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Abstract

Let (M, g) be a n-dimensional (n � 2) compact Riemannian manifold with
boundary where g denotes a Riemannian metric of class C∞. This paper is con-
cerned with the study of the wave equation on (M, g) with locally distributed
damping, described by

utt −�gu + a(x) g(ut ) = 0, on M × ]0,∞[ , u = 0 on ∂M × ]0,∞[ ,

where ∂M represents the boundary of M and a(x) g(ut ) is the damping term.
The main goal of the present manuscript is to generalize our previous result in
Cavalcanti et al. (Trans AMS 361(9), 4561–4580, 2009), treating the conjecture
in a more general setting and extending the result for n-dimensional compact Rie-
mannian manifolds (M, g) with boundary in two ways: (i) by reducing arbitrarily
the region M∗ ⊂ M where the dissipative effect lies (this gives us a totally sharp
result with respect to the boundary measure and interior measure where the damp-
ing is effective); (ii) by controlling the existence of subsets on the manifold that
can be left without any dissipative mechanism, namely, a precise part of radially
symmetric subsets. An analogous result holds for compact Riemannian manifolds
without boundary.

1. Introduction

Let (M, g) be an n-dimensional (n � 2) compact Riemannian manifold with
smooth boundary ∂M where g denotes a Riemannian metric of class C∞. We let ν
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denote the outward unit normal vector field along the boundary ∂M . We denote by
∇ the Levi–Civita connection on M and by � the Laplace–Beltrami operator on
M . This paper addresses uniform stabilization of solutions of the following damped
problem:

⎧
⎨

⎩

utt −�u + a(x) g(ut ) = 0 in M × ]0,∞[ ,

u = 0 on ∂M × ]0,∞[ ,
u(x, 0) = u0(x), ut (x, 0) = u1(x) x ∈ M,

(1.1)

where a(x) � a0 > 0 on an open proper subset M∗ (to be defined later) of M and,
in addition, g is a monotonically increasing function such that k|s| � |g(s)| � K |s|
for all |s| � 1. The term a(x)g(ut ) is the nonlinear damping term.

The results presented here for Riemannian manifolds with boundary can be
adapted for Riemannian manifolds without boundary. We explain the technical
details later.

1.1. Literature overview

The literature offers a rich body of results regarding the wave equation sub-
ject to a locally distributed damping in the Euclidean setting; for instance, see
[1,6,9,17,18,20–24,26,29,32] and a long list of references therein. On the other
hand, the problem on compact Riemannian manifolds is less developed than the
problem on Euclidean spaces. Among the important works, it is worth mention-
ing [2–5,8,12,14,19,25,30]. Rauch and Taylor [25] are among the pioneers in
investigating the long time behaviour of weak solutions of the Cauchy problem for
the linear wave equation on a compact manifold (M, g) without boundary with a
dissipative term, which is described by the equation

{
utt −�u + 2a(x) ut = 0 in M × ]0,∞[ ,
u(x, 0) = u0(x), ut (x, 0) = u1(x) x ∈ M.

(1.2)

Assuming that a is a bounded nonnegative function on M such that a ∈ C∞, we
say that the Rauch–Taylor condition holds if there exists a time T0 > 0 such that
any ray of the geometric optics with length greater than T0 meets the open set
{x ∈ M; a(x) > 0} × R. In this case it was established by Rauch and Taylor
[25] that the energy

E(t) = 1

2

∫

M

(
|ut |2 + |∇u|2

)
dx

decays exponentially. An analogous result was settled by Bardos et al. [2] for
Riemannian manifolds with boundary. In that work, the authors presented sharp
sufficient conditions for the observation, control and stabilization of the linear wave
equation on a compact Riemannian manifold (M, g) with boundary. In particular,
when one considers the equation

⎧
⎨

⎩

utt −�u + 2a(x) ut = 0 in M × ]0,∞[ ,
u = 0 on ∂M × ]0,∞[ ,
u(x, 0) = u0(x), ut (x, 0) = u1(x) x ∈ M,
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a ∈ C∞, and a(x) > 0 in some nonempty open subset ω of M , they proved that the
exponential decay holds if and only if a similar condition on the ray of geometric
optics for a Riemannian manifold with boundary is satisfied. Although the results in
[2] are always stated in the framework of boundary damping, the result mentioned
above is a direct consequence of their proof (see the appendix of [15]). A canonical
example of an open subset ω verifying the geometric control condition is when ω
is a neighbourhood of the boundary of a Euclidean domain. A canonical example
where the condition on the ray of geometric optics is not satisfied is when there
exists a periodic ray of the geometric optic that does not intercept the damping
area (for instance, a flat disc with a damping area that does not contain a pair of
antipodal boundary points). The intuitive idea behind these kinds of results is that
if every ray of geometric optics remains at least a well-defined proportion of time
in the damping area during its traveling, then the energy decays exponentially.

Related to Problem (1.2) on compact Riemannian manifolds without bound-
ary, it is worth mentioning the recent result due to Christianson [8]. Assuming
that u0 = 0 and, in addition, that a(x) > 0 outside a neighbourhood of a closed
hyperbolic geodesic γ , he proved the following energy estimate

E(t) � Ce−t/C ||u1||2H ε(M), t � 0,

for some C > 0 and for all ε. The proofs of the above mentioned works are based
on microlocal analysis and, although they are refined in sharpness, it seems that
they do not extend to nonlinear problems.

1.2. On previous results and methodology

This work is concerned with answering the following question: Which are the
“smallest” open sets M∗ such that if the damping is effective on M∗, then the opti-
mal decay rate of the energy holds? In this subsection we present some results
in this direction for compact surfaces in R

3 without boundary (See [4,5]) giving
typical examples and making remarks about the technical tools we use.

The microlocal analysis does not seem to be suitable for treating nonlinear
problems. In order to overcome this limitation, we use the multiplier method.
A multiplier we use is given by 〈q,∇u〉, where q is a smooth vector field on M and
〈·, ·〉 stands for the Riemannian metric. If q is “well behaved” in a domain V ⊂ M ,
V can be left without damping. Well behaved means, in general, satisfying some
differential equation on V . Therefore, the existence of such a V and q depends on
the geometry of V . Let us give some examples.

Let M be a compact surface without boundary embedded in R
3 and let ν be the

outward normal vector field. Consider x0 ∈ R
3\M and the function m : R

3 → R
3

defined as m(x) = x − x0. Denote

M1 := {x ∈ M; m(x) · ν(x) > 0} M0 = M\M1.

In [4], the authors of the present manuscript proved that umbilical domains com-
pactly contained in M0 can be left without damping (See Fig. 1). More generally,
if the principal curvatures k1 and k2 satisfy |k1(x)− k2(x)| < ε for ε small enough
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Fig. 1. The observer is at x0. The subset M0 is the “visible” part of M and M1 is its com-
plement. The subset M∗ ⊃ M\V is an open set and the damping is effective there

on V , then V can be left without damping. For this result, the vector field q on V is
defined as the projection of the vector field m(x) := x − x0 on the tangent bundle
of V , and it is extended smoothly outside V .

In [5] the authors of the present work proved that for every p ∈ M , there
exists a neighborhood V sufficiently small that it can be left without damping.
The vector field q used here is the gradient of a smooth function f that satisfies
inf
x∈V

∇ f (x) > 0 and Hess( f ) ≈ g (such a function always exists for a sufficiently

small neighborhood) on V and it is smoothly extended outside V .
Let V1, . . . , Vk be domains that can be left without damping, as described above,

with the respective vector fields q1, . . . , qk . Suppose that their closures are pairwise
disjoint and let M∗ ⊃ M\ (∪k

i=1Vk
)

be an open set. If the damping is effective on
M∗, that is, if a(x) � a0 > 0 on M∗, then uniform and optimal decay rates of the
energy hold. The vector field q defined here is given by qi on Vi and it is smoothly
extended outside ∪k

i=1Vk .
As a particular case, observe that if we consider x1 and x2 opposite with respect

to the center of a sphere and sufficiently far from each other, the damping can be
made effective in an arbitrarily small neighborhood of the meridian. This general-
izes the result due to Bardos et al. [2] when M = S2 is a sphere (See Fig. 2).

In [5] the authors also proved that we can choose V1, . . . , Vk in such a way that
their closures are pairwise disjoint and they cover almost all M . In other words, for
every ε > 0, there exist M∗ ⊃ M\ (∪k

i=1Vi
)

with meas(M∗) < ε such that if the
damping is effective on M∗, then uniform and optimal decay rates of the energy
hold. Although the result is sharp with respect to the volume where the damping
acts, we do not have any control about the regions that can be left free of damping.
The connected components of V can be extremely small. See Fig. 3.

Figure 4 illustrates a more general case, where small regions and umbilical
regions are left without damping. Moreover, the area where the damping is effec-
tive can be made arbitrarily small.

The hypothesis of the damping region in terms of the rays of the geometric
optics has a close relationship with the hypothesis of the existence of a “nice” vec-
tor field q: If the damping is strategically distributed, then the optimal decay rate
of the energy holds. In one hand, the results in terms of the ray of the geometric
optics are more general than our results for the linear case. But our results also
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Fig. 2. The observers x1 and x2 symmetric with respect to the center of the sphere. When
they are positioned sufficiently far from each other, the area where the damping is effective
can be made arbitrarily small

Fig. 3. The non-dissipative area (in white) is arbitrarily large while the demarcated area
(in black) contains dissipative effects and can be considered arbitrarily small, both totally
distributed on M

consider the nonlinear case and give explicitly examples of regions that can be left
without damping, which can be a difficult task if we use the hypothesis on the ray
of geometric optics on a Riemannian manifold.

In our opinion, there are plenty of space left for further studies about the rela-
tionships between these two different kind of hypothesis.

1.3. The main goal

The main goal of the present manuscript is to generalize the results presented
in subsection 1.2 (See [4,5]) for n-dimensional compact Riemannian manifolds
(M, g) with or without boundary. We proceed as follows:

(1) We prove that for every x ∈ M (including the case x ∈ ∂M), there exists a
neighborhood that can be left without damping;
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Fig. 4. A compact surface M without boundary is considered such that U1 ∪U2 ∪ D contains
M . While regions U1 and U2 are umbilical and free of dissipation the region D contains
dissipative effects but the superficial measure of the white part of it can be considered arbi-
trarily large and the complementary part (in black) possesses superficial measure arbitrarily
small. This can always be done for a finite number of observers located at x1, . . . , xn , with
corresponding disjoint umbilical regions U1, . . . ,Un and a dissipative area D such that the
union ∪n

i=1Ui ∪ D covers the whole surface M

Fig. 5. The demarcated region M\V (in black) illustrates the damped region on the compact
manifold M with boundary ∂M , which can be considered as small as desired. � is radially
symmetric region without damping. The measure of ∂M ∩ (M\V ) can also be arbitrarily
small

(2) We prove that a very precise portion of radially symmetric domains can be
left without damping;

(3) Let ε > 0 and V1, . . . , Vk be domains as in (i) and (ii) which closures are pair-
wise disjoint. We prove that there exist a V ⊃ ∪k

i=1Vi that can be left without
damping and such that meas(V ) � meas(M) − ε and meas(V ∩ ∂M) �
meas(∂M)− ε. In particular several radially symmetric domains can be left
without damping in a similar way as in Fig. 4.

