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Abstract

A simplified model for the energy of the magnetization of a thin ferromag-
netic film gives rise to a version of the theory of Ginzburg–Landau vortices for
sphere-valued maps. In particular, we have the development of vortices as a certain
parameter tends to 0. The dynamics of the magnetization are ruled by the Landau–
Lifshitz–Gilbert equation, which combines characteristic properties of a nonlinear
Schrödinger equation and a gradient flow. This paper studies the motion of the
vortex centers under this evolution equation.

1. Introduction

Let Ω ⊂ R
2 be an open set. For ε > 0, we study the functionals

Eε(m) = 1

2

∫
Ω

(
|∇m|2 + m2

3

ε2

)
dx,

defined on the space H1(Ω; S2), which consists of all maps m in the Sobolev space
H1(Ω; R

3) satisfying the constraint |m| = 1 almost everywhere. We interpret this
functional as a model for the energy associated with the magnetization of a ferro-
magnetic sample in the shape of a thin film. Section 7 explains how the model is
obtained from the theory of micromagnetics.
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The dynamics of the magnetization are described by the Landau–Lifshitz–
Gilbert equation. For the energy functional Eε , this equation takes the form

∂m
∂t

+ m ×
(
Δm − m3

ε2 e3

)
+ αεm ×

(
m ×

(
Δm − m3

ε2 e3

))
= 0

in Ω × (0,∞), (1)

where e3 = (0, 0, 1), the symbol × denotes the vector product in R
3, and αε > 0

is a constant. Note that the expression Δm − m3
ε2 e3 in this equation is minus the

L2-gradient of Eε . Writing

f ε(m) = Δm + |∇m|2m − 1

ε2

(
m3e3 − m2

3m
)

for its orthogonal projection onto the tangent space of the unit sphere S2, we can
rewrite the Landau–Lifshitz–Gilbert equation as

∂m
∂t

= αε f ε(m) − m × f ε(m) in Ω × (0,∞). (2)

More details about this equation are given in Section 7.
In this paper we study the asymptotic behavior of Equation (2) as ε tends to 0.

In this context, we can first observe a similarity between the functionals Eε and the
Ginzburg–Landau functionals

Fε(u) =
∫
Ω

(
1

2
|∇u|2 + 1

4ε2 (1 − |u|2)2
)

dx, u ∈ H1(Ω; C),

which have a certain relevance in superconductivity and the theory of superfluids
and which have been studied in great detail since the seminal work of Bethuel,
Brezis, and Hélein [5]. Indeed, in both cases we have the sum of the Dirichlet
energy and a lower order term, and the latter can be thought of as a penalizing term
that favors values of m or u close to a unit circle. Moreover, it was shown by André
and Shafrir [2], Hang and Lin [17], and Sandier [39] that some of the tools from
the theory of Ginzburg–Landau vortices can be used for the study of minimizers
of Eε . The characteristic feature of the theory is the development of vortices in the
limit and the concentration of the energy at their centers.

The analog of the Landau–Lifshitz–Gilbert equation in the classical Ginzburg–
Landau theory is the equation

∂u

∂t
= (αε − i)

(
Δu + 1

ε2 (1 − |u|2)u
)

in Ω × (0,∞).

When we study the asymptotic behavior of this equation as ε ↘ 0, then we obtain
a time-dependent set of vortices in the limit, and it is natural to ask how they move.
The answer to this question will, of course, depend on the values of αε . Perhaps
the most interesting case is when αε decreases logarithmically with ε. Henceforth,
we consider only the case

αε = 1

log 1
ε

.

In this situation, the problem for the functionals Fε has been studied independently
by Miot [31] and by the authors [26], and a motion law for the vortices was obtained
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in the form of a system of ordinary differential equations. In this paper we derive
a similar result for Equation (2). Although it is related to a study of conservation
laws by Lin and Shatah [29] for the undamped problem, this is the first rigorous
result of this type for the Landau–Lifshitz–Gilbert equation.

Before we can give a rigorous statement of the main result, we need to describe
the conditions under which we study the equation. It is also convenient to introduce
some notation at this point.

Throughout the paper, we assume that Ω is bounded and simply connected,
and its boundary ∂Ω is smooth. We fix a smooth map g : ∂Ω → S1 × {0}, which
we will use to prescribe the boundary data. Since ∂Ω can be identified with S1, the
map g has a well-defined degree d, and we assume that d � 1.

It will often be necessary to decompose a given map m : Ω → S2 into its pro-
jection onto R

2×{0} and its third component. In this case, the notation m = (m,m3)

is useful, where m = (m1,m2). We consider a number of quantities associated to
m, among them the energy density

eε(m) = 1

2
|∇m|2 + m2

3

2ε2

and the magnetic vorticity

ω(m) =
〈
m,

∂m
∂x1

× ∂m
∂x2

〉
.

The notation 〈 · , · 〉 stands for the scalar product in R
3. We write ( · , · ) for the

scalar product in R
2 when it is identified with the subspace R

2 × {0} of the target
space R

3, whereas we use a dot for the scalar product in the domain. Whenever it
is convenient, we identify R

2 with the complex plane C. Thus, the next quantity
that we define,

j (m) = (im,∇m),

could also be represented as the third component of m × ∇m. Finally, we consider
the Jacobian

J (m) = 1

2
curl j (m) = ∂m1

∂x1

∂m2

∂x2
− ∂m1

∂x2

∂m2

∂x1
.

In the classical theory of Ginzburg–Landau vortices (for the functionals Fε), the
corresponding energy density or the Jacobian J (u) can be used to identify the vor-
tices. In the situation that we study here, the vorticity ω(m) takes the place of the
Jacobian. Nevertheless, it is still useful to consider J (m), especially when we work
with the projection of m onto R

2 × {0}.
Note that the vorticity ω(m) is also a geometric quantity; indeed it can be

regarded as the Jacobian of m as a map into S2. Let H2 denote the two-dimensional
Hausdorff measure and for y ∈ S2, let N ( y; m) be the multiplicity function that
counts the number of points in the preimage m−1({ y}), with a positive or negative
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sign depending on whether m preserves or reverses the orientation near y. Then we
have ∫

Ω

ω(m) dx =
∫

S2
N ( y; m) dH2( y)

by the area formula. If m is smooth, then up to a multiple of 4π this number depends
only on the boundary values of m by standard results from degree theory.

We are interested in a family of maps mε ∈ H1(Ω; S2) that satisfy the Dirichlet
boundary conditions mε |∂Ω = g. Moreover, we fix a constant C0 and we require
that

Eε(mε) � πd log
1

ε
+ C0.

In view of the standard estimates in the theory of Ginzburg–Landau vortices [5,17],
this means that the energy of mε differs from the least possible energy for these
boundary data at most by a fixed constant. The reasons for working with Dirichlet
boundary data are mostly technical, although there is some justification for this on
physical grounds (discussed in more detail in Section 7). The advantage of Dirichlet
boundary conditions is that they permit rigorous results without too many technical-
ities. We expect, however, that many of our tools will be useful under different con-
ditions, even though it will be necessary to combine them with further arguments.

Under the above conditions, we typically expect, at least for some subsequence,
a convergence of the renormalized energy densities αεeε(mε) and the vorticities
ω(mε) to a weighted sum of Dirac measures located at the vortex centers. Given a
point a ∈ Ω , we write δa for the Dirac measure centered at a. If we have a set of
d points a1, . . . , ad ∈ Ω , then we write a = (a1, . . . , ad) ∈ Ωd and we use the
notation

δa =
d∑

�=1

δa�
.

Then the typical convergence for the energy density is

αεeε(mε) → πδa,

and for the vorticity we expect something similar, for example

ω(mε) → 2πδa,

in the sense of distributions in Ω , where a ∈ Ωd satisfies ak 
= a� for k 
= �.
Thus we have vortices at a1, . . . , ad , each of degree 1. We do not claim that the
limits always exist, but it is useful to imagine this situation as a motivation for the
next definitions. We will make some rigorous statements about the convergence of
αεeε(mε) and ω(mε) later.

When we examine how the energy behaves as ε ↘ 0, it is convenient to split it
into several parts. The vortices give rise to an energy of πd log 1

ε
. If we define

Iε = inf

{∫
B1(0)

eε(m) dx : m(x) = (x, 0) on ∂B1(0)

}
,
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then it is easily verified that the quantity Iε − π log 1
ε

is non-decreasing in ε, and
therefore the limit

γ = lim
ε↘0

(
Iε − π log

1

ε

)

exists. This is the energy of a vortex core, and as we have d vortices, we obtain the
energy dγ . The vortex positions give rise to the so-called reduced or renormalized
energy, given by a function W that depends only on a1, . . . , ad . In order to define
W , we consider the unique map m∗( · ; a) : Ω\{a1, . . . , ad} → S1 × {0} such that

m∗(z; a) = eiθ(z)
d∏

�=1

z − a�

|z − a�| (3)

for a function θ ∈ C∞(Ω) with Δθ = 0 in Ω and such that m∗|∂Ω = g. We define

Ωr (a) = Ω\
d⋃

�=1

Br (a�)

and

W (a) = lim
r↘0

(
1

2

∫
Ωr (a)

|∇m∗(x; a)|2 dx − πd log
1

r

)
.

The sum of these three energy contributions,

Wε(a) = πd log
1

ε
+ dγ + W (a),

gives asymptotically the energy that is necessary to develop vortices at a1, . . . , ad ,
as we will see later. Accordingly, the difference between the actual energy and this
quantity,

Dε(m; a) = Eε(m) − Wε(a),

is called the energy excess.
We now consider Equation (2) with Dirichlet boundary conditions given by g

and with initial data m0
ε ∈ C∞(Ω; S2) such that m0

ε |∂Ω = g and

Eε

(
m0

ε

)
� πd log

1

ε
+ C0.

Moreover, we assume that there exists an a0 ∈ Ωd with a0
k 
= a0

� for k 
= � such
that

αεeε
(

m0
ε

)
→ πδa0 and ω

(
m0

ε

)
→ 2πδa0

in the sense of distributions, and finally,

lim
ε↘0

Dε

(
m0

ε; a0
)

= 0.
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The last condition means that the initial data have just enough energy to develop
the vortices at the points a0

1 , . . . , a0
d .

It is not immediately obvious that initial data with these properties exist, but
they can be constructed with known arguments, going back to Bethuel, Brezis,
and Hélein [5, Lemma VIII.1]. The method has been adapted to the S2-target case
by Hang and Lin [17, Theorem 4.2], and arguments for a more general situation
can be found in a paper by Jerrard and Spirn [21, Lemma 14].

We claim that the system of ordinary differential equations

π(1 + 2i)a′
� = − ∂

∂a�

W (a), � = 1, . . . , d, (4)

describes the motion of the vortices. It follows from the theory of Ginzburg–Landau
vortices [5] that W (a) → ∞ if either |ak −a�| → 0 for k 
= � or dist(a�, ∂Ω) → 0.
Since W is a Lyapunov function for (4), a solution of the initial value problem with
a(0) = a0 exists for all times.

Theorem 1. Let T > 0. There exists a number ε0 > 0 such that for every ε ∈ (0, ε0],
there is a smooth solution mε ∈ C∞(Ω × [0, T ); S2) of (2) with mε( · , 0) = m0

ε

and mε( · , t)|∂Ω = g for every t � 0. Let a ∈ C∞([0,∞);Ωd) be the solution of
(4) with a(0) = a0. Then for every t ∈ [0,∞),

αεeε(mε( · , t)) → πδa(t) and ω(mε( · , t)) → 2πδa(t)

as ε ↘ 0 in the sense of distributions.

