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Abstract

We prove that the linearization of the hydrostatic Euler equations at certain
parallel shear flows is ill-posed. The result also extends to the hydrostatic Navier–
Stokes equations with a small viscosity.

1. Introduction

The hydrostatic approximation arises naturally when studying flows where the
depth of the region of interest is small compared to horizontal dimensions. Examples
include atmospheric and oceanic flows, boundary layers, and blood flow. Never-
theless, the equations of fluid motion resulting from this approximation, without
regularizing “viscosity” terms, do not appear to be well analyzed. In Lions’ book
[14], this is posed as a challenge to analysts.

In a widely cited paper, Oliger and Sundström [16] showed that the imposi-
tion of open boundary conditions on the hydrostatic Euler equations is problematic.
Without open boundaries, Grenier [9] and Brenier [2,3] proved results on well-
posedness as well as convergence of solutