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Abstract

In this article, we investigate the response of a thin superconducting shell to an
arbitrary external magnetic field. We identify the intensity of the applied field that
forces the emergence of vortices in minimizers, the so-called first critical field Hc1
in Ginzburg–Landau theory, for closed simply connected manifolds and arbitrary
fields. In the case of a simply connected surface of revolution and vertical and
constant field, we further determine the exact number of vortices in the sample as
the intensity of the applied field is raised just above Hc1. Finally, we derive via
Γ -convergence similar statements for three-dimensional domains of small thick-
ness, where in this setting point vortices are replaced by vortex lines.

1. Introduction

In this article, we investigate the response of a thin superconducting shell to an
arbitrary external magnetic field. The intensity of the applied field is taken of the
order of the so-called first critical field Hc1 in Ginzburg–Landau theory. The main
goal is to identify the asymptotic value of Hc1 as one lets the Ginzburg–Landau
parameter κ go to infinity, when the thickness of the sample is sufficiently small.
Once this is established, we specialize to shells constituting a neighborhood of a
simply connected surface of revolution, and take the applied field to be constant
and vertical. A second major thrust is then to determine, in this particular case,
the exact number of vortex lines present in minimizers of the Ginzburg–Landau
functional when the intensity of the external field is raised above Hc1 by a lower
order term. In addition, the asymptotic location of vortices is found analytically;
vortex lines consist of two collections that concentrate near the poles. Finally, it
is proved that the configurations of the limiting vortices in the manifold tend to
minimize a renormalized energy.
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We consider a sample occupying a neighborhood of a closed two dimensional
manifold M in R

3. More precisely, our object of study is the functional

Gε,κ (Ψ,A) = 1

ε

∫
Ωε

(
|(∇ − iA)Ψ |2 + κ2

2
(|Ψ |2 − 1)2

)
dX

+1

ε

∫
R3
|∇ × A−Hext|2 dX, (1.1)

where Ωε is a thin superconductor corresponding to an ε-neighborhood of M,

Ψ : Ωε → C is the order parameter, Hext : R
3 → R

3 is the external mag-
netic field, that is, a given smooth, divergence-free vector field, and A : R

3 →
R

3 corresponds to the induced magnetic potential. The functional (1.1) is the
Ginzburg–Landau energy functional with a scaling factor of 1/ε, that is normalized
by the volume of the sample (up to a multiplicative factor). One reason for studying
this functional stems from the fact that even though the literature available for the
case of an infinite cylinder and constant applied field is extensive (see [25] and the
references therein), much less is known for general three-dimensional domains and
arbitrary applied fields. Unlike the case of an infinite cylinder where one considers
a vertical applied field to reduce the problem to a two-dimensional one, the thin
sample approach described below allows the possibility of studying features of the
solutions arising from nontrivial geometries responding to general applied fields.
Another reason that this setting is interesting is the fact that vortices cannot escape
through the boundary. This also imposes the restriction that the total degree of the
vortices must be zero.

One way to circumvent the difficulty of studying the full three-dimensional
Ginzburg–Landau functional without losing the geometric and topological rich-
ness of generic domains is by considering a thin superconducting sample. This
is the approach the author and Sternberg follow in [5], where we analyze the
Ginzburg–Landau energy of a superconductor that occupies a neighborhood of
a compact surface without boundary. We establish a relation between Gε,κ and
a reduced model posed on the manifold in which the induced magnetic field is
replaced by the tangential component of the applied one. More precisely, we prove
that Gε,κ (Ψ,A) Γ -converges to GM,κ (ψ), where

GM,κ (ψ) =
∫
M

(∣∣(∇M − i(Aext)
τ )ψ

∣∣2 + κ2

2
(|ψ |2 − 1)2

)
dH2

M(x). (1.2)

Here Aext is a divergence free vector field satisfying ∇ × Aext = Hext, and
(Aext)

τ := Aext − (Aext · ν(x))ν(x). The precise topology of convergence is pre-
sented in detail in [5] and in Section 2 below. In [5], we also obtain, for simply
connected surfaces of revolution and vertical fields, the asymptotic value of the first
critical field Hc1, that is, the minimum magnetic field strength that must be over-
come in order to see vortices in minimizers when κ � 1. For the case of an infinite
superconducting cylinder of constant cross-section, the authors of [23] carry out
such an investigation and determine the critical coefficient of ln κ , characterizing it
in terms of a solution to a certain auxiliary problem related to the London equation.
(See also [25] for much more detailed information about Hc1 in this setting.) For
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the planar problem arising as a thin film limit, the authors of [6,7] determine this
critical coefficient in terms of a different auxiliary problem. Rather remarkably, in
the case of a surface of revolution and constant vertical field, Sternberg and the
author show in [5] one has simply

Hc1 ∼ 4π/(Area of M) ln κ,

for κ � 1.Among other things, the author extends here this result of [5] to allow for
arbitrary fields and general simply connected manifolds. In this paper we consider
fields that are presented in the form Hext = h(κ)He. Here the scalar h(κ) denotes
the intensity of the given external field and we assume ‖He‖∞ = 1. We also write
He = ∇ ×Ae, which we refer to as the normalized field and normalized potential,
respectively. In Theorems 3.1 and 3.2, we prove that given a simply connected
manifold M, there are two kinds of applied fields, those that give rise to an infinite
value of Hc1 and those for which

Hc1 = 1

maxM ∗F −minM ∗F
ln κ,

where ∗F is a 0-form with F a solution of d�F = (Ae)τ . Here (Ae)τ is the
tangential component of the normalized applied potential Ae in some convenient
gauge. The strategy of the proof is to first identify a “first critical field” for the
reduced Ginzburg–Landau functional GM,κ and then prove that this serves as the
asymptotic value of Hc1 for the full Ginzburg–Landau energy, provided the thick-
ness is taken small enough. This is achieved through the Γ -convergence relation
described above. To our knowledge, this is one of the first calculations of the first
critical field for Ginzburg–Landau in a three-dimensional setting, preceded by [5],
and by the determination of a candidate for Hc1 for a solid ball in R

3 in [1]. It also
corresponds, to our knowledge, to one of the first calculations of Hc1 for generic
three-dimensional non-constant applied fields.

In the second half of the paper we try to understand how vortices emerge as
one increases the strength of the field slightly above Hc1. We fix He = êz and let
now M̌ denote a simply connected surface of revolution obtained by rotating a
C∞-curve around the z-axis. The intensity that we consider here is

h(κ) = 4π

H2(M̌)
ln κ + σ ln ln κ,

where σ > 0 is a fixed constant independent of κ. This intensity is just o(ln κ)-
above Hc1, and is within the regime where we expect the successive appearance of
multiple vortices in the sample as σ increases. In [22], Serfaty proves that in a super-
conductor that is an infinite cylinder with cross section a disk D2 ⊂ R

2, subject
to a constant vertical field, there exist locally minimizing solutions of Ginzburg–
Landau exhibiting multiple vortices of degree one when the external magnetic field
is raised above Hc1 by an addition of a ln ln κ term, whose coefficient determines
exactly how many vortices there will be in the sample. She also proves that these
vortices concentrate near the center of the disk and that their rescaled configuration
tends to minimize a renormalized energy. This result was later extended in [25] to
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consider more general domains, and where the solutions thus obtained are shown
to be global minimizers. With the insight gained from [22] in mind, it is natural to
ask whether something of the sort holds in our setting. One big difference is that
in our case the total degree zero restriction precludes the possibility of only degree
+1 vortices. The concentration set of the vortices cannot be a singleton, either, for
the same reason. If a renormalized energy is to be found, the way to account for
the interaction of vortices is not clear a priori, since degree +1 and degree −1 are
supposed to attract each other and they must both coexist in M̌. We prove that if
σ /∈ (4π/H2(M̌))Z, then any global minimizer of GM̌,κ

possesses exactly

2n0 := 2

⌊
σ

H2(M̌)

4π

⌋
+ 2

vortices, where half of them are located near the north pole and have degree +1,
while the rest lie close to the south pole and have an associated degree of −1.
Here, �·� denotes the integer part of a real number. When σ ∈ (4π/H2(M̌))Z a
transition between consecutive integers occurs in the optimal number of vortices.
The projections of these configurations of vortices onto the xy-plane, rescaled by
a factor of

√
ln κ, tend to minimize

Rn0(x1, . . . , xn) := −
∑
i �= j

ln
∣∣xi − x j

∣∣+ 4π

H2(M̌)

n0∑
i=1

|xi |2 .

This happens for both sets of vortices independently. The leading order term forces
the two configurations to be well separated and their interaction is fixed up to o(1).
These renormalized energies are thus decoupled and it could well be that both
configurations converge to different minimizers as κ → ∞. This result is later
combined with the Γ -convergence result to obtain the same number of vortex-lines
and similar locations for minimizers of Gε,κ . The result on the number and asymp-
totic location of vortices constitutes an analogue of those in [22,25]. In these works
the renormalized energy consists also of two components, a logarithmic interaction
term and a quadratic one that confines the vortices near a preferred location.

While one of the reasons to study the reduced functional is to obtain new
information about three-dimensional Ginzburg–Landau, the underlying problem,
namely the pursuit of understanding salient features of GM̌,κ

, is an interesting prob-
lem in its own right. Within the physics community, there are numerous studies of
the response of a spherical superconducting shell or thin film to a magnetic field,
including the experimental study [27] and the theoretical studies [10,20,28], the
latter being primarily computational. Within the applied mathematics community,
we note the computational work in [11,12] on superconducting spheres in the pres-
ence of a vertical magnetic field. Here the authors capture various vortex patterns
on the surface of the sphere as the magnetic field strength is varied. Note that all
of the research cited above focuses solely on a spherical geometry and is largely
computational. Thus, the result presented here on vortex location and multiplicity
at the manifold level gives rigorous confirmation to the experiments in [11]. But it
proves more; it holds for any simply connected connected surface of revolution, not
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only a 2-sphere, and it shows those solutions can be realized as global minimizers.
We point out that in the general case (when the external field is not constant, and the
surface is not of revolution), the derivation of the asymptotic location of vortices is
more involved. First, the set where maxM ∗F (resp. minM ∗F) is achieved may not
be a singleton and therefore the vortices carrying a positive degree (resp. negative)
have multiple options regarding where to concentrate. This also makes the optimal
number of vortices more difficult to derive. Another issue is that, depending on
the external field and the manifold, the behavior of ∗F near a concentration point
may yield a weaker attraction of vortices towards it, affecting the renormalized
energy in particular and making a particular concentration point more preferable
than others. Also, when the symmetry is lost, the energy renormalization cannot be
performed by simply projecting the vortices onto a single plane. All of these mat-
ters are currently being pursued by the author. Finally, in the case of higher genus,
its effect on the first critical field and emergence of vortices, to our knowledge,
remains unexplored in this manifold setting.

The article is organized as follows. In Section 2 we introduce the necessary
notation and background. In Section 3 we obtain the value of Hc1 for simply con-
nected manifolds and arbitrary applied fields. We achieve this by first obtaining an
upper bound for the energy of minimizers through a construction. Then, we obtain
a lower bound based on an adaptation of the technology on energy concentration
on balls developed in [15,23]. Section 4 may be regarded as a toolbox; it consists of
several results that allow for the isolation of the singularities of minimizers and its
consequences, such as lower bounds on the energy taking into account the location
of the vortices. In these results we carefully adapt, when necessary, to our setting,
the lower bounds based on ball construction techniques of [2,3,22], in the case
of a bounded number of vortices. In this context the ball constructions are done
using geodesic and isothermal balls and we employ the terminology of pseudo-
balls indistinctly to refer to either type, to avoid confusion with Euclidean balls. In
Section 5 we prove that the hypotheses of the technical propositions of Section 4
are satisfied in the cases we consider. We then use these tools to derive the results
on multiplicity and location of vortices.

2. Notation

Let M be C2 orientable and a closed simply connected 2-dimensional man-
ifold without boundary in R

3. In this paper X will typically be a point in R
3,

while x or p will usually represent points on M. In addition, we write ν(x) for
the outer unit normal to the manifold at a given point x ∈ M and denote by
Vν(x) := (V(x) · ν(x))ν(x) and Vτ (x) := V(x)−Vν(x) the components, normal
and tangential to the manifold, of a vector field V in R

3. Finally H2
M will denote

the two-dimensional Hausdorff measure restricted to M. The map

Tε : M× (0, 1)→ R
3 given by X = Tε(x, t) := x + εtν(x), (2.1)

is smoothly invertible for ε small, in light of the regularity assumed on M. Our
purpose will be to study certain properties of minimizers of the Ginzburg–Landau
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functional

Gε,κ (Ψ,A) = 1

ε

∫
Ωε

(
|(∇ − iA)Ψ |2 + κ2

2

(
|Ψ |2 − 1

)2
)

dX

+1

ε

∫
R3
|∇ × A−Hext|2 dX, (2.2)

where Ωε is a thin superconductor corresponding to an ε-neighborhood of M.

More precisely,

Ωε := {X ∈ R
3 : X = x + εtν(x) for x ∈ M, t ∈ (0, 1)}.

In the functional (2.2) the constant κ > 0 is the Ginzburg–Landau parameter,
Hext : R

3 → R
3 is the applied magnetic field, that is, a given smooth, divergence-

free vector field, and A : R
3 → R

3 corresponds to the induced magnetic potential.
As is natural, we take Gε,κ to be defined forΨ ∈ H1(Ωε;C). Regarding the domain
of definition of the potential A, we introduce

H := {A ∈ C∞(R3;R3) : A compactly supported}, (2.3)

where the closure above is with respect to the norm

‖∇A‖L2(R3;R3) =
(∫

R3
|∇A|2 dx

)1/2

.

Then we set H0 = {A ∈ H : div A = 0}. Consider Aext a magnetic potential corre-
sponding to the given external magnetic field Hext to be any vector field satisfying
the requirements

∇ × Aext = Hext and div Aext = 0 in R
3. (2.4)

These conditions determine Aext up to the gradient of a harmonic function. Thus,
Gε,κ will take pairs (ψ,A) ∈ H1(M;C)× ({Aext} +H0).

In [5], the Γ -limit of Gε,κ as ε → 0 is obtained. We introduce the topology
of this convergence; given (Ψ ε,Aε) ⊂ H1(Ωε;C)× ({Aext} +H0) and (ψ,A) ∈
H1(M× (0, 1);C)× ({Aext} +H0) we will write (Ψ ε,Aε)

Y→ (ψ,A) provided

ψε ⇀ ψ weakly in H1(M× (0, 1);C) and Aε − A → 0 strongly in H0,

(2.5)

where ψε = Ψ ε ◦ Tε.
Then for (ψ,A) ∈ H1(M;C)× ({Aext} +H0) we define

GM,κ (ψ) =
∫
M

(∣∣(∇M − i(Aext)
τ )ψ

∣∣2 + κ2

2

(
|ψ |2 − 1

)2
)

dH2
M(x), (2.6)

and for (ψ,A) ∈ H1(M× (0, 1);C)× ({Aext} +H0) we define

GM,κ (ψ,A) =
{GM,κ (ψ) if ψt = 0 almost everywhere in M× (0, 1), A = Aext,

+∞ otherwise,

(2.7)
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whereψt := ∂ψ
∂t .We point out that in (2.7) we have made the obvious identification

between elements ψ of H1(M× (0, 1);C) satisfying the condition ψt = 0 almost
everywhere and elements of H1(M;C).
Theorem 2.1. (cf. [5], Theorem 3.1 and Proposition 3.4) The sequence of
functionals Gε,κ Γ -converges as ε → 0 to GM,κ in the Y -topology. In addi-
tion, given any sequence {(Ψ ε,Aε)} ⊂ H1(Ωε;C) × ({Ae} + H0), satisfying a
uniform energy bound

Gε,κ (Ψ
ε,Aε) � C,

there exists a function ψ ∈ H1(M;C) such that after passing to a subsequence
one has

ψε := Ψ ε(Tε) ⇀ ψ weakly in H1(M× (0, 1);C)
and (ψε)t → 0 strongly in L2(M× (0, 1);C), (2.8)

while

Aε − Aext → 0 strongly in H0. (2.9)

The following is an improvement on a proposition in [5], which can be easily
obtained via a bootstrap argument, when enough regularity of M (also ∂M when
the manifold has boundary) is assumed.

