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Abstract

We give a complete analysis of solutions of a model for the flow of a multispe-
cies reacting fluid occupying a thin cylinder whose walls may be semipermeable
with respect to some or all of the chemical species. We prove the global existence
of solutions and establish a number of time-independent a priori bounds sufficient
to determine the corresponding time-asymptotic steady-state. We then derive nec-
essary conditions and sufficient conditions ensuring that this steady-state reflects
complete combustion, that is, that at least one of the reactant species is depleted.

1. Introduction

We give a complete analysis of solutions of a model for the flow of a multispe-
cies reacting fluid occupying a thin cylinder whose walls may be semipermeable
with respect to some or all of the chemical species. We prove the global existence
of solutions and establish a number of time-independent a priori bounds sufficient
to determine the corresponding time-asymptotic steady-state. We then derive nec-
essary conditions and sufficient conditions ensuring that this steady-state reflects
complete combustion, that is, that at least one of the reactant species is depleted.

More specifically, we consider a multispecies fluid occupying the unit interval
and described at each point by the fluid density, velocity, temperature, and species
mass fractions. Under certain conditions a chemical reaction will occur and may
result in the influx or efflux of a specified mass of certain of the species through the
cylinder walls at the point of the reaction. We give a careful derivation of the fluid
equations corresponding to mass balance, Newton’s second law, energy balance,
and elementary chemical kinetics, resulting in what is essentially the Navier-Stokes
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system for heat-conducting, chemically reacting flow. This derivation is carried out
in Section 2.

Of particular importance is the construction of the correct physical entropy and
the proof of the most basic of our a priori bounds showing that the space integral
of entropy is bounded independently of time. This is the essential starting point
for the derivation of time-independent a priori bounds in stronger norms leading
to the proof of global existence of fairly general large-energy solutions. Once the
correct entropy has been constructed, the overall analysis follows somewhat famil-
iar lines, although there is considerable technical complexity involved in adapting
existing ideas to the present context. One of these deserves special mention, namely
the surprising fact, first observed by Kazhikov and Shelukhin [10], that for the
equations of nonreacting flow, pointwise bounds for density and temperature can
be derived from the rather weak L1 bound for entropy. The proof uses neither
maximum principles nor Sobolev estimates but rather exploits a certain dissipative
mechanism resulting from the compressive effect of pressure applied along particle
trajectories. The pointwise bounds first given in [10] were time-dependent, however,
and therefore gave no information about time-asymptotic behavior. A significant
improvement was made by Chen [3] who by amplifying the analysis of [10] derived
pointwise estimates for density and temperature which are in fact independent of
time, now for a simpler model of reacting flow. (Similar time-independent point-
wise bounds for the reduced case of barotropic, nonreacting flow have been given
by a number of authors; see [11], for example, and the references contained therein).
In the present paper, we adapt Chen’s analysis to the present context, again with
considerable increase in technical complexity, thereby achieving time-independent
pointwise control of density and temperature. This in turn enables us to derive a
number of parabolic L2 bounds for higher derivatives of velocity and temperature.
These incorporate initial layer effects corresponding to nonsmooth initial data and
to some extent follow the analysis of Hoff [8] for nonreacting flows. There results
the global existence of solutions corresponding to quite general large, nonsmooth
initial data. This existence result is stated in Theorem 2.1 in Section 2 and is proved
in Section 3.

Next, we show that the various time-independent a priori bounds derived in the
existence theory are sufficiently strong to imply the time-asymptotic compactness
of solutions in various spatial norms. In particular, we show that as time tends to
infinity, velocity tends to zero, temperature to a constant, and density and mass
fractions to certain functions of space, balanced so that the asymptotic pressure is
constant. These results are stated precisely in Theorem 2.2 in Section 2 and are
proved in Section 4. Finally in Theorem 2.3 we analyze the steady-state solution in
a fairly representative case and give necessary conditions and sufficient conditions
showing that if the total initial energy is sufficiently large depending on the system
parameters, then the fluid undergoes complete combustion, that is, that in the time
asymptotic state at least one reactant species is depleted. Theorem 2.3 is stated
below in Section 2 and is proved in Section 5.

The model we consider is based on standard considerations for the thermody-
namics of multicomponent ideal fluids and on standard models of compressible,
viscous fluid flow. Complete discussions are given in Callen [2, Appendix D.6]
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and Williams [12, Appendix C]; see also Giovangigli [6]. The model is fairly
general in that a wide range of chemical reactions is allowed and the cylinder walls
may be semipermeable with respect to some or all of the chemical species. There
are two shortcomings of the model that should be noted, however. First, the vis-
cosity and heat conduction coefficients are taken to be positive constants, whereas
arguments based on scaling limits of the Boltzmann equation suggest that these
should be positive powers of the temperature (see Williams [12, pp. 640 and 642]
or Boltzmann [1, p. 176], for example). This dependence could be accommodated
in the entropy bound discussed above, but the rather intricate argument leading from
the entropy bound to pointwise estimates for density and temperature would fail,
as would the subsequent derivation of parabolic estimates for higher derivatives of
temperature and velocity, at least in the absence of overly severe restrictions on the
initial data. We point out that, while there is a significant literature for the case that
these coefficients depend on density (which would be the predicted dependence
when the flow is assumed to be isentropic or isothermal) a completely satisfactory
theory of viscous compressible flow in the regularity class of the present paper and
with the predicted temperature dependence of viscosity and heat conduction coef-
ficients remains open (but see the remarks below concerning related results in [5]).
The other weakness in the model is the assumption that fluid particles of different
species have the same velocities, whereas, since their molecular weights may differ,
so too should their accelerations; hence their velocities, when species-independent
forces are present. The difficulty in identifying a viscosity for such a model is dis-
cussed briefly but left unresolved in [12, p. 614]. A satisfactory model incorporating
different velocities and accelerations for different species would clearly require a
level of complexity significantly greater than that of the present work.

We call special attention to the results of Feireisl et al. [5], who consider a
similar model for multispecies reacting flow in the more realistic case of three space
dimensions. Viscosity and heat-conduction coefficients are allowed to depend on
temperature in a certain way, but species diffusion must be included. Quite general
large-energy initial data is considered, and the authors prove the global existence
of weak solutions satisfying a certain entropy-rate inequality in place of the energy
equation. The analysis includes a number of difficult and intricately-related weak
convergence arguments for approximate solutions, issues which do not arise in the
one-dimensional case considered here. Indeed, the restriction to one space dimen-
sion enables us to show that even large-energy solutions acquire some limited
regularity in positive time. This fact makes the weak convergence analysis of [5]
unnecessary and also allows for the determination of the time-asymptotic behav-
ior and the derivation of nearly sharp criteria for complete combustion. We also
point out that, while it may be possible to adapt certain of the arguments of [5] to
the present case in order to accommodate some dependence of viscosity and heat
conduction coefficients on temperature, we are doubtful that the specific depen-
dence predicted by scaling limits of solutions of the Boltzmann equation could be
included.

Our results extend those of Chen et al. [4] in which a simpler chemical reac-
tion was considered and the a priori bounds supporting the existence theory were
time-dependent, so that a determination of the time-asymptotic behavior could not
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be made. In the present paper we allow much more general chemical reactions, we
allow the container wall to be semipermeable, and most important, by careful mod-
eling and mathematical analysis, we are able to establish time-independent bounds
which do in fact enable a determination of the asymptotic behavior.

There is by now a substantial literature on the modeling of multicomponent
reacting fluids and related mathematical problems. The reader may consult [6] and
[12] for references to the scientific and engineering literature and [5] for references
to the mathematics literature.

2. Derivation of the model and statement of results

In this section we give a careful derivation of the model under consideration, a
detailed list of our assumptions about the system parameters, and precise statements
of our results on existence, large-time behavior, and complete combustion.

We consider a mixture of chemical species M1, . . . ,MJ occupying a thin
cylinder along [0, 1] and which under appropriate conditions undergo the reaction

J∑

j=1

ν′
jM j ⇀

J∑

j=1

ν′′
j M j (2.1)

in which ν′
j and ν′′

j are nonnegative integers representing the number of particles
of species M j present respectively before and after the reaction. Since mass is
conserved,

J∑

j=1

ν′
jw j =

J∑

j=1

ν′′
jw j (2.2)

where w j are the respective molecular weights (mass per mole number). We will
allow for the possibility that the walls of the cylinder are semipermeable in the sense
that, when a reaction does occur, µ′

j particles of species M j enter the tube and
µ′′

j particles exit the tube at the point of the reaction, µ′
j and µ′′

j being nonnegative
integers. For example, in the simplest (conceptual if not practical) realization of a
hydrogen cell, we may imagine a conducting cylinder split by a plane containing
the axis of symmetry, with the two halves oppositely charged and separated by
an electrical insulator. The tube is filled with an oxygen-rich mixture and when a
reaction occurs, charged particles enter the tube from its walls, thus effecting the
well-known reaction 2H2 + 02 ⇀ 2H20.

