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Abstract

We prove the solvability in Sobolev spaces for both divergence and non-
divergence form higher order parabolic and elliptic systems in the whole space,
on a half space, and on a bounded domain. The leading coefficients are assumed to
be merely measurable only in the time variable and have small mean oscillations
with respect to the spatial variables in small balls or cylinders. For the proof, we
develop a set of new techniques to produce mean oscillation estimates for systems
on a half space.
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1. Introduction

This paper is devoted to the study of the L p-theory of higher order parabolic and
elliptic systems. More precisely, we expand the L p-theory of higher order elliptic
and parabolic systems to include a class of not necessarily continuous coefficients
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via a unified approach for both divergence type and non-divergence type systems
in the whole space, on a half space, and on a bounded domain. The coefficients
we consider are complex valued and, in particular, the leading coefficients of para-
bolic systems are merely measurable in the time variable and belong to the class of
BMO (bounded mean oscillations) as functions of the spatial variables. The mean
oscillations of the coefficients need only be sufficiently small over small cylinders.

To present the exact forms of such systems, we let

Lu =
∑

|α|�m,|β|�m

AαβDαDβu, Lu =
∑

|α|�m,|β|�m

Dα(AαβDβu),

where m is a positive integer,

Dα = Dα1
1 . . . Dαd

d , α = (α1, . . . , αd),

and, for each α, β, Aαβ = [Aαβi j (t, x)]n
i, j=1 is an n × n complex matrix-valued

function. The involved functions are complex vector-valued functions, that is,

u = (u1, . . . , un)tr, f = ( f 1, . . . , f n)tr, fα = ( f 1
α , . . . , f n

α )
tr.

The parabolic systems we study are

ut + (−1)m Lu = f, ut + (−1)mLu =
∑

|α|�m

Dα fα,

where the first expression is in non-divergence form and the second one is in
divergence form. The elliptic systems, non-divergence form and divergence form,
respectively, are

Lu = f, Lu =
∑

|α|�m

Dα fα.

Whenever elliptic systems are considered, all the involved functions are independent
of t . When the domain is other than the whole space, we impose the homogeneous
Dirichlet boundary condition.

In the case of non-divergence type elliptic systems, we prove that, for a given
f ∈ L p(Ω), there is a unique solution u ∈ W 2m

p (Ω) to the system Lu = f in

Ω , where Ω is either the whole space R
d , the half space R

d+ = {(x1, . . . , xd) ∈
R

d , x1 > 0}, or a bounded domain. We also prove the corresponding results for the
other types of elliptic and parabolic systems; see Sect. 2.

As is well known, the key ingredient in establishing L p-theory is a priori
L p-estimates of solutions to given systems. Generally, this is done in two steps.
First, one establishes L p-estimates for systems with ‘simple’ coefficients, for exam-
ple, constant coefficients. Second, if the given system is in some sense close to
systems with simple coefficients, one obtains the desired L p-estimates by using a
perturbation argument.

The L p-estimates for systems with constant coefficients, in many references,
for example [2,3], rely on the exact representation of solutions and the Calderón–
Zygmund theorem. Another approach for such L p-estimates is that of Camp-
anato–Stampacchia using Stampacchia’s interpolation theorem (see [20]). As to
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perturbation arguments, if the coefficients of given systems are uniformly continu-
ous, the estimates are carried out by using the local closeness of the coefficients to
constant coefficients in L∞ norm. When the class of VMO (vanishing mean oscil-
lations) coefficients was first introduced, another perturbation argument was used
in [5,8,9], where the continuity of coefficients is measured in the average sense,
not in the pointwise sense, through a representation formula of solutions and the
Coifman–Rochberg–Weiss commutator theorem.

In this paper, in establishing the key L p-estimates, we replace the first step,
L p-estimates of solutions to systems with simple coefficients, by mean oscillation
estimates of solutions to the systems. Then for the second step we use a different
perturbation argument, which is well suited to the mean oscillation estimates. For
instance, if the system under consideration is elliptic in the form of Lu = f with
constant coefficients in the whole space, then by the mean oscillation estimate of
D2mu we mean a pointwise estimate of the form

–
∫

Br (x0)

|D2mu − –
∫

Br (x0)

D2mu dy| dx

� Nκ−1
(

–
∫

Bκr (x0)

|D2mu|2 dx

)1/2

+ Nκ
d
2

(
–
∫

Bκr (x0)

| f |2 dx

)1/2

(1)

for all x0 ∈ R
d , r ∈ (0,∞), and κ ∈ [κ0,∞), where Br (x0) is a ball with center

x0 and radius r . Indeed, this implies the L p-estimate of D2mu by the well known
Fefferman–Stein theorem on sharp functions and the Hardy–Littlewood maximal
function theorem. But more importantly, this type of estimate embraces well the
perturbation between the original systems and systems with simple coefficients
when the coefficients have small mean oscillations over small balls or small para-
bolic cylinders. This approach was first introduced by Krylov [25,26] to deal with
second order elliptic and parabolic equations with VMO coefficients in the whole
space, and is well explained in his book [27].

Due to the well-adaptedness of estimates like (1) to the perturbation argument,
our main effort in this paper focuses on obtaining mean oscillation estimates of
systems with simple coefficients. Since in the parabolic case we allow coefficients
to be merely measurable in the time direction, the systems with simple coefficients
in our case are naturally those with measurable coefficients depending only on t .

For systems in the whole space, which requires only interior estimates, the mean
oscillation estimates follow rather easily by adapting the techniques in [25,27] to
higher order systems. However, unlike the arguments in [25], we derive the non-
divergence case as a corollary from the divergence case. Another noteworthy dif-
ference is that we prove the mean oscillation estimates not only for the highest order
terms but also for the lowest order terms, so we are able to avoid the argument in
[25] deriving the L p-estimates of solutions from those of the highest order terms,
which is technically difficult in the case of higher order equations.

For systems on a half space or on a bounded domain, which also require
boundary estimates, it is not possible to use the approach in [25,27] since the
estimates developed there are only for equations in the whole space (interior esti-
mates). Thus, we develop here a set of new techniques to produce mean oscillation
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estimates for systems on a half space. This is a new approach for boundary
L p-estimates which is applicable to a wide class of equations or systems. To get
these boundary mean oscillation estimates, as in the whole space case, we start with
L2-estimates of systems on a half space. Although the L2-estimate for divergence
type systems is well known under appropriate ellipticity or parabolicity conditions
on the leading coefficients, our Theorem 13 regarding the L2-estimate for non-
divergence type systems on a half space with coefficients measurable in time is, to
the best of our knowledge, a new result. In the proof we only use the L2-estimate of
divergence type systems and an interpolation argument. It is worth noting that L2-
estimates for higher order elliptic equations and systems were obtained in [16,19]
by using bootstrap arguments. For parabolic equations, however, in [19] the coeffi-
cients are assumed to be Hölder continuous in the time variable since a semigroup
method was used.

From the L2-estimates, we derive the boundary mean oscillation estimates of
some of the highest order derivatives of solutions, precisely, Dm

x ′u in the case of
divergence systems and D2m

x ′ u in the case of non-divergence systems, where x ′
denotes the last d−1 coordinates of x = (x1, x ′) in R

d . These estimates alone, how-
ever, are not sufficient for us to prove the main theorems. Because of this, we then
consider a parabolic system with special coefficients, such that in a periodic pattern
certain order normal derivatives of solutions to the system vanish on the bound-
ary. This gives us the boundary mean oscillation estimates of Dm

1 u or D2m
1 u; see

Lemma 14. Once we have all the required mean oscillation estimates, we proceed
as in [25] to the desired L p-estimates using the perturbation argument, the details of
which are illustrated for divergence type systems in the whole space; see Section 5.

In the literature, for uniformly continuous coefficients, a rather complete
L p-theory can be found for general linear elliptic systems in [1–3] and for par-
abolic systems in [18,17,36,29]. If coefficients are in the class of VMO, non-
divergence type higher order systems in the whole space have been investigated in
several papers, for example [10,22,34,35], where leading coefficients of systems
are either VMO with respect to all the variables or independent of the time vari-
able. For divergence type higher order elliptic systems with VMO coefficients, we
refer the reader to a recent interesting preprint [31] in which the inhomogeneous
Dirichlet problem on Lipschitz domains is studied. In all these papers, the method
of singular integrals is used, so measurable coefficients are not allowed.

Restricted to second order systems or equations, there are a relatively larger
number of papers which can be compared to this paper. Non-divergence elliptic and
parabolic equations on smooth domains with VMO coefficients were first studied
in [5,8,9] by using the technique of singular integrals. For further related results,
we refer the reader to the book [32] and references therein. The corresponding
results for divergence elliptic equations were obtained in [4,11] by a similar tech-
nique. These results were later improved upon by the authors of [6] in several
papers for divergence type equations/systems without lower order terms on non-
smooth domains by using a perturbation argument based on the maximal function
theorem and a covering lemma (see [7] for an extension to fourth order systems).
An interesting question would be whether the methods in [6,7] can be applied
to equations with lower order terms or non-divergence form equations/systems.
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The methodology used by Krylov in [25,26] was later developed and extended in
[14] for divergence and non-divergence systems in the whole space with the same
class of coefficients, and in [23,24,28] for non-divergence parabolic and elliptic
equations in the whole space with partially BMO coefficients for p > 2, and in [12]
for any p ∈ (1,∞). In [12,13,15], this method was further adapted to divergence
parabolic and elliptic equations/systems in the whole space with partially BMO
coefficients. It is worth noting that in [12–15] and [23–28] only interior mean
oscillation estimates were derived. When dealing with equations and systems on a
half space or on a bounded domain in [13,15,23,24], the authors took full advantage
of the fact that the coefficients are allowed to be merely measurable in one spatial
direction and the fact that the given systems are second order. Thus without using
any boundary mean oscillation estimates developed here, the boundary L p-esti-
mates were derived from interior estimates as corollary type results by using odd
and even extension techniques. However, the extension techniques do not work for
higher order equations or systems. This is the first paper in which the ideas in [25,26]
are adapted to boundary estimates, in both divergence and non-divergence cases.

As noted above, the first critical step of the proof is the L2-estimates of systems
with relatively simple coefficients under the ellipticity or parabolicity conditions on
the leading coefficients. In this paper, we use the Legendre–Hadamard ellipticity
condition, which is more general than the strong ellipticity condition considered,
for example, in [7,15,30]. Nevertheless, it is still stronger than the uniform pa-
rabolicity condition in the sense of Petrovskii, which was used in [17,34,36] with
more regularity assumptions on the leading coefficients. We shall discuss these
conditions in detail in Section 11.

The organization of the paper is as follows. We introduce some notation and
state the main results in the next section. The remainder of the paper is divided into
two parts. In the first part, we treat systems in the whole space. Sections 3 and 4 are
devoted to the L2-estimates and mean oscillation estimates for both divergence and
non-divergence parabolic systems with simple coefficients. In Section 5 we com-
plete the proofs of the L p-solvability of systems in the whole space. The second
part is the main part of the paper, in which we treat systems on a half space or on
a bounded domain. In Section 6 we establish the L2-solvability of divergence and
non-divergence parabolic systems with simple coefficients on a half space. Then in
Section 7, we obtain the boundary mean oscillation estimates of Dm

x ′u and D2m
x ′ u

for divergence and non-divergence systems, respectively. Section 8 is devoted to
the estimates for a special type of systems. With these preparations, in Sections 9
and 10 we establish the L p-solvability of both divergence and non-divergence par-
abolic systems on a half space and on a bounded domain. Finally, we discuss in
Section 11 some other ellipticity conditions used in the literature, and show how
our results can be extended to systems under those conditions.

2. Main results

We first introduce some notation used throughout the paper. A point in R
d is

denoted by x = (x1, . . . , xd). Whenever needed, we denote x by (x1, x ′) where
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x ′ ∈ R
d−1. A point in

R
d+1 = R × R

d = {(t, x) : t ∈ R, x ∈ R
d}

is denoted by X = (t, x). For T ∈ (−∞,∞], set

OT = (−∞, T )× R
d , O+

T = (−∞, T )× R
d+,

where R
d+ = {x = (x1, . . . , xd) ∈ R : x1 > 0}. Especially, if T = ∞, we have,

for example, O+∞ = R × R
d+. We also have

Br (x) = {y ∈ R
d : |x − y| < r}, B ′

r (x
′) = {y′ ∈ R

d−1 : |x ′ − y′| < r},
Qr (t, x) = (t − r2m, t)× Br (x), Q′

r (t, x ′) = (t − r2m, t)× B ′
r (x

′),
Q+

r (t, x) = Qr (t, x) ∩ O+∞.

We denote

〈 f, g〉Ω =
∫

Ω

f trḡ =
n∑

j=1

∫

Ω

f j g j .

For a function f on D ⊂ R
d+1, we set

( f )D = 1

|D|
∫

D
f (t, x) dx dt = –

∫

D
f (t, x) dx dt,

where |D| is the d + 1-dimensional Lebesgue measure of D.
In order to state and prove our results on systems in Sobolev spaces, in addition

to the well known spaces L p and W k
p , we introduce the following function spaces.

As a solution space for non-divergence type parabolic equations, we use

W 1,2m
p ((S, T )×Ω) = {u : ut , Dαu ∈ L p((S, T )×Ω), 0 � |α| � 2m}

equipped with its natural norm. Unless otherwise specified, in this paper Dαu(t, x)
means the spatial derivative of u. For divergence type parabolic equations with
Ω = R

d , we introduce

Hm
p ((S, T )× R

d) = (1 −Δ)
m
2 W 1,2m

p ((S, T )× R
d)

equipped with the norm

‖u‖Hm
p ((S,T )×Rd ) = ‖(1 −Δ)−

m
2 u‖W 1,2m

p ((S,T )×Rd )
.

Note that if we set

H
−m
p ((S, T )× R

d) = (1 −Δ)
m
2 L p((S, T )× R

d),

‖ f ‖
H

−m
p ((S,T )×Rd ) = ‖(1 −Δ)−

m
2 f ‖L p((S,T )×Rd ),

then

‖u‖Hm
p ((S,T )×Rd )

∼= ‖ut‖H
−m
p ((S,T )×Rd ) +

∑

|α|�m

‖Dαu‖L p((S,T )×Rd ).
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For a general Ω , we set

H
−m
p ((S, T )×Ω) =

⎧
⎨

⎩ f : f =
∑

|α|�m

Dα fα, fα ∈ L p((S, T )×Ω)

⎫
⎬

⎭ ,

‖ f ‖
H

−m
p ((S,T )×Ω) = inf

⎧
⎨

⎩
∑

|α|�m

‖ fα‖L p((S,T )×Ω) : f =
∑

|α|�m

Dα fα

⎫
⎬

⎭ ,

and

Hm
p ((S, T )×Ω) = {u : ut ∈ H

−m
p ((S, T )×Ω), Dαu ∈ L p((S, T )

×Ω), 0 � |α| � m},
‖u‖Hm

p ((S,T )×Ω) = ‖ut‖H
−m
p ((S,T )×Ω) +

∑

|α|�m

‖Dαu‖L p((S,T )×Ω).

Let δ, K > 0 be two constants. Throughout the paper, we assume that all the
coefficients are measurable, complex valued and bounded,

|Aαβ | �
{
δ−1, |α| = |β| = m,
K , otherwise.

In addition, we impose the Legendre–Hadamard ellipticity condition on the leading
coefficients (see, for instance, [18,20]). Here we call Aαβ the leading coefficients
if |α| = |β| = m. All the other coefficients are called lower-order coefficients. By
the Legendre–Hadamard ellipticity we mean

�
⎛

⎝
∑

|α|=|β|=m

θ trξαξβ Aαβ(t, x)θ̄

⎞

⎠ � δ|ξ |2m |θ |2 (2)

for all (t, x) ∈ R
d+1, ξ ∈ R

d , and θ ∈ C
n . Here we use �( f ) to denote the real

part of f .
Now we state our regularity assumption on the leading coefficients. Let

oscx
(

Aαβ, Qr (t, x)
) = –

∫ t

t−r2m
–
∫

Br (x)

∣∣∣∣Aαβ(s, y)− –
∫

Br (x)
Aαβ(s, z) dz

∣∣∣∣ dy ds.

Then we set

A#
R = sup

(t,x)∈Rd+1
sup
r�R

sup
|α|=|β|=m

oscx
(

Aαβ, Qr (t, x)
)
.

