defined by

((
u−1

U

)± �� id
)
( y) =

((
u−1

U

)±
( y), y

)
, y ∈ Ju−1

U
.
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By (60) and the definition of push-forward we thus have that∫
�×Rn

φ(x) g( y) · dλF (x, y) =
∫
�×Rn

φ(x) g( y) · d�(x, y).

for all bounded Borel functions g : R
n → R

n and all φ ∈ C∞
c (�)with spt φ ⊂ U .

The measure λF is finite; therefore, by the density in Cc(U × R
n,Rn) of the set of

sums of functions having the form φ(x)g( y), we have that∫
�×Rn

f (x, y) · dλF (x, y) =
∫
�×Rn

f (x, y) · d�(x, y) (61)

for all f ∈ Cc(U × R
n,Rn). By virtue of the Riesz representation theorem, this

implies that� (U × F) = λF (U × F). Using that the images of the functions
(u−1

U )− �� id and (u−1
U )+ �� id are disjoint, it is easy to check, by the definition

of total variation of a measure (see, for example, [5, Def. 1.4]) that

|λF | =
∣∣∣∣∣
((

u−1
U

)− �� id
)
�

(
νu−1

U
Hn−1 F

)∣∣∣∣∣+
∣∣∣∣∣
((

u−1
U

)+ �� id
)
�

(
νu−1

U
Hn−1 F

)∣∣∣∣∣ .

This, together with [2, Lemma 1.3; 5, Prop. 1.23], and Lemmas 6 and 7, yields that

|�|(U × F)

= Hn−1
({

y ∈ F :
(

u−1
U

)−
( y) ∈ U

})
+ Hn−1

({
y ∈ F :

(
u−1

U

)+
( y) ∈ U

})

= Hn−1
({

y ∈ F :
(

u−1
U

)−
( y) ∈ U

})
+ Hn−1(�I (u,U ) ∩ F), (62)

for all Borel sets F ⊂ Ju−1
U

such that Hn−1(F) < ∞. Furthermore, since Ju−1
U

is

σ -finite with respect to Hn−1, the assumption Hn−1(F) < ∞ can be neglected.
Consider now the sets Vk and the functions vk of Definition 11, as well as the

orientation of the jump sets Jvk specified in Lemma 5. For each p ∈ N, define
Fp :=⋂k�p Jvk . Applying (62) to U = Vp and F = Fp we obtain that

Hn−1({ y ∈ Fp : (v p)
−( y) ∈ Vp})+ Hn−1(�I (u, Vp) ∩ Fp) = |�|(Vp × Fp).

Having in mind that the three sequences of sets{{
y ∈ Fp : v−

p ( y) ∈ Vp

}}
p∈N

,
{
�I (u, Vp) ∩ Fp

}
p∈N

,
{

Vp × Fp
}

p∈N
,

are increasing, and that

�I (u) =
⋃
p∈N

[
�I (u, Vp) ∩ Fp

]
, �× �(u) =

⋃
p∈N

Vp × Fp,

it follows that

Hn−1

⎛
⎝⋃

p∈N

{ y ∈ Fp : (v p)
−( y) ∈ Vp}

⎞
⎠+Hn−1(�I (u))=|�|(�× �(u)).

(63)
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From Proposition 5(ii) we know that �(u) = ⋃p∈N
Fp. Moreover, if y ∈ Fp for

some p ∈ N, then, by Lemma 5, we have that v−
k ( y) = v−

p ( y) ∈ V̄p ⊂ Vk for all
k � p + 1. Therefore,

�(u) =
⋃
p∈N

{ y ∈ Fp : (v p)
−( y) ∈ Vp}, (64)

and since E(u) = |�|(�×R
n) and�(u) = �V (u)∪�I (u), with disjoint union, it is

clear that (63) imples (58), provided we can prove that� is supported in�×�(u),
that is, that

|�|(�× (Rn\�(u))) = 0. (65)

In order to show (65), apply (60), for each k ∈ N, with Vk and gχRn\Jvk
, to

obtain that
∫
�×(Rn\Jvk )

φ(x) g( y) · d�(x, y) = 0

for every bounded Borel function g : R
n → R

n , and every φ ∈ C∞
c (�) supported

in Vk . Since� is a finite measure, by virtue of the density in Cc(U ×R
n,Rn) of the

set of sums of functions of the formφ(x)g( y), we find that |�|(Vk ×(Rn\Jvk )) = 0
for every k ∈ N. This, together with the fact that � × (Rn\�(u)) ⊂ ⋃k∈N

[Vk ×
(Rn\Jvk )], yields the desired result.

Let f ∈ C∞
c (� × R

n,Rn) and choose k ∈ N such that spt f ⊂ Vk × R
n . By

(59), (65), and (61) applied to U = Vk and F = Jvk ∩ �(u), we have that

Eu( f ) =
∫
�×Rn

f (x, y) · d�(x, y) =
∫

Vk×(Jvk ∩�(u))
f (x, y) · d�(x, y)

=
∫

Jvk ∩�(u)
[

f
(
v−

k ( y), y
)− f

(
v+

k ( y), y
)] · νvk ( y) dHn−1( y).

Proceeding as in the proof of Proposition 4, this yields (57), completing the proof.
��

5. Boundary of the image versus image of the boundary

In Section 4 we gave a definition of created surface based on lateral traces
and jump discontinuities of the inverse (Definition 9). However, it is more intui-
tive to think of the phenomenon of creation of surface in terms of the inequality
∂u(�) �= u(∂�). In this section, we prove that ∂∗ imG(u,U )\ imG(u, ∂U ) is
Hn−1-equivalent, for all U ∈ Uu, to the set of y ∈ R

n such that

i) y ∈ �V (u) and (u−1)−( y) ∈ U , or
ii) y ∈ �I (u) and one of the traces (u−1)±( y) belongs to U , while the other

belongs to �\U .
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By so doing, we endow our definition of �(u) with a richer geometric content, and
continue to make rigourous the informal discussion of Sections 1 and 3.

