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Abstract

We study gas flows with any finite number of thermal nonequilibrium modes.
The equations describing such flows are a hyperbolic system with several relax-
ation equations. An important feature is entropy increase dictated by physics for
any irreversible process. Under physical assumptions we obtain properties of ther-
modynamic variables relevant to stability. By the energy method we prove global
existence and uniqueness for the Cauchy problem when the initial data are small
perturbations of constant equilibrium states. We give a precise formulation of the
fundamental solution for the linearized system, and use it to obtain large time behav-
ior of solutions to the nonlinear system. In particular, we show that the entropy
increases but stays bounded. The resulting asymptotic picture of nonequilibrium
flows is in a pointwise sense both in space and in time.

1. Introduction

Many theoretical studies of gas flow adopt the local thermodynamic equilibrium
model, namely the well-known Euler equations for compressible fluids, which take
the following form in one space dimension:

vt − ux = 0,

ut + px = 0, (1.1)(
e + 1

2
u2

)
t
+ (pu)x = 0.

Here, we have used Lagrangian coordinates, and v, u, p and e are, respectively, the
specific volume, velocity, pressure and internal energy of the gas. Other commonly
used thermodynamic variables are the temperature T and the entropy s. The basic
thermodynamic laws state that among the thermodynamic variables only two are
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independent. If we choose for that role s and v, which in turn are specified functions
of x and t , then the local rate per unit mass at which e is increasing at (x, t) is

et (x, t) = T (s(x, t), v(x, t))st (x, t)− p(s(x, t), v(x, t))vt (x, t), (1.2)

see [1]. Equation (1.1) is supplemented by equations of state, usually those for the
perfect gas. Therefore, it is a system of three equations in three unknowns: two
thermodynamic variables and the velocity.

However, at very high velocity and temperature, the assumption of local ther-
modynamic equilibrium, which leads to (1.1), is inadequate. The simplest nonequi-
librium flow, with only one nonequilibrium mode, was studied in a previous paper,
[11]. There we discussed thermodynamic properties of the flow, established global
existence, and obtained the flow’s large time behavior. In this paper we extend the
study to flows with any finite number of nonequilibrium modes. This is an impor-
tant step towards the real gas situation: For diatomic gases such as common air,
the number of nonequilibrium modes in fact depends on the temperature range. If
the temperature is high enough for the upper vibrational states of the molecules
to be appreciably populated, the coupling between vibration and rotation must be
included since the two effects are of the same order of magnitude.

Besides its significance in physics, the system describing the flow is an interest-
ing subject in the theory of partial differential equations. As is to be seen in (1.7),
this is a hyperbolic system with relaxation. Global existence of solutions to a gen-
eral hyperbolic relaxation system was established in [10 and 2] under assumptions
so strong that they preclude any nonequilibrium flow. In fact, their assumptions
were originally introduced for hyperbolic-parabolic systems of conservation laws,
[7], and they imply that the solution decays in time. This is true for viscous flow
when heat conduction is present, as described by the Navier–Stokes equations for
compressible fluids. The situation in nonequilibrium flow is different because at
least part of the solution cannot decay in time. It is then important to establish a
general theory under a weak dissipation assumption. At the same time, there is
a belief that conclusions for systems with one rate equation may not be true for
systems with more than one rate equation. The intrinsic difficulty associated with
systems with several rate equations comes from the fact that the relaxation time
scale of each rate equation is independent of the other. This is indeed the case in
physics as far as small departure from equilibrium states is concerned. An impor-
tant issue is then to study the coupling among the different modes. Studying the
equations of gas flow with several nonequilibrium modes helps us to identify what
is in common for systems with one rate equation and those with several. This may
lead to some weak form of dissipation assumption.

We now derive the equations for flows with a fixed number of nonequilibri-
um modes. We assume that the flow is everywhere in instantaneous translational
equilibrium. We use subscript “1” to denote thermodynamic quantities related to
the translational mode, and i , 2 � i � m, for those related to the nonequilibrium
modes. For example,

e =
m∑

i=1

ei , s =
m∑

i=1

si , (1.3)
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where e1 and s1 denote the specific translational energy and entropy, respectively, of
the molecules, while ei and si , 2 � i � m, are the energy and entropy, respectively,
of the i th mode, which is a nonequilibrium mode. Therefore, e is the total specific
internal energy, and s is the total specific entropy. Similarly, Ti , 1 � i � m, denotes
the temperature associated with the i th mode of the molecules. For a nonequilibri-
um state we must have some i , 2 � i � m, such that Ti �= T1. Equivalently, a state
is in equilibrium if and only if

Ti = T1, 2 � i � m. (1.4)

The translational mode and the nonequilibrium modes obey different thermo-
dynamic equations. Among the thermodynamic variables related to the transla-
tional mode, only two are independent, while among those related to the i th mode,
2 � i � m, only one is independent. If we choose s1 and v as the independent
variables for the translational mode, and si as the independent variable for the i th
mode, 2 � i � m, then similar to (1.2) we have

(e1)t (x, t) = T1(s1(x, t), v(x, t))(s1)t (x, t)− p(s1(x, t), v(x, t))vt (x, t),

(ei )t (x, t) = Ti (si (x, t))(si )t (x, t), 2 � i � m. (1.5)

Here we note that the energies of internal structure are volume-independent. Equa-
tions (1.3)–(1.5) imply

et (x, t) = T1(s1, v)st +
m∑

i=2

[Ti (si )− T1(s1, v)](si )t − p(s1, v)vt . (1.6)

From above we see that the flow is completely determined by m + 1 indepen-
dent thermodynamic variables and the velocity. To represent the flow, the system
of m + 2 equations can be chosen as the conservation of mass, momentum, energy,
and m −1 rate equations. Here each of the rate equations describes how an internal
structure relaxes to its local equilibrium value. We assume that each Ti can only
slightly deviate from T1. In Lagrangian coordinates the system reads

vt − ux = 0,

ut + px = 0, (1.7)(
e + 1

2
u2

)
t
+ (pu)x = 0,

(ei )t = Ei − ei

τi
, 2 � i � m,

where

τi = τi (v, e1) > 0, 2 � i � m, (1.8)

is the local relaxation time for the i th mode, and Ei = Ei (v, e1) is the local equi-
librium value of ei . That is, if we express ei as a function of Ti ,

ei = ωi (Ti ), 2 � i � m, (1.9)
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then

Ei = ωi (T1), 2 � i � m. (1.10)

The relaxation time τi sets the time scale for ei to relax to Ei . Both τi and Ei

are known functions of the translational mode. System (1.7) is supplemented by
appropriate equations of state. For further discussion on nonequilibrium flow, the
readers are referred to [9] and references therein.

We regard all the thermodynamic variables related to the translational mode as
functions of v and e1, for example, T1 = T1(v, e1), s1 = s1(v, e1), and so on. We
also introduce the following notation for the pressure:

p = p(v, e1) = p̄(v, s1) = p̃(v, T1). (1.11)

The basic assumptions in this paper are dictated by physics:

p̃v = ∂

∂v
p̃(v, T1) < 0, (T1)e1 = ∂

∂e1
T1(v, e1) > 0,

pe1 = ∂

∂e1
p(v, e1) �= 0, ω′

i (T1) > 0, 2 � i � m.
(1.12)

By direct calculation and using (1.5) and (1.10), (1.12) implies

c2
f ≡ − p̄v = ppe1 − pv = − p̃v + p2

e1
T1

(T1)e1

> 0;
(Ei )e1 = ω′

i (T1)(T1)e1 > 0, 2 � i � m; (1.13)

ai ≡ ω′
i (T1)T1 pe1 �= 0, pe1ai > 0, 2 � i � m;

b ≡ pe1

∑m
i=2 ai

c2
f − ∑m

i=2(Ei )e1 p̃v
> 0.

Here the derivation of the first equation can be found, for example, in Section 9 of
[4]. We further define

c2 ≡ c2
f

1 + b
> 0. (1.14)

The positive quantities c f and c are called the frozen speed of sound and the equi-
librium speed of sound, respectively. Their physical meaning will be discussed in
Section 2.

To simplify our notation we introduce new variables

χi = Ei − ei , 2 � i � m, (1.15)

namely the departures of nonequilibrium internal energies from their local equilib-
rium values. We also let

‖ · ‖l ≡ ‖ · ‖Hl , ‖ · ‖ ≡ ‖ · ‖L2 , (1.16)

where the norms are with respect to the space variable x .
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We are now ready to state the main results of the paper. Consider the Cauchy
problem of (1.7) with initial data

(v, u, e1, . . . , em)(x, 0) = (v0, u0, e1,0, . . . , em,0)(x). (1.17)

Here the initial function (v0, u0, e1,0, . . . , em,0) is a small perturbation of a constant
equilibrium state (v∗, u∗, e∗

1, . . . , e∗
m). By their physical meaning we have

v∗ > 0, e∗
i > 0, 1 � i � m.

Without loss of generality we take u∗ = 0. Since the constant state is an equilibrium
state, we have

e∗
i = E∗

i or T∗
i = T∗

1, 2 � i � m, (1.18)

by (1.4). Here we use the superscript “*” to denote thermodynamic variables taking
their values at the constant state. Therefore, E∗

i = Ei (v
∗, e∗

1), and so on. Our first
theorem is on global existence of solutions.

Theorem 1.1. Let (1.12) hold, and v∗, e∗
1 , …, e∗

m be positive constants such that
(1.18) is satisfied. Let l � 2 be an integer. Then there exist positive constants ε and
C, such that if

‖(v0 − v∗, u0, e1,0 − e∗
1, . . . , em,0 − e∗

m)‖l � ε,

the Cauchy problem (1.7), (1.17) has a unique global solution (v, u, e1, . . . , em)

(x, t), satisfying

(v−v∗, u, e1−e∗
1, . . . , em −e∗

m) ∈ C0([0,∞); Hl) ∩ C1([0,∞); Hl−1), (1.19)

px , ux ∈ L2([0,∞); Hl−1), χi ∈ L2([0,∞); Hl), 2 � i � m,

and the following energy inequality

sup
t�0

‖(v − v∗, u, e1 − e∗
1, . . . , em − e∗

m)‖2
l (t)

+
∫ ∞

0

[
‖px‖2

l−1(t)+ ‖ux‖2
l−1(t)+

m∑
i=2

‖χi‖2
l (t)

]
dt

� C‖(v0 − v∗, u0, e1,0 − e∗
1, . . . , em,0 − e∗

m)‖2
l . (1.20)

Our next theorem is on the large time behavior of the solution.