Proposition 2.1. (cf. [5], Proposition 3.5) Fix any κ > 0. For any ε > 0, let
Ψε,κ : Ωε → C and Aε,κ : R

3 → R
3 denote a minimizing pair for Gε,κ with

ψε,κ : M× (0, 1)→ C associated with Ψε,κ via ψε,κ(x, t) := Ψε,κ(x + tεν(x)).
Then there exists a subsequence {ε j } → 0 and a minimizer ψκ of GM,κ such that
ψε j ,κ → ψκ in C1,α (M× (0, 1)) for any positive α < 1.

Through Theorem 2.1 it is possible to establish a correspondence between prop-
erties of minimizers of Gε,κ and GM,κ , provided ε is small, and in principle also
between local minimizers (see [18]) and even non-degenerate critical points (see
[17]). In light of this we study the limiting behavior of minimizers of GM,κ , as
κ →∞.

3. Hc1 of a simply connected manifold and its associated thin shell

In this section we will take Hext to depend on κ with the aim of determining the
asymptotic value limκ→∞ Hext(κ), above which the global minimizers of GM,κ

and Gε,κ exhibit vortices. This is done in Theorems 3.1 and 3.2 below. These results
extend those of [5] where the surface is taken to be of revolution and the applied
field is constant and vertical. In the present work the surface is any simply connected
smooth two-dimensional manifold without boundary and the field is arbitrary. To
be more precise, let He, Ae be smooth vector fields such that

He = ∇ × Ae, for some Ae with div Ae = 0 in R
3, and

∥∥He
∥∥

L∞ = 1. (3.1)
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Thus, given He, Ae satisfying (3.1), we study asymptotically the response of a
superconductor subject to external fields Hext = Hext(κ), with applied potentials
Aext = Aext(κ), of the form:

Hext(κ) := h(κ)He, Aext(κ) := h(κ)Ae. (3.2)

We call h(κ) the intensity or strength of Hext. The most commonly studied case
corresponds to the family of fields arising from He = êz, and our definition of
strength is consistent with the one utilized in that situation. In this terminology, the
first critical field, or Hc1, for GM,κ (resp. Gε,κ ) is the minimum value h(κ) such
that any global minimizer has at least one vortex (resp. vortex line). In order to
describe how the value Hc1 depends on He and the manifold, it is first necessary to
divide the vector fields He according to:

(H1) We say that He satisfies (H1) if He is s.t. there exists φ ∈ C∞(M;R),
satisfying ∇Mφ = (Ae)τ restricted to M.

(H2) We say that He satisfies (H2) if He does not satisfy (H1).

It is worth mentioning that neither of the above conditions is void. The next
proposition implies in particular that non-vanishing vector fields satisfy (H2) (see
Remark 3.1 below). As an example of a vector field He satisfying (H1), consider
M = S

2 and He := ∇ × Ae, where

Ae = r2 sin θ θ̂ +
(
−r2

2
cos θ

)
r̂ + 0 · φ̂,

and r̂ , θ̂ and φ̂ are the unit vectors for the spherical coordinates. One readily checks
that He = ∇×Ae = (∇×Ae)τ , and∇ ·Ae = 0. Thus, since for a smooth function
f we have

∇S2 f = θ̂
1

r

∂ f

∂θ
+ φ̂ 1

r sin θ

∂ f

∂φ
,

we get that for f = − cos θ r3,∇S2 f = (Ae)τ = r2 sin θ θ̂ .

Proposition 3.1. Given a manifold M, assume He is a given smooth vector field
satisfying (H1). Then He = (He)τ on M.

Proof. Let S ⊂ M be any open simply connected subset of the manifold with
boundary Γ. Hypothesis (H1) guarantees the existence of a smooth function φ
defined in a neighborhood in R

3 of the manifold M such that its restriction to M
satisfies: ∇Mφ = (Ae)τ . It then follows that

0 =
∫
S
(∇ × (∇φ)) · ν =

∫
Γ

∇φ · τΓ =
∫
Γ

∇Mφ · τΓ

=
∫
Γ

(Ae)τ · τΓ =
∫
Γ

Ae · τΓ =
∫
S

He · ν.

Since S is arbitrary, this implies He = (He)τ on M. ��
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Remark 3.1. Proposition 3.1 guarantees that if He does not vanish on M, then
He satisfies (H2). Indeed (He)τ is a smooth vector field on M, so by the Poin-
care–Hopf theorem it must vanish at some point p in M. But if He(p) �= 0, then
He(p) �= (He)τ (p) and hence He satisfies (H2).

Our first result shows that for external fields defined in (3.2), where He satis-
fies (H1), there is no first critical field for GM,κ ; that is, global minimizers never
vanish, regardless of the strength of the applied field. Surprisingly, merging this
with Theorem 2.1, we also obtain that for Gε,κ the value of Hc1 is infinite for ε
sufficiently small.

Theorem 3.1. Let κ > 0 be a given positive number. Let Gε,κ and GM,κ be the
functionals defined in (2.2) and (2.6), respectively, where Hext = Hext(h) = h He,

and Aext = Aext(h) = h Ae, for He, Ae satisfying (3.1).
If He satisfies (H1), then global minimizers of GM,κ never vanish, independent

of the intensity h of the external field. Furthermore, there is an ε0 > 0 such that
for any ε < ε0, any global minimizer Ψ ε, of Gε,κ satisfies |Ψ ε| � 3

4 .

We point out that the hypothesis of Theorem 3.1 that He satisfies (H1) is actu-
ally very sensitive even to arbitrarily small C1 perturbations of M. Thus, in general
we expect to be in the case where He satisfies (H2). As we will see in Theorem 3.2
below, such a perturbation would have the effect of lowering the value of Hc1, from
effectively ∞, to O(ln κ).

Proof. The proof is remarkably easy. First note that even though the limiting func-
tional GM,κ does not enjoy the gauge invariance of Gε,κ , one still has

P1 := min
ψ

∫
M

{∣∣(∇M − i h(Ae)τ )ψ
∣∣2 + κ2

2
(|ψ |2 − 1)2

}
dH2

M

= P2 := min
η

∫
M

{∣∣(∇M − i h((Ae)τ + ∇Mφ))η
∣∣2 + κ2

2
(|η|2 − 1)2

}
dH2

M,

(3.3)

with the minimizers related via η ∼ ψeiφ. Note also that the vortex structure is
preserved under this transformation. Since He satisfies (H1), we can choose φ
above to erase the contribution of the applied potential h Ae completely from the
energy. Clearly then, the global minimizers of the resulting functional are simply
constants of modulus 1. The last statement of the theorem follows immediately
from the uniform convergence of minimizers provided by Proposition 2.1. ��

We have now seen that fields He that satisfy (H1) yield Hc1 = ∞. In the rest of
the section we compute the leading order term of the first critical field in the case
in which He satisfies (H2), and we find it is of order O(ln κ).

Recall the definition of intensity h(κ) of an external field Hext(κ) given by
(3.2). We assume the intensity obeys
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lim
κ→∞

h(κ)

ln κ
= C0, (3.4)

for some non-negative constant C0.
In what comes, we will at times view (Ae)τ as a 1-form, and whenever we do so

it will be clear from the context. Let φ be a 0-form (or a function) on M satisfying

−ΔMφ = d�
(
(Ae)τ

)
, (3.5)

where d� = ∗d∗ is the Hodge differential and ∗ is the Hodge star operator on
forms. Equation (3.5) is always solvable since the kernel of ΔM consists only of
constant functions while

∫
M d ∗ f = 0 for any 1-form f. Now let φ be a solution

of (3.5) and extend it smoothly to all of R
3. Call this extension φ̃ and let

Ãe := ∇φ̃ + Ae. (3.6)

Notice that d�((Ãe)τ ) = 0 on M, where we are again making the identification
of (Ae)τ with a 1-form. In light of (3.3), without loss of generality, we assume
Ãe = Ae. Since in our case H1

d R(M) = H1
d R(S

2) = 0, this implies the existence
of a 2-form, F such that

d�F = (Ae)τ . (3.7)

Remark 3.2. Note that F is determined up to a constant. Recall that He satisfies
(H2) which implies (Ae)τ = d�F is not identically zero, so ∗F is not constant.

We now present the main theorem of this section. The second part provides an
equivalent of the main result of [23] in our setting. In our case, the role of ξ0 in [23]
is played by ∗F.

Theorem 3.2. Let GM,κ be the functional defined in (2.6) where the parameters
are defined in (3.1), (3.2) and He satisfies (H2). Then, if the intensity h(κ) obeys
(3.4) with

1

maxM ∗F −minM ∗F
< C0, (3.8)

where F is any solution of (3.7), there exists a value κ0 such that for all κ � κ0,
any global minimizer ψκ of GM,κ has at least two vortices of nonzero degree. If,
instead the external field satisfies (3.4) with

1

maxM ∗F −minM ∗F
> C0, (3.9)

then there exists a value κ0 such that for all κ � κ0, any global minimizer of GM,κ

does not vanish.

Theorem 2.1 allows us also to assert in this section that the value C0 ln κ serves
as an asymptotic value for Hc1 for the 3d Ginzburg–Landau energy Gε,κ as well,
when ε is sufficiently small. To that end, for any t ∈ (0, 1) and ε ∈ (0, ε0), we
introduce the manifold

Mε,t := {x + εtν(x) : x ∈ M}. (3.10)
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The following holds:

Theorem 3.3. Let Gε,κ be the functional defined in (2.2) where the parameters are
defined in (3.1), (3.2) and He satisfies (H1). Fix any value κ � κ0 where κ0 is the
value arising in Theorem 3.2. Then, there exists a value ε0 = ε0(κ) such that for all
positive ε < ε0, if (3.8) holds, any global minimizer Ψε,κ of Gε,κ vanishes at least
twice on each manifold Mε,t , for 0 < t < 1. On the other hand, if (3.9) holds,
Ψε,κ does not vanish in Ωε.

In the proof of Theorem 3.2 we will make use of a result that requires some back-
ground. We will denote by expp the exponential map for M at p, cf. [8]. It is well
known that for r small enough, expp provides a local diffeomorphism from TpM
onto its image in M. In this section a pseudo-ball will be the diffeomorphic image
of a Euclidean ball under the exponential map, that is B̂(p, r) := expp[B(0, r)]
for B(0, r) ⊂ TpM. We state without proof the following proposition (see [5]
for additional comments) which is nothing but the translation to our setting of a
vortex-ball construction technique developed in [15,23].

Proposition 3.2. (cf. [5], Proposition 5.7) Letψκ be a sequence of smooth functions
defined on M, satisfying |∇Mψκ | � C · κ, with

∫
M
|∇Mψκ |2 + κ2

2

(
|ψκ |2 − 1

)2
dH2

M � C · (ln κ)2. (3.11)

Then, there exists a family B̂ j := B̂(p j , r j ) of disjoint pseudo-balls, with p j ∈ M
for j = 1, . . . , Nκ , such that for κ sufficiently large

1. {|ψκ |−1 [0, 3/4)} ⊂ ⋃
j∈I B̂ j

2. Nκ � C · (ln κ)2
3. r j � C · (ln κ)−6

4.
∫

B̂ j
|∇Mψκ |2 + κ2

2 (|ψκ |2 − 1)2 dH2
M � 2π

∣∣∣dκj
∣∣∣ (ln κ − O(ln ln κ)),

where we have defined d(κ)j := deg(ψκ, ∂ B̂ j ).

We will apply this proposition to global minimizers of GM,κ . The hypotheses will
be satisfied since under assumption (3.4), we can compare the energy of a min-
imizer to the energy of ψ ≡ 1 to get the energy bound (3.11). Then the needed
hypothesis |∇Mψκ | � C · κ follows from elliptic regularity by working in local
coordinates, rescaling these by 1

κ
and applying standard Schauder theory, cf. [13].

By the compactness of M, one constant C can be obtained such that the estimate
holds along the entire manifold.

Prior to proving Theorems 3.2 and 3.3, we proceed to prove a few lemmas that
will be of relevance.

We begin by constructing a comparison map that will give us more accu-
rate control on one term of the energy that, as we will see, forces the emer-
gence of vortices in minimizers. To that end, let p1 ∈ (∗F)−1(maxM ∗F) and
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p2 ∈ (∗F)−1(minM ∗F). Fix δ small and let B̂(p1, δ) and B̂(p2, δ) be two dis-
joint pseudo-balls. Define fκ : [0, δ] → R by

fκ(r) :=

⎧⎪⎪⎨
⎪⎪⎩

0, r ∈ [
0, 1

2κ

)
2κ

(
r − 1

2κ

)
, r ∈ [ 1

2κ ,
1
κ

)
1, r ∈ [ 1

κ
, δ

]
.

(3.12)

For � = 1, 2, let β�κ(r, θ) = fκ(r)e(−1)�iθ . By definition, B̂(p1, δ)and B̂(p2, δ)

are diffeomorphic images of neighborhoods in Tp1M and in Tp2M under the
exponential maps expp1

and expp2
respectively. We will parametrize each of these

neighborhoods using polar coordinates (r1, θ1) and (r2, θ2) accordingly, where
for � = 1, 2, θ� is measured clockwise, fitting with the orientation of Tp�M for
� = 1, 2 corresponding to the outer normal of M at each p�. Now, for each
x ∈ B̂(p�, δ) there exists a unique (r�, θ�) s.t. expp� (r�, θ�) = x and we define

ψ̃�κ (x) := β�κ(r�, θ�). (3.13)

One readily checks

∣∣∣∇Mψ̃�κ (x(r�, θ�))
∣∣∣2 � ( f

′
κ)

2(r�)+ 1

r2
�

f 2
κ (r�)+ C, (3.14)

where C is independent of κ. Now C := M \ (B̂(p1, δ) ∪ B̂(p2, δ)) is diffeomor-
phic to a cylinder and therefore we can find a function ψ̃ : C → S

1 ⊂ C such that
ψ̃ |

∂ B̂(p�,δ)
= ψ̃�κ , for � = 1, 2.