We begin by showing that no part of the boundary ∂U is lost under the defor-
mation (that is, imG(u, ∂U ) ⊂ ∂∗ imG(u,U )), for any given subset U of �.

Proposition 6. Let u : � → R
n be approximately differentiable in almost all

�, one-to-one almost everywhere, and such that det ∇u(x) �= 0 for almost every
x ∈ �. Let �0 be as in Definition 3. Then, for any measurable set U ⊂⊂ � and
every x0 ∈ ∂∗U ∩�0, the following are satisfied:

i) u(x0) ∈ ∂∗ imG(u,U ).
ii) For any open set V ⊂ � such that U ⊂⊂ V , we have that D(imG(u, V ),

u(x0)) = 1 and u(x0) ∈ ∂∗ imG(u, V \U ).
iii) u−1 is approximately continuous at u(x0), and ap lim y→u(x0)

u−1( y) = x0.
iv) u(x0) /∈ �(u).
v) If νU and νimG(u,U ) denote the unit outward normal (according to Definition 2)

to U and to imG(u,U ), respectively, then

νimG(u,U )(u(x0)) = (sgn det ∇u(x0))
(cof ∇u(x0))νU (x0)

|(cof ∇u(x0))νU (x0)| .

Proof. Let x0 ∈ ∂∗U ∩�0, and set y0 := u(x0) and

ν̄ := (sgn det ∇u(x0))
(cof ∇u(x0))νU (x0)

|(cof ∇u(x0))νU (x0)| .

Let V ⊂ � be any open set such that U ⊂⊂ V . By Lemma 1 we have that

D(imG(u,U ) ∩ H−( y0, ν̄), y0) = D(imG(u, V \U ) ∩ H+( y0, ν̄), y0) = 1

2
.

By Lemma 3, imG(u,U ) ∩ imG(u, V \U ) = ∅, hence

D(imG(u,U ) ∩ H+( y0, ν̄), y0) = D(imG(u, V \U ) ∩ H−( y0, ν̄), y0) = 0.

This shows i), ii) and v). The approximate continuity of u−1 at y0 clearly follows
from Lemma 1 (or from Theorem 2(iii)). By iii) and Lemma 4(iv), y0 /∈ �(u). This
finishes the proof. ��

Due to the role that it will play in Sections 6 and 7, we introduce a special nota-
tion for the part of ∂∗ imG(u,U ) that is newly created (as opposed to imG(u, ∂U ),
which corresponds to the part of the boundary that existed already).

Definition 13. Let u : � → R
n be approximately differentiable in almost all

�, one-to-one almost everywhere, and such that det ∇u(x) �= 0 for almost every
x ∈ �. Assume cof ∇u ∈ L1

loc(�,R
n×n), and let U ⊂ � be a measurable set. We

define the created boundary of U under u, and denote it by �C (u,U ), as the set
∂∗ imG(u,U )\ imG(u, ∂U ).

The following lemma shows that at Hn−1-almost every point on ∂∗ imG(u,U ),
the inverse u−1 has a well-defined lateral trace.
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Lemma 8. Let u : � → R
n be approximately differentiable in almost all �,

one-to-one almost everywhere, and such that det ∇u > 0 almost everywhere and
cof ∇u ∈ L1

loc(�,R
n×n). Assume Ē(u) < ∞ and 0 /∈ �̄. Let U ∈ Uu, and let Ju−1

U
have the orientation according to Definition 10. Then the following can be said of
Hn−1-almost every y0 ∈ ∂∗ imG(u,U ):

i) y0 ∈ Ju−1
U

and νu−1
U
( y0) = νimG(u,U )( y0).

ii) The limit ap lim y→ y0
y∈imG(u,U )

u−1( y) exists, coincides with (u−1
U )−( y0), and be-

longs to Ū .
iii) Either y0 ∈ �(u), or

D(imG(u,�), y0) = 1 and the limit ap lim
y→ y0

u−1( y) exists.

Proof. We first prove i) and ii). Let y0 ∈ ∂∗ imG(u,U ). By Lemma 4 iii),

ap lim
y→ y0

y∈H+( y0,νimG(u,U )
)

u−1
U ( y) = 0.

Now, by Theorem 2 and the Federer–Vol’pert theorem (see, for example, [5,
Th. 3.78]), for Hn−1-almost every y0 ∈ ∂∗ imG(u,U ) the limit

ap lim
y→ y0

y∈H−( y0,νimG(u,U )
)

u−1
U ( y)

exists, and, by Lemma 4(i), coincides with

ap lim
y→ y0

y∈imG(u,U )

u−1( y)

and belongs to Ū . In addition, νu−1
U
( y0) = νimG(u,U )( y0) because of Corollary 1(i).

Now we show iii). Consider the sets Vk and the functions vk of Definition 11.
By virtue of Theorem 2, and the Federer-Vol’pert theorem, for all k ∈ N and
Hn−1-almost every y0 ∈ R

n there exists νk( y0) ∈ S
n−1 for which the limits

x−
0 := ap lim

y→ y0
y∈H−( y0,νk ( y0))

vk( y), x+
0 := ap lim

y→ y0
y∈H+( y0,νk ( y0))

vk( y)

exist, and D(imG(u, Vk), y0) ∈ {0, 1
2 , 1}. Fix such a y0 and suppose, in addition,

that it belongs to ∂∗ imG(u,U ). Fix also p ∈ N such that U ⊂ Vp.
As in Lemma 5, for all k � p we can choose the orientation of νk( y0) such

that νk( y0) = νimG(u,U )( y0) and

D(imG(u, Vk) ∩ H−( y0, ν), y0) = 1

2
,
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where ν denotes, henceforth, the vector νimG(u,U )( y0). There are two possibilities.
First, suppose that D(imG(u, Vk)∩ H+( y0, ν), y0) = 0 for all k � p. In this case
y0 ∈ �V (u), since by Lemma 4(i),

ap lim
y→ y0

y∈H−( y0,ν)

u−1( y) = x−
0 ∈ V̄p ⊂ �.

Alternatively, there may exist k > p such that

D(imG(u, Vk) ∩ H+( y0, ν), y0) = 1

2
.