We impose on the leading coefficients a small mean oscillation condition with
a parameter ρ > 0, which will be specified later.

Assumption 1 (ρ). There is a constant R0 ∈ (0, 1] such that A#
R0

� ρ.
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Contrary to non-divergence type systems where equations are defined almost
everywhere, solutions to divergence type equations are understood in the weak
sense. More precisely, for example, we say that u ∈ Hm

p,loc((S, T ) × Ω), where

1 < p < ∞, Ω ⊂ R
d , and −∞ � S < T � ∞, satisfies

ut + (−1)mLu + λu =
∑

|α|�m

Dα fα in (S, T )×Ω,

provided that

∫ t

S

∫

Ω

(
−ϕt · u + (−1)m+|α| Dαϕ · AαβDβu

)
dx ds

= (−1)|α|
∫ t

S

∫

Ω

Dαϕ · fα dx ds +
∫

Ω

u(S, x)ϕ(S, x) dx

−
∫

Ω

u(t, x)ϕ(t, x) dx

for every t ∈ (S, T ] and ϕ = (ϕ1, . . . , ϕn) ∈ C∞((S, T )×Ω) such that ϕ(t, ·) ∈
C∞

0 (Ω) for all t ∈ [S, T ]. If S = −∞ or T = ∞, we take ϕ ∈ C∞((S, T )×Ω)

such that ϕ(−∞, ·) = 0 or ϕ(∞, ·) = 0, respectively.
We are now ready to present our main results.

Theorem 1 (Divergence parabolic systems in the whole space). Let p ∈ (1,∞),
T ∈ (−∞,∞] and fα ∈ L p(OT ) for |α| � m. Then there exists a constant
ρ = ρ(d,m, n, p, δ) such that, under Assumption 1 (ρ), the following hold true.

(i) For any u ∈ Hm
p (OT ) satisfying

ut + (−1)mLu + λu =
∑

|α|�m

Dα fα in OT , (3)

we have
∑

|α|�m

λ1− |α|
2m ‖Dαu‖L p(OT ) � N

∑

|α|�m

λ
|α|
2m ‖ fα‖L p(OT ),

provided that λ � λ0, where N and λ0 � 0 depend only on d, m, n, p, δ, K
and R0.

(ii) For any λ > λ0, there exists a unique u ∈ Hm
p (OT ) satisfying (3).

Theorem 2 (Non-divergence parabolic systems in the whole space). Let p ∈ (1,∞),
T ∈ (−∞,∞] and f ∈ L p(OT ). Then there exists a constant ρ = ρ(d,m, n, p, δ)
such that, under Assumption 1 (ρ), the following hold true.

(i) For any u ∈ W 1,2m
p (OT ) satisfying

ut + (−1)m Lu + λu = f in OT , (4)
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we have

‖ut‖L p(OT ) +
∑

|α|�2m

λ1− |α|
2m ‖Dαu‖L p(OT ) � N‖ f ‖L p(OT ),

provided that λ � λ0, where N and λ0 � 0 depend only on d, m, n, p, δ, K
and R0.

(ii) For any λ > λ0, there exists a unique u ∈ W 1,2m
p (OT ) satisfying (4).

Remark 1. We can also solve Cauchy problems for systems defined on (0, T )×R
d

in divergence or non-divergence form. If the initial condition is zero, this is done
by extending the original system to a system defined on (−∞, T ) × R

d with the
right-hand side being zero for t ∈ (−∞, 0). In the same manner, we deal with
Cauchy problems for the systems below defined on a half space or on a bounded
domain. Note that in the case T < ∞, by considering e−(λ0+1)t u instead of u we
can take λ = 0 in the theorems above and below with the expense that N also
depends on T .

The next two theorems are about the boundary value problem of systems in
divergence and non-divergence form on a half space O+

T = (−∞, T )× R
d+.

Theorem 3 (Divergence parabolic systems on a half space). Let p ∈ (1,∞),
T ∈ (−∞,∞] and fα ∈ L p(O+

T ) for |α| � m. Then there exists a constant
ρ = ρ(d,m, n, p, δ) such that, under Assumption 1 (ρ), the following hold true.

(i) For any u ∈ Hm
p (O+

T ) satisfying

⎧
⎪⎨

⎪⎩

ut + (−1)mLu + λu =
∑

|α|�m

Dα fα in O+
T ;

u = D1u = · · · = Dm−1
1 u = 0 on ∂pO+

T ,

(5)

where ∂pO+
T = (−∞, T )× ∂Rd+, we have

∑

|α|�m

λ1− |α|
2m ‖Dαu‖L p(O+

T )
� N

∑

|α|�m

λ
|α|
2m ‖ fα‖L p(O+

T )
, (6)

provided that λ � λ0, where N and λ0 � 0 depend only on d, m, n, p, δ, K
and R0.

(ii) For any λ > λ0, there exists a unique u ∈ Hm
p (O+

T ) satisfying (5).

Theorem 4 (Non-divergence parabolic systems on a half space). Let p ∈ (1,∞),
T ∈ (−∞,∞] and f ∈ L p(O+

T ). Then there exists a constantρ = ρ(d,m, n, p, δ)
such that, under Assumption 1 (ρ), the following hold true.

(i) For any u ∈ W 1,2m
p (O+

T ) satisfying

{
ut + (−1)m Lu + λu = f in O+

T ;
u = D1u = · · · = Dm−1

1 u = 0 on ∂pO+
T ,

(7)
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we have

‖ut‖L p(O+
T )

+
∑

|α|�2m

λ1− |α|
2m ‖Dαu‖L p(O+

T )
� N‖ f ‖L p(O+

T )
,

provided that λ � λ0, where N and λ0 � 0 depend only on d, m, n, p, δ, K
and R0.

(ii) For any λ > λ0, there exists a unique u ∈ W 1,2m
p (O+

T ) satisfying (7).

Remark 2. By using a scaling argument, it is easy to see that we can choose λ0 to
be zero in the theorems above, provided that L or L has no lower-order terms and
the leading coefficients depend only on t .

Remark 3. In what has gone above we have presented results only for parabolic
systems. From those results we easily obtain the corresponding results for higher
order elliptic systems in divergence form and non-divergence form. The key idea is
viewing solutions to elliptic systems as steady state solutions to the corresponding
parabolic systems. We refer the reader to [25] and [14] for details. To show the exact
form of results for elliptic systems, we state below the cases for elliptic systems on
a bounded domain, Theorems 7 and 8.

Next we consider the solvability of systems in domains with the homogeneous
Dirichlet boundary condition. For divergence systems, we assume the boundary ∂Ω
of the domainΩ is locally the graph of a Lipschitz continuous function with a small
Lipschitz constant. More precisely, we make the following assumption containing
a parameter ρ1 ∈ (0, 1], which will be specified later.

Assumption 2 (ρ1). There is a constant R1 ∈ (0, 1] such that, for any x0 ∈ ∂Ω

and r ∈ (0, R1], there exists a Lipschitz function φ: R
d−1 → R such that

Ω ∩ Br (x0) =
{

x ∈ Br (x0) : x1 > φ(x ′)
}

and

sup
x ′,y′∈B′

r (x
′
0),x

′ 
=y′

|φ(y′)− φ(x ′)|
|y′ − x ′| � ρ1

in some coordinate system.

Note that all C1 domains satisfy this assumption for any ρ1 > 0. Below we denote
ΩT = (−∞, T )×Ω , where Ω ⊂ R

d .

Theorem 5 (Divergence parabolic systems on a bounded domain). Let p ∈ (1,∞),
T ∈ (−∞,∞]. Then there exist constants ρ = ρ(d,m, n, p, δ), ρ1 = ρ1(d,m, n,
p, δ, K , R0) and λ0 = λ0(d,m, n, p, δ, K , R0, R1) > 0, such that under Assump-
tion 1 (ρ) and Assumption 2 (ρ1) the following is true. For any fα ∈ L p(ΩT ),
|α| � m, and λ � λ0, there is a unique solution u ∈ Hm

p (ΩT ) to
⎧
⎪⎨

⎪⎩

ut + (−1)mLu + λu =
∑

|α|�m

Dα fα in ΩT ;

u = |Du| = · · · = |Dm−1u| = 0 on (−∞, T )× ∂Ω ,
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and we have
∑

|α|�m

λ1− |α|
2m ‖Dαu‖L p(ΩT ) � N

∑

|α|�m

λ
|α|
2m ‖ fα‖L p(ΩT ),

where N depends only on d, m, n, p, δ, K , R0 and R1.

Theorem 6 (Non-divergence parabolic systems on a bounded domain). Let
p ∈ (1,∞), T ∈ (−∞,∞] and Ω be a C2m−1,1 domain with the C2m−1,1

norm bounded by K . Then there exist constants ρ = ρ(d,m, n, p, δ) and λ0 =
λ0(d,m, n, p, δ, K , R0) > 0, such that under Assumption 1 (ρ) the following
is true. For any f ∈ L p(ΩT ) and λ � λ0, there is a unique solution u ∈
W 1,2m

p (ΩT ) to
{

ut + (−1)m Lu + λu = f in ΩT ;
u = |Du| = · · · = |Dm−1u| = 0 on (−∞, T )× ∂Ω ,

(8)

and we have

‖ut‖L p(ΩT ) +
∑

|α|�2m

λ1− |α|
2m ‖Dαu‖L p(ΩT ) � N‖ f ‖L p(ΩT ),

where N depends only on d, m, n, p, δ, K and R0.

As discussed in Remark 3, the theorems above have elliptic analogies. For future
reference, we state the results below for elliptic systems on a bounded domain.

Theorem 7 (Divergence elliptic systems on a bounded domain). Let p ∈ (1,∞).
Then there exist constants ρ = ρ(d,m, n, p, δ), ρ1 = ρ1(d,m, n, p, δ, K , R0)

and λ0 = λ0(d,m, n, p, δ, K , R0, R1) > 0, such that under Assumption 1 (ρ) and
Assumption 2 (ρ1) the following is true. For any fα ∈ L p(Ω), |α| � m and λ � λ0,
there is a unique solution u ∈ W m

p (Ω) to
⎧
⎪⎨

⎪⎩

Lu + (−1)mλu =
∑

|α|�m

Dα fα in Ω;

u = |Du| = · · · = |Dm−1u| = 0 on ∂Ω ,

and we have
∑

|α|�m

λ1− |α|
2m ‖Dαu‖L p(Ω) � N

∑

|α|�m

λ
|α|
2m ‖ fα‖L p(Ω),

where N depends only on d, m, n, p, δ, K , R0 and R1.

Theorem 8 (Non-divergence elliptic systems on a bounded domain). Let p ∈
(1,∞) and Ω be a C2m−1,1 domain with the C2m−1,1 norm bounded by K . Then
there exist constants ρ = ρ(d,m, n, p, δ) and λ0 = λ0(d,m, n, p, δ, K , R0) > 0,
such that under Assumption 1 (ρ) the following is true. For any f ∈ L p(Ω) and
λ � λ0, there is a unique solution u ∈ W 2m

p (Ω) to
{

Lu + (−1)mλu = f in Ω;
u = |Du| = · · · = |Dm−1u| = 0 on ∂Ω ,
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and we have
∑

|α|�2m

λ1− |α|
2m ‖Dαu‖L p(Ω) � N‖ f ‖L p(Ω),

where N depends only on d, m, n, p, δ, K and R0.

Part I. Systems in the whole space

This part of the paper is devoted to the proofs of the L p-solvability of sys-
tems in the whole space, that is, Theorems 1 and 2. In Section 3 we obtain several
L2-estimates for systems with coefficients depending only on t . By using these
estimates, in Section 4 we prove the mean oscillation estimates for systems with
the same class of coefficients. We complete the proofs of Theorems 1 and 2 in
Section 5.

3. L2-Estimates for systems with simple coefficients in the whole space

In this section we obtain L2-estimates of parabolic systems in divergence and
non-divergence form when the coefficient matrices are measurable functions of
only the time variable satisfying the Legendre–Hadamard ellipticity condition (2).
Even though our proofs are basic, we present them here for the sake of complete-
ness. In particular, we derive the L2-estimate of systems in non-divergence form
by using only that of divergence type systems. Throughout the section we set

L0u =
∑

|α|=|β|=m

Dα(AαβDβu),

where Aαβ = Aαβ(t). Since Aαβ are independent of x ∈ R
d , we can write

L0u =
∑

|α|=|β|=m

AαβDαDβu.

Let C∞
0 (OT ) be the collection of infinitely differentiable functions defined on OT

vanishing for large |(t, x)|.
Theorem 9. Let T ∈ (−∞,∞]. There exists N = N (d, n,m, δ) such that, for any
λ � 0,

∑

|α|�m

λ1− |α|
2m ‖Dαu‖L2(OT ) � N

∑

|α|�m

λ
|α|
2m ‖ fα‖L2(OT ), (9)

if u ∈ Hm
2 (OT ), fα ∈ L2(OT ), |α| � m, and

ut + (−1)mL0u + λu =
∑

|α|�m

Dα fα (10)

in OT . Furthermore, for λ > 0 and fα ∈ L2(OT ), |α| � m, there exists a unique
u ∈ Hm

2 (OT ) satisfying (10).
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Proof. We assume λ > 0. If λ = 0, the inequality (9) holds trivially or we obtain
∑

|α|=m

‖Dαu‖L2(OT ) � N
∑

|α|=m

‖ fα‖L2(OT ) if fα = 0 for |α| < m

using the inequality (9) for λ > 0 and letting λ ↘ 0.
Let us assume that the inequality (9) is proved. Then due to the fact that

ut = −(−1)m
∑

|α|=|β|=m

Dα(AαβDβu)− λu +
∑

|α|�m

Dα fα,

we obtain ‖u‖Hm
2 (OT ) � N‖Pλu‖

H
−m
2 (OT )

, where Pλu = ut + (−1)mL0u + λu
and N = N (d, n,m, δ, λ). Then using the estimate, the method of continuity, and
the unique solvability of systems with coefficients Aαβ = δαβ In×n we prove the
second assertion of the theorem. Therefore, we only need to prove the inequality
(9). Moreover, since Pλ is a bounded linear operator from Hm

2 (OT ) to H
−m
2 (OT ),

it suffices to concentrate on u ∈ C∞
0 (OT ).

Multiply both sides of (10) by u and integrate them on OT . Then by integration
by parts we have

〈u, ut 〉OT +〈Dαu, AαβDβu〉OT +λ〈u, u〉OT =
∑

|α|�m

(−1)|α|〈Dαu, fα〉OT . (11)

Note that

〈Dαu, AαβDβu〉OT = 〈(i ξ)α ũ, Aαβ(i ξ)β ũ〉OT =
∫

OT

ξαξβ ũtr Aαβ ũ dξ dt.

Here ũ is the Fourier transform of u in x . By the ellipticity condition we get

δ

∫

OT

|ξ |2m |ũ|2 dξdt �
∫

OT

�
(
ξαξβ ũtr Aαβ ũ

)
dξ dt.

Also note that
∫

Rd
|u|2(T, x) dx =

∫

OT

∂

∂t
|u|2(t, x) dt dx = 〈u, ut 〉OT + 〈ut , u〉OT ,

�〈u, ut 〉OT = 1

2

∫

Rd
|u|2(T, x) dx � 0.

Thus, if we denote the right-hand side of (11) by I , we obtain

δ

∫

OT

|ξ |2m |ũ|2 dξdt + λ〈u, u〉OT � �I �
∑

|α|�m

|〈Dαu, fα〉OT |.

Since

‖Dmu‖2
L2(OT )

� N
∫

OT

|ξ |2m |ũ|2 dξdt
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and

|〈Dαu, fα〉OT | � ελ
m−|α|

m ‖Dαu‖2
L2(OT )

+ Nε−1λ− m−|α|
m ‖ fα‖2

L2(OT )

for all ε > 0, the inequality (9) follows by using the interpolation inequalities and
choosing an appropriate ε. ��
Theorem 10. Let T ∈ (−∞,∞]. There exists N = N (d, n,m, δ) such that

‖ut‖L2(OT ) +
∑

|α|�2m

λ1− |α|
2m ‖Dαu‖L2(OT ) � N‖ut + (−1)mL0u + λu‖L2(OT )

for all λ � 0 and u ∈ W 1,2m
2 (OT ). Moreover, for λ > 0 and f ∈ L2(OT ), there

exists a unique u ∈ W 1,2m
2 (OT ) satisfying

ut + (−1)mL0u + λu = f

in OT .