Finally define ψ̃κ : M → C by

ψ̃κ (x) :=
{
ψ̃�κ (x) for x ∈ B̂(p1, δ) ∪ B̂(p2, δ)

ψ̃(x) otherwise.
(3.15)

Lemma 3.1. Assume h(κ) satisfies (3.4) and that (3.7) holds. Let ψ̃κ be the function
defined in (3.15). Then:

GM,κ (ψ̃κ ) � (h(κ))2
∥∥(Ae)τ

∥∥2
L2(M)

+ 4π

(
ln κ − (max

M
∗F −min

M
∗F)h(κ)

)

+O(1). (3.16)

The next lemma gives a bound that contains crucial information about any min-
imizer. To that end we first need to introduce for any smooth A : R

3 → R
3, and

ψ ∈ H1(M;C),

Λ(A, ψ) := i
∫
M

Aτ · (ψ∇Mψ∗ − ψ∗∇Mψ) dH2
M, (3.17)

where as before, Aτ := A−(A · ν) ν.The superscript “ * ” in formula (3.17) means
complex conjugation and is not to be confused with expressions of the form ∗g,
which denote the application of the star operation on forms.
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Lemma 3.2. Assume h(κ) obeys (3.4) and that C0 satisfies (3.8). Then any mini-
mizer ψκ of GM,κ satisfies

h(κ)Λ(Ae, ψκ) � 4π ((maxM ∗F −minM ∗F) h(κ)− ln κ)−O(1).

Proof of Lemma 3.1. First observe that for any ψ :

GM,κ (ψ) =
∫
M
|∇Mψ |2 + κ2

2

(
|ψ |2 − 1

)2
dH2

M − h(κ)Λ(Ae, ψ)

+(h(κ))2
∫
M

∣∣(Ae)τ
∣∣2 |ψ |2 dH2

M. (3.18)

We compute, using the fact that
∣∣∣ψ̃κ

∣∣∣ = 1 outside B̂(p1, δ) ∪ B̂(p2, δ), defini-

tion (3.12) and estimate (3.14):

∫
M

∣∣∣∇Mψ̃κ

∣∣∣2 + κ2

2

(∣∣∣ψ̃κ
∣∣∣2 − 1

)2

dH2
M

=
∫
M\B̂(p1,δ)∪B̂(p2,δ)

∣∣∣∇Mψ̃κ

∣∣∣2 dH2
M +

2∑
�=1

∫
B̂(p�,δ)

∣∣∣∇Mψ̃�κ

∣∣∣2

+κ
2

2

(∣∣∣ψ̃�κ
∣∣∣2 − 1

)2

dH2
M

� C +
2∑
�=1

∫ 2π

0

∫ δ

0

1

r2
| fκ |2 (1+O(r))r dr dθ + κ2

2
H2

M({ fκ � 1})

� 4π ln κ +O(1). (3.19)

We next turn our attention to

−h(κ)Λ(Ae, ψ̃κ ) = ih(κ)
∫
M\B̂(p1,

1
κ
)∪B̂(p2,

1
κ
)

d ∗ F ∧
(
ψ̃∗κ dψ̃κ − ψ̃κdψ̃∗κ

)

+ ih(κ)
2∑
�=1

∫
B̂(p�,

1
κ
)

(Ae)τ ·
((
ψ̃�κ

)∗ ∇Mψ̃�κ−ψ̃�κ∇M
(
ψ̃�κ

)∗)

=: I 1
ψ̃κ
+ I 2

ψ̃κ
. (3.20)

The quantity I 2
ψ̃κ

is negligible. Using Hölder’s inequality together with h(κ) =
O(ln κ) and max�=1,2 H2

M(B̂(p�, δ)) = O
(

1
κ2

)
, we see

∣∣∣I 2
ψ̃κ

∣∣∣ � 2h(κ) · ∥∥Ae
∥∥

L∞ · max
�=1,2

{∥∥∥∇Mψ̃�κ

∥∥∥
L2(B̂(p�, δ))

}
· 1 · 1

κ
� C · (ln κ)

2

κ
.

(3.21)
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As for the first term, we have

I 1
ψ̃κ
= ih(κ)

∫
M\B̂

(
p1,

1
κ

)
∪B̂

(
p2,

1
κ

) d
[
∗F ·

(
ψ̃∗κ dψ̃κ − ψ̃κdψ̃∗κ

)]

+ih(κ)
∫
M\B̂

(
p1,

1
κ

)
∪B̂

(
p2,

1
κ

) ∗F · (dψ̃κ ∧ dψ̃∗κ − dψ̃κ ∧ dψ̃∗κ ).

But (dψ̃κ∧dψ̃∗κ−dψ̃κ∧dψ̃∗κ ) = 0 on M\ B̂(p1,
1
κ
)∪ B̂(p2,

1
κ
), since fκ ≡ 1 there.

Thus, integration by parts yields I 1
ψ̃κ

= ih(κ)
∑2
�=1

∫
∂ B̂(p�,

1
κ
)
∗F((ψ̃�κ )

∗dψ̃�κ −
ψ̃�κ d(ψ̃�κ )

∗),where the boundaries ∂ B̂(p�,
1
κ
) adopt the induced orientation by M.

It follows then that:

I 1
ψ̃κ
= i h(κ)

[∫ 2π

0
∗F

(
x

(
1

κ
, θ1

))(
2i +O

(
1

κ

))
dθ1

+
∫ 2π

0
∗F

(
x

(
1

κ
, θ2

))(
−2i +O

(
1

κ

))
dθ2

]
. (3.22)

On the other hand ∗F(x( 1
κ
, θ�)) = ∗F(p�) + O( (∇M∗F)

κ
). Plugging this into

(3.22) and replacing (3.21) and (3.22) in (3.20), yields

− h(κ)Λ(Ae, ψ̃κ ) = 4π h(κ) [∗F(p2)− ∗F(p1)]+ o(1). (3.23)

Finally the last term in (3.18) can be computed rather easily using (3.15). One has,

(h(κ))2
∫
M

∣∣(Ae)τ
∣∣2 ·

∣∣∣ψ̃κ
∣∣∣2 dH2

M=(h(κ))2
∫
M

∣∣(Ae)τ
∣∣2 dH2

M+o(1).

(3.24)

Estimates (3.19), (3.23) and (3.24) applied to (3.18), allow us to conclude
(3.16). ��
Proof of Lemma 3.2. Simply by considering the function às a competitor, we
observe that any global minimizer ψκ must satisfy the bound

GM,κ (ψκ) � (h(κ))2
∥∥(Ae)τ

∥∥2
L2(M)

. (3.25)

Likewise, any global minimizer ψκ satisfies

(h(κ))2
∫
M

∣∣(Ae)τ
∣∣2 |ψκ |2 dH2

M − h(κ)Λ(Ãe, ψκ) � GM,κ (ψκ) � GM,κ (ψ̃κ ).

(3.26)

Writing (h(κ))2
∫
M |(Ae)τ |2 |ψκ |2 dH2

M = (h(κ))2
∫
M |(Ae)τ |2 dH2

M + I, and
appealing to estimate (3.25), we know by (3.4) that

|I | � (h(κ))2
∥∥(Ae)τ

∥∥2
L4(M)

·
(

ln κ

κ

)
� C

(ln κ)3

κ
. (3.27)
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Hence,

(h(κ))2
∫
M

∣∣(Ae)τ
∣∣2 |ψκ |2 dH2

M = (h(κ))2
∥∥(Ae)τ

∥∥2
L2(M)

+ o(1). (3.28)

Thus, as Lemma 3.1 provides us with an upper bound for GM,κ (ψ̃κ ), we can
rearrange the terms in (3.18) to obtain the desired conclusion. ��

We are now able to present

Proof of Theorem 3.2. We divide the proof in two parts. First:

Upper Bound for the first critical field We assume C0 satisfies (3.8). Since {ψκ}
are global minimizers and their energy satisfies the energy bound (3.25), we can
appeal to Proposition 3.2 to obtain up to o(1) the value of the quantity:

h(κ)Λ(Ae, ψκ) = h(κ)i
∫
⋃

j∈I B̂ j

(Ae)τ · (ψκ∇Mψ∗κ − ψ∗κ∇Mψκ
)

dH2
M

+h(κ)i
∫
M\⋃ j∈I B̂ j

(Ae)τ · (ψκ∇Mψ∗κ − ψ∗κ∇Mψκ
)

dH2
M

= I I + I I I.

This will be achieved by performing, following Sandier and Serfaty (cf. [25]):

Jacobian estimates on a manifold First, Hölder’s inequality with the aid of Prop-
osition 3.2 yields

|I I | � C · h(κ)
∥∥Ae

∥∥
L∞ ‖∇Mψκ‖L2(M) ·

Nκ
(ln κ)6

� C

(ln κ)2
. (3.29)

Then writing α := ψκ|ψκ | , I I I can be computed by

I I I = h(κ)i
∫
M\⋃ j∈I B̂ j

(Ae)τ · (α∇M̌α∗ − α∗∇Mα
)

dH2
M

+h(κ)i
∫
M\⋃ j∈I B̂ j

(|ψκ |2 − 1)(Ae)τ · (α∇M̌α∗ − α∗∇Mα
)

dH2
M

= I V + V . (3.30)

The term V is actually harmless. Estimate (3.25) together with the fact that
|ψ | � 3/4 on M \⋃

i∈I B̂ j imply:

|V | � 2h(κ)
∥∥Ae

∥∥
L∞

(∫
M\⋃ j∈I B̂ j

(|ψκ |2 − 1)2 dH2
M

)1/2

×
(∫

M\⋃ j∈I B̂ j

|∇Mα|2 dH2
M

)1/2

� C (ln κ)

(
ln κ

κ

)(
(4/3)2

∫
M\⋃ j∈I B̂ j

|∇Mψκ |2 dH2
M

)1/2

� C

(
(ln κ)3

κ

)
. (3.31)
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We now turn to I V . Recall F satisfies (3.7), thus

I V = ih(κ)
∫
M\⋃ j∈I B̂ j

(α d ∗ F ∧ dα∗ − α∗ d ∗ F ∧ dα).

Then

I V = ih(κ)
∫
M\⋃ j∈I B̂ j

d
(∗F(αdα∗ − α∗dα)

)

+ih(κ)
∫
M\⋃ j∈I B̂ j

∗F(dα∗ ∧ dα − dα ∧ dα∗). (3.32)

The last integral is zero because |α| = 1. We integrate by parts to obtain

I V = −4πh(κ)
Nκ∑
j=1

∗F(p j )d j
(κ)

+h(κ)
Nκ∑
j=1

∫
∂ B̂ j

(∗F − ∗F(p j ))i(αdα∗ − α∗dα). (3.33)

We will argue that the last sum above is o(1). Indeed, define

ψ̂ :=
{
ψκ if |ψκ | � 3/4,
3
4
ψκ|ψκ | if |ψκ | > 3/4,

and α̂ := ψ̂∣∣∣ψ̂
∣∣∣ . Then the sum becomes, letting R̂ = ∑Nκ

j=1

∫
∂ B̂ j

(∗F − ∗F(p j )
)

i (αdα∗ − α∗dα)

R̂ =
Nκ∑
j=1

∫
∂ B̂ j

(∗F − ∗F(p j )
)

i (α̂dα̂∗ − α̂∗dα̂)

= 16

9

Nκ∑
j=1

∫
∂ B̂ j

(∗F − ∗F(p j )
)

i (ψ̂dψ̂∗ − ψ̂∗dψ̂)

= 16

9

Nκ∑
j=1

∫
B̂ j

d
((∗F − ∗F(p j )

)
i (ψ̂dψ̂∗ − ψ̂∗dψ̂)

)

= 16

9

Nκ∑
j=1

∫
B̂ j

d ∗ F ∧ i
(
ψ̂dψ̂∗ − ψ̂∗dψ̂

)

+32

9

Nκ∑
j=1

∫
B̂ j

(∗F − ∗F(p j )
)

d ψ̂ ∧ d ψ̂∗ = R1 + R2. (3.34)
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But since the gradient of ∗F is bounded on M and the norm of the gradient of ψ̂ is
bounded by the norm of the gradient of ψκ , we can invoke Proposition 3.2 to find
that

h(κ) |R1| � Ch(κ)
Nκ∑
j=1

‖∇Mψκ‖L2(B̂ j )
‖1‖L2(B̂ j )

� C (ln κ)2
Nκ

(ln κ)6

� C
(ln κ)4

(ln κ)6
. (3.35)

To estimate R2, note that inside each pseudo-ball B̂ j we have
∣∣∗F − ∗F(p j )

∣∣ �
C

|ln κ|6 . In this way we see that

h(κ) |R2| � C (ln κ) ‖∇Mψκ‖2
L2(M)

Nκ
(ln κ)6

� C
(ln κ)5

(ln κ)6
. (3.36)

So we have

h(κ)Λ(Ae, ψκ) = −4πh(κ)
Nκ∑
j=1

∗F(p j )d
(κ)
j + o(1), (3.37)

thanks to (3.29), (3.30), (3.31), (3.33), (3.34), (3.35) and (3.36).
Thus, we conclude that if either Nκ = 0 or if d(κ)j = 0 for all j, then

h(κ)Λ(Ae, ψκ) = o(1), and this would conflict with Lemma 3.2. To finish the
proof, simply take 0 � jκ � Nκ such that d(κ)jκ

�= 0. Now ∂ B̂ jκ divides M into
two submanifolds, each of them homeomorphic to a disk. But M is simply con-
nected and it then follows that the zeros of ψκ are isolated, whence each of the
submanifolds contains a vortex of nonzero degree.

Lower Bound for the first critical field In this part, we assume C0 satisfies (3.9).
To establish this we first claim that in this case

GM,κ (ψκ) � 2π
Nκ∑
j=1

∣∣∣d(κ)j

∣∣∣ (ln κ −O(ln ln κ))+ h(κ)2
∥∥(Ae)τ

∥∥2
L2(M)

+4πh(κ)
Nκ∑
j=1

∗F(p j )d
(κ)
j − o(1). (3.38)

Indeed, through an appeal to Proposition 3.2

∫
M
|∇Mψκ |2+ κ

2

2

(
|ψκ |2−1

)2
dH2

M �2π
Nκ∑
j=1

∣∣∣d(κ)j

∣∣∣ (ln κ−O(ln ln κ)).

(3.39)
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Also, because (3.28) and (3.37) are still valid in the present situation, we have

(h(κ))2
∫
M

∣∣(Ae)τ
∣∣2 |ψκ |2 dH2

M − h(κ)Λ(Ae, ψκ)

= (h(κ))2
∥∥(Ae)τ

∥∥2
L2
(M)

+ 4πh(κ)
Nκ∑
j=1

∗F(p j )d
(κ)
j + o(1). (3.40)

Adding up (3.39) and (3.40), yields (3.38). Recall that α := ψκ|ψκ | . We note that

4π
∑
j∈I

d(κ)j = i
Nκ∑
j=1

∫
∂ B̂ j

αdα∗−α∗dα= i
∫
M\⋃ j∈I B̂ j

d(αdα∗−α∗dα)=0.

(3.41)

Denoting by N+
κ the number of pseudo-balls out of the total of Nκ that carry a

positive degree and assuming, without any loss of generality, that the pseudo-balls
are ordered so that the ones with positive degree are listed first, we can express
(3.41) as

N+
κ∑

j=1

d(κ)j +
Nκ∑

j=N+
κ +1

d(κ)j = 0 or equivalently,
Nκ∑
j=1

∣∣∣d(κ)j

∣∣∣ = 2
N+
κ∑

j=1

d(κ)j . (3.42)

We then invoke (3.38) and the inequality GM,κ (ψκ) � GM,κ (1) to obtain

(h(κ))2
∥∥(Ae)τ

∥∥
L2(M)

� 2π
Nκ∑
j=1

∣∣∣d(κ)j

∣∣∣ (ln κ −O(ln ln κ))

+(h(κ))2 ∥∥(Ae)τ
∥∥

L2(M)

+4πh(κ)
Nκ∑
j=1

∗F(p j )d
(κ)
j − o(1). (3.43)

This implies

(1+ o(1)) ln κ
Nκ∑
j=1

∣∣∣d(κ)j

∣∣∣ �
(

max
M

∗F −min
M

∗F

)
h(κ)

Nκ∑
j=1

∣∣∣d(κ)j

∣∣∣+ o(1).