The individual species in the tube will be assumed to be ideal polytropic fluids
having the same velocity u(x, t) and temperature θ(x, t) at each point (x, t). The
composite density will be denoted ρ(x, t) and the mass fractions by z j (x, t), j =
1, . . . , J . We shall derive evolution equations for the unknown functions ρ, u, θ ,
and z = (z1, . . . , z J ) corresponding to the balance of mass, momentum, and energy
and elementary chemical kinetics. First we introduce composite state functions
P(ρ, θ, z) and e(θ, z) representing pressure and specific internal energy, and a
cumulative reaction rate function F(θ, z) as follows. Recall that, if N j moles of
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species M j are confined at equilibrium in a volume V , then the static pressure and
energy will be

Pj = RN jθ

V
and U j = c j N jθ

where R is the universal gas constant and c j is a constant specific heat (usually
denoted cV j ). If the volume is a segment of length dx with unit cross-sectional area,
then V = dx and N jw j = z jρdx , so that

Pj = Rz jρθ

w j
and U j = c j

w j
z jρθdx .

The macroscopic pressure is then

P =
J∑

j=1

Pj = Rρθ

w(z)
where

1

w(z)
=

J∑

j=1

z j

w j
(2.3)

and the composite energy is ρedx where e is the composite specific internal energy

e = c(z)θ where c(z) =
J∑

j=1

c j

w j
z j . (2.4)

The cumulative rate function F is described as follows. If xk(t), k = 1, 2, are the
positions at time t of two fixed fluid particles with x1 < x2, then the number of
reactions occurring in the set

{(x, s) : 0 � s � t and x1(s) � x � x2(s)}
divided by Avogadro’s number is

∫ t

0

∫ x2(s)

x1(s)
ρFdxds.

We shall assume that there is such function F , that F is determined by θ and z,
and that F = 0 when either θ � θig , where θig is a positive ignition temperature
below which the reaction (2.1) cannot occur, or when any “reactant species”, that
is, a species M j for which a j < 0, is depleted.

We can now derive the evolution equations for ρ, u, θ , and z. First, the increase
over a time interval dt in the mass of fluid occupying a segment (x, x + dx) mov-
ing with the fluid is the net influx of mass per reaction times the number of reactions
occurring over that space-time interval; this product is [∑J

j=1(µ
′
j −µ′′

j )w j ]ρFdxdt .
It then follows in the usual way that

ρt + (ρu)x = aρF (2.5)

where

a =
J∑

j=1

(µ′
j − µ′′

j )w j ≡ a′ − a′′.
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Exactly the same considerations applied to the density ρz j of the j th species show
that

(ρz j )t + (ρz j u)x = a jρF

where

a j = (ν′′
j − ν′

j + µ′
j − µ′′

j ) w j .

Applying (2.5), we then find that

z j
t + z j

x u = (a j − az j )F. (2.6)

Of course, the mass fractions z j should be nonnegative and sum to one. This will
be true if it is true initially and if F satisfies the condition that, if a j < 0 for
some j , then F(θ, z) = 0 whenever z j = 0: first, it is clear that this condition
implies the persistence of the nonnegativity of a j when a j < 0, by (2.6). For other
j we have that ż j � −aFz j , again by (2.6), where the dot denotes the convective
derivative ∂

∂t + u ∂
∂x . Thus z j remains nonnegative for these j as well. Also, if we

define ζ = ∑J
j=1 z j , then ζ̇ = aF(1 − ζ ) since

∑
a j = a by (2.2), and therefore

ζ(x, t) = 1 for all (x, t) if ζ(x, 0) = 1 for all x .
Next, while it is true that chemical reactions do not increase or decrease momen-

tum overall [12, p. 609], there may be a net change in both momentum and energy
due to the influx or efflux of particles at the time and location of a reaction. We shall
assume that particles which exit the tube do so at the point of reaction and with
the local velocity and temperature u and θ , and that particles which enter do so at
the point of reaction and with velocity and temperature ū and θ̄ , where ū may be
either u or a constant and θ̄ may be either θ or a constant. The change over a time
interval dt in the momentum ρudx of the fluid occupying an interval (x, x + dx)
moving with the fluid is therefore the usual contribution (εux − P)|x+dx

x dt , where
ε is a positive viscosity constant, plus the term

⎡

⎣
J∑

j=1

(
µ′

jw j ū − µ′′
jw j u

)
⎤

⎦ ρFdxdt = (
a′ū − a′′u

)
ρFdxdt.

We thus conclude that

(ρu)t + (ρu2 + P)x = εuxx + (a′ū − a′′u)ρF.

Similarly, the change over a time interval dt in the total energy ρ[e(θ, z)+ 1
2 u2]

of the fluid occupying an interval (x, x+dx)moving with the fluid is the sum of four
terms: the impulse applied by the viscous and pressure terms (εuux −u P)|x+dx

x dt ,
a heat-conduction term λθx |x+dx

x dt , where λ is a positive thermal conductivity
constant, the heat of the reaction ρQdxdt , where Q = Q(θ, z) will be assumed
to satisfy |Q(θ, z)| � C F(θ, z) for a constant C , and a term measuring the net
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influx or efflux of kinetic and thermal energy at points of reaction. Elementary
considerations show that the latter contributions are

1
2

J∑

j=1

(
µ′

jw j ū
2 − µ′′

jw j u
2
)
ρFdxdt +

J∑

j=1

(
µ′

j c j θ̄ − µ′′
j c jθ

)
ρFdxdt.

Combining all these terms and defining

κ ′ =
∑

µ′
j c j and κ ′′ =

∑
µ′′

j c j

we then conclude that

(ρE)t +(ρEu)x + (u P)x = λθxx + ρQ+[ 1
2

(
a′ū2 − a′′u2)+(

κ ′θ̄ − κ ′′θ
)]
ρF,

where E = e(θ, z)+ 1
2 u2.

We now combine the above equations and notations into a single system:

ρt + (ρu)x = aρF, (2.7)

(ρu)t + (ρu2 + P(ρ, θ, z))x = εuxx + (a′ū − a′′u)ρF, (2.8)
(
ρ
(
e(θ, z)+ 1

2 u2))
t + (

ρ
(
e(θ, z)+ 1

2 u2)u
)

x + (u P(ρ, θ, z))x

= λθxx + ε(uux )x + ρQ(θ, z)+ [ 1
2 (a

′ū2 − a′′u2)+ (κ ′θ̄ − κθ)
]
ρF(θ, z),

(2.9)

z j
t + uz j

x = (a j − az j )F(θ, z), (2.10)

which is to be solved for x ∈ (0, 1) and t � 0 subject to boundary conditions

u(0, t) = u(1, t) = θx (0, t) = θx (1, t) = 0 (2.11)

and initial conditions

(ρ, u, θ, z)(x, 0) = (ρ0, u0, θ0, z0)(x). (2.12)

In the above system ε and λ are positive constants,

a = a′ − a′′, a′ =
∑

µ′
jw j , a′′ =

∑
µ′′

jw j ,

a j = (ν′′
j − ν′

j − µ′′
j + µ′

j )w j ,

κ ′ =
∑

µ′
j c j , κ ′′ =

∑
µ′′

j c j ,

where w j and c j are positive constants and µ′
j , µ

′′
j , ν

′
j and ν′′

j are nonnegative
integers satisfying (2.2), and the functions P and e are as defined in (2.3) and (2.4).
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We shall make the following assumptions:

Either ū is a constant or ū = u and a � 0. (2.13)

Either θ̄ is a constant or θ̄ = θ and κ ′ − κ ′′ � 0. (2.14)

There is a j such that a j < 0. (2.15)

There is a j such that a j � 0 and if a < 0 (2.16)

then there is a j such that a j > 0.

F and Q are Lipschitz functions of θ and z on (0,∞)× V,where V (2.17)

is a neighborhood of the set {z : z j � 0 for all j and
∑

z j = 1},
and there are constants C and C ′such that

|Q(θ, z)| � C F(θ, z) � C ′

on (0,∞)× V .

There is a nonnegative function h = h(θ) defined on (0,∞) and (2.18)

a constant Csuch that, if G j (θ, z) ≡ (a j − az j )F(θ, z), then
∣∣∣∣
∂G j

∂θ
(θ, z)

∣∣∣∣ � C
h(θ)1/2

θ

and

ξ · �zG(θ, z) ξ � −h(θ) |ξ |2 , (θ, z) ∈ (0,∞)× V and ξ ∈ RJ .

There is a positive temperature θig such that F(θ, z)=0 for θ � θig; (2.19)

and if a j < 0 for a particular j, then F(θ, z) = 0 when z j = 0.
J∑

j=1

(ν′′
j − ν′

j + µ′
j − µ′′

j ) = 0. (2.20)

Some comments on these hypotheses are in order. First, a is the net mass enter-
ing the system as a result of a single reaction, so that the assumption (2.13) disallows
the net influx of momentum and kinetic energy except at a given, fixed constant
velocity and (2.14) disallows the net influx of thermal energy except at a given,
fixed temperature. The assumptions (2.15) and (2.16) stipulate that there are both
reactant species and product species occurring in the reaction (2.1) (taking into
account possible influx or efflux of species).