In this case, by Lemma 4(i),

ap lim
y→ y0

y∈H−( y0,ν)

u−1( y) = x−
0 ∈ Ū ⊂ � and ap lim

y→ y0
y∈H+( y0,ν)

u−1( y) = x+
0 ∈ V̄k ⊂ �.

If x−
0 = x+

0 then ap lim y→ y0
u−1( y) exists, whereas if x−

0 �= x+
0 , then y0 ∈ �I (u).

This concludes the proof. ��
We now present the main result of this section, the principal ingredients of

which are the characterization of E of Theorem 3, and the change of variables for
surface integrals of Proposition 2. Recall from Section 2.5 the definition of the set
∂dU of tangential approximate differentiability points.

Theorem 4. Let u : � → R
n be approximately differentiable in almost all�, one-

to-one almost everywhere, and such that det ∇u > 0 almost every and cof ∇u ∈
L1

loc(�,R
n×n). Assume that E(u) < ∞ and 0 /∈ �̄. Let U ∈ Uu, and consider the

functions (u−1)± and νu−1 of Lemma 5, and the function (u−1
U )− of Definition 10.

Define the sets

A := { y ∈ �V (u) : (u−1)−( y) ∈ U },
B1 := { y ∈ �I (u) : (u−1)−( y) ∈ U and (u−1)+( y) ∈ �\U },
B2 := { y ∈ �I (u) : (u−1)−( y) ∈ �\U and (u−1)+( y) ∈ U }.

Then

�C (u,U ) ∼= A ∪ B1 ∪ B2 ∼=
{

y ∈ ∂∗ imG(u,U ) :
(

u−1
U

)−
( y) ∈ U

}

∼= ∂∗ imG(u,U ) ∩ �(u)
and

imG(u, ∂U ) ∼= imG(u, ∂dU ) ∼=
{

y ∈ ∂∗ imG(u,U ) :
(

u−1
U

)−
( y) ∈ ∂U

}

∼= ∂∗ imG(u,U )\�(u).
Moreover,

Ju−1
U

∼= imG(u, ∂U ) ∪ �C (u,U ) ∪ �I (u,U ) ∪ C,
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with disjoint union, where

C :=
{

y ∈ �I (u) ∩ Ju−1
U

: (u−1)+( y) and (u−1)−( y) are both in ∂U
}
.

Proof. By Definition 9(b) and Lemma 4(iv) we have that A ⊂ ∂∗ imG(u,U ),
whereas, by Proposition 6, A ∩ ∂ imG(u, ∂U ) = ∅. Therefore,

A ⊂ �C (u,U ), with νu−1 = νimG(u,U ) in A. (66)

Moreover, by Proposition 6 and Lemma 4(iv), we have that

Bi ∩ �C (u,U ) = Bi ∩ ∂∗ imG(u,U ), for i = 1, 2, (67)

with νu−1 = νimG(u,U ) in B1∩�C (u,U ), and νu−1 = −νimG(u,U ) in B2∩�C (u,U ),
where νimG(u,U ) is oriented according to Definition 2.

Now we prove that

�C (u,U ) ∼= A ∪ B1 ∪ B2 and Hn−1(C1) = 0, (68)

with C1 := imG(u, ∂U\∂dU ). Consider the function d of Proposition 3, and choose
ϕ ∈ C∞(R) satisfying ϕ(t) = 0 for t � 0, ϕ(t) = 1 for t � 1, and ϕ′ � 0. For each
j ∈ N, consider the function η j : � → R defined in (21). Let g ∈ C∞

c (R
n,Rn).

Then, by (22), (12), and the coarea formula,∫
�

g(u(x)) · (cof ∇u(x))Dη j (x) dx =
∫
∂U

g(u(x)) · (cof ∇u(x))Dd(x) dHn−1(x)

+ −
∫ 1

j

0
ϕ′( j t)

[∫
∂Ut

g(u(x)) · (cof ∇u(x))Dd(x) dHn−1(x)

−
∫
∂U

g(u(x)) · (cof ∇u(x))Dd(x) dHn−1(x)
]

dt.

Now, by (12), Definitions 5 and 6, and Propositions 2 and 6,

lim
j→∞

∫
�

g(u(x)) · (cof ∇u(x))Dη j (x) dx

= −
∫

imG(u,∂dU )
g( y) · νimG(u,U )( y) dHn−1( y).

On the other hand, by (22), dominated convergence, Proposition 1, (20), and the
divergence theorem for sets of finite perimeter (see, for example, [5, Th. 3.36]),

lim
j→∞

∫
�

η j (x)(div g)(u(x)) det ∇u(x) dx =
∫

U
(div g)(u(x)) det ∇u(x) dx

=
∫

imG(u,U )
div g( y) d y =

∫
∂∗ imG(u,U )

g( y) · νimG(u,U )( y) dHn−1( y).

In total, we obtain that

lim
j→∞ Ēu(η j , g) =

∫
∂∗ imG(u,U )\ imG(u,∂dU )

g( y) · νimG(u,U )( y) dHn−1( y)

=
∫
�C (u,U )∪C1

g( y) · νimG(u,U )( y) dHn−1( y). (69)
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The next step is to calculate lim j→∞ Ēu(η j , g) in a different way. Using
Proposition 4, (22), and dominated convergence, we obtain

lim
j→∞ Ēu(η j , g) =

∫
�V (u)

χU ((u−1)−( y)) g( y) · νu−1( y) dHn−1( y)

+
∫
�I (u)

[
χU ((u−1)−( y))− χU ((u−1)+( y))

]
g( y) · νu−1( y) dHn−1( y).

Because of the definition of A, B1 and B2, this equality reads

lim
j→∞ Ēu(η j , g) =

∫
A∪B1

g · νu−1 dHn−1 −
∫

B2

g · νu−1 dHn−1. (70)

Comparing (69) and (70), and using (66) and (67), we obtain that
∫

C1∪�C (u,U )\(A∪B1∪B2)
g( y) · νimG(u,U )( y) dHn−1( y)

=
∫

B1\�C (u,U )
g( y) · νu−1( y) dHn−1( y)−

∫
B2\�C (u,U )

g( y) · νu−1( y) dHn−1( y).