But in view of (3.4) and the assumption C0 <
1

maxM ∗F−minM ∗F , this cannot hold
for κ sufficiently large unless

Nκ∑
j=1

∣∣∣d(κ)j

∣∣∣ = 0, (3.44)

that is, unless the zeros (if any) of the minimizer ψκ all have zero degree. Pursu-
ing this possibility, however, we note that (3.37) would then imply thatΛ(Ae, ψκ)
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= o(1) and so in view of the fact that ψκ is a minimizer, we would find∫
M |∇Mψκ |2+ κ2

2

(|ψκ |2 − 1
)2

dH2
M = o(1).But if there exists even one zero of

ψ of zero degree, say at x = p ∈ M, then the estimate |∇Mψ | � C ·κ implies that
|ψ | � 1/2 on a pseudo-ball B̂(p, r) for a radius r � C1

κ
for some C1 independent

of κ. Hence, we can rule out the possibility of (3.44) since we would then have
∫
M
|∇Mψκ |2 + κ2

2

(
|ψκ |2 − 1

)2
dH2

M

�
∫

B̂(p,r)
|∇Mψκ |2 + κ2

2

(
|ψκ |2 − 1

)2
dH2

M � C2,

for some positive constant C2 independent of κ, a contradiction. The theorem is
proved. ��

We conclude this section with the extension of Theorem 3.2 to the small thick-
ness setting.

Proof of Theorem 3.3. First we prove that under the assumption that C0 satisfies
(3.8) and for fixed κ > κ0, global minimizers of Gε,κ must vanish at least twice
on each Mε, t , for all t ∈ (0, 1), provided ε is sufficiently small. We argue by
contradiction. Suppose for some t ∈ (0, 1) that there is a sequence {ε j } → 0, and
a sequence of global minimizers Ψε j ,κ that do not vanish on Mε j ,t . After perhaps
passing to a further subsequence (still denoted ε j ), we may apply Proposition 2.1
to establish that ψε j ,κ → ψκ in C0,α, where, ψκ is a global minimizer of GM,κ .

Associated with this minimizer there is a pseudo-ball B̂ guaranteed by Theorem 3.2
and Proposition 3.2 with an associated degree d(κ) �= 0. Sinceψκ is independent of
t, the degree deg(ψκ, {x + ε j tν(x) : x ∈ ∂ B̂}), must be different from zero for all
t ∈ (0, 1) as well. But then deg(ψε j ,κ , {x + ε j tν(x) : x ∈ ∂ B̂}) �= 0,must be valid

in light of uniform convergence. Since the set {x + ε j tν(x) : x ∈ ∂ B̂} is diffeo-
morphic to a circle, it divides the manifold into two disjoint components, each of
which is diffeomorphic to a disk, whence each contains a zero, and a contradiction
is reached.

Now, to prove the second statement in Theorem 3.3 we simply note that it is
a straightforward consequence of the uniform convergence of minimizer of Gε,κ

guaranteed by Proposition 2.1, coupled with the non-vanishing property of mini-
mizers of the Γ -limit provided by the second part of Theorem 3.2. ��

4. Energy estimates for critical points when there is a bounded
number vortices

The results presented in this section comprise several propositions that are basi-
cally drawn from [2,3], where a similar functional is studied in a planar setting.
When needed, we carefully present the necessary adjustments to those results to

fit our purposes. Here, we assume that
∑Nκ

j=1

∣∣∣d(κ)j

∣∣∣ is bounded independent of κ

which allows us to isolate the singularities of ψκ in a bounded (independent of κ)
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number of pseudo-balls. From this, the lower bound on the energy of a minimizer
obtained in Section 3 is improved by adding a sum of terms that accounts for the
vortex interaction. This is not possible if we employ the pseudo-balls provided by
Proposition 3.2; they are too large in the sense that they may contain many vortices.
That is the reason why we need a smaller scale concentration construction.

In this section suitable competitors are also constructed, providing us with an
almost matching upper bound for the energy of ψκ. In this section we assume that
the manifold M is analytic in addition to being simply connected. We denote by
dM(x, y), the geodesic distance between points x, y ∈ M whenever it makes
sense.

At this point, it will be more convenient to work with isothermal balls rather
than with geodesic balls as we did in the first part of the paper. The reason behind
this is the simple form that the Laplace–Beltrami operator takes in these coordi-
nates, which allows us to write a Pohozaev’s identity that is the basis for a small
scale concentration construction, as in [2,3]. As we point out in the introduction, we
use the term pseudo-ball indistinctly when referring either to a geodesic ball or an
isothermal ball, with the only purpose of avoiding confusion with Euclidean space
terminology. We fix notation that we use until the end of this paper. First, let r0
denote the injectivity radius. For each point p ∈ M, let (Up, Ip) be an isothermal
coordinate chart (which always exists since we are in dimension 2), that is, Ip is
a conformal map from Up onto R

2. We define B(p, r) := I−1
p (B(Ip(p), r)). In

these coordinates, we can write the metric near p as

λ2(dx2+dy2) where λ is a smooth function with the property λ(Ip(p))=1,

(4.1)

and the Laplace–Beltrami operator takes the form

ΔM = 1

λ2Δ, (4.2)

where Δ denotes the Euclidean Laplacian.
First we prove a lemma that gives a Pohozaev identity bound at the level of

pseudo-balls of radius 1
κα
, for 0 < α < 1.

Lemma 4.1. Fix 0 < α < 1. Let {ψκ} be a sequence of critical points of GM,κ .

Assume the intensity h(κ) satisfies (3.4). Assume also the uniform bound

∫
M
|∇Mψκ |2 + κ2

2

(
|ψκ |2 − 1

)2
dH2

M � C ln κ. (4.3)

Then, for all κ such that 1
κα
< r0

2 , one has

κ2
∫
B
(

p, 1
κα

)(1− |ψκ |2)2 < Cα, (4.4)

where Cα depends on α, but not on the point p ∈ M.
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Proof of Lemma 4.1. Since ψκ is a critical point and d�(Ae)τ = 0, we have the
Euler-Lagrange equation

−ΔMψκ = κ2ψκ(1− |ψκ |2)− 2ih(κ)[(Ae)τ · ∇M]ψκ
−(h(κ))2 ∣∣(Ae)τ

∣∣2 ψκ on M. (4.5)

In the proof we use the notation ψeuc
κ := ψκ ◦ (Ip)

−1. Let (x1, x2) denote the
canonical Euclidean coordinates in R

2.We identify a complex valued functionψ =
Reψ+ iImψ with (Reψ,Imψ), and consistenly iψ withψ⊥ := (−Imψ,Reψ).
We denote by 〈·, ·〉, the scalar product in R

2. Define Pp,r := κ2
∫

B(Ip(p),r)(
1− ∣∣ψeuc

κ

∣∣2)2 [
λ2 + 2λ〈∇λ, ((x1, x2)− Ip(p))〉

]
dx . Phrasing (4.5) in isother-

mal coordinates, multiplying (4.5) by

S := λ2
[

x1
∂ψeuc

κ

∂x1
+ x2

∂ψeuc
κ

∂x2

]
(4.6)

and integrating by parts on B(Ip(p), r) ⊆ R
2, where r ∈

[
1
κα
, 1

κ
α
2

]
, yields

Pp,r = κ2

2

∫
∂B(Ip(p),r)

λ2
(

1− ∣∣ψeuc
κ

∣∣2)2 〈((x1, x2)− Ip(p)), ν〉

+
∫
∂B(Ip(p),r)

(∣∣∣∣∂ψ
euc
κ

∂τ

∣∣∣∣
2

−
∣∣∣∣∂ψ

euc
κ

∂ν

∣∣∣∣
2
)
〈((x1, x2)− Ip(p)), ν〉

−
∫
∂B(Ip(p),r)

〈(
∂ψeuc

κ

∂τ

)
,

(
∂ψeuc

κ

∂ν

)〉
〈((x1, x2)− Ip(p)), τ 〉

+2h(κ)
∫
B(p,r)

〈[(Ae)τ · ∇M](ψ⊥κ ), Ŝ〉 dH2
M

+(h(κ))2
∫
B(p,r)

∣∣(Ae)τ
∣∣2 〈ψκ, Ŝ〉 dH2

M, (4.7)

where Ŝ denotes the pullback of S via Ip. The penultimate term on the right-hand
side can be controlled rather easily. Indeed,

h(κ)

∣∣∣∣
∫
B(p,r)

〈[(Ae)τ · ∇M]ψ⊥κ , Ŝ〉
∣∣∣∣ dH2

M � c · ln κ · r
∫
B(p,r)

|∇Mψκ |2 dH2
M

� c(ln κ)2

κα
= o(1). (4.8)

The last term is also of small order. From (4.3) and Hölder:

(h(κ))2
∣∣∣∣
∫
B(p,r)

∣∣(Ae)τ
∣∣2 〈ψκ, Ŝ〉 dH2

M

∣∣∣∣
� c · (ln κ)2

∫
B(p,r)

|∇Mψκ | dM(x, p)

� c · (ln κ)2 · ‖∇Mψκ‖L2 · ‖dM(x, p)‖L2(B(p,r))

� c · (ln κ)2 · √ln κ · 1

κα
= o(1). (4.9)
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The result will follow if we can show that for some r > 1
κα

the rest of the
terms on the right-hand side of (4.7) are bounded by a constant. In turn, this can
be obtained after noticing 〈((x1, x2) − Ip(p)), ν〉 = r, ((x1, x2) − Ip(p)) ⊥
τ,

∣∣∣ ∂ψκ∂τ
∣∣∣2 +

∣∣∣ ∂ψκ∂ν
∣∣∣2 = O(|∇Mψκ |2) and the fact that for some r ∈ [ 1

κα
, 1

κ
α
2
]

∫
∂B(p,r)

|∇Mψκ |2 + κ2

2

(
|ψκ |2 − 1

)2
dH1

M � cα
r
, (4.10)

where the constant cα does not depend on the point p. This last statement is a con-
sequence of (4.3) as in [3]. The left-hand side of (4.7) is bounded from below by

a quantity comparable to κ2
∫
B(p, 1

κα
)

(|ψκ |2 − 1
)2

dH2
M. Equations (4.8)–(4.10)

yield (4.4). ��
As anticipated, the purpose of the derivation of (4.4) is the concentration result

presented immediately below:

Proposition 4.1. Let ψκ be a sequence of global minimizers of GM,κ Borrowing
the notation from Proposition 3.2, assume

Nκ∑
i=1

∣∣∣d(κ)j

∣∣∣ < C, (4.11)

for a non-negative constant C independent of κ. Then there exist N0 ∈ N, a con-
stant λ0 > 0 and points pκ1 , . . . , pκmκ

in M with mκ � N0, such that |ψκ | � 1
2 on

M \⋃i=1,...,mκ
B(pκi , λ0

κ
), where the pseudo-balls B(pκi , λ0

κ
), i = 1, . . . ,mκ are

disjoint and |ψκ | (pκi ) < 1
2 . In addition ifκ is large enough, for any 0 < α < 1

2 there
exists a number 0 < α0 < α and points aκ1 , . . . , aκnκ in M with nκ � N0, such that

B(aκi , 1
κα0 )

⋂B(aκj , 1
κα0 ) = ∅, for i �= j, and |ψκ | � 1

2 on M\⋃nκ
i=1 B (

aκi ,
1
κα0

)
.

Proof of Proposition 4.1. First observe that (3.37) and assumption (4.11) yield
∣∣h(κ)Λ(Ae, ψκ)

∣∣ � C ln κ. (4.12)

We plug (4.12), (3.24) and (3.25) in (3.18) to obtain (4.3). Lemma 4.1 is applicable
here. The proof of the existence of the pκi ’s and their associated pseudo-balls then
proceeds exactly as in Theorem IV.1 in [3], so we omit it. From this, the larger
pseudo-balls can be obtained by a merging procedure. ��

Since we are now dealing with pseudo-balls of different sizes, we fix some
notation to avoid confusion. Consider a family of global minimizers {ψκ} satisfy-
ing the hypotheses of Proposition 4.1. Borrowing the notation contained there, we
write

dκα,i := deg

(
ψκ ; ∂B

(
aκi ,

1

κα

))
, and similarly dκi

= deg

(
ψκ, ∂B

(
pκi ,

λ0

κ

))
. (4.13)
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These correspond to the degrees in smaller pseudo-balls as opposed to the d(κ)j ’s
defined in Proposition 3.2. Note that also in this case, necessarily

nκ∑
i=1

dκα,i =
mκ∑
i=1

dκi = 0.

We see that equation (4.10) should hold for some r ∈ ( 1
κα0 ,

1

κ
α0
2
), with α = α0,

p = aκi , otherwise we would reach a contradiction with (4.3), after integration with
respect to r. This implies

∣∣dκα0,i

∣∣ � 2

π
cα0 . (4.14)

We focus now on estimating the energy of certain functions that will yield lower
bounds for minimizers of Ginzburg–Landau in the next section. To that end, con-
sider points b1, . . . , b�(κ) in M, and numbers d1, . . . , d�(κ). Let N0 be the integer
obtained in Proposition 4.1, and α0 the number found in Proposition 4.1. From now
on we assume, whenever we use the letter r, that

r ∈
(

1

κα0
,

1

κα
N0+1
0

)
. (4.15)

We will only be interested in collections satisfying the conditions

�(κ) � N0,

�(κ)∑
i=1

di = 0, |di | � 2

π
cα0 for all i = 1, . . . , �(κ),

and the pseudo-balls {B(bi , r)}�(κ)i=1 are pairwise disjoint. (4.16)

The condition (4.15) may seem strange, but its meaning will become apparent in
Proposition 4.5 below. Next, consider Φr satisfying

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ΔMΦr = 0 on M \⋃�(κ)
i=1 B(bi , r),

Φr = ci on ∂B(bi , r),∫
∂B(bi ,r)

∂Φr
∂ν

= 2πdi ,∫
M\⋃�(κ)

i=1 B(bi ,r)
Φr = 0.

(4.17)

Such a Φr can be obtained as a minimizer of

min
C

∫
M\⋃�(κ)

i=1 B(bi ,r)
|∇φ|2 + 2π

�(κ)∑
i=1

di φ|∂B(bi ,r),

where

C =
⎧⎨
⎩φ ∈ H1(M \

�(κ)⋃
i=1

B(bi , r);R) s.t. φ is a constant on each ∂B(bi , r)

⎫⎬
⎭ .
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Consider also Φ as a solution of
{
ΔMΦ = 2π

∑�(κ)
i=1 di δbi∫

MΦ = 0.
(4.18)

Let G be the Green’s function of M; that is, G satisfies
{
ΔMG(· , p) = δp − 1

H2(M)∫
G(x, p) dH2

M(x) = 0.
(4.19)

Note that

Φ(x) =
�(κ)∑
i=1

2πdi G(bi , x). (4.20)

The following energy decomposition is an analogue to that in [2] for a planar model.