Theorem 1.2. Let (1.12) hold, and v∗, e∗
1 , …, e∗

m be positive constants such that
(1.18) is satisfied. Let the initial data (v0, u0, e1,0, . . . , em,0) be a perturbation of
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the constant state (v∗, 0, e∗
1, . . . , e∗

m), satisfying

(v0 − v∗, u0, e1,0 − e∗
1, . . . , em,0 − e∗

m) ∈ H6(R),

(v0 − v∗, u0, e1,0 − e∗
1, . . . , em,0 − e∗

m)(x) = O(1)(x2 + 1)−
3
4 ,

(v′
0, u′

0, e′
1,0, . . . , e′

m,0)(x) = O(1)(x2 + 1)−
3
4 ,

s′′
0 (x) = O(1)(x2 + 1)−

1
4 , (1.21)

‖(v0 − v∗, u0, e1,0 − e∗
1, . . . , em,0 − e∗

m)‖6 + sup
x∈R

{
(x2 + 1)

3
4

(
|v0 − v∗| + |u0|

+
m∑

i=1

|ei,0 − e∗
i | + |v′

0| + |u′
0| +

m∑
i=1

|e′
i,0|

)
(x)+ (x2 + 1)

1
4 |s′′

0 |(x)
}

≡ε0 	1,

where s0 is the initial entropy. Then for all x ∈ R, t � 0, the solution of (1.7),
(1.17) has the following property:

(p − p∗, u)(x, t)

= O(1)ε0

{
(t + 1)−

1
2

[
exp

(
− (x + c∗(t + 1))2

ν(t + 1)

)
+ exp

(
− (x−c∗(t + 1))2

ν(t + 1)

)]

+ [(x + c∗(t + 1))2 + t + 1]− 3
4 + [(x − c∗(t + 1))2 + t + 1]− 3

4

}
, (1.22)

(χ2, . . . , χm, px , ux )(x, t)

= O(1)ε0(t + 1)−
1
2

{
(t + 1)−

1
2

[
exp

(
− (x + c∗(t + 1))2

ν(t + 1)

)

+ exp

(
− (x − c∗(t + 1))2

ν(t + 1)

)]

+[(x + c∗(t + 1))2 + t + 1]− 3
4 + [(x − c∗(t + 1))2 + t + 1]− 3

4

}
,

‖ ((χ2)x , . . . , (χm)x , pxx , uxx ) (·, t)‖L∞ = O(1)ε0(t + 1)−
3
2 ,

s(x, t)− s∗ = O(1)ε0(x
2 + 1)−

3
4 , sx (x, t) = O(1)ε0(x

2 + 1)−
3
4 ,

where p∗, c∗ and s∗ are the pressure, equilibrium speed of sound and entropy eval-
uated at the constant state, and ν > 0 is a constant depending only on the constant
state. Here the equilibrium speed of sound c, is defined by (1.14), (1.13) and (1.11).

From (1.22) we see that indeed the solution contains three parts: The entropy
wave does not decay. The perturbations of pressure and velocity decay at the rate
(t + 1)−1/2. And the departures of internal structures from their local equilibrium
values are higher order terms.

The plan for this paper is as follows: In Section 2, we study thermodynamic
properties of nonequilibrium flows, and derive the Chapman–Enskog expansion for
(1.7). In Section 3, we prove Theorem 1.1 by energy estimates. In Section 4, we
present the fundamental solution of the linearized system. And finally in Section 5,
we prove Theorem 1.2.
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2. Thermodynamic properties and Chapman-Enskog expansion

Besides their own interests in physics, the thermodynamic properties of non-
equilibrium flows are the foundation for establishing the global existence of solu-
tions and for studying the large time behavior.

First we study the entropy s. Notice that by (1.15) the system (1.7) for nonequi-
librium flows can be written as

wt + f (w)x = r(w), (2.1)

where

w =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v

u
e + 1

2 u2

e2
...

em

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, f (w) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−u
p

pu
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, r(w) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

χ2/τ2
...

χm/τm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (2.2)

Proposition 2.1. Let (1.12) hold. If the entropy s is regarded as a function of w
defined in (2.2), then −s is strictly convex. Moreover, the Hessian H of −s with
respect to w is a symmetrizer of (2.1), (2.2) in the following sense: H f ′ is sym-
metric for all w under consideration, while Hr ′ is symmetric and semi-negative
definite on the equilibrium manifold Ti = T1, 2 � i � m.

Proof. Let

H = −∇2s(w) =
(

H1 H2
Ht

2 H3

)
, (2.3)

where

H1 =
⎛
⎝ −(s1)vv u(s1)e1v −(s1)e1v

u(s1)ve1 (s1)e1 − u2(s1)e1e1 u(s1)e1e1

−(s1)ve1 u(s1)e1e1 −(s1)e1e1

⎞
⎠ ,

H2 =
⎛
⎝ (s1)e1v · · · (s1)e1v

−u(s1)e1e1 · · · −u(s1)e1e1

(s1)e1e1 · · · (s1)e1e1

⎞
⎠ ∈ R

3×(m−1), (2.4)

H3 = H31 − diag
(
s′′

2 (e2), . . . , s′′
m(em)

) ∈ R
(m−1)×(m−1),

and H31 is the matrix whose entries are all −(s1)e1e1 . Here in (2.4) s1 = s1(v, e1)

and si = si (ei ), 2 � i � m. Using the assumption (1.12), by direct calculation we
can show that H1 is positive definite. We can also show that

det H =
m∏

i=2

[−s′′
i (ei )

]
det H1. (2.5)
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From (1.5) we have

s′
i (ei ) = 1

Ti
, 2 � i � m.

Therefore, by (1.9) and (1.12),

− s′′
i (ei ) = 1

T 2
i ω

′
i (Ti )

> 0, 2 � i � m. (2.6)

Equation (2.5) implies det H > 0. Similarly, we can show that all leading princi-
pal submatrices of H have positive determinants. This implies that H is positive
definite, or −s is strictly convex.

Note that from (2.2) and (1.11),

f ′ =
(

A1 A2
0(m−1)×3 0(m−1)×(m−1)

)
, (2.7)

where

A1 =
⎛
⎝ 0 −1 0

pv −upe1 pe1

upv −u2 pe1 + p upe1

⎞
⎠ , A2 =

⎛
⎝ 0 · · · 0

−pe1 · · · −pe1

−upe1 · · · −upe1

⎞
⎠ ∈ R

3×(m−1).

Equations (2.3) and (2.7) give us

H f ′ =
(

H1 A1 H1 A2
Ht

2 A1 Ht
2 A2

)
.

It is a classical result for the Euler equations (1.1) that H1 A1 is symmetric. By direct
calculation we have Ht

2 A2 = 0(m−1)×(m−1). Using (1.5) we also have At
1 H2 =

H1 A2 ∈ R
3×(m−1), where in H1 A2 the first and the third rows are zero, while the

entries in the second row are all the same as −pe1/T1. Therefore, H f ′ is symmetric.
On the equilibrium manifold Ti = T1, 2 � i � m, we have by (1.15), (1.9) and

(1.10),

χi = 0, 2 � i � m. (2.8)

Hence by (2.2),

r ′ =
(

03×3 03×(m−1)
R1 R2

)
, (2.9)

with

R1 =

⎛
⎜⎜⎝

(E2)v
τ2

− u(E2)e1
τ2

(E2)e1
τ2

...
...

...
(Em )v
τm

− u(Em )e1
τm

(Em)e1
τm

⎞
⎟⎟⎠ ∈ R

(m−1)×3,

R2 =
⎛
⎜⎝

− (E2)e1
τ2

· · · − (E2)e1
τ2· · · · · · · · ·

− (Em )e1
τm

· · · − (Em )e1
τm

⎞
⎟⎠ − diag

(
1

τ2
, . . . ,

1

τm

)
∈ R

(m−1)×(m−1).
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Using (1.10), (1.5), (2.4) and (2.6) we have

(
R1 R2

) = diag

(
ω′

2(T1)

τ2
, . . . ,

ω′
m(T1)

τm

)
(−T 2

1 )(H
t
2 H3). (2.10)

Equations (2.3), (2.9) and (2.10), together with the fact that H3 is symmetric, give
us

Hr ′ =
(

H2
H3

) (
R1 R2

)=−T 2
1

(
H2
H3

)
diag

(
ω′

2(T1)

τ2
, . . . ,

ω′
m(T1)

τm

) (
Ht

2 Ht
3

)
(2.11)

on the equilibrium manifold. Clearly, the right-hand side of (2.11) is symmetric
and semi-negative definite under the assumption (1.12). ��

Next we study the frozen speed of sound c f and the equilibrium speed of sound
c, as defined in (1.13) and (1.14). This is to be done by examining connections
between the Equation (1.7) for nonequilibrium flows and the Euler equations (1.1).
In particular, we examine two important limits associated with a nonequilibrium
flow: the frozen flow and the equilibrium flow.

The frozen flow is the limit as all internal structures become “frozen”, that is,
as τi → ∞, 2 � i � m. Here recall that τi is the time scale for the i th mode to
relax to its local equilibrium value. For the frozen flow, all the rate equations in
(1.7) take the form (ei )t = 0, hence are replaced by the algebraic equations

ei (x, t) = ei (x, 0) ≡ ei (x), 2 � i � m.

By (1.3), Equation (1.7) becomes the Euler equations (1.1), with

e(x, t) = e1(x, t)+ eI (x), (2.12)

where eI (x) = ∑m
i=2 ei (x) is given. From (1.11) and (2.12),

p = p(v, e1) = p(v, e − eI ).

The sound speed of the frozen flow is
[

p
∂

∂e
p(v, e − eI )− ∂

∂v
p(v, e − eI )

]1/2

= (ppe1 − pv)
1/2,

which is exactly the frozen speed of sound c f defined in (1.13).
Similarly, the equilibrium flow is the limit as all internal processes take place

infinitely rapidly, namely as τi → 0, 2 � i � m. In general, we expect (ei )t to stay
finite. This implies

Ei = ei , 2 � i � m. (2.13)

Again, Equation (1.7) is reduced to the Euler equations (1.1). However, by (1.3)
and (2.13) the internal energy has a different expression

e = e1 +
m∑

i=2

Ei (v, e1). (2.14)
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Equation (2.14) defines e1 implicitly as a function of v and e, denoted as

e1 = e(r)1 (v, e). (2.15)

Correspondingly, as a function of v and e1, p can be regarded as a function of v
and e. That is,

p = p(r)(v, e) = p(v, e(r)1 (v, e)). (2.16)

Denote the sound speed of the equilibrium flow as c,

c2 = p
∂

∂e
p(r)(v, e)− ∂

∂v
p(r)(v, e). (2.17)

We want to show that c defined by (2.17) is in fact the same as in (1.14).
For our convenience we introduce the following identities relating the thermo-

dynamic variables for the translational mode:

p̃v = pv − (T1)v pe1/(T1)e1, T1 pe1 = p(T1)e1 − (T1)v,

p̄v = p̃v − p2
e1

T1

(T1)e1

.
(2.18)

These identities are derived from (1.5), see [3 or 4] for details. We now differentiate
(2.14) with respect to v and e, respectively. These give us

(
e(r)1

)
v

= −
∑m

i=2(Ei )v

1 + ∑m
i=2(Ei )e1

,
(

e(r)1

)
e

= 1

1 + ∑m
i=2(Ei )e1

. (2.19)

Substituting (2.16) and (2.19) into (2.17), and using (1.13), (1.10) and (2.18), we
have

c2 = ppe1

(
e(r)1

)
e
− pv − pe1

(
e(r)1

)
v

= c2
f − pe1

1 + ∑m
i=2(Ei )e1

m∑
i=2

[
p(Ei )e1 − (Ei )v

]

= c2
f − pe1

1 + ∑m
i=2(Ei )e1

m∑
i=2

ω′
i (T1)T1 pe1

= c2
f − ∑m

i=2 ω
′
i (T1)(T1)e1 p̃v

1 + ∑m
i=2 ω

′
i (T1)(T1)e1

. (2.20)

Using ai and b as defined in (1.13), together with (2.18), we have

c2 = c2
f

/{
1+

m∑
i=2

ω′
i (T1)(T1)e1

(
1+ p̃v/c

2
f

)/[
1 −

m∑
i=2

ω′
i (T1)(T1)e1 p̃v/c

2
f

]}

= c2
f

/{
1 +

m∑
i=2

ai pe1

/[
c2

f −
m∑

i=2

ω′
i (T1)(T1)e1 p̃v

]}
= c2

f

1 + b
.