This equality holds for all g ∈ C∞
c (R

n,Rn). By density, it holds for every
g ∈ Cc(R

n,Rn) as well. As the sets

C1, �C (u,U )\(A ∪ B1 ∪ B2), B1\�C (u,U ), B2\�C (u,U )

are disjoint, by Lusin’s theorem this implies that

Hn−1(C1) = Hn−1(�C (u,U )\(A ∪ B1 ∪ B2))

= Hn−1((B1 ∪ B2)\�C (u,U )) = 0,

showing (68).
The equivalence

�C (u,U ) ∼= ∂∗ imG(u,U ) ∩ �(u). (71)

is immediate, considering that imG(u, ∂U ) ∩ �(u) = ∅ (by Proposition 6) and
�C (u,U ) ∼⊂ �(u) (by (68)). Also, Lemma 4(iv), Proposition 6, and (68) imply that

{
y ∈ ∂∗ imG(u,U ) :

(
u−1

U

)−
( y) ∈ U

}
∼= �C (u,U ). (72)

By Theorem 2, the Federer–Vol’pert theorem (see, for example, [5, Th. 3.78]),
and Definition 10,

{
y ∈ ∂∗ imG(u,U ) :

(
u−1

U

)−
( y) ∈ ∂U

}

∼= ∂∗ imG(u,U )\
{

y ∈ ∂∗ imG(u,U ) :
(

u−1
U

)−
( y) ∈ U

}
,
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so, by (71) and (72), we obtain that{
y ∈ ∂∗ imG(u,U ) :

(
u−1

U

)−
( y) ∈ ∂U

}
∼= ∂∗ imG(u,U )\�(u).

By (71) and the equality imG(u, ∂U ) ∩ �(u) = ∅, we obtain that

∂∗ imG(u,U )\�(u) ∼= imG(u, ∂U ).

Finally, by (68) and Definition 6, imG(u, ∂dU ) ∼= imG(u, ∂U ). This proves the
first part of the theorem.

For the second part, observe that thanks to Proposition 6(i) and Lemma 8(i),

imG(u, ∂U ) ∪ �C (u,U ) = ∂∗ imG(u,U ) ∼⊂ Ju−1
U
.

By Proposition 5(i), �I (u,U ) ⊂ Ju−1
U

. Clearly, C ⊂ Ju−1
U

.

By Proposition 6, both�I (u,U ) and C are disjoint with imG(u, ∂U ), since they
are contained in �(u). By definition, �C (u,U ) is also disjoint with imG(u, ∂U ).
Now, �C (u,U ) is disjoint with �I (u,U ) and C by Lemma 4(i). That �I (u,U ) is
disjoint with C is obvious.

It remains only to prove that

Ju−1
U

∼⊂ imG(u, ∂U ) ∪ �C (u,U ) ∪ �I (u,U ) ∪ C.

Let y ∈ Ju−1
U

. By Definition 10, (u−1
U )−( y) ∈ Ū . Suppose first that (u−1

U )−( y) ∈ U .

By virtue of Lemma 7, we may assume that y ∈ �(u). Moreover, by Lemmas 4(i)
and 5, we have that (u−1

U )−( y) = (u−1)−( y) and
(

u−1
U

)+
( y) = (u−1)+( y) if y ∈ �I (u).

Therefore, we have only the following possibilities:

a) y ∈ �V (u), in which case y ∈ A.
b) y ∈ �I (u) and both traces (u−1)±( y) are in U . In this case, y ∈ �I (u,U ).
c) y ∈ �I (u) and only one of the traces (u−1)±( y) is in U . In this case y ∈ B1∪B2.

By (68), we may conclude that y ∈ �I (u,U ) ∪ �C (u,U ).
Suppose now that y ∈ Ju−1

U
and (u−1

U )−( y) ∈ ∂U . By (45), there are only the
two following possibilities:

a) (u−1
U )+( y) /∈ Ū . In this case, by Lemma 4(i), we have in fact (u−1

U )+( y)= 0,
and by Corollary 1(i), y ∈ ∂∗ imG(u,U ). Therefore, y ∈ imG(u, ∂U ) ∪
�C (u,U ).

b) (u−1
U )+( y) ∈ ∂U , in which case y ∈ C .

��
As a consequence of Theorem 4, we have that

Hn−1
({

y ∈ ∂∗ imG(u,U ) :
(

u−1
U

)−
( y) ∈ ∂U

}
\ imG(u, ∂dU )

)
= 0.

This is an (n − 1)-dimensional Lusin’s condition, stating that the restriction of u
to ∂U\∂dU creates no surface.
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6. E as a generalization of the distributional determinant

We start this section by regarding Eu as a Radon measure in �.

Definition 14. Let u : � → R
n be approximately differentiable in almost all �.

Suppose that cof ∇u ∈ L1
loc(�,R

n×n). For each open subset U of �, we define

μu(U ) := sup{Eu( f ) : f ∈ C∞
c (�× R

n,Rn), ‖ f ‖∞ � 1, spt f ⊂ U × R
n}.
(73)

If, moreover, E(u) < ∞, we define μu as the unique positive Radon measure in�
that extends (73).