The proof of Theorem 1 follows the same strategy as the proofs for the corre-
sponding results for Fε in the aforementioned papers [26,31]. These, in turn, make
use of certain ideas developed originally for the gradient flow

∂u

∂t
= αε

(
Δu + 1

ε2 (1 − |u|2)u
)

and the Gross–Pitaevsky equation

∂u

∂t
= −i

(
Δu + 1

ε2 (1 − |u|2)u
)
,

in particular from Sandier and Serfaty [40,41], Colliander and Jerrard [8,9],
Lin and Xin [30], and Jerrard and Spirn [20,21], in addition to the standard tools
from the theory of Ginzburg–Landau vortices. Equation (2), however, requires some
further analysis, owing mostly to the different geometry of the target (S2 instead
of C). In particular, we have to overcome two difficulties.

1. The curvature of S2 gives rise to the nonlinear term |∇m|2m in the equation.
As a consequence, solutions of (2) are not necessarily smooth, even for a fixed
positive ε. It is only due to the vanishing energy excess that we obtain smooth
solutions in Theorem 1. Thus we cannot use estimates from the theory of Ginz-
burg–Landau vortices that require a gradient bound until singularities have been
ruled out.
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2. The vorticity ω(m) is not globally a curl, in contrast to the Jacobian J (m).
From the technical point of view, this means that it is more difficult to control
the vorticity. It is tempting to try to use standard estimates for J (m) in order to
control ω(m), but the latter contains topological information about the degree
of m as a map into S2 which is not detected by the Jacobian, so this approach is
possible only in special situations. This is a deeper issue that will be discussed
in more detail in Section 4.

In detail, the proof is organized as follows. In Section 2 we prove several
estimates on the blowup of the energy density for maps m with m = g on ∂Ω ,
assuming

Eε(m) � πd log
1

ε
+ C0.

The penalization term
m2

3
ε2 in the energy induces the S2 vector field m to be mostly

planar. Due to the topological constraint on the boundary, this leads to the creation
of d discrete vortices in the planar direction, each of which carries π log 1

ε
energy.

In particular, in Theorem 2 we prove estimates that lead almost immediately to a
subsequence with αεk eεk (mεk ) → πδa , which generalizes the result of Hang and
Lin [17] to non-minimizing sequences. We prove this by embedding the S2-valued
map into R

3 and studying the gradient flow of the relaxed energy density

eε(m) = 1

2
|∇m|2 + m2

3

2ε2 + (1 − |m|2)2

4ε2 .

We can then use machinery from Ginzburg–Landau theory and the harmonic map
heat flow to achieve lower bounds.

Section 3 establishes the compactness and limiting behavior of the vorticity
ω(m). In order to prove this, we first define a modified vorticity, similar to the
modified Jacobian of Alberti et al. [1], which is more concentrated at the site of
“bubbling” of hemispheres and full spheres. The vorticity represents the local area
element of the covering of S2. Since m is mostly planar, the limiting vorticity will
be concentrated at certain points and there is a quantization related to the topolog-
ical degree. At the vortices we naturally have a covering of a hemisphere, which
corresponds to a concentration of the vorticity of 2π . We are able to rule out the
formation of extra bubbles, due to the well-preparedness of the initial data, since
each full cover of S2 carries energy on the order of at least 4π . The vorticity is then
shown to converge to 2πδa .

Section 4 proves that for sequences of solutions to the Landau–Lifshitz–Gilbert
equations, there exists a set of d curves a�(t) ∈ H1([0, T ];Ω) such that the vortic-
ity and the energy concentrate along a�(t). We also prove a crucial kinetic energy
lower bound, which shows that the kinetic energy of the vortex paths is bounded
by the kinetic energy of m in the limit, namely

π

d∑
�=1

∫ T

0

∣∣a′
�

∣∣2 dt � lim inf
k→∞

(
αεk

∫ T

0

∫
Ω

∣∣∣∣∂mεk

∂t

∣∣∣∣
2

dx dt

)
.
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Section 5 contains the last technical tool needed for the proof. We establish a
measure of the strong H1-convergence of m to m∗ = m∗( · ; a) away from the
vortices. In particular we show that

∫
Ωr (a)

(
ẽε(m) + 1

4

∣∣∣∣ j (m)

|m| − j (m∗)
∣∣∣∣
2
)

dx � Dε(m; a) + o(1)

as ε ↘ 0, where

ẽ(m) = 1

2
|∇|m||2 + 1

2
|∇m3|2 + m2

3

2ε2 .

The energy excess can be controlled by energy conservation and the well-prepared-
ness of the initial data.

In order to understand where the vortices move as time evolves, we look at the
conservation laws. We have the conservation of vorticity

∂

∂t
ω(m) = curl

〈
f ε(m),∇m

〉 + αε curl
〈
m × f ε(m),∇m

〉
(5)

and the conservation of energy

∂

∂t
eε(m) = αε div

〈
f ε(m),∇m

〉 − div
〈
m × f ε(m),∇m

〉 − αε | f ε(m)|2. (6)

Since both αεeε(mε) and ω(mε) converge to delta functions, we can track the
motion of the concentrations by testing against either measure with a test function
ϕ(x) = xχ(x), where χ is a smoothed step function at the vortex center. Both (5)
and (6) contain a difficult term

〈
m × f ε(m),∇m

〉
. We circumvent this difficulty by

considering a combination of both conservation laws simultaneously and thereby
achieving a partial cancellation of the difficult terms. We then compare the vortex
paths a with the solutions â of the system of ordinary differential equations (4).
We can use the difference |a − â| to control the growth of Dε(mε; a). On the other
hand, using the estimates from Section 5 we obtain a bound for |a′ − â′| in terms of
the energy excess. An argument involving the Gronwall lemma then implies that a
and â coincide.

The final section is independent of the proof of Theorem 1. It gives some expla-
nation of the underlying physical model and interpretations of the results.

2. Estimates for the energy

We first derive some tools that are independent of the Landau–Lifshitz–Gilbert
equation. Instead, they rely mostly on the energy bound

Eε(m) � πd log
1

ε
+ C0 (7)

and in some cases on an L2-control of f ε(m) as well, such as∫
Ω

| f ε(m)|2 dx � C0

ε
. (8)



Ginzburg–Landau Vortices 851

The statements that we prove are reminiscent of results due to André and Shaf-
rir [2], Hang and Lin [17], or Sandier [39], but all of these study minimizers of
the energy. Nevertheless, we can use certain of the ideas from these papers and their
precursors from the theory of Ginzburg–Landau vortices, even though we need to
combine them with further arguments. The approach of Sandier [38,39] may be
an alternative to the methods that we use.

For a ∈ Ωd , we use the notation

ρ(a) = min

{
min
k 
=�

|ak − a�|, 1

2
min

�=1,...,d
dist(a�, ∂Ω)

}
.

We have the following estimates.

Theorem 2. There exist two constants C and ρ0 > 0, and for every R ∈ (0, ρ0]
there exists a constant Γ such that the following holds true. Let ε ∈ (0, 1] and
m ∈ H1(Ω; S2) with m|∂Ω = g and such that (7) is satisfied. Then

∫
Ω

(
|∇m3|2 + m2

3

ε2

)
dx � C. (9)

There exists an a ∈ Ωd with ρ(a) � ρ0 such that
∫
ΩR(a)

eε(m) dx � Γ (10)

and ∣∣∣∣
∫

BR(a�)

eε(m) dx − π log
1

ε

∣∣∣∣ � Γ (11)

for � = 1, . . . , d. Moreover, if (8) is satisfied, then∫
Ω

m2
3|∇m|2 dx � C. (12)

The key for the proof of these inequalities is an idea due to Lin [28]. The strat-
egy is to improve the properties of m using a gradient flow. We first extend Eε to
H1(Ω; R

3) by setting

eε(m) = 1

2
|∇m|2 + m2

3

2ε2 + (1 − |m|2)2

4ε2

and

Eε(m) =
∫
Ω

eε(m) dx .

Then

f #
ε (m) = Δm − 1

ε2 (m3e3 − (1 − |m|2)m)

is minus the L2-gradient of Eε in H1(Ω; R
3).
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Lemma 1. There exists a constant C such that for any m ∈ H1(Ω; S2) satis-
fying m|∂Ω = g and inequality (7), there exists a map M ∈ C∞(Ω; R

3) with
Eε(M) � Eε(m) and |∇ M| � C/ε in Ω , such that

∥∥∥ f #
ε (M)

∥∥∥
L2(Ω)

� C, (13)

and for every η ∈ C∞(Ω),
∫
Ω

η2(eε(m) − eε(M)) dx

� C‖η‖C1(Ω)

(
‖η‖C1(Ω) +

(∫
Ω

η2eε(M) dx

)1/2
)
. (14)

Proof. Consider the gradient flow for Eε in H1(Ω; R
3), which is given by the

equation

∂m̃
∂t

= f #
ε (m̃) in Ω × (0, 1),

with boundary conditions

m̃ = m on Ω × {0},
m̃ = g on ∂Ω × (0, 1).

This problem has a solution m̃ ∈ C∞(Ω × (0, 1]; R
3) with |∇m̃| � C1/ε in Ω ×

[ 1
2 , 1] for a constant C1 that depends only on Ω and g. Moreover,

Eε(m̃( · , τ )) +
∫ τ

0

∫
Ω

∣∣∣∣∂m̃
∂t

∣∣∣∣
2

dx dt = Eε(m)

for every τ ∈ (0, 1). Multiplying the third component of f #
ε (m̃) with m̃3, we derive

the inequality

∂

∂t
m̃2

3 � Δm̃2
3 + 2

ε2 (1 − |m̃|2)m̃2
3.

As 1−|m̃|2 � 0 when m̃2
3 � 1, the maximum principle implies m̃2

3 � 1 inΩ×[0, 1].
Hence

eε(m̃) � 1

2
|∇m̃|2 + 1

2ε2 m̃2
3 + 1

4ε2 (1 − |m̃|2 − m̃2
3)

2

� 1

2
|∇m̃|2 + 1

8ε2 (1 − |m̃|2)2.

Thus, by the theory of Ginzburg–Landau vortices [5, Chapter III], there exists a
constant C2 = C2(Ω, g) with

Eε(m̃( · , t)) � πd log
1

ε
− C2.
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We conclude, in particular, that
∫ 1

0

∫
Ω

∣∣∣∣∂m̃
∂t

∣∣∣∣
2

dx dt � C0 + C2.

Therefore, there exists a number t0 ∈ [ 1
2 , 1] such that the map M(x) = m̃(x, t0)

satisfies (13).
For η ∈ C∞(Ω), we have

d

dt

∫
Ω×{t}

η2eε(m̃) dx = −
∫
Ω×{t}

(
η2

∣∣∣∣∂m̃
∂t

∣∣∣∣
2

+ 2η∇η ·
〈
∂m̃
∂t

,∇m̃
〉)

dx .

Set

φ(t) =
∫
Ω×{t}

η2eε(m̃) dx and ψ(t) =
∫
Ω×{t}

∣∣∣∣∂m̃
∂t

∣∣∣∣
2

dx .

Then we have ‖ψ‖L1(0,1) � C0 + C2 and

|φ′(t)|�‖η‖2
C1(Ω)

ψ(t)+2‖η‖C1(Ω)

√
ψ(t)φ(t)�2‖η‖2

C1(Ω)
ψ(t)+φ(t). (15)

Using the second estimate in (15), we find a constant C3, depending only on Ω , g,
and C0, such that

φ(t) � C3

(
‖η‖2

C1(Ω)
+ φ(t0)

)

for every t ∈ (0, 1). With the first inequality in (15), we then obtain

φ(0) − φ(t0) � ‖η‖2
C1(Ω)

‖ψ‖L1(0,1) + 2‖η‖C1(Ω)

√
‖ψ‖L1(0,1)‖φ‖L1(0,1)

� (C0 + C2)‖η‖2
C1(Ω)

+2
√
(C0 + C2)C3‖η‖C1(Ω)

(
‖η‖2

C1(Ω)
+ φ(t0)

)1/2
.