Therefore, c defined in (2.17) is the same as in (1.14).
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Proposition 2.2. Let (1.12) hold. The equilibrium speed of sound and the frozen
speed of sound satisfy

0 < c < c f . (2.21)

Proof. Inequality (2.21) is straightforward by (1.13) and (1.14). ��
The last topic in this section is the Chapman–Enskog expansion of (1.7). The

expansion gives us the connection between a nonequilibrium flow and a viscous
flow with zero heat conduction. We first derive the equation forχi defined by (1.15).
From (1.10), (1.7), (1.3), (2.18) and (1.13) we have

(χi )t = (Ei )t − (ei )t = ω′
i (T1)

[
(T1)vvt + (T1)e1(ei )t

] − χi

τi

= ω′
i (T1)

[
(T1)v − (T1)e1 p

]
ux − ω′

i (T1)(T1)e1

m∑
j=2

χ j

τ j
− χi

τi

= −ai ux − ω′
i (T1)(T1)e1

m∑
j=2

χ j

τ j
− χi

τi
, 2 � i � m. (2.22)

For the equilibrium flow we set χi = 0, 2 � i � m, which is (2.13). For the
Chapman–Enskog expansion we use the next order correction, and set the fastest
decaying term (χi )t in (2.22) as zero. This gives us

χi

τi
+ ω′

i (T1)(T1)e1

m∑
j=2

χ j

τ j
= −ai ux , 2 � i � m. (2.23)

Sum up (2.23) for all i and simplify. We have

m∑
j=2

χ j

τ j
= − ∑m

j=2 a j ux

1 + ∑m
j=2 ω

′
j (T1)(T1)e1

. (2.24)

Substituting (2.24) into (2.23) gives us

χi

τi
=

[ ∑m
j=2 a jω

′
i (T1)(T1)e1

1 + ∑m
j=2 ω

′
j (T1)(T1)e1

− ai

]
ux , 2 � i � m. (2.25)

From (1.13) we have

a jω
′
i (T1) = aiω

′
j (T1), 2 � i, j � m. (2.26)

Using (2.26), Equation (2.25) can be simplified as

χi

τi
= −ai ux

1 + ∑m
j=2 ω

′
j (T1)(T1)e1

, 2 � i � m. (2.27)

Therefore, the total internal energy up to the same order correction is

e = e1 +
m∑

i=2

Ei + ux
∑m

i=2 aiτi

1 + ∑m
i=2 ω

′
i (T1)(T1)e1

, (2.28)
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where we have used (1.3), (1.15) and (2.27). Analogous to (2.14) for the equilibrium
flow, we define e(r)1 (v, e) by

e = e(r)1 +
m∑

i=2

Ei (v, e(r)1 ). (2.29)

Subtracting (2.29) from (2.28), then up to the same order of accuracy we have

e1 − e(r)1 +
m∑

i=2

(Ei )e1

(
e1 − e(r)1

)
= − ux

∑m
i=2 aiτi

1 + ∑m
i=2 ω

′
i (T1)(T1)e1

,

which implies

e1 − e(r)1 = −
{ ∑m

i=2 aiτi[
1 + ∑m

i=2 ω
′
i (T1)(T1)e1

]2

}
(v, e(r)1 )ux . (2.30)

Up to the same order of accuracy we also have

p = p(v, e1) = p(v, e(r)1 )−
{

pe1

∑m
i=2 aiτi[

1 + ∑m
i=2 ω

′
i (T1)(T1)e1

]2

}
(v, e(r)1 )ux . (2.31)

Substituting (2.31) into the first three equations of (1.7) and by (1.13) and (1.12),
we obtain the second order Chapman–Enskog expansion for the nonequilibrium
flow:

vt − ux = 0,

ut + p(r)x = (µux )x , (2.32)(
e + 1

2
u2

)
t
+ (p(r)u)x = (µuux )x ,

where

p(r) = p(r)(v, e) = p
(
v, e(r)1 (v, e)

)
, (2.33)

µ = µ(v, e) =
{

pe1

∑m
i=2 aiτi[

1 + ∑m
i=2 ω

′
i (T1)(T1)e1

]2

} (
v, e(r)1 (v, e)

)
> 0. (2.34)

System (2.32) is the Navier–Stokes equations with zero heat conduction, where µ
plays the role of viscosity. This system has been studied in details in [5]. In partic-
ular, we found that the absence of heat conduction implies the nondecay of part of
the solution. We referred to (2.32) as a system of composite type.

The Chapman–Enskog expansion suggests that the system (1.7) for nonequi-
librium flows is also of composite type. This has been verified for the case of one
nonequilibrium mode, see [11]. For the case of more than one nonequilibrium modes
the conclusion stays true. This can be easily illustrated by a special solution: Let u
be a constant, p be a positive constant, v = v(x) > 0, and ei = Ei = ωi (T1(x)),
2 � i � m, where T1(x) is determined by v(x) and p. Such a special solution to
(1.7) is both a frozen flow and an equilibrium flow. Clearly, if v(x) and ei (x) are
perturbations of constants, the perturbations do not decay in time. For a generic
nonequilibrium solution, the entropy in fact increases in time, as to be seen in the
next section.
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3. Global existence of solution

In this section we prove Theorem 1.1, hence establish the existence of solutions
global in time. The approach is the energy estimate, based on the thermodynamic
properties studied in Section 2. From the discussion in Section 2, we understand
that part of the solution does not decay in time. The other part, however, does.
Therefore, to perform the energy estimate it is crucial to separate different parts of
the solution according to their decay rates. This is done mainly based on our knowl-
edge of the fundamental solution of the linearized system, which is to be discussed
in the next section. A correct way to separate different parts of the solution is to
use s for the nondecaying portion, p and u for the leading term of the decaying
portion, and χi , 2 � i � m, for the higher order terms.

We now derive the equations for the entropy s and the pressure p, respectively.
From (1.3), (1.5)–(1.7), (1.13) and (1.15) we have

st = 1

T1
(et + pvt )+ 1

T1

m∑
i=2

(T1 − Ti )(si )t

= 1

T1

m∑
i=2

(T1 − Ti )
1

Ti
(ei )t =

m∑
i=2

(
1

Ti
− 1

T1

)
χi

τi
,

pt = pvvt + pe1(e1)t = pvux + pe1

[
−uut − (pu)x −

m∑
i=2

χi

τi

]

= −ux c2
f − pe1

m∑
i=2

χi

τi
.

Together with (1.7) and (2.22) we have

pt + c2
f ux = −pe1

m∑
j=2

χ j

τ j
,

ut + px = 0, (3.1)

(χi )t + ai ux = −χi

τi
− ω′

i (T1)(T1)e1

m∑
j=2

χ j

τ j
, 2 � i � m,

st =
m∑

j=2

(
1

Tj
− 1

T1

)
χ j

τ j
.

Notice that the right-hand side of the entropy equation is

m∑
i=2

T1 − Ti

Ti T1τi
[ωi (T1)− ωi (Ti )] > 0

by (1.9), (1.10), (1.12) and (1.15). Therefore, the entropy increases in time, char-
acterizing an irreversible process. The thermodynamic variables p, s and χi , 2 �
i � m, are functions of v and ei , 1 � i � m. Under the assumption (1.12), by
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direct calculation we can verify that the Jacobian is nonzero. Therefore, we are free
to use p, s and χi , 2 � i � m, or v and ei , 1 � i � m, as independent variables.
That is, we can use (3.1) or (1.7) as needed.

According to Proposition 2.1, the system (1.7) is symmetrizable. Local exis-
tence and uniqueness for the Cauchy problem are classical for such a system, see [6]
and references therein. To prove Theorem 1.1 all we need is to prove the following
a priori estimate.

Proposition 3.1. Let (1.12) hold, and v∗, e∗
1, . . . , e∗

m be positive constants such
that (1.18) is satisfied. Let l � 2 be an integer and t0 > 0 be a constant. Suppose
that (v, u, e1, . . . , em)(x, t) is a solution to (1.7) and (1.17), satisfying (1.19) with
[0,∞) replaced by [0, t0]. For 0 � t � t0 define

N 2
l (t) ≡ sup

0�t ′�t

∥∥(
v − v∗, u, e1 − e∗

1, . . . , em − e∗
m

)∥∥2
l (t

′)

+
∫ t

0

(
‖px‖2

l−1 + ‖ux‖2
l−1 +

m∑
i=2

‖χi‖2
l

)
(t ′) dt ′, (3.2)

in particular,

Nl(0) ≡ ∥∥(
v0 − v∗, u0, e1,0 − e∗

1, . . . , em,0 − e∗
m

)∥∥
l .