Proposition 4.2. Let {B(bi , r)}�(κ)i=1 be a family of pseudo-balls and {di }�(κ)i=1 integers
satisfying the conditions (4.16). Then the following expansion holds

∫
M\⋃�(κ)

i=1 B(bi ,r)
|∇MΦr |2 dH2

M = −4π2
∑
i �= j

di d j G(bi , b j )

−4π2
�(κ)∑
i=1

d2
i G(bi , xi )+O(1), (4.21)

as r → 0, where xi is any point in ∂B(bi , r).

Proof of Proposition 4.2. The proof is as in [2]. The proof of Lemma I.3 of [2]
works in this setting yielding

sup
M\⋃�(κ)

i=1 B(bi ,r)

(Φ −Φr )− inf
M\⋃�(κ)

i=1 B(bi ,r)
(Φ −Φr ) �

�(κ)∑
i=1

sup
∂B(bi ,r)

Φ − inf
∂B(bi ,r)

Φ.

Then, the claim follows if

‖Φr −Φ‖L∞ = O(1). (4.22)

From now on we write, for real valued functions f, g, f � g to mean there is a
uniform constant C, throughout the manifold, independent of κ, such that f � C ·g.
Observe now that since |G(p, x)| � (1+ ln dM(p, x)), for any p, x in M, it fol-
lows that
∣∣∣∣∣ sup
∂B(bi ,r)

Φ − inf
∂B(bi ,r)

Φ

∣∣∣∣∣ � sup
j=1,...,�κ , x,y∈ ∂B(bi ,r)

∣∣ln dM(b j , x)− ln dM(b j , y)
∣∣

+O(r). (4.23)
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But,

sup
x,y∈ ∂B(bi ,r)

|ln dM(bi , x)− ln dM(bi , y)| =
∣∣∣∣ln O(r)

r

∣∣∣∣ = O(1), (4.24)

and similarly for j �= i and x, y ∈ ∂B(bi , r), using that the pseudo-balls are
disjoint and of radius r we obtain:

∣∣ln dM(b j , x)− ln dM(b j , y)
∣∣ �

∣∣∣∣ln
(

dM(b j , y)+ dM(y, x)

dM(b j , y)

)∣∣∣∣
�

∣∣∣∣ln
(

1+ O(r)
dM(b j , y)

)∣∣∣∣ = O(1). (4.25)

In this way, (4.22) is a consequence of (4.23)–(4.25). We integrate by parts the
left-hand side of (4.21) to obtain

∫
M\⋃�(κ)

i=1 B(bi ,r)
|∇MΦr |2 dH2

M = −
�(κ)∑
i=1

2πdiΦ(xi )+O(1),

where xi ∈ ∂B(bi , r), thanks to (4.22). Finally, for i �= j and x j ∈ ∂B(b j , r), we
can deduce

G(bi , x j ) = G(bi , b j )+O(1), (4.26)

using the same argument utilized in (4.25). We can substitute (4.20) and (4.26) on
the left-hand side of (4.21), and the result follows. ��

One of the implications of Proposition 4.2 is a lower bound on the energy of min-
imizers that is optimal up to O(1).To this end, define the map Sκ : C1(M;C) �→ R

by

Sκ(ψ) := |∇Mψ |2 + κ2

2
(|ψ |2 − 1)2, (4.27)

and establish:

Proposition 4.3. Let ψκ be a global minimizer of GM,κ satisfying the hypotheses
of Proposition 4.1. Using the notation in Proposition 4.1, assume in addition that
{B(aκi , r)}nκi=1 is a disjoint family. Then for any xi ∈ ∂B(aκi , r), i = 1, . . . , nκ , the
lower bound

GM,κ (ψκ) � −4π2
nκ∑

i=1

∣∣dκα0,i

∣∣2 G
(
aκi , xi

)− 4π2
∑
i �= j

dκα0,i dκα0, j G
(

aκi , aκj

)

+2π
nκ∑

i=1

∣∣dκα0,i

∣∣ ln(κ · r)+ h(κ)2
∥∥(Ae)τ

∥∥2
L2(M)

+4πh(κ)
nκ∑

i=1

∗F
(
aκi

)
dκα0,i +O(1) (4.28)

holds for κ large.
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Proof of Proposition 4.3. First, note that all the hypotheses of Proposition 4.2 are
met here. Now, the estimate

h(κ)Λ(Ae, ψκ) = −4πh(κ)
nκ∑
j=1

∗F(aκi )d
κ
α0,i + o(1), (4.29)

can be obtained in a similar fashion to what we did for the larger pseudo-balls in
(3.29)–(3.36). The fact that in this case nκ is bounded independently of κ only
makes the calculation simpler. Secondly, (3.28) also holds here, so we need only
to estimate

∫
M |∇Mψκ |2 + κ2

2 (|ψκ |2 − 1)2 dH2
M = ∫

M Sκ(ψκ) dH2
M. Writing

Bi,r := B(aκi , r), one has

∫
⋃nκ

i=1 Bi,r

Sκ(ψκ) dH2
M �

∫
⋃nκ

i=1 B(Iaκi
(aκi ),r)

∣∣∣∇
(
ψκ ◦ (Iaκi

)−1
)∣∣∣2 dx

�
nκ∑

i=1

∣∣dκα0,i

∣∣ ln(κ · r)− C. (4.30)

which follows as in V.II of [3] without modification, for κ large, thanks to (4.14)
and invariance of degree in the annulus B(aκi , r) \ B(aκi , 1

κα0 ). In turn, defining

fκ = ψκ|ψκ | , we notice

∫
M\⋃nκ

i=1 Bi,r

Sκ(ψκ) �
∫
M\⋃nκ

i=1 Bi,r

|∇M fκ |2 |ψκ |2 dH2
M. (4.31)

Introducing H through the usual Hodge-de-Rham decomposition, i( fκ ∧ d f ∗κ −
f ∗κ ∧ d fκ ) = ∗d Φr + d H, whereΦr satisfies (4.17), thanks to (4.31), it holds that

∫
M\⋃nκ

i=1 Bi,r

Sκ(ψκ) �
∫
M\⋃nκ

i=1 Bi,r

|ψκ |2 |∇MΦr |2 dH2
M

+2
∫
M\⋃nκ

i=1 Bi,r

|ψκ |2 dΦr ∧ d H

=: I + I I. (4.32)

Below, we make use of the pointwise estimates |∇MΦr | � c
r , |∇MH | � cκ, that

follow from elliptic regularity. We examine

∣∣∣∣∣I −
∫
M\⋃nκ

i=1 Bi,r

|∇MΦr |2 dH2
M

∣∣∣∣∣

� c
1

r2

(∫
M\⋃nκ

i=1 Bi,r

(|ψκ |2 − 1)2
) 1

2

· [H2(M)] 1
2

� c · κ2α0 ·
√

ln κ

κ
= o(1). (4.33)
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In the last inequality we used α0 <
1
2 and (4.3). On the other hand, dΦr ∧ d H

is closed, therefore its integral reduces to boundary terms. These terms vanish since
Φr is constant on each component. One has∣∣∣∣ I I

2

∣∣∣∣ �
∫
M\⋃nκ

i=1 Bi,r

(1− |ψκ |2) |∇MΦr | |∇MH |

=
∫
(M\⋃nκ

i=1 Bi,r )
⋂{|ψκ |>1− 1

(ln κ)2
}
· +

∫
(M\⋃nκ

i=1 Bi,r )
⋂{|ψκ |�1− 1

(ln κ)2
}
·

=: I I I + I V . (4.34)

We see

I I I � 4
c

(ln κ)2

∫
M\⋃nκ

i=1 Bi,r

|∇M ψκ |2 dH2
M

� c

(ln κ)2
ln κ = o(1), (4.35)

where the last inequality comes from (4.3). Again invoking (4.3), one readily checks

H2
M((M \⋃nκ

i=1 Bi,r )
⋂{|ψκ | � 1− 1

(ln κ)2
}) � c · (ln κ)5

κ2 . Thus

I V �
∫
(M\⋃nκ

i=1 Bi,r )
⋂{|ψκ |�1− 1

(ln κ)2
}
(1− |ψκ |2) · 1

r
· κ dH2

M

� cκα0+1 · (ln κ)
1
2

κ
· (ln κ)

5
2

κ
= o(1). (4.36)

The result now follows from (3.28), (4.29), (4.30), (4.32), (4.33), (4.35), (4.36),
and Proposition 4.2. ��

To conclude, we state a couple of propositions that are required in Section 5
when the energy of GM,κ (ψκ) is determined up to o(1). This time, we consider
any collection of points q1, . . . , q2n0 in M, where n0 is a given non-negative inte-
ger. We use polar coordinates (r, θ) to parametrize the Euclidean ball B(Ip(p), r),
where p is a point in M. We define the family of sets

Fq1,...,q2n0
(r)

=
{
ψ ∈ H1

(
M \ ∪B(qi , r);S1

)
, s.t. for each j there is a constant θ j with

ψ ◦ (Iqi )
−1(r, θ) = ei(θ+θ j ) on ∂B(Iqi (qi ), r) for i = 2, 4, . . . , 2n0, and

ψ ◦ (Iqi )
−1(r, θ)=ei(−θ+θ j ) on ∂B(Iqi (qi ), r) for i=1, 3, . . . , 2n0 − 1.

}

(4.37)

Also associated to a pseudo-ball centered at p ∈ M carrying a degree +1 (resp.
−1), we define the set F+

p,r (resp. F−
p,r ), by

F±
p,r =

{
ψ ∈ H1 (B(p, r);C) such that ψ ◦ (Ip)

−1|B(Ip(p),r)=e±iθ
}
.

(4.38)
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We recall that in (4.37) and in (4.38), the radius r is understood to satisfy (4.15)
while the family {B(qi , r)}2n0

i=1 is disjoint with n0 bounded independent of κ .

Proposition 4.4. Let Fq1,...,q2n0
(r) be as in (4.37). Assume that for all i �= j, one

has

dM(qi , q j ) · κα
N0+1
0 →∞, as κ →∞. (4.39)

Then there exists ψr
out ∈ Fq1,...,q2n0

(r) and a real valued φ̃ such that
∫
M\⋃2n0

i=1 B(qi ,r)

∣∣∇Mψr
out

∣∣2 = inf
ψ∈Fq1,...,q2n0

(r)

∫
M\⋃2n0

i=1 B(qi ,r)
|∇Mψ |2

=
∫
M\∪B(qi ,r)

∣∣∣∇Mφ̃

∣∣∣2

= −4π2
2n0∑
i=1

G(qi , xi )− 4π2
∑
i �= j

G(qi , q j )(−1)i+ j

+o(1). (4.40)

Here xi is any point in ∂B (qi , r) and φ̃ is a solution of{
ΔMφ̃ = 0 in M \⋃2n0

i=1 B(qi , r)
∂φ̃
∂ν
= (−1)i

r on ∂B(qi , r).
(4.41)

Proof of Proposition 4.4. The proof can be carried out as the one of Theorem I.9
in [2], modulo obvious modifications, so we omit it. ��
Remark 4.1. The improvement in the order of magnitude of the error in the equa-
tion (4.40) with respect to (4.21) stems from the assumption that the distance
between the centers of the pseudo-balls is much greater than

1

κα
N0+1
0

,

which allows one to sharpen (4.22), (4.24), (4.25) and (4.26) in this case.

Following [2], we now let B(q, R) be a ball in two-dimensional Euclidean space
and let f : B(q, r0) �→ R, where r0 is the injectivity radius. Define

C±R :=
{
ψ ∈ H1(B(q, R);C) s.t. ψ |∂B(q,R) = e±iθ

}
. (4.42)

For any f : B → R, we now write

I f
± (κ, R) := min

ψ∈C±R

∫
B(q,R)

|∇ψ |2 + f 2 κ
2

2

(
|ψ |2 − 1

)2
dx, (4.43)

where dx is the Lebesgue measure in R
2.When f ≡ 1 we simply write I±(κ, R) :=

I 1±(κ, R). We also set

I±(κ) := I±(κ, 1), (4.44)
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and note that

I±(κ, R) = I±
(

1

κR

)
. (4.45)

From Lemma III.1 in [2] it follows that there exists a constant c0 independent of
whether the minimum in (4.43) is taken over C+R or C−R , such that

(I±(s)+ 2π ln s)↘ c0, as s → 0. (4.46)

We relate the previous to our problem in the following proposition:

Proposition 4.5. Let ψκ be a global minimizer of GM,κ satisfying the conditions

of Proposition 4.1. Assume that for all i = 1, . . . , nκ , one has
∣∣∣dκα,i

∣∣∣ = 1. Then

there exists a radius r = r(κ) satisfying (4.15) and a function ψκ,±in,i ∈ F±
aκi ,r

such

that for any i = 1, . . . , nκ the following asymptotic bound holds for κ large

∫
Bi,r

Sκ(ψκ)dH2
M � 2π ln(κ · r)+ c0 + o(1) = min

ψ∈F±
aκi ,r

∫
Bi,r

Sκ(ψ)dH2
M

=
∫
Bi,r

Sκ(ψ
κ,±
in,i )dH2

M + o(1). (4.47)

Proof of Proposition 4.5. Without loss of generality, assume dκα0,i
= 1. First one

finds a radius r ∈ ( 1
κα0 ,

1

κ
α

N0+1
0

) such that

|ψκ | � 1− 1

(ln κ)2
on ∂Bi,r . (4.48)

This can be done in the same way as in the proof of Proposition 3.1 in [22], where
a similar result is obtained for a complex-valued function u defined on an open set
Ω ⊂ R

2, based solely on the assumption

κ2
∫
Ω

(
|u|2 − 1

)2
� C ln κ. (4.49)

Such a bound is also true in our case thanks to (4.3). The construction is iterative,
which is why the exponent N0 + 1 appears. Next we write

ψeuc
κ := ψκ ◦ (Iaκi

)−1. (4.50)

Inequality (4.48) allows one to extend ψeuc
κ to the annulus B(Iaκi

(aκi ), 2r) \
B(Iaκi

(aκi ), r) exactly as in the proof of Proposition 5.2 in [22], to a function
ψeuc,ext
κ such that

ψeuc,ext
κ = eiθ (4.51)
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on ∂B(Iaκi
(aκi ), 2r), and which satisfies

∫
B(Iaκi

(aκi ),2r)\B(Iaκi
(aκi ),r)

∣∣∇ψeuc,ext
κ

∣∣2 + κ2

2
(
∣∣ψeuc,ext
κ

∣∣2 − 1)2 dx

= 2π ln 2+ o(1). (4.52)

This, together with ψeuc,ext
κ ∈ F+

akappa
i ,2r

, and the fact that property (4.46) can be

applied since by assumption κ · r →∞, yields

I0 :=
∫

B(Iaκi
(aκi ),r)

∣∣∇ψeuc
κ

∣∣2 + κ2

2

(∣∣ψeuc
κ

∣∣2 − 1
)2

dx

� 2π ln(κ · r)+ c0 + o(1). (4.53)

One has
∫
Bi,r

Sκ(ψκ) dH2
M =

∫
B(Iaκi

(aκi ),r)

∣∣∇ψeuc
κ

∣∣2 + λ2 κ
2

2
(
∣∣ψeuc
κ

∣∣2 − 1)2 dx

=: Iλ. (4.54)

The property (4.1), the bound (4.4), and κ · r →∞ can be used to prove

|I0 − Iλ| = O(r), (4.55)

and similarly
∣∣I+(κ, r)− I λ+(κ, r)

∣∣ = O(r). (4.56)

Finally, let ψ0 be a function that achieves (4.43) with f = λ, where λ is given by
(4.1). Define ψκ,+in,i by

ψ
κ,+
in,i (x) := ψ0(Iai

κ
(x)) for x ∈ Bi,r . (4.57)

Then, the bound (4.47) follows from (4.46),(4.53),(4.55),(4.56) and the definition
(4.57). ��

5. Emergence of multiple vortices in a surface of revolution

In this section we assume M̌ is a simply connected surface of revolution param-
etrized in the following way:

If θ and φ denote the standard azimuthal and zenith angles in spherical coordi-
nates respectively, then

M̌ := { ( u(φ) cos θ, u(φ) sin θ, v(φ) ) : φ ∈ [0, π ], θ ∈ [0, 2π ]}, (5.1)

where u, v : [0, π ] → R are C1 functions related by the condition

v(φ) = cot φ u(φ) for 0 < φ < π (5.2)
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with

u(0) = 0 = u(π), v(0) > 0, v(π) < 0 and v′(0) = 0 = v′(π). (5.3)

and we further assume the regularity condition

γ (φ) :=
√

u′(φ)2 + v′(φ)2 � γ0 for φ ∈ [0, π ] (5.4)

for some γ0 > 0. Note that necessarily,

u(φ) = lφ + o(φ) for some positive constant l (5.5)

near φ = 0 with a similar expansion holding near φ = π.