For this purpose, we will construct an intrinsic multiplier that will play an important
role when establishing the desired uniform decay rates of the energy. Fix ε > 0.
This multiplier is given by 〈∇ f,∇u〉, where f : M → R is a smooth function such
that its Hessian ∇2 f is closely related to g on an open subset V ⊂ M that satisfies
meas(V ) � meas(M)− ε, meas(V ∩∂M) � meas(∂M)− ε and 〈∇ f, ν〉 < 0 on
V ∩ ∂M . This construction will be clarified during the proof. In addition, because
of the radially symmetric region (Fig. 5), we are not sure if the uniqueness results
due to Triggiani and Yao [30] can be employed to our case, so that new unique
continuation arguments are required (see Theorem 5.1).

Our presentation will be focused on the problem defined on Riemannian mani-
folds with smooth boundary, although the result also holds for Riemannian manifolds
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without boundary. In the further case the initial condition has zero average, and if
the solution u of the equation is such that u(·, t) does not have zero average for
every t , then we can add an additional term u in the equation (see [5]) and the rest
of the proof is analogous.

Our paper is organized as follows. Section 2 is concerned with the statement
of the problem. We also introduce some notation and present the main result. In
Section 3 we present the preliminaries in Differential Geometry that we need in
this work. Sections 4, 5, 6 and 7 are devoted to the proof of the main result.

2. Statement of the problem and the main result

Let (M, g) be an n-dimensional compact Riemannian manifold with boundary.
For ε > 0, we shall prove that there exist an open subset V ⊂ M and smooth func-
tions α, f : M → R such that meas(V ) � meas(M) − ε/2, meas(V ∩ ∂M) �
meas(∂M)− ε/2, ∇α|V ≡ 0 and such that α and f satisfy

C
∫ T

0

∫

V

[
u2

t + |∇u|2]dM dt �
∫ T

0

∫

V

(
� f

2
− α

)

u2
t dM dt

+
∫ T

0

∫

V

[

∇2 f (∇u,∇u)+
(

α − � f

2

)

|∇u|2
]

dM dt,

for some positive constant C and, furthermore,

〈∇ f, ν〉 < 0 on ∂M ∩ V .

Moreover if V1, . . . , Vk are radially symmetric to be presented in Lemma 6.2 with
pairwise disjoint closures, we can choose V in such a way that V ⊃ (∪k

i=1Vi ). In
what follows, M∗ will be an open set containing M\V and satisfying meas(M∗)
< ε.

In this paper, we investigate the stability properties of function u(x, t) which
solves the following damped problem:

⎧
⎨

⎩

utt −�u + a(x) g(ut ) = 0 on M × ]0,∞[ ,
u = 0 on ∂M × ]0,∞[
u(0) = u0, ut (0) = u1, x ∈ M,

(2.1)

where the feedback function g satisfies the following assumptions:

Assumption 2.1. (i) g (s) is continuous and monotone increasing,
(ii) g (s) s > 0 for s �= 0,

(iii) k |s| � g (s) � K |s| for |s| > 1,

where k and K are two positive constants.
In addition, to obtain the stabilization of problem (2.1), we shall need the fol-

lowing geometrical assumption:
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Assumption 2.2. We assume that a ∈ L∞(M) is a nonnegative function such that

a(x) � a0 > 0, almost everywhere on M∗, (2.2)

where M∗ is an open set of M that contains M\V .

In the sequel we define � = M × ]0, T [ and we set

H1
0 (M) := {v ∈ H1(M); v|∂M = 0},

which is a Hilbert space with the topology endowed by H1(M). A summary of the
geometric tools necessary is presented in Section 3, including Sobolev spaces on
Riemannian manifolds. For details about this subject we refer the reader to Taylor’s
book [28].

The condition v|∂M = 0 is required in order to guarantee the validity of the
Poincaré inequality,

||h||2L2(M) � (λ1)
−1||∇h||2L2(M), for all h ∈ H1

0 (M), (2.3)

where λ1 is the first eigenvalue of the Laplace–Beltrami operator for the Dirichlet
problem.

We observe that the problem (2.1) can be written in the following form

dU

dt
+ AU = G(U ),

where

A =
(

0 −I
−� 0

)

is a maximal monotone operator and G(·) represents a locally Lipschitz pertur-
bation. So, making use of standard semigroup arguments we have the following
result:

Theorem 2.1. (i) Under the conditions above, problem (2.1) is well posed in the
space H1

0 (M)× L2(M), that is, for any initial data
{
u0, u1

} ∈ H1
0 (M)× L2(M),

there exists a unique weak solution of (2.1) in the class

u ∈ C(R+; H1
0 (M)) ∩ C1(R+; L2(M)). (2.4)

(ii) In addition, the velocity term of the solution has the following regularity:
ut ∈ L2

loc

(
R+; L2 (M)

)
, (2.5)

(consequently, g (ut ) ∈ L2
loc

(
R+; L2 (M)

)
by Assumption 2.1.

Furthermore, if
{
u0, u1

} ∈ {
H1

0 (M) ∩ H2 (M)× H1
0 (M)

}
then, the solution

has the following regularity

u ∈ L∞(
R+; H1

0 (M)∩H2 (M)
)∩W 1,∞(

R+; H1
0 (M)

)∩W 2,∞(
R+; L2 (M)

)
.
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Supposing that u is the unique global weak solution of problem (2.1), we define
the corresponding energy functional by

E(t) = 1

2

∫

M

[
|ut (x, t)|2 + |∇u(x, t)|2

]
dM. (2.6)

For every solution of (2.1) in the class (2.4) the following identity holds

E(t2)− E(t1) = −
∫ t2

t1

∫

M
a(x) g(ut )ut dM dt, for all t2 > t1 � 0, (2.7)

and therefore the energy is a non-increasing function of the time variable t .
Before stating our stability result, we will define some needed functions. For

this purpose, we are following the ideas first introduced in Lasiecka and Tataru
[13]. For the reader’s comprehension we will repeat them briefly. Let h be a concave,
strictly increasing function, with h (0) = 0, and such that

h (s g(s))) � s2 + g2(s), for |s| � 1. (2.8)

Note that such a function can be straightforwardly constructed, given the hypoth-
eses on g in Assumption 2.1. With this function, we define

β(.) = h

(
.

meas (�1)

)

. (2.9)

As β is monotone increasing, then cI +β is invertible for all c � 0. For L a positive
constant, we set

p(x) = (cI + β)−1 (Lx) , (2.10)

where the function p is easily seen to be positive, continuous and strictly increasing
with p(0) = 0. Finally, let

q(x) = x − (I + p)−1 (x) . (2.11)

We can now proceed to state our stability result.

Theorem 2.2. Assume that Assumptions 2.1 and Assumption 2.2 are in place. Let u
be the weak solution of the problem (2.1). With the energy E(t) defined as in (2.6),
there then exists a T0 > 0 such that

E(t) � S

(
t

T0
− 1

)

, ∀t > T0, (2.12)

with limt→∞S(t) = 0, where the contraction semigroup S(t) is the solution of the
differential equation

d

dt
S(t)+ q(S(t)) = 0, S(0) = E(0), (2.13)

(where q is as given in (2.11)). Here, the constant L (from definition (2.10)) will
depend on meas(�), and the constant c (from definition (2.10)) is taken here to be

c ≡ k−1+K
meas(�)(1+||a||∞) .
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Remark 2.1. If the feedback is linear, for example, g(s) = s, then, under the same
assumptions as in Theorem 2.2, we have that the energy of problem (2.1) decays
exponentially with respect to the initial energy, that is, there exist two positive
constants C > 0 and k > 0 such that

E(t) � Ce−kt E(0), t > 0. (2.14)

As another example, we can consider g(s) = s�, � > 1 at the origin. Since the

function s
�+1

2 is convex for � � 1, then solving

St + S
�+1

2 = 0, (2.15)

we obtain the following polynomial decay rate:

E(t) � C(E(0))[E(0)
−�+1

2 + t (�− 1)] 2
−�+1 .

We can find more interesting explicit decay rates in Cavalcanti et al. [7].

3. Preliminaries in differential geometry

The theory regarding differential calculus of tensor fields on Riemannian man-
ifolds can be found in [27].

Let (M, g) be an n-dimensional, n � 2, compact Riemannian manifold, with
smooth boundary or without boundary, with smooth metric g(·, ·) = 〈·, ·〉 and
norm | · |. The tangent space of M at x is denoted by Tx M . Fix a coordinate system
(x1, . . . , xn) and let (∂/∂x1, ∂/∂x2, . . . , ∂/∂xn) be the coordinate vector fields. If
gi j = 〈

∂/∂xi , ∂/∂x j
〉
, we have that

g(X,Y ) = 〈X,Y 〉 =
n∑

i, j=1

gi j bi c j , X =
n∑

i=1

bi
∂

∂xi
, Y =

n∑

i=1

ci
∂

∂xi
∈ Tx M,

(3.16)
|X | = (g(X, X))

1
2 . (3.17)

Let T ∗
x M be the space of linear forms on Tx M . The Riemannian metric induces

natural isomorphism ι : Tx M → T ∗
x M given by v → 〈v, ·〉. For v ∈ Tx M we

denote v� := ι(v) and similarly for ϕ ∈ T ∗
x M we denote ϕ� := ι−1(ϕ). ι and ι−1

are called musical isomorphisms.
Let T m,s

x M be the space of tensors of type (m, s) on Tx M . If m = 0, then
we simply denote T s

x M := T 0,s
x M . The musical isomorphisms allow us to iden-

tify T m,s
x M and T m+s

x M in the following fashion: � ∈ T m,s
x M is identified with

�̃ ∈ T m+s
x M which is defined as

�̃(v1, . . . , vm, vm+1, . . . , vm+s) = �(v�1, . . . , v�m, vm+1, . . . , vm+s).

Denote the tangent bundle of M by T M , the cotangent bundle of M by T ∗M
and the tensor bundle of type (m, s) by T m,s M . Let ∇ denote the Levi–Civita con-
nection of M . Consider a vector field X on M . ∇X is a differential operator that,
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when operated on a Ck , k � 1, tensor field of type (m, s), gives a Ck−1 tensor
field of type (m, s). If f is a C1 function on M (tensor field of type (0, 0)), then
∇X f := d f (X) = X ( f ). If Y is another vector field on M , then ∇X Y is the
covariant derivative of Y with respect to X . Other covariant derivatives are defined
in such a way that the “product rule” holds. If ϕ is a one-form on M , then ∇Xϕ is
defined as

(∇Xϕ)(Y ) := X (ϕ(Y ))− ϕ(∇X Y ).