Next, we illustrate the assumptions (2.17)–(2.19) by examining the simple but
representative case that there is a single reactant species M1 and a single product
species M2 and that there is no influx or efflux of particles at all (this is the case
considered in [4], for example). In this case a = 0 and a1 < 0 < a2 = −a1, and
the equations (2.10) for z reduce to

ż1 = a1 F

ż2 = −a1 F.

The reaction in this situation is typically modeled by an equation ż1 = −h(θ)z1

where h is a nonnegative Arrhenius function vanishing on (0, θig) and satisfying
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h = exp(−const./θ) for θ >> θig . In this case

F(θ, z) = −h(θ)z1

a1
and G(θ, z) =

[ −h(θ)z1

h(θ)(1 − z2)

]

in our notation. The conditions in (2.18) and (2.19) are then easily checked.
Finally, the assumption (2.20) is closely related to our stipulation that the reac-

tion (2.1) goes forward, that is, in the direction indicated, in all thermodynamical
regimes under consideration. Indeed, a condition similar to but weaker than (2.20)
is typically postulated as a consequence of the fact that the physical entropy can-
not decrease in a chemical reaction. In the present paper the logic is reserved: we
shall assume (2.20) and then apply it in Lemma 3.1 below to derive a time-inde-
pendent bound for the entropy. See [12, pp. 529–531] for further discussion of the
underlying physics.

Concerning the initial data (ρ0, u0, θ0, z0) we assume that there is a constant
C0 such that

C−1
0 � ρ0 � C0 almost everywhere, (2.21)

‖u0‖L4([0,1]) � C0, (2.22)

θ0 � C−1
0 and ‖θ0‖L2([0,1]) � C0, (2.23)

‖z0‖H1([0,1]) � C0, (2.24)

z j
0(x) ∈ [0, 1] and

J∑

j=1

z j
0(x) = 1, x ∈ [0, 1], (2.25)

and

∑

{ j :a j �0}

∫ 1

0
ρ0z j

0dx � C−1
0 . (2.26)

In particular, there are no smallness conditions on the initial data.
The solutions we obtain will be weak solutions in the usual sense: if we write

the equations in the system (2.7)–(2.10) in the form

v
j
t + f j (v)x = (b jk(v)vk

x )x + g j (v),

we then say that v is a weak solution provided that v is suitably integrable and

∫ 1

0
v j (x, ·)ψ(x, ·)dx

∣∣∣∣
t2

t1

=
∫ t2

t1

∫ 1

0
(v jψt +( f j −b jkvk

x )ψx +g jψ)dxdt (2.27)

for all t2 � t1 � 0 and all ψ ∈ C1([0, 1] × [0,∞)), with the exception that, when
v j = ρu, (2.27) is required to hold only for ψ satisfying the boundary conditions
ψ(0, t) = ψ(1, t) = 0.

The following theorem gives our main result concerning the existence and reg-
ularity of solutions of (2.7)–(2.12):
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Theorem 2.1. Assume that the system (2.7)–(2.10) satisfies the conditions (2.13)–
(2.20) described above and that initial data (ρ0, u0, θ0, z0) is given satisfying
(2.21)–(2.26). Then there is a global weak solution (ρ, u, θ, z) to the initial-
boundary value problem (2.7)–(2.12) and there is a constant C depending on the
system parameters in (2.7)–(2.10) and on C0 such that

C−1 � ρ(x, t) � C, t � 0, a.a. x ∈ (0, 1), (2.28)

θ(x, t) � C−1e−Ct , t � 0, x ∈ [0, 1], (2.29)

z j (x, t) ∈ [0, 1] and
∑

j

z j (x, t) = 1, t � 0, x ∈ [0, 1], (2.30)

and such that the following regularity conditions and energy estimates hold:

ρ ∈ C([0,∞); L p([0, 1]), p ∈ [1,∞), (2.31)

u and θ are Hölder continuous on [0, 1] × [τ,∞) for every τ > 0 (2.32)

with Hölder norms bounded by Cmax {1, τ }−β, where β is a

universal positive constant,

z is Hölder continuous on [0, 1] × [0,∞) with Hölder norm (2.33)

bounded by C,

u(·, t) → u0 strongly in L p as t → 0 for p ∈ [1, 4) (2.34)

and θ(·, t) ⇀ θ0 weakly in L2 as t → 0,

sup
t�0

∫ 1

0

[ 1
2ρu2 + ρe(θ, z)+ ρ(θ − log θ + 1)+ |zx |2 + θ2 + u4]dx (2.35)

+
∫ ∞

0

∫ 1

0

[(
1+ 1

θ

)
u2

x +
(

1+ 1

θ2

)
θ2

x + u2u2
x +h(θ)|zx |2 + F

]
dxdt � C,

and

sup
t>0

∫ 1

0

[
σ(t)u2

x +σ 2θ2
x

]
dx+

∫ ∞

0

∫ 1

0

[
σ u̇2+σ 2θ̇2+σ 2u̇2

x + σ 3θ̇2
x

]
dxdt �C,

(2.36)

where σ = min{1, t}.
Theorem 2.1 is proved in Section 3.

The time-independent bounds in (2.28), (2.35), and (2.36) enable us to derive
the following results concerning the large-time behavior of solutions:

Theorem 2.2. Assume in addition to the hypotheses of Theorem 2.1 that one of
the following conditions holds: ū = 0, ū = u, or there is a constant C̃ such that
|�z F(θ, z)| � C̃h(θ) for (θ, z) as in (2.18). Define

E∞ =
∫ 1

0
ρ0

(
e0 + 1

2 u2
0

)
dx

+
∫ ∞

0

∫ 1

0

(
ρQ + [ 1

2 (a
′ū2 − a′′u2)+ (κ ′θ̄ − κ ′′θ)

]
ρF

)
dxdt
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and

M∞ =
∫ 1

0
ρ0 dx +

∫ ∞

0

∫ 1

0
aρF dxdt

(which are finite by the bounds in Theorem 2.1). Then there is a function z∞ ∈
H1([0, 1]) and a bi-Lipschitz homeomorphism X∞ of [0, 1] such that, if

P∞ = RE∞
[∫ 1

0
c(z∞(x))w(z∞(x)) dx

]−1

where c(z) and w(z) are as in (2.3) and (2.4), and if

θ∞ = P∞
RM∞

∫ 1

0
w(z∞(x)) dx,

then as t → ∞,

ρ(·, t) → ρ∞(·) ≡ P∞
Rθ∞

w(z∞(·)) in L p([0, 1]), p ∈ [1,∞), (2.37)

u(·, t) → 0 in H1
0 ([0, 1]), (2.38)

θ(·, t) → θ∞ in H1([0, 1]), (2.39)

z(·, t) → z∞ uniformly on [0, 1], (2.40)

and

X (·, t) → X∞ uniformly on [0, 1], (2.41)

where X (y, t) is defined by d X
dt = u(X, t), X (y, 0) = y.

Theorem 2.2 is proved in Section 4.
Of particular interest are the conditions that guarantee that complete combus-

tion has occurred, that is, that in the asymptotic state, some reactant species has
been depleted. (Recall that M j is a reactant species if a j < 0). In view of the evo-
lution equations (2.10) for z, this should be true when the asymptotic temperature
θ∞ is greater than the ignition temperature θig , and the latter should hold when the
total initial energy in the system is sufficiently large. The precise statements for a
representative case are given in the following theorem, in which we denote by c
and c the min and max over k of ck/wk .

Theorem 2.3. In addition to the hypotheses of Theorem 2.2 assume the following:
a′′ = κ ′′ = 0; ū and θ̄ are constants; h(θ) > 0 for θ > θig; Q is a multiple of F,
so that the energy equation (2.9) may be written

(ρE)t + (ρEu + u P)x = λθxx + ε(uux )x + qρF (2.42)

for a constant q; and finally F(θ, z) > 0 when θ > θig and z j > 0 for all reac-

tant species M j . Let E0 = ∫ 1
0 (ρE)(x, 0)dx be the total initial energy and let

E∞, ρ∞, θ∞, and z∞ be as in Theorem 2.2.
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(a) If

E0 > c̄ θig

∫ 1

0
ρ0

(
1 − a

a j
z j

0

)
dx

for some reactant species M j , then θ∞ > θig, ρ∞ and z∞ are constants, and
some reactant species Mk becomes depleted, that is zk∞ ≡ 0.

(b) If for some reactant species M j , z j∞ ≡ 0 but z j
0 �≡ 0, then θ∞ � θig and

E0 � cθig

∫ 1

0
ρ0

(
1 − a

a j
z j

0

)
dx + q

a j

∫ 1

0
ρ0z j

0 dx .

Theorem 2.3 is proved in Section 5. The gap between the sufficient condition in
(a) and the necessary condition in (b) can be closed in certain special cases: see the
discussion at the end of Section 1 of [4].