This finally gives (14). ��
Obviously, the map M constructed here is easier to control than m. For exam-

ple, inequality (13) makes it possible to use an energy quantization result such as
the following.

Lemma 2. Let R ∈ (0, 1] and x0 ∈Ω such thatΩ ∩ BR(x0) is star-shaped. Suppose
that ε ∈ (0, R

2 ] and m ∈ H1(Ω; R
3) with

∫
BR(x0)∩Ω

eε(m) dx � λ log
1

ε

and

R2
∫

BR(x0)∩Ω

| f #
ε (m)|2 dx � λ. (16)

If λ is sufficiently small, then |m(x0)| � 3
4 and |m3(x0)| � 1

4 .
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Proof. Note that
∫ R

0
r
∫

Br (x0)∩Ω

∣∣∣ f #
ε (m)

∣∣∣2 dx dr = 1

2

∫
BR(x0)∩Ω

(R2 − |x − x0|2)
∣∣∣ f #

ε (m)

∣∣∣2 dx .

Hence there exists a radius r ∈ [ε, R] such that

r
∫
∂Br (x0)∩Ω

eε(m) dH1 � C1λ

and

r2
∫

Br (x0)∩Ω

∣∣∣ f #
ε (m)

∣∣∣2 dx � C1αελ

for a universal constant C1.
Let x1 ∈ BR(x0)∩Ω such that BR(x0)∩Ω is star-shaped about x1. As f #

ε (m) ∈
L2(BR(x0)∩Ω; R

3), we have m ∈ H2
loc(BR(x0)∩Ω; R

3). Thus we can compute

div (eε(m)(x − x1) − 〈(x − x1) · ∇m,∇m〉)
= 1

ε2

(
m2

3 + 1

2
(1 − |m|2)2

)
−

〈
(x − x1) · ∇m, f #

ε (m)
〉
.

An integration over Br (x0)∩Ω gives rise to a Pohozaev identity, similarly as in the
classical Ginzburg–Landau theory [5, Chapter III]. Eventually we obtain a universal
constant C2 with

∫
Br (x0)∩Ω

(
m2

3 + (1 − |m|2)2
)

dx � C2λε
2. (17)

Using standard elliptic estimates and (16), and assuming that λ � 1, we find a
constant c, dependent only on Ω , g, and R, such that

osc
Bcε (x0)∩Ω

m � 1

8
. (18)

If λ is sufficiently small, then we immediately obtain the required inequalities from
(17) and (18). ��
Proof of Theorem 2. First note that

eε(m) = 1

2
|∇m|2 + 1

4ε2 (1 − |m|2) + 1

2
|∇m3|2 + m2

3

4ε2 .

We have 1 − |m|2 � (1 − |m|2)2, and the theory of Ginzburg–Landau vortices [5,
Chapter III] gives the inequality

∫
Ω

(
1

2
|∇m|2 + 1

4ε2 (1 − |m|2)
)

dx � πd log
1

ε
− C1

for a constant C1 = C1(Ω, g). Hence we have (9).
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Let M be the map from Lemma 1. With the help of Lemma 2 and with standard
arguments, such as in the book by Bethuel, Brezis, and Hélein [5], we see that
there exist a1, . . . , ad such that ρ(a) � ρ0 = ρ0(Ω, g,C0) and

∫
ΩR(a)

eε(M) dx � πd log
1

R
+ C2

for a constant C2 = C2(Ω, g,C0). Using inequality (14), we can prove (10).
Inequality (11) then follows from standard estimates as well.

If we have (8), then we choose a radius R ∈ [ρ0/2, ρ0] such that∫
∂BR(a�)

eε(m) dH1 � C5 = C5(Ω, g,C0)

for every �. Then we consider the product of the third component of f ε(m) with
m3. An integration by parts gives

∫
BR(a�)

m2
3|∇m|2 dx =

∫
BR(a�)

m3 fε3(m) dx + 1

ε2

∫
BR(a�)

(
m2

3 − m4
3

)
dx

+
∫

BR(a�)

|∇m3|2 dx −
∫
∂BR(a�)

m3
x − a�

|x − a�| · ∇m3 dH1.

We use the Hölder inequality for the first and the last term on the right-hand side,
and then we have estimates for all of the resulting terms. This finally gives (12).

��
Next we examine the functional Dε . We want to show that it does, in fact, give

a measure for the energy exceeding the amount that is needed for the development
of vortices at the points a1, . . . , ad . This is an S2 target version of a result that
is essentially due to Serfaty [43–45]. We will also derive a more quantitative
estimate for Dε in Theorem 4 below.

Proposition 1. For εk ↘ 0, let mk ∈ H1(Ω; S2) with mk |∂Ω = g and

αεk eεk (mk)
∗
⇀ πδa

weakly* in (C0
0 (Ω))∗ for some a ∈ Ωd with ρ(a) > 0. Then

lim inf
k→∞ Dεk (mεk ; a) � 0.

In order to see that Dε truly deserves the name “energy excess”, we would also
have to show that there exists a sequence developing vortices at a1, . . . , ad such
that the reverse inequality holds. This can be done by a rather obvious construction
(see the discussion on page 848). Since this is not needed for the proof of Theorem 1,
we omit the details.

Proof. We may assume that after the choice of a subsequence, there exists a con-
stant C1 such that

Eεk (mk) � dπ log
1

εk
+ C1
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for every k, for otherwise there is nothing to prove. We first replace the given
sequence by a subsequence such that the limit limk→∞ Dεk (mεk ; a) exists.

By a straightforward modification of the theory for the harmonic map heat flow
due to Struwe [47] and Chang [7], the problem

∂m̃k

∂t
= f εk

(m̃k) in Ω × (0,∞),

m̃k = mk on Ω × {0},
m̃k = g on ∂Ω × (0,∞),

has a weak solution m̃k ∈ L∞(0,∞; H1(Ω; S2)) that satisfies the energy
inequality

∫ T

0

∫
Ω

∣∣∣∣∂m̃k

∂t

∣∣∣∣
2

dx dt + Eεk (m̃k( · , T )) � Eεk (mk)

for every k. As in the proof of Lemma 1, we conclude that
∫ ∞

0

∫
Ω

| f εk
(m̃k)|2 dx dt � C2

for a constant C2 that depends only on Ω , g, and C1. We can now choose a sequence
of numbers tk ∈ (0,

√| log εk |) such that the maps m̂k(x) = m̃(x, tk) satisfy the
inequality

∫
Ω

| f εk
(m̂k)|2 dx � C2

√
αεk . (19)

Using Theorem 2, we can select a subsequence such that

αεk eεk (m̂εk )
∗
⇀ πδâ

weakly* in (C0
0 (Ω))∗ for some â ∈ Ωd with ρ(â) > 0.

Let η ∈ W 1,∞(Ω) and set

φk(t) =
(∫

Ω×{t}
η2eεk (m̃εk ) dx

)1/2

.

Then we have φk ∈ BV(0, T ) for every T > 0 and we compute, as in the proof of
Lemma 1,

φ′
k(t) � ‖∇η‖L∞(Ω)

(
2
∫
Ω×{t}

∣∣∣∣∂m̃εk

∂t

∣∣∣∣
2

dx

)1/2

. (20)

Let R > 0. By Theorem 2, we have

lim sup
k→∞

∫
ΩR/2(a)

eεk (mk) dx < ∞.
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Using (20) for a function η with η ≡ 1 in ΩR(a) and η ≡ 0 in Ω\ΩR/2(a), we see
that

lim sup
k→∞

(√
αεk

∫
ΩR(a)

eεk (m̂k) dx

)
< ∞.

We conclude that â = a. Hence we have

lim sup
k→∞

∫
ΩR(a)

eεk (m̂k) dx < ∞

for every R > 0. In particular, we may assume that m̂k converges weakly in
H1

loc(Ω\{a1, . . . , ad}). Using (19) and the third component of the formula

div(m × ∇m) = m × f ε(m) + m3

ε2 m × e3,

we see that the limit is harmonic, thus it must be m∗( · ; a).
Fix R > 0 again. For every k ∈ N there exists a radius rk ∈ [R, 2R] with

∫
∂Brk (a�)

eεk (m̂k) dH1 � C3, � = 1, . . . , d,

for a constant C3 that is independent of k. We may assume that rk → r0, and then
we have

∫
∂Brk (a)

|m̂k − m∗( · ; a)|2 dH1 → 0

as k → ∞. Recalling that m∗ is of the form (3), we conclude that there exists a
function σ : (0,∞) → R with σ → 0 as r ↘ 0 such that

lim inf
k→∞

(∫
Brk (a�)

eεk (m̂k) dx − Iεk/rk

)
� σ(R), � = 1, . . . , d.

Clearly we have

lim inf
k→∞

∫
Ωrk (a)

eεk (m̂k) dx � 1

2

∫
Ωr0 (a)

|∇m∗(x; a)|2 dx .

Letting R → 0, we now obtain the desired inequality. ��
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3. Estimates for the vorticity

The previous results are useful for controlling the energy, but we also have to
find out more about the vorticity. When we work with the energy density, then it is
often convenient to identify it with an element of the dual space of C0

0 (Ω) or possi-

bly C0(Ω). For the vorticity, we use the dual of a smaller space, namely W 1,∞
0 (Ω)

or W 1,∞(Ω). We use the notation Ẇ −1,1(Ω) and W −1,1(Ω), respectively, for these
dual spaces. In particular, we have the norms

‖φ‖Ẇ−1,1(Ω) = sup
{
φ(u) : u ∈ W 1,∞

0 (Ω) with ‖∇u‖L∞(Ω) � 1
}

and

‖ψ‖W−1,1(Ω) = sup
{
ψ(u) : u ∈ W 1,∞(Ω) with ‖u‖W 1,∞(Ω) � 1

}
.

We first prove a compactness property for the vorticity.

Proposition 2. For ε ∈ (0, 1], let mε ∈ H1(Ω; S2) with mε |∂Ω = g and

Eε(mε) � πd log
1

ε
+ C0.

Furthermore, suppose that
∫
Ω

| f ε(mε)|2 dx � C0

ε
.

Then there exist a sequence εk ↘ 0 and a Radon measure μ on Ω such that
ω(mεk ) → μ in W −1,1(Ω).

Proof. Let χ ∈ C∞(R) with χ(s) = s for |s| � 2
3 and χ(s) = 0 for |s| � 1

3 , and
such that χ ′ � 0. For m ∈ H1(Ω; S2) we define the modified vorticity ω′(m) as
follows. Let m′

3 = χ(m3) and

m′ =
(√

1 − (m′
3)

2 m

|m| ,m′
3

)
.

Then ω′(m) = ω(m′). We claim that

ω(m) − ω′(m) = curl

(
(χ(m3) − m3)

j (m)

|m|2
)
. (21)

Before we prove this identity, we explain how it implies the statement of the lemma.
First, we see that there exists a universal constant C1 such that if m|∂Ω = g, then

∣∣∣∣
∫
Ω

η(ω(m) − ω′(m)) dx

∣∣∣∣ � C1ε‖∇η‖L∞(Ω)Eε(m) (22)

for any η ∈ W 1,∞(Ω), using the fact that

|χ(m3) − m3| � |m3|
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and χ(m3) = m3 = 0 on ∂Ω . On the other hand, we have ω′(m) = 0 at any point
where |m3| � 1

3 . Hence there exits another universal constant C2 such that

|ω′(m)| � C2m2
3|∇m|2.

Because of inequality (12) in Theorem 2, we have a sequence εk ↘ 0 and a Radon

measure μ on Ω such that ω′(mεk )
∗
⇀ μ weakly* in (C0(Ω))∗. Since W 1,∞(Ω) is

compactly embedded in C0(Ω), it follows that the convergence also holds strongly
in W −1,1(Ω), and in view of (22), this is sufficient for the proof of the lemma.

It remains to verify (21). We first assume that m ∈ C∞(Ω; S2). Then it suffices
to prove the identity in the set

{
x ∈ Ω : |m3(x)| � 2

3

}
, as both sides of (21) vanish

in its complement. Locally in this set, we can write m in the form

m = (ρeiφ,m3),

where ρ =
√

1 − m2
3, and then we calculate

∇m = ∇m3

(
−m3

ρ
eiφ, 1

)
+ ∇φ(iρeiφ, 0).

Since (
−m3

ρ
eiφ, 1

)
× (iρeiφ, 0) = −m,

we obtain

ω(m) = − curl(m3∇φ) = − curl

(
m3

j (m)

|m|2
)
.

The corresponding calculation for m′ then yields (21) for smooth maps.
If we have only m ∈ H1(Ω; S2), then we use the density of C∞(Ω; S2) in

this space, which has been proved by Schoen and Uhlenbeck [42]. Let m� ∈
C∞(Ω; S2) with m� → m in H1(Ω; R

3). We may assume that for almost every
x ∈ Ω , we have m�(x) → m(x) and ∇m�(x) → ∇m(x), and furthermore,

‖∇m� − ∇m‖2
L2(Ω)

� 2−�.

Then

ψ = 2|∇m|2 + 2
∞∑
�=1

|∇m� − ∇m|2

is a function in L1(Ω). We have |ω(m�)| � ψ for every �, hence by Lebesgue’s
convergence theorem,

ω(m�) → ω(m) in L1(Ω).

Similarly,

ω′(m�) → ω′(m) in L1(Ω).

The quantities on the right-hand side of (21) are easy to control, so passing to the
limit, we conclude that the identity holds for m. ��
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The next lemma will be useful when we want to determine the measure μ from
Proposition 2 in the situation of Theorem 1.

Lemma 3. Suppose that mε ∈ H1(B1(0); S2) and m ∈ H1(B1(0); S2) satisfy

lim sup
ε↘0

(
αε

∫
B1/2(0)

eε(mε) dx +
∫

B1(0)\B1/2(0)
eε(mε) dx

)
< ∞

and mε ⇀ m weakly in H1(B1(0)\B1/2(0); R
3). Then there exist two sequences

εk ↘ 0 and rk ↗ 1 such that

lim
k→∞

∫
Brk (0)

ω(mεk ) dx =
∫

B1(0)
ω(m) dx + 4πL

for some L ∈ Z ∪ {−∞,∞}. If mε ⇀ m weakly in H1(B1(0); R
3), then

lim sup
k→∞

∫
B1(0)

eεk (mεk ) dx � 1

2

∫
B1(0)

|∇m|2 dx + 4π |L|.

Proof. We may assume that we have continuous maps, because we can use a den-
sity argument similar to that in the preceding proof. Note that the assumptions
imply |mε − m|2 → 0 strongly in W 1,1(B1(0)\B1/2(0); R

3).
Choose εk ↘ 0 and let

τk = ‖|mεk − m|2‖1/2
W 1,1(B1(0)\B1/2(0))

.

Then, for every k there exists a radius rk ∈ [1 − √
τk, 1] such that

∫
∂Brk (0)

(
|∇|mεk − m|2| + |mεk − m|2

)
dH1

� 3√
τk

∫
B1(0)\B1/2(0)

(
|∇|mεk − m|2| + |mεk − m|2

)
dx = 3τ 3/2

k

and ∫
∂Brk (0)

(
eεk (mεk ) + |∇m|2

)
dH1

� 3√
τk

∫
B1(0)

(
eεk (mεk ) + |∇m|2

)
dx .

The first inequality means in particular that

lim
k→∞ sup

∂Brk (0)
|mεk − m| = 0.

We define the maps m̂k on Brk+τk (0) by m̂k(x) = mεk (x) for x ∈ Brk (0) and

m̂k(x) = 1

τk

(
(|x | − rk)m

(
rk x

|x |
)

+ (rk + τk − |x |)mεk

(
rk x

|x |
))
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for x ∈ Brk+τk (0)\Brk (0). Then we have

1

2
� |m̂k | � 2

for every sufficiently large k, and therefore the maps

m̃k = m̂k

|m̂k |
are well-defined. Moreover, we have

eεk (m̃k) � C1eεk (m̂k)

for a universal constant C1. We can now estimate∫
Brk+τk (0)\Brk (0)

eεk (m̃k) dx � C2τk

∫
∂Brk (0)

(eεk (mεk ) + |∇m|2) dH1

+C2

τk

∫
∂Brk (0)

|mεk − m|2 dH1 → 0

for another universal constant C2. Hence

lim
k→∞

∫
Brk (0)

ω(mεk ) dx = lim
k→∞

∫
Brk+τk (0)

ω(m̃k) dx

once we have chosen a subsequence such that the limit exists. But of course we
have

m̃k((rk + τk)x) = m(rk x)

for every x ∈ ∂B1(0). Comparing the degrees of the two maps and using the
properties of ω(m) discussed on page 845, we obtain Lk ∈ Z with∫

Brk+τk (0)
ω(m̃k) dx =

∫
Brk (0)

ω(m) dx + 4πLk .

We choose a subsequence such that the last term converges to an expression of the
form 4πL with either L ∈ Z or L = ±∞. The first claim now follows immediately.

To prove the second claim, we note that under the assumption that mε ⇀ m
weakly in H1(B1(0); R

3), we must have m3 = 0 almost everywhere in B1(0). For
β > 0, define

Akβ = {
x ∈ Brk+τk (0) : m̃k3(x) � β

}
.

Then we have
1

2

∫
B1(0)

|∇m|2 dx � lim inf
k→∞

∫
Ω\Akβ

eεk (m̃k) dx .

On the other hand, the area formula gives

1

|Lk | lim inf
β↘0

∫
Akβ

eεk (m̃k) dx � 4π

uniformly in k. Thus we obtain the required inequality. ��
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4. The Landau–Lifshitz–Gilbert equation

We now turn our attention to Equation (2). In this section, we first discuss a
few results concerning the construction of weak solutions and we state some of the
properties of these solutions. Then we examine their behavior as ε ↘ 0 and, in
particular, we derive some preliminary results on the motion of the vortices.

In the existence and regularity theory for the Landau–Lifshitz–Gilbert equation,
most authors use a version of the equation that belongs to the Dirichlet functional.
It is not difficult to see, however, that a functional such as Eε permits the same
arguments. Many of the ideas used in this theory go back to a paper by Struwe
[47] on the gradient flow for the Dirichlet functional on a surface without bound-
ary. His results were extended to domains with boundary by Chang [7]. The same
methods were used for the Landau–Lifshitz–Gilbert equation by Guo and Hong
[16].

We now summarize the results that are relevant in the context of Theorem 1.
Let g and m0

ε be as in the introduction. Then there exist weak solutions

mε ∈
⋂
T>0

H1(Ω × (0, T ); S2)

of (2) with mε( · , 0) = m0
ε and mε( · , t)|∂Ω = g for almost every t � 0. More-

over, for each ε, the map mε is smooth away from finitely many singular points.
For every η ∈ C∞(Ω) with η � 0 and for 0 � t1 � t2, it satisfies the local energy
inequality

αε

1 + α2
ε

∫ t2

t1

∫
Ω

η

∣∣∣∣∂mε

∂t

∣∣∣∣
2

dx dt +
∫
Ω×{t2}

ηeε(mε) dx

�
∫
Ω×{t1}

ηeε(mε) dx −
∫ t2

t1

∫
Ω

∇η ·
〈
∂mε

∂t
,∇mε

〉
dx dt.

In fact, we have equality if t1 and t2 are not separated by a singular time (that is, a
time where mε has one of its finitely many singularities). In particular, Eε(mε( · , t))
is nonincreasing in t .

On the other hand, we have a constant C1, dependent only on Ω and g, such
that

Eε(mε( · , t)) � πd log
1

ε
− C1

for every t > 0, by similar arguments as in the proof of Theorem 2. Therefore,

0 � Eε(m0
ε) − Eε(mε( · , t)) � C1 + C0. (23)

Using this information, we can improve the local energy inequality as follows.
For every ε > 0 there exists a function με on [0,∞) with values in the space of
nonnegative Radon measures on Ω , such that

με(t)(Ω) � C1 + C0
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for every t and

αε

1 + α2
ε

∫ t2

t1

∫
Ω

η

∣∣∣∣∂mε

∂t

∣∣∣∣
2

dx dt +
∫
Ω×{t2}

ηeε(mε) dx +
∫
Ω

η dμε(t2)

=
∫
Ω×{t1}

ηeε(mε) dx+
∫
Ω

η dμε(t1)−
∫ t2

t1

∫
Ω

∇η·
〈
∂mε

∂t
,∇mε

〉
dx dt (24)

for every η ∈ C∞(Ω) and for 0 � t1 � t2. It also follows that there exists a
constant C2, dependent only on Ω , g, and C0, such that

∫ ∞

0

∫
Ω

∣∣∣∣∂mε

∂t

∣∣∣∣
2

dx dt � C2 log
1

ε
. (25)

If (x0, t0) is one of the finitely many singular points for mε , then there exist
xk → x0, rk ↘ 0, and tk ↗ t0 such that the rescaled maps

m̃k(x) = mε(rk x + xk, tk)

converge to a nonconstant harmonic map m̃ : R
2 → S2 with finite Dirichlet energy.

This is usually called a bubble in this context. By results of Sacks and Uhlenbeck
[37] and standard results for harmonic maps [12], the limit map satisfies

1

2

∫
R2

|∇m̃|2 dx = 4π |L| and
∫

R2
ω(m̃) dx = 4πL

for some L ∈ Z\{0}. Hence we have

Eε(mε( · , t0)) + 4π |L| � lim inf
t↗t0

Eε(mε( · , t)).

In particular, if we have T > 0 such that

Eε(m0
ε) − Eε(mε( · , T )) < 4π,

then mε is smooth in Ω × [0, T ]. On the other hand, if we do have a singular point
(x0, t0), then for r > 0, the function

t �→
∫

Br (x0)

ω(mε) dx

will typically jump by a multiple of 4π at t0 (although there may be other bubbles
that neutralize the effect of m̃). This will be accompanied by a change of the topo-
logical degree of mε at this time. If we study Ginzburg–Landau vortices, then it is
important that we control the degree, hence such observations would be relevant
in situations where singularities are possible. Under the conditions of Theorem 1,
however, we can eventually rule them out.

If we have a smooth solution of (2), then we compute the law for the conserva-
tion of energy

∂

∂t
eε(mε) = div

〈
∂mε

∂t
,∇mε

〉
−

〈
∂mε

∂t
, f ε(mε)

〉

= αε div
〈

f ε(mε),∇mε

〉 − div
〈
mε × f ε(mε),∇mε

〉
−αε | f ε(mε)|2 (26)
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and the conservation of vorticity

∂

∂t
ω(mε) = curl

〈
mε × ∂mε

∂t
,∇mε

〉

= curl
〈

f ε(mε),∇mε

〉 + αε curl
〈
mε × f ε(mε),∇mε

〉
. (27)

We use the notation ∇m ⊗ ∇m for the (2 × 2)-matrix with entries

〈
∂m
∂xk

,
∂m
∂x�

〉
.

Then we have

div(∇m ⊗ ∇m) = 〈
f ε(m),∇m

〉 + ∇eε(m).

Thus we can write (27) as

∂

∂t
ω(mε) = curl div(∇mε ⊗ ∇mε) + αε curl

〈
mε × f ε(mε),∇mε

〉
. (28)

The conservation of energy (26) is, of course, equivalent to the energy identity (24)
for smooth solutions. A combination of both laws will be crucial for the proof of
Theorem 1.