It is not difficult to prove that ∇Xϕ is well defined, that is, if x ∈ M then
[(∇Xϕ)(x)](Y ) depends only on Y (x). If � is a tensor field of type (m, s) on
M , ϕ1, . . . , ϕm are one-forms on M and X,Y1, . . . ,Ys are vector fields on M , then
∇X� is defined as

(∇X�)(ϕ1, . . . , ϕm,Y1, . . . , Ys) := X (�(ϕ1, . . . , ϕm,Y1, . . . ,Ys))

−�(∇Xϕ1, . . . , ϕm,Y1, . . . , Ys) − �(ϕ1,∇Xϕ2, . . . , ϕm,Y1, . . . , Ys) . . .

. . .−�(ϕ1, . . . ,∇Xϕm,Y1, . . . , Ys) − �(ϕ1, . . . , ϕm,∇X Y1, . . . ,Ys) . . .

. . .−�(ϕ1, . . . , ϕm,Y1, . . . ,∇X Ys).

Likewise, it is not difficult to prove that (∇X�)(x) : T m,s
x M → T m,s

x M is well
defined.

Let �, �1 and �2 be tensor fields of type (m, s) on M , c ∈ R and X a vector
field on M . Then covariant derivatives have the following properties:

(1) ∇X (c�1 +�2) = c∇X�1 + ∇X�2.
(2) ∇X (T1 ⊗ T2) = (∇X T1)⊗ T2 + T1 ⊗ (∇X T2)

where ⊗ denotes the tensor product.
∇ is also a differential operator that operates on Ck , k � 1, tensor fields of type

(m, s) on M , and gives as a result a Ck−1 tensor field of type (m, s + 1). If � is a
tensor field of type (m, s) on M , then ∇� is called the covariant differential of �
and it is defined as

(∇�)(ϕ1, . . . , ϕm, X,Y1, . . . ,Ys) = (∇X�)(ϕ1, . . . , ϕm,Y1, . . . ,Ys)

where ϕ1, . . . , ϕm are one-forms on M and X,Y1, . . . ,Ys are vector fields on M .
It is not difficult to see that ∇� is a well defined tensor field of type (m, s + 1).

Let � a tensor field of type (0, s) on M . The divergent div� of � is a tensor
field of type (0, s − 1) defined as

(div�)(v2, . . . , vs)(x) :=
n∑

i=1

(∇ei�)(ei , v2, . . . , vs)(x)

where x ∈ M and (e1, . . . , en) is an orthonormal basis of Tx M .
Let us examine some important examples of differential operators. If f is a

function of class C1 on M , then ∇ f is a one-form defined as

∇ f (X) = ∇X f = X ( f ) = d f (X) = 〈
(∇ f )�, X

〉
.
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The usual gradient of f can be identified with ∇ f because (∇ f )� = grad f . In
what follows, we denote the gradient of f by ∇ f if there is no possibility of
misunderstanding.

Another important tensor field is the Hessian of a C2 function on M . It is defined
as ∇2 f := ∇(∇ f ). It is well known that ∇2 f is a symmetric tensor field of type
(0, 2) on M . Notice that

∇2 f (X,Y ) = 〈∇Y (∇ f ), X〉 , for all X,Y ∈ Tx M, x ∈ M. (3.18)

The divergent of a vector field Y is defined as divX := divX �. If x ∈ M and
{e1, . . . , en} is an orthonormal basis of Tx M , then

divX = 〈∇ei X, ei 〉. (3.19)

If f is a C1 function defined on M , then

div( f X) = f divX + X ( f ). (3.20)

The Laplacian � f of a C2 function f on M is defined as

� f = div∇ f. (3.21)

� is the Laplace–Beltrami operator.
If H, X,Y are vector fields on M , then

∇H(X,Y ) :=∇H �(X,Y )=〈∇X H,Y 〉 , for all X,Y ∈Tx M, x ∈ M. (3.22)

For any function f and vector field H on M , the following identity holds on
each x ∈ M (see [14, p. 22])

〈∇ f,∇(H( f ))〉 = ∇H(∇ f,∇ f )+ 1

2

[
div(|∇ f |2 H)− |∇ f |2divH

]
. (3.23)

In what follows we shall denote by χ(M) the set of all smooth vector fields on
M . Analogously, we will denote by �∞(T k M) the set of all smooth tensor fields
of type (0, k).

For each x ∈ M , T k
x M is an inner product space defined as follows. Let

{e1, . . . , en} be an orthonormal basis of Tx M . For any φ1, φ2 ∈ T k
x M , x ∈ M ,

the inner product is given by

〈φ1, φ2〉T k
x M =

n∑

i1,...,ik=1

φ1(ei1 , . . . , eik )φ2(ei1 , . . . , eik ). (3.24)

In particular, for k = 1, we have 〈φ1, φ2〉T 1
x M = g(φ�1, φ

�
2) for all φ1, φ2 ∈ T 1

x M .

In view of (3.24), �∞(T k M) are inner product spaces endowed with the fol-
lowing inner product

〈ψ1, ψ2〉�∞(T k M) =
∫

M
〈ψ1, ψ2〉T k M dM, ψ1, ψ2 ∈ �∞(T k M), (3.25)
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where dM is the volume element of M in the metric g. We denote by L2(M, �∞
(T k M)) the completions of �∞(T k M) in the inner product given by (3.25). In
addition, L2(M) is the completion of C∞(M) with the usual inner product

( f1, f2)L2(M) =
∫

M
f1(x) f2(x) dx, f1, f2 ∈ C∞(M). (3.26)

The Sobolev space Hk(M) is the completion of C∞(M) with respect to the
norm || · ||,

|| f ||2Hk (M) =
k∑

i=1

||∇ i f ||2L2(M,�∞(T i M)) + || f ||2L2(M), f ∈ C∞, (3.27)

where∇ i f is the i th covariant differential of f in the metric g and ||·||L2(M,�∞(T i M))
are the corresponding norms, induced by the inner products (3.24) and (3.25). For
details on Sobolev spaces on Riemannian manifolds, we refer the reader to Taylor
[28].

Remark 3.1. In order to simplify the notation, we denote the L2-norm, without
distinguishing whether the argument of the norm is a function or tensor field of
type (0, k).

We collect below a few formulas to be invoked in the sequel (See [28]).
Divergence or Gauss theorem: If X ∈ H1(M, χ(M)) and ν is the outward normal
vector field of ∂M , then

∫

M
divX dM =

∫

∂M
〈X, ν〉 d∂M. (3.28)

Green’s Theorem 1: If H ∈ H1(M, χ(M)) and q ∈ H1(M) then,
∫

M
(divH)q dM = −

∫

M
〈H,∇q〉 dM +

∫

∂M
(〈H, ν〉)q d∂M. (3.29)

Green’s Theorem 2: If f ∈ H2(M) and q ∈ H1(M), then,
∫

M
(� f )q dM = −

∫

M
〈∇ f,∇q〉 dM +

∫

∂M
(∂ν f )q d∂M. (3.30)

We conclude this subsection by presenting some remarks about differentiable
manifolds with boundary.

Let M be a differentiable manifold with boundary (Fig. 6). We introduce some
notation and conventions here.

The interior of M will be denoted by int(M) and the boundary of M by ∂M .
An open set V ⊂ M is an open set of the topological space M . Therefore it can
intercept the boundary. The boundary ∂V of V can be written as the disjoint union
∂V = ∂1V ∪ ∂2V where ∂1V := ∂V ∩ int(M) and ∂2V := ∂V ∩ ∂M .

We say that an open subset V ⊂ M has smooth boundary ∂1V if ∂1V is a smooth
hypersurface of M with smooth boundary ∂1V ∩∂M . Therefore the term “smooth”
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Fig. 6. A compact manifold M with boundary ∂M

ignores ∂2V . A typical example of an open subset of R
n+ := {(x1, . . . , xn) ∈

R
n; xn �0} with smooth boundary is V :={(x1, . . . , xn) ∈ R

n; xn−1 �0, xn � 0}.
We state a classical result which can be proven using the existence of a tubular

neighborhood for some submanifolds.

Proposition 3.1. Let M be a differentiable manifold with boundary. Suppose that
V ⊂ M is an open subset with smooth boundary ∂1V which intercepts ∂M trans-
versally. Let M∗ be an arbitrary open subset of M such that M∗ ⊃ M\V . Then
there exists an open subset W ⊂ M with smooth boundary ∂1W which intercepts
∂M transversally such that M\V ⊂⊂ W ⊂⊂ M∗.

From now on, and in order to obtain the decay rate estimate given in (2.12), we
will work with regular solutions of problem (2.1). So, by using standard arguments
of density, the same decay rate estimate remains true for weak solutions.

4. A fundamental identity

This section is devoted to proving (4.37) and to explaining how it is used to
determine V .

Proposition 4.1. Let (M, g) be a n-dimensional compact manifold and H a vector
field of class C1. Then for every regular solution u of problem (1.1) we have the
following identity

[∫

M
ut 〈H,∇u〉 dM

]T

0
+ 1

2

∫ T

0

∫

M
(divH)

{
|ut |2 − |∇u|2

}
dM dt

+
∫ T

0

∫

M
∇H(∇u,∇u) dM dt +

∫ T

0

∫

M
a(x) g(ut ) 〈H,∇u〉 dM dt

=
∫ T

0

∫

∂M
∂νu 〈H,∇u〉 d∂M dt + 1

2

∫ T

0

∫

∂M
〈H, ν〉

[
u2

t − |∇u|2
]

d∂M dt.

(4.31)
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Proof. Multiplying the equation of (1.1) by the multiplier H(u) = 〈∇u, H〉 and
integrating on M×]0, T [, we obtain

0 =
∫ T

0

∫

M
(utt −�u + a(x)g(ut )) 〈H,∇u〉 dM dt. (4.32)

Next, we will estimate some terms on the right-hand side of identity (4.32).
Taking (3.20), (3.23), (3.28), (3.29) and (3.30) into account, we obtain

∫ T

0

∫

M
(−�u) 〈H,∇u〉 dM dt

=
∫ T

0

∫

M
〈∇u,∇(〈H,∇u〉)〉 dM dt −

∫ T

0

∫

∂M
∂νu 〈H,∇u〉 d∂M dt

=
∫ T

0

∫

M
∇H(∇u,∇u) dM dt

+
∫ T

0

∫

M

[
1

2
div(|∇u|2 H)− 1

2
divH |∇u|2

]

dM dt

−
∫ T

0

∫

∂M
∂νu 〈H,∇u〉 d∂M dt

=
∫ T

0

∫

M
∇H(∇u,∇u) dM dt +

∫ T

0

∫

M

1

2

〈
H,∇[|∇u|2]〉dM dt

−
∫ T

0

∫

∂M
∂νu 〈H,∇u〉 d∂M dt

=
∫ T

0

∫

M
∇H(∇u,∇u) dM dt − 1

2

∫ T

0

∫

M
divH |∇u|2dM dt

−
∫ T

0

∫

∂M
∂νu 〈H,∇u〉 d∂M dt + 1

2

∫ T

0

∫

∂M
〈H, ν〉 |∇u|2 d∂M dt (4.33)

and, integrating by parts and considering (3.20) and (3.29), we obtain

∫ T

0

∫

M
(utt + a(x) g(ut )) 〈H,∇u〉 dM dt

=
[∫

M
ut 〈H,∇u〉

]T

0
−

∫ T

0

∫

M
ut 〈H,∇ut 〉 dM dt

+
∫ T

0

∫

M
a(x) g (ut ) 〈H,∇u〉 dM dt

=
[∫

M
ut 〈H,∇u〉

]T

0
− 1

2

∫ T

0

∫

M

〈
H,∇(u2

t )
〉

dM dt

+
∫ T

0

∫

M
a(x) g (ut ) 〈H,∇u〉 dM dt
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=
[∫

M
ut 〈H,∇u〉

]T

0
+ 1

2

∫ T

0

∫

M
(divH)u2

t dM dt

+
∫ T

0

∫

M
a(x) g (ut ) 〈H,∇u〉 dM dt − 1

2

∫ T

0

∫

∂M
〈H, ν〉 (ut )

2 d∂M dt.