The motivation of the definition of μu is the following. Müller and Spec-
tor [24, Th. 8.4] proved that if U ⊂ � is an open set, p > n − 1 and u is a
W 1,p function satisfying some invertibility conditions, then (Det ∇u)(U ) equals
Ln(imG(u,U )) plus the volume of the cavities originated in U . In other words, the
measure Det ∇u − (det ∇u)Ln acting on U provides the volume of the cavities
originated in U . Here Det ∇u denotes the distributional Jacobian determinant of
u. In this section we will prove that μu(U ) equals the area of the surface created
in U , so in this sense μu is a generalization of Det Du − (det Du)Ln . It is also a
generalization because Det ∇u−(det ∇u)Ln can be obtained analytically as the su-
premum of Eu( f ) among functions f having the special form f (x, y) = −φ(x) y

n
with ‖φ‖∞ � 1. Indeed, this function f satisfies

Eu( f ) = −1

n

∫
�

u(x) · (cof ∇u(x))Dφ(x) dx −
∫
�

φ(x) det ∇u(x) dx

= 〈Det ∇u − (det ∇u)Ln, φ〉.
A further justification that μu is a generalization of the distributional determinant
is the following. The motivation of the definition of the distributional determinant
comes from the Laplace formula

det ∇u(x) = 1

n
Div
[
(adj ∇u(x))u(x)

]
, (74)

valid for smooth functions u. Similarly, the motivation for the expression in Defi-
nition 7 comes from the equation

(div g)(u(x)) det ∇u(x) = Div
[
(adj ∇u(x))g(u(x))

]
, (75)

which can be considered a generalized Laplace formula. Analogously, the expres-
sion for Eu( f ) (Definition 12) corresponds to

div y f (x, u(x)) det ∇u(x)+ Dx f (x, u(x)) · cof ∇u(x)

= Div
[
(adj ∇u(x)) f (x, u(x))

]
,

which is a generalization of (74) and (75).
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The main goal of this section is to obtain a characterization of the support of
μu analogous to the characterization of the support of the singular part of the dis-
tributional determinant due to Müller and Spector [24, Sect. 8] for the case of
cavitation. In our case, this involves being able to trace the fracture surfaces back
to the reference configuration, that is, to find the singularities of the deformation
that are responsible for the creation of surface.

Definition 15. Let u : � → R
n be approximately differentiable in almost all

�, one-to-one almost everywhere, and such that det ∇u(x) �= 0 for almost every
x ∈ �. Assume cof ∇u ∈ L1

loc(�,R
n×n) and 0 /∈ �̄. Consider the functions

(u−1)+ and (u−1)− of Lemma 5. For every Borel subset E of �, define

μ+
u (E) := Hn−1

(
{ y ∈ �I (u) : (u−1)+( y) ∈ E}

)
,

μ−
u (E) := Hn−1

(
{ y ∈ �(u) : (u−1)−( y) ∈ E}

)
.

It is obvious that μ+
u and μ−

u are Borel measures. Of course, the notation μ±
u

does not refer to the positive (or negative) part of the measure μu.
The following result is the local counterpart of Theorem 3.

Proposition 7. Let u : � → R
n be approximately differentiable in almost all �,

one-to-one almost everywhere, and such that det ∇u > 0 almost everywhere and
cof ∇u ∈ L1

loc(�,R
n×n). Assume E(u) < ∞ and 0 /∈ �̄. Then, μu = μ+

u + μ−
u ,

and for every U ∈ Uu,

μu(U ) = Hn−1(�C (u,U ))+ 2Hn−1(�I (u,U )).

Proof. By Theorem 3, the measures Hn−1 �I (u) and Hn−1 �(u) are finite.
It then follows that μ+

u and μ−
u are finite positive Radon measures. Therefore, the

proof of the identity μu = μ+
u + μ−

u will be finished as soon as we show that
μu(U ) = μ+

u (U )+ μ−
u (U ) for every open set U ⊂ �.

Let U be an open subset of�, and let A, B1 and B2 be defined as in Theorem 4.
By Proposition 5(v), the sets A, B1, B2 and �I (u,U ) are disjoint, and

μ+
u (U ) = Hn−1(B2)+ Hn−1(�I (u,U )),

μ−
u (U ) = Hn−1(A)+ Hn−1(B1)+ Hn−1(�I (u,U )).

On the other hand, by Theorem 3 we have that for any f ∈ C∞
c (U × R

n,Rn),

Eu( f ) =
[∫

A
+
∫

B1

]
f ((u−1)−( y), y) · νu−1( y) dHn−1( y)

−
∫

B2

f ((u−1)+( y), y) · νu−1( y) dHn−1( y)

+
∫
�I (u,U )

[ f ((u−1)−( y), y)− f ((u−1)+( y), y)] · νu−1( y) dHn−1( y).

As (u−1)−( y) �= (u−1)+( y) for every y ∈ �I (u,U ), arguing as in the proof of
Theorem 3 we can conclude that

μu(U ) = Hn−1(A)+ Hn−1(B1)+ Hn−1(B2)+ 2Hn−1(�I (u,U )).

This shows that μu = μ+
u + μ−

u .
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Finally, if, in addition, U ∈ Uu then, by (68),

Hn−1(A)+ Hn−1(B1)+ Hn−1(B2) = Hn−1(�C (u,U )),

which concludes the proof. ��
Definition 16. Let u : � → R

n be approximately differentiable in almost all
�, one-to-one almost everywhere, and such that det ∇u(x) �= 0 for almost every
x ∈ �, and cof ∇u ∈ L1

loc(�,R
n×n). Assume 0 /∈ �̄. Consider the functions

(u−1)+ and (u−1)− of Lemma 5. For each U ⊂ �, we define the set

	(u,U ) := U ∩
[
(u−1)+({ y ∈ �I (u) : (u−1)+( y) ∈ U or (u−1)−( y) ∈ U })

∪(u−1)−({ y ∈ �I (u) : (u−1)+( y) ∈ U or (u−1)−( y) ∈ U })
∪(u−1)−({ y ∈ �V (u) : (u−1)−( y) ∈ U })

]
.

The following theorem, which is the main result of this section, shows that
	(u,U ) corresponds to the set in the reference configuration responsible for the
surface created in U by u.

Theorem 5. Let u : � → R
n be approximately differentiable in almost all �,

one-to-one almost everywhere, and such that det ∇u > 0 almost everywhere and
cof ∇u ∈ L1

loc(�,R
n×n). Assume E(u) < ∞ and 0 /∈ �̄. Let U be a Borel subset

of �. Then 	(u,U ) is μu-measurable and μu U = μu 	(u,U ).

Proof. For simplicity, the function (u−1)+ : �I (u) → R
n of Lemma 5 is denoted

by v. Recall that Hn−1 is an outer measure and that v is a Borel function (Lemma 5),
so v−1(U ) is Hn−1-measurable for each Borel subset U of �.