Then there exist positive constants ε and C, independent of t0, such that if Nl(t0) �
ε, then

Nl(t0) � C Nl(0). (3.3)

Proof. Let C be a universal positive constant independent of t0. As in the Introduc-
tion we use the superscript “*” to label the thermodynamic variables at the constant
equilibrium state (v∗, e∗

1, . . . , e∗
m). Also let u∗ = 0. Set

S(w) = −s + s∗ + (∇s)∗ (w − w∗), (3.4)

where w is defined in (2.2), and the gradient operator ∇ is with respect to w. By
Proposition 2.1, −s is strictly convex with respect to w. Hence for Nl(t0) � ε,
where ε is small and independent of t0, S is equivalent to |w − w∗|2, or to

∣∣(v − v∗, u, e1 − e∗
1, . . . , em − e∗

m

)∣∣2
. (3.5)

From (3.4), (2.1) and (2.2) we have

S(w)t = −st + (∇s)∗wt = −st − (∇s)∗
[

f (w)− f (w∗)
]

x , (3.6)

where we have noticed that by (1.3), (1.5) and (1.18),

(
∂s

∂ei

)∗
=

(
− 1

T1
+ 1

Ti

)∗
= 0, 2 � i � m.
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Integrate (3.6) over R × [0, t] for 0 � t � t0 and use (3.1). We have

∫ ∞

−∞
S(w(x, t)) dx +

∫ t

0

∫ ∞

−∞

m∑
i=2

(
1

Ti
− 1

T1

)
χi

τi
(x, t ′) dxdt ′

=
∫ ∞

−∞
S(w(x, 0)) dx . (3.7)

By (1.9), (1.10), (1.15) and (1.12), we have

(
1

Ti
− 1

T1

)
χi

τi
=

[
ω−1

i (Ei )− ω−1
i (ei )

]
χi

T1Tiτi
�
χ2

i

C
, 2 � i � m. (3.8)

Substituting (3.8) into (3.7) and using the fact that S is equivalent to (3.5), we obtain
the energy estimate for the solution:

∥∥(
v − v∗, u, e1−e∗

1, . . . , em − e∗
m

)∥∥2
(t)+

∫ t

0

m∑
i=2

‖χi‖2(t ′) dt ′ � C N 2
0 (0). (3.9)

Next we perform energy estimates for the derivatives of the solution. For
1 � k � l, taking the kth derivative of (3.1) with respect to x , we have

(
∂k

x p
)

t
+ ∂k

x

(
c2

f ux

)
= −∂k

x

⎛
⎝pe1

m∑
j=2

χ j

τ j

⎞
⎠ ,

(
∂k

x u
)

t
+ ∂k+1

x p = 0, (3.10)

(
∂k

xχi

)
t
+ ∂k

x (ai ux ) = −∂k
x

⎡
⎣χi

τi
+ ω′

i (T1)(T1)e1

m∑
j=2

χ j

τ j

⎤
⎦ , 2 � i � m,

(
∂k

x s
)

t
=

m∑
j=2

∂k
x

[(
1

Tj
− 1

T1

)
χ j

τ j

]
.

Define

K = c2
f −

m∑
j=2

ω′
j (T1)(T1)e1 p̃v,

η1 = 1 + ∑m
j=2 ω

′
j (T1)(T1)e1

K
, η2 = pe1

K
, η3 = − (T1)e1 p̃v

T1 K
, (3.11)

ζi = 1

T1ω
′
i (T1)

, ξi = 1 +
m∑

j=i

ω′
j (T1)(T1)e1 , 2 � i � m.

Multiply the first equation in (3.10) by η1∂
k
x p − η2

∑m
j=2 ∂

k
xχ j , the second one by

∂k
x u, the last one by ∂k

x s, and the one for χi by −η2∂
k
x p + ζi∂

k
xχi − η3

∑m
j=2 ∂

k
xχ j .
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Sum up all these equations for i = 2, . . . ,m, and use (3.11), (1.13) and (2.18). We
have

1

2

∂

∂t

⎡
⎢⎣η1

(
∂k

x p
)2 − 2η2∂

k
x p

m∑
j=2

∂k
xχ j +

(
∂k

x u
)2 +

m∑
i=2

ζi

(
∂k

xχi

)2

− η3

⎛
⎝ m∑

j=2

∂k
xχ j

⎞
⎠

2

+
(
∂k

x s
)2

⎤
⎥⎦ +

m∑
i=2

ζi

τi

(
∂k

xχi

)2

= −
(
∂k

x p ∂k
x u

)
x

+
⎛
⎝η1∂

k
x p − η2

m∑
j=2

∂k
xχ j

⎞
⎠ [

c2
f ∂

k+1
x u − ∂k

x

(
c2

f ux

)]

+
m∑

i=2

⎛
⎝η2∂

k
x p − ζi∂

k
xχi + η3

m∑
j=2

∂k
xχ j

⎞
⎠ [

∂k
x (ai ux )− ai∂

k+1
x u

]
+ 1

2
(η1)t

×
(
∂k

x p
)2−(η2)t∂

k
x p

m∑
j=2

∂k
xχ j + 1

2

m∑
i=2

(ζi )t

(
∂k

xχi

)2 − 1

2
(η3)t

⎛
⎝ m∑

j=2

∂k
xχ j

⎞
⎠

2

+
⎛
⎝η1∂

k
x p − η2

m∑
j=2

∂k
xχ j

⎞
⎠

⎡
⎣pe1∂

k
x

m∑
j=2

χ j

τ j
− ∂k

x

⎛
⎝pe1

m∑
j=2

χ j

τ j

⎞
⎠

⎤
⎦

+ η2∂
k
x p

⎡
⎣∂k

x

⎛
⎝ m∑

i=2

ω′
i (T1)(T1)e1

m∑
j=2

χ j

τ j

⎞
⎠ −

m∑
i=2

ω′
i (T1)(T1)e1∂

k
x

m∑
j=2

χ j

τ j

⎤
⎦

+
m∑

i=2

ζi∂
k
xχi

⎧⎨
⎩ω′

i (T1)(T1)e1∂
k
x

m∑
j=2

χ j

τ j
− ∂k

x

⎡
⎣ω′

i (T1)(T1)e1

m∑
j=2

χ j

τ j

⎤
⎦

⎫⎬
⎭

− η3

m∑
j=2

∂k
xχ j

⎧⎨
⎩

m∑
i=2

ω′
i (T1)(T1)e1∂

k
x

m∑
j=2

χ j

τ j
−∂k

x

⎡
⎣ m∑

i=2

ω′
i (T1)(T1)e1

m∑
j=2

χ j

τ j

⎤
⎦
⎫⎬
⎭

+
m∑

i=2

ζi∂
k
xχi

[
∂k

xχi

τi
− ∂k

x

(
χi

τi

)]
+ ∂k

x s
m∑

j=2

∂k
x

[(
1

Tj
− 1

T1

)
χ j

τ j

]
. (3.12)

We claim that the left-hand side of (3.12) can be written as

1

2

∂

∂t

⎧⎨
⎩η1

(
∂k

x p − η2

η1

m∑
i=2

∂k
xχi

)2

+
(
∂k

x u
)2 +

(
∂k

x s
)2 +

m∑
i=2

ζi
ξi+1

ξi

×
⎡
⎣∂k

xχi − (T1)e1ω
′
i (T1)

ξi+1

m∑
j=i+1

∂k
xχ j

⎤
⎦

2
⎫⎪⎬
⎪⎭ +

m∑
i=2

ζi

τi

(
∂k

xχi

)2
. (3.13)
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To verify the claim, by (3.11), (2.18) and (1.13) we only need to show

m∑
i=2

ζi
ξi+1

ξi

⎡
⎣∂k

xχi − (T1)e1ω
′
i (T1)

ξi+1

m∑
j=i+1

∂k
xχ j

⎤
⎦

2

=
m∑

i=2

ζi

(
∂k

xχi

)2 − (T1)e1

T1ξ2

⎛
⎝ m∑

j=2

∂k
xχ j

⎞
⎠

2

. (3.14)

For m = 2, (3.14) is true by the definition of ζi in (3.11). For m > 2, (3.14) is
proved by induction: If (3.14) is true for m − 1, then for m the left-hand side of
(3.14) is equal to

ζ2ξ3

ξ2

⎡
⎣∂k

xχ2− (T1)e1ω
′
2(T1)

ξ3

m∑
j=3

∂k
xχ j

⎤
⎦

2

+
m∑

i=3

ζi

(
∂k

xχi

)2− (T1)e1

T1ξ3

⎛
⎝ m∑

j=3

∂k
xχ j

⎞
⎠

2

,

which can be simplified as the right-hand side of (3.14), using (3.11).
On the right-hand side of (3.12) we use (1.7) to replace the derivatives with

respect to t by those with respect to x . Integrate (3.12) over R×[0, t] for 0 � t � t0
and use (3.13). For 1 � k � l and small Nl(t0) we obtain

1

2

∫ ∞

−∞

⎧⎪⎨
⎪⎩η1

(
∂k

x p − η1

η2

m∑
i=2

∂k
xχi

)2

+
(
∂k

x u
)2 +

(
∂k

x s
)2

+
m∑

i=2

ζi
ξi+1

ξi

⎡
⎣∂k

xχi − (T1)e1ω
′
i (T1)

ξi+1

m∑
j=i+1

∂k
xχ j

⎤
⎦

2
⎫⎪⎬
⎪⎭ (x, t) dx

+
∫ t

0

∫ ∞

−∞

[
m∑

i=2

ζi

τi

(
∂k

xχi

)2
]
(x, t ′) dxdt ′ � C

[
N 2

k (0)+ N 3
l (t0)

]
, (3.15)

where we have used (1.9), (1.10) and (1.15). By (3.11) and (1.12), inequality (3.15)
implies

∥∥∥(
∂k

x p, ∂k
x u, ∂k

xχ2, . . . , ∂
k
xχm, ∂

k
x s

)∥∥∥2
(t)+

∫ t

0

m∑
i=2

∥∥∥∂k
xχi

∥∥∥2
(t ′) dt ′

� C
[

N 2
k (0)+ N 3

l (t0)
]
. (3.16)

Next we apply ∂k−1
x to the third equation of (3.1) with i = 2, and multiply the

result by ∂k
x u/a2. Using (1.7), this gives us
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(
∂k

x u
)2 = −

(
1

a2
∂k

x u ∂k−1
x χ2

)
t
−

(
1

a2
∂k

x p ∂k−1
x χ2

)
x

+
(

1

a2
∂k−1

x χ2

)
x
∂k

x p

+ ∂k
x u ∂k−1

x χ2

⎧⎨
⎩

[(
1

a2

)
v

−
(

1

a2

)
e1

p

]
ux −

(
1

a2

)
e1

m∑
j=2

χ j

τ j

⎫⎬
⎭

+
[(
∂k

x u
)2 − 1

a2
∂k

x u ∂k−1
x (a2ux )

]

− 1

a2
∂k

x u ∂k−1
x

⎡
⎣χ2

τ2
+ ω′

2(T1)(T1)e1

m∑
j=2

χ j

τ j

⎤
⎦ . (3.17)

Integrate this equation over R × [0, t] for 0 � t � t0. For 1 � k � l and small
Nl(t0) we then have∫ t

0
‖∂k

x u‖2(t ′) dt ′ � C
[
‖∂k

x u‖(t) ‖∂k−1
x χ2‖(t)+ N 2

k (0)+ N 3
l (t0)

]

+ C
∫ t

0

∫ ∞

−∞

⎡
⎣∣∣∣∂k

xχ2 ∂
k
x p

∣∣∣ +
∣∣∣∂k

x u
∣∣∣

m∑
j=2

∣∣∣∂k−1
x χ j

∣∣∣
⎤
⎦ (x, t ′) dxdt ′. (3.18)

Applying (3.16) and (3.9) to it, (3.18) is simplified as∫ t

0
‖∂k

x u‖2(t ′) dt ′ � C
[

N 2
k (0)+ N 3

l (t0)
]

+ C
∫ t

0

∫ ∞

−∞

∣∣∣∂k
xχ2 ∂

k
x p

∣∣∣ (x, t ′) dxdt ′.