3. Existence: proof of Theorem 2.1

In this section we prove the global existence stated in Theorem 2.1. The major
part of the analysis consists in the derivation of a priori bounds for smooth local-in-
time approximate solutions. The first of these, given in Lemma 3.1, are uncontingent
bounds corresponding to the balance of mass and energy and to the monotonicity
of entropy. We then apply these bounds in Lemmas 3.2 and 3.3 to obtain point-
wise estimates for density and temperature and L2 bounds for certain higher order
derivatives of velocity and temperature. These a priori bounds suffice to show that
the approximate solutions can be extended to all time and provide the compact-
ness needed to obtain the solutions of Theorem 2.1 in the limit as the smoothing
parameter tends to zero.

More specifically, we approximate the initial data (ρ0, u0, θ0, z0) by smooth
functions (ρδ0, uδ0, θ

δ
0 , zδ0) satisfying the conditions (2.21)–(2.26) with a constant

C0 which is independent of δ. We can then show as in Hoff and Tsyganov [9]
that there is a smooth solution (ρδ, uδ, θδ, zδ) defined for some positive time T̄
possibly depending on δ. In particular, ρδ, uδ, θδ , and zδ are C2 in t, ρδ and zδ are
C2 in x , and uδ and θδ are C3 in x . It follows that ρδ and θδ are strictly positive
for small time and that the boundary conditions (2.11) hold in a strict pointwise
sense. Also, the argument given in the discussion following (2.6) applies to show
that (zδ) j (x, t) ∈ [0, 1] and that

∑
j (z

δ) j (x, t) = 1. Our immediate aim is to
show that this approximate solution satisfies the estimates (2.28)–(2.36) with a
constant C which is independent of δ and T̄ . For the time being we suppress the
superscript δ.



Flow of a Reacting Fluid 963

Lemma 3.1. Let (ρ, u, θ, z) be the local-in time-smooth solution described above.
Then

C−1 �
∫ 1

0
ρ(x, t) dx � C, t � T̄ , (3.1)

∫ 1

0

( 1
2ρu2 + ρe

)
(x, t) dx � C, t � T̄ , (3.2)

∫ T̄

0

∫ 1

0
ρ (F + |Q|) dxdt � C, (3.3)

and

sup
0�t�T̄

∫ 1

0
S(x, t) dx +

∫ T̄

0

∫ 1

0

(
θ2

x

θ2 + u2
x

θ

)
dxdt � C, (3.4)

where

S(ρ, u, θ, z) = R

w(z)
(ρ log ρ − ρ + 1)+ c(z)ρ(θ − log θ + 1)+ 1

2ρu2.

In all cases the constant C is as described in the statement of Theorem 2.1 and in
particular is independent of δ and T̄ .

Proof. Combining (2.7) and (2.10) we obtain that

(z jρ)t + (z jρu)x = a jρF,

so that
∫ 1

0
(z jρ)(x, t) dx − a j

∫ t

0

∫ 1

0
ρF dxds =

∫ 1

0
z j

0ρ0 dx .

The bound (3.3) then follows by choosing j such that a j < 0 (see (2.15)) and the
upper bound in (3.1) then follows from (2.7). The lower bound in (3.1) is obtained
by summing over j such that a j � 0 and applying (2.26), and the energy estimate
(3.2) follows by integrating (2.9) and noting that, in all cases, a′ū2 − a′′u2 � C
and κ ′θ̄ − κ ′′θ � C .

To prove (3.4) we first compute from (2.7) and (2.8) that

ρ
du

dt
+ Px = εuxx + a′(ū − u)ρF, (3.5)

where d
dt = ∂

∂t + u ∂
∂x , and therefore that

ρ
d

dt

u2

2
+ u Px = εuuxx + a′(ūu − u2)ρF. (3.6)

Subtracting this from (2.9) we obtain

ρ
de

dt
+ ux P = λθxx + εu2

x + ρQ + BρF (3.7)
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where B is determined by u, θ , and z and satisfies B � −Cθ . A straightforward
calculation based on (2.7) and (3.7) then shows that

ρ
d

dt

[
R log ρ

w(z)
− c(z) log θ

]
+ λθxx

θ
+ εu2

x

θ
+ ρQ

θ

=
[

a R

w(z)
− B

θ

]
ρF + Rρ log ρ

d

dt

1

w(z)
+ ρ(1 − log θ)

dc(z)

dt
. (3.8)

We note that if functions g(x, t) and G(x, t) satisfy ρ dg
dt = G, then d

dt

∫ 1
0 g dx =∫ 1

0 (G +aρFg)dx . Applying this in (3.6) and (3.8) and combining with an elemen-
tary bound for d

dt

∫ [ R
w(z) (−ρ + 1) − ρc(z)

]
dx based on (3.1) and (3.3), we then

find that

d

dt

∫ 1

0
S(x, t)dx +

∫ 1

0

[
λθ2

x

θ2 + εu2
x

θ
+ ρQ

(
1

θ
− 1

)]
(x, t)dx

= d

dt
0(1)+

∫ 1

0
ρF

[
B̃ − B

θ
+ a R

w(z)
log ρ − ac(z) log θ

]
dx

+
∫ 1

0

[
Rρ log ρ

d

dt

1

w(z)
− ρ log θ

dc(z)

dt

]
dx, (3.9)

where B̃ is determined by u, θ , and z and satisfies B̃ � C , and where 0(1) denotes
a term which is bounded by C by (3.1)–(3.3). Computing dc(z)

dt and d
dt

1
w(z) from

(2.3), (2.4), and (2.10) and applying (3.7), we then find that the right side of (3.9)
is bounded by

d

dt
0(1)+

∫ 1

0
ρF

[(∑ a j

w j
)

)
R log ρ −

(∑ c j a j

w j

)
log θ

]
dx .

The first term in the integral is zero, by (2.20). To bound the second term we note that
if this term is not zero for a given fixed t , then there is an x1 such that θ(x1, t) � θig ,
and in any case there is an x2 such that θ(x2, t) � C , by (3.1) and (3.2). The term
in question is therefore either zero or is bounded by

C

[
1 +

(∫ 1

0

θx 2

θ2 dx

)1/2
] ∫ 1

0
ρF dx,

which by (3.3) is d
dt 0(1) plus a term which can be absorbed into the left side of

(3.9). The entropy estimate (3.4) thus follows from (3.9). 	

In the following lemma we apply the results of Lemma 3.1 to derive pointwise
bounds for density and temperature:

Lemma 3.2. Let (ρ, u, θ, z)be the smooth solution of (2.7)–(2.11) on [0, 1]×[0, T̄ ]
described at the beginning of this section. Then there is a positive number η and
for each T � T̄ there is a positive number θ(T ) such that

C−1 � ρ(x, t) �

⎧
⎪⎨

⎪⎩

CeCt , t � T̄ ,

C if
∫ t

t/2

∫
θ2

x

θ2 dxdt � η and t � T̄ ,
(3.10)
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and

θ(x, t) � θ(T ), t � T � T̄ . (3.11)

Here η and θ(T ) depend on the same quantities as C in Theorem 2.1 and θ(T )
may depend additionally on T . Both are independent of δ and T̄ .

Proof. First we define f (x, t) = (εux − P(ρ, θ, z))(x, t) and compute from (2.8)
that, for y, y0 ∈ [0, 1],

∫ X (y,·)

X (y0,·)
(ρu)(x, ·)dx

∣∣∣∣∣

t

0

=
∫ t

0
[ f (X (y, s), s)− f (X (y0, s), s)] ds

+
∫ t

0

∫ X (y,s)

X (y0,s)
(a′ū − a′′u)ρFdxds, (3.12)

where X (y, t) is the integral curve of u originating from y:
⎧
⎨

⎩

dX

dt
= u(X, t)

X (y, 0) = y.
(3.13)

Next, we introduce a renormalized density as follows. First if a � 0 we choose j
such that a j < 0 and define

g(X (y, t), t) = log

[
(z j a − a j )(X (y, t), t)

(z j a − a j )(y, 0)

]
.

If a < 0 we choose j such that a j > 0 and define

g(X (y, t), t) = log

[
(a j − az j )(X (y, t), t)

(a j − az j )(y, 0)

]
.

Then in either case,

− C � g � C and gt + ugx = −aF (3.14)

by (2.10). It follows that if A(x, t) = ρ(x, t)e g(x,t), then

At + (Au)x = 0, (3.15)

and therefore that, for any y,

ε log A(X (y, ·), ·)|t0 = −
∫ t

0
εux (X (y, s), s)ds

= −
∫ t

0
[ f (X (y, s), s)+ P(X (y, s), s)] ds (3.16)
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(we abbreviate P(ρ(x, t), · · · )by P(x, t)). Substituting from (3.12), we then obtain

ε log A(X (y, t), t)= ε log A(y, 0)−
∫ X (y,·)

X (y0,·)
(ρu)(x, ·) dx

∣∣∣∣∣

t

0

−
∫ t

0
P(X (y, s), s) ds

−
∫ t

0
f (X (y0, s), s) ds +

∫ t

0

∫ X (y,s)

X (y0,s)
(a′ū − a′′u)ρFdxds.