For every E ⊂ � we define μ+
u (E) := Hn−1(v−1(E)). Clearly, μ+

u is an
outer measure in � that, restricted to the Borel sets of �, coincides with the Borel
measure μ+

u of Definition 15. Now fix E ⊂ � and a Borel subset U of �. Since

v−1(E ∩	(u,U )) = v−1(E) ∩ v−1(	(u,U )),

v−1(E ∩ U ) = v−1(E) ∩ v−1(U )

and v−1(	(u,U )) = v−1(U ) then

μ+
u (E ∩	(u,U )) = μ+

u (E ∩ U ). (76)

Analogously,

v−1(E\	(u,U ))=v−1(E)\v−1(	(u,U ))=v−1(E)\v−1(U ) = v−1(E\U )

and μ+
u (E\	(u,U )) = μ+

u (E\U ). Therefore, as U is a Borel set and μ+
u is a

Borel measure,

μ+
u (E) = μ+

u (E ∩ U )+ μ+
u (E\U ) = μ+

u (E ∩	(u,U ))+ μ+
u (E\	(u,U )).

This shows that	(u,U ) is μ+
u -measurable, and, by virtue of (76), that μ+

u U =
μ+

u 	(u,U ). Since the same argument is valid for μ−
u , Proposition 7 concludes

the proof. ��
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7. Making the invisible boundary visible

A great part of the present work has been inspired by the example by Mül-
ler and Spector [24, Sect. 11] of a deformation that exhibits the creation and
subsequent filling of cavities. This example (see Fig. 1) motivated the definition of
invisible created surface as a created surface that does not form part of the reduced
boundary of the deformed body. In their example, however, it is clear that the cre-
ated surface may become ‘visible’ (that is, it can be detected as part of the reduced
boundary of the image of the deformation) if we restrict our attention to smaller
parts of the body (for example, to the left half and to the right half of the rectangle
representing the reference configuration) in which the cavitating singularities can
be studied separately. That is the idea behind the main result of this section.

We start by singling out the families of balls that are suitable for our analysis.

Definition 17. Let u : � → R
n be approximately differentiable in almost all �,

and suppose that cof ∇u ∈ L1
loc(�,R

n×n). Consider the measure μu of Defini-
tion 14. For every open set U in �, we define FU as the family of closed balls B
contained in U such that B̊ ∈ Uu and μu(∂B) = 0. We define CU as the set of
families B ⊂ FU of balls such that A ∩ B = ∅ for every A, B ∈ B with A �= B.

Of course, every element of CU is at most countable. Note that, thanks to
Lemma 2, if E(u) < ∞ then for each x ∈ U , we have that almost every r ∈
(0, dist(x, ∂U )) satisfies B̄(x, r) ∈ FU .

The following is the main result of this section.

Theorem 6. Let u : � → R
n be approximately differentiable in almost all �,

one-to-one almost everywhere, and such that det ∇u > 0 almost everywhere and
cof ∇u ∈ L1

loc(�,R
n×n). Assume E(u) < ∞ and 0 /∈ �̄. Let U be a nonempty

open subset of �. Then

μu(U ) = sup
B∈CU

∑
B∈B

Hn−1(�C (u, B̊))

This representation formula for μu is of a different nature to that of Proposi-
tion 7. The conclusion of Theorem 6 states that the area of the surface created in
U can be calculated by summing the area of the created (visible) surface of ‘good’
disjoint balls covering U . This formula explains the title of this section: the invisible
surface becomes visible when the deformation is restricted to suitable balls. The
rest of the section is devoted to the proof of Theorem 6.

Lemma 9. Let u : � → R
n be approximately differentiable in almost all �,

one-to-one almost everywhere, and such that det ∇u > 0 almost everywhere and
cof ∇u ∈ L1

loc(�,R
n×n). Assume E(u) < ∞ and 0 /∈ �̄. Let B ∈ CU satisfy

μu(U ) = μu(
⋃B). Then there exists B′ ∈ CU such that

i) for every B ′ ∈ B′ there exists a unique B ∈ B such that B ′ ⊂ B,
ii) μu(U ) = μu(

⋃B′), and
iii) Hn−1(

⋃
B′∈B′ �I (u, B̊ ′)) � 3

4Hn−1(
⋃

B∈B �I (u, B̊)).
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Proof. Let � :=⋃B∈B �I (u, B̊). Then, thanks to Definition 9(a), for each y ∈ �
there exists r = r( y) > 0 such that r < 1

3 |(u−1)+( y)− (u−1)−( y)| and the balls
B((u−1)±( y), r) are each contained in a ball of the family B.

By the Lebesgue–Besicovitch differentiation theorem (see, for example, [5,
Cor. 2.23]), both (u−1)±|� are approximately continuous with respect to Hn−1 �

at Hn−1-almost every point in �. In particular, for Hn−1-almost every y0 ∈ � and
every r > 0, there exists ρ0 > 0 such that for every 0 < ρ < ρ0,

Hn−1({ y ∈ � ∩ B( y0, ρ) : (u−1)±( y) ∈ B((u−1)±( y0), r)})
Hn−1(� ∩ B( y0, ρ))

� 3

4
,

and, hence,

Hn−1
({

y ∈ � ∩ B( y0, ρ) : (u−1)+( y) ∈ B((u−1)+( y0), r) and

(u−1)−( y) ∈ B((u−1)+( y0), r)
})

� 1

2
Hn−1(� ∩ B( y0, ρ)).

We then apply Besicovitch’s covering theorem (see, for example, [28, Th. 1.3.6])
to Hn−1 � to obtain a finite number M of disjoint balls B( y j , ρ j ), for j =
1, . . . ,M , such that

M∑
j=1

Hn−1(� ∩ B( y j , ρ j )) � 1

2
Hn−1(�), (77)

and that for each 1 � j � M ,

Hn−1(� j ) � 1

2
Hn−1(� ∩ B( y j , ρ j )), (78)

where

� j := { y∈� ∩ B( y j , ρ j ) : (u−1)+( y)∈ B(x+
j , r j ) and (u−1)−( y)∈ B(x−

j , r j )},
x±

j := (u−1)±( y j ) and r j := r( y j ).