(3.19)

Applying ∂k−1
x to the second equation of (3.1) and multiplying the result by

∂k
x p, we also have

(
∂k

x p
)2 = −

(
∂k

x p ∂k−1
x u

)
t
+

(
∂k−1

x pt ∂
k−1
x u

)
x

+ ∂k−1
x

(
c2

f ux

)
∂k

x u

+ ∂k
x u ∂k−1

x

⎛
⎝pe1

m∑
j=2

χ j

τ j

⎞
⎠ . (3.20)

Integrate (3.20) over R × [0, t] with 0 � t � t0. Again, for 1 � k � l and small
Nl(t0) we have∫ t

0
‖∂k

x p‖2(t ′) dt ′ � C
[
‖∂k

x p‖(t) ‖∂k−1
x u‖(t)+ N 2

k (0)+ N 3
l (t0)

]

+ C
∫ t

0

⎛
⎝‖∂k

x u‖2 +
m∑

j=2

‖∂k−1
x χ j‖2

⎞
⎠ (t ′) dt ′.

Substitute (3.16), (3.9) and (3.19) into the right-hand side. The above inequality
becomes∫ t

0
‖∂k

x p‖2(t ′) dt ′ � C
[

N 2
k (0)+ N 3

l (t0)
]

+ C
∫ t

0

∫ ∞

−∞

∣∣∣∂k
xχ2 ∂

k
x p

∣∣∣ (x, t ′) dxdt ′,
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which can be further simplified as
∫ t

0
‖∂k

x p‖2(t ′) dt ′ � C
[

N 2
k (0)+ N 3

l (t0)
]

+ C
∫ t

0
‖∂k

xχ2‖2(t ′) dt ′

� C
[

N 2
k (0)+ N 3

l (t0)
]
, (3.21)

using (3.16). With (3.16) and (3.21), inequality (3.19) becomes
∫ t

0
‖∂k

x u‖2(t ′) dt ′ � C
[

N 2
k (0)+ N 3

l (t0)
]
. (3.22)

Sum up (3.16), (3.21) and (3.22) for 1 � k � l. Together with (3.9) we have

∥∥(
v − v∗, u, e1 − e∗

1, . . . , em − e∗
m

)∥∥2
l (t)

+
∫ t

0

(
‖px‖2

l−1 + ‖ux‖2
l−1 +

m∑
i=2

‖χi‖2
l

)
(t ′) dt ′

� C
[

N 2
l (0)+ N 3

l (t0)
]
.

The definition of Nl(t) in (3.2) then implies

N 2
l (t0) � C

[
N 2

l (0)+ N 3
l (t0)

]
.

Therefore, there exists a small ε > 0, independent of t0, such that Nl(t0) � ε

implies

Nl(t0) � C Nl(0).
��

4. Fundamental solution of linearized system

In this section we consider the linearized system of (3.1) around a constant state
(v∗, e∗

1, . . . , e∗
m) that is an equilibrium state. As in the Introduction, the superscript

“*” is used to label the thermodynamic variables related to it. The system reads:

pt +
(

c∗
f

)2
ux = −p∗

e1

m∑
j=2

χ j

τ ∗
j
,

ut + px = 0, (4.1)

(χi )t + a∗
i ux = −χi

τ ∗
i

− ω′
i (T

∗
1 )(T1)

∗
e1

m∑
j=2

χ j

τ ∗
j
, 2 � i � m,

st = 0,

where c f and ai are defined by (1.13). Notice that the linearized entropy equation
is so because of (1.18). The purpose of this section is to obtain the fundamental
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solution for the Cauchy problem of (4.1). This is crucial to the study of large time
behavior for the nonlinear system (1.7). Besides, the fundamental solution itself is
important to the theory of partial differential equations. In [11] a general theory of
fundamental solutions to hyperbolic balance laws was established under stability
and dissipation assumptions. A special case was discussed in an earlier paper, [8].
In this section we apply the general theory in [11] to (4.1), and give an explicit
formulation of its fundamental solution.

Observe that in (4.1) the entropy equation is decoupled from the rest, and its
fundamental solution for the Cauchy problem is simply the Dirac δ-function. There-
fore, we only need to consider the other m + 1 equations, which are dissipative due
to the relaxation. We write these equations as

wt + Awx = Bw, (4.2)

where

w = (p, u, χ2, . . . , χm)
t ,

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
(

c∗
f

)2
0 · · · 0

1 0 0 · · · 0
0 a∗

2 0 · · · 0
...

...
...

...

0 a∗
m 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, (4.3)

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − p∗
e1
τ∗

2
· · · − p∗

e1
τ∗

m

0 0 0 · · · 0

0 0 − 1+ω′
2(T

∗
1 )(T1)

∗
e1

τ∗
2

· · · −ω′
2(T

∗
1 )(T1)

∗
e1

τ∗
m

...
...

...
...

0 0 −ω′
m (T

∗
1 )(T1)

∗
e1

τ∗
2

· · · − 1+ω′
m (T

∗
1 )(T1)

∗
e1

τ∗
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The Green’s function G(x, t) for the Cauchy problem of (4.2) is the solution matrix
satisfying the initial condition

G(x, 0) = δ(x)I, (4.4)

where δ is the Dirac δ-function, and I is the (m + 1) × (m + 1) identity matrix.
The fundamental solution is G(x − y, t − t ′).

In [11] Green’s function has been found for systems in the form (4.2) under the
following assumptions:

Assumption 4.1. There exists a symmetric and positive definite matrix A0 such
that A0 A is symmetric, and A0 B is symmetric and semi-negative definite.

Assumption 4.2. Any eigenvector of A is not in the null space of B.
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Our first step is to verify these assumptions with A and B given in (4.3). Let

A0 =
(

A01 A02
At

02 A03

)
, (4.5)

where

A01 =
( [

1 + ∑m
i=2 ω

′
i (T

∗
1 )(T1)

∗
e1

]
/K ∗ 0

0 1

)
, A02 =

⎛
⎝ − p∗

e1
K ∗ · · · − p∗

e1
K ∗

0 · · · 0

⎞
⎠

2×(m−1)

(4.6)

A03 = diag

(
1

T ∗
1 ω

′
2(T

∗
1 )
, . . . ,

1

T ∗
1 ω

′
m(T

∗
1 )

)
+ (T1)

∗
e1

p̃∗
v

T ∗
1 K ∗

⎛
⎜⎝

1 · · · 1
...

...
1 · · · 1

⎞
⎟⎠
(m−1)×(m−1)

with K and p̃v defined in (3.11) and (1.12), respectively. By direct calculation we
have

A0 A = diag
(

Ã, 0(m−1)×(m−1)

)
, Ã =

(
0 1
1 0

)
,

A0 B = 1

T ∗
1

diag

(
0, 0,− 1

ω′
2(T

∗
1 )τ

∗
2
, . . . ,− 1

ω′
m(T

∗
1 )τ

∗
m

)
,

where we have used (1.13) and (2.18). Clearly, A0 A is symmetric, and A0 B is sym-
metric and semi-negative definite by (1.12). Also, A0 is symmetric and positive
definite since it has Cholesky decomposition, upon which we have (3.13). Thus
Assumption 4.1 is verified. From (4.3), A has eigenvalues

λ1 = −c∗
f , λ2 = 0, λ3 = c∗

f , (4.7)

where λ1 and λ3 are simple, while λ2 has multiplicity m −1. That is, m1 = m3 = 1
and m2 = m − 1, where mi is the multiplicity of λi , 1 � i � 3. Denote the left
eigenvectors of A associated with λi as l(i)j , and the corresponding right eigenvec-

tors as r (i)j , 1 � j � mi , satisfying

l(i)j A = λi l
(i)
j , Ar (i)j = λi r

(i)
j , l(i)j r (i

′)
j ′ = δi i ′δ j j ′,

1 � i, i ′ � 3, 1 � j � mi , 1 � j ′ � mi ′ .

We then have

l(1)1 = (1,−c∗
f , 0, . . . , 0), l(3)1 = (1, c∗

f , 0, . . . , 0), (4.8)

l(2)1 =
⎛
⎜⎝− a∗

2(
c∗

f

)2 , 0, 1, 0, . . . , 0

⎞
⎟⎠ , . . . , l(2)m−1 =

⎛
⎜⎝− a∗

m(
c∗

f

)2 , 0, . . . , 0, 1

⎞
⎟⎠ ,

and

r (1)1 = 1

2

⎛
⎜⎝1,− 1

c∗
f
,

a∗
2(

c∗
f

)2 , . . . ,
a∗

m(
c∗

f

)2

⎞
⎟⎠

t

, r (3)1 = 1

2

⎛
⎜⎝1,

1

c∗
f
,

a∗
2(

c∗
f

)2 , . . . ,
a∗

m(
c∗

f

)2

⎞
⎟⎠

t

,

r (2)i = et
i+2, 1 � i � m − 1, (4.9)
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where {ei }m+1
i=1 is the standard basis of the row vector space R

m+1. From (4.9),

(1.13) and (1.12) it is clear that none of the r (i)j is in the null space of B. Therefore,
Assumption 4.2 is also satisfied.

We are now ready to apply Theorem 3.6 in [11] to (4.2), (4.3): For x ∈ R, t � 0,
the Green’s function G of (4.2), (4.3) has the property

∂ l

∂xl
G(x, t) = ∂ l

∂xl

⎡
⎣ m′∑

j=1

1√
4πµ(r)j t

exp

(
− (x − λ

(r)
j t)2

4µ(r)j t

)
P(r)j

⎤
⎦

+ O(1)(t + 1)−
1
2 t−

l+1
2

m′∑
j=1

exp

(
− (x − λ

(r)
j t)2

Ct

)

+
3∑

j=1

m j∑
k=1

e−µ jk t
l∑

i=0

δ(l−i)(x − λ j t)P
(i)
jk (t), (4.10)

where l � 0 is any integer; the constants m′, λ(r)j and µ(r)j and the constant pro-

jections P(r)j are determined from A and B via Procedure 3.2 in [11]; C > 0 is a
constant; m1 = m3 = 1 and m2 = m − 1 are the multiplicities of λ j , 1 � j � 3,
given in (4.7);

µ j1 = − l( j)
1 Br ( j)

1 = 1

2(c∗
f )

2

m∑
i=2

p∗
e1

a∗
i

τ ∗
i

= (p∗
e1
)2T ∗

1

2(c∗
f )

2

m∑
i=2

ω′
i (T

∗
1 )

τ ∗
i

≡ µ̄, j = 1, 3

(4.11)

by (4.8), (4.9), (4.3) and (1.13); µ2k > 0, 1 � k � m − 1, are the eigenvalues of

µ2 = −l(2)Br (2), (4.12)

where

l(2) =
⎛
⎜⎝

l(2)1
...

l(2)m−1

⎞
⎟⎠ , r (2) =

(
r (2)1 , . . . , r (2)m−1

)
; (4.13)

and P(i)jk (t) are (m + 1)× (m + 1) polynomial matrices in t with degrees not more

than i . In particular, P(0)j1 = r ( j)
1 l( j)

1 , j = 1, 3, while P(0)2k are subprojections of

r (2)l(2).
To obtain the explicit form of G, we follow the reduction process, Procedure

3.2 in [11], to compute the leading term in (4.10). From (4.3) B has the eigenvalue
zero with multiplicity 2. Let

R0 =
(

I2×2
0(m−1)×2

)
, L0 =

⎛
⎝1 0 − p∗

e1
1+∑m

i=2 ω
′
i (T

∗
1 )(T1)∗e1

. . . − p∗
e1

1+∑m
i=2 ω

′
i (T

∗
1 )(T1)∗e1

0 1 0 . . . 0

⎞
⎠,

Q0 = R0 L0 =
(

L0

0(m−1)×(m+1)

)
. (4.14)
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Here the columns of R0 are the right eigenvectors of B corresponding to the eigen-
value zero, and the rows of L0 are the left eigenvectors. Clearly, L0 R0 = I2×2, and
Q0 is the eigenprojection of B associated with the eigenvalue zero.