Theorem 3. There exist a number T > 0, a sequence εk ↘ 0, and a curve a ∈
H1(0, T ;Ωd) with a(0) = a0, such that for every t ∈ (0, T ),

αεk eεk (mεk ( · , t))
∗
⇀ πδa(t)

weakly* in (C0
0 (Ω))∗ and

ω(mεk ( · , t)) → 2πδa(t), J (mεk ( · , t)) → πδa(t)

in W −1,1(Ω). Moreover,

π

∫ t2

t1
|a′|2 dt � lim inf

k→∞

(
αεk

∫ t2

t1

∫
Ω

∣∣∣∣∂mεk

∂t

∣∣∣∣
2

dx dt

)
(29)

for all t1, t2 ∈ (0, T ) with t1 � t2.

Before we prove this result, we state a technical lemma which will play the role
of the “equipartition of energy” results proved by other authors in similar contexts.
This lemma will be used in the proof of Theorem 3 in order to study the behavior
of matrices of the form ∇m ⊗ ∇m. In the following we write id for the identity
matrix in R

2×2.
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Lemma 4. Let Ψk ∈ L1(Ω; R
2×2) such that |Ψk | � tr Ψk and

tr Ψk
∗
⇀

d∑
�=1

b�δa�

weakly* in (C0
0 (Ω))∗ for some a ∈ Ωd and b1, . . . , b� ∈ [0,∞). Further suppose

that there exist ξk ∈ L1(Ω; R
2) with

lim sup
k→∞

∫
Ω

|ξk | dx � Γ

and such that for all φ ∈ C1
0(Ω; R

2),

∫
Ω

(
1

2
div φ tr Ψk − ∇φ · Ψk − φ · ξk

)
dx → 0

as k → ∞. Then

Ψk
∗
⇀

1

2
id

d∑
�=1

b�δa�

weakly* in (C0
0 (Ω; R

2×2))∗.

Proof. First, note that it suffices to prove this convergence for a subsequence,
as the limit is determined by the assumptions. We may assume that there exist
ψ1, . . . , ψ� ∈ R

2×2 such that

Ψk
∗
⇀

d∑
�=1

ψ�δa�

weakly* in (C0
0 (Ω; R

2×2))∗. We may further assume that there exists a Radon

measure Ξ on Ω with values in R
2 such that ξk

∗
⇀ Ξ weakly* in (C0

0 (Ω; R
2))∗.

Moreover, we have

d∑
�=1

(
1

2
div φ(a�)b� − ∇φ(a�) · ψ�

)
=

∫
Ω

φ · dΞ

for every φ ∈ C1
0(Ω; R

2).
We may assume that ak 
= a� for k 
= �. Choose an arbitrary λ > 0 and arbitrary

Φ1, . . . , Φ� ∈ R
2×2. Then there exists a φ ∈ C1

0(Ω; R
2) such that ∇φ(a�) = Φ�

and such that supΩ |φ| � λ. Thus
∣∣∣∣∣

d∑
�=1

Φ� ·
(

1

2
b�id − ψ�

)∣∣∣∣∣ � Γ λ.

The claim follows immediately when we let λ ↘ 0. ��
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Proof of Theorem 3. Choose T > 0. Let {ηn}n∈N be a sequence that is dense in
C0

0 (Ω), and define

θεn(t) = αε

∫
Ω×{t}

ηneε(mε) dx + αε

∫
Ω

ηn dμε(t).

For any fixed n, this is a family of uniformly equicontinuous functions by (23)–(25),
therefore there exists a sequence εk ↘ 0 such that

θεk n → θn

as k → ∞ uniformly in [0, T ). With a diagonal sequence argument, we even find
a sequence εk ↘ 0 such that this holds for every n. By inequalities (10) and (11)
in Theorem 2, we have some a : [0, T ) → Ωd such that

θn(t) = π

d∑
�=1

ηn(a�(t)).

As the functions θn are continuous, the curves a� must be continuous as well. The
convergence of αεk eεk (mεk ) now follows with a density argument.

Now we use the fact that∫
Ω×{t}

(div φeε(mε) − ∇φ · (∇mε ⊗ ∇mε) − φ · 〈 fε(mε),∇mε〉) dx = 0

for every φ ∈ C1
0(Ω; R

2) and almost every t ∈ (0, T ). This identity can be veri-
fied directly by an integration by parts, as mε is smooth away from finitely many
singular times. By Theorem 2, we have

lim
ε→0

(
αε

ε2

∫
Ω×{t}

m2
ε3 dx

)
= 0.

If we knew that

lim sup
k→∞

(
αεk

∫
Ω×{t}

| f εk
(mεk )|2 dx

)
< ∞ (30)

for almost every t ∈ (0, T ), then we could apply Lemma 4 to

Ψk = αεk ∇mεk ( · , t) ⊗ ∇mεk ( · , t)

and

ξk = αεk

〈
f εk

(mεk ( · , t)),∇mεk ( · , t)
〉
.

Using also Lebesgue’s convergence theorem, we would then obtain

αεk

∫ t2

t1

∫
Ω

η∇mεk ⊗ ∇mεk dx dt → π id
d∑

�=1

∫ t2

t1
η(a�(t)) dt (31)

for every η ∈ C0(Ω × [0, T ]).
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As we have no guarantee that (30) holds true, we need to modify these arguments
somewhat. For γ > 0, define

Akγ =
{

t ∈ (0, T ) : αεk

∫
Ω×{t}

| f εk
(mεk )|2 dx > γ

}
.

Then we have |Akγ | → 0 as γ → ∞ uniformly in k. Now define

Ψ̃kγ (t) =
{
αεk ∇mεk ( · , t) ⊗ ∇mεk ( · , t) if t 
∈ Akγ ,

0 if t ∈ Akγ ,

and

ξ̃kγ (t) =
{
αεk

〈
f εk

( · , t),∇mεk ( · , t)
〉

if t 
∈ Akγ ,

0 if t ∈ Akγ .

For every fixedγ , we can apply Lemma 4 to Ψ̃kγ and ξ̃kγ for almost every t ∈ (0, T ).
Furthermore, we have

Ψ̃kγ → αεk ∇mεk ⊗ mεk as γ → ∞
in L1(Ω × (0, T ); R

2×2) uniformly in k. Thus (31) still follows.
Next we want to prove (29). We first replace {εk} by a subsequence such that

the right-hand side of the inequality becomes a limit. Suppose that t2 − t1 is so
small that there exists a radius R > 0 with

a1(t) ∈ BR(a1(t1)), a2(t), . . . , ad(t) 
∈ B3R(a1(t1))

for t ∈ [t1, t2]. Define

σk(t) = αεk

∫ t

0

∫
B2R(a1(t1))

∣∣∣∣∂mεk

∂t

∣∣∣∣
2

dx dτ.

This gives a sequence that is bounded in BV(0, T ) by (25). After selecting a sub-
sequence, we obtain a function σ ∈ BV(0, T ) such that σk(t) → σ(t) for almost
every t .

Let χ ∈ C∞
0 (B2R(a1(t1))) with χ ≡ 1 in BR(a1(t1)). We test (24) with func-

tions of the form η(x) = χ(x)b · x for b ∈ S1 and we use the convergence proved
earlier, in particular

∫ t0+h

t0

∫
Ω

χ2|b · ∇mεk |2 dx dt

=
∫ t0+h

t0

∫
Ω

χ2(b ⊗ b) · (∇mεk ⊗ ∇mεk ) dx dt → πh

for every t0 ∈ (t1, t2) and every h ∈ (t1 − t0, t2 − t0). We obtain

π |a1(t0 + h) − a1(t0)| �
√
πh|σ(t0 + h) − σ(t0)|.
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Thus

π |a′
1(t)|2 � |σ ′(t)|

almost everywhere in (t1, t2). It is now easy to complete the proof of (29).
To control the Jacobians J (mεk ), we can use the results of Jerrard and Soner

[22] or Sandier and Serfaty [41] together with standard arguments.
Only the convergence of ω(mεk ( · , t)) remains to be proved. Note, first, that

Wε(a) is a continuous function. Hence, if T is small enough, then we have a number
κ > 0 such that

lim sup
ε↘0

Dε(m0
ε; a(t)) � 4π − κ

for all t ∈ [0, T ]. By Proposition 1, this inequality implies

lim sup
k→∞

(
Eεk (m

0
εk
) − Eεk (mεk ( · , t))

)
� 4π − κ.

Provided that k is large enough, we conclude that mεk is smooth in Ω × [0, T ].
Moreover, we have

lim sup
k→∞

Dεk (mεk ( · , t); a(t)) � 4π − κ (32)

as well.
Let Ak be the set of all t ∈ [0, T ) such that

∫
Ω×{t}

∣∣ f εk
(mεk )

∣∣2 dx >
1

εk
.

Then we have |Ak | � C1εk log 1
εk

for some constant C1. Now fix t0 
∈ ⋃∞
k=1 Ak ,

then by Proposition 2, there exists a measure μ(t0) on Ω such that

ω(mεk ( · , t0)) → μ(t0) (33)

in W −1,1(Ω). Let B2r (x0) ⊂ Ω\{a1(t0), . . . , ad(t0)}. Because of Theorem 2, we
know that mεk ( · , t0) is uniformly bounded in H1(Br (x0); R

3). Thus we can apply
Lemma 3 to a rescaled subsequence. Note, however, that the last inequality in this
lemma can hold only for L = 0 owing to (32). (Otherwise it would be easy to
construct maps that violate the inequality of Proposition 1). Hence μ(t0) vanishes
in Br (x0), and we conclude that it is a weighted sum of Dirac measures centered at
a1(t0), . . . , ad(t0). On the other hand, applying Lemma 3 again in a way similar to
that above, but for balls centered at a�(t0), we see that the weights must be multiples
of 2π . That is, there exist β1(t0), . . . , βd(t0) ∈ Z such that

μ(t0) = 2π
d∑

�=1

β�(t0)δa�(t0). (34)
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If t0 ∈ ⋃∞
k=1 Ak , then we proceed as follows. For any k there exists a number

tk ∈ [0, T )\Ak such that |t0 − tk | � 2C1εk log 1
εk

. For η ∈ W 1,∞(Ω) we have
∫
Ω

η(x)(ω(mεk (x, tk)) − ω(mεk (x, t0))) dx

= −
∫ tk

t0

∫
Ω

∇⊥η

〈
mεk × ∂mεk

∂t
,∇mεk

〉
dx dt,

where ∇⊥ = (− ∂
∂x2

, ∂
∂x1

), and the right-hand side is bounded by

C2
√
εk

(
log

1

εk

)3/2

for some constant C2. We have a similar estimate for the energy, and therefore we
can draw similar conclusions as above first for ω(mεk ( · , tk)) and then, also, for
ω(mεk ( · , t0)). In other words, in either case we have a measure μ(t0) of the form
(34) such that (33) holds. We now claim that the functions β� are continuous. Once
this is shown, the proof is complete.

Let t0 ∈ [0, T ) and choose R > 0. If T is small enough, then there exists a
relatively open interval I ⊂ [0, T ) with t0 ∈ I such that a�(t) 
∈ ΩR(a(t0)) for
� = 1, . . . , d. Theorem 2 and (24) then show that

lim sup
k→∞

sup
t∈I

∫
ΩR(a(t0))

eεk (mεk (x, t)) dx < ∞.

If η ∈ C∞
0 (Ω) such that ∇η ≡ 0 in BR(a�(t0)) for � = 1, . . . , d, then it follows

from (28) and (25) that the functions

t �→
∫
Ω×{t}

ηω(mεk ) dx

are uniformly equicontinuous in I . This implies the claim. ��

5. An estimate for the energy excess

For the proof of Theorem 1, we also need a somewhat technical result. Theo-
rem 4 below is the analog of the Γ -stability results proved by Jerrard and Spirn
[21] for a similar purpose. But first we need an S2-target version of results found
in papers by Colliander and Jerrard [9] and by Lin and Xin [30].