Proof. As in the proof of Theorem 9, we only prove the estimate assuming that
u ∈ C∞

0 (OT ). Let f = ut + (−1)mL0u + λu and write

ut + (−1)m Dα(AαβDβu)+ λu = f. (12)

Then by Theorem 9

λ‖u‖L2(OT ) � N‖ f ‖L2(OT ). (13)

Now by differentiating both sides of (12) m times with respect to x we get

(Dmu)t + (−1)m Dα(AαβDβDmu)+ λDmu = Dm f.

This with Theorem 9 shows that
∑

|α|=m

‖DαDmu‖L2(OT ) � N‖ f ‖L2(OT ). (14)

Using (13), (14), and the interpolation inequalities, we obtain

∑

|α|�2m

λ1− |α|
2m ‖Dαu‖L2(OT ) � N‖ f ‖L2(OT ).

Finally, observe that

‖ut‖L2(OT ) = ‖ f − (−1)mL0u − λu‖L2 � N‖ f ‖L2(OT ).

The theorem is proved. ��
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4. Mean oscillation estimates for systems in the whole space

In this section we continue working on the operator

L0u =
∑

|α|=|β|=m

AαβDαDβu,

where Aαβ = Aαβ(t). The main objective of this section is to obtain mean oscil-
lation estimates for divergence type systems (Theorem 11) and for non-divergence
type systems (Corollary 2) defined in the whole space.

4.1. Some auxiliary results for systems in the whole space

First we prove the following localized version of Theorem 10.

Lemma 1. Let 0 < r < R < ∞. Assume u ∈ W 1,2m
2 (Q R) and

ut + (−1)mL0u = f

in Q R, where f ∈ L2(OT ). Then there exists a constant N = N (d, n,m, δ) such
that

‖ut‖L2(Qr ) + ‖D2mu‖L2(Qr ) � N‖ f ‖L2(Q R) + N (R − r)−2m‖u‖L2(Q R).

(15)

Furthermore,

‖u‖W 1,2m
2 (Qr )

� N‖ f ‖L2(Q R) + N‖u‖L2(Q R), (16)

where N = N (d, n,m, δ, r, R).

Proof. Let

R0 = r, R j = r + (R − r)
j∑

l=1

2−l , j = 1, 2, . . . .

For each j = 0, 1, . . ., we take ζ j ∈ C∞
0 (R

d+1) satisfying

ζ j =
{

1 on Q R j

0 on R
d+1 \ (−R2m

j+1, R2m
j+1)× BR j+1

,

and

|Dkζ j | � N2k j (R − r)−k, |(ζ j )t | � N22mj (R − r)−2m,

where k = 0, 1, . . . , 2m. Indeed, we can take ζ j as follows. Let g(z) ∈ C∞(R) be
a function such that

0 � g � 1, g(z) = 1 if z � 0, g(z) = 0 if z � 1/2.
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Then set ζ j (t, x) = ψ j (t)η j (x), where

ψ j (t) = g
(

2 j (R − r)−1(|t | 1
2m − R j )

)
,

η j (x) = g
(

2 j (R − r)−1(|x | − R j )
)
.

Now we apply Theorem 10 with λ = 0 to ζ j u ∈ W 1,2m
2 (O0), so that

‖(ζ j u)t‖L2(O0) + ‖D2m(ζ j u)‖L2(O0) � N‖(ζ j u)t + (−1)mL0(ζ j u)‖L2(O0)

� N‖ f ‖L2(Q R) + N‖(ζ j )t u‖L2(O0)

+N
2m∑

k=1

‖Dkζ j D2m−ku‖L2(O0).

(17)

Using the properties of ζ j and interpolation inequalities (see, for instance, [27]),
for each 1 � k < 2m, we have

‖Dkζ j D2m−ku‖L2(O0) = ‖Dkζ j D2m−k(ζ j+1u)‖L2(O0)

� N2k j (R − r)−k‖D2m−k(ζ j+1u)‖L2(O0)

� ε‖D2m(ζ j+1u)‖L2(O0)

+N22mj (R − r)−2m‖u‖L2(Q R). (18)

Furthermore, we have

‖(ζ j )t u‖L2(O0) + ‖u D2mζ j‖L2(O0) � N22mj (R − r)−2m‖u‖L2(Q R).

(19)

Therefore, if we set

I j = ‖(ζ j u)t‖L2(O0) + ‖D2m(ζ j u)‖L2(O0),

from (17), (18), and (19) we obtain

I j � ε I j+1 + N‖ f ‖L2(Q R) + N22mj (R − r)−2m‖u‖L2(Q R).

Multiply both sides by ε j and make summations with respect to j to get

∞∑

j=0

ε j I j �
∞∑

j=1

ε j I j +N
∞∑

j=0

ε j‖ f ‖L2(Q R)+N (R−r)−2m
∞∑

j=0

ε j 22mj‖u‖L2(Q R).

Upon choosing, for example, ε = 2−2m−1, the summations are finite, so from the
above inequality we have

‖D2m(ζ0u)‖L2(O0) + ‖(ζ0u)t‖L2(O0) � N‖ f ‖L2(Q R) + N (R − r)−2m‖u‖L2(Q R).

This proves the inequality (15) because the left-hand side of the above inequality
is greater than that of (15). Finally, the inequality (16) follows from (15) and the
interpolation inequalities. ��
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In the sequel we denote u ∈ W
1,∞
p (Qr (t0, x0)), 1 < p < ∞, (t0, x0) ∈ R

d+1,
if Dαu, Dαut ∈ L p(Qr (t0, x0)) for all multi-index α including α = (0, . . . , 0).

Corollary 1. Let 0 < r < R < ∞ and u ∈ W
1,∞
2 (Q R) satisfy

ut + (−1)mL0u = 0 (20)

in Q R. Then for any multi-index γ , we have

‖Dγ u‖L2(Qr ) + ‖Dγ ut‖L2(Qr ) � N‖u‖L2(Q R),

where N = N (d, n,m, δ, r, R, γ ).

Proof. Note that

Dγ ut = −(−1)mL0 Dγ u

in Q R . Hence it is enough to prove

‖Dγ u‖L2(Qr ) � N‖u‖L2(Q R). (21)

Since u ∈ W 1,2m
2 (Q R), this inequality follows from (16) if |γ | � 2m, so assume

that |γ | > 2m and

Dγ u = D2m Dϑu.

Note that Dϑu is in W 1,2m
2 (Q R) and satisfies (20). Thus applying (15) to the equa-

tion (20) with Dϑu in place of u we get

‖Dγ u‖L2(Qr ) � N‖Dϑu‖L2(Q R0 )
,

where r < R0 < R. We repeat this process as many times as needed to get

‖Dγ u‖L2(Qr ) � N‖Dγ0 u‖L2(Q R1 )
,

where |γ0| � 2m and r < R1 < R. Then the inequality (21) for |γ | > 2m follows
from the same inequality for |γ | � 2m (with R1 in place of r ). ��
Lemma 2. If u ∈ W

1,∞
2 (Q4) satisfies (20) in Q4, then

sup
Q1

|Du(t, x)| + sup
Q1

|ut (t, x)| � N‖u‖L2(Q4),

where N = N (d, n,m, δ).

Proof. Thanks to the fact that ut = −(−1)mL0u in Q4, it suffices to prove

sup
(t,x)∈Q1

|Dγ u(t, x)| � N‖u‖L2(Q4) (22)

for a multi-index γ . By the Sobolev embedding theorem

sup
t∈(−1,0)

|Dγ u(t, x)|2 � N
∫ 0

−1
|Dγ u(s, x)|2 ds + N

∫ 0

−1
|Dγ ut (s, x)|2 ds
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for each x ∈ B1, where Dγ u(t, x) is considered as a function of t ∈ (−1, 0) for
each fixed x ∈ B1. On the other hand, again by the Sobolev embedding theorem,
there exists a positive number k such that

sup
x∈B1

|Dγ u(s, x)| � N‖Dγ u(s, ·)‖W k
2 (B1)

for each s ∈ (−1, 0), where Dγ u(s, x) is considered as a function of x ∈ B1 for
each fixed s ∈ (−1, 0). We have the same inequality as above with Dγ ut in place
of Dγ u. Therefore, we obtain

sup
(t,x)∈Q1

|Dγ u(t, x)|2 � N
∑

|ϑ |�k

‖DϑDγ u‖L2(Q1) + N
∑

|ϑ |�k

‖DϑDγ ut‖L2(Q1).

This together with Corollary 1 gives the inequality (22). ��
Lemma 3. Let λ � 0 and u ∈ W

1,∞
2 (Q4) satisfy

ut + (−1)mL0u + λu = 0 (23)

in Q4. Then we have

sup
Q1

|Dm+1u(t, x)| + sup
Q1

|Dmut (t, x)| + λ
1
2 sup

Q1

|Du(t, x)| + λ
1
2 sup

Q1

|ut (t, x)|

� N
m∑

k=0

λ
1
2 − k

2m ‖Dku‖L2(Q4), (24)

where N = N (d, n,m, δ).

Proof. The case λ = 0 follows by Lemma 2 applied to Dmu since Dmu satisfies
(20). For the case λ > 0, we follow an idea by S. Agmon. Consider

ζ(y) = cos
(
λ

1
2m y

)
+ sin

(
λ

1
2m y

)
.

Note that

(−1)m D2m
y ζ(y) = λζ(y), ζ(0) = 1, |Dmζ(0)| = λ

1
2 .

Denote by (t, z) = (t, x, y) a point in R
d+2, where z = (x, y) ∈ R

d+1, and set

û(t, z) = u(t, x)ζ(y), Q̂r = (−r2m, 0)× {|z| < r, z ∈ R
d+1}.

Since u satisfies (23), û satisfy

ût + (−1)mL0û + (−1)m D2m
y û = 0

in Q̂4. Upon applying the inequality (24) with λ = 0 just proved above, we get

sup
Q̂1

|Dm+1
x û(t, z)| + sup

Q̂1

|Dm
x ût (t, z)| + sup

Q̂1

|Dm
y Dx û(t, z)| + sup

Q̂1

|Dm
y ût (t, z)|

� N‖Dmû‖L2(Q̂4)
. (25)
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Since, for example,

sup
(t,x)∈Q1

λ
1
2 |Dx u(t, x)| � sup

(t,z)∈Q̂1

|Dm
y Dx û(t, z)|,

the left-hand side of (25) is greater than that of (24). On the other hand, Dmû is a
linear combination of terms such as

λ
1
2 − k

2m cos
(
λ

1
2m y

)
Dk

x u(t, x), λ
1
2 − k

2m sin(λ
1

2m y)Dk
x u(t, x), k = 0, . . . ,m.

Thus we see that the right-hand side of (25) is bounded by that of (24). The lemma
is proved. ��

Recall that we denote by X a point in R
d+1 = R × R

d .

Lemma 4. Let r ∈ (0,∞), κ ∈ [4,∞), λ � 0, and X0 = (t0, x0) ∈ R
d+1. Assume

u ∈ Hm
2,loc(R

d+1) satisfies (23) in Qκr (X0). Then for any α, |α| = m, we have

(|Dαu − (Dαu)Qr (X0)|
)

Qr (X0)
+ λ

1
2
(|u − (u)Qr (X0)|

)
Qr (X0)

� Nκ−1
m∑

k=0

λ
1
2 − k

2m (|Dku|2)
1
2
Qκr (X0)

, (26)

where N = N (d, n,m, δ) > 0.

Proof. Let us prove the inequality (26) when X0 = (0, 0). This, with a translation
of the coordinates, proves the inequality for general X0 ∈ R

d+1.
Since the standard mollification of u with respect to x satisfies (23) in a little

bit smaller cylinder than Qκr , we assume that Dαu ∈ L2(Qκr ) for all multi-index
α. Furthermore, (23) implies that Dγ ut ∈ L2(Qκr ) if Dαu ∈ L2(Qκr ) for all α.
Therefore, without loss of generality we assume that u ∈ W

1,∞
2 (Qκr ).

Due to a scaling argument (for instance, see the proof of Lemma 11), it is
sufficient to deal with the case r = 4/κ . Observe that, for example,

(|Dαu − (Dαu)Qr |
)

Qr
� Nr sup

Q1

|Dα+1u(t, x)| + Nr sup
Q1

|Dαut (t, x)|.

By Lemma 3, the right-hand side of the above inequality is bounded by that of (26)
(recall r = 4κ−1). The lemma is proved. ��

4.2. Mean oscillation estimates for systems in the whole space

In the next theorem, we prove a mean oscillation estimate for divergence form
systems with simple coefficients in the whole space.

Theorem 11. Let r ∈ (0,∞), κ ∈ [8,∞), λ > 0, X0 = (t0, x0) ∈ R
d+1, and

fα ∈ L2,loc(R
d+1), |α| � m. Assume that u ∈ Hm

2,loc(R
d+1) satisfies

ut + (−1)mL0u + λu =
∑

|α|�m

Dα fα
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in Qκr (X0). Then for any α, |α| = m, we have

(|Dαu − (Dαu)Qr (X0)|
)

Qr (X0)
+ λ

1
2
(|u − (u)Qr (X0)|

)
Qr (X0)

� Nκ−1
m∑

k=0

λ
1
2 − k

2m (|Dku|2)
1
2
Qκr (X0)

+Nκm+ d
2

∑

|α|�m

λ
|α|
2m − 1

2 (| fα|2)
1
2
Qκr (X0)

,

(27)

where N = N (d, n,m, δ) > 0.

Proof. We take, for the sake of simplicity, X0 = (0, 0). As mentioned earlier, a
translation gives the result for general X0.

Take an infinitely differentiable function ζ defined on R
d+1 such that

ζ = 1 on Qκr/2, ζ = 0 outside (−(κr)2m, (κr)2m)× Bκr .

By Theorem 9, for λ > 0, there exists a unique solution w ∈ Hm
2 (O∞) to the

equation

wt + (−1)mL0w + λw =
∑

|α|�m

Dα(ζ fα) (28)

in O∞ = R
d+1. Let v := u − w. Then the function v ∈ Hm

2,loc(R
d+1) satisfies

vt + (−1)mL0v + λv = 0 in Qκr/2.

By Lemma 4 (note that κ/2 � 4) applied to v, we have

(|Dαv−(Dαv)Qr |
)

Qr
+λ 1

2
(|v − (v)Qr |

)
Qr

� Nκ−1
m∑

k=0

λ
1
2 − k

2m (|Dkv|2)
1
2
Qκr/2

.

(29)

Next we estimatew, which is the unique solution to the equation (28) considered
on O0. By Theorem 9, we have

∑

|α|�m

λ1− |α|
2m ‖Dαw‖L2(O0) � N

∑

|α|�m

λ
|α|
2m ‖ζ fα‖L2(O0).

In particular,

(
|Dmw|2

) 1
2

Qr
+ λ

1
2

(
|w|2

) 1
2

Qr
� Nκm+ d

2
∑

|α|�m

λ
|α|
2m − 1

2

(
| fα|2

) 1
2

Qκr
, (30)

m∑

k=0

λ
1
2 − k

2m

(
|Dkw|2

) 1
2

Qκr
� N

∑

|α|�m

λ
|α|
2m − 1

2

(
| fα|2

) 1
2

Qκr
. (31)

Now we are ready to prove (27). Since
(|Dαu − (Dαu)Qr |

)
Qr

� 2
(|Dαu − c|)Qr
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for any constant c, by taking c = (Dαv)Qr and repeating the same argument for
the second term, we bound the left-hand side of (27) by a constant times

(|Dαu − (Dαv)Qr |)Qr + λ
1
2 (u − (v)Qr )Qr ,

which is, due to the fact that u = w + v, controlled by

(|Dαv − (Dαv)Qr |
)

Qr
+ λ

1
2
(|v − (v)Qr |

)
Qr

+
(
|Dmw|2

) 1
2

Qr
+ λ

1
2

(
|w|2

) 1
2

Qr
.

Using (29) and (30), we see that the above is less than

Nκ−1
m∑

k=0

λ
1
2 − k

2m (|Dkv|2)
1
2
Qκr/2

+ Nκm+ d
2

∑

|α|�m

λ
|α|
2m − 1

2 (| fα|2)
1
2
Qκr
.

Finally, we use the fact that v = u − w and (31) to prove that the terms above are
not greater than the right-hand side of (27). ��

Next we consider the corresponding mean oscillation estimate for
non-divergence type systems in the whole space.

Corollary 2. Let r ∈(0,∞), κ ∈[8,∞), λ > 0, X0 ∈ R
d+1, and f ∈ L2,loc(R

d+1),
|α| � m. Assume that u ∈ W 1,2m

2,loc (R
d+1) satisfies

ut + (−1)mL0u + λu = f

in Qκr (X0). Then for any α, |α| = 2m, we have
(|Dαu − (Dαu)Qr (X0)|

)
Qr (X0)

+ λ
(|u − (u)Qr (X0)|

)
Qr (X0)

� Nκ−1
2m∑

k=0

λ1− k
2m (|Dku|2)

1
2
Qκr (X0)

+ Nκm+ d
2 (| f |2)

1
2
Qκr (X0)

,

where N = N (d, n,m, δ) > 0.

Proof. Again let X0 = (0, 0) for simplicity. By Theorem 11, it follows that (after

multiplying both sides by λ
1
2 )

λ(|u − (u)Qr |)Qr � Nκ−1
m∑

k=0

λ1− k
2m (|Dku|2)

1
2
Qκr

+ Nκm+ d
2 (| f |2)

1
2
Qκr
.

(32)

Differentiate m times both sides of the system with respect to x to get

Dmut + (−1)mL0 Dmu + λDmu = Dm f.

By Theorem 11 applied to Dmu in place of u,

(|Dγ Dmu − (Dγ Dmu)Qr |)Qr � Nκ−1
m∑

k=0

λ
1
2 − k

2m (|Dk Dmu|2)
1
2
Qκr

+Nκm+ d
2 (| f |2)

1
2
Qκr
,

where |γ | = m. This combined with (32) gives the inequality in the corollary. ��
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5. L p-Estimates for systems in the whole space

In this section, we use the mean oscillation estimates obtained in the previous
section to prove Theorems 1 and 2.

Let Q = {
Qr (t, x) : (t, x) ∈ R

d+1, r ∈ (0,∞)
}
. For a function g defined on

R
d+1, we denote its (parabolic) maximal and sharp function, respectively, by

Mg(t, x) = sup
Q∈Q:(t,x)∈Q

–
∫

Q
|g(s, y)| dy ds,

g#(t, x) = sup
Q∈Q:(t,x)∈Q

–
∫

Q
|g(s, y)− (g)Q | dy ds.

Then

‖g‖L p � N‖g#‖L p , ‖Mg‖L p � N‖g‖L p ,

if g ∈ L p, where 1 < p < ∞ and N = N (d, p). As is well known, the first of the
above inequalities is due to the Fefferman–Stein theorem on sharp functions and
the second one to the Hardy–Littlewood maximal function theorem.

We use the idea of freezing the coefficients to obtain

Lemma 5. Let L be the operator in Theorem 1. Suppose the lower-order coeffi-
cients of L are all zero. Let μ, ν ∈ (1,∞), 1/μ + 1/ν = 1, and λ, R ∈ (0,∞).
Assume u ∈ C∞

0 (R
d+1) vanishing outside Q R and

ut + (−1)mLu + λu =
∑

|α|�m

Dα fα,

where fα ∈ L2,loc(R
d+1). Then there exists a constant N = N (d,m, n, δ, μ) such

that for any α, |α| = m, r ∈ (0,∞), κ � 8, and X0 ∈ R
d+1, we have

(|Dαu − (Dαu)Qr (X0)|
)

Qr (X0)
+ λ

1
2
(|u − (u)Qr (X0)|

)
Qr (X0)

� Nκ−1
m∑

k=0

λ
1
2 − k

2m (|Dku|2)
1
2
Qκr (X0)

+Nκm+ d
2

⎛

⎝
∑

|α|�m

λ
|α|
2m − 1

2 (| fα|2)
1
2
Qκr (X0)

+ (A#
R)

1
2ν (|Dmu|2μ)

1
2μ
Qκr (X0)

⎞

⎠ .

Proof. Let κ � 8 and r ∈ (0,∞). Fix a y ∈ R
d and set

Lyu = Aαβ(t, y)DαDβu(t, x).

Then we have

ut + (−1)mLyu + λu =
∑

|α|�m

Dα f̃α,
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where

f̃α = fα + (−1)m
∑

|β|=m

(
Aαβ(t, y)− Aαβ(t, x)

)
Dβu.

It follows from Theorem 11 that

(|Dαu − (Dαu)Qr (X0)|
)

Qr (X0)
+ λ

1
2
(|u − (u)Qr (X0)|

)
Qr (X0)

� Nκ−1
m∑

k=0

λ
1
2 − k

2m (|Dku|2)
1
2
Qκr (X0)

+Nκm+ d
2

∑

|α|�m

λ
|α|
2m − 1

2 (| f̃α|2)
1
2
Qκr (X0)

.

(33)

Note that

∫

Qκr (X0)

| f̃α|2 dx dt � N
∫

Qκr (X0)

| fα|2 dx dt + N Iy, (34)

where for |α| = m,

Iy =
∫

Qκr (X0)

∣∣(Aαβ(t, y)− Aαβ(t, x))Dβu
∣∣2

dx dt.

Denote B to be Bκr (x0) if κr < R, or to be BR otherwise; denote Q to be
Qκr (t0, x0) if κr < R, or to be Q R otherwise. Now we take the average of Iy

with respect to y in B. Since u = 0 outside Q R , by the Hölder inequality we get

–
∫

B
Iy dy = –

∫

B

∫

Qκr (X0)∩Q R

|(Aαβ(t, y)− Aαβ(t, x))Dβu|2 dx dt dy

� –
∫

B

(∫

Q
|Aαβ(t, y)− Aαβ(t, x)|2ν

) 1
ν

dy

(∫

Qκr (X0)∩Q R

|Dmu|2μ
) 1
μ

,

where, by the boundedness of Aαβ as well as the definitions of oscx and A#
R , the

integral over B in the last term above is bounded by a constant times

–
∫

B

(∫

Q
|Aαβ(t, y)− Aαβ(t, x)|

) 1
ν

dy

�
(

–
∫

B

∫

Q
|Aαβ(t, y)− Aαβ(t, x)| dx dt dy

) 1
ν

� N
(|Q|oscx (A

αβ, Q)
) 1
ν � N

(
R2m+d A#

R

) 1
ν
.

This, together with (33) and (34), completes the proof of the lemma. ��
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Proof of Theorem 1. Due to the method of continuity, it suffices to obtain an a
priori estimate. By moving all the lower-order terms to the right-hand side and
taking a sufficiently large λ, we may assume that all the lower-order coefficients
are zero.

Case 1: p ∈ (2,∞). First we suppose T = ∞ and u ∈ C∞
0 (Q R0). Choose

a μ > 1 such that 2μ < p. Under these assumptions, from Lemma 5 we easily
deduce

(Dαu)#(X0)+ λ
1
2 u#(X0)

� Nκ−1
m∑

k=0

λ
1
2 − k

2m (M(Dku)2(X0))
1
2

+Nκm+ d
2

⎛

⎝
∑

|α|�m

λ
|α|
2m − 1

2 (M f 2
α (X0))

1
2 + ρ

1
2ν (M(Dmu)2μ(X0))

1
2μ

⎞

⎠

for any α, |α| = m, r ∈ (0,∞), κ � 8, and X0 ∈ R
d+1. This, together with the

interpolation inequality, the Fefferman-Stein theorem and the Hardy-Littlewood
maximal function theorem, yields

m∑

k=0

λ
1
2 − k

2m ‖Dku‖L p � N‖Dαu‖L p + Nλ
1
2 ‖u‖L p

� N (κ− 1
2 + κm+ d

2 ρ
1

2ν )

m∑

k=0

λ
1
2 − k

2m ‖Dku‖L p

+Nκm+ d
2

∑

|α|�m

λ
|α|
2m − 1

2 ‖ fα‖. (35)

Now we can choose κ sufficiently large and ρ sufficiently small in (35) to get the
desired estimate. A standard partition of the unity enables us to remove the restric-
tion that u ∈ C∞

0 (Q R0). The extension to the case T ∈ (−∞,+∞] is by now
standard; see, for instance, [25]. We omit the details.

Case 2: p ∈ (1, 2). Since the system is in divergence form, this case follows
immediately from the previous case by using the duality argument.

Finally, the case p = 2 is obtained by an interpolation argument. ��

In a similar way, from Corollary 2 we get the following counterpart of Lemma 5
for non-divergence systems.

Lemma 6. Let L be the operator in Theorem 2. Suppose the lower-order coeffi-
cients of L are all zero. Let μ, ν ∈ (1,∞), 1/μ + 1/ν = 1, and λ, R ∈ (0,∞).
Assume u ∈ C∞

0 (R
d+1) vanishing outside Q R and

ut + (−1)m Lu + λu = f,
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where f ∈ L2,loc(R
d+1). Then there exists a constant N = N (d,m, n, δ, μ) such

that for any α, |α| = 2m, r ∈ (0,∞), κ � 8, and X0 ∈ R
d+1, we have

(|Dαu − (Dαu)Qr (X0)|
)

Qr (X0)
+ λ

(|u − (u)Qr (X0)|
)

Qr (X0)

� Nκ−1
2m∑

k=0

λ1− k
2m (|Dku|2)

1
2
Qκr (X0)

+Nκm+ d
2

(
(| f |2)

1
2
Qκr (X0)

+ (A#
R)

1
2ν (|D2mu|2μ)

1
2μ
Qκr (X0)

)
.

Proof of Theorem 2. As in the proof of Theorem 1, it suffices to prove the a priori
estimate for T = ∞.

Case 1: p ∈ (2,∞). We only need to consider the case when u ∈ C∞
0 (Q R0),

since the general case follows from a partition of the unity. The proof of this case
is almost the same as that of Theorem 1, by using Lemma 6 instead of Lemma 5.
So we omit it.

Case 2: p ∈ (1, 2]. Note that here we cannot use the duality argument directly.
From Case 1 and Remark 2, we already have the W 1,2m

q solvability of

ut + (−1)mL0u + λu = f

in the whole space for any q ∈ (2,∞) and λ > 0. For this system, since Aαβ are
measurable functions of time only, we can make use of the duality argument, which
yields the solvability of the same equation for any q ∈ (1, 2). Fix a q = (1 + p)/2.
Now we can repeat the arguments in the previous section with q in place of 2, and
get the estimate in Lemma 6 with q in place of 2. Finally, following the proof of
Case 1 completes the proof of this case. ��

Part II. Systems on a half space or a bounded domain

This is the most novel part of the paper. The objective of this part is to establish
the L p-solvability of parabolic systems on a half space or on a bounded domain.

In the next section, we prove the L2-estimates for systems with coefficients
measurable in t on a half space. Relying on these L2-estimates, in Section 7 we are
able to derive mean oscillation estimates of some partial derivatives of solutions to
systems on a half space. These estimates alone are not sufficient for our purpose, so
in Section 8 we consider a certain system with special coefficients. Combining the
results in Sections 7 and 8 enables us to prove the L p-solvability on a half space
(Theorems 3, 4). Section 10 is devoted to the proofs of the bounded domain cases
(Theorems 5, 6). Finally, we give several remarks about other ellipticity conditions.

6. L2-Estimates for systems with simple coefficients on a half space

In this section, we prove the L2-estimate for systems on a half space. We again
consider

L0u =
∑

|α|=|β|=m

Dα(AαβDβu) =
∑

|α|=|β|=m

AαβDαDβu,
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where Aαβ = Aαβ(t). Recall that O+
T = (−∞, T ) × R

d+. In the divergence case
(Theorem 12), the proof is rather standard. However, in the case of non-divergence
systems (Theorem 13), the proof is much more involved. To the best of our knowl-
edge, Theorem 13 is new for higher order parabolic equations and systems with
measurable coefficients depending only on t .

6.1. Divergence case

Throughout the paper, we use the notation Dm
x ′u to indicate one of Dαu, where

α = (α1, . . . , αd), α1 = 0, and |α| = m. Sometimes, depending on the context,
Dm

x ′u means the whole collection of Dαu, |α| = m, α1 = 0. Similar to C∞
0 (OT ),

we denote by C∞
0 (O+

T ) the collection of infinitely differentiable functions defined

on O+
T vanishing for large |(t, x)| ∈ O+

T .

Theorem 12. Let T ∈ (−∞,∞] and fα ∈ L2(O+
T ). There exists a constant N =

N (d, n,m, δ) such that

∑

|α|�m

λ1− |α|
2m ‖Dαu‖L2(O+

T )
� N

∑

|α|�m

λ
|α|
2m ‖ fα‖L2(O+

T )
(36)

for any λ � 0 and u ∈ Hm
2 (O+

T ) satisfying

u(t, 0, x ′) = · · · = Dm−1
1 u(t, 0, x ′) = 0 (37)

on (−∞, T )× R
d−1 and

ut + (−1)mL0u + λu =
∑

|α|�m

Dα fα (38)

in O+
T . Furthermore, for λ > 0 and fα ∈ L2(O+

T ), |α| � m, there exists a unique
u ∈ Hm

2 (O+
T ) satisfying (38) in O+

T and (37) on (−∞, T )× R
d−1.

Proof. As in the proof of Theorem 9, we consider only the case λ > 0. We fol-
low the lines of the proof of Theorem 9. One noteworthy fact is that, because
u ∈ Hm

2 (O+
T ) satisfies (37), we have

〈Dαu, AαβDβu〉O+
T

= 〈Dαu, AαβDβu〉OT ,

where the function u on the right-hand side is viewed as an extension of u to OT

so that it is zero on OT \ O+
T . Similarly,

‖Dmu‖2
L2(O+

T )
� N

∫

OT

|ξ |2m |ũ|2 dξ dt,

where ũ is the Fourier transform of the extension. ��
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Remark 4. Theorem 12 can be extended to systems in a cylindrical domain ΩT ,
whereΩ is a bounded Lipschitz domain. For small λ � 0, we have a better estimate
than (36). Indeed, from the proof above, we get

‖Dmu‖2
L2(ΩT )

� N
∑

|α|�m

‖ fα‖L2(ΩT )‖Dαu‖L2(ΩT ).

By using the Poincaré inequality,

‖u‖L2(ΩT ) � N‖Du‖L2(ΩT ) � N‖D2u‖L2(ΩT ) � · · · � N‖Dmu‖L2(ΩT ).

Thus, we conclude

m∑

k=0

‖Dku‖L2(ΩT ) � N
∑

|α|�m

‖ fα‖L2(ΩT ).

Note that in this case, the solvability also holds for λ = 0.

6.2. Non-divergence case

Let us introduce some additional notation. Let τ ∈ N and {c1, . . . , c2τ } be the
solution to the following system:

2τ∑

k=1

(
−1

k

) j

ck = 1, j = 0, . . . , 2τ − 1. (39)

For a function w defined on R
d+, set

Eτw =

⎧
⎪⎨

⎪⎩

w(x1, x ′) if x1 > 0
2τ∑

k=1

ckw

(
−1

k
x1, x ′

)
otherwise.

Note that Eτw ∈ C2τ−1(Rd) if w ∈ C∞(Rd+). Indeed, by (39)

D j
1

(
2τ∑

k=1

ckw

(
−1

k
x1, x ′

)) ∣∣∣∣
x1=0

=
2τ∑

k=1

(
−1

k

) j

ck D j
1w(0, x ′) = D j

1w(0, x ′)

for j = 0, . . . , 2τ − 1.
We remark that similar extension operators were used in [19] and [16] in the

study of elliptic systems. We will use the following interpolation estimate.

Proposition 1. Let 1 < p < ∞ and u ∈ W m
p (R

d+). For any ε > 0, there exists
N = N (d, n,m, p, ε) such that

‖Dk
1 Dm−k

x ′ u‖L p(R
d+) � ε‖Dm

1 u‖L p(R
d+) + N

d∑

j=2

‖Dm
j u‖L p(R

d+),

where k = 0, 1, . . . ,m − 1.
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Proof. Without loss of generality we assume that u ∈ C∞
0 (R

d+). Let û = Eτu. For
a sufficiently large τ , the extension û is in W m

p (R
d) and satisfies

∑d
j=1 D2m

j ŵ =
∑d

j=1 Dm
j f̂ j , where

f̂ j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d∑

j=1

Dm
j u in R

d+;

d∑

j=1

2τ∑

k=1

ĉk Dm
j w

(
−1

k
x1, x ′

)
in R

d−.

Here ĉk are appropriate constants. Observe that

‖Dk
1 Dm−k

x ′ u‖L p(R
d+) � ‖Dmû‖L p(Rd ) � N‖ f̂ ‖L p(Rd ) � N

d∑

j=1

‖Dm
j u‖L p(R

d+),

where the second inequality is due to the L p-estimate of elliptic systems in the
whole space (see Remarks 1 and 2) and N = N (d, n,m, p). By replacing u(x1, x ′)
by u(ε1x1, x ′) in the above inequality we have

εk
1‖Dk

1 D2m−k
x ′ u‖L p(R

d+) � ε2m
1 N‖D2m

1 u‖L p(R
d+) + N

d∑

j=2

‖D2m
j u‖L p(R

d+).

The proposition is proved. ��
Lemma 7. Let T ∈ (−∞,∞]. There exists N = N (d, n,m, δ) such that

∑

|α|=m

‖DαDm
x ′u‖L2(O+

T )
+ λ‖u‖L2(O+

T )
� N‖ut + (−1)mL0u + λu‖L2(O+

T )

for all λ � 0 and u ∈ W 1,2m
2 (O+

T ) satisfying

u(t, 0, x ′) = · · · = Dm−1
1 u(t, 0, x ′) = 0 (40)

on (−∞, T )× R
d−1.

Proof. Define

f = ut + (−1)m Dα(AαβDβu)+ λu (41)

in O+
T . Then by Theorem 12

λ‖u‖L2(O+
T )

� N‖ f ‖L2(O+
T )
.

Now differentiate with respect to x ′ ∈ R
d−1 both sides of (41) m times to get

(Dm
x ′u)t + (−1)m Dα(AαβDβDm

x ′u)+ λDm
x ′u = Dm

x ′ f

in O+
T . Note that Dm

x ′u satisfies (40). Thus by Theorem 12 again we have
∑

|α|=m

‖DαDm
x ′u‖L2(O+

T )
� N‖ f ‖L2(O+

T )
.

The lemma is proved. ��
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Lemma 8. Let T ∈ (−∞,∞] and λ � 0. There exists N = N (d, n,m, δ) such
that, for u ∈ W 1,2m

2 (O+
T ) satisfying (40),

‖D2m
1 u‖L2(O+

T )
� N

2m∑

j=1

‖D2m− j
1 D j

x ′u‖L2(O+
T )

+ N‖ f ‖L2(O+
T )

(42)

provided that

ut + (−1)mL0u + λu = f (43)

in O+
T .

Proof. By multiplying both sides of the equation (43) from the left by D2m
1 u we

get

〈D2m
1 u, ut 〉O+

T
+ (−1)m〈D2m

1 u, AαβDαDβu〉O+
T

+ λ〈D2m
1 u, u〉O+

T

= 〈D2m
1 u, f 〉O+

T
. (44)

Note that

�(−1)m〈D2m
1 u, ut 〉O+

T
= 1

2

∫

R
d+

|Dm
1 u|2(T, x) dx � 0. (45)

Indeed, this holds true because
∫

R
d+

|Dm
1 u|2(T, x) dx =

∫

O+
T

∂

∂t
|Dm

1 u|2 dx dt

= 〈Dm
1 u, Dm

1 ut 〉O+
T

+ 〈Dm
1 u, Dm

1 ut 〉O+
T

and

〈D2m
1 u, ut 〉O+

T
= (−1)m〈Dm

1 u, Dm
1 ut 〉O+

T
,

the latter of which follows from the boundary condition (40) and integration by
parts. Hence, by taking the real parts of (44) and using (45) we have

�〈D2m
1 u, Aα̂α̂D2m

1 u〉O+
T

� −�
∑

(α,β) 
=(α̂,α̂)
〈D2m

1 u, AαβDαDβu〉O+
T

−(−1)mλ�〈D2m
1 u, u〉O+

T
+ (−1)m�〈D2m

1 u, f 〉O+
T
,

where α̂ = (m, 0, . . . , 0). Thanks to the ellipticity condition and Young’s inequal-
ity,

δ‖D2m
1 u‖2

L2(O+
T )

� �〈D2m
1 u, Aα̂α̂D2m

1 u〉O+
T

� ε‖D2m
1 u‖2

L2(O+
T )

+N (ε, δ)
2m∑

j=1

‖D2m− j
1 D j

x ′u‖2
L2(O+

T )

+N (ε)λ2‖u‖2
L2(O+

T )
+ N (ε)‖ f ‖2

L2(O+
T )
.

Choosing a sufficiently small ε and using Lemma 7, we prove (42). ��
Now we are ready to state and prove the main theorem of the section.
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Theorem 13. Let T ∈ (−∞,∞]. There exists N = N (d, n,m, δ) such that

‖ut‖L2(O+
T )

+
∑

|α|�2m

λ1− |α|
2m ‖Dαu‖L2(O+

T )
� N‖ut + (−1)mL0u + λu‖L2(O+

T )

for all λ � 0 and u ∈ W 1,2m
2 (O+

T ) satisfying

u(t, 0, x ′) = · · · = Dm−1
1 u(t, 0, x ′) = 0

on (−∞, T )× R
d−1.

Proof. Thanks to Lemma 7 and interpolation inequalities, it suffices to prove that

‖ut‖L2(O+
T )

+ ‖D2mu‖L2(O+
T )

� N‖ f ‖L2(O+
T )
, (46)

where f = ut + (−1)mL0u + λu. Lemma 8 and Proposition 1 (with 2m in place
of m) imply that

‖D2mu‖L2(O+
T )

� N‖ f ‖L2(O+
T )

+ ε‖D2m
1 u‖L2(O+

T )
+ N‖D2m

x ′ u‖L2(O+
T )
.

This, along with Lemma 7 and a sufficiently small ε, proves the inequality (46)
without the ut term on the left-hand side. To complete the proof we simply note
that

ut = −(−1)mL0u − λu + f.

��

7. Mean oscillation estimates of some partial derivatives
of solutions to systems on a half space

The aim of this section is to derive several mean oscillation estimates of highest
order derivatives of solutions to systems on a half space. Contrary to the whole
space case, here we are able to estimate only parts of the highest order derivatives.
More precisely, for divergence form systems, we give an estimate of Dm

x ′u, while
for non-divergence form systems we present the estimate of D2m

x ′ u. We emphasize
that these estimates alone are not sufficient for proving Theorems 3 and 4.

We still denote

L0u =
∑

|α|=|β|=m

DαAαβ(t)Dβu =
∑

|α|=|β|=m

Aαβ(t)DαDβu.

Recall that

Q+
r (t, x) = Qr (t, x) ∩ O+∞, Q+

r = Qr ∩ O+∞,
Q′

r = (−r2m, 0)× B ′
r , B ′

r = {x ′ ∈ R
d−1 : |x ′| < r}.
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7.1. Some auxiliary results for systems on a half space

We first prove some auxiliary estimates in this subsection. The first two are
counterparts of Lemma 1 and Corollary 1.

Lemma 9. Let 0 < r < R < ∞. Assume that u ∈ W 1,2m
p (Q+

R ) satisfies

u(t, 0, x ′) = · · · = Dm−1
1 u(t, 0, x ′) = 0 (47)

on Q′
R and

ut + (−1)mL0u = f

in Q+
R , where f ∈ L2(Q

+
R ). Then there exists a constant N = N (d, n,m, δ) such

that

‖ut‖L2(Q
+
r )

+ ‖D2mu‖L2(Q
+
r )

� N‖ f ‖L2(Q
+
R )

+ N (R − r)−2m‖u‖L2(Q
+
R )
.

Furthermore,

‖u‖W 1,2m
2 (Q+

r )
� N‖ f ‖L2(Q

+
R )

+ N‖u‖L2(Q
+
R )
,

where N = N (d, n,m, δ, r, R).

Proof. By Theorem 13 the L2-estimate of systems on a half spaces is available.
Then the proof is the same as that of Lemma 1 with some minor changes. ��
Corollary 3. Let 0 < r < R < ∞. Assume that u ∈ C∞

loc(O+∞) satisfies (47) on
Q′

R and

ut + (−1)mL0u = 0 (48)

in Q+
R . Then for any multi-indices γ and ϑ such that

γ = (γ1, γ2, . . . , γd), γ1 � 2m, ϑ = (0, ϑ2, . . . , ϑd),

we have

‖Dγ u‖L2(Q
+
r )

+ ‖Dϑut‖L2(Q
+
r )

� N‖u‖L2(Q
+
R )
,

where N = N (d, n,m, δ, r, R, γ, ϑ).

Proof. From (48) it follows that

Dθut = −(−1)m AαβDαDβDθu

in Q+
R . Each of the terms on the right-hand side is a constant times a term of the

form Dγ u, where |γ | = 2m + |β| and γ1 � 2m. Hence we only need to prove

‖Dγ u‖L2(Q
+
r )

� N‖u‖L2(Q
+
R )
,

where γ = (γ1, . . . , γd) satisfies γ1 � 2m. The proof of this inequality is identical
to that of (21) in Corollary 1 with the only difference that, in |γ | > 2m, we write

Dγ u = D2m Dϑu, ϑ = (0, ϑ2, . . . , ϑd),

where Dϑu satisfies (48) in Q+
R as well as (47) on Q′

R , so that we can apply
Lemma 9 to Dϑu. ��
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Next we derive a few Hölder estimates of solutions. Throughout the paper, for
a function g defined on a subset D in R

d+1, we set

[g]Cν (D) = sup
(t,x),(s,y)∈D
(t,x) 
=(s,y)

|g(t, x)− g(s, y)|
|t − s| ν2 + |x − y|ν ,

where 0 < ν � 1.

Lemma 10. If u ∈ C∞
loc(O+∞) satisfies (47) on Q′

4 and (48) in Q+
4 , then

[u]C1/2(Q+
1 )

� N‖u‖L2(Q
+
4 )
.

Proof. Let

Θ+
r = {(t, x1) ∈ (−r2m, 0)× (0, r)}, B ′

r = {x ′ ∈ R
d−1 : |x ′| < r}.

The triangle inequality gives

sup
(t,x),(s,y)∈Q+

1
(t,x) 
=(s,y)

|u(t, x)− u(s, y)|
|t − s|1/4 + |x − y|1/2

� sup
(t,x1),(s,y1)∈Θ+

1
x ′∈B′

1

|u(t, x1, x ′)−u(s, y1, x ′)|
|t−s|1/4+|x1 − y1|1/2

+ sup
(s,y1)∈Θ+

1
x ′,y′∈B′

1,x
′ 
=y′

|u(s, y1, x ′)− u(s, y1, y′)|
|x ′ − y′|1/2 := I1 + I2.

To estimate I1, we view u(t, x1, x ′) as a function of (t, x1) for a fixed x ′ ∈ B ′
1.

Then by the Sobolev embedding theorem

sup
(t,x1),(s,y1)∈Θ+

1

|u(t, x1, x ′)− u(s, y1, x ′)|
|t − s|1/4 + |x1 − y1|1/2 � N‖u(·, x ′)‖W 1,2

2 (Θ+
1 )

(49)

for each x ′ ∈ B ′
1. On the other hand, there exists a positive integer k such that, for

each (t, x1) ∈ Θ+
1 ,

2∑

j=0

sup
x ′∈B′

1

|D j
1 u(t, x1, x ′)| + sup

x ′∈B′
1

|ut (t, x1, x ′)|

� N
2∑

j=0

‖D j
1 u(t, x1, ·)‖W k

2 (B
′
1)

+ N‖ut (t, x1, ·)‖W k
2 (B

′
1)
, (50)
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where D j
1 u(t, x1, x ′) and ut (t, x1, x ′) are viewed as functions of x ′ ∈ B ′

1. Com-
bining (49) and (50) proves

I1 � N
∑

|γ |�k+2
γ1�2

‖Dγ u‖L2(Q
+
2 )

+ N
∑

|ϑ |�k
ϑ1=0

‖Dϑut‖L2(Q
+
2 )

� N‖u‖L2(Q
+
4 )
,

(51)

where the last inequality is due to Corollary 3.
For the estimate of I2, we look at u(s, y1, x ′) as a function of x ′ ∈ B ′

1 for each
(s, y1) ∈ Θ+

1 . Again, by the Sobolev embedding theorem, there exists a sufficiently
large integer k such that

sup
x ′,y′∈B′

1
x ′ 
=y′

|u(s, y1, x ′)− u(s, y1, y′)|
|x ′ − y′|1/2 � N‖u(s, y1, ·)‖W k

2 (B
′
1)
.

Moreover, as a function of (s, y1) ∈ Θ+
1 , D j

x ′u(s, y1, x ′), j = 0, . . . , k, satisfy

k∑

j=0

sup
(s,y1)∈Θ+

1

|D j
x ′u(s, y1, x ′)| � N

k∑

j=0

‖D j
x ′u(·, x ′)‖W 1,2

p (Θ+
1 )

for each x ′ ∈ B ′
1. From the above two inequalities, we obtain (51) with I2 in place

of I1. The lemma is proved. ��
In the sequel, for a function g defined on O+

T , T ∈ (−∞,∞], we denote by
E(g) (= Eg) the even extension of g defined on OT .

Corollary 4. Let λ � 0, X0 = (t0, 0, x ′
0), where t0 ∈ R and x ′

0 ∈ R
d−1. Assume

that u ∈ C∞
loc(O+∞) satisfies (47) on Q′

4(X0) = (t0 − 42m, t0)× B ′
4(x

′
0) and

ut + (−1)mL0u + λu = 0 (52)

in Q+
4 (X0). Then there exists N = N (d, n,m, δ) such that

[E(Dm
x ′u)]C1/2(Q1(X0))

+λ1/2[Eu]C1/2(Q1(X0))
� N

m∑

k=0

λ
1
2 − k

2m ‖E(Dku)‖L2(Q4(X0)).

Proof. By using a translation in t and x ′, we assume that X0 = (0, 0). Let λ = 0.
In this case, the inequality in the corollary follows from

[Dm
x ′u]C1/2(Q+

1 )
� N‖Dmu‖L2(Q

+
4 )
.

To prove this, we apply Lemma 10 to Dm
x ′u. This is indeed possible because Dm

x ′u
satisfies (47) on Q′

4 and (48) in Q+
4 . To prove the case λ > 0, we follow the steps

in the proof of Lemma 3. ��



922 Hongjie Dong & Doyoon Kim

Lemma 11. Let r ∈ (0,∞), κ ∈ [64,∞), λ � 0, and X0 = (t0, x0) ∈ O+∞.

Assume that u ∈ C∞
loc(O+∞) satisfies (47) on R × R

d−1 and (52) in Q+
κr (X0). Then

(|E(Dm
x ′u)− (E(Dm

x ′u))Qr (X0)|)Qr (X0) + λ
1
2 (|Eu − (Eu)Qr (X0)|)Qr (X0)

� Nκ− 1
2

m∑

k=0

λ
1
2 − k

2m (|E(Dku)|2)
1
2
Qκr (X0)

, (53)

where N = N (d, n,m, δ).

Proof. We first prove, using a scaling argument, that it suffices to prove the inequal-
ity (53) only for r = 16/κ . Indeed, assume that the inequality (53) holds true for
r = 16/κ . For a given r ∈ (0,∞), let r0 = 16/κ , R = r/r0, and w(t, x) =
u(R2mt, Rx). It is easy to check that w satisfies (47) on R × R

d−1 and

wt + (−1)m Aαβ(R2mt)DαDβw + λR2mw = 0 (54)

in Q+
κr0
(Y0), where Y0 = (s0, y0) = (R−2mt0, R−1x0) ∈ O+∞. Then by the inequal-

ity (53) with r = r0 applied to the system (54), we have

(
|E(Dm

x ′w)− (E(Dm
x ′w))Qr0 (Y0)|

)

Qr0 (Y0)
+ λ

1
2 Rm

(
|Ew − (Ew)Qr0 (Y0)|

)

Qr0 (Y0)

� Nκ− 1
2

m∑

k=0

λ
1
2 − k

2m Rm−k(|E(Dkw)|2)
1
2
Qκr0 (Y0)

. (55)

Note that, for example,

(E(Dkw))Qr0 (Y0) = Rk(E(Dku))Qr (X0).

Thus the inequality (55) leads to the inequality (53) for arbitrary r ∈ (0,∞).
Now we assume r = 16/κ . We consider two cases.