The directions of heat kernels in (4.10), λ(r)j , are the distinct eigenvalues of

L0 AR0 =
(

0 (c∗)2
1 0

)
, (4.15)

where we have used (2.20) and (1.13). That is,

λ
(r)
1 = −c∗, λ

(r)
2 = c∗. (4.16)

The fact that both λ(r)1 and λ(r)2 are simple implies that

m′ = 2, (4.17)

P(r)j is the eigenprojection of Q0 AQ0 corresponding to λ(r)j when restricted to the
range of Q0, and

µ
(r)
j = tr

(
−AS AP(r)j

)
, j = 1, 2, (4.18)

where S is the value at zero of the reduced resolvent of B with respect to the
eigenvalue zero.

To compute P(r)j we write (4.15) in spectral decomposition:

L0 AR0 = −c∗
(

1/2
−1/(2c∗)

) (
1 −c∗ ) + c∗

(
1/2

1/(2c∗)

) (
1 c∗ )

,

which implies

P(r)j = R0

(
1/2

1/(2λ(r)j )

) (
1 λ

(r)
j

)
L0, j = 1, 2.

Using (4.14) we have

P(r)j =
⎛
⎜⎝

1/2 λ
(r)
j /2 l̃

1/(2λ(r)j ) 1/2 l̃/(λ(r)j )

0(m−1)×1 0(m−1)×1 0(m−1)×(m−1)

⎞
⎟⎠ , j = 1, 2, (4.19)

l̃ = − p∗
e1

2[1 + ∑m
i=2 ω

′
i (T

∗
1 )(T1)∗e1

]
(

1 1 · · · 1
)

1×(m−1) .

Let ν1, . . . , νρ be all the nonzero (hence negative) eigenvalues of B. Let the
corresponding eigenprojections be Q1, . . . , Qρ . Then S in (4.18) is

S =
ρ∑

j=1

1

ν j
Q j .
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This implies Q0 + S = (Q0 + B)−1, with Q0 defined in (4.14). Therefore,

S = (Q0 + B)−1 − Q0. (4.20)

Substituting (4.20) into (4.18), we have for j = 1, 2,

µ
(r)
j = −tr

(
A(Q0 + B)−1 AP(r)j

)
+ tr

(
AQ0 AP(r)j

)

= −tr
(
(Q0 + B)−1 AP(r)j A

)
+ tr

(
Q0 AP(r)j A

)
. (4.21)

From (4.14) and (4.3) we have,

Q0 + B =
(

I2×2 B1
0(m−1)×2 B2

)
,

B1 = −p∗
e1

(
1
τ∗

2
+ β1 · · · 1

τ∗
m

+ β1

0 · · · 0

)
, (4.22)

β1 =
[

1 +
m∑

i=2

ω′
i (T

∗
1 )(T1)

∗
e1

]−1

,

B2 = −diag

(
1

τ ∗
2
, . . . ,

1

τ ∗
m

)
− (T1)

∗
e1

⎛
⎜⎝
ω′

2(T
∗
1 )
...

ω′
m(T

∗
1 )

⎞
⎟⎠

(
1
τ∗

2
· · · 1

τ∗
m

)
.

We can verify that

(Q0 + B)−1 =
(

I2×2 B3

0(m−1)×2 B−1
2

)
,

B3 = p∗
e1
β1

(−(1 + τ ∗
2 )+ β1β2 · · · −(1 + τ ∗

m)+ β1β2
0 · · · 0

)
, (4.23)

β2 =
m∑

i=2

τ ∗
i ω

′
i (T

∗
1 )(T1)

∗
e1
,

B−1
2 = −diag

(
τ ∗

2 , . . . , τ
∗
m

) + β1(T1)
∗
e1

⎛
⎜⎝
τ ∗

2ω
′
2(T

∗
1 )

...

τ ∗
mω

′
m(T

∗
1 )

⎞
⎟⎠ (

1 · · · 1
)

1×(m−1) .

From (1.13), (2.20), (4.3), (4.16) and (4.19) we also have for j = 1, 2,

AP(r)j A =

⎛
⎜⎜⎜⎝

1
2 (c

∗
f )

2 1
2 (c

∗
f )

2λ
(r)
j 01×(m−1)

1
2λ
(r)
j

1
2

(
λ
(r)
j

)2
01×(m−1)

r̃ r̃λ(r)j 0(m−1)×(m−1)

⎞
⎟⎟⎟⎠ , (4.24)

r̃ = 1

2

(
a∗

2 , . . . , a∗
m

)t
.
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Substituting (4.23), (4.24) and (4.14) into (4.21) gives us

µ
(r)
j =

m∑
i=2

1

2
a∗

i p∗
e1
β1(τ

∗
i − β1β2), j = 1, 2. (4.25)

Using the definitions of β1 and β2 in (4.22) and (4.23), (4.25) can be simplified as

µ
(r)
j = p∗

e1

∑m
i=2 a∗

i τ
∗
i

2
[
1 + ∑m

i=2 ω
′
i (T

∗
1 )(T1)∗e1

]2 = 1

2
µ∗, j = 1, 2, (4.26)

where µ is exactly the one defined in (2.34).
We summarize the discussion in this section as the following theorem.

Theorem 4.1. Let (1.12) hold, and v∗, e∗
1, . . . , e∗

m be positive constants such that
(1.18) is satisfied. Let l � 0 be any integer. For x ∈ R, t � 0, the Green’s function
G of (4.2), (4.3), which are (4.1) without the entropy equation, has the following
property:

∂ l

∂xl
G(x, t)

= ∂ l

∂xl

{
1√

2πµ∗t

[
exp

(
− (x + c∗t)2

2µ∗t

)
P(r)1 + exp

(
− (x − c∗t)2

2µ∗t

)
P(r)2

]}

+ O(1)(t + 1)−
1
2 t−

l+1
2

[
exp

(
− (x + c∗t)2

Ct

)
+ exp

(
− (x − c∗t)2

Ct

)]

+
l∑

i=0

⎧⎨
⎩e−µ̄t

[
δ(l−i)(x + c∗

f t)P(i)1 (t)+ δ(l−i)(x − c∗
f t)P(i)3 (t)

]

+
m−1∑
j=1

e−µ2 j tδ(l−i)(x)P(i)2 j (t)

⎫⎬
⎭ . (4.27)

Here the positive constants µ∗ and µ̄ are given by (4.26) and (4.11), respectively,
and µ2 j , 1 � j � m − 1, are the eigenvalues of µ2 defined by (4.8), (4.9) (4.12)

and (4.13); C > 0 is a constant; the constant projections P(r)j , j = 1, 2, are given

by (4.16) and (4.19); P(i)1 , P(i)3 and P(i)2 j , 1 � j � m − 1, are (m + 1)× (m + 1)

polynomial matrices in t with degrees not more than i . In particular, P(0)j = r ( j)
1 l( j)

1 ,

j = 1, 3, while P(0)2 j , 1 � j � m − 1, are subprojections of r (2)l(2); see (4.8), (4.9)
and (4.13). We recall that c is the equilibrium speed of sound, given by (1.14) or
(2.17).

Recall that {ei }m+1
i=1 is the standard basis of the row vector space R

m+1. From
(4.14) we have ek Q0 = 0, 3 � k � m + 1. Applying Theorem 3.9 in [11] we
obtain the following refinement of Gk , the kth row of G, 3 � k � m + 1.
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Theorem 4.2. Under the same assumptions and same notations as in Theorem 4.1,
for 3 � k � m + 1, the kth row of G, denoted as Gk, has the following estimate:

∂ l

∂xl
Gk(x, t)

= ∂ l+1

∂xl+1

{
1√

2πµ∗t

[
exp

(
− (x + c∗t)2

2µ∗t

)
ηk1 + exp

(
− (x − c∗t)2

2µ∗t

)
ηk2

]}

+ O(1)(t + 1)−
1
2 t−

l
2 −1

[
exp

(
− (x + c∗t)2

Ct

)
+ exp

(
− (x − c∗t)2

Ct

)]

+
l∑

i=0

⎧⎨
⎩e−µ̄t

[
δ(l−i)(x + c∗

f t)
(

P(i)1

)
k
(t)+ δ(l−i)(x − c∗

f t)
(

P(i)3

)
k
(t)

]

+
m−1∑
j=1

e−µ2 j tδ(l−i)(x)
(

P(i)2 j

)
k
(t)

⎫⎬
⎭ , (4.28)

where ηk1 and ηk2 are constant row vectors in R
m+1, and (P(i)1 )k is the kth row of

P(i)1 , etc.

5. Large time behavior

As the final section we now prove Theorem 1.2. This is to combine Theorems 4.1
and 4.2, Duhamel’s principle, evolution of elementary waves, and weighted energy
estimates together. Since the fundamental solution described in Theorems 4.1 and
4.2 has the same structure as the one for one nonequilibrium mode, [11], the focus
of this section is on the weighted energy estimate.

Notice that the superscript “*” denotes the constant equilibrium state. We write
the system (3.1) without the entropy equation as

w̃t + Aw̃x = Bw̃ + g̃, (5.1)

where

w̃ = (p − p∗, u, χ2, . . . , χm)
t , (5.2)

g̃ = (g̃1, . . . , g̃m+1)
t (5.3)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
(c∗

f )
2 − c2

f

]
ux + ∑m

j=2

(
p∗

e1
τ∗

j
− pe1

τ j

)
χ j

0

(a∗
2 − a2)ux +

(
1
τ∗

2
− 1

τ2

)
χ2 + ∑m

j=2

[
ω′

2(T
∗
1 )(T1)

∗
e1

τ∗
j

− ω′
2(T1)(T1)e1

τ j

]
χ j

...