Let A := ⋃B∈B	(u, B̊). Apply the Besicovitch covering theorem to μu and
a fine covering of A with balls in FU of diameter less than min1� j�M r j , each
contained in a ball in B: we thus obtain a B′ ∈ CU such that every B ′ ∈ B′ has a
diameter less than min1� j�M r j and is contained in a ball in B, and

μu

(
A\
⋃

B′) = 0. (79)

In particular, i) is satisfied. As the family B is disjoint and 	(u, V ) ⊂ V for any
open set V ⊂ �, then the sets 	(u, B̊) are disjoint for B ∈ B. Therefore, by
Theorem 5 and Definition 17 we have that

μu(A) =
∑
B∈B

μu(	(u, B̊)) =
∑
B∈B

μu(B) = μu

(⋃
B
)

= μu(U ).
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With (79) we obtain that

μu(U ) = μu

(
A ∩
⋃

B′) � μu

(⋃
B′) � μu(U ),

so ii) is satisfied.
Now we prove that the sets

� j , 1 � j � M; �I (u, B̊ ′), B ′ ∈ B′ (80)

are disjoint. By construction, the sets � j are disjoint for 1 � j � M , and so
are the sets �I (u, B̊ ′) for B ′ ∈ B′. Suppose, looking for a contradiction, that
x+ = (u−1)+( y) ∈ B(x+

j , r j ) and x− = (u−1)−( y) ∈ B(x−
j , r j ) for some

y ∈ �I (u, B̊ ′), some 1 � j � M , and some B ′ ∈ B′. Then

3r j < |x+
j − x−

j | � |x+
j − x+| + |x+ − x−| + |x− − x−

j | � 2r j + min
1�i�M

ri ,

a contradiction.
As the sets in (80) are disjoint and contained in � [because of i], we have that

M∑
j=1

Hn−1(� j )+ Hn−1

( ⋃
B′∈B′

�I (u, B̊ ′)
)

� Hn−1(�).

The proof is concluded by noting that
∑M

j=1 Hn−1(� j ) � 1
4Hn−1(�), thanks to

(77) and (78). ��
Proof (of Theorem 6). Let B ∈ CU . By Proposition 7, Hn−1(�C (u, B̊)) � μu(B)
for every B ∈ B. Hence

∑
B∈B

Hn−1(�C (u, B̊)) �
∑
B∈B

μu(B) = μu

(⋃
B
)

� μu(U ).

We now prove that for every δ > 0 there is a B ∈ CU such that
∑
B∈B

Hn−1(�C (u, B̊)) � μu(U )− 2δ.

Since, by Proposition 7,μu(B) = μu(B̊) = Hn−1(�C (u, B̊))+2Hn−1(�I (u, B̊))
for all B ∈ B and all B ∈ CU , it suffices to find a B ∈ CU such that μu(U ) =
μu(
⋃B) and

∑
B∈B

Hn−1(�I (u, B̊)) � δ.

That B will be found by an iterative process. First, obtain a B0 ∈ CU such that
μu(U ) = μu(

⋃B0) by applying the Besicovitch theorem to μu. Then apply
Lemma 9 to B0 to obtain a B1 ∈ CU such that μu(U ) = μu(

⋃B1) and

Hn−1

⎛
⎝ ⋃

B∈B1

�I (u, B̊)

⎞
⎠ � 3

4
Hn−1

⎛
⎝ ⋃

B∈B0

�I (u, B̊)

⎞
⎠ .
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By induction, for each N ∈ N, we obtain a BN ∈ CU such thatμu(U ) = μu(
⋃BN )

and

Hn−1

⎛
⎝ ⋃

B∈BN

�I (u, B̊)

⎞
⎠ �

(
3

4

)N

Hn−1

⎛
⎝ ⋃

B∈B0

�I (u, B̊)

⎞
⎠ .

Choose, then, N ∈ N such that

(
3

4

)N

Hn−1

⎛
⎝ ⋃

B∈B0

�I (u, B̊)

⎞
⎠ � δ,

and BN as the desired family. This completes the proof. ��
Note that we have actually proved that

inf
B∈CU

Hn−1

(
(�C (u,U ) ∪ �I (u,U ))\

⋃
B∈B

�C (u, B̊)

)
= 0.

8. Equilibrium equations for the surface energy

In [18] we proposed a model for cavitation in nonlinear elasticity based on the
minimization of

I1(u) :=
∫
�

W (Du(x)) dx + λ1E(u), u ∈ A1,

A1 := {u ∈ W 1,p(�,Rn) : det Du > 0 almost everywhere,

u is one-to-one almost everywhere, u|�D = b1},
and a model for cavitation and fracture based on the minimization of

I2(u) :=
∫
�

W (∇u(x)) dx + λ1E(u)+ λ2Hn−1(Ju)

+λ2Hn−1({x ∈ �D : b+
2 (x) �= u(x)}), u ∈ A2,

A2 := {u ∈ SBV (�,Rn) : ∇u ∈ L p(�,Rn×n), det ∇u > 0 almost everywhere,

u is one-to-one almost everywhere, u(x) ∈ K for almost every x ∈ �} .
The equality on �D is in the sense of traces; see Theorem 7 below or [18, Thms. 4
and 5] for the precise assumptions. In this final section we obtain, as an application
of Theorem 3, the equilibrium equations of those variational models.

As is well known, the invertibility and orientation-preserving constraints make
it impossible to carry out the standard proof of the Euler–Lagrange equations in
nonlinear elasticity. Nevertheless, it was observed by Ball [8] that one can still do
outer variations of the form hs ◦ u and inner variations of the form u ◦ hs , where
{hs}s∈R is a family of diffeomorphisms such that h0 = id.