Case 1: the first coordinate of x0 � 1. In this case, we see that Q+
κr/16(X0) =

Qκr/16(X0) and u satisfies the assumptions in Lemma 4, especially, u satisfies (52)
in Qκr/16(X0) and u can be extended to a function in Hm

2,loc(R
d+1)without chang-

ing the values of u on Qκr/16(X0). Hence, by the inequality (26) with Qκr/16(X0)

in place of Qκr (X0) (note that κ/16 � 4), the left-hand side of (53) is controlled
by

Nκ−1
n∑

k=0

λ
1
2 − k

2m (|Dku|2)
1
2
Qκr/16(X0)

,

which is less than the right-hand side of (53).
Case 2: the first coordinate of x0 is in [0, 1]. By denoting Y0 = (t0, 0, x ′

0), we have

Qr (X0) ⊂ Q2(Y0) ⊂ Q8(Y0) ⊂ Qκr (X0).
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By Corollary 4 applied to u with 2 and 8 in place of 1 and 4, respectively (this case
can be seen using a scaling argument as above), we have

(|E(Dm
x ′u)− (E(Dm

x ′u))Qr (X0)|)Qr (X0)

� Nr
1
2 [E(Dm

x ′u)]C1/2(Q2(Y0))

� Nκ− 1
2

m∑

k=0

λ
1
2 − k

2m (|E(Dku)|2)
1
2
Q8(Y0)

� Nκ− 1
2

m∑

k=0

λ
1
2 − k

2m (|E(Dku)|2)
1
2
Qκr (X0)

.

The second term on the left-hand side of (53) can be estimated similarly. ��

7.2. Mean oscillation estimates of Dm
x ′u for divergence type systems

on a half space

Now we state and prove the main result of this section.

Proposition 2. Let r ∈ (0,∞), κ ∈ [128,∞), λ � 0, and X0 = (t0, x0) ∈ O+∞.
Assume that u ∈ Hm

2,loc(O+∞) satisfies (47) on R × R
d−1 and

ut + (−1)mL0u + λu =
∑

|α|�m

Dα fα (56)

in Q+
κr (X0), where fα ∈ L2,loc(O+∞), |α| � m. Then we have

(|E(Dm
x ′u)− (E(Dm

x ′u))Qr (X0)|)Qr (X0) + λ
1
2 (|Eu − (Eu)Qr (X0)|)Qr (X0)

� Nκ− 1
2

m∑

k=0

λ
1
2 − k

2m (|E(Dku)|2)
1
2
Qκr (X0)

+Nκm+ d
2

∑

|α|�m

λ
|α|
2m − 1

2 (|E fα|2)
1
2
Qκr (X0)

, (57)

where N = N (d, n,m, δ).

Proof. Multiplying u by an infinitely smooth function as ζ below, we see that
(56) can be extended to a system defined on O+∞ without changing the values of
u and fα on, for example, Qκr/2. Thus, without loss of generality we assume that
u ∈ Hm

2 (O+∞), fα ∈ L2(O+∞), and (56) is satisfied in O+∞. We consider only λ > 0.
Take a ζ ∈ C∞

0 (Qκr (X0)) such that

ζ = 1 on Qκr/2(X0), ζ = 0 outside (t0 − (κr)2m, t0 + (κr)2m)× Bκr (x0).

Let L(ε)0 = Aαβ(ε)D
αDβ , where Aαβ(ε) are the standard mollifications with respect to

t of Aαβ(t). Also let f (ε)α be infinitely differentiable functions approaching fα in
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L2(O+∞) as ε ↘ 0. By Theorem 12, there exists a unique solution v(ε) ∈ Hm
2 (O+∞),

satisfying (47) on R × R
d−1, to the equation

v
(ε)
t + (−1)mL(ε)0 v(ε) + λv(ε) =

∑

|α|�m

Dα((1 − ζ ) f (ε)α )

in O+∞. Since f (ε)α and Aαβ(ε) are infinitely differentiable, by the classical theory for

higher order parabolic systems, v(ε) is infinitely differentiable. Moreover, for any
ε,

v
(ε)
t + (−1)mL(ε)0 v(ε) + λv(ε) = 0 in Q+

κr/2(X0).

Thus by Lemma 11 (note that κ/2 � 64)

(|E(Dm
x ′v(ε))− (E(Dm

x ′v(ε)))Qr (X0)|)Qr (X0) + λ
1
2 (|Ev(ε) − (Ev(ε))Qr (X0)|)Qr (X0)

� Nκ− 1
2

m∑

k=0

λ
1
2 − k

2m (|E(Dkv(ε))|2)
1
2
Qκr (X0)

.

Set w(ε) = u − v(ε). Then w(ε) ∈ Hm
2 (O+∞) and it satisfies (47) on R × R

d−1

and

w
(ε)
t + (−1)mL(ε)0 w(ε) + λw(ε) = Dα(ζ f (ε)α + fα − f (ε)α )+ (−1)m(L(ε)0 − L0)u

in O+∞. Denote the right-hand side of the above equality by Dαg(ε)α . We apply
Theorem 12 to the above equation as one defined on O+

t0 so that we have

∑

|α|�m

λ1− |α|
2m ‖Dαw(ε)‖L2(O+

t0
) � N

∑

|α|�m

λ
|α|
2m ‖g(ε)α ‖L2(O+

t0
).

In particular,

‖Dmw(ε)‖L2(Q
+
r (X0))

+ λ
1
2 ‖w(ε)‖L2(Q

+
r (X0))

� N
∑

|α|�m

λ
|α|
2m − 1

2 ‖ f (ε)α ‖L2(Q
+
κr (X0))

+ I (ε), (58)

m∑

k=0

λ
1
2 − k

2m ‖Dkw(ε)‖L2(Q
+
κr (X0))

� N
∑

|α|�m

λ
|α|
2m − 1

2 ‖ f (ε)α ‖L2(Q
+
κr (X0))

+ I (ε) (59)

for all sufficiently small ε, where

I (ε) = N
∑

|α|�m

λ
|α|
2m − 1

2 ‖ fα − f (ε)α ‖L2(O+
t0
)

+N
∑

|α|=|β|=m

‖(Aαβ(ε) − Aαβ)Dβu‖L2(O+
t0
).
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Note that, for the even extension Eg of a function g defined on O+∞, we have

‖Eg‖L2(Qr (X0)) � 2‖g‖L2(Q
+
r (X0))

� 2‖Eg‖L2(Qr (X0))

whenever X0 ∈ O+∞. This combined with (58) and (59) gives

(
|E(Dmw(ε))|2

) 1
2

Qr (X0)
+ λ

1
2

(
|Ew(ε)|2

) 1
2

Qr (X0)

� Nκm+ d
2

∑

|α|�m

λ
|α|
2m − 1

2 (|E f (ε)α |2)
1
2
Qκr (X0)

+ r−m− d
2 I (ε),

m∑

k=0

λ
1
2 − k

2m

(
|E(Dkw(ε))|2

) 1
2

Qκr (X0)

� N
∑

|α|�m

λ
|α|
2m − 1

2 (|E f (ε)α |2)
1
2
Qκr (X0)

+ (κr)−m− d
2 I (ε).

Now by following the corresponding steps in the proof of Theorem 11 we see that
the left-hand side of the inequality (57) is less than the right-hand side of the same
inequality with f (ε)α in place of fα plus the error term

(
r−m− d

2 + (κr)−m− d
2

)
I (ε).

To finish the proof we let ε ↘ 0. ��
Remark 5. Later we need to have the mean oscillation estimate (57) for all X0 ∈
O∞, instead of X0 ∈ O+∞, for functions E(Dku), Eu, and E fα defined on O∞ if

the equation (56) is satisfied in O+∞. In order to do this, in case X0 ∈ O∞ \ O+∞,
we let Y0 be the reflection point of X0 with respect to the hyper-plane {(t, 0, x ′) :
t ∈ R, x ′ ∈ R

d−1}. By Proposition 2 we get the estimate (57) with Y0 in place
of X0. Then it is not difficult to see that the estimate (57) holds true as well for
X0 using the evenness of functions involved. The same claim can be repeated for
Corollary 5, Propositions 3 and 4.

7.3. Mean oscillation estimates of D2m
x ′ u for non-divergence type systems on a

half space

As a consequence of Proposition 2, we easily get

Corollary 5. Let r ∈ (0,∞), κ ∈ [64,∞), λ � 0, and X0 = (t0, x0) ∈ O+∞.
Assume that u ∈ W 1,2m

2,loc (O+∞) satisfies (47) on R × R
d−1 and

ut + (−1)mL0u + λu = f

in Q+
κr (X0), where f ∈ L2,loc(O+∞). Then we have
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(|E(D2m
x ′ u)− (E(D2m

x ′ u))Qr (X0)|)Qr (X0) + λ(|Eu − (Eu)Qr (X0)|)Qr (X0)

� Nκ− 1
2

2m∑

k=0

λ1− k
2m (|E(Dku)|2)

1
2
Qκr (X0)

+ Nκm+ d
2 (|E f |2)

1
2
Qκr (X0)

,

where N = N (d, n,m, δ).

Proof. Since Dm
x ′ satisfies (47) on R × R

d−1, we can proceed as in the proof of
Corollary 2. ��

8. Estimates for systems with special coefficients on a half space

The estimates in the previous section imply the L p-estimate of Dm
x ′u in the diver-

gence case and that of D2m
x ′ u in the non-divergence case. In order to estimate the

remaining highest order derivatives, by the interpolation inequality (Proposition 1),
it suffices to estimate Dm

1 u in the divergence case and D2m
1 u in the non-divergence

case. To this end, in this section we consider

L0u = A(t)D2m
1 u +

d∑

j=2

D2m
j u,

where A(t) = Aα̂α̂(t), α̂ = (m, 0, . . . , 0).
For this special operator, we have the following improved L2-estimate.

Lemma 12. Assume that u ∈ C∞
loc(O+∞) satisfies

u(t, 0, x ′) = · · · = Dm−1
1 u(t, 0, x ′) = 0 (60)

on Q′
R and

ut + (−1)mL0u = 0 (61)

in Q+
R . Then, for any multi-index γ , we have

‖Dγ u‖L2(Q
+
r )

+ ‖Dγ ut‖L2(Q
+
r )

� N‖u‖L2(Q
+
R )
, (62)

where N = N (d, n,m, δ, r, R, γ ).

Proof. As noted in the proof of Corollary 1, it suffices to estimate the first term on
the left-hand side of (62). Also, we only need to treat the case when the multi-index
γ satisfies γ ′ = 0, where γ = (γ1, γ

′). In fact, if the inequality (62) is shown to be
true with γ ′ = 0 and a smaller R, since Dγ ′

u satisfies (60) on Q′
R and (61) in Q+

R ,
we can replace u by Dγ ′

u in (62). Then the right-hand side, N‖Dγ ′
u‖L2(Q

+
R )

, is
bounded by that of (62) by Corollary 3. Furthermore, by the interpolation inequality
with respect to x1, it suffices to show

‖D2lm
1 u‖L2(Q

+
r )

� N‖u‖L2(Q
+
R )

(63)
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for l = 0, 1, 2, . . .. To prove the above inequality, we first observe that, thanks to
(61), we have

D2m
1 u = A−1(t)(−1)m+1ut − A−1(t)

d∑

j=2

D2m
j u

in Q+
R . This together with (60) implies that (first with l = 0, then inductively)

Dk
1 D2ml

1 u(t, 0, x ′) = 0, k = 0, . . . ,m − 1,

on Q′
R . Moreover, D2ml

1 u satisfies (61) in Q+
R . Therefore, by Corollary 3 applied

to D2ml
1 u we have

‖D2(l+1)m
1 u‖L2(Q

+
r )

� N‖D2lm
1 u‖L2(Q

+
r0 )
,

where r < r0 < R. This implies (63) by an induction on l. ��
As a consequence of the previous lemma, we get

Lemma 13. Let u ∈ C∞
loc(O+∞) satisfy (60) on Q′

4 and (61) in Q+
4 . Then, for any

multi-index γ ,

sup
Q+

1

|Dγ u| + sup
Q+

1

|Dγ ut | � N‖u‖L2(Q
+
4 )
,

where N = N (d, n,m, δ, γ ).

Proof. This is deduced from Lemma 12 in the same way as Lemma 2 is deduced
from Corollary 1. ��

Note that in the following Hölder estimates the first inequality is for all Dγ u,
|γ | = m, whereas the second inequality is for D2m

1 u only. Similarly, we see Dmu
and D2m

1 u in the following lemma and propositions as well.

Corollary 6. Let λ � 0, X0 = (t0, 0, x ′
0), where t0 ∈ R and x ′

0 ∈ R
d−1. Assume

that u ∈ C∞
loc(O+∞) satisfies (60) on Q′

4(X0) and

ut + (−1)mL0u + λu = 0 (64)

in Q+
4 (X0). Then there exists N = N (d, n,m, δ) such that

[E(Dmu)]C1(Q1(X0))
� N

m∑

k=0

λ
1
2 − k

2m ‖E(Dku)‖L2(Q4(X0)), (65)

[E(D2m
1 u)]C1(Q1(X0))

� N
2m∑

k=0

λ1− k
2m ‖E(Dku)‖L2(Q4(X0)). (66)
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Proof. Similar to the proof of Corollary 4, we prove only the case λ = 0 and
X0 = (0, 0). As noted in the proof of Lemma 12, D2m

1 u satisfies (60) on Q′
4 and

(61) in Q+
4 . In this case, (66) follows immediately from Lemma 13 applied to

D2m
1 u.

Lemma 13 also shows that

[Dmu]C1(Q+
1 )

� N‖u‖L2(Q
+
4 )

� N‖Dmu‖L2(Q
+
4 )
,

where the second inequality is due to the fact that u satisfies (60) and the boundary
version of the Poincaré inequality. This gives the inequality (65). ��

Lemma 14. Let r ∈ (0,∞), κ ∈ [64,∞), λ � 0, and X0 = (t0, x0) ∈ O+∞.

Assume that u ∈ C∞
loc(O+∞) satisfies (60) on R×R

d−1 and (64) on Q+
κr (X0). Then

(|E(Dmu)− (E(Dmu))Qr (X0)|)Qr (X0) � Nκ−1
m∑

k=0

λ
1
2 − k

2m (|E(Dku)|2)
1
2
Qκr (X0)

,

(|E(D2m
1 u)− (E(D2m

1 u))Qr (X0)|)Qr (X0) � Nκ−1
2m∑

k=0

λ1− k
2m (|E(Dku)|2)

1
2
Qκr (X0)

,

where N = N (d, n,m, δ).

Proof. Thanks to the Hölder estimates in Corollary 6, we process as in the proof
of Lemma 11. ��

From the above lemma, by following the steps in the proof of Proposition 2 we
prove the following two propositions.

Proposition 3. Let r ∈ (0,∞), κ ∈ [128,∞), λ � 0, and X0 = (t0, x0) ∈ O+∞.

Assume that u ∈ C∞
loc(O+∞) satisfies (60) on R × R

d−1 and

ut + (−1)mL0u + λu =
∑

|α|�m

Dα fα

in Q+
κr (X0), where fα ∈ L2,loc(O+∞), |α| � m. Then we have

(|E(Dmu)− (E(Dmu))Qr (X0)|)Qr (X0) � Nκ−1
m∑

k=0

λ
1
2 − k

2m (|E(Dku)|2)
1
2
Qκr (X0)

+Nκm+ d
2

∑

|α|�m

λ
|α|
2m − 1

2 (|E fα|2)
1
2
Qκr (X0)

,

where N = N (d, n,m, δ).
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Proposition 4. Let r ∈ (0,∞), κ ∈ [128,∞), λ � 0, and X0 = (t0, x0) ∈ O+∞.

Assume that u ∈ C∞
loc(O+∞) satisfies (60) on R × R

d−1 and

ut + (−1)mL0u + λu = f

in Q+
κr (X0), where f ∈ L2,loc(O+∞). Then we have

(|E(D2m
1 u)− (E(D2m

1 u))Qr (X0)|)Qr (X0) � Nκ−1
2m∑

k=0

λ1− k
2m (|E(Dku)|2)

1
2
Qκr (X0)

+Nκm+ d
2 (|E f |2)

1
2
Qκr (X0)

,

where N = N (d, n,m, δ).

9. L p-Estimates for systems on a half space

With the preparation in the previous two sections, we complete the proofs of
Theorems 3 and 4 in this section.