(4.34)

Combining (4.32), (4.33) and (4.34), we deduce (4.31), which concludes the
proof of Proposition 4.1 ��

Employing (4.31) with H = ∇ f where f : M → R is a C∞ function to be
determined later, from (3.22) and (3.18), we infer

[∫

M
ut 〈∇ f,∇u〉 dM

]T

0
+ 1

2

∫ T

0

∫

M
� f

{
u2

t − |∇u|2
}

dM dt

+
∫ T

0

∫

M
∇2 f (∇u,∇u) dM dt +

∫ T

0

∫

M
a(x) g(ut ) 〈∇ f,∇u〉 dM dt

=
∫ T

0

∫

∂M
∂νu 〈∇ f,∇u〉 d∂M dt+ 1

2

∫ T

0

∫

∂M
〈∇ f, ν〉
︸ ︷︷ ︸

=∂ν f

[
u2

t − |∇u|2] d∂M dt.

(4.35)

We have the following identity:

Lemma 4.2. Let u be a regular solution to problem (1.1) and α ∈ C1(M). Then

[∫

M
ut α u dM

]T

0
=

∫ T

0

∫

M
α u2

t dM dt −
∫ T

0

∫

M
α |∇u|2 dM dt

−
∫ T

0

∫

M
〈∇u,∇α〉 u dM dt−

∫ T

0

∫

M
a(x) g(ut ) α u dM dt

+
∫ T

0

∫

∂M
∂νu α u d∂M dt. (4.36)

Proof. Multiplying the first equation of (1.1) by α u and integrating by parts we
obtain the desired result. ��

Combining (4.36) and (4.35), we deduce
∫ T

0

∫

M

(
� f

2
− α

)

u2
t dM dt

+
∫ T

0

∫

M

[

∇2 f (∇u,∇u)+
(

α − � f

2

)

|∇u|2
]

dM dt

= −
[∫

M
ut 〈∇ f,∇u〉 dM

]T

0
−

[∫

M
ut α u dM

]T

0

−
∫ T

0

∫

M
a(x) g(ut ) α u dM dt −

∫ T

0

∫

M
a(x) g(ut ) 〈∇ f,∇u〉 dM dt
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+
∫ T

0

∫

∂M
∂νu 〈∇ f,∇u〉 d∂M dt+1

2

∫ T

0

∫

∂M
〈∇ f, ν〉 [

u2
t −|∇u|2] d∂M dt

−
∫ T

0

∫

M
〈∇u,∇α〉 u dM dt +

∫ T

0

∫

∂M
∂νu α u︸︷︷︸

=0

d∂M dt. (4.37)

We observe that since we are working with regular solutions, then, ut = 0 on
∂M .

Now we use the fact that u|∂M = 0 (and therefore ∇u = 〈∇u, ν〉 ν = (∂νu)ν)
in (4.37) in order to get

∫ T

0

∫

M

(
� f

2
− α

)

u2
t dM dt

+
∫ T

0

∫

M

[

∇2 f (∇u,∇u)+
(

α − � f

2

)

|∇u|2
]

dM dt

= −
[∫

M
ut 〈∇ f,∇u〉 dM

]T

0
−

[∫

M
ut α u dM

]T

0

−
∫ T

0

∫

M
a(x) g(ut ) α u dM dt −

∫ T

0

∫

M
a(x) g(ut ) 〈∇ f,∇u〉 dM dt

+1

2

∫ T

0

∫

∂M
〈∇ f, ν〉 |∇u|2 d∂M dt −

∫ T

0

∫

M
〈∇u,∇α〉 u dM dt. (4.38)

Remark 4.1. This is the precise moment in which the properties of the function
f will play an important role. Note that all we need is to find an open subset
V ⊂ M with smooth boundary ∂1V which intercepts ∂M transversally and smooth
functions α, f : M → R such that ∇α|V ≡ 0 and

C
∫ T

0

∫

V

[
u2

t + |∇u|2]dM dt �
∫ T

0

∫

V

(
� f

2
− α

)

u2
t dM dt

+
∫ T

0

∫

V

[

∇2 f (∇u,∇u)+
(

α − � f

2

)

|∇u|2
]

dM dt, (4.39)

for some positive constants C and α and

〈∇ f, ν〉 < 0 on ∂M ∩ V . (4.40)

Assuming, for a moment, that (4.39) and (4.40) hold, from (4.38) yields

2C
∫ T

0
E(t) dt � C∗

∫ T

0

∫

M\V

[
u2

t + |∇u|2]dM dt

+
∣
∣
∣
∣
∣

[∫

M
ut 〈∇ f,∇u〉 dM

]T

0

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

[∫

M
ut α u dM

]T

0

∣
∣
∣
∣
∣

+
∣
∣
∣
∣

∫ T

0

∫

M
a(x) g(ut ) α u dM dt

∣
∣
∣
∣
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+
∣
∣
∣
∣

∫ T

0

∫

M
a(x) g(ut ) 〈∇ f,∇u〉 dM dt

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ T

0

∫

M\V
〈∇u,∇α〉 u dM dt

∣
∣
∣
∣

+1

2

∣
∣
∣
∣

∫ T

0

∫

∂M∩(M\V )
〈∇ f, ν〉 |∇u|2 d∂M dt

∣
∣
∣
∣ (4.41)

where C∗ is a constant that depends on C , α and f .
The inequality (4.41) is controlled by considering a standard procedure in the

Euclidean setting. We shall adapt a similar procedure for the Riemannian case later.
The main idea behind this is to consider the dissipative area, namely M∗, contain-
ing the set M\V as stated in (2.2). It is important to observe that the volume of
M∗(M∗∩∂M) can be made arbitrarily small, because the volume of V (∂2V ⊂ ∂M)
can be made arbitrarily close to the volume of M(∂M).

5. A unique continuation theorem

In this section we prove the following unique continuation theorem for the wave
equation on Riemannian manifolds:

Theorem 5.1. Let M be a compact Riemannian manifold, eventually with bound-
ary. Let u ∈ C0(0, T ; H1

0 (M)) ∩ C1(0, T ; L2(M)) be the weak solution of the
wave equation

⎧
⎨

⎩

utt −�u = 0 in M × ]0,∞[
u = 0 on ∂M × ]0,∞[
u(0) = u0 ∈ H1

0 (M), ut (0) = u1 ∈ L2(M).

Suppose that there exists an open set V ⊂ M with smooth boundary ∂1V which
intercepts ∂M transversally, and smooth functions α, f : M → R such that
∇α|V ≡ 0 and conditions (4.39) and (4.40) hold.

If u ≡ 0 in a neighborhood M∗ of M\V , then u ≡ 0.

Proof. It is sufficient to work with regular solutions since by standard density argu-
ments the result follows for weak solutions. Considering a(x) ≡ 0 in (1.1), from
(4.38), (4.39), (4.40) and making use of the identity of the energy, we infer

2C E0T = 2C
∫ T

0
E(t) dt = C

∫ T

0

∫

M

(
u2

t + |∇u|2) dM dt

=C
∫ T

0

∫

V

(
u2

t +|∇u|2
)

dM dt+C
∫ T

0

∫

M\V

(
u2

t + |∇u|2) dM dt

� C∗
∫ T

0

∫

M\V

(
u2

t + |∇u|2) dM dt

−
[∫

M
ut 〈∇ f,∇u〉 dM +

∫

M
ut α u dM

]T

0
−

∫ T

0

∫

M
〈∇u,∇α〉 u dM dt

+1

2

∫ T

0

∫

∂M∩(M\V )
〈∇ f, ν〉 |∇u|2 d∂M dt. (5.42)
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Let us find upper bounds of the last three terms of the right-hand side of inequal-
ity (5.42). Notice that

∣
∣
∣
∣

∫

M
ut 〈∇ f,∇u〉 dM +

∫

M
ut u α dM

∣
∣
∣
∣ � C1

∫

M
u2

t + |∇u|2 dM

due to the boundedness of |∇ f | andα, the Cauchy–Schwartz inequality, the inequal-
ity ab � a2/2 + b2/2 and the Poncaré inequality. Therefore

[∫

M
ut 〈∇ f,∇u〉 dM +

∫

M
ut u α dM

]T

0
� 2 C1 E0. (5.43)

Analogously we have that

∫ T

0

∫

M
〈∇u,∇α〉 u dM dt � C2

∫ T

0

∫

M\V
|∇u|2 dM dt (5.44)

due to the condition ∇α = 0 on V .
Now we control the last term of the right-hand side of (5.42). First of all, we

construct a cut off vector field similar to the one used in Lions [15] (see Lemma 2.3)
for the Euclidean setting.

Let W ⊂ M be an open set with smooth boundary ∂1W which intercepts ∂M
transversally and M\V ⊂⊂ W ⊂⊂ M∗ (See Proposition 3.1).

Let η∂ : ∂M → R be a smooth cut-off function such that
⎧
⎨

⎩

η∂(x) = 1 if x ∈ ∂M ∩ (M\V )
η∂(x) = 0 if x ∈ ∂M ∩ (M\W )
η∂(x) ∈ [0, 1] otherwise.

This function exists because of the existence of a tubular neighborhood of ∂M ∩
(M\V ) that does not intercept ∂M ∩ (M\W ).

Let H∂ be a vector field on ∂M defined as H∂ (x) := η∂(x).ν(x). Then H∂
satisfies

⎧
⎨

⎩

H∂ (x) = ν(x) if x ∈ ∂M ∩ (M\V )
H∂ (x) = 0 if x ∈ ∂M ∩ (M\W )
〈H∂ (x), ν(x)〉 � 0 otherwise.