Lemma 5. For any λ > 0 there exist ε0 ∈ (0, 1) and ι > 0 which, together, exhibit
the following property. Suppose that ε ∈ (0, ε0] and m ∈ H1(Br (a); S2) with

‖J (m) − πδa‖Ẇ−1,1(Br (a)) � ιr. (35)

Then ∫
Br (a)

eε(m) dx � Iε/r − λ.
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Proof. We may assume that λ � 1 and Br (a) = B1(0). Moreover, it suffices to
consider the case where∫

B1(0)
eε(m) dx � π log

1

ε
+ C1 (36)

for some universal constant C1.
Let r0 ∈ (0, 1

2 ) be a fixed number, the value of which will be determined later
(depending only on λ). We consider the set

P1 =
{
ρ ∈ [r0, 1] : |m| � 1

2
on ∂Bρ(0) and deg(m; ∂Bρ(0)) = 1

}
.

Under the conditions (35) and (36), the results of Jerrard and Spirn [20], especially
Proposition 4.2 and Lemma 4.3, show that whenever ε0 and ι are small enough, we
have ∫

B1/2(0)\Br0 (0)
eε(m) dx � π log

1

2r0
+ C2

and

|P1| � 1 − r0 − C3ι − C3ε log
1

ε

for certain universal constants C2 and C3.
Now define

P2 =
{
ρ ∈ [r0, 1/2] : ρ

∫
∂Bρ(0)

eε(m) dH1 � π + λ

}
.

Then we compute

π log
1

2r0
+ C2 �

∫
[r0,1/2]\P2

∫
∂Bρ(0)

eε(m) dH1 dρ � (π + λ)

∫
[r0,1/2]\P2

dρ

ρ

� (π + λ)

∫ 1/2

r0+|P2|
dρ

ρ
= (π + λ) log

1

2r0 + 2|P2| .

That is,

|P2| � r0

(
exp

(
C2

π + λ

)
(2r0)

−λ
π+λ − 1

)
.

If r0 is chosen small enough, then it follows that |P2| � r0
2 . If, at the same time, ι

and ε0 are small enough, then P1 ∩ P2 
= ∅. In other words, there exists a radius
ρ1 ∈ [r0,

1
2 ] such that |m| � 1

2 on ∂Bρ1(0) with deg(m; ∂Bρ1(0))= 1, and more-
over,

ρ1

∫
∂Bρ1 (0)

eε(m) dH1 � π + λ.
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This inequality implies
∫
∂Bρ1 (0)

|∇m2
3| dH1 � (π + λ)ε

ρ1
,

thus there exists a constant C4 = C4(λ) such that

sup
∂Bρ1 (0)

m2
3 � C4ε.

Define ρ2 = ρ1 + ε and suppose that ε0 is so small that ρ2 � 3
4 . Now we define

a map m̃ : Bρ2(0) → S2 as follows. For x ∈ Bρ1(0), we set m̃(x) = m(x), and for
x ∈ Bρ2(0)\Bρ1(0),

m̃3 = |x | − ρ2

ρ1 − ρ2
m3

(
ρ1x

|x |
)

and

m̃(x) =
√

1 − m̃2
3(x)

m(ρ1x/|x |)
|m(ρ1x/|x |)| .

Then it is readily checked that∫
Bρ2 (0)\Bρ1 (0)

eε(m̃) dx � C5ε

for a constant C5 = C5(λ). On ∂Bρ2(0), we can now write

m̃
(
ρ2eiθ

)
=

(
ei(θ+ψ(θ)), 0

)

for a function ψ ∈ H1(0, 2π) with ψ(0) = ψ(2π). Let

ψ0 = 1

2π

∫ 2π

0
ψ dθ.

We define ρ3 = 4
3ρ2 and we extend m̃ to Bρ3(0) by a linear interpolation

between ψ and ψ0. More precisely, we set

ψ̃(ρ, θ) = ρ − ρ3

ρ2 − ρ3
ψ(θ) + ρ − ρ2

ρ3 − ρ2
ψ0

and

m̃
(
ρeiθ

)
=

(
ei(θ+ψ̃(ρ,θ)), 0

)

for ρ2 < ρ < ρ3 and θ ∈ [0, 2π). By the construction of m̃, we have a constant
C6 = C6(λ) such that

ρ2

2

∫
∂Bρ2 (0)

∣∣∣∣∂m̃
∂θ

∣∣∣∣
2

dH1 = 1

2

∫ 2π

0
(1 + ψ ′)2 dθ � ρ1

∫
∂Bρ1 (0)

eε(m)

1 − m2
3

dH1

� (1 + C6ε)(π + λ).
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Thus, if ε0 is small enough, we have
∫ 2π

0
(ψ ′)2 dθ � 3λ and

∫ 2π

0
(ψ − ψ0)

2 dθ � 6πλ.

Hence, we find a universal constant C7 such that∫
Bρ3 (0)\Bρ2 (0)

eε(m̃) dx � π log
4

3
+ C7λ.

Finally, we extend m̃ to B1(0) by

m̃(x) = m̃
(
ρ3x

|x |
)
, x ∈ B1(0)\Bρ3(0).

Then clearly we have ∫
B1(0)

eε(m̃) � Iε .

On the other hand,∫
B1(0)

eε(m̃) dx �
∫

Bρ1 (0)
eε(m) dx + C5ε + π log

1

ρ2
+ C7λ.

If ε0 is sufficiently small, then we obtain∫
Bρ1 (0)

eε(m) dx � Iε − π log
1

ρ1
− (C7 + 1)λ,

using the previous estimates and the definition of ρ2.
In order to conclude the proof, it now suffices to show that∫

B1(0)\Bρ1 (0)
eε(m) dx � π log

1

ρ1
− λ (37)

(and replace λ by λ/(C7 + 2)). To this end, note that

|[ρ1, 1] ∩ P1| � 1 − ρ1 − C3ι − C3ε log
1

ε
.

On the other hand, if ρ ∈ P1, then

ρ

∫
∂Bρ(0)

eε(m) dH1 � π − C8ε log
1

ε

for a universal constant C8 by standard estimates. Therefore,∫
B1(0)\Bρ1 (0)

eε(m) dx � π

∫
[ρ1,1]∩P1

dρ

ρ
− C8ε log

1

ε
log

1

ρ1

� π log
1

1 − |[ρ1, 1] ∩ P1| − C8ε log
1

ε
log

1

ρ1
.

Since ρ1 � r0 and r0 depends only on λ, it follows that (37) is true whenever ε0
and ι are sufficiently small. ��
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Lemma 6. Let R0 > 0. There exist r0 ∈ (0, R0] and C > 0 such that for any
a ∈ Ωd with ρ(a) � r0 and any r ∈ (0, r0], there exist an open set Ω̃ ⊂ Ωr (a)
and a function G̃ ∈ W 1,∞(Ω) with the following properties:

• |Ωr (a)\Ω̃| � Cr3,
• ∇⊥G̃ = j (m∗( · ; a)) in Ω̃ ,
• G̃ is constant on every connected component of Ω\Ω̃ , and
• ‖G̃‖W 1,∞(Ω) � C/r .

Proof. If we use a Hodge decomposition of the form

j (m∗( · ; a)) = ∇F + ∇⊥G

with F ∈ W 1,1
0 (Ω), then we immediately findΔF = 0, that is, F = 0. Moreover, we

have ΔG = 2πδa in Ω . On ∂Ω , the normal derivative of G is smooth and depends
only on g. It follows that there exists a function H ∈ C∞(Ω) with ΔH = 0 and

G(x) =
d∑

�=1

log |x − a�| − H(x). (38)

In order to construct G̃, we now want to truncate G near the points a� in a
suitable way. To this end, let r ∈ (0, r0] and define

A� = sup
Br (a�)

G, � = 1, . . . , d,

and

B̃� = {
x ∈ Br0(a�) : G(x) � A�

}
.

Moreover, let

Ω̃ = Ω\
d⋃

�=1

B̃�

and

G̃(x) =
{

G(x) if x ∈ Ω̃,

A� if x ∈ B̃�, � = 1, . . . , d.

By definition, we have Ω̃ ⊂ Ωr (a). We claim that whenever r0 is small enough,
the sets B̃� are closed (and thus they have a positive distance from ∂Bρ0(a�)) and

|B̃�\Br (a�)| � C1r3

for � = 1, . . . , d, where C1 is a constant that depends only on Ω , g, and r0. Both
of these statements follow from the representation (38) of G with relatively easy
calculations (more details for similar arguments can be found in a work by Jerrard
and Spirn [21, Sect. 8]). Once the claims are verified, it is clear that Ω̃ and G̃ have
the required properties. ��
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For m ∈ H1(Ω; S2) we now define

ẽε(m) = 1

2

(
|∇|m||2 + |∇m3|2 + m2

3

ε2

)
.

This notation is used in the next theorem and again in Section 6.

Theorem 4. Let r0 > 0 and C0 ∈ R. For any λ> 0 there exist ε0 ∈ (0, 1) and
ι > 0 with the following property. Suppose that ε ∈ (0, ε0], m ∈ H1(Ω; S2) with
m|∂Ω = g, and a ∈ Ωd with ρ(a) � r0 satisfy

Eε(m) � πd log
1

ε
+ C0

and

‖J (m) − πδa‖W−1,1(Ω) � ι.

Then

∫
Ωr0 (a)

(
ẽε(m) + 1

4

∣∣∣∣ j (m)

|m| − j (m∗( · ; a))

∣∣∣∣
2
)

dx � Dε(m; a) + λ.

Proof. We use the notation m∗ = m∗( · ; a) throughout this proof. Let r ∈ (0, r0]
be a fixed number, the value of which will be determined in the course of the proof.
Recall that

Dε(m; a) = Eε(m) − W (a) − d

(
γ + π log

1

ε

)
.

There exists a constant C1 that depends only on r0 and d, such that

W (a) + dπ log
1

r
− 1

2

∫
Ωr (a)

|∇m∗|2 dx � C1r2.

(An inequality of this form has been proved by Jerrard and Spirn [21, Lemma
12] for Neumann boundary data. The calculations for Dirichlet data are similar.)
Using also the fact that the quantity Iε − π log 1

ε
is monotone in ε, we obtain

Dε(m; a) �
∫
Ωr (a)

(
eε(m) − 1

2
|∇m∗|2

)
dx

+
d∑

�=1

(∫
Br (a�)

eε(m) dx − Iε/r

)
− C1r2.

We now assume that r is so small that C1r2 � λ and r � 1.
If we have a function φ ∈ W 1,∞

0 (Br (a�)) with ‖∇φ‖L∞(Br (a�)) � 1, then it
also satisfies ‖φ‖W 1,∞(Ω) � 1. Hence

‖J (m) − πδa�
‖Ẇ−1,1(Br (a�))

� ι
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for � = 1, . . . , d. As r is fixed, this means that Lemma 5 can be applied for the
given number λ whenever ι and ε0 are sufficiently small. Thus

∫
Br (a�)

eε(m) dx − Iε/r � −λ,

and therefore

Dε(m; a) �
∫
Ωr (a)

(
eε(m) − 1

2
|∇m∗|2

)
dx − (d + 1)λ.

We now want to prove that

∫
Ωr (a)

(
ẽε(m) + 1

4

∣∣∣∣ j (m)

|m| − j (m∗)
∣∣∣∣
2
)

dx

�
∫
Ωr (a)

(
eε(m) − 1

2
|∇m∗|2

)
dx + λ, (39)

provided that ι, ε0, and r are small enough. Once this inequality is established, the
claim of the theorem follows.