The equilibrium equations involve the operator divM of tangential divergence
over a countably Hn−1 rectifiable set M , the definition of which can be found, for
example, in [5, Sect. 7.3].
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Theorem 7. Let � be a bounded open set of R
n with a Lipschitz boundary. Let

�D ⊂ ∂� be a countably Hn−1 rectifiable set, let K ⊂ R
n be compact, and let

λ1, λ2 > 0. Let b1 : �D → R
n a measurable map, and b2 ∈ SBV (�′,Rn), where

�′ ⊂ R
n is an open set containing � ∪ �D. Denote by b+

2 the lateral trace of b2
on �D coming from�′\(�∪�D). Let W : {F ∈ R

n×n : det F > 0} → R be a C1

function such that there exists c > 0 satisfying
∣∣∣DW (F)FT

∣∣∣ � c (W (F)+ 1) for all F ∈ R
n×n with det F > 0.

Let p ∈ [1,∞). If u is a minimizer of I1 in A1, or a minimizer of I2 in A2 then,
for all ϕ ∈ C1(Rn,Rn) ∩ W 1,∞(Rn,Rn) such that ϕ ◦ u|�D = 0 in the sense of
traces, we have that
∫
�

[
DW (∇u(x))∇u(x)T

]
· Dϕ(u(x)) dx +

∫
�V (u)

div�V (u) ϕ( y) dHn−1( y)

+2
∫
�I (u)

div�I (u) ϕ( y) dHn−1( y) = 0.

Proof. We will do the proof for I2, the proof for I1 being analogous.
Let u be a minimizer of I2 in A2, and let ϕ ∈ C1(Rn,Rn) ∩ W 1,∞(Rn,Rn)

satisfy that ϕ ◦ u|�D = 0 in the sense of traces. It is clear that, for all τ ∈ R with |τ |
small, the function id + τϕ is a C1 diffeomorphism from R

n onto itself such that
det D(id + τϕ) > 0. Thanks to the chain rule for BV functions (see, for example,
[5, Th. 3.96]), this implies that if u ∈ A2 then (id + τϕ) ◦ u ∈ A2. It is also clear
that

{
x ∈ �D : b+

2 (x) �= (id + τϕ)(u(x))
} = {x ∈ �D : b+

2 (x) �= u(x)
}
.

Next we prove that

�I ((id + τϕ) ◦ u) = (id + τϕ) (�I (u)) , �V ((id + τϕ) ◦ u) = (id + τϕ) (�V (u)) .

(81)

Let h : � → R
n be a C1 diffeomorphism from R

n onto itself. In order to prove
(81), it suffices to show that h(�I (u)) ⊂ �I (h ◦ u) and h(�V (u)) ⊂ �V (h ◦ u).
First, it is easy to check that

imG(h ◦ u,�) = h (imG(u,�)) = imG(h, imG(u,�)).

This and Definition 8 imply that (h ◦ u)−1 = u−1 ◦ h−1. As a consequence, and
using also Lemma 1, we find that J(h◦u)−1 = h(Ju−1). Moreover, with this formula
and Lemma 1, we can define in J(h◦u)−1 a natural orientation induced from Ju−1 .
With that orientation, the lateral traces satisfy ((h ◦ u)−1)± = (u−1)± ◦ h−1. This
shows that h(�I (u)) ⊂ �I (h ◦ u).

Now, checking that h(�V (u)) ⊂ �V (h◦u) is a routine application of Lemma 1
and the equalities (h ◦ u)−1 = u−1 ◦ h−1 and ((h ◦ u)−1)− = (u−1)− ◦ h−1. Thus,
(81) is proved. Moreover, it is also immediate that Ju = Jh◦u.
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As u is a minimizer of I2 in A2, and (id + τϕ) ◦ u ∈ A2 for all τ ∈ R with |τ |
small, we have that

d

dτ
I2((id + τϕ) ◦ u)

∣∣∣∣
τ=0

= 0,

provided that the left-hand side exists, which will be proved in the next paragraph.
It was shown by Ball [8] (see also [9,24]) that

d

dτ

∫
�

W (∇((id + τϕ) ◦ u)) dx

∣∣∣∣
τ=0

=
∫
�

[
DW (∇u)∇uT

]
· Dϕ(u) dx.

Now, using (81) and the formula for the first variation of the area (see, for example,
[5, Th. 7.31]), we have that

d

dτ
Hn−1(�I ((id + τϕ) ◦ u))

∣∣∣∣
τ=0

=
∫
�I (u)

div�I (u) ϕ dHn−1( y),

d

dτ
Hn−1(�V ((id + τϕ) ◦ u))

∣∣∣∣
τ=0

=
∫
�V (u)

div�V (u) ϕ dHn−1( y).

In addition, we obviously have

d

dτ
Hn−1 ({x ∈ �D : b+

2 (x) �= (id + τϕ)(u(x))})
∣∣∣∣
τ=0

= 0,

d

dτ
Hn−1(J(id+τϕ)◦u)

∣∣∣∣
τ=0

= 0.

The proof is concluded by using Proposition 5 and Theorem 3. ��
In the proof of Theorem 7 we have worked with outer variations. We could have

worked with inner variations, too, but they provide no information regarding the
term E(u). Indeed, if ϕ ∈ C1

c (�,R
n) and |τ | is small, then the map θτ := id + τϕ

is a C1 diffeomorphism from � onto itself. By virtue of the the chain rule, for
each i = 1, 2, if u ∈ Ai then u ◦ θτ ∈ Ai and Eu◦θτ ( f ) = Eu( f τ ), where for
each f ∈ C1

c (� × R
n,Rn), the function f τ ∈ C1

c (� × R
n,Rn) is defined as

f τ (x, y) := f (θ−1
τ (x), y). It then follows that E(u ◦ θτ ) = E(u). Therefore, E is

invariant under this kind of variation.
It is instructive to notice the similarities of the equilibrium equations of

Theorem 7 to those of the model of Müller and Spector [24, Sect. 6]. As
explained in [18], the term E(u) in the model of Theorem 7 is the counterpart of
the term Per imG(u,�) in the model of [24].
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16. Giaquinta, M., Modica, G., Souček, J.: Cartesian Currents in the Calculus of Vari-

ations, vol. I. Springer, Berlin, 1998
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