Proof of Theorem 3. Recall that the leading coefficients satisfy Assumption 1 (ρ).
As before, we may assume that T = ∞, p > 2, the lower-order coefficients of L
are all zero, and u ∈ C∞(O+∞) vanishing on O+∞ \ Q R0(X1) for some X1 ∈ O+∞.
In this case, it follows from Proposition 2 (also see Remark 5) and the proofs of
Lemma 5 as well as Theorem 1 that

‖Dm
x ′u‖L p(O+∞) + λ

1
2 ‖u‖L p(O+∞)

� ‖E (
Dm

x ′u
) ‖L p(O∞) + λ

1
2 ‖Eu‖L p(O∞)

� Nκ
m+ d

2
1

∑

|α|�m

λ
|α|
2m − 1

2 ‖E fα‖L p(O∞)

+N

(
κ

− 1
2

1 + κ
m+ d

2
1 ρ

1
2ν

) m∑

k=0

λ
1
2 − k

2m ‖E(Dku)‖L p(O∞)

� Nκ
m+ d

2
1

∑

|α|�m

λ
|α|
2m − 1

2 ‖ fα‖L p(O+∞)

+N

(
κ

− 1
2

1 + κ
m+ d

2
1 ρ

1
2ν

) m∑

k=0

λ
1
2 − k

2m ‖Dku‖L p(O+∞) (67)

for any κ1 � 128.
Now we move all the spatial derivatives except Dm

1 (A
α̂α̂Dm

1 u) to the right-hand
side of (5), and add (−1)m

∑d
j=2 D2m

j u to both sides. Here α̂ = (m, 0, . . . , 0). Then
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for any Qκ2r (X0), κ2 ∈ [128,∞), r ∈ (0,∞), X0 ∈ O+∞ and y ∈ R
d+, we have

ut + (−1)m

⎛

⎝Dm
1 (A

α̂α̂(t, y)Dm
1 u)+

d∑

j=2

D2m
j u

⎞

⎠

=
∑

|α|�m

Dα f̃α + (−1)m
d∑

j=2

Dm
j Dm

j u,

where f̃α = fα for |α| < m,

f̃α̂ = fα̂ −
∑

|β|=m
β 
=α̂

(−1)m(Aα̂β(t, x)+ Aβα̂(t, y))Dβu

+(−1)m(Aα̂α̂(t, y)− Aα̂α̂(t, x))Dα̂u,

and

f̃α = fα −
∑

|β|=m
β 
=α̂

(−1)m AαβDβu + (−1)m(Aαα̂(t, y)− Aαα̂(t, x))Dα̂u

for |α| = m, α 
= α̂. In the last two expressions, we used the fact that

Dα
x Aαβ(t, y)Dβ

x u(t, x) = Dβ
x Aαβ(t, y)Dα

x u(t, x).

As a consequence of Proposition 3 and the proof of Lemma 5, for any κ2 � 128,

(|E(Dmu)− (E(Dmu))Qr (X0)|)Qr (X0) � Nκ−1
2

m∑

k=0

λ
1
2 − k

2m (|E(Dku)|2)
1
2
Qκ2r (X0)

+Nκ
m+ d

2
2

∑

|α|�m

λ
|α|
2m − 1

2 (|E fα|2)
1
2
Qκ2r (X0)

+Nκ
m+ d

2
2 ρ

1
2ν (|E(Dm

1 u)|2μ)
1

2μ
Qκ2r (X0)

+Nκ
m+ d

2
2

∑

|α|=m,α
=α̂
(|E(Dαu)|2)

1
2
Qκ2r (X0)

.

Choose aμ ∈ (1, p/2). This estimate, combined with the Fefferman–Stein theorem
and the Hardy–Littlewood maximal function theorem, gives

‖Dmu‖L p(O+∞) � Nκ−1
2

m∑

k=0

λ
1
2 − k

2m ‖Dku‖L p(O+∞)

+Nκ
m+ d

2
2 ρ

1
2ν ‖Dm

1 u‖L p(O+∞)

+Nκ
m+ d

2
2

∑

|α|�m

λ
|α|
2m − 1

2 ‖ fα‖L p(O+∞)

+Nκ
m+ d

2
2

∑

|α|=m,α 
=α̂
‖Dαu‖L p(O+∞). (68)
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From (68) and Proposition 1, we get

‖Dmu‖L p(O+∞) � Nκ−1
2

m∑

k=0

λ
1
2 − k

2m ‖Dku‖L p(O+∞)

+Nκ
m+ d

2
2 (ρ

1
2ν + ε)‖Dm

1 u‖L p(O+∞)

+Nκ
m+ d

2
2

∑

|α|�m

λ
|α|
2m − 1

2 ‖ fα‖L p(O+∞)

+N (ε)κ
m+ d

2
2 ‖Dm

x ′u‖L p(O+∞). (69)

Combining (67) and (69), we obtain the desired estimate by first taking κ2 suffi-
ciently large, then ε sufficiently small, κ1 sufficiently large, and finallyρ sufficiently
small. ��

Proof of Theorem 4. It suffices to establish the a priori estimate when T = ∞,

the lower-order coefficients of L are all zero, and u ∈ C∞(O+∞) vanishes on
O+∞ \ Q R0(X1) for some X1 ∈ O+∞. We use the strategy in the proof of Theorem 3
and consider two cases.

Case 1: p ∈ (2,∞). It follows from Corollary 5 that

‖D2m
x ′ u‖L p(O+∞) + λ‖u‖L p(O+∞)

� Nκ
m+ d

2
1 ‖ f ‖L p(O+∞) + N

(
κ

− 1
2

1 + κ
m+ d

2
1 ρ

1
2ν

) m∑

k=0

λ1− k
2m ‖Dku‖L p(O+∞)

(70)

for any κ1 � 64. We move all the spatial derivatives except Aα̂α̂D2m
1 u to the right-

hand side of (7), and add (−1)m
∑d

j=2 D2m
j u to both sides. As a consequence of

Proposition 4 and the proof of Lemma 5, for any κ2 � 128,

(|E(D2m
1 u)− (E(D2m

1 u))Qr (X0)|)Qr (X0)

� Nκ−1
2

2m∑

k=0

λ1− k
2m (|E(Dku)|2)

1
2
Qκ2r (X0)

+Nκ
m+ d

2
2 (|E f |2)

1
2
Qκ2r (X0)

+ Nκ
m+ d

2
2 ρ

1
2ν (|E(D2m

1 u)|2μ)
1

2μ
Qκ2r (X0)

+Nκ
m+ d

2
2

∑

|α|=2m,α 
=2α̂

(|E(Dαu)|2)
1
2
Qκ2r (X0)

.
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This estimate, combined with the Fefferman–Stein theorem and the Hardy–Little-
wood maximal function theorem, gives

‖D2m
1 u‖L p(O+∞) � Nκ−1

2

2m∑

k=0

λ1− k
2m ‖Dku‖L p(O+∞) + Nκ

m+ d
2

2 ρ
1

2ν ‖D2m
1 u‖L p(O+∞)

+Nκ
m+ d

2
2 ‖ f ‖L p(O+∞)+Nκ

m+ d
2

2

∑

|α|=2m,α 
=2α̂

‖Dαu‖L p(O+∞).

(71)

From (71) and Proposition 1, we get

‖D2mu‖L p(O+∞) � Nκ−1
2

2m∑

k=0

λ1− k
2m ‖Dku‖L p(O+∞)

+Nκ
m+ d

2
2 (ρ

1
2ν + ε)‖D2m

1 u‖L p(O+∞)

+Nκ
m+ d

2
2 ‖ f ‖L p(O+∞) + N (ε)κ

m+ d
2

2 ‖D2m
x ′ u‖L p(O+∞). (72)

Combining (70) and (72) we obtain the desired estimate by first taking κ2 suffi-
ciently large, then ε sufficiently small, κ1 sufficiently large, and finallyρ sufficiently
small.
Case 2: p ∈ (1, 2]. Thanks to Case 1 and Remark 2, we already have the W 1,2m

q
solvability of

ut + (−1)mL0u + λu = f

on the half space for any q ∈ (2,∞) and λ > 0. The same duality argument in the
proof of Theorem 2 yields the solvability of the same equation for any q ∈ (1, 2).
We can repeat the argument in Section 8 to deduce a version of Proposition 4 with
2 norms replaced by q norms. Inspecting the proof of Case 1, to finish the proof it
remains to have a proper version of Corollary 5 with 2 norms replaced by q norms.

We claim that Lemma 10 is still true with L2 replaced by Lq , q ∈ (1,∞), that

is, if u ∈ C∞
loc(O+∞) satisfies (47) on Q′

4 and (48) in Q+
4 , then

[u]C1/2(Q+
1 )

� N‖u‖Lq (Q
+
4 )
.

This easily yields the desired version of Corollary 5 by following the lines in Sec-
tion 7. However, the claim does not follow directly from the proof of Lemma 10
because (50) doesn’t hold if the W 1,2

2 norm on the right-hand side is replace by the

W 1,2
q norm when q is close to 1. To get around this, we use a bootstrap argument.

We first note that under the assumption of Lemma 10, for any 1 < r < R � 4, it
holds that

‖u‖W 1,2m
q (Q+

r )
� N‖u‖Lq (Q

+
R )
. (73)
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This can be shown in the same way as Lemma 9 and 1 based on the global W 1,2m
q

estimate on the half space. By the Sobolev imbedding theorem and (73), we have

‖u‖Lq1 (Q
+
r )

� N‖u‖Lq (Q
+
R )

for any q1 > q satisfying

1

q1
>

1

q
− 1

d + 1
.

We iterate this bootstrap process for a finite number of steps on a sequence of
shrinking half cylinders, and get

‖u‖W 1,2m
ql (Q+

1 )
� N‖u‖Lq (Q

+
4 )
,

where ql > 2(d + 1). Now, again by the Sobolev imbedding theorem, we deduce

‖u‖C1/2(Q+
1 )

� N‖u‖Lq (Q
+
4 )
,

which is exactly our claim. The theorem is proved. ��
Remark 6. From the bootstrap argument above, we actually can get a finer bound-

ary estimate as follows. If u ∈ W 1,2m
q,loc (O+∞), q ∈ (1,∞) satisfies (47) on Q′

4 and

(48) in Q+
4 , then for any and ε ∈ (0, 1),

[u]C1−ε,2m−ε(Q+
1 )

� N‖u‖Lq (Q
+
4 )
,

where N = N (d,m, n, q, ε).

10. Systems on a bounded domain

We present the proofs of Theorems 5 and 6 in this section. We first treat the
non-divergence systems. In this case, the proof is quite standard by using the tech-
nique of flattening the boundary and a partition of the unity. We give a sketched
proof for the sake of completeness.

Proof of Theorem 6. First, in a same way as Lemma 1 by using Theorem 2 instead
of Theorem 10, we obtain the following interior estimate for any 0 < r < R < ∞,
Qr ⊂ Q R ⊂ ΩT and λ � λ0

‖ut‖L p(Qr ) +
∑

|α|�2m

λ1− |α|
2m ‖Dαu‖L p(Qr ) � N‖ f ‖L p(Q R) + N‖u‖L p(Q R).

(74)

Similarly, Theorem 4 yields a boundary estimate: let 0 < r < R < ∞, f ∈
L p(Q

+
R ), and ρ be the constant taken from Theorem 4. Then under Assumption 1

(ρ), for any λ � λ0 and u ∈ W 1,2m
p (Q+

R ), we have

‖ut‖L p(Q
+
r )

+
∑

|α|�2m

λ1− |α|
2m ‖Dαu‖L p(Q

+
r )

� N‖ f ‖L p(Q
+
R )

+ N‖u‖L p(Q
+
R )
,

(75)
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provided that u = D1u = · · · = Dm−1
1 u = 0 on Q′

R and

ut + (−1)m Lu + λu = f in Q+
R .

It is well-known that the ellipticity condition (2) is preserved under a change of
variables. Take t0 ∈ (−∞, T ), a point x0 ∈ ∂Ω and a number r0 = r0(Ω), so that

Ω ∩ Br0(x0) = {x ∈ Br0(x0) : x1 > φ(x ′)}
in some coordinate system. We now locally flatten the boundary of ∂Ω by defining

y1 = x1 − φ(x ′) := Φ1(x), y j = x j := Φ j (x), j � 2.

Under the assumptions of the theorem,Φ is a C2m−1,1 diffeomorphism in a neigh-
borhood of x0. It is easily seen that the leading coefficients of the new operator in
the y-coordinates also satisfy Assumption 1 with a possibly different ρ. Thus, we
can choose a sufficiently small ρ such that from (75), for X0 = (t0, x0) and some
r1 = r1(Ω) < r0,

‖ut‖L p(ΩT ∩Qr1 (X0)) +
∑

|α|�2m

λ1− |α|
2m ‖Dαu‖L p(ΩT ∩Qr1 (X0))

� N‖ f ‖L p(ΩT ∩Qr0 (X0)) + N
m−1∑

j=0

‖D j u‖L p(ΩT ∩Qr0 (X0)). (76)

Finally, a partition of the unity together with (74) and (76) completes the proof for
a sufficiently large λ0. ��

Now we turn to the divergence case. We need to introduce a special mollifica-
tion, which was used, for instance, in [21,33].

Proof of Theorem 5. Again we give only an outline of the proof. The interior esti-
mate is similar to that of the non-divergence case. Theorem 1 implies that, for any
0 < r < R < ∞, Qr ⊂ Q R ⊂ ΩT and λ � λ0,

∑

|α|�m

λ1− |α|
2m ‖Dαu‖L p(Qr ) � N

∑

|α|�m

λ
|α|
2m ‖ fα‖L p(Q R) + N‖u‖L p(Q R).

We also have the boundary estimate by Theorem 3: Let 0 < r < R < ∞, f ∈
L p(Q

+
R ), and ρ be the constant taken from Theorem 3. Then under Assumption 1

(ρ), for any λ � λ0 and u ∈ H2m
p (Q+

R ), we have

∑

|α|�m

λ1− |α|
2m ‖Dαu‖L p(Q

+
r )

� N
∑

|α|�m

λ
|α|
2m ‖ fα‖L p(Q

+
R )

+ N‖u‖L p(Q
+
R )
,

(77)

provided that u = D1u = · · · = Dm−1
1 u = 0 on Q′

R and

ut + (−1)mLu + λu = f in Q+
R .
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Take t0 ∈ (−∞, T ), a point x0 ∈ ∂Ω and a number r0 ∈ (0, R1]. By Assump-
tion 2, locally in some coordinate system, we have

Ω ∩ Br0(x0) = {x ∈ Br0(x0) : x1 > φ(x ′)},
and the local Lipschitz norm of φ is less than ρ1. The goal is to locally flatten the
boundary of ∂Ω . However, φ is not smooth in this case since it is only assumed
to be Lipschitz continuous. To construct a smooth diffeomorphism, we define a
function φ̃ on R

d+ by

φ̃(x) =
∫

Rd−1
η(y′)φ(x ′ − x1 y′) dy′.

Here η ∈ C∞
0 (B

′
1) has unit integral. It is easy to check that φ̃(0, x ′) = φ(x ′) and

|Dk φ̃(x)| � N (x1)
1−kρ1. We now define

y1 = x1 − φ̃(x) := Φ̃1(x), y j = x j := Φ̃ j (x), j � 2.

As before, the leading coefficients of the new operator in the y-coordinates also
satisfy Assumption 1 with a possibly different ρ. After some straightforward cal-
culations using (75) and Hardy’s inequality, we conclude, for X0 = (t0, x0) and
some r1 = r1(Ω) ∈ (0, r0),

∑

|α|�m

λ1− |α|
2m ‖Dαu‖L p(ΩT ∩Qr1 (X0))

� N
∑

|α|�m

λ
|α|
2m ‖ fα‖L p(ΩT ∩Qr0 (X0))

+Nρ1

∑

|α|�m

λ1− |α|
2m ‖Dαu‖L p(ΩT ∩Qr0 (X0)). (78)

Using a partition of the unity together with (77) and (78), we complete the proof
of the theorem upon choosing a sufficiently large λ0 and small ρ1. ��

11. Remarks on the ellipticity conditions

In this section we discuss some other ellipticity conditions appearing in the
literature, and show how our results can be extended to systems under those con-
ditions.

The following strong ellipticity condition has been widely used before; see, for
example, [7,30].