(3.17)

We now choose y0 to control the second-last term on the right (y0 will be depend
on t but will be independent of y). To do this we define

W (y, t) =
∫ t

0
f (X (y, s), s)ds +

∫ y

0
(ρ0u0)(x)dx

then compute Wt and Wy and apply these to derive an expression for the time
derivative of the integral on the left below. After a somewhat lengthy computation
we obtain

∫ 1

0

A(y, 0)

A(X (y, ·), ·)W (y, ·)dy

∣∣∣∣
t

0
= −

∫ t

0

∫ 1

0
(P + ρu2)dxds + I (t) (3.18)

where

I (t) = −
∫ t

0

∫ 1

0
ρF(a′′u − a′ū) [X (x, t; s)− x] dxds (3.19)

and where X (x, t; s) is as in (3.13) but with the second condition replaced by
X (x, s; s) = x . Observe that from (3.13) and (3.15),

∂X (y, t)

∂y
= A(y, 0)

A(X (y, t), t)
, (3.20)

so that the integral on the left side of (3.18) at time t is W (y0, t) for some y0(t)
which we now fix. Then from the definition of W ,

∫ t

0
f (X (y0, s), s)ds =

∫ 1

0

∫ y

0
(ρ0u0)(ξ)dξdy −

∫ y0

0
(ρ0u0)(ξ)dξ

−
∫ t

0

∫ 1

0
(P + ρu2)dxds + I (t).

Substituting into (3.17) we then obtain that

ε log A(X (y, t), t)=ε log A(y, 0)−
∫ X (y,·)

X (y0,·)
(ρu)(x, ·)dx

∣∣∣∣
t

0
−

∫ t

0
P(X (y, s), s)ds

−
∫ 1

0

∫ y

0
(ρ0u0)(ξ)dξdy +

∫ y0

0
(ρ0u0)(ξ)dξ

+
∫ t

0

∫ 1

0
(P + ρu2)dxds

+
∫ t

0

∫ X (y,s)

X (y0,s)
(a′ū − a′′u)ρFdxds− I (t)



Flow of a Reacting Fluid 967

for any y ∈ [0, 1]. Taking the exponential and recalling that A = ρeg , we then
obtain

ρ(X (y, t), t) exp

[
ε−1

∫ t

0
P(X (y, s), s)ds

]

= ρ0(y) exp

[
ε−1 B(X (y, t), t)+ε−1

∫ t

0

∫ 1

0
(P+ρu2)dxds−ε−1 I (t)

]
, (3.21)

where B is 0(1) by Lemma 3.1 (and is different from the B occurring in the proof
of Lemma 3.1). Multiplying by Rθ

w(z) , we then get ε d
dt exp[ε−1

∫ t
0 P(X (y, s), s)ds]

on the left. Integrating with respect to t and substituting back into (3.19) we obtain
finally

ρ(X (y, t), t) = D̃(X (y, t), t)e
∫ t

0 µ(s)ds−I (t)/ε

1 + ∫ t
0 (θD)(X (y, s), s)e

∫ s
0 µ(τ)dτ−I (s)/εds

= D̃(·, t)e−I (t)/ε
[

e− ∫ t
0 µ+

∫ t

0
(θD)(·, s)e− ∫ t

s µ−I (s)/εds

]−1

(3.22)

for functions D and D̃ which by Lemma 3.1 satisfy C−1 � D, D̃ � C and where

µ(t) = ε−1
∫ 1

0
(P + ρu2)(x, t)dx .

We check that there are positive constantsµ and µ̄ depending on the same quantities
as C in Theorem 2.1 such that

µ � µ(t) � µ̄. (3.23)

The upper bound here is immediate from (3.2) and the definition of P , and the lower
bound follows from the estimate in (3.4) for

∫ 1
0 ρ(θ − log θ + 1) dx via Jensen’s

inequality and (3.1). We also note that, from (3.3), (2.17), and the definition (3.19)
of I ,

|I (t)| � C, 0 � t � T̄ . (3.24)

It then follows from (3.22) that

ρ(X (y, t), t) � C−1

e−µt + ∫ t
0 θ(X (y, s), s)eµ(s−t)ds

.

Thus if we denote by Mθ (t) and Mρ(t) the suprema over x of θ(·, t) and ρ(·, t)
and by mθ (t) and mρ(t) the infima over x of θ(·, t) and ρ(·, t), then

mρ(t) � C−1

e−µt + ∫ t
0 Mθ (s)e

µ(s−t)ds
. (3.25)
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Next from (3.1) and (3.2) we have that for each t there is point x0 ∈ [0, 1] such
that θ(x0, t) � C . Thus

∣∣∣θ1/2(x, t)− θ1/2(x0, t)
∣∣∣ �

(∫ 1

0
θdx

)1/2 (∫ 1

0

θ2
x

θ2 dx

)1/2

� Cm−1/2
ρ

(∫
θ2

x

θ2 dx

)1/2

by (3.2). It follows that

Mθ (t) � C + mρ(t)
−1

∫ 1

0

θ2
x

θ2 (x, t)dx

and

mθ (t) � C − mρ(t)
−1

∫ 1

0

θ2
x

θ2 (x, t)dx .

Substituting the first of these into (3.25) and applying a Gronwall estimate to m−1
ρ ,

we find that mρ � C−1 for all t , which proves the lower bound in (3.10). The
first of the upper bounds in (3.10) follows by applying (3.23) and (3.24) in (3.22)
and discarding the integral in the denominator. To obtain the other upper bound in
(3.10) we again apply (3.23) and (3.24) in (3.22) and then the above bound for mθ

and the lower bound for ρ already proved to obtain

ρ(X (y, t), t)−1 � C−1
∫ t

0
mθ (s)e

− ∫ t
s µ(τ)dτds

� C−1
[

1 − C
∫ t

0
eµ̄(s−t)

∫ 1

0

θ2
x

θ2 (x, s)dxds

]
.

Now by (3.4),

C
∫ t

0

∫ 1

0
eµ̄(s−t) θ

2
x

θ2 dxds � Ce−µ̄t/2
∫ t/2

0

∫ 1

0

θ2
x

θ2 dxds + C
∫ t

t/2

∫ 1

0

θ2
x

θ2 dxds

� 1
2 + C

∫ t

t/2

∫ 1

0

θ2
x

θ2 dxds

if t is large, depending on 0(1) constants. Thus

ρ(X (y, t), t)−1 � C−1 − C
∫ t

t/2

∫ 1

0

θ2
x

θ2 dxds � C−1

provided
∫ t

t/2

∫ 1
0
θ2

x
θ2 dxds � η for η as described in the statement of the lemma. This

proves (3.11).
To prove the lower bound (3.11) for θ we apply (3.7) to obtain an evolution

equation for θ−1, multiply by 2kθ−(2k−1), and integrate over [0, 1]×[0, t] to obtain
an estimate for ‖θ(·, t)−1‖L2k . The bound (3.11) then follows in the limit as k → ∞.
The details are similar to those occurring in the proof of Lemma 2.4 of [10] and so
are omitted. 	
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Lemma 3.3. Let (ρ, u, θ, z)be the smooth solution of (2.7)–(2.11) on [0, 1]×[0, T̄ ]
described at the beginning of this section. Then there is a constant C as in Theo-
rem 2.1 which is independent of T̄ and δ but which (in this lemma only) may depend
additionally on an upper bound for ρ on [0, 1] × [0, T̄ ] such that

sup
0�t�T̄

∫ 1

0

[ 1
2ρu2 + ρe(θ, z)+ ρ(θ − log θ + 1)+ |zx |2 + θ2 + u4](x, t)dx

+
∫ T̄

0

∫ 1

0

[(
1 + 1

θ

)
u2

x +
(

1 + 1

θ2

)
θ2

x + u2u2
x + h(θ)|zx |2 + F

]
dxdt � C

(3.26)

and

sup
0<t�T̄

∫ 1

0

[
σu2

x + σ 2u̇2 + σ 2θ2
x + σ 3θ̇2

]
(x, t)dx

+
∫ T̄

0

∫ 1

0

[
σ u̇2 + σ 2θ̇2 + σ 2u̇2

x + σ 3θ̇2
x

]
dxdt � C, (3.27)

where σ(t) = min{1, t}.

Proof. The derivations are straightforward but lengthy and parallel those of similar
estimates in [8]. We therefore give only a brief outline of the various steps in their
correct order. First we differentiate (2.10) with respect to x , multiply by z j

x , and
integrate. Applying the hypotheses (2.18) and (2.19) we obtain

sup
0�t�T̄

∫ 1

0
|zx (x, t)|2dx +

∫ T̄

0

∫ 1

0
h(θ)|zx |2dxdt � C. (3.28)

Next, we multiply (3.5) by u3, (3.7) by θ , and (3.5) again by θ , integrate, and then
add appropriate multiples of the resulting three equations. Estimating a very large
number of lower-order terms, making use of (3.28) and the pointwise bounds in
Lemma 3.2, we obtain

sup
0�t�T̄

∫ 1

0

(
ρ[θ2 + θu2 + u4]

)
(x, t) dx +

∫ T̄

0

∫ 1

0
(u2u2

x + θ2
x ) dxdt � C.