In order to prove (39), we first calculate

ẽε(m) + 1

4

∣∣∣∣ j (m)

|m| − j (m∗)
∣∣∣∣
2

= eε(m) − 1

2
|∇m∗|2 − 1

4

∣∣∣∣ j (m)

|m| − j (m∗)
∣∣∣∣
2

+(|m| − 1)
j (m)

|m| · j (m∗) + | j (m∗)|2 − j (m) · j (m∗). (40)

Clearly

∫
Ωr (a)

(|m| − 1)
j (m)

|m| · j (m∗) dx � C2ε

r
Eε(m) (41)

for some universal constant C2. We now use the set Ω̃ and the function G̃ from
Lemma 6. We write

∫
Ωr (a)

(
| j (m∗)|2 − j (m) · j (m∗)

)
dx

=
∫
Ω̃

j (m∗) · ( j (m∗) − j (m)) dx

+
∫
Ωr (a)\Ω̃

j (m∗) ·
(

j (m∗) − j (m)

|m|
)

dx

+
∫
Ωr (a)\Ω̃

(1 − |m|) j (m∗) · j (m)

|m| dx . (42)
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For the first term on the right-hand side, we have
∫
Ω̃

j (m∗) · ( j (m∗) − j (m)) dx =
∫
Ω

∇⊥G̃ · ( j (m∗) − j (m)) dx

= 2
∫
Ω

G̃ J (m) dx − 2π
d∑

�=1

G̃(a�)

� 2ι‖G‖W 1,∞(Ω) � C3ι

r
. (43)

The second term on the right-hand side of (42) satisfies
∫
Ωr (a)\Ω̃

j (m∗) ·
(

j (m∗) − j (m)

|m|
)

dx �
∫
Ωr (a)\Ω̃

| j (m∗)|2 dx

+ 1

4

∫
Ωr (a)

∣∣∣∣ j (m)

|m| − j (m∗)
∣∣∣∣
2

dx

(44)

by Young’s inequality. Using the bound on |Ωr (a)\Ω̃| from Lemma 6, we see that
∫
Ωr (a)\Ω̃

| j (m∗)|2 dx � C4r (45)

for a constant C4 = C4(Ω, g, r0). For the last term in (42) we have again an
estimate as in (41). Combining (40)–(45), we finally obtain

∫
Ωr (a)

(
ẽ(m) + 1

4

∣∣∣∣ j (m)

|m| − j (m∗)
∣∣∣∣
2
)

dx � C5

(
ι

r
+ ε

r
log

1

ε
+ r

)

+
∫
Ωr (a)

(
eε(m) − 1

2
|∇m∗|2

)
dx .

If r is chosen sufficiently small, then (39) follows whenever ι and ε0 are small
enough. ��

6. The motion law

In this section we prove Theorem 1. To this end, let â ∈ C∞([0,∞);Ωd) be
the solution of the initial value problem

â(0) = a0, (1 + 2i)π â′
� = − ∂

∂a�

W (â), � = 1, . . . , d.

The most important part of the proof is to show that these curves coincide with the
vortex paths found in Theorem 3.

Remember that

lim
ε↘0

Dε

(
m0

ε; a0
)

= 0.
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It follows, at least for a sufficiently small time interval, that mε is smooth for every
sufficiently small ε > 0. Choose a sequence εk ↘ 0 that satisfies the conclusions
of Theorem 3, and let a be the corresponding curve in Ωd . Let T > 0 be small
enough such that there exists a radius r ∈ (0, ρ(a0)/2] with a�(t) ∈ Br/2(a0

� ) and
â� ∈ Br/2(a0

� ) for � = 1, . . . , d and for every t ∈ [0, T ]. Choose φ,ψ ∈ C∞
0 (Ω)

such that for every �, both φ and ψ are affine with ∇ψ = ∇⊥φ in Br (a0
� ). We

define

ξk(t) =
∫
Ω×{t}

(
αεkψeεk (mεk ) + φω(mεk )

)
dx − π

d∑
�=1

(
ψ(â�(t)) + 2φ(â�(t))

)

and

ξ(t) = π

d∑
�=1

(
ψ(a�(t)) + 2φ(a�(t)) − ψ(â�(t)) − 2φ(â�(t))

)
.

Then we have ξk(t) → ξ(t) for every t .

Lemma 7. There exist a constant C and a sequence λk → 0 such that for all
t1, t2 ∈ [0, T ) with t1 � t2 and every k ∈ N,

ξk(t2) − ξk(t1)

� C
∫ t2

t1

∫
Ωr (a0)

(
ẽε(mεk ) +

∣∣∣∣ j (mεk )

|mεk |
− j (m∗( · ; â(t)))

∣∣∣∣
2
)

dx dt

+ C
∫ t2

t1

∥∥J (mεk ) − πδâ

∥∥
W−1,1(Ω)

dt + λk .

Proof. We use the abbreviation m∗ = m∗( · ; â) and we calculate

π

d∑
�=1

d

dt

(
ψ(â�(t)) + 2φ(â�(t))

) = π

d∑
�=1

(
2∇φ(â�(t)) + ∇⊥φ(â�(t))

)
· â′

�(t)

= −
d∑

�=1

∇⊥φ(â�(t)) · ∂

∂a�

W (â)

=
∫
Ω×{t}

∇⊥∇φ · (∇m∗ ⊗ ∇m∗) dx .

In the last step we have used a well-known representation of the gradient of W [5,
Sect. VIII.2]. Moreover, using (26) and (27), we find

d

dt

∫
Ω×{t}

(αεψeε(mε) + φω(mε)) dx

= −α2
ε

∫
Ω×{t}

ψ | f ε(mε)|2 dx

−
∫
Ω×{t}

(α2
ε∇ψ + ∇⊥φ) · 〈 f ε(mε),∇mε

〉
dx

+ αε

∫
Ω×{t}

(∇ψ − ∇⊥φ) · 〈mε × f ε(mε),∇mε

〉
dx .
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We have

lim
ε↘0

(
α2
ε

∫ T

0

∫
Ω

(eε(mε) + | f ε(mε)|2) dx dt

)
= 0

by (23) and (25), and

lim
k→∞

(
αε

∫ T

0

∫
Ωr (a0)

|∇mεk || f εk
(mεk )| dx dt

)
= 0

by Theorem 2. Furthermore,
∫
Ω

∇⊥φ · 〈 f ε(m),∇m
〉

dx = −
∫
Ω

∇⊥∇φ · (∇m ⊗ ∇m) dx

for any m ∈ C∞(Ω; S2). Therefore, it suffices to estimate the integrals

∫ t2

t1

∫
Ω

∇⊥∇φ · (∇mε ⊗ ∇mε − ∇m∗ ⊗ ∇m∗) dx dt.

For m = (m,m3) ∈ C∞(Ω; S2), we calculate

∇m ⊗ ∇m = ∇|m| ⊗ ∇|m| + ∇m3 ⊗ ∇m3 + j (m)

|m| ⊗ j (m)

|m|
and

j (m)

|m| ⊗ j (m)

|m| − j (m∗) ⊗ j (m∗)

=
(

j (m)

|m| − j (m∗)
)

⊗
(

j (m)

|m| − j (m∗)
)

+
(

j (m)

|m| − j (m∗)
)

⊗ j (m∗) + j (m∗) ⊗
(

j (m)

|m| − j (m∗)
)

=
(

j (m)

|m| − j (m∗)
)

⊗
(

j (m)

|m| − j (m∗)
)

+ (1 − |m|)
(

j (m)

|m| ⊗ j (m∗) + j (m∗) ⊗ j (m)

|m|
)

+ ( j (m) − j (m∗)) ⊗ j (m∗) + j (m∗) ⊗ ( j (m) − j (m∗)).

It is clear that∣∣∣∣
∫
Ω×{t}

(1 − |mεk |)∇⊥∇φ ·
(

j (mεk )

|mεk |
⊗ j (m∗)

)
dx

∣∣∣∣ � C1εk Eεk (mεk )

for a constant C1 that is independent of k and t . In order to estimate

∫ t2

t1

∫
Ω

∇⊥∇φ · (( j (mεk ) − j (m∗)) ⊗ j (m∗)) dx dt
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and
∫ t2

t1

∫
Ω

∇⊥∇φ · ( j (m∗) ⊗ ( j (mεk ) − j (m∗))) dx dt,

we first note that, in both cases, we can write the integrand in the form

σ · ( j (mεk ) − j (m∗))

for a smooth vector field σ ∈ C∞(Ω × [0, T ]; R
2) that is independent of k. We

use a Hodge decomposition

−σ = ∇u + ∇⊥v,

where u, v ∈ C∞(Ω × [0, T ]) with u = 0 on ∂Ω × [0, T ]. Then

∫ t2

t1

∫
Ω

σ · ( j (mεk ) − j (m∗)) dx dt

=
∫ t2

t1

∫
Ω

u div j (mεk ) dx dt + 2
∫ t2

t1

(∫
Ω

v J (mεk ) dx − π

d∑
�=1

v(â�)

)
dt.

Moreover, we compute

div j (mε) = (imε, fε(mε)) = 1

1 + α2
ε

(
αε

(
imε,

∂mε

∂t

)
− ∂mε3

∂t

)
.

Hence
∫ t2

t1

∫
Ω

u div j (mεk ) dx dt = αε

1 + α2
ε

∫ t2

t1

∫
Ω

u

(
imε,

∂mε

∂t

)
dx dt

+ 1

1 + α2
ε

∫ t2

t1

∫
Ω

∂u

∂t
mε3 dx dt

− 1

1 + α2
ε

∫
Ω×{t2}

umε3 dx

+ 1

1 + α2
ε

∫
Ω×{t1}

umε3 dx .

Hence there exists a constant C2, independent of k or t1, t2, such that

∫ t2

t1

∫
Ω

∇⊥∇φ · ( j (mεk ) − j (m∗)) ⊗ j (m∗) dx dt

� C2

∫ t2

t1
‖J (mεk ) − πδâ‖W−1,1(Ω) dt + C2

√
αεk ,

and we can draw the same conclusion for j (m∗) ⊗ ( j (mεk ) − j (m∗)). This finally
gives the required estimate. ��
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Lemma 8. For t ∈ [0, T ), let

ĥk(t) =
∫
Ωr (a0)×{t}

(
ẽε(mεk ) + 1

8

∣∣∣∣ j (mεk )

|mεk |
− j (m∗( · ; â(t)))

∣∣∣∣
2
)

dx

−Dεk (mεk ( · , t); â(t)).

Then there exists a constant C such that for almost all t1, t2 ∈ [0, T ) with t1 � t2,

lim sup
k→∞

∫ t2

t1
ĥk(t) dt � C

∫ t2

t1
|â(t) − a(t)| dt.

Proof. In addition to ĥk , we define the functions

hk(t) =
∫
Ωr (a0)×{t}

(
ẽε(mεk ) + 1

4

∣∣∣∣ j (mεk )

|mεk |
− j (m∗( · ; a(t)))

∣∣∣∣
2
)

dx

−Dεk (mεk ( · , t); a(t)).

It is clear that

ĥk(t) � hk(t) + C1|â(t) − a(t)|
for a certain constant C1 that does not depend on k or t . Thus, it suffices to prove
the inequality

lim sup
k→∞

∫ t2

t1
hk(t) dt � 0.

To this end, we first recall that J (mεk ( · , t)) → πδa(t) in W −1,1(Ω) for every t .
Using Theorem 4 and observing that the number λ in its statement can be chosen
arbitrarily small, we conclude that

lim sup
k→∞

hk(t) � 0.

On the other hand, by Theorem 2, we have a constant C2 that is independent of k or
t such that hk(t) � C2. Fatou’s lemma, applied to C2 − hk , now gives the required
inequality in the limit. ��

Next, we consider the functions

ζk(t) = Dεk (mεk ( · , t); â(t))

and

χk(t) = ∥∥J (mεk ) − πδâ

∥∥
W−1,1(Ω)

.