Assumption 3. For all (t, x) ∈ R
d+1 and complex vectors ξ = {ξα,i }, |α| = m, i =

1, . . . , n,

�
⎛

⎝
∑

|α|=|β|=m

ξα,iξβ, j Aαβi j (t, x)

⎞

⎠ � δ|ξ |2, (79)

where δ > 0.
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The next condition is called uniform parabolicity in the sense of Petrovskii,
which has been used, for example, in [17,29,34,36]. We define a matrix-valued
function on R

d+1 × (Rd \ {0}):
A(t, x, ξ) = |ξ |−2m

∑

|α|=|β|=m

ξαξβ Aαβ(t, x).

Assumption 4. Let λ j (t, x, ξ), j = 1, . . . , n, be the eigenvalues of A(t, x, ξ).
Then,

� (
λ j (t, x, ξ)

)
� δ, j = 1, 2, . . . , n (80)

for all (t, x) ∈ R
d+1 and ξ ∈ R

d \ {0}, where δ > 0.

We still assume that all the coefficients are bounded and measurable. Clearly,
the Legendre–Hadamard ellipticity condition (2) is weaker than the strong elliptic-
ity condition. However, it is stronger than the uniform parabolicity in the sense of
Petrovskii.

11.1. The strong ellipticity condition

Since it is stronger than our assumption, all the results in this paper hold true
under this condition. Moreover, we can take λ0 = 0 in Theorem 5 for divergence
form parabolic systems without lower-order terms. In this case the solution u sat-
isfies

∑

|α|�m

‖Dαu‖L p(ΩT ) � N
∑

|α|�m

‖ fα‖L p(ΩT ). (81)

Indeed, by the method of continuity it suffices to prove the estimate (81). Due to
(79) and the Poincaré inequality, we easily get the unique solvability for p = 2 as
well as

∑

|α|�m

‖Dαu‖L2(ΩT ) � N
∑

|α|�m

‖ fα‖L2(ΩT ). (82)

In the case when p > 2, we add (λ0 + 1)u to both sides of the first equation of (8).
By Theorem 5, it holds that

∑

|α|�m

‖Dαu‖L p(ΩT ) � N1

∑

|α|�m

‖ fα‖L p(ΩT ) + N1‖u‖L p(ΩT ). (83)

Take p1 ∈ (p,∞) such that 1 − d/p > −d/p1. By Hölder’s inequality, Young’s
inequality and the Poincaré–Sobolev inequality, we get for any ε > 0,

‖u‖L p(ΩT ) � N (ε)‖u‖L2(ΩT ) + ε‖u‖L p1 (ΩT ) � N (ε)‖u‖L2(ΩT )

+N2ε‖Du‖L p(ΩT ).

Choosing ε = 1/(2N1 N2) and using (82) and (83), we obtain (81) for p > 2. The
remaining case p ∈ (1, 2) follows from the standard duality argument.
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11.2. The uniform parabolicity condition in the sense of Petrovskii

As we noted, this assumption is weaker than the Legendre–Hadamard condi-
tion. Under this assumption, for the solvability of parabolic systems, we need to
impose a stronger regularity assumption on the leading coefficient, that is, they are
VMO in both t and x . More precisely, set

osct,x
(

Aαβ, Qr (t, x)
) = –

∫

Qr (t,x)

∣∣∣∣Aαβ(s, y)− –
∫

Qr (t,x)
Aαβ

∣∣∣∣ dy ds,

and

Ã#
R = sup

(t,x)∈Rd+1
sup
r�R

sup
|α|=|β|=m

oscx
(

Aαβ, Qr (t, x)
)
.

Assumption 5 (ρ). There is a constant R0 ∈ (0, 1] such that Ã#
R0

� ρ.

Next we show that the results in Section 2 about parabolic systems in the whole
space (Theorems 1, 2) still hold true under the assumptions above. As a conse-
quence, we obtain interior estimates for both divergence and non-divergence type
parabolic systems. We note that, for non-divergence type parabolic systems, the
corresponding interior estimate was established in a recent interesting paper [34]
(see Theorem 2.4 there) by using a completely different approach.

By inspecting the proofs of the main theorems, it is apparent that if the L2-esti-
mate Theorem 9 is proved for parabolic systems with constant coefficients under
the uniform parabolicity condition, then the remaining arguments can be carried
out as before with obvious modifications. Indeed, we have

Theorem 14. Let T ∈ (−∞,∞] and

L0u =
∑

|α|=|β|=m

Dα(AαβDβu),

where Aαβ are constants satisfying the uniform parabolicity condition (80). Then
there exists N = N (d, n,m, δ) such that, for any λ � 0,

∑

|α|�m

λ1− |α|
2m ‖Dαu‖L2(OT ) � N

∑

|α|�m

λ
|α|
2m ‖ fα‖L2(OT ), (84)

if u ∈ Hm
2 (OT ), fα ∈ L2(OT ), |α| � m, and

ut + (−1)mL0u + λu =
∑

|α|�m

Dα fα (85)

in OT . Furthermore, for λ > 0 and fα ∈ L2(OT ), |α| � m, there exists a unique
u ∈ Hm

2 (OT ) satisfying (85).

Theorem 11.4 is probably known to the reader from before. For example, it can
be derived from the results in [36]; see also Theorem 10.4 in Chapter VII of [29].
Instead of appealing to those general results, here we present a direct proof of it.
We need an elementary lemma, which is verified by a direction computation.
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Lemma 15. Let δ > 0 and U be an n×n upper triangular complex matrix satisfying

|U | � δ−1, �λ j � δ, j = 1, 2, . . . , n,

where λ j , j = 1, . . . , n, are the eigenvalues of U. Then there exist real constants
ε, δ1 > 0, depending only on n and δ, such that for any x ∈ C

n

�(x H BU x) � δ1|x |2,

where B = diag{εn−1, εn−2, . . . , ε, 1} and x H is the conjugate transpose of x.

Proof of Theorem 14. It suffices to prove (84) when u ∈ C∞
0 (OT ) and λ > 0.

We take the Fourier transform of (85) in x and get

ũt + A(ξ)|ξ |2mũ + λũ =
∑

|α|�m

(i ξ)α f̃α. (86)

Let A(ξ) = Q H U Q be the Schur decomposition of A, where Q = Q(ξ) is an n×n
unitary matrix and U = U (ξ) is an upper triangular matrix. Let B be the diagonal
matrix in Lemma 15. Multiplying both sides of (86) by Q H B Qũ and integrating
on OT give us

〈B Qũ, Qũt 〉OT + 〈B Qũ,U Q|ξ |2mũ〉OT + λ〈B Qũ, Qũ〉OT

=
∑

|α|�m

〈Q H B Qũ, (i ξ)α f̃α〉OT . (87)

As in the proof of Theorem 9,

�〈B Qũ, Qũt 〉OT � 0.

By the Plancherel equality,

λ�〈B Qũ, Qũ〉OT � N (ε)λ‖u‖2
L2(OT )

.

To estimate the second term of the left-hand side of (87), we use Lemma 15 and
the Plancherel equality to get

�〈B Qũ,U Q|ξ |2mũ〉OT � δ1〈ũ, |ξ |2mũ〉OT � N (n,m, δ)‖Dmu‖2
L2(OT )

.

The real part of the right-hand side of (87) is bounded from above by

N
∑

|α|�m

‖Dαu‖L2(OT )‖ fα‖L2(OT )

�
∑

|α|�m

ελ
m−|α|

m ‖Dαu‖2
L2(OT )

+ N
∑

|α|�m

ε−1λ− m−|α|
m ‖ fα‖2

L2(OT )
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for all ε > 0. To complete the proof of (84) it suffices to use the interpolation
inequalities and to choose an appropriate ε. ��
Remark 7. In contrast, under Petrovskii’s parabolicity condition, the Dirichlet
boundary value problem of parabolic systems is, in general, not well-posed when
d � 2, as pointed out in §10 Chapter VII of [29]. However, in the case d = 1,
relying on a linear transformation, one can extend Theorem 14 to systems on the
half space with the homogeneous Dirichlet boundary condition; see, for instance,
§10 Chapter VII of [29]. Thus, all the results in Section 2 about systems on a half
space or a bounded domain remain true in this case.

Acknowledgments. The authors are very grateful to Nicolai V. Krylov and the referees for
helpful comments on the first version of the paper. H. Dong was partially supported by NSF
grant number DMS-0800129.

References

1. Agmon, S.: Lectures on Elliptic Boundary Value Problems. Prepared for publication by
B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Revised edition of the
1965 original. AMS Chelsea Publishing, Providence, RI, 2010

2. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of
elliptic partial differential equations satisfying general boundary conditions, I. Commun.
Pure Appl. Math. 12, 623–727 (1959)

3. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of
elliptic partial differential equations satisfying general boundary conditions, II. Com-
mun. Pure Appl. Math. 17, 35–92 (1964)

4. Auscher, P., Qafsaoui, M.: Observations on W 1,p estimates for divergence elliptic
equations with VMO coefficients. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 5,
487–509 (2002)

5. Bramanti, M., Cerutti, M.: W 1,2
p solvability for the Cauchy-Dirichlet problem for

parabolic equations with VMO coefficients. Commun. Partial Differ. Equ. 18(9–10),
1735–1763 (1993)

6. Byun, S., Wang, L.: Elliptic equations with BMO coefficients in Reifenberg domains.
Commun. Pure Appl. Math. 57(10), 1283–1310 (2004)

7. Byun, S.: Hessian estimates in Orlicz spaces for fourth-order parabolic systems in
non-smooth domains. J. Differ. Equ. 246(9), 3518–3534 (2009)

8. Chiarenza, F., Frasca, M., Longo, P.: Interior W 2,p estimates for nondivergence
elliptic equations with discontinuous coefficients. Ricerche Mat. 40, 149–168 (1991)

9. Chiarenza, F., Frasca, M., Longo, P.: W 2,p-solvability of the Dirichlet problem for
nondivergence elliptic equations with VMO coefficients. Trans. Am. Math. Soc. 336(2),
841–853 (1993)

10. Chiarenza, F., Franciosi, M., Frasca, M.: L p-estimates for linear elliptic systems
with discontinuous coefficients. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend.
Lincei (9) Mat. Appl. 5(1), 27–32 (1994)

11. Di Fazio, G.: L p estimates for divergence form elliptic equations with discontinuous
coefficients. (Italian summary). Boll. Un. Mat. Ital. A (7) 10(2), 409–420 (1996)



940 Hongjie Dong & Doyoon Kim

12. Dong, H.: Solvability of second-order equations with hierarchically partially BMO
coefficients, submitted (2009)

13. Dong, H., Kim, D.: Elliptic equations in divergence form with partially BMO coeffi-
cients. Arch. Ration. Mech. Anal. 196(1), 25–70 (2010)

14. Dong, H., Kim, D.: Parabolic and elliptic systems with VMO coefficients. Methods
Appl. Anal. 16(3), 365–388 (2009)

15. Dong, H., Kim, D.: L p solvability of divergence type parabolic and elliptic systems
with partially BMO coefficients. Calc. Var. Partial Differ. Equ. (2010, to appear)

16. Ebenfeld, S.: L2-regularity theory of linear strongly elliptic Dirichlet systems of
order 2m with minimal regularity in the coefficients. Q. Appl. Math. 60(3), 547–576
(2002)

17. Ejdel’man, S.D.: Parabolic Systems. North-Holland, Amsterdam, 1969
18. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Engle-

wood Cliffs, 2008
19. Friedman, A.: Partial Differential Equations. Corrected reprint of the original edition.

Robert E. Krieger Publishing Co., Huntington, 1976
20. Giaquinta, M.: Introduction to Regularity Theory for Nonlinear Elliptic Systems. Lec-

tures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1993
21. Gilbarg, D., Hörmander, L.: Intermediate Schauder estimates. Arch. Ration. Mech.

Anal. 74(4), 297–318 (1990)
22. Haller-Dintelmann, R., Heck, H., Hieber, M.: L p–Lq -estimates for parabolic sys-

tems in non-divergence form with VMO coefficients. J. Lond. Math. Soc., (2) 74(3),
717–736 (2006)

23. Kim, D., Krylov, N.V.: Elliptic differential equations with coefficients measurable with
respect to one variable and VMO with respect to the others. SIAM J. Math. Anal. 39(2),
489–506 (2007)

24. Kim, D., Krylov, N.V.: Parabolic equations with measurable coefficients. Potential
Anal. 26(4), 345–361 (2007)

25. Krylov, N.V.: Parabolic and elliptic equations with VMO coefficients. Commun. Partial
Differ. Equ. 32(1–3), 453–475 (2007)

26. Krylov, N.V.: Parabolic equations with VMO coefficients in spaces with mixed norms.
J. Funct. Anal. 250(2), 521–558 (2007)

27. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces.
American Mathematical Society, Providence, 2008

28. Krylov, N.V.: Second-order elliptic equations with variably partially VMO coeffi-
cients. J. Funct. Anal. 257, 1695–1712 (2009)

29. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear
Equations of Parabolic Type. American Mathematical Society, Providence, 1967

30. Leonardi, S., Kottas, J., Stara, J.: Hölder regularity of the solutions of some clas-
ses of elliptic systems in convex nonsmooth domains. Nonlinear Anal. 60, 925–944
(2005)

31. Maz’ya, V., Mitrea, M., Shaposhnikova, T.: The Dirichlet problem in Lipschitz
domains for higher order elliptic systems with rough coefficients, preprint

32. Maugeri, A., Palagachev, D., Softova, L.: Elliptic and Parabolic Equations with
Discontinuous Coefficients, Math. Res., vol. 109. Wiley-VCH, Berlin, 2000

33. Miyazaki, Y.: Higher order elliptic operators of divergence form in C1 or Lipschitz
domains. J. Differ. Equ. 230(1), 174–195 (2006)

34. Palagachev, D., Softova, L.: A priori estimates and precise regularity for parabolic
systems with discontinuous data. Discrete Contin. Dyn. Syst. 13(3), 721–742 (2005)

35. Palagachev, D., Softova, L.: Precise regularity of solutions to elliptic systems with
discontinuous data. Ricerche Mat. 54 (2005), no. 2, 631–639 (2006)

36. Solonnikov, V.A.: On boundary value problems for linear parabolic systems of differ-
ential equations of general form, (Russian), Trudy Mat. Inst. Steklov. 83, 3–163 (1965);
English translation: Proceedings of the Steklov Institute of Mathematics. No. 83 (1965):
Boundary value problems of mathematical physics. III. Edited by O. A. Ladyženskaja.



Higher Order Parabolic and Elliptic Systems with BMO Coefficients 941

Translated from the Russian by A. Jablonskiı̆, American Mathematical Society, Provi-
dence, R.I. 1967 iv+184 pp

Division of Applied Mathematics,
Brown University, 182 George Street,
Box F, Providence, RI 02912, USA.
e-mail: Hongjie_Dong@brown.edu

and

Department of Applied Mathematics,
Kyung Hee University,

1, Seochun-dong, Gihung-gu, Yongin-si,
Gyeonggi-do 446-701, Korea.
e-mail: doyoonkim@khu.ac.kr

(Received September 17, 2009 / Accepted May 27, 2010)
Published online August 3, 2010 – © Springer-Verlag (2010)


	On the Lp-Solvability of Higher Order Parabolic and Elliptic Systems with BMO Coefficients
	Abstract
	1 Introduction
	2 Main results
	Part I. Systems in the whole space
	3 L2-Estimates for systems with simple coefficients in the whole space
	4 Mean oscillation estimates for systems in the whole space
	4.1 Some auxiliary results for systems in the whole space
	4.2 Mean oscillation estimates for systems in the whole space

	5 Lp-Estimates for systems in the whole space
	Part II. Systems on a half space or a bounded domain
	6 L2-Estimates for systems with simple coefficients on a half space
	6.1 Divergence case
	6.2 Non-divergence case

	7 Mean oscillation estimates of some partial derivatives of solutions to systems on a half space
	7.1 Some auxiliary results for systems on a half space
	7.2 Mean oscillation estimates of Dmx'u for divergence type systems on a half space
	7.3 Mean oscillation estimates of D2mx'u for non-divergence type systems on a half space

	8 Estimates for systems with special coefficients on a half space
	9 Lp-Estimates for systems on a half space
	10 Systems on a bounded domain
	11 Remarks on the ellipticity conditions
	11.1 The strong ellipticity condition
	11.2 The uniform parabolicity condition in the sense of Petrovskii

	Acknowledgments.
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