Now we extend H∂ into the whole manifold M , which gives a vector field similar
to Lions’ vector field defined in [15] (see Lemma 2.3) for the Euclidean setting. In
order to do that, consider a small tubular neighborhood

Uε := {x ∈ M; dist(x, ∂M) < ε}
where ε > 0. For every x ∈ Uε, let π(x) be the point in ∂M that minimizes the
distance from x to ∂M . We can choose ε small enough in order to state

{x ∈ Uε;π(x) ∈ ∂M ∩ W } ⊂ M∗ (5.45)
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because ∂M ∩ W ⊂⊂ M∗. Now define a smooth cutoff function η : M → R such
that

⎧
⎨

⎩

η(x) = 1 if x ∈ ∂M
η(x) = 0 if x �∈ Uε
η(x) ∈ [0, 1] otherwise.

We also define a smooth vector field HU in Uε which is the parallel transport
of H∂ along the minimizing geodesic. Finally, define the vector field H as

{
Hν(x) = η(x) HU (x) if x ∈ Uε
Hν(x) = 0 otherwise.

Notice that Hν is a smooth extension of H∂ to the whole manifold, and it vanishes
outside M∗ because of condition (5.45). Now we are ready to control the last term
of the right-hand side of (5.42).

First of all, notice that
∫ T

0

∫

∂M∩(M\V )
〈∇ f, ν〉 |∇u|2 d∂M dt � C3

∫ T

0

∫

∂M∩(M\V )
|∇u|2 d∂M dt

� C3

∫ T

0

∫

∂M
〈Hν, ν〉 (∂νu)2 d∂M dt

(5.46)

for some positive constant C3 because u ≡ 0 on ∂M , a ≡ 0 in M and 〈Hν, ν〉 = 1
on ∂M ∩ (M\V ). Equation (4.31) becomes

1

2

∫ T

0

∫

∂M
〈Hν, ν〉 (∂νu)2 d∂M dt =

[∫

Uε
ut 〈Hν,∇u〉 dM

]T

0

+1

2

∫ T

0

∫

Uε
(divHν)

{
|ut |2 − |∇u|2

}
dM dt

+
∫ T

0

∫

Uε
∇Hν(∇u,∇u) dM dt. (5.47)

Considering that the energy is constant and that Hν ≡ 0 outside W , we have
that

1

2

∫ T

0

∫

∂M
〈Hν,∇u〉 (∂νu)2 d∂M dt

� C4 E0 + C4

∫ T

0

∫

M∗

(
u2

t + |∇u|2) dM dt (5.48)

for some positive constant C4.
Joining (5.42), (5.43), (5.44) and (5.48) and choosing a sufficiently big T , we

have that

E0 � C5

∫ T

0

∫

M∗

(
u2

t + |∇u|2) dM dt (5.49)

for some positive constant C5, which settles the theorem. ��
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Remark 5.1. It is important to note that Theorem 5.1 can be extend for ultra-weak
solutions, for instance, those in the class u ∈ C0([0, T ], L2(M)) ∩ C1([0, T ],
H−1(M)), where H−1(M)means (H1

0 (M))
′. This corresponds to initial data taken

in {u0, u1} ∈ L2(M) × H−1(M). Indeed, it is sufficient to observe that given
{u0, u1} ∈ L2(M)× H−1(M) there exists {u0

i , u
1
i } ⊂ H1

0 (M)× L2(M) such that
u0

i → u0 in L2(M) and u1
i → u1 in H−1(M). So, considering, for each i ∈ N, the

sequence of problems
⎧
⎪⎨

⎪⎩

u′′
i −�ui = 0 in M × (0, T )

ui = 0 on M∗ × (0, T )
ui (0) = u0

i , u′
i (0) = u1

i ,

(5.50)

it is not difficult to prove that there exists u ∈ C0([0, T ], L2(M)) ∩ C1([0, T ],
H−1(M)) such that

ui → u in C0([0, T ]; L2(M)), (5.51)

u′
i → u′ in C0([0, T ]; H−1(M)), (5.52)

where u is the ultra-weak solution to problem
⎧
⎪⎨

⎪⎩

u′′ −�u = 0 in M × (0, T )
u = 0 on M∗ × (0, T )
u(0) = u0, u′(0) = u1.

(5.53)

The proof of the above statement can be found in Lions--Magenes [16] (see Chap.
3, Theorem 9.3, section 9.5)

Then, assuming that, for each i ∈ N, the conditions (4.39) and (4.40) hold,
where the constants C and α are independent of i (see 6.64) we can apply Theo-
rem 5.1 to problem 5.50 to conclude that ui ≡ 0. From this fact, and considering
the convergence (5.51), we deduce that u ≡ 0 as desired.

6. Construction of f

Fix ε > 0. The next sections are devoted to the construction of a smooth
function f : M → R as well as an open subset V ⊂ M with smooth bound-
ary ∂1V which intercepts ∂M transversally such that meas(V ) > meas(M) − ε,
meas(∂2V ) > meas(∂M)− ε and the inequalities (4.39) and (4.40) hold. First of
all, we construct these functions locally. Afterwards we glue them together. We can
put radially symmetric open sets satisfying some conditions inside V (and outside
the damping region).

6.1. Construction of a function satisfying (4.39) and (4.40) locally

The general idea of the construction of a function f satisfying (4.39) and (4.40)
locally is similar to the one presented in [5]. We split the the construction of such
a function f into three cases: a neighborhood of an interior point of M , a radially
symmetric domain and a neighborhood of a boundary point of M .
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6.1.1. Construction of a function satisfying (4.39) in a neighborhood
of a interior point of M

Lemma 6.1. Let Mn be a compact n-dimensional Riemannian manifold with Riem-
manian metric g of class C2. Fix p ∈ int(M). Then there exists a neighborhood
Vp of p with smooth boundary ∂Vp, a smooth function f : Vp → R and positive
constants α and C such that (4.39) holds for every regular solution u to problem
(1.1).

Proof. Fix p ∈ int(M). We begin with an orthonormal basis (e1, . . . , en) of Tp M .
Put a normal coordinate system (x1, . . . , xn) in a neighborhood Ṽp of p such that
∂/∂xi (p) = ei (p) for every i = 1, . . . , n. It is well known that in this coordinate
system we have that�k

i j (p) = 0, where�k
i j are the Christoffel symbols with respect

to (x1, . . . , xn) (See, for instance, [10]).
The Hessian with respect to (x1, . . . , xn) is given by

∇2 f

(
∂

∂xi
,
∂

∂x j

)

= ∂2 f

∂xi∂x j
−

n∑

k=1

�k
i j
∂ f

∂xk
.

The Laplacian of f is the trace of the Hessian with respect to the metric g. If
gi j denote the components of the Riemannian metric with respect to (x1, . . . , xn)

and gi j are the components of the inverse matrix of gi j , then the Laplacian of f is
given by

� f =
∑

i, j

gi j∇2 f

(
∂

∂xi
,
∂

∂x j

)

.

Consider the function f : Ṽp → R defined by

f (x) = 1

2

n∑

i=1

x2
i .

It is immediately evident that � f (p) = n. Moreover ∇2 f (p) = g(p), which
implies that

∇2 f (p)(v, v) = |v|2p.

We are interested in finding a neighborhood Vp ⊂ Ṽp of p and a strictly positive
constant C such that

C
∫ T

0

∫

Vp

(
|∇u|2 + u2

t

)
dM dt

�
∫ T

0

∫

Vp

[

∇2 f (∇u,∇u)+
(

α − � f

2

)

|∇u|2 +
(
� f

2
− α

)

u2
t

]

dM. dt

(6.54)
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for some α ∈ R. We claim that if we consider α = n
2 − 1

2 and C = 1/4 (or any
C ∈ (0, 1/4]), we obtain the desired inequality, which means that it is enough to
prove that there exists Vp ⊂ Ṽp verifying

∫ T

0

∫

Vp

∇2 f (∇u,∇u)+
(

n

2
− 3

4
− � f

2

)

|∇u|2 dM dt � 0 (6.55)

and
∫ T

0

∫

Vp

(
� f

2
− n

2
+ 1

4

)

u2
t dM dt � 0. (6.56)

In order to prove the existence of a subset Vp ⊂ Ṽp where (6.55) holds, let κ
be the smooth field of symmetric bilinear form on Ṽp defined as

κ(X, Y ) = ∇2 f (X,Y )+
(

n

2
− 3

4
− � f

2

)

g(X,Y )

where X and Y are vector fields on Ṽp. It is clearly a positive definite bilinear form
on p, since ∇2 f (p)(X,Y ) = g(p)(X,Y ) and

κ(p)(X,Y ) = 1

4
g(p)(X,Y ).

Therefore, there exists a neighborhood V̂p such that κ is positive definite and

∫ T

0

∫

V̂p

∇2 f (∇u,∇u)+
(

n

2
− 3

4
− � f

2

)

|∇u|2 dM dt � 0.

To prove the existence of Vp ⊂ Ṽp such that (6.56) holds is easier. It is enough
to notice that at p we have that

(
� f (p)

2
− n

2
+ 1

4

)

= 1

4

and the existence of Vp ⊂ Ṽp such that (6.56) holds is immediately evident. There-
fore Vp ⊂ Ṽp is a neighborhood of p such that (6.54) holds is settled. ��

Now we consider a radially symmetric subset of M . We say that an open set
V ⊂ M is radially symmetric with respect to p ∈ V if the expression of the
metric in polar coordinates (r, θ) = (r, θ1, θ2, . . . , θn−1) centered in p is given by
ds2 = dr2 + Q2(r)dθ2. A particular case is the unit sphere, where Q(r) = sin r .
Another particular case is the hyperbolic space with constant curvature −1, where
Q(r) = sinh r . Q is always differentiable at the origin and Q′(0) = 1.