The applied field Hext, will be taken throughout the rest of the paper to be of
the form Hext(κ) = h(κ)êz .

In this section, we obtain a description of the emergence of pairs of vortices as
h(κ) is increased. With that goal in mind, we now focus on describing the asymp-
totic intensity h(κ) of the applied field Hext(κ) that yields the presence of a given
number of pairs of vortices in any global minimizer ψκ of GM̌,κ

in this context.
We point out that the results here obtained extend the results obtained in [5] and
provide us with analogues, in the manifold setting, of the corresponding results
in the plane in [22,25]. As a consequence of this analysis, we obtain that for ε
small enough, the same intensity of the applied field that forces the presence of n
pairs of vortices in the manifold problem yields the existence of n pairs of vortex
lines in any global minimizer Ψκ of the three-dimensional energy Gε,κ . We stress
that even though the phenomenon of vortex lines in three-dimensional Ginzburg–
Landau emerging in the presence of an external field has been studied (see [1,16,
17]), the zero set in these cases is realized as an integer multiplicity 1-current,
thus it could be viewed as a union of curves only in a weak sense. In our case the
zero set is a union of smooth curves. To achieve this, we make use of properties
and asymptotics obtained in Section 4, but to do so we first need to verify that the
required hypotheses are satisfied. We recall that if we denote êθ and êφ as the unit
vectors in the θ and φ directions respectively, then for any function ψ : M̌ → C

the relative gradient ∇M̌ can be written in the form:

∇M̌ψ =
(

1

γ (φ)
ψφ

)
êφ +

(
1

u(φ)
ψθ

)
êθ . (5.6)

Also, it will be convenient to choose the potential Aext = h
2 (−X2, X1, 0)

corresponding to Hext so that on M̌ we have

Aext = (Aext)
τ =

(
hu(φ)

2

)
êθ . (5.7)

Thus,

GM̌, κ
(ψ) =

∫ π

0

∫ 2π

0

{
1

γ 2

∣∣ψφ ∣∣2 +
∣∣∣∣ 1

u
ψθ − i

hu

2
ψ

∣∣∣∣
2
+ κ2

2
(|ψ |2 − 1)2

}
u γ dθ dφ,

(5.8)

since in this case dH2
M̌ = u(φ) γ (φ) dφ dθ. We prove:
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Proposition 5.1. Let h(κ) = 4π
H2(M̌)

ln κ+σ ln ln κ for a constant σ > 0 indepen-

dent of κ and let ψκ a family of global minimizers of GM̌, κ
. Then if we denote by

{d(κ)j } j=1,...,Nκ their degrees as defined in Proposition 3.2, it holds:

Nκ∑
j=1

∣∣∣d(κ)j

∣∣∣ < C, (5.9)

where C is a constant independent of κ.

Proof. We first note that in this case ∗F, where F is given by (3.7), can easily be
computed as

∗ F(x) = ∗F(φ(x)) = 1

2

∫ φ

0
u(φ̃)γ (φ̃) dφ̃. (5.10)

Here we have fixed the free constant by taking ∗F to vanish at the north pole. One
can see from (5.10) ∗F is increasing with respect to φ = φ(x). Note also that,
thanks to (5.1) and (5.3), ∗F satisfies

∗ F(0, 0, v(π))− ∗F(0, 0, v(0)) = H2(M̌)

4π
. (5.11)

Next, we see that (3.28) in this setting reads

(h(κ))2
∫
M̌

∣∣Ae
∣∣2 |ψκ |2 dH2

M̌ =
(

h(κ)

2

)2

‖u‖2
L2(M̌)

+ o(1). (5.12)

Let us assume that dκ := ∑Nκ
j=1

∣∣∣d(κ)j

∣∣∣ > 0 for otherwise there would be nothing

to prove. Suppose without loss of generality that there is a number N+
κ such that

for i = 1, . . . , N+
κ , we have d(κ)j > 0 and

φ(p1) � φ(p2) · · · � φ(pN+
κ
), (5.13)

while for i = N+
κ + 1, . . . , Nκ we have d(κ)j � 0 and

φ(pN+
κ +1) � φ(pN+

κ +2) � · · · � φ(pNκ ). (5.14)

We claim that we can assign to each i = 1, . . . , 1
2 dκ , two points p+i and p−i , that

are centers of pseudo-balls carrying a non-zero degree and with the property that
the degree associated to p+i (resp. p−i ) is positive (resp. negative). In addition we
claim these points can be chosen so that

φ(p+1 ) � φ(p+2 ) · · · � φ

(
p+1

2 dκ

)
, (5.15)

while

φ(p−1 ) � φ(p−2 ) · · · � φ

(
p−1

2 dκ

)
. (5.16)
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To that end, simply define �̃ := min{� such that
∑�

j=1 d(κ)j > i} − 1, and set

p+i := p
�̃
. This means that each pi is repeated d(κ)i -times. We can do something

similar for the pi ’s with d(κ)i < 0. The cardinalities of these two collections agree
and both are equal to 1

2 dκ , thanks to (3.41). Finally, the monotonicity claims (5.15)
and (5.16) follow by construction since we have that (5.13) and (5.14) hold. Define
for s = 1, . . . , 1

2 dκ

Fs := ∗F(p+s )− ∗F(p−s ). (5.17)

Let S := {1, . . . , 1
2 dκ }. With this notation we can rewrite (3.43) in the following

manner:

(
h(κ)

2

)2

‖u‖2
L2(M̌)

� 4π
∑
s∈S
(ln κ −O(ln ln κ)+ Fsh(κ))

+
(

h(κ)

2

)2

‖u‖2
L2(M̌)

− o(1). (5.18)

Let S+ be the set of indices for which Fs is positive. Inequality (5.18) together with
(5.11) imply that for some constant C independent of κ, one has

Cdκ ln ln κ � C |S \ S+| ln ln κ � |S+| ln κ. (5.19)

On the other hand, the conditions (5.4) and (5.5) yield the existence of a constant
C0 such that for p near (0, 0, v(0))

∗ F(p) � C0(φ(p))
2 +O((φ(p))3), (5.20)

and for q close to (0, 0, v(π))

∗ F(q) � H2(M̌)

4π
− C0(φ(q)− π)2 +O((φ(q)− π)3). (5.21)

Let Spoles denote the set

Spoles=
{

s ∈ S such that φ(p−s )�π−
(

1

ln κ

) 5
12

, and φ(p+s )�
(

1

ln κ

) 5
12
}
.

(5.22)

Then, appealing to (5.20) and (5.21), we deduce from (5.18) that for some constant
C independent of κ, one has

Cdκ ln ln κ � C
∣∣Spoles

∣∣ ln ln κ �
∣∣S \ Spoles

∣∣ (ln κ) 1
6 . (5.23)

Let B̂ denote the set of points in [0, π ] × [0, 2π ] that correspond to the union
of the pseudo-balls∪Nκ

j=1 B̂ j in this parametrization. Appealing to (3.25) once again
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and substituting (5.12), we get

o(1) �
∫
[0,π ]×[0,2π ]\B̂

[
1

γ 2

∣∣ψφ∣∣2 + 1

u2
|ψθ |2 + κ2

2
(|ψκ |2 − 1)2

]
uγ dθ dφ

+2π
Nκ∑
j=1

∣∣∣d(κ)j

∣∣∣ (ln κ − c ln ln κ)−Λ(Aext, ψκ)

�
∫
[0,π ]×[0,2π ]\B̂

[
1

γ 2

∣∣ψφ∣∣2 + 1

u2
|ψθ |2 + κ2

2
(|ψκ |2 − 1)2

]
uγ dθ dφ

+2π
Nκ∑
j=1

∣∣∣d(κ)j

∣∣∣ (ln κ − c ln ln κ)

−4π

(
4π

H2(M̌)
ln κ + σ ln ln κ

)
1

2

Nκ∑
j=1

∣∣∣d(κ)j

∣∣∣ H2(M̌)

4π
+ o(1)

= Mκ − R1

⎛
⎝ Nκ∑

j=1

∣∣∣d(κ)j

∣∣∣
⎞
⎠ ln ln κ + o(1), (5.24)

where in the first inequality we have used item (4) of Proposition 3.2 and in the
following equality, (3.37) and (3.42). In the last line we have defined

Mκ :=
∫
[0,π ]×[0,2π ]\B̂

[
1

γ 2

∣∣ψφ∣∣2+ 1

u2
|ψθ |2+ κ

2

2
(|ψκ |2−1)2

]
uγ dθ dφ,

(5.25)

and

R1 := σ

2
H2(M̌)+ 2πc. (5.26)

Our next goal is to obtain a lower bound for Mκ . For that purpose we once again
appeal to Proposition 3.2, more specifically to items (2) and (3), to see that if we
define Cφ = {(u(φ) cos θ, u(φ) sin θ, v(φ)), θ ∈ [0, 2π ]}, then

∣∣∣{φ ∈ [0, π ] s.t. Cφ ∩ ∪Nκ
j=1 B̂ j is non-empty }

∣∣∣ � 1

(ln κ)4
. (5.27)

Now, note that from (5.3) and (5.5), one sees that for φ near zero,

γ

u
= 1

φ
+O(1), (5.28)

so fixing φ0 small independent of κ and defining

Aφ0 =
{
φ :

(
1

ln κ

) 5
12

<min{|φ| , |π−φ|}�φ0 and Cφ ∩ ∪Nκ
j=1 B̂ j is empty

}

(5.29)
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we are able to write ψ(θ, φ) = f (θ, φ)eiχ(θ,φ) locally on Aφ0 × [0, 2π ], where
f and χ are real functions, f is smooth 2π -periodic in θ and f � 1

2 restricted
to Aφ0 × [0, 2π ]. Thus, using the “lower bounds on annuli” method introduced in
[24], we derive

Mκ �
∫

Aφ0

(∫ 2π

0

{(
∂ f

∂θ

)2

+ f 2
(
∂χ

∂θ

)2
}

dθ

)
γ

u
dφ

� 1

4

∫
Aφ0

1

4π2

(∫ 2π

0

∂χ

∂θ
dθ

)2 (
1

φ
+O(1)

)
dφ

� 1

4

∫
Aφ0∩{φ�φ0}

1

4π2

⎛
⎝2π

∑
{ j s.t. φ(p j )�φ}

d(κ)j

⎞
⎠

2 (
1

φ
+O(1)

)
dφ

�

⎛
⎝1

2

Nκ∑
j=1

∣∣∣d(κ)j

∣∣∣
(

1+O
(

ln ln κ

(ln κ)
1
6

))⎞
⎠

2

R2 ln ln κ, (5.30)

for some constant R2, where in the second inequality we have used Hölder and in
the last one (3.42), (5.19), (5.23) and (5.27). To conclude, plug (5.30) into (5.24)
to obtain

R2

2

⎛
⎝ Nκ∑

j=1

∣∣∣d(κ)j

∣∣∣
⎞
⎠

2

� 4R1

Nκ∑
j=1

∣∣∣d(κ)j

∣∣∣+ o(1), (5.31)

which implies (5.9). ��
Remark 5.1. Note that since the degrees dκj are integers, the conclusion (5.9) allows
us to assert the existence of a constant c independent of κ such that

φ(pi ) � c

(
1

ln κ

) 5
12

, for all i s.t. d(κ)i < 0, (5.32)

and also

π − φ(pi ) � c

(
1

ln κ

) 5
12

, for all i s.t. d(κ)i > 0, (5.33)

thanks to (5.19) and (5.23).

Before stating the main theorem of the second part of this article on number and loca-
tion of vortices, we first provide some pertinent definitions. First, for every n ∈ N

define the function Rn : (R2)n �→ R, that to a given collection {xi }ni=1 ⊆ R
2,

assigns the number

Rn(x1, . . . , xn) := −2π
∑
i �= j

ln
∣∣xi − x j

∣∣+ 4π

H2(M̌)

n∑
i=1

|xi |2 . (5.34)
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The projection of elements of the manifold M̌ onto the xy plane is defined
naturally as

Proj p := p − (p · êz)êz, for p ∈ M̌. (5.35)

Remark 5.2. Clearly Proj is not globally one-to-one, however it is injective when
restricted to small neighbourhoods of (0, 0, v(0)) and (0, 0, v(π)), a fact that we
make use of later when determining the asymptotic configuration of the vortices.

We recall a function ψ : R
2 → R

2 is said to be non-singular at x if det [Jacψ]
(x) �= 0. Our result about emergence of multiple vortices above the first critical
field is the following:

Theorem 5.1. Let M̌ be a simply connected surface of revolution as defined in
(5.1), (5.2) and (5.3), satisfying in addition the regularity condition (5.4). Let

Hext(κ) = h(κ)êz, where h(κ) = 4π

H2(M̌)
ln κ + σ ln ln κ. (5.36)

If σ /∈ (4π/H2(M̌))Z, then there is a κ0 such that for all κ � κ0, any mini-

mizer ψκ of GM̌,κ
possesses exactly 2n0 := 2�σ H2(M̌)

4π � + 2 vortices which are
non-singular. Furthermore, the set of vortices {pκi : i = 1, . . . , 2n0} satisfies:

1. There exists a constant M such that for all κ � κ0, it holds that

{pκi }n0
i=1 ⊆

{
x ∈ M̌ : φ(x) � M√

ln κ

}
, and

{pκi }2n0
i=n0+1 ⊆

{
x ∈ M̌;φ(x) � π − M√

ln κ

}
.

2. For all i = 1, . . . , n0 the degrees associated to the vortices pκi is equal to 1,
whereas the remaining vortices have an associated degree of −1.

3. Lastly, if for i = 1, . . . , 2n0 we define Pκi = √
ln κ Proj pκi , then the config-

urations (Pκ1 , . . . , Pκn0
) and (Pκn0+1, . . . , Pκ2n0

) converge, up to subsequence,

simultaneously as κ goes to infinity to respective minimizers
−→
X 0 and

−→
X π of

the renormalized energy Rn0 .