Let 0 � t1 � t2 � T . Using the identities

Eε(mε( · , t2)) − Eε(mε( · , t1)) = − αε

1 + α2
ε

∫ t2

t1

∫
Ω

∣∣∣∣∂mε

∂t

∣∣∣∣
2

dx dt



Ginzburg–Landau Vortices 881

and

W (â(t1)) − W (â(t2)) = π

∫ t2

t1
|â′|2 dt,

and observing that the functions

t �→ αε

1 + α2
ε

∫
Ω×{t}

∣∣∣∣∂mε

∂t

∣∣∣∣
2

dx

are uniformly bounded in L1(0, T ), we obtain a uniform bound for ζk in BV(0, T ).
Thus, we can select a subsequence such that ζk(t) → ζ(t) almost everywhere for
a function ζ : [0, T ] → R. Recall that

ζk(t) = Dεk (mεk ( · , t); â(t)) = Eεk (mεk ( · , t)) − Wεk (â(t)).

Thus Theorem 3, combined with the above identities, implies

ζ(t2) − ζ(t1) � π

∫ t2

t1
(|â′|2 − |a′|2) dt

= −π

∫ t2

t1
|â′ − a′|2 dt + 2π

∫ t2

t1
â′ · (â′ − a′) dt

� C1

∫ t2

t1
|â′ − a′| dt

for almost all t1, t2 with t1 � t2. That is, we have

ζ ′ � C1|â′ − a′|
in the sense of distributions.

We define

χ(t) =
d∑

�=1

|â�(t) − a�(t)|.

We know that χk(t) → χ(t) almost everywhere. Using arguments similar to those
used in the proof of Proposition 2, we also see that χk is uniformly bounded
in L∞(0, T ). Hence by Lebesgue’s convergence theorem, we have χk → χ in
L1(0, T ). Using Lemmas 7 and 8, we therefore obtain

ξ(t2) − ξ(t1) � C2

∫ t2

t1
(ζ(t) + χ(t)) dt

for a certain constant C2. Choosing φ and ψ appropriately, this shows that

|â′(t) − a′(t)| � C3(ζ(t) + χ(t))

for almost every t . Hence

|â′(t) − a′(t)| � C4

∫ t

0
|â′(τ ) − a′(τ )| dτ,
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and Gronwall’s inequality implies first â′ = a′ and then â = a in [0, T ]. Further-
more, we conclude that ζ � 0 in [0, T ], and this means in particular that

lim sup
k→∞

Dεk (mεk ( · , T ); a(T )) � 0.

Thus we can use the same arguments for T as a new initial time, and we eventually
obtain the motion law for all times. Moreover, it follows that mεk is smooth for all
times.

Finally, we use the fact that the initial value problem which defines â has a
unique solution. If we choose any sequence εk ↘ 0, then with these arguments,
we find a subsequence which has the properties just described. We conclude that,
in fact, the stronger statement of Theorem 1 holds true.

7. Physical background and interpretation

The purpose of this section is to explain how the functional Eε and the corre-
sponding Landau–Lifshitz–Gilbert equations (1) and (2) are related to the theory of
micromagnetics. We also mention some approaches to vortex dynamics from the-
oretical and experimental physics and explain how our main result fits with what
can be expected in more realistic models.

We start by describing the model of micromagnetics. More details can be found
in the books by Hubert and Schäfer [19] and Bertotti [4]. Suppose that we
have a sample of a ferromagnetic material occupying a domain Σ ⊂ R

3. Its mag-
netization is given by a vector field m : Σ → R

3. At temperatures well below the
Curie point, it has constant length. After a renormalization, we can regard m as a
map into the unit sphere S2. To a given magnetization we then assign an energy
E(m) which is the sum of the following contributions.

1. The exchange energy is

ε2

2

∫
Σ

|∇m|2 dx,

where ε is a material constant, called the exchange length. (Typically ε is small.)
This term is derived from the spin interactions in an underlying atomistic model.

2. The anisotropy energy has the form∫
Σ

Φ(m) dx

for a function Φ : S2 → R. As the name suggests, this models effects coming
from anisotropies in the crystal lattice.

3. The magnetization generates a stray field h in all of R
3, which gives rise to the

third energy contribution. By the static Maxwell equations, the stray field is curl
free and can therefore be represented as h = −∇u for a potential u ∈ H1(R3).
Moreover, the function u is determined by the equation

Δu = div m in R
3, (46)
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which is to be understood in the distribution sense, with m extended by 0 outside
of Σ . The magnetostatic energy or stray field energy is then

1

2

∫
R3

|∇u|2 dx.

4. If there is an external field H , then this is responsible for another energy term,
namely

−
∫
Σ

H · m dx.

Thus, we obtain the total micromagnetic energy

E(m) =
∫
Σ

(
ε2

2
|∇m|2 + Φ(m) − H · m

)
dx + 1

2

∫
R3

|∇u|2 dx,

the last term being subject to (46). Its negative L2-gradient,

F(m) = ε2Δm − ∇Φ(m) − H + ∇u,

is called the effective field.
If we study a sample in the shape of a thin film, such as Σ = Ω × (0, τ )

for a domain Ω ⊂ R
2 and a small number τ > 0, then it is natural to assume that

m is independent of the third variable x3 in order to simplify the functional. The
exchange energy then gives rise to

τε2

2

∫
Ω

|∇m|2 dx,

and after a renormalization, we have the first term in the definition of Eε . The
second term of Eε , stemming from

τ

∫
Ω

m2
3

2
dx,

has the form of an anisotropy energy that penalizes only the out-of-plane compo-
nent and is independent of the in-plane directions. However, it does not necessarily
arise out of a crystalline anisotropy; in fact it is often more natural to think of it as
an approximation of the magnetostatic energy or perhaps a combination of these
energies, as the latter can typically not be neglected for very thin films, while the
anisotropy contribution in so-called soft films is very small.

It can be seen from (46) that the magnetostatic energy effectively penalizes the
distributional divergence of m, a part of which comes from the normal part of m
on the boundary of Σ , called surface charge. In the case of a thin film, a large
part of the boundary is Ω × {0, τ }, and here the third component m3 is penalized.
Moreover, if τ becomes very small, then the surface contribution will eventually
dominate the rest of the magnetostatic energy. In fact, τ

2

∫
Ω

m2
3 dx is the leading

order contribution, followed by a nonlocal term τ 2

4 ‖ div m‖2
Ḣ−1/2 that enforces tan-

gential magnetization at the lateral boundary. More precisely, by virtue of a critical
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Sobolev embedding, the specific energy of the normal component m · ν scales with
an additional logarithmic factor as τ → 0; see [10,33] for details.

Reducing the magnetostatic energy via boundary effects eventually leads to
topological singularities and the formation of domain patterns. Vortices, also known
as Bloch lines in this context, generally appear within domain wall networks. But
depending on the specific regime τ, ε → 0, the scenario can be quite diverse. In
[33], the boundary penalty is so weak that the global minimizer is very different and
develops boundary vortices. For an extensive discussion of scaling regimes and the
energy of certain features of a thin-film ferromagnet, we refer the reader to DeSi-
mone et al. [11]; results for specific regimes can be found in [10,14,23–25,32–34].
In very small magnetic systems such as magnetic nanodots, however, the formation
of internal vortices is energetically preferable to the formation of domain walls or
boundary vortices [46]. This is the situation we intend to describe. We replace the
nonlocal magnetostatic energy by the local integral above and we impose Dirichlet
boundary conditions for m. Our setting allows for interior vortices but no boundary
interaction, which fits the physical expectations in such nanoregimes but still lacks
rigorous mathematical support. Note that in this model the nonlocal magnetostatic
energy has been reduced to local contributions of the boundaries Ω × {0, τ } and
a constraint coming from ∂Ω × (0, τ ); any contribution of the nonsingular part of
the divergence div m has been neglected. A somewhat more realistic model might
be to use a boundary penalty for m · ν instead of the Dirichlet condition, compare
[32,33].

After explaining the origin of our time-independent model, we turn to the evo-
lution equations. A model for the dynamics of the magnetization is given by the
Landau–Lifshitz–Gilbert equation. There are several ways to represent it; perhaps
the most common form in the physics literature is the Gilbert form [13],

∂m
∂t

+ m × F(m) = α m × ∂m
∂t

. (47)

This includes a phenomenological damping term, namely the right-hand side of
the equation. The dimensionless damping constant α > 0 is typically small. If we
want to solve (47) for initial data m0 : Σ → S2, then we note that for a solution of
(47), the derivative ∂m

∂t is always tangential to the sphere. Hence we expect that m
continues to take values on S2.

Taking the vector product with m on both sides of (47), we obtain

α
∂m
∂t

+ m × ∂m
∂t

+ m × (m × F(m)) = 0. (48)

Combining (47) and (48) yields the equation

(1 + α2)
∂m
∂t

= −αm × (m × F(m)) − m × F(m), (49)

which is the original form introduced by Landau and Lifshitz in [27]. In fact,
all three equations (47)–(49) are equivalent, at least for classical solutions. If we
define

f (m) = −m × (m × F(m)),
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which is the orthogonal projection of F(m) onto the tangent space of S2, then we
can write (49) in the form

(1 + α2)
∂m
∂t

= α f (m) − m × f (m). (50)

Observing that

Δm + |∇m|2m

is the tangential part of Δm (which can be verified by differentiating the equation
〈m,∇m〉 = 0), we see that Equation (2) is (50) for the functional Eε instead of E .

Returning to a more physical point of view, recall that our energy Eε is a model
for small, thin magnetic elements whose energetically most favored state is a vortex.
These are very interesting from a technological point of view, as the vortex has both
a chirality (clockwise or counterclockwise) and a polarity (up or down), making
it possible to store two bits of data in a single small element. For a short survey
of recent advances in theoretical and experimental physics relating to vortices in
small elements, we refer to [3].

The idea to describe the magnetization dynamics by an effective equation for a
simpler system, for example by an ODE for the vortex or domain wall coordinates
(treating them as a quasiparticle), essentially goes back to Thiele [48] and was
used for vortex systems by Huber [18]. However, very little rigorous theory exists
in this context, while mathematical results mainly address the motion of domain
walls; see for example [6,36]. Our equation of motion for the vortices, (4), cor-
responds precisely to Huber’s results in the case of no boundary conditions. Our
choice of a logarithmic αε is also in perfect agreement with [18].

In the case of a disc-shaped domain,Ω = B1(0), the renormalized energy can be
calculated explicitly. For a single vortex at a ∈ B1(0) and Dirichlet boundary condi-

tions m = (x⊥,0)
|x | , it is given by W (a)=π log 1

1−|a|2 . It follows that (4) describes a
spiralling motion into the center. Such spiral motions have been found numerically
for the full problem [3]; the frequency of the gyrotropic part can also be measured
experimentally [35]. In the case of a disc, the central vortex has one interesting
property: only if the vortex is central (a = 0) is the associated canonical harmonic
map m∗ divergence free. If we make a better approximation of E , where the diver-
gence is also penalized by ‖ div m‖2

Ḣ−1/2 , see [10], we expect this to correspond to
an additional energy contribution that is quadratic in a, at least for small |a|. Given
that W (a) ≈ π |a|2 for small |a|, adding another quadratic term does not change the
local form of the energy landscape. This implies that in the special case of a disc,
our results should yield the correct qualitative behavior, even if our approximation
of the nonlocal magnetostatic energy by a local term is not completely justified.

Finally, we mention that very recently there has been considerable interest in
fast switching of vortex core polarities using an applied field pulse. The fastest
known switching path involves the nucleation and annihilation of a pair of vorti-
ces; see [15]. These processes involve bubbling events that our present analytical
techniques are not yet sophisticated enough to describe.
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