Lemma 6.2. Let Mn be a compact n-dimensional Riemannian manifold with Riem-
manian metric g of class C2. Let Ṽ ⊂ intM be a radially symmetric open subset
with respect to p ∈ M. Then there exist a precisely definable subset of V ⊂ Ṽ , a
function f ∈ C∞(V ) and positive constants α and C such that (4.39) holds for
every regular solution u to problem (1.1).
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Proof. We are interested in finding a radially symmetric differentiable function
f : V → R with respect to p, such that its Hessian is conformal (proportional)
to the Riemannian metric. Using calculations with respect to a polar coordinate
system centered in p, we have that

∇2 f

(
∂

∂r
,
∂

∂r

)

= ∂
2 f

∂r2 ,

∇2 f

(
∂

∂r
,
∂

∂θ

)

= 0, (6.57)

∇2 f

(
∂

∂θi
,
∂

∂θ j

)

= 0,

if i �= j and

∇2 f

(
∂

∂θi
,
∂

∂θi

)

= f ′(r) Q(r) Q′(r). (6.58)

Let F = f ′. In order for ∇2 f to be conformal to the Riemannian metric, we
compare (6.57) and (6.58) and get

F ′

F
= Q′

Q
,

which can be solved by F = Q. Therefore ∇2 f = Q′ 〈·, ·〉.
Now we are interested in Riemannian manifolds M such that

C
∫ T

0

∫

V

(|∇u|2 + u2
t

)
dM dt

�
∫ T

0

∫

V

[

∇2 f (∇u,∇u)+
(

α − � f

2

)

|∇u|2+
(
� f

2
−α

)

u2
t

]

dM dt

(6.59)

holds for some α,C ∈ R. Hence it is enough to prove that
(

1 − n

2

)
Q′(r)+ α − C � 0 (6.60)

and

n

2
Q′(r)− α − C � 0 (6.61)

on V . We must have

α � C +
(n

2
− 1

)
(6.62)

and

α � n

2
− C (6.63)
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due to (6.60), (6.61) and Q′(0) = 1. Combining (6.62) and (6.63) we have that

C ∈ (0, 1/2] and α ∈ [n/2 − 1 + C, n/2 − C]. (6.64)

Now taking C and α as in (6.64), we have that (4.39) is satisfied in any open set
such that

Q′(r) ∈
[

2

n
(α + C) ,

α − C
n
2 − 1

]

(6.65)

(if n = 2, Q′(r) does not need to satisfy any upper bound). ��
Remark 6.1. It is clear that it is interesting to choose a very small C in order to
pick a larger V . As particular cases where (4.39) is satisfied we have:

(1) Euclidean domains: In this case, Q(r) = r and Q′(r) ≡ 1. Therefore (4.39)
holds for any Euclidean domain.

(2) For surfaces: In this case we can pick a subset V with inf
x∈V

Q′(r) � ε > 0.

For instance, any compactly contained open set in a semi-sphere satisfies this
condition. Two dimensional hyperbolic spaces also satisfy this condition.

The following theorem generalizes Lemmas 6.1 and 6.2. Its proof proceeds as
in the proof of Lemma 6.2. It is not used in its full force in this work. For this work,
the lemmas above are enough.

Theorem 6.3. Let Mn be a compact n-dimensional Riemannian manifold with
Riemmanian metric g of class C2 and consider a smooth function f : M → R.
Suppose that α,C > 0 and V ⊂ intM are such that C ∈ (0, 1/2], α ∈ [n/2 − 1 +
C, n/2 − C] and

2

n
(α + C) g(p)(v, v) � ∇2 f (p)(v, v) � α − C

n
2 − 1

g(p)(v, v)

for every p ∈ V and v ∈ Tp M. Then (4.39) holds for every regular solution u to
problem (1.1).

6.1.2. Construction of a function satisfying (4.39) and (4.40) in a neighborhood
of a boundary point of M First of all, we begin with a technical lemma.

Lemma 6.4. Let M be a compact Riemannian manifold with boundary. Then there
exist a Riemannian manifold M̃ and an isometric immersion f : M → M̃ such
that f (M) ⊂⊂ int(M̃).

Proof. Let V be a small open tubular neighborhood of ∂M in M . Then M\V is
diffeomorphic to M . Put a Riemannian metric g̃1 on M\V in such a way that it
is isometric to M . Finally, extend g̃1 to a Riemannian metric g̃ on M . Now set
M̃ = (M, g̃). ��
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Lemma 6.5. Let Mn be a compact n-dimensional Riemannian manifold with bound-
ary with Riemmanian metric g of class C2. Fix p ∈ ∂M. Then there exists a neigh-
borhood Vp of p with smooth boundary ∂1Vp which intercepts ∂M transversally,
a smooth function f : Vp → R and positive constants α and C such that (4.39)
and (4.40) holds for every regular solution u of Problem (1.1).

Proof. Let p ∈ ∂M . We can extend M into a Riemannian manifold M̃ as in
Lemma 6.4. Now we follow a construction similar to that made before.

Fix an orthonormal basis (e1, . . . , en) of Tp M̃ such that the subspace Tp∂M ⊂
Tp M̃ is spanned by {x2, . . . , xn} and e1 points inside M . Put a normal coordinate
system (x1, . . . , xn) in a neighborhood Ṽp ⊂ M̃ of p such that ∂/∂xi (p) = ei (p)
for every i = 1, . . . , n.

Consider the function f : Ṽp → R defined by

f (x) = x1 + 1

2

n∑

i=1

x2
i .

It is immediately evident that � f (p) = n, 〈∇ f (p), ν(p)〉 = −1 and ∇2 f (p) =
g(p). Moreover, using the same argument as used in Lemma 6.1, we can find
a neighborhood such that (4.39) is satisfied. Finally, we can further restrict this
neighborhood into a neighborhood V̂p ⊂ M̃ in order to satisfy (4.40) in such a way
that Vp := V̂p ∩ M has smooth boundary ∂1Vp that intercepts ∂M transversally.

��

6.2. A function that satisfies inequality (4.39) and (4.40) in a wide domain

The main aim of this section is to prove the following theorem:

Theorem 6.6. Let (Mn, g) be a compact n-dimensional Riemannian manifold with
boundary. Fix ε > 0. Then there exist an open subset V ⊂ M and smooth func-
tions α, f : M → R such that meas(V ) � meas(M) − ε, meas(V ∩ ∂M) �
meas(∂M)− ε, ∇α|V ≡ 0 and

C
∫ T

0

∫

V

[
u2

t + |∇u|2]dM dt �
∫ T

0

∫

V

(
� f

2
− α

)

u2
t dM dt

+
∫ T

0

∫

V

[

∇2 f (∇u,∇u)

+
(

α − � f

2

)

|∇u|2
]

dM dt,

for some positive constant C. In addition,

〈∇ f, ν〉 < 0 on ∂M ∩ V .

Moreover, if M contains radially symmetric subsets, then we can choose V in
such a way that a precise part of these radially symmetric subsets is contained
in V .
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We begin by proving some preliminary results. The following lemma is classical
and can be found in [31] (see the proof of Lemma 1.9 there).

Lemma 6.7. Let M be a topological space which is locally compact, Hausdorff and
has countable basis. Then there exist a increasing sequence of open sets (Vi )i∈N

such that:
(1) M = ∪∞

i=1Vi .

(2) V̄i ⊂ Vi+1.

(3) V̄i is compact.

Given a compact Riemannian manifold M , eventually with boundary, the injec-
tivity radius inj(V ) of a subset V ⊂⊂ M\∂M is given by inf

x∈U
inj(x), where inj(x)

is the injectivity radius of x in M .
Let V ⊂⊂ M\∂M be an open subset. We want to define a mollifier smoothing

fε : V → R of a locally summable function f : M → R. The bump function
η : V → R is defined similarly as in the Euclidean case:

η̂(x, y, ε) =

⎧
⎪⎨

⎪⎩

exp

(

1
(

dist(x,y)
ε

)2−1

)

if dist(x, y) < ε < inj(V )

0 if dist(x, y) � ε.

The function η̂ is clearly C∞. We normalize η̂ and get

η(x, y, ε) = η̂(x, y, ε)
∫

M η̂(x, y, ε) dM(y)
.

Notice that η is also smooth. We define the mollifier smoothing fε : V → R by

fε(x) =
∫

M
η(x, y, ε) f (y) dM. (6.66)

Lemma 6.8. Let M be a compact Riemannian manifold, eventually with bound-
ary. Let f : M → R be a locally summable function, V ⊂⊂ M\∂M be an open
subset and ε < inj(V ) be a strictly positive number. Then the mollifier smoothing
fε : V → R defined by (6.66) is a smooth function.

Proof. The theorem holds because a Riemannian manifold behaves like Euclidean
domains inside the injectivity radius. For the complete proof, see [11]. ��
Lemma 6.9. Let M be a Riemannian manifold and consider two subsets A and
B such that dist(A, B) > 0. Suppose that Ā and B̄ are compact. Then there
exist open subsets OA ⊃⊃ A and OB ⊃⊃ B with smooth boundaries such that
dist(OA, OB) > 0. Moreover there exists a smooth (cut-off) function ρ : M → R

such that ρ|OA ≡ 1, ρ|OB ≡ 0 and ρ(M) ⊂ [0, 1].
Proof. Let ε ∈ (0, dist(A, B)/3) such that Aε := {x ∈ M; dist(x, A) < ε} and
Bε := {x ∈ M; dist(x, B) < ε} has compact closures and the injectivity radius ε.
Observe that Aε and Bε are open subsets of M .
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Notice that ρ̂ : M → R defined by

ρ̂(x) =
d(x,Bε)−d(x,Aε)
d(x,Bε)+d(x,Aε)

+ 1

2

is continuous, ρ̂(x) = 1 if x ∈ Aε, ρ̂(x) = 0 if x ∈ Bε and ρ̂(M) ⊂ [0, 1].
We are going to built open sets OA by OB with smooth boundary such that

A ⊂⊂ OA ⊂⊂ Aε and B ⊂⊂ OB ⊂⊂ Bε.
Consider the mollifier smoothing ρ̂ε : Aε → R of ρ̂, which is a smooth func-

tion. Notice that ρ̂ε(x) �= 1 for every x ∈ ∂Aε. Let s ∈ ( sup
x∈∂Aε

ρ̂ε(x), 1) a regular

value of ρ̂ε. The classical Sard’s Theorem states that the inverse image of a regular
value is a smooth embedded hypersurface of Aε (in our case it is compact and
without boundary). Finally take set OA := ρε−1((s, 1]). We can define OB in the
same way.

It remains to prove the existence of a smooth (cut-off) function ρ. Let λ <
dist(OA, OB) be a positive number such that (∂OA)λ :={x ∈ M; dist(x, ∂OA)<λ}
is a tubular neighborhood of ∂OA ⊂ M . Consider a non-increasing smooth function
ρ̃ : R → R given by

⎧
⎨

⎩

ρ̃(x) = 1 if x � 1/3;
ρ̃(x) = 0 if x � 2/3;
ρ̃(x) ∈ [0, 1] if x ∈ [1/3, 2/3].

Set ρ̃λ(x) := ρ̃(x/λ). Define

ρ(x) =
⎧
⎨

⎩

1 if x ∈ OA;
0 if x ∈ M\(OA ∪ (∂OA)λ);
αλ(dist(x, OA)) otherwise.

Then ρ is in fact a smooth (cut-off) function satisfying the stated properties. ��
Lemma 6.10. The set OA constructed in Lemma 6.9 has a finite number of com-
ponents and the closure of each component is a Riemannian manifold with smooth
boundary.

Proof. Denote the set of the components of OA by {Oλ}λ∈�. Choose a point xλ
from the boundary of the connected component Oλ of OA. The set {xλ, λ ∈ �}
does not have an accumulation point because the boundary of OA is the inverse
image of a regular point. Then {xλ, λ ∈ �} is a finite set. Therefore OA has a
finite number of components and the closure of each component is a Riemannian
manifold with smooth boundary ��

Now we prove the main theorem of this section:

Proof of Theorem 6.6. First of all, extend M to a Riemannian manifold M̃ as in
Lemma 6.4. For every p ∈ M , we choose the following neighborhoods Ŵp of p,
functions f p ∈ C∞(Ŵp) and constants αp and C p:
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(1) If p ∈ int(M), then we can choose choose Ŵp = V , f ∈ C∞(V ), αp =
n/2 − 1/2 and C p = 1/4 as in Lemma 6.1.