Theorem 5.1 provides an analogue of Theorem 1.2 in [21] in the case of a planar
disk. Here, we see that there are two concentration points, as opposed to the case
considered in [21]. Also, in this setting in order to write a renormalized energy, one
is forced to leave the manifold; in order to rescale the vortices one must project them
first to the xy plane, an operation that, for κ large, provides a one-to-one relation
between these points living in Euclidean space, and the vortices, while allowing us
to write the energy in terms of these projections with a precision of o(1). Once this
is achieved, the renormalized energy is decomposed into two independent compo-
nents that are qualitatively like the one in the flat case.

A related result for thin shells is also available.
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Theorem 5.2. Using the same notation as in Theorem 5.1, fix κ � κ0. It holds that
there exists an ε0 such that for all ε < ε0 any minimizer Ψε,κ of Gε,κ has exactly
2n0 vortex lines. More precisely, letting ψε,κ be the function in (2.5), there are
�εi , i = 1, . . . , 2n0, disjoint C1 curves whose union comprises the zero set of ψε,κ
and such that for all i = 1, . . . , 2n0, it holds that

�εi (t)→ (pκi , t),

uniformly in (0, 1), as ε→ 0.

Proof of Theorem 5.1. 1.We first prove that the vortices with non-zero degree
lie near the poles

By the hypotheses, we can apply Proposition 5.1. Thus, equation (5.9) holds
and this implies that we can also make use of Propositions 4.1 and 4.1. Remember
that

∑nκ
i=1 dκα0,i

= ∑Nκ
j=1 d(κ)j = 0.

From (3.25), (3.28), (4.29) and (4.30) applied to r = 1
κα0 , one sees that

(h(κ))2
∥∥(Ae)τ

∥∥2
L2(M̌)

� 2π
nκ∑
j=1

∣∣∣dκα0, j

∣∣∣ ln(κ1−α0)+ 4πh(κ)
nκ∑
j=1

∗F(aκj )d
κ
α0, j

+(h(κ))2 ∥∥(Ae)τ
∥∥2

L2(M̌)
− o(1). (5.37)

Defining dα0 := ∑nκ
i=1

∣∣∣dκα0, j

∣∣∣ , we assign to each i ∈ S := {1, . . . ,dα0} two

centers of pseudo-balls; aκ,+i and aκ,−i , carrying positive and negative degrees
respectively. In addition, the points thus chosen can be assumed to satisfy (5.15)
and (5.16), where this time the role of the p±i ’s is replaced by the aκ,±i ’s. This
construction can be carried out in a way similar to what we did for the larger
pseudo-balls in the beginning of the proof of Proposition 5.1. In the same way as
before, we define

Fs := ∗F(aκ,+s )− ∗F(aκ,−s ). (5.38)

Let S+ := {s ∈ S : Fs > 0}.We see that for s ∈ S+, one has trivially Fsh(κ) � 0,
while for s /∈ S+, Fsh(κ) � − ln κ −O(ln ln κ). From this and (5.37), we see that
for some constant c independent of κ

cα0dα0 ln κ � cα0 |S \ S+| ln κ � (1− α0) |S+| ln κ + o(1). (5.39)

Similarly, fixing ε0 small, we define Sε0 := {s ∈ S : Fs < −ε0
H2(M̌)

4π }. This
time, we see that for s /∈ Sε0 , Fsh(κ) � −ε0 ln κ − O(ln ln κ). Again, appealing
to (5.37), we deduce that for some constant c independent of κ

cα0dα0 ln κ � cα0
∣∣Sε0

∣∣ ln κ �
∣∣S \ Sε0

∣∣ (1− α0 − ε0) ln κ + o(1). (5.40)

We note that α0 can be chosen arbitrarily small and the results in Section 4 remain
valid. If one considers the construction of Proposition 4.1 for two different expo-

nents α0 > α
′
0, one must necessarily have the monotonicity condition dα0 � dα

′
0 ,
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due to the fact that the pseudo-balls associated to the smaller exponent are larger.
Since we know that dα0 is bounded independently of κ, thanks to (4.14), we may
assume α0 is small enough so that c α0

1−α0−ε0
dα0 < 1. This together with (5.39) and

(5.40) yields that both S+ and S \Sε0 are empty. But then, there exist a constant C
such that

min
{
φ(aκi ) : dκα0,i < 0

}−max
{
φ(aκi ) : dκα0,i > 0

}
> Cε0.

Because of this, each pseudo-ball of size ∼ 1
(ln κ)6

cannot contain two different

pseudo-balls B1 and B2 of size ∼ 1
κα0 , with associated degrees d1 > 0 and d2 < 0

respectively. As a consequence of this, we have
∑nκ

i=1

∣∣∣dκα0,i

∣∣∣ = ∑Nκ
j=1

∣∣∣d(κ)j

∣∣∣ , and

φ(aκi ) � c

(
1

ln κ

) 5
12

, for all i such that dκα0,i > 0, (5.41)

while

π − φ(aκi ) � c

(
1

ln κ

) 5
12

, for all i such that dκα0,i < 0. (5.42)

2. We prove now that
∣∣∣dκα0,i

∣∣∣ = 1 for all i

Assertions (5.21), (5.41) and (5.42) allow us to write

h(κ)Λ(Ae, ψκ) = −h(κ)
1

2

nκ∑
i=1

∣∣dκα0,i

∣∣H2(M̌)+O((ln κ) 1
6 ). (5.43)

Denote by J0 (resp. Jπ ) the set of indices i ∈ {1, . . . , nκ } s.t. dκα0,i
< 0 (resp.

dκα0,i
> 0). We apply Proposition 4.3 letting r = 1

κα0 . Substituting (5.43) in (4.28)
we obtain

GM̌,κ
(ψκ)

� −4π2
∑

i∈J0
⋃

Jπ

∣∣dκα0,i

∣∣2 G(aκi , xi )− 4π2
∑

i �= j∈J0

dκα0,i dκα0, j G(aκi , aκj )

−4π2
∑

i �= j∈Jπ

dκα0,i dκα0, j G(aκi , aκj )− 4π2
∑

i∈J0, j∈Jπ

dκα0,i dκα0, j G(aκi , aκj )

+2π
nκ∑

i=1

∣∣dκα0,i

∣∣ ln(κ1−α0)+
(

h(κ)

2

)2

‖u‖2
L2(M̌)

−h(κ)

2

nκ∑
i=1

∣∣dκα0,i

∣∣H2(M̌)+O((ln κ) 1
6 )+O(1). (5.44)

Note that

G
(

aκi , aκj

)
= G

(
(0, 0, v(0)), (0, 0, v(π))

)+ o(1) for i ∈ J0, j ∈ Jπ ,

(5.45)
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and that

dκα0,i d
κ
α0, j =

⎧⎨
⎩

∣∣∣dκα0,i

∣∣∣
∣∣∣dκα0, j

∣∣∣ if i, j ∈ J0 or i, j ∈ Jπ ,

−
∣∣∣dκα0,i

∣∣∣
∣∣∣dκα0, j

∣∣∣ if i ∈ J0, j ∈ Jπ .
(5.46)

Now that we have established that all the vortices with non-zero degree lie
within two well separated neighborhoods of (0, 0, v(0)) and (0, 0, v(π)),we write
the Green’s function in a more convenient way. Recall that we denote by r0 the
injectivity radius. Fix a number r < r0

2 . Let p ∈ M̌ and consider an isothermal
coordinate chart

(B(p, r), Ip
)
. Let ρ be a cut-off function supported in B(p, 2r),

equal to 1 on B(p, r). Consider the function Γp defined on B(p, 2r) by

Γp(q) :=
(

1

2π
ln

∣∣Ip(p)− Ip(q)
∣∣
)
· ρ(q). (5.47)

Then, defining the regular part

H(x, y) := G(x, y)− Γx (y), (5.48)

we see that, thanks to (4.2) and elliptic regularity, H(x, y) is of class C1. The
definition of H(x, x) can easily be seen to be independent of r and the coordinate
chart.

Remark 5.3. Note that in light of this, for all x ∈ ∂Bi,r , it holds that

G
(
aκi , x

) = − 1

2π
ln

1

r
+ H

(
aκi , aκi

)+ o(1).

In addition, since

(
min

x∈B(Iaκi
(aκi ),r)

λ(x)

)
·
∣∣∣Iaκi

(aκi )− Iaκi
(aκj )

∣∣∣ � dM(aκi , aκj )

�
(

max
x∈B(Iaκi

(aκi ),r)
λ(x)

)
·
∣∣∣Iaκi

(aκi )− Iaκi
(aκj )

∣∣∣ ,

and λ satisfies (4.1), we conclude

Γaκi
(aκj ) =

1

2π
ln dM̌(aκi , aκj )+ o(1),

whenever i, j ∈ J0, or i, j ∈ Jπ . Lastly, note that (5.47) and (5.48) make the rough
bounds (4.24), (4.25) and (4.26) superfluous, since we can now assert that

sup
x,y∈∂B(bi ,r)

|G(bi , x)− G(bi , y)| = o(1).
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Next, using Remark 5.3, along with (5.12), (5.41), (5.42), (5.45) and (5.46) in (5.44)
yields

GM̌,κ
(ψκ) � 2π

nκ∑
i=1

∣∣dκα0,i

∣∣2 ln(κα0)− 2π
∑

i �= j∈J0

∣∣dκα0,i

∣∣ ∣∣∣dκα0, j

∣∣∣ ln dM̌(aκi , aκj )

−2π
∑

i �= j∈Jπ

∣∣dκα0,i

∣∣ ∣∣∣dκα0, j

∣∣∣ ln dM̌(aκi , aκj )+ H(J0 ∪ Jπ )

−2π
∑

i∈J0, j∈Jπ

∣∣dκα0,i

∣∣ ∣∣∣dκα0, j

∣∣∣ G ((0, 0, v(0)), (0, 0, v(π))

+2π
nκ∑

i=1

∣∣dκα0,i

∣∣ ln(κ1−α0)+
(

h(κ)

2

)2

‖u‖2
L2(M̌)

−h(κ)

2

nκ∑
i=1

∣∣dκα0,i

∣∣H2(M̌)+O((ln κ) 1
6 )

� 2π
nκ∑

i=1

∣∣dκα0,i

∣∣2 ln(κα0)+ 2π
nκ∑

i=1

∣∣dκα0,i

∣∣ ln(κ1−α0)

+
(

h(κ)

2

)2

‖u‖2
L2(M̌)

− h(κ)

2

nκ∑
i=1

∣∣dκα0,i

∣∣H2(M̌)

+O
(
(ln κ)

1
6

)
. (5.49)

Here, we have introduced for a global minimizer (later on this quantity will take
on a simpler form after we show all the vortices have degree ±1) the notation

H(J0 ∪ Jπ )

:=
⎡
⎣∑

i∈J0

∣∣dκα0,i

∣∣2 + ∑
i �= j∈J0

∣∣dκα0,i

∣∣ ∣∣∣dκα0, j

∣∣∣
⎤
⎦ H ((0, 0, v(0)), (0, 0, v(0)))

+
⎡
⎣∑

i∈Jπ

∣∣dκα0,i

∣∣2+ ∑
i �= j∈Jπ

∣∣dκα0,i

∣∣ ∣∣∣dκα0, j

∣∣∣
⎤
⎦ H ((0, 0, v(π)), (0, 0, v(π))) .

(5.50)

On the other hand, we claim that we can construct a comparison map Ψ̃κ : M̌ →
C with 1

2

∑nκ
i=1

∣∣∣dκα0,i

∣∣∣ vortices of degree +1 on the circle {p ∈ M̌, φ(p) = 1√
ln κ
}

and the same number of vortices of degree −1 on the circle {p ∈ M̌, φ(p) =
π − 1√

ln κ
}, with total energy

GM̌,κ
(Ψ̃κ ) � 2π

nκ∑
i=1

∣∣dκα0,i

∣∣ ln κ +
(

h(κ)

2

)2

‖u‖2
L2(M̌)

−h(κ)
nκ∑

i=1

∣∣dκα0,i

∣∣ H2(M̌)

2
+O(ln ln κ). (5.51)



Emergence of Vortices on a Manifold 603

This can be achieved as follows. Let n0 := 1
2

∑nκ
i=1

∣∣∣dκα0,i

∣∣∣ . For i = 1, . . . , n0, let

qi denote the point in M̌ whose coordinates are

(φ(qi ), θ(qi )) =
⎧⎨
⎩
(

1√
ln κ
, 2π

n0

( i−1
2

))
if i = 1 is even,(

π − 1√
ln κ
, 2π

n0

( i
2

))
if i is odd.

(5.52)

Note that the points defined in this way satisfy (4.39). We let r := 1
κα0 . Thanks

to Proposition 4.4 we can associate to the points qi , i = 1, . . . , 2n0, a function
ψr

out defined on M̌ \ ∪2n0
i=1B(qi , r) satisfying (4.40). In turn, inside each B(q j , r)

we can define a function ψ j analogously to ψ̃ j
κ in (3.13), that agrees with ψr

out on
∂B(q j , r). To see this, let fκ be the function in (3.12), where now delta takes the
value δ := 1

κα0 .Using polar coordinates about Iq j (q j ), we letψ j be the pullback of

the function ψ j
euc(r, θ) := f (r)e(−1) j iθ under Iq j . Just as in the calculation (3.19),

using the definition (4.27), one finds
∫
B(q j ,r)

Sκ(ψ j ) dH2
M̌ � 2π ln(κ1−α0)+O(1). (5.53)

We thus define Ψ̃κ by

Ψ̃κ (x) =
{
ψr

out (x) if x ∈ M̌ \ ∪B(qi , r),
ψi (x) if x ∈ B(qi , r).

(5.54)

The function Ψ̃κ is of modulus≡ 1 outside of the union of the pseudo-balls, whose
total measure is of order 1

κα0 . Therefore

(h(κ))2
∫
M̌

∣∣Ae
∣∣2 ∣∣∣Ψ̃κ

∣∣∣2 dH2
M̌ =

(
h(κ)

2

)2

‖u‖2
L2(M̌)

+ o(1). (5.55)

For the same reason, one can argue as in the derivation of (3.37) and (5.43) that

h(κ)Λ(Ae, Ψ̃κ ) = −h(κ)

2

nk∑
i=1

∣∣dκα0,i

∣∣H2(M̌)+O(ln ln κ). (5.56)

Making use of (5.53), (5.55) and (5.56), the bound (5.51) follows after substituting
the expansions contained in Remark 5.3 into (4.40). Because the ψκ are global
minimizers, we must have

GM̌,κ
(Ψ̃κ ) � GM̌,κ

(ψκ), (5.57)

which together with (5.49) and (5.51) imply

2π
nκ∑

i=1

(∣∣dκα,i
∣∣2 − ∣∣dκα,i

∣∣) ln κ � O((ln κ) 1
6 ). (5.58)
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This cannot hold unless
∣∣∣dκα0,i

∣∣∣ = 1 for all i such that dκα0,i
�= 0, for large values

of κ. With this conclusion at hand, we may use (5.49), (5.51) and (5.57) one more
time to conclude

−
∑

i, j∈J0

ln dM̌(aκi , aκj )−
∑

i, j∈Jπ

ln dM̌(aκi , aκj ) � O
(
(ln κ)

1
6

)
, (5.59)

which in turn implies the existence of a β > 0 such that for κ large, letting ε̃ <
α

N0+1
0 ,

1

dM̌(aκi , aκj )
� eβ(ln κ)

1
6 � eε̃ ln κ for all i �= j . (5.60)

This implies that for i �= j,

dM̌(aκi , aκj )�
1

κα
N0+1
0

(5.61)

We would like now to refine the estimates we have so as to compute the energy
of a minimizer up to o(1). To this end, take pκi , i = 1, . . . ,mκ , the center of the
pseudo-balls {B(pκi , λ0

κ
)}mκ

i=1 provided by Proposition 4.1. By making λ0 larger
if necessary we can always assume dM̌(pκi , pκj ) � 5

κα0 , whenever i �= j, and

therefore assume that each pseudo-ball of radius ∼ 1
κα0 contains at most one of

the family {B(pκi , λ0
κ
)}mκ

i=1. Then, since we know
∣∣∣dκα0,i

∣∣∣ = 1 for all i such that

dκα0,i
�= 0, the same must hold for the degrees dκi of the smaller pseudo-balls.