(a∗
m − am)ux +

(
1
τ∗

m
− 1

τm

)
χm + ∑m

j=2

[
ω′

m (T
∗
1 )(T1)

∗
e1

τ∗
j

− ω′
m (T1)(T1)e1

τ j

]
χ j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and A and B are the same as in (4.3). Here the linear part of (5.1) has the Green’s
function given in Theorems 4.1 and 4.2. Introduce a linear transformation to diag-
onalize P(r)1 and P(r)2 in (4.27):

w = (w1, . . . , wm+1)
t = L(r)w̃, w̃ = R(r)w, (5.4)

where

L(r) =
⎛
⎝ 1 −c∗ 2l̃

1 c∗ 2l̃
0(m−1)×1 0(m−1)×1 I(m−1)×(m−1)

⎞
⎠ , (5.5)

R(r) =
[

L(r)
]−1 =

⎛
⎝ 1/2 1/2 −2l̃

−1/(2c∗) 1/(2c∗) 01×(m−1)
0(m−1)×1 0(m−1)×1 I(m−1)×(m−1)

⎞
⎠ ,

and l̃ is the same as given in (4.19). Under such a linear transformation (5.1)–(5.3)
becomes

wt + L(r)AR(r)wx = L(r)B R(r)w + g, (5.6)

where

g = (g1, . . . , gm+1)
t = L(r)g̃. (5.7)

Denote the Green’s function of the linear part of (5.6) as G. Then G is the one
given in Theorems 4.1 and 4.2, multiplied by L(r) from the left and R(r) from the
right. That is, for x ∈ R and t � 0, we have

G(x, t) = D(x, t)+ H(x, t), (5.8)

where for l � 0,

∂ l
x D(x, t) = ∂ l

x

[
1√

2πµ∗t

2∑
i=1

exp

(
− (x − ci t)2

2µ∗t

)
P(r)i

]
,

∂ l
x H(x, t) = O(1)(t + 1)−

1
2 t−

l+1
2

2∑
i=1

exp

(
− (x − ci t)2

Ct

)
(5.9)

+
l∑

j=0

⎡
⎣ ∑

i=1,3

e−µ̄tδ(l− j)(x − di t)P
( j)
i (t)+

m−1∑
i=1

e−µ2i tδ(l− j)(x)P( j)
2i (t)

⎤
⎦ ,

c1,2 = ∓c∗, d1,3 = ∓c∗
f ,

P(r)i = et
i ei , i = 1, 2,

{ei }m+1
i=1 is the standard basis in the row vector space R

m+1, and µ∗, µ̄, µ2i (1 �
i � m − 1), and C are the same as in Theorem 4.1, while P( j)

i (i = 1, 3) and P( j)
2i
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(1 � i � m − 1) are (m + 1)× (m + 1) polynomial matrices in t with degrees not
more than j . Also, for 3 � k � m + 1, the kth row of G is

Gk(x, t) = Hk(x, t) = Hka(x, t)+ Hkb(x, t), (5.10)

where Hk is the kth row of H , and so on,

∂ l
x Hka(x, t) = ∂ l+1

x

[
1√

2πµ∗t

2∑
i=1

exp

(
− (x − ci t)2

2µ∗t

)
ηki

]
,

∂ l
x Hkb(x, t) = O(1)(t + 1)−

1
2 t−

l
2 −1

2∑
i=1

exp

(
− (x − ci t)2

Ct

)
(5.11)

+
l∑

j=0

⎡
⎣ ∑

i=1,3

e−µ̄tδ(l− j)(x − di t)
(

P( j)
i

)
k
(t)

+
m−1∑
i=1

e−µ2i tδ(l− j)(x)
(

P( j)
2i

)
k
(t)

]
,

and ηki are constant row vectors in R
m+1, i = 1, 2, and 3 � k � m + 1.

Let

wm+2 = s − s∗, (5.12)

and

gm+2 =
m∑

i=2

(
1

Ti
− 1

T1

)
χi

τi
. (5.13)

By Duhamel’s principle, (5.6) and the last equation of (3.1), we have for l � 0,

∂ l
xwi (x, t) =

∫ ∞

−∞
Gi (x − y, t)∂ l

yw(y, 0) dy (5.14)

+
∫ t

0

∫ ∞

−∞
Gi (x − y, t − t ′)∂ l

y g(y, t ′) dydt ′, 1 � i � m + 1,

∂ l
xwm+2(x, t) = ∂ l

xwm+2(x, 0)+
∫ t

0
∂ l

x gm+2(x, t ′) dt ′.

Introduce the following notations: Let ν be any fixed constant such that

ν > max{2µ∗,C}, (5.15)

where µ∗ and C are the same as in (5.9) and (5.11). Define

ψ̃i (x, t) ≡
[
|x − ci (t + 1)|3 + (t + 1)2

]− 1
2
, i = 1, 2, (5.16)

φi (x, t) ≡ (t + 1)−
1
2 exp

(
− (x − ci (t + 1))2

ν(t + 1)

)
+ [(x − ci (t + 1))2 + t + 1]− 3

4

+ ψ̃ j (x, t), i, j = 1, 2, and j �= i,

φ0(x) ≡ (x2 + 1)−
3
4 ,
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where ci , i = 1, 2, are given in (5.9). Also let

M(t) ≡ sup
0�t ′�t

max
i=1,2

{
‖(wiφ

−1
i )(·, t ′)‖L∞ + ‖(wi xφ

−1
i )(·, t ′)‖L∞(t ′ + 1)

1
2

+
4∑

l=2

‖∂ l
xwi (·, t ′)‖L∞(t ′ + 1)

5−l
2

}

+ sup
0�t ′�t

max
3�i�m+1

⎧⎪⎨
⎪⎩

∥∥∥∥∥∥∥
wi (·, t ′)

⎛
⎝ 2∑

j=1

φi (·, t ′)

⎞
⎠

−1
∥∥∥∥∥∥∥

L∞

(t ′ + 1)
1
2

+

∥∥∥∥∥∥∥
wi x (·, t ′)

⎛
⎝ 2∑

j=1

ψ̃ j (·, t ′)

⎞
⎠

−1
∥∥∥∥∥∥∥

L∞

(t ′ + 1)
1
2 (5.17)

+
4∑

l=2

∥∥∥∂ l
xwi (·, t ′)

∥∥∥
L∞ (t

′ + 1)
5−l

2

⎫⎪⎬
⎪⎭

+ sup
0�t ′�t

{ ∥∥∥(φ−1
0 wm+2)(·, t ′)

∥∥∥
L∞ +

∥∥∥(φ−1
0 ∂xwm+2)(·, t ′)

∥∥∥
L∞

+
∥∥∥∥(φ− 1

3
0 ∂2

xwm+2)(·, t ′)
∥∥∥∥

L∞

}
.

Then for x ∈ R and t � 0, we have the following:

(i) For i = 1, 2,

|wi (x, t)| � M(t)φi (x, t), |wi x (x, t)| � M(t)(t + 1)−
1
2 φi (x, t), (5.18)

|∂ l
xwi (x, t)| � M(t)(t + 1)−

5−l
2 , 2 � l � 4.

(ii) For 3 � i � m + 1,

|wi (x, t)| � M(t)(t + 1)−
1
2

2∑
j=1

φ j (x, t),

|wi x (x, t)| � M(t)(t + 1)−
1
2

2∑
j=1

ψ̃ j (x, t), (5.19)

∣∣∣∂ l
xwi (x, t)

∣∣∣ � M(t)(t + 1)−
5−l

2 , 2 � l � 4.

(iii)

|wm+2(x, t)| � M(t)φ0(x), |∂xwm+2(x, t)| � M(t)φ0(x), (5.20)

|∂2
xwm+2(x, t)| � M(t)φ

1
3
0 (x).
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We now perform the weighted energy estimate. This is to make use of the fact
thatwi consists of waves along the equilibrium acoustic directions to obtain needed
decay rates in a neighborhood of the particle path. For l � 1, t � 0 and ε > 0 we
define

Ñ 2
l (t; ε) ≡

∫ εt

−εt
(ε2x2 + 1)−

3
2

[(
∂ l

x u
)2 +

(
∂ l

x p
)2 +

m∑
i=2

(
∂ l

xχi

)2
]
(x, t) dx

+
∫ t

t/2

∫ εt

−εt
e−ε(t−t ′)(ε2x2 + 1)−

3
2

⎧⎨
⎩

l∑
j=1

[(
∂

j
x u

)2+
(
∂

j
x p

)2
]

+
m∑

i=2

l∑
j=0

(
∂

j
x χi

)2

⎫⎬
⎭ (x, t ′) dxdt ′. (5.21)

Lemma 5.1. Suppose 2 � k � 5 and ε > 0 is small. Under the assumptions of
Theorem 1.2, for t � 0 we have the following recursive relation:

Ñ 2
k (t; ε) = O(1)

[
M(t)2 + ε2

0

]
(t + 1)−5+kε−1(ε4t2 + 1)−

3
2

+ O(1)ε2
0e−εt/2 + O(1)Ñ 2

k−1(t; ε), (5.22)

where M(t) is defined in (5.17) and ε0 in (1.21).

Proof. Similar to the proof of Proposition 3.1 and under the same notations, we
multiply the first equation in (3.10) by η1∂

k
x p − η2

∑m
j=2 ∂

k
xχ j , the second one by

∂k
x u, and the one forχi by−η2∂

k
x p+ζi∂

k
xχi−η3

∑m
j=2 ∂

k
xχ j . Sum up the results with

i = 2, . . . ,m. We have (3.12) without the term 1
2∂t (∂

k
x s)2 on the left-hand side and

the last term on the right-hand side. Use the corresponding terms of (3.13) to replace

the left-hand side. Multiply the equation by the weight e−ε(t−t ′)(ε2x2 + 1)− 3
2 , and

integrate it over [−εt, εt]×[t/2, t]. After integration by parts, applying (1.20) with
l = 6, together with (1.21), (5.2), (5.4), (5.5), (5.18) and (5.19), and using (1.7)
and (3.1) to convert the derivatives with respect to t into derivatives with respect
to x , we arrive at

∫ εt

−εt
(ε2x2 + 1)−

3
2

⎧⎪⎨
⎪⎩η1

(
∂k

x p − η2

η1

m∑
i=2

∂k
xχi

)2

+
m∑

i=2

ζi
ξi+1

ξi

⎡
⎣∂k

xχi − (T1)e1ω
′
i (T1)

ξi+1

m∑
j=i+1

∂k
xχ j

⎤
⎦

2

+
(
∂k

x u
)2

⎫⎪⎬
⎪⎭ (x, t) dx

+
∫ t

t/2

∫ εt

−εt
e−ε(t−t ′)(ε2x2 + 1)−

3
2

m∑
i=2

(
∂k

xχi

)2
(x, t ′) dxdt ′

= O(1)e−εt/2ε2
0 + O(1)ε−1(ε4t2 + 1)−

3
2

[
M(t)2 + ε2

0

]
(t + 1)−5+k
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+ O(1)(ε + ε0)