(2) If p ∈ int(M) is the center of a radially symmetric domain Vp in which we do
not want to have the damping acting, then we can choose a radially symmetric
neighborhood Ŵp which is a little bit larger that the neighborhood Vp of p,
that is, V̄p ⊂⊂ Ŵp (We can do this due to the flexibility of the constant C). In
addition, we choose the function f p = f and constants αp = α and C p = C
as in the proof of Lemma 6.2.

(3) If p ∈ ∂M , then choose the open neighborhood Ŵp = V̂p ⊂ int(M̃), f p =
C∞(V ) and constants αp and C p as in the proof of Lemma 6.5.

In (2), we should be careful in order to choose Ŵp in such a way that
(
Ŵx

) ∩
(
Ŵy

) = ∅ of x �= y.
Using the compactness of M , we can choose a finite covering {Ŵi }k

i=1 of M . For
i = 1, . . . k, denote the respective functions by fi : Ŵi → R, the respective con-
stants by αi and set C = min{C1, . . . ,Ck}. We choose Ŵi in such a way that every
neighborhood of the radially symmetric domains is in the finite covering. Moreover,
we put them before the other domains, that is, {Ŵi }l

i=1 are the neighborhoods of
the radially symmetric domains.

Denote B = (⋃k
i=1 ∂Ŵi ∪ ∂M) ∩ M . Notice that M − B is an open subset

of M . Denote the points of M − B which are in Ŵ1 by W1. For i = 2, . . . , k,
denote the points of M − B which are in Ŵi − ∪i−1

l=1Ŵl by Wi . Observe that we
have the disjoint union M − B = ∪k

i=1Wi . Moreover, without loss of generality,
we can suppose that Wi �= ∅, i = 1, . . . , k. We claim that Wi , i = 1, . . . , k, are
open subsets of M ; in fact, M − B is an open subset and it can be written as a
countable union of connected components. Each connected component is either
completely contained in Ŵi or it does not intercept Ŵi . Therefore, each Wi is a
union of connected components of M − B. For the sake of simplicity, we keep
writing fi : Wi → R instead of fi |Wi . Observe that for i = 1, . . . , l, Wi = Ŵi are
the neighborhood’s radially symmetric domains.

Fix i ∈ {1, . . . , k}. Using Lemma 6.7, we can find an open set V̂i ⊂⊂ Wi

such that meas(Wi\V̂i ) < ε/k. If Wi is a neighborhood of a boundary point of
M , then we can suppose further that meas(∂M ∩ (Wi\V̂i )) < ε/k. Notice that

dist(V̂i , B) = di > 0 due to the compactness of B and V̂i . Using Lemma 6.9
there exist open subsets Vi ⊃⊃ V̂i and Oi ⊃⊃ M − Wi with smooth boundaries
and a smooth (cut-off) function ρi : M → R such that ρi |Vi ≡ 1, ρi |Oi ≡ 0
and ρi (M) ⊂ [0, 1]. Moreover, if Vi is a neighborhood of a boundary point, we
can further assume that ∂1Vi intercepts ∂M transversally. In the case of a radially
symmetric domain, we can assume without loss of generality that Vi is the original
radially symmetric domain.

Now set ρ = ∑k
i=1 ρi and V = ⋃k

i=1 Vi . We can see that

(1) meas(M)−meas(V ) = ∑k
i=1 meas(Wi − Vi ) �

∑k
i=1 meas(Wi − V̂i ) < ε

which implies that meas(V ) > meas(M)− ε;
(2) Analogously, we have that meas(∂M ∩ V ) > meas(∂M)− ε;
(3) ρ|V ≡ 1.
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Now we are in position to construct α and f . Define

f (x) =
{

fi (x)ρ(x) if x ∈ Wi

0 if x ∈ B

and

α(x) =
{
αi ρ(x) if x ∈ Wi

0 if x ∈ B.

Notice that f is smooth because fi ρi is smooth for every i = 1, . . . , k and f =∑k
i=1 fi ρi . Likewise α is smooth. Using property (3) for ρ, above, it is not difficult

to see that α and f are smooth and satisfies all the required conditions, which settles
the theorem. ��

7. Controlling Equation (4.41)

We will denote

χ =
[∫

M
ut 〈∇ f,∇u〉 dM

]T

0
+

[∫

M
ut α u dM

]T

0
. (7.67)

Next we will estimate some terms in (4.41). Let us denote:

R1 := max
x∈M

|∇ f (x)| (7.68)

and

R2 := max
x∈M

|α(x)|. (7.69)

Estimate for I1 := ∫ T
0

∫

M a(x) g(ut ) 〈∇ f,∇u〉 dM dt.
By the Cauchy–Schwarz inequality, taking (7.68) into account and considering

the inequality ab � a2

4ϑ + ϑb2, where ϑ is a positive number, we obtain

|I1| � ||a||L∞(M)R2
1

ϑ

∫ T

0

∫

M
a(x)|g(ut )|2dM dt + 2ϑ

∫ T

0
E(t) dt. (7.70)

Estimate for I2 = ∫ T
0

∫

M a(x) α g(ut ) u dM dt.
Similarly we infer

|I2|� ||a||L∞(M)R2
2λ

−1
1

16ϑ

∫ T

0

∫

M
a(x)|g(ut )|2 dM dt+2ϑ

∫ T

0
E(t) dt, (7.71)

where λ1 comes from the Poincaré inequality given in (2.3).
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Choosing ϑ sufficiently small and inserting (5.46), (4.31), (7.67), (7.70) and
(7.71) into (4.41) yields

∫ T

0
E(t) dt � |χ | + C1

∫ T

0

∫

M
a(x) (g(ut ))

2dM dt

+C1

∫ T

0

∫

M\V
[|∇u|2 + a(x) u2

t ] dM dt

+C1

∫ T

0

∫

M\V
|u|2 dM dt (7.72)

where

C1 := C1

{
C, ||a||L∞(M), λ

−1
1 , R1, R2, a

−1
0 , ||H ||W 1,∞(M)

}
.

Now we are going to control the quantity
∫ T

0

∫

M\V |∇u|2 dM dt in terms of the

damping term
∫ T

0

∫

M [a(x) |g(ut )|2 + a(x) u2
t ] dM dt (The last term will be con-

trolled afterwards). For this purpose we have to built a “cut-off” function ηε on a
specific neighborhood of M\V . First of all, define η̃ : R → R such that

η̃(x) =
⎧
⎨

⎩

1 if x � 0
(x − 1)2 if x ∈ [1/2, 1]

0 if x > 1

and it is defined on (0, 1/2) in such a way that η̃ is a non-increasing function of
class C1. For ε > 0, set η̃ε(x) := η̃(x/ε). It is straightforward that there exists a
constant C which does not depend on ε such that

|η̃′ε(x)|2
η̃ε(x)

� C

ε2

for every x < ε.
Let M∗ ⊃ M\V be an open subset of M . Let M̃ an extension of M as in

Lemma 6.4. Notice that we can also extend V and M∗ to open subsets Ṽ and M̃∗
of M̃ , respectively, in such a way that Ṽ has smooth boundary and Ṽ ⊂ M̃∗.

Now let ε > 0 such that

ω̃ε := {x ∈ M̃; dist(x, ∂ Ṽ ) < ε} ⊂⊂ M̃∗
is a tubular neighborhood of ∂ Ṽ and ωε := ω̃ε ∪ M\V is contained in M∗. Define
ηε : M̃ → R as

ηε(x) =
{
η̃ε(d(x, M̃\Ṽ )) if x ∈ ωε

0 otherwise.

It is straightforward that ηε is a function of class C1 on M due to the smoothness
of ∂(M̃\Ṽ ) and ∂ωε. Notice also that

|∇ηε(x)|2
ηε(x)

= |η̃′ε(d(x, ωε))|2
η̃ε(d(x, ωε))

� C

ε2
(7.73)

for every x ∈ ωε. In particular, |∇ηε |2
ηε

∈ L∞(ω̃ε).
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Taking ξ = ηε in the identity (4.36) we obtain

∫ T

0

∫

ωε

ηε|∇u|2dM dt = −
[∫

ωε

ut uηε dM

]T

0
+

∫ T

0

∫

ωε

ηε|ut |2 dM

−
∫ T

0

∫

ωε

u 〈∇u,∇ηε〉 dM dt

−
∫ T

0

∫

ωε

a(x) g(ut )uηε dM dt. (7.74)

Next we will estimate terms on the right-hand side of (7.74).
Estimate for K1 := ∫ T

0

∫

ωε
ηε|ut |2 dM dt

From (2.2), since ηε � 1 and ωε ⊂ M∗, where the damping lies, we deduce

K1 � a−1
0

∫ T

0

∫

M
a(x) u2

t dM dt. (7.75)

Estimate for K2 := − ∫ T
0

∫

ωε
a(x) g(ut )uηε dM dt.

The Cauchy–Schwarz inequality, the inequality ab � 1
4ϑ a2 + ϑb2 and (2.3)

yield

|K2| � λ
−1
1 ||a||L∞(M)

4ϑ

∫ T

0

∫

M
a(x) |g(ut )|2 dM + 2ϑ

∫ T

0
E(t) dt, (7.76)

where ϑ is a positive constant.
Estimate for K3 := ∫ T

0

∫

ωε
u 〈∇u,∇ηε〉 dM dt.

Considering (7.73) and applying Cauchy–Schwarz inequality, we can write

|K3| � 1

2

∫ T

0

[∫

ωε

ηε|∇u|2 dM +
∫

ωε

|∇ηε|2
ηε

|u|2 dM

]

dt

� 1

2

∫ T

0

[∫

ωε

ηε|∇u|2 dM + M

ε2

∫

ωε

|u|2 dM

]

dt. (7.77)

Combining (7.74)–(7.77) we arrive at the following inequality

1

2

∫ T

0

∫

ωε

ηε|∇u|2 dM dt � |Y | + λ
−1
1 ||a||L∞(M)

4ϑ

∫ T

0

∫

M
a(x) |g(ut )|2 dM

+2ϑ
∫ T

0
E(t) dt + M

2ε2

∫ T

0

∫

ωε

|u|2 dM dt,

+a−1
0

∫ T

0

∫

M
a(x) u2

t dM dt. (7.78)

where

Y := −
[∫

ωε

ut uηε dM

]T

0
. (7.79)
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Thus, combining (7.78) and (7.72), keeping in mind that

1

2

∫ T

0

∫

M\V
|∇u|2 dM dt � 1

2

∫ T

0

∫

ωε

ηε|∇u|2 dM dt

and choosing ϑ small enough, we deduce

∫ T

0
E(t) dt � |χ | + C1|Y | + C2

∫ T

0

∫

M
[a(x) |g(ut )|2 + a(x) |ut |2] dM dt

+ MC2

ε2

∫ T

0

∫

ωε

|u|2 dM dt, (7.80)

where C2 = C2(C1, λ
−1
1 , ||a||L∞(M), a

−1
0 ).