Thus,
∑∣∣dκi

∣∣ = ∑∣∣∣dκα0,i

∣∣∣ = ∑∣∣∣d(κ)i

∣∣∣ < C. As before this has as a by-product the

following confinement assertions

φ(pκi ) � c

(
1

ln κ

) 5
12

, for all i s.t. dκi > 0 (5.62)

and

π − φ(pκi ) � c

(
1

ln κ

) 5
12

, for all i s.t. dκi < 0. (5.63)

Now, using the notation in (4.50), we write inside any of the balls B(Ipκi
(pκi ),

λ0
κ
) :

ψ̂κ (y) := ψeuc
κ

(
Ipκi

(pκi )+
1

κ
y

)
. (5.64)

One can see ψ̂κ converges in C1
loc(R

2) as κ →∞ to a solution ψ̂0 of

−Δψ̂0 = ψ̂0

(
1−

∣∣∣ψ̂0

∣∣∣2
)
, with

∫
R2

(
1−

∣∣∣ψ̂0

∣∣∣2
)
<∞. (5.65)
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If dκi = 0, then
∣∣∣ψ̂0

∣∣∣ ≡ 1 (cf. [4]), and hence
∣∣∣ψ̂κ

∣∣∣ → 1, which implies that

the pseudo-ball B(pκi , λ0
κ
) should not even belong to the collection. In particular

dκi = ±1 for all i. It is known that the solutions of (5.65) of degree ±1 are unique,
up to a multiplicative constant (cf. [19]). More precisely ψ̂0 = f (r)e±iθ , where f
is a real valued function. A result of Herve-Herve (cf. [14]) asserts the existence
of a constant a > 0 such that f (r) = ar − a

8 r3 + O(r5), for r small, and then

det [Jac ψ̂0](0, 0) = a + o(1). By virtue of this, one can apply the implicit func-
tion theorem and conclude there is only one zero inside each pseudo-ball. We may
thus assume pκi = aκi corresponds to the unique zero inside B(aκi , 1

κα0 ), thanks to
(5.61), for all i = 1, . . . ,mκ , and note that mκ = nκ . In turn,

∑
dκi = 0 allows us

to conclude that there is a number n0 such that 2n0 = mκ which we prove later to
be independent of κ, as κ →∞.

3. We now find the number of pairs of vortices, n0
We claim that∫

M̌
Sκ(ψκ) dH2

M̌ = 4πn0 ln κ + 2n0c0 − 2π
∑

i �= j∈J0

ln dM̌(pκi , pκj )

−2π
∑

i �= j∈Jπ

ln dM̌(pκi , pκj )+ H(J0 ∪ Jπ )

−2πn2
0G ((0, 0, v(0)) , (0, 0, v(π)))+ o(1), (5.66)

where c0 is the constant from (4.46). To see this, fix r = r(κ), the radius obtained
in Proposition 4.5 and note that we can appeal to it thanks to inequality (5.61). One
can see

2n0∑
i=1

∫
Bi,r

Sκ(ψκ)dH2
M̌ � 4πn0 ln(κ · r)+ 2n0c0 + o(1). (5.67)

We then resort to Remarks 4.9 and 5.3, to refine (4.21) by replacing the O(1)
term by an o(1) term. Then, a consequence of this is:∫

M̌\∪2n0
i=1Bi,r

Sκ(ψκ) dH2
M̌ � 4πn0 ln

1

r
− 2π

∑
i �= j∈J0

ln dM̌(pκi , pκj )

−2π
∑

i �= j∈Jπ

ln dM̌(pκi , pκj )+ H(J0 ∪ Jπ )

−2πn2
0G ((0, 0, v(0)) , (0, 0, v(π)))

+o(1). (5.68)

This follows from revisiting (4.31)–(4.36). To complete the proof of the claim
(5.66), we construct a comparison function Ψ̃κ as follows. First, let qi := pκi for all
i = 1, . . . , 2n0, in Proposition 4.4. Again, making use of the notation and results
contained in Proposition 4.5, we define

Ψ̃κ (x) =

⎧⎪⎨
⎪⎩
ψr

out (x), if x ∈ M̌ \ ∪2n0
i=1Bi,r ,

ψ
κ,+
in,i (x), if ∈ Bi,r and dκi = 1,
ψ
κ,−
in,i (x), if ∈ Bi,r and dκi = −1.

(5.69)
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We see that (5.55) and (5.56) hold for this new Ψ̃κ . This and (5.57) yield

∫
M̌

Sκ(ψκ) dH2
M̌ � 4πn0 ln κ + 2n0c0 − 2π

∑
i �= j∈J0

ln dM̌(pκi , pκj )

−2π
∑

i �= j∈Jπ

ln dM̌(pκi , pκj )+ H(J0 ∪ Jπ )

−2πn2
0G ((0, 0, v(0)) , (0, 0, v(π)))+ o(1), (5.70)

The claim now follows from this, (5.67) and (5.68). Using (5.66) we can now assert
that

GM̌,κ
(ψκ) = 4πn0 ln κ + 2n0c0 − 2π

∑
i �= j∈J0

ln dM̌(pκi , pκj )

−2π
∑

i �= j∈Jπ

ln dM̌(pκi , pκj )+ 4πh(κ)
2n0∑
i=1

∗F(pκi )d
κ
i

+H(J0 ∪ Jπ )− 2πn2
0G ((0, 0, v(0)) , (0, 0, v(π)))

+
(

h(κ)

2

)2

‖u‖2
L2(M̌)

+ o(1). (5.71)

We now proceed to determine the number of vortices. More precisely, we study the
dependence n0 = n0(σ ). Let φ j = φ(p j ), where σ arises in (5.36). The definition
(5.10) together with (5.5) imply that

∗ F(p j ) = 1

4
[uγ ]′(0)φ2

j +O
(
φ3

j

)
, (5.72)

whereas for j ∈ Jπ

∗ F(p j ) = H2(M̌)

4π
+ 1

4
[uγ ]′(π)(φ j − π)2 +O

(
(φ j − π)3

)
. (5.73)

From (5.2), (5.3) and (5.5) it follows that

[uγ ]′(0) = u′(0) γ (0) = u′(0)2 = v(0)2,

[uγ ]′(π) = u′(π) γ (π) = −u′(π)2 = −v(π)2.
Thus, the constraints (5.62) and (5.63) applied to (4.29) justify the expansion

h(κ)Λ(Ae, ψκ) = 4π h(κ)

⎡
⎣n0

H2(M̌)

4π
− 1

4

∑
j∈J0

v(0)2φ2
j

− 1

4

∑
j∈Jπ

v(π)2(φ j − π)2
⎤
⎦+O

(
h(κ)

(ln κ)
5
4

)
. (5.74)
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We next see that H(J0 ∪ Jπ ) takes the simple form

H(J0 ∪ Jπ ) =
(

n2
0 + n0

)
[H ( (0, 0, v(0)), (0, 0, v(0)) )

+ H ( (0, 0, v(π)), (0, 0, v(π)) )] ,

so f (n0) := H(J0 ∪ Jπ )− 2πn2
0 G ( (0, 0, v(0)), (0, 0, v(π)) )+ 2n0c0 is a quan-

tity that depends on n0 but not on the configuration of vortices. We can now write
using (5.71) and (5.74)

GM̌,κ
(ψκ) = I0(n0)+ Iπ (n0)− n0σH2(M̌) ln ln κ

+ f (n0)+
(

h(κ)

2

)2

‖u‖L2(M̌)
+ o(1), (5.75)

where we have introduced

I0(n0) := 2π

⎡
⎣− ∑

i, j∈J0

ln dM̌(pi , p j )+ h(κ)

2

∑
j∈J0

v(0)2 φ2
j

⎤
⎦

and

Iπ (n0) := 2π

⎡
⎣− ∑

i, j∈Jπ

ln dM̌(pi , p j )+ h(κ)

2

∑
j∈Jπ

v(π)2 (φ j − π)2
⎤
⎦ .

We write φ j0 := max j∈J0 φ j . One has

h(κ)

2

∑
j∈J0

v(0)2 φ2
j � h(κ)

2
v(0)2 φ2

j0 (5.76)

and

−
∑

i, j∈J0

ln dM̌(pi , p j ) � −(n2
0 − n0) ln φ j0 +O(1), (5.77)

since dM̌(pi , p j ) � C ·φ j0 for some constant C independent of κ, in light of (5.1)–
(5.5). Using (5.76) and (5.77), we obtain a lower bound for I0(n0) by minimizing
−(n2

0 − n0) ln x + h(κ)
2 v(0)2x2. The lower bound reads

I0(n0) � π(n2
0 − n0) ln ln κ +O(1).

One can easily see the same estimate holds for Iπ (n0).Employing a comparison
map similar to the one defined in (5.69), only this time with n0 vortices of degree

+1 equally distributed on the circle {φ =
(

n2
0−n0

h(κ) v(0)2

) 1
2 }, and another n0 of degree

−1 on the circle {φ = π −
(

n2
0−n0

h(κ) v(0)2

) 1
2 }, one can deduce

I0(n0) = π(n2
0 − n0) ln ln κ +O(1), (5.78)
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and that the same estimate holds for Iπ (n0). From this, one can already determine
the value of n0 = n0(σ ). The energy of ψκ depends on n0 in the following way

GM̌,κ
(ψκ) = 2π(n2

0 − n0) ln ln κ − n0σH2(M̌) ln ln κ

+ f (n0)+
(

h(κ)

2

)2

‖u‖2
L2(M̌)

+O(1), (5.79)

so for κ large, n0 will be given by the minimum value of n ∈ N of

2π(n2 − n)− nσH2(M̌).

Simple analysis then reveals that if σ /∈
(

4π/H2(M̌)
)

Z,

n0 =
⌊
σ

H2(M̌)

4π

⌋
+ 1. (5.80)

The case n0 = 0 can be incorporated into the argument without considerable addi-
tional effort and (5.80) reads the same in all cases.

4. We prove now that the configuration of vortices tends to minimize a
renormalized energy.

Since we cannot really rescale points in the manifold, and this is necessary for
the identification of a renormalized energy, we proceed as follows. By our analy-
ticity assumptions, we have:

∣∣∣pκi − pκj

∣∣∣
R3

� dM̌(pκi , pκj ) �
∣∣∣pκi − pκj

∣∣∣
R3
+ C ·

∣∣∣pκi − pκj

∣∣∣2
R3
. (5.81)

Recall the definition of Proj in (5.35). Since v′(0) = 0, we have
∣∣∣pκi − pκj

∣∣∣2
R3
=

∣∣∣Proj pκi − Proj pκj

∣∣∣2
R3
+ v′′(0)2

(
φ(pκi )

2 − φ(pκj )2
)2

+o

((
φ(pκi )

2 − φ(pκj )2
)2

)
, for i, j ∈ J0. (5.82)

One can also see, resorting to (5.5), that for some constant l0
∣∣∣Proj pκi − Proj pκj

∣∣∣2
R3
= u

(
φ
(

pκi
))2 + u

(
φ
(

pκj

))2

−2u
(
φ
(

pκi
))

u
(
φ
(

pκj

))
cos

(
θ
(

pκi
)− θ (pκj

))

� l0
(
φ(pκi )− φ(pκj )

)2
(5.83)

Similar estimates holds for i, j ∈ Jπ . So (5.81), (5.82) and (5.83) imply that
whenever i, j belong both to either J0 or Jπ , then

ln dM̌(pκi , pκj ) = ln
∣∣∣Proj pκi − Proj pκj

∣∣∣
R3
+ o(1).

For i ∈ J0, (resp. for i ∈ Jπ )
∣∣Proj pκi

∣∣2 = ∣∣pκi − (0, 0, v(φκi ))
∣∣2 = v(0)2

∣∣φκi
∣∣2+

O((φκi )3) (resp.
∣∣Proj pκi

∣∣2 = v(π)2
∣∣φκi − π

∣∣2 + O((φκi − π)3)). From (5.78)
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we see that
∣∣∣φκj − π

∣∣∣ , ∣∣φκi
∣∣ � c√

ln κ
, where i ∈ J0, j ∈ Jπ . Indeed, appealing to

inequalities (5.76) and (5.77), the definition of I0(n0), estimate (5.78), and writing
Cκ := φ j0

√
ln κ, we deduce

(Cκ)
2 � ln Cκ +O(1). (5.84)

This implies Cκ is bounded independent of κ.We can proceed analogously to prove
something similar holds for the vortices {pκj } j∈Jπ . This concludes the proof of the
claim. Using this and substituting the definition of Pκi given in Theorem 5.1 and
the one for the renormalized energy Rn0 given in (5.34), we finally arrive at

GM̌(ψκ) = 2π
(

n2
0 − n0

)
ln ln κ − n0σH2(M̌) ln ln κ + f (n0)

+Rn0
(
Pκi ; i ∈ J0

)+ Rn0
(
Pκi ; i ∈ Jπ

)

+
(

h(κ)

2

)2

‖u‖2
L2(M̌)

+ o(1). (5.85)

We claim that (5.85) forces the configurations {Pκj , j ∈ J0} and {Pκj , j ∈ Jπ } to
converge at the same time to minimizers of Rn0 . To prove this, suppose towards
a contradiction that at least one of these collections does not. Without any loss of
generality, we assume this happens for the collection corresponding to j ∈ J0.

Then, there exists a collection {x j , j ∈ J0} of points in R
2, such that perhaps after

passing to a subsequence, Rn0({Pκj , j ∈ J0}) > Rn0({x j , j ∈ J0}) + ε0, where

ε0 > 0 is a small constant independent of κ. Then, define a map Ψ̃κ analogously to
the one in (5.69), with vortices p̃κj = x j√

ln κ
+ v(φ j )êz, where

φ j = u−1

(∣∣x j
∣∣
R2√

ln κ

)
,

for j ∈ J0, while for j ∈ Jπ we simply let p̃κj = p j . With the aid of (5.85), one
deduces

0 � GM̌,κ
(ψκ)− GM̌,κ

(Ψ̃κ )

= R({p j ; j ∈ J0})− R({x j ; j ∈ J0})+ o(1)

� ε0 + o(1), (5.86)

which is a contradiction. ��
Proof of Theorem 5.2. Fix κ0 large enough so that for all κ > κ0 all minimizers

of GM̌,κ
have 2n0 = 2�σ H2(M̌)

4π �+2 nonsingular vortices. This is possible thanks
to the preceding theorem and the analysis presented immediately below (5.65). By
Proposition 2.1 we know that, given any sequence of minimizers Ψκ of Gε,κ , the
corresponding maps ψε,κ converge in C1,α, up to a subsequence, to a minimizer
ψκ of GM̌,κ

. Lastly, the fact that the zeros of ψκ are nonsingular and the implicit
function theorem yield the desired conclusion. ��
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