∫ t

t/2

∫ εt

−εt
e−ε(t−t ′)(ε2x2 + 1)−

3
2

×
[(
∂k

x p
)2+

(
∂k

x u
)2

]
(x, t ′) dxdt ′+ O(1)ε0

∫ t

t/2

∫ εt

−εt
e−ε(t−t ′)(ε2x2+1)−

3
2

×
⎡
⎣k−1∑

j=1

(
∂

j
x u

)2 +
m∑

i=2

k−1∑
j=0

(
∂

j
x χi

)2

⎤
⎦ (x, t ′) dxdt ′. (5.23)

The left-hand side of (5.23) can be replaced by

∫ εt

−εt
(ε2x2 + 1)−

3
2

[(
∂k

x p
)2 +

(
∂k

x u
)2 +

m∑
i=2

(
∂k

xχi

)2
]
(x, t) dx

+
∫ t

t/2

∫ εt

−εt
e−ε(t−t ′)(ε2x2 + 1)−

3
2

m∑
i=2

(
∂k

xχi

)2
(x, t ′) dxdt ′. (5.24)

Similarly, multiply (3.17) and (3.20) by the weight and integrate. We have∫ t

t/2

∫ εt

−εt
e−ε(t−t ′)(ε2x2 + 1)−

3
2

(
∂k

x u
)2
(x, t ′) dxdt ′

= O(1)
∫ εt

−εt
(ε2x2 + 1)−

3
2

[(
∂k

x u
)2 +

(
∂k−1

x χ2

)2
]
(x, t) dx + O(1)ε2

0e−εt/2

+ O(1)ε−1(ε4t2 + 1)−
3
2

[
M(t)2 + ε2

0

]
(t + 1)−5+k

+ O(1)
∫ t

t/2

∫ εt

−εt
e−ε(t−t ′)(ε2x2 + 1)−

3
2

m∑
i=2

(
∂k−1

x χi

)2
(x, t ′) dxdt ′

+ O(1)(ε + ε0)

∫ t

t/2

∫ εt

−εt
e−ε(t−t ′)(ε2x2 + 1)−

3
2

×
⎡
⎣(
∂k

x p
)2 +

k−1∑
j=1

(
∂

j
x u

)2 +
m∑

i=2

k−2∑
j=0

(
∂

j
x χi

)2

⎤
⎦ (x, t ′) dxdt ′

+ O(1)
∫ t

t/2

∫ εt

−εt
e−ε(t−t ′)(ε2x2 + 1)−

3
2

∣∣∣∂k
x p∂k

xχ2

∣∣∣ (x, t ′) dxdt ′ (5.25)

and∫ t

t/2

∫ εt

−εt
e−ε(t−t ′)(ε2x2 + 1)−

3
2

(
∂k

x p
)2
(x, t ′) dxdt ′

= O(1)
∫ εt

−εt
(ε2x2 + 1)−

3
2

[(
∂k

x p
)2 +

(
∂k−1

x u
)2

]
(x, t) dx + O(1)ε2

0e−εt/2

+ O(1)ε−1(ε4t2 + 1)−
3
2

[
M(t)2 + ε2

0

]
(t + 1)−

11
2 +k

+ O(1)(ε + ε0)

∫ t

t/2

∫ εt

−εt
e−ε(t−t ′)(ε2x2 + 1)−

3
2

⎡
⎣k−1∑

j=1

(
∂

j
x u

)2
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+
m∑

i=2

k−2∑
j=0

(
∂

j
x χi

)2

⎤
⎦ (x, t ′) dxdt ′ + O(1)

∫ t

t/2

∫ εt

−εt
e−ε(t−t ′)(ε2x2 + 1)−

3
2

×
[(
∂k

x u
)2 +

m∑
i=2

(
∂k−1

x χi

)2
]
(x, t ′) dxdt ′. (5.26)

Substitute (5.25) into (5.26) and simplify. We then have∫ t

t/2

∫ εt

−εt
e−ε(t−t ′)(ε2x2 + 1)−

3
2

(
∂k

x p
)2
(x, t ′) dxdt ′

= O(1)
∫ εt

−εt
(ε2x2 + 1)−

3
2

[(
∂k

x p
)2 +

(
∂k

x u
)2

]
(x, t) dx + O(1)ε2

0e−εt/2

+ O(1)ε−1(ε4t2 + 1)−
3
2

[
M(t)2 + ε2

0

]
(t + 1)−5+k + O(1)Ñ 2

k−1(t; ε)

+ O(1)
∫ t

t/2

∫ εt

−εt
e−ε(t−t ′)(ε2x2 + 1)−

3
2

(
∂k

xχ2

)2
(x, t ′) dxdt ′. (5.27)

Substitute (5.27) into (5.25). The right-hand side of (5.25) can now be replaced by
the right-hand side of (5.27). Such a result and (5.27) further simplify the right-hand
side of (5.23). Together with (5.24) we have

∫ εt

−εt
(ε2x2 + 1)−

3
2

[(
∂k

x p
)2 +

(
∂k

x u
)2 +

m∑
i=2

(
∂k

xχi

)2
]
(x, t) dx

+
∫ t

t/2

∫ εt

−εt
e−ε(t−t ′)(ε2x2 + 1)−

3
2

m∑
i=2

(
∂k

xχi

)2
(x, t ′) dxdt ′

= O(1)ε2
0e−εt/2 + O(1)ε−1(ε4t2 + 1)−

3
2

[
M(t)2 + ε2

0

]
(t + 1)−5+k

+ O(1)(ε + ε0)Ñ
2
k−1(t; ε). (5.28)

Combine (5.28) with (5.27) and (5.25), whose right-hand side is now the same as
that of (5.27). We obtain

∫ εt

−εt
(ε2x2 + 1)− 3

2

⎡
⎣(
∂k

x p
)2 +

(
∂k

x u
)2 +

m∑
i=2

(
∂k

xχi

)2

⎤
⎦ (x, t) dx

+
∫ t

t/2

∫ εt

−εt
e−ε(t−t ′)(ε2x2+1)− 3

2

⎡
⎣(
∂k

x p
)2+

(
∂k

x u
)2+

m∑
i=2

(
∂k

xχi

)2

⎤
⎦ (x, t ′) dxdt ′

= O(1)ε2
0e−εt/2 + O(1)

[
M(t)2 + ε2

0

]
ε−1(ε4t2 + 1)− 3

2 (t + 1)−5+k

+ O(1)Ñ 2
k−1(t; ε).

This immediately gives (5.22). ��
We have the following lemmas under the assumptions of Theorem 1.2. The

proofs of these lemmas are similar to those for the case of m = 2, [11]. This is
because the Green’s function G has the same structure for m = 2 and for m > 2,
(5.8)–(5.11).
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Lemma 5.2. Let 2 � l � 5 and 1 � i � m + 1. For t � 0 we have

∥∥∥(
wm+2∂

l
xwi

)
(·, t)

∥∥∥
L∞ = O(1)M(t) [M(t)+ ε0] (t + 1)−σ , (5.29)

where

σ =

⎧⎪⎨
⎪⎩

2 if l = 2, 3,
7
4 if l = 4,
3
4 if l = 5.

(5.30)

Lemma 5.3. For i = 1, 2, x ∈ R and t � 0 we have

∫ ∞

−∞
Gi (x − y, t)∂ l

yw(y, 0) dy = O(1)ε0

⎧⎪⎨
⎪⎩
(t + 1)− l

2φi (x, t) for l = 0, 1,

(t + 1)− 5−l
2 for 2 � l � 4.

(5.31)

Lemma 5.4. For 3 � k � m + 1, x ∈ R and t � 0 we have

∫ ∞

−∞
Gk(x − y, t)∂ l

yw(y, 0) dy

= O(1)ε0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(t + 1)− 1
2
∑2

i=1 φi (x, t) for l = 0,

(t + 1)− 1
2
∑2

i=1 ψ̃i (x, t) for l = 1,

(t + 1)− 5−l
2 for 2 � l � 4.

(5.32)

Lemma 5.5. For 0 � l � 2 and x ∈ R we have

∂ l
xwm+2(x, 0) = O(1)ε0

{
φ0(x) for l = 0, 1,

φ
1
3
0 (x) for l = 2.

(5.33)

Lemma 5.6. Let l = 0, 1 and i = 1, 2. For x ∈ R and t � 0 we have

∫ t

0

∫ ∞

−∞
Gi (x − y, t − t ′)∂ l

y g(y, t ′) dydt ′

= O(1)
[

M(t)2 + ε2
0

]
(t + 1)−

l
2 φi (x, t). (5.34)

Lemma 5.7. For 3 � k � m + 1, x ∈ R and t � 0 we have

∫ t

0

∫ ∞

−∞
Gk(x − y, t − t ′)∂ l

y g(y, t ′) dydt ′

= O(1)
[

M(t)2 + ε2
0

]
(t + 1)−

1
2

{∑2
i=1 φi (x, t) for l = 0,∑2
i=1 ψ̃i (x, t) for l = 1.

(5.35)
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Lemma 5.8. Let 2 � l � 4 and 1 � i � m + 1. For x ∈ R and t � 0 we have
∫ t

0

∫ ∞

−∞
Gi (x − y, t − t ′)∂ l

y g(y, t ′) dydt ′ = O(1)
[

M(t)2 + ε2
0

]
(t + 1)−

5−l
2 .

(5.36)

Lemma 5.9. For 0 � l � 2, x ∈ R and t � 0 we have
∫ t

0
∂ l

x gm+2(x, t ′) dt ′ = O(1)M(t)2φ0(x). (5.37)

We are now ready to complete the stability analysis. Equation (5.14) and Lem-
mas 5.3–5.9 imply that

|∂ l
xwi (x, t)| � C

[
ε0 + M(t)2

]
(t + 1)−

l
2 φi (x, t), i = 1, 2, l = 0, 1,

|∂ l
xwi (x, t)| � C

[
ε0 + M(t)2

]
(t + 1)−

1
2

×
{∑2

j=1 φ j (x, t) for l = 0∑2
j=1 ψ̃ j (x, t) for l = 1

, 3 � i � m + 1,

|∂ l
xwi (x, t)| � C

[
ε0 + M(t)2

]
(t + 1)−

5−l
2 , 1 � i � m + 1, 2 � l � 4,

|∂ l
xwm+2(x, t)| � C

[
ε0 + M(t)2

] {
φ0(x) for l = 0, 1

φ
1
3
0 (x) for l = 2

.

These inequalities and (5.17) imply that

M(t) � C
[
ε0 + M(t)2

]
.

If M(t) is sufficiently small, we have

M(t) � Cε0. (5.38)

By the continuity argument, if ε0 is sufficiently small, we have (5.38) for all t � 0.
Substituting (5.38) into (5.18)–(5.20) and using (5.2), (5.4), (5.5), (5.16), (5.9) and
(5.12), we obtain (1.22).
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