On the other hand, from (7.67), (7.79) and (2.7) the following estimate holds

|χ | + 2C2|Y | � C3(E(0)+ E(T ))

= C3

[

2 E(T )+
∫ T

0

∫

M
a(x) g(ut ) ut dM

]

, (7.81)

where C3 is a positive constant which depends also on R1 and R2.
Then, (7.80) and (7.81) yield

T E(T ) �
∫ T

0
E(t) dt

� C E(T )+ C

[∫ T

0

∫

M
[a(x) |g(ut )|2 + a(x) |ut |2] dM dt

]

+C
∫ T

0

∫

ωε

|u|2 dM dt, (7.82)

where C is a positive constant which depends on a0, λ1, R1, R2, ||a||L∞(M), n
and M

ε2
.

Our aim is to absorb the last term on the right-hand side of (7.82). In order to
do this, let us consider the following lemma, where T0 is a positive constant which
is sufficiently large for our purpose.

Lemma 7.1. Under the hypothesis of Theorem 2.2 and for all T > T0, there exists
a positive constant C(T0, E(0)) such that if (u, ut ) is the solution of (1.1) with
regular initial data, we have

∫ T

0

∫

M
|u|2 dM dt �C(T0, E(0))

{∫ T

0

∫

M

(
a(x) g2(ut ))+a(x)u2

t

)
dM dt

}

.

(7.83)

Proof. We argue by contradiction. For simplicity we shall denote u′ := ut . Let us
suppose that (7.83) is not verified and let {uk(0), u′

k(0)} be a sequence of initial data
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where the corresponding solutions {uk}k∈N of (1.1) with Ek(0), assumed uniformly
bounded in k, verifies

lim
k→+∞

∫ T

0
||uk(t)||2L2(M) dt

∫ T

0

∫

M

(
a(x) g2(u′

k)+ a(x) u′2
k

)
dM dt

= +∞, (7.84)

that is

lim
k→+∞

∫ T

0

∫

M

(
a(x) g2(u′

k)+ a(x) u′2
k

)
dM dt

∫ T

0
||uk(t)||2L2(M) dt

= 0. (7.85)

Since Ek(t) � Ek(0) � L , where L is a positive constant, we obtain a subse-
quence, still denoted by {uk} from now on, which verifies the convergence:

uk ⇀ u weakly in H1(�T ), (7.86)

uk ⇀ u weak star in L∞(0, T ; W ), (7.87)

u′
k ⇀ u′ weak star in L∞(0, T ; L2(M)). (7.88)

Employing compactness results we also deduce that

uk → u strongly in L2(0, T ; L2(M)). (7.89)

At this point we will divide our proof into two cases, namely, u �= 0 and u = 0.
(i) Case (I): u �= 0.
We also observe that from (7.85) and (7.89) we have

lim
k→+∞

∫ T

0

∫

M

(
a(x) g2(u′

k)+ a(x) u′2
k

)
dM dt = 0 (7.90)

Passing to the limit in the equation, when k → +∞, we get,
{

utt −� u = 0 on M × (0, T )
ut = 0 on M∗ × (0, T ), (7.91)

and for ut = μ, we obtain, in the distributional sense
{
μt t −�μ = 0 on M × (0, T ),

μ = 0 on M∗ × (0, T ).
From uniqueness results given by Remark 5.1 (after Theorem 5.1) we conclude

that μ ≡ 0, that is, ut = 0. Returning to (7.91) we obtain the following elliptic
equation for almost everywhere t ∈ (0, T ) given by

{
� u = 0 on M

ut = 0 on M,

which implies that u = 0, which is a contradiction.
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(ii) Case (II): u = 0.
Defining

ck :=
[∫ T

0

∫

M
|uk |2dM dt

]1/2

, (7.92)

and

uk := 1

ck
uk, (7.93)

we obtain
∫ T

0

∫

M
|uk |2dM dt=

∫ T

0

∫

M

|uk |2
c2

k

dM dt= 1

c2
k

∫ T

0

∫

M
|uk |2dM dt=1. (7.94)

Setting

Ek(t) := 1

2

∫

M
|u′

k |2 dM + 1

2

∫

M
|∇uk |2 dM,

we deduce automatically that

Ek(t) = Ek(t)

c2
k

. (7.95)

Recalling (7.82) we obtain, for T large enough that

E(T ) � Ĉ

[∫ T

0

∫

M
(a(x) g2(ut )+ a(x) u2

t ) dM dt +
∫ T

0

∫

M
|u|2 dM dt

]

,

and employing the identity E(T )− E(0) = − ∫ T
0

∫

M a(x) g(ut ) ut dM dt , we can
write

E(t)� E(0)� C̃

[∫ T

0

∫

M
(a(x) g2(ut )+a(x) u2

t ) dM dt+
∫ T

0

∫

M
|u|2 dM dt

]

,

for all t ∈ (0, T ), with T large enough. The last inequality and (7.95) give us

Ek(t) := Ek(t)

c2
k

� C̃

⎡

⎢
⎢
⎣

∫ T

0

∫

M
(a(x) g2(u′

k)+ a(x) u′2
k )

∫ T

0

∫

M
|uk |2 dM dt

+ 1

⎤

⎥
⎥
⎦ . (7.96)

From (7.85) and (7.96) we conclude that there exists a positive constant V̂ such
that

Ek(t) := Ek(t)

c2
k

� Ĉ, for all t ∈ [0, T ] and for all k ∈ N,
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that is,

1

2

∫

M
|u′

k |2 dM+ 1

2

∫

�

|∇uk |2 dM � Ĉ, for all t ∈ [0, T ] and for all k ∈ N.

(7.97)

For a subsequence {uk}, we obtain

uk ⇀ u weak star in L∞(0, T ; V ), (7.98)

u′
k ⇀ u′ weak star in L∞(0, T ; L2(M)), (7.99)

uk → u strongly in L2(0, T ; L2(M)). (7.100)

We observe that from (7.85) we deduce

lim
k→+∞

∫ T

0

∫

M

a(x) g2(u′
k)

c2
k

dM dt =0 and lim
k→+∞

∫ T

0

∫

M
a(x) |u′

k |2 dM dt =0.

(7.101)

In addition uk satisfies the equation

u′′
k −�uk + a(x)

g(u′
k)

ck
= 0 on M × (0, T ).

Passing to the limit when k → +∞ and taking the above convergence into
account, we obtain

{
u′′ −�u = 0 on M × (0, T ),

u′ = 0 on M∗ × (0, T ). (7.102)

Then, μ = ut verifies, in the distributional sense
{
μt t −�μ = 0 on M

μ = 0 on M∗.

Applying the same idea used in case u �= 0 we have thatμ = ut = 0. Returning
to (7.102) we obtain, for almost everywhere t ∈ (0, T ) that

{
� u = 0 on M

ut = 0 on M,

from which we deduce that u = 0, which is a contradiction in view of (7.94) and
(7.100). The lemma is proved. ��

Inequalities (7.82) and (7.83) lead us to the following result.

Proposition 5.2.2. For T > 0 large enough, the solution [u, ut ] of (2.1) satisfies

E(T ) � C
∫ T

0

∫

M

[
a(x) |ut |2 + a(x) |g (ut )|2

]
dM dt (7.103)

where the constant C = C(T0, E(0),C, a0, λ1, R1, R2, ||a||L∞(M), n,
M
ε2
).
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7.1. Conclusion of Theorem 3.1

In what follows we will proceed exactly as in Lasiecka and Tataru’s work
[13] (see Lemma 3.2 and Lemma 3.3 of the referred paper) adapted to our context.
Let � := M × (0, T ),

�α = {(t, x) ∈ �/ |ut | > 1 almost everywhere} ,
�β = �\�α.

Then using hypothesis (i i i) in Assumption 2.1, we obtain

∫

�α

a(x)
(

[g (ut )]
2+(ut )

2
)

d�α�
(
k−1+K

)
∫

�α

a(x)g (ut ) ut d�α.

(7.104)

Moreover, from (2.8)

∫

�β

a(x)
(

[g (ut )]
2+(ut )

2
)

d�β�(1+||a||∞)
∫

�β

h (a(x)g (ut ) ut ) d�β.

(7.105)

Then by Jensen’s inequality

(1 + ||a||∞)
∫

�β

h (g (ut ) ut ) d�β

� (1 + ||a||∞)meas (�) h

(
1

meas (�)

∫

�

a(x)g (ut ) ut d�

)

= (1 + ||a||∞)meas (�) β

(∫

�

a(x)g (ut ) ut d�

)

, (7.106)

where β(s) = h( s
meas(�) ) is defined in (2.9). Thus

∫

�

a(x)
(

[g (ut )]
2 + (ut )

2
)

d� �
(
k−1 + K

)
∫

�

a(x)g (ut )t d�1

+(1 + ||a||∞)meas (�) β

×
(∫

�1

a(x)g (ut ) ut d�

)

. (7.107)

Splicing, together, (7.103) and (7.107), we have

E(T ) � (1 + ||a||∞)C
[

K0

(1 + ||a||∞)
∫

�

g (ut ) ut d�1

+meas (�) β

(∫

�

a(x) g (ut ) ut d�

)]

, (7.108)
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where K0 = k−1 + K . Setting

L = 1

C meas (�) (1 + ||a||∞) ,

c = M0

meas (�) (1 + ||a||∞) ,

we obtain

p [E(T )] �
∫

�

a(x) g (ut ) ut d� = E(0)− E(T ), (7.109)

where the function p is as defined in (2.10). To finish the proof of Theorem 3.1, we
invoke the following result from I. Lasiecka et al. [13]:

Lemma B. Let p be a positive, increasing function such that p(0) = 0. Since p
is increasing we can define an increasing function q, q(x) = x − (I + p)−1 (x) .
Consider a sequence sn of positive numbers which satisfies

sm+1 + p(sm+1) � sm .

Then sm � S(m), where S(t) is a solution of the differential equation

d

dt
S(t)+ q(S(t)) = 0, S(0) = s0.

Moreover, if p(x) > 0 for x > 0, then limt→∞ S(t) = 0.

With this result in mind, we replace T (resp. 0) in (7.109) with m(T + 1) (resp.
mT ) to obtain

E(m(T + 1))+ p (E(m(T + 1))) � E(mT ), for m = 0, 1, .... (7.110)

Applying Lemma B with sm = E(mT ) thus results in

E(mT ) � S(m), m = 0, 1, .... (7.111)

Finally, using the dissipativity of E(t) inherent in the relation (2.7), we have
for t = mT + τ, 0 � τ � T,

E(t) � E(mT ) � S(m) � S

(
t − τ

T

)

� S

(
t

T
− 1

)

for t > T , (7.112)

where we have used above the fact that S(.) is dissipative. The proof of Theorem 2.2
is now completed.
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