A bound for
∫∫

u2
x dxdt can then be derived easily by multiplying (3.5) by u and

integrating. There remain four additional estimates: H1((0, 1)) bounds for u and θ
and L2((0, 1)) bounds for u̇ and θ̇ together with the corresponding parabolic space-
time bounds. Again, the derivations are standard (although the two H1 bounds are
coupled) but the details are exceptionally lengthy and in any case parallel similar
estimates in [8]. We therefore omit the details. 	
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Proof of Theorem 2.1. We now let (ρδ, uδ, θδ, zδ) be the approximate smooth
solution described at the beginning of this section. The fairly strong a priori esti-
mates of Lemmas 3.1–3.3 then apply to show in the usual way that (ρδ, uδ, θδ, zδ)
can be extended as a solution on all of [0, 1] × [0,∞). The first contingency in
(3.10) gives an upper bound for ρδ on [0, 1] × [0, T̄ ], now for any T̄ > 0, which
may depend on T̄ but which is independent of δ. The constant C in Lemma 3.3
then depends on T̄ in the same way but is independent of δ. (This T̄ dependence
will be removed shortly.)

We now obtain the solution (ρ, u, θ, z) of Theorem 2.1 in the limit as δ → 0.
First observe that the uniform H1 estimate for zδ in (3.28) gives a C1/2 bound for
zδ(·, t) which is uniform in δ and t . Also, zδt = żδ − uδzδx , żδ = 0(1), and

∫ t2

t1

∫
(|zδx |uδ)2dxdt � C

∫ t2

t1
‖uδ(·, t)‖2∞dt

� C |t2 − t1|1/2
∫ ∫

(uδuδx )
2dxdt � C |t2 − t1|1/2.

The family {zδ} is therefore uniformly bounded and equicontinuous on [0, 1] ×
[0,∞) so that there is a sequence δ → 0 such that zδ converges uniformly on
compact sets in [0, 1] × [0,∞) to a function z which is Hölder continuous on
[0, 1] × [0,∞). Similar arguments applied away from t = 0 to {uδ} and {θδ} show
that uδ → u and θδ → θ uniformly on compact sets in [0, 1]×(0,∞) for limiting
functions u and θ and for a further subsequence δ → 0.

Now fix t > 0. Then since uδ(·, t) → u(·, t) uniformly, uδx (·, t) → ux (·, t) in
D′((0, 1)). On the other hand the uniform bound in (3.27) for ‖uδx (·, t)‖L2 shows
that every subsequence of the aforementioned sequence has in turn a further sub-
sequence for which uδx (·, t) has a weak-L2 limit, which necessarily is ux (·, t).
It follows that u(·, t) ∈ H1

0 for t > 0 and that uδx (·, t) ⇀ ux (·, t) weakly
in L2((0, 1)) for t > 0. A stronger result holds for the sequence θδx (·, t): the var-
ious estimates in (3.26) and (3.27) applied in (3.7) show that θδxx (·, t) is bounded
in L2((0, 1)) independently of δ. It follows that, for a further subsequence δ → 0,
θδx (·, t) → θx (·, t) strongly in L2((0, 1)) for t > 0.

We now show that the constant C in Lemma 3.3 may be taken to be inde-
pendent of time (the above compactness arguments requiring only independence
of δ). First, applying the strong convergence of θδ and θδx in the bound (3.4),
we find that

∫ ∞
0

∫ 1
0 (θx/θ)

2dxdt � C , where C is exactly as described in the
statement of Theorem 2.1. There is therefore a time T̄ which we now fix such
that

∫ ∞̄
T /2

∫ 1
0 (θx/θ)

2dxdt � η/4, where η is as in (3.10). Now for each k =
0, 1, . . . ,

∫ 2k T̄
2k−1 T̄

∫ ∫ 1
0 (θ

δ
x /θ

δ)2dxdt → ∫ 2k T̄
2k−1 T̄

∫ 1
0 (θx/θ)

2dxdt , so that by taking fur-
ther subsequences and applying a diagonal process, we obtain a sequence δ → 0

such that
∫ 2k T̄

2k−1 T̄

∫ 1
0 (θ

δ
x /θ

δ)2dxdt � η/2 for every such k and δ. It follows that∫ t
t/2

∫ 1
0 (θ

δ
x /θ

δ)2dxdt � η for every t � T̄ and every δ. We can therefore invoke

both contingencies in (3.10) and conclude that there is an upper bound for ρδ on
[0, 1]× [0,∞) which is uniform in δ. In particular, the bounds in (3.26) and (3.27)
hold for a constant C which is now independent of both T̄ and δ.
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Next, we show that there is a further sequence δ → 0 such that ρδ(·, t) con-
verges strongly in L2((0, 1)) for every t � 0. To prove this we define X δ as in
(3.13) with u = uδ and f δ = εuδx − Pδ , as in Lemma 3.2. Applying (3.26) and
(3.27) we then obtain uniform bounds for f δ(X δ(y, t), t) as functions of y and t in
H1([0, 1] × [τ, T ]) for 0 < τ < T . It follows that, modulo a further subsequence,
f δ(X δ(·, ·), ·) is strongly convergent in L2([0, 1] × (τ, T ]) for each such τ, T ,
and is strongly convergent in L1([0, 1] × (0, T )) for T > 0. We then apply this
convergence in (3.16) to obtain the strong L2 convergence of log Aδ(X δ(·, t), t)
for each t � 0, where Aδ = ρδegδ . There is therefore a sequence δ → 0 such that
ρδ(X δ(·, t), t) is strongly convergent in L2((0, 1)) for each t � 0. Convergence of
the sequence ρδ(·, t) then follows from this Lagrangean convergence exactly as in
the proof of Theorem 1 in [7].

The pointwise bounds and Hölder continuity properties stated in Theorem 2.1
are clearly retained for the limiting solution (ρ, u, θ, z) and the estimates in (2.35)
and (2.36) hold because L2 norms are nonincreasing under weak limits. Also, the
modes of convergence described above clearly suffice to show that (ρ, u, θ, z) is a
weak solution of (2.7)–(2.12) in the required sense.

There remain the assertions in (2.31) and (2.34) concerning continuity in time
into L p((0, 1)). We shall examine the arguments for ρ and u, the result for θ being
weaker and easier. First we again let L(y, t) = log A(X (y, t), t) where A = ρeg

and X are as in (3.13), say for the approximate smooth solution but with δ sup-
pressed. Applying (3.15) we then obtain

∫ 1

0
|L(y, t)− L(y, 0)|dy � C

∫ t

0

∫ 1

0
|ux (X (y, s), s)|dyds

� C
∫ t

0

∫ 1

0
|ux (x, s)|dxds

� Ct1/2

again by (3.15), which shows that A(X (y, t), t)d X = A0(y)dy. It then follows
that

∫ 1

0
|(ρeg)(x, t)− (ρeg)(x, 0)|dx � Ct1/2.

This same estimate holds for the limiting solution, and since z is Hölder continuous
on [0, 1]× [0,∞), we can conclude that ρ(·, t) → ρ0 in L1 as t → 0, hence in L p

for p ∈ [0,∞). Exactly the same argument proves the continuity at positive times.
Finally to prove (2.34) we note that, since u is locally Hölder continuous on

[0, 1]×(0,∞)we need to examine only the continuity at t = 0. To do this we apply
the weak form of the momentum equation (2.8) to a test function ϕ ∈ D((0, 1))
and apply the various bounds in (2.35) and (2.36) to obtain that

∣∣∣∣
∫ 1

0
[(ρu)(x, t)− (ρ0u0)(x)]ϕ(x)dx

∣∣∣∣

� C

[
t + t1/2

(∫ t

0

∫ 1

0
u2

x dxds

)1/2
]

‖ϕx‖L2 + Ct‖ϕ‖L2 . (3.29)
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It follows that (ρu)(·, t) → ρ0u0 in D′((0, 1)) as t → 0. But since (ρu)(·, t) is
uniformly bounded in L2, this convergence is weak in L2 as well, from which
we conclude that (ρ1/2u)(·, t) ⇀ ρ

1/2
0 u0 weakly in L2((0, 1)) as t → 0 by the

time-continuity of ρ proved above. If we now fix t and let ϕ tend to u(·, t) in (3.29)
and apply the bound in (2.36) for ‖ux (·, t)‖L2 , we find that
∫
(ρu2)(x, t)dx �

∫
(ρ0u0)(x)u(x, t)dx + C

[
t1/2 +

(∫ t

0

∫ 1

0
u2

x

)1/2
]

+ Ct

� 1
2

∫
(ρu2)(x, t)dx + 1

2

∫
(ρ2

0 u2
0)(x)

ρ(x, t)
dx

+ C

[
[t1/2 +

(∫ t

0

∫ 1

0
u2

x

)1/2
]

+ Ct

so that

lim sup
t→0

1
2

∫
(ρu2)(x, t)dx � 1

2

∫
(ρ0u2

0)(x)dx .

These facts prove that (ρ1/2u)(·, t) → ρ
1/2
0 u0 strongly in L2. The pointwise bounds

and strong continuity in time for ρ then apply again to show that u(·, t) → u0
strongly in L2, hence in L p for p ∈ [1, 4) as t → 0, by the L4 estimate in (2.35).
This completes the proof of Theorem 2.1. 	


4. Large time behavior: proof of Theorem 2.2

In this section we prove the results stated in Theorem 2.2 concerning the large-
time behavior of the solution (ρ, u, θ, z) constructed in Theorem 2.1. Important
use will be made of the fact that there is a system of integral curves X (y, t) of the
velocity field u, exactly as described in (3.13). This is an easy consequence of the
bound

∫ T
0 ‖u(·, t)‖L∞dt < ∞ for T > 0, which in turn follows in a straightforward

way from the estimates in (2.35) and (2.36). The conservation of renormalized mass
(3.15) and the pointwise bounds for ρ in (2.28) then apply to show that

C−1 �
∣∣∣∣
∂X

∂y
(y, t)

∣∣∣∣ � C. (4.1)

The overall outline of the proof is as follows: First we show that u tends to zero,
θ to its spatial average, and z(X (y, t), t) to a certain function of y. These facts then
enable us to prove that

∫ 1
0 ρe dx tends to a constant, from which we conclude that

θ tends to a constant as well. The arguments for density and pressure are somewhat
more complicated: First we show that f ≡ εux − P tends to its spatial average
and therefore that P also tends to its spatial average. Then by integrating the mass
equation (3.15) and applying the previous conclusions about θ and z, we find that
P tends to a constant and therefore that ρ(X (y, t), t) converges to a certain func-
tion of y. To complete the proof we then show that the trajectories X (y, t) have
time-asymptotic limits X∞(y) and therefore that ρ(x, t) converges to a function
of x .
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Proof of Theorem 2.2. We define a Lagrangian velocity v by v(y, t) =
u(X (y, t), t) and observe that vt = u̇ and C−1|ux | � |υy | � C |ux |. It then
follows from the bounds in (2.35) and (2.36) for ux and u̇x that ‖υy(·, t)‖2

L2 ∈
(BV ∩ L1)([1,∞)) and so approaches zero as t → ∞. The same is therefore true
for ‖ux (·, t)‖L2 , and this proves (2.38). A similar argument applies to θ(·, t) and
shows that

θ(·, t)− θ̄ (t) → 0 in H1((0, 1)) as t → ∞ (4.2)

where

θ̄ (t) =
∫ 1

0
θ(x, t)dx .

To obtain the convergence of z we note that, for y fixed, each z j (X (y, t), t) is
bounded and monotone in t by the equations (2.10). It follows that

z(X (y, t), t) → η(y) pointwise in y as t → ∞ (4.3)

for a function η = (η1, . . . , ηJ ).
Next, we examine the large-time behavior of the total energy. Integrating in

(2.9), we find that
∫ 1

0
(ρE)(x, t)dx =

∫ 1

0
ρ0 E0dx

+
∫ t

0

∫ 1

0

[
ρQ + 1

2

(
a′ū2 − a′′u2

)
+ (κ ′θ̄ − κ ′′θ)

]
ρFdxds.

(It is clear that this relation holds for the smooth solutions (ρδ, uδ, θδ, zδ) of Sec-
tion 3 and that equality is retained in the limit as δ → 0.) The various bounds in
Theorem 2.1 apply to show that the integrand in the second integral on the right
here is in L1([0, 1]×[0,∞)) and therefore that the right side converges as t → ∞,
say to E∞. Then since u(·, t) → 0 in H1

0 as t → ∞,
∫ 1

0
(ρe)(x, t)dx → E∞ as t → ∞. (4.4)

Next, recalling the notations A = ρeg in (3.14) and (3.15) and writing g = g(z),
we obtain that

∫ 1

0
(ρe)(x, t)dx =

∫ 1

0
(Ae−g(z)c(z)θ)(x, t)dx

= θ̄ (t)
∫ 1

0
(Ae−g(z)c(z))(x, t)dx + ot (1)

where ot (1) → 0 as t → ∞; and since A(X (y, t), t)d X = A0(y)dy = ρ0(y)dy,
∫ 1

0
(ρe)(x, t)dx = θ̄ (t)

∫ 1

0
ρ0(y)e

−g(z(X (y,t),t))c(z(X (y, t), t))dy + ot (1)

= θ̄ (t)
∫ 1

0
ρ0(y)e

−g(η(y))c(z(η(y)))dy + ot (1) (4.5)
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by (4.2). Comparing (4.2)–(4.4), we conclude that

θ(·, t) → θ∞ ≡ E∞/
∫ 1

0
ρ0(y)e

−g(η(y))c(z(η(y)))dy

in H1((0, 1)) as t → ∞. (4.6)

(We will derive another expression for θ∞ below.)
Next, we show than the pressure converges as t → ∞. To do this we define

f̃ (y, t) = f (X (y, t), t), where f = εux − P as in the proof of Lemma 3.2.
Straightforward estimates based on (2.35) and (2.36) show that

∫ ∞

1

∫ 1

0

(
f̃ 2
t + f̃ 2

y

)
dydt � C.

We shall apply this to prove that f tends to its spatial average as t → ∞. First let
ζ be a smooth function on [0, 1] which is positive on (0, 1) and which vanishes at
the endpoints and define

b(t) =
∫ 1

0
ζ(X (y, t))ρ−1

0 (y)eg(X (y,t),t) f̃ y(y, t)2dy.

We estimate the variation
∫ ∞

1 |b′(t)|dt directly; the dominant term is

2
∫ ∞

1

∣∣∣∣
∫ 1

0
ζ(X (y, t))ρ−1

0 (y)eg(X (y,t),t) f̃ y(y, t) f̃ yt (y, t)dy

∣∣∣∣ dt,

which by (2.8) and the fact that ρegd X = ρ0dy may be written

2
∫ ∞

1

∣∣∣∣
∫ 1

0
ζ(X (y, t))(ρ−1 [

ρu̇ + (a′′u − a′ū)ρF
]
)(X (y, t), t) f̃ yt (y, t)dy

∣∣∣∣ dt.

We integrate by parts in y, noting that the boundary terms are zero (because ζ(0) =
ζ(1) = 0) to find that

Var b|[1,∞) � C(ζ )

(∫ ∞

1

∫ 1

0
f̃ 2
t dydt

)1/2 (∫ ∞

1

∫ 1

0
[u̇2 + (1 + u2)F + u̇2

x

+ u2
x + (ū2 + u2)F2

x ]dxdt

)1/2

� C(ζ )

(the extra hypotheses of Theorem 2.2 are applied here to bound the ū2 F2
x term).

Thus b ∈ (BV ∩ L1)[1,∞) and therefore tends to zero as t → ∞. Changing
variables, we then have that

b(t) =
∫ 1

0
ζ(x)A(x, t)−1 fx (x, t)2dx → 0 as t → ∞.

An easy argument then shows that

‖ f (·, t)−
∫ 1

0
f (x, t)dx‖L1 → 0 as t → ∞,
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and since
∫ 1

0
f (x, t)dx = −

∫ 1

0
(P(ρ, θ, z))(x, t)dx ≡ −P̄(t)

and ux (·, t) → 0 in L2, we conclude that
(

Rρθ

w(z)

)
(·, t)− P̄(t) → 0 in L1((0, 1)) as t → ∞. (4.7)

The next step is to show that P̄(t) tends to a constant as t → ∞. To see this
we first note that, by (4.7) and (4.1),

(
Rρθ

c(z)

)
(X (·, t), t)− P̄(t) → 0 in L1((0, 1)) as t → ∞,

so that by (4.3) and (4.6),

1

A(X (·, t), t)
− Rθ∞

P̄(t)w(η(·))eg(η(·))

= 1

(ρeg(z))(X (·, t), t)P̄(t)

[
P̄(t)− Rρθ

w(z)
(X (·, t), t)

]
+ ot (1)

= ot (1)

where ot (1) now denotes a term which tends to zero in L1((0, 1)) as t → ∞.
Integrating and applying the fact that

∫ 1

0

dy

A(X (y, t), t)
=

∫ 1

0

dy

ρ0(y)

we then find that

Rθ∞
P̄(t)

∫ 1

0

[
w(η(y))eg(η(y))

]−1
dy →

∫ 1

0

dy

ρ0(y)

so that

P̄(t) → P∞ ≡ Rθ∞
∫ 1

0

[
w(η(y))eg(η(y))

]−1
dy

∫ 1
0 ρ0(y)−1dy

(4.8)

and therefore from (4.7) that
(

Rρθ

w(z)

)
(·, t) → P∞ in L1((0, 1)) as t → ∞.

It follows that ( Rρθ
w(z) )(X (·, t), t) → P∞ in L1 as well, so that by (4.3) and (4.6),

ρ(X (·, t), t) → P∞w(η(·))
Rθ∞

in L1((0, 1)) as t → ∞. (4.9)
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To obtain the convergence of ρ(·, t)we therefore need to show that the integral
curves X (y, t) converge as t → ∞. To see this we apply (3.15), (4.3), and (4.9) to
obtain

X (y, t) =
∫ y

0

A0(ξ)

A(X (ξ, t), t)
dξ =

∫ y

0

ρ0(ξ)e−g(z(X (ξ,t),t))

ρ(X (ξ, t), t)
dξ

→ Rθ∞
P∞

∫ y

0

ρ0(ξ)e−g(η(ξ))

w(η(ξ))
dξ ≡ X∞(y). (4.10)

Thus there is a bi-Lipschitz homeomorphism X∞ of [0, 1] such that

X (y, t) → X∞(y) uniformly in y as t → ∞. (4.11)

This enables us to improve the convergence in (4.3) as follows. First let t j → ∞
be a given sequence. Then by the uniform H1 bound for z(·, t) in (2.35) there is a
subsequence t jk such that z(x, t jk ) converges uniformly in x , say to g(x), so that
z(X∞(y), t jk ) → g(X∞(y)) uniformly in y. Also, this same uniform H1 bound
shows that

∣∣z(X (y, t jk ), t jk )− z(X∞(y), t jk )
∣∣ � C

∣∣X (y, t jk )− X∞(y)
∣∣1/2

,

so that z(X (y, t jk ), t jk ) → g(X∞(y)) uniformly in y as t → ∞. But by (4.3),
z(X (y, t jk ), t jk ) → η(y), so that in fact g = η ◦ X−1∞ . Since this limit is indepen-
dent of the sequence t jk , z(X (y, t), t) → η(y) uniformly in y and therefore by
(4.10)

z(·, t) → z∞ ≡ η ◦ X−1∞ uniformly as t → ∞. (4.12)

It then follows from this, (4.6), (4.7), and (4.8) that

ρ(·, t) → P∞
Rθ∞

w(z∞(·)) in L1 as t → ∞. (4.13)

This convergence holds also in L p for p ∈ [1,∞) by the uniform pointwise bound
for ρ in (2.28).

The results (2.37)–(2.41) of Theorem 2.2 thus follow from (4.6), (4.10), (4.12),
and (4.13). To complete the proof we therefore need to show that the expressions
in (4.6) and (4.8) for θ∞ and P∞ are equivalent to those in the statement of the
theorem. To see this we first compute ∂X∞

∂y from (4.10) and then make the change

of variable h = X−1∞ (x) in (4.6) to obtain the required expression for P∞. We then
compute from (2.7) and (4.13) that

M∞ ≡
∫ 1

0
ρ0(x)dx +

∫ ∞

0

∫ 1

0
a(ρF)(x, t)dxdt

= lim
t→∞

∫ 1

0
ρ(x, t)dx

= P∞
Rθ∞

∫ 1

0
w(z∞(x))dx,

which gives the required expression for θ∞. 	
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5. Complete combustion: proof of Theorem 2.3

In this section we derive the conditions described in Theorem 2.3 for complete
combustion to occur, that is, for there to be at least one reactant species which is
depleted in the time-asymptotic state. We begin with the following facts.

Lemma 5.1. Assume that the hypotheses and notations of Theorem 2.3 are in force
and let ρ∞, θ∞, and z∞ be as in Theorem 2.2. Then if a j �= 0,

θ∞ =
∫ 1

0 ρ0(E0 − q
a j

z j
0)dx + q

a j

∫ 1
0 ρ∞z j∞dx

∫ 1
0 ρ∞c(z∞)dx

(5.1)

and
∫ 1

0
ρ∞dx =

∫ 1

0
ρ0

(
1 − a

a j
z j

0

)
dx + a

a j

∫ 1

0
ρ∞z j∞dx . (5.2)

Also,

if θ∞ > θig, then z∞ and ρ∞ are constants and there is a reactant (5.3)

species M j such that z j∞ ≡ 0;
if z j

0 �≡ 0 but z j∞ ≡ 0 for some reactant species M j , then θ∞ � θig. (5.4)

Proof. First from (2.7) and (2.10),

d

dt

∫ 1

0
ρz j dx = a j

∫
ρFdx (5.5)

so that by (2.42),

d

dt

∫ 1

0
ρ

(
E − q

a j
z j

)
dx = 0 (5.6)

and therefore
∫ 1

0

[
ρ

(
E − q

a j
z j

)]
(x, t)dx =

∫ 1

0
ρ0

(
E0 − q

a j
z j

0

)
dx .

To prove (5.1) we take the limit as t → ∞, apply the convergence results of
Theorem 2.2, then solve the resulting equation for θ∞.

To prove (5.2) we again apply (2.7) and (2.10) to obtain

d

dt

∫ 1

0
ρ dx = a

∫
ρFdx = a

a j

d

dt

∫
ρz j dx;

we then integrate and take the limit as t → ∞ to compute
∫ 1

0 ρ∞dx .



978 D. Hoff

Now assume that θ∞ > θig . Then by the hypotheses of the theorem there is a
constant C and a time t0 such that h(x, t) � C−1 for all x and for t � t0. It then
follows from (2.35) that

∫ ∞

0

∫ 1

0
|zx |2dxdt � C. (5.7)

On the other hand the uniform bound in (2.35) for
∫ 1

0 |zx |2dx and the convergence
(2.40) show that zx (·, t) ⇀ (z∞)x weakly in L2 as t → ∞. Thus if ϕ ∈ L2,

∫ 1

0
z j

x (x, t)ϕ(x)dx →
∫ 1

0
(z j∞)x (x)ϕ(x)dx

as t → ∞. The bounded convergence theorem then applies to show that for T > 0,

∫ T

0

∫ 1

0
z j

x (t + s, x)ϕ(x)dxds → T
∫ 1

0
(z j∞)x (x)ϕ(x)dx

as t → ∞. The left side here is bounded by CT 1/2‖ϕ‖L2 by (5.7), however, so that

∣∣∣∣
∫ 1

0
(z j∞)xϕdx

∣∣∣∣ � CT −1/2 → 0 as T → ∞.

This proves that (z∞)x = 0 and therefore that z∞ is a constant. It then follows from
(2.37) that ρ(·, t) tends to a constant ρ∞ in L p as t → ∞. To complete the proof
of (5.3) we note that if M j is a reactant species, then a j < 0 < a and the evolution
equation (2.10) for z j shows that z j is nonincreasing along integral curves of u.
Thus if z j∞ > 0 for all reactant species and if θ∞ > θig , then by our hypotheses on
F, F(x, t) � C−1 > 0 for some C and for all x and all t sufficiently large. But then
(2.10) would apply to show that some z j becomes negative in finite time, which is
impossible. There therefore must be some reactant species for which z j∞ ≡ 0. This
proves (5.3).

Finally to prove (5.4) we suppose that, for some reactant species M j , z j∞ ≡ 0
but z j (y, 0) > 0 for some y. Then z j (X (y, t), t) > 0 for all t by (2.10) since
F(θ, z) � −Cz j by (2.17) and (2.19). On the other hand if θ∞ < θig , then
there would be a time t0 such that F(x, t) = 0 for all t � t0 and all x . But
then z j (X (y, t), t) = z j (X (y, t0), t0) > 0 for all t � t0 and therefore z j∞ =
z j (X (y, t0), t0) > 0, contradicting our supposition that z j∞ ≡ 0. This proves that
θ∞ � θig . 	

Proof of Theorem 2.3. To prove (a) we first note that, if M j is a reactant species,
then q/a j < 0 and so by (5.5),

d

dt

∫ 1

0
ρz j dx � 0. (5.8)



Flow of a Reacting Fluid 979

Thus by (5.1) and (5.2),

θ∞ � E0/

∫ 1

0
ρ∞c(z∞)dx

� E0/c̄
∫ 1

0
ρ0

(
1 − a

a j
z j

0

)
dx .

Therefore if the hypothesis of (a) holds, then θ∞ > θig and the conclusions of (a)
follow from (5.3).

To prove (b) we let j be as in the hypothesis and apply (5.1), (5.2), and the
assumption that θ∞ � θig to obtain

θig �
E0 − q

a j

∫ 1
0 ρ0z j

0dx

∫ 1
0 ρ∞c(z∞)dx

�
E0 − q

a j

∫ 1
0 ρ0z j

0dx

c
∫ 1

0 ρ0(1 − a

a j
)z j

0dx
,

since z j∞ ≡ 0. The conclusion in (b) then follows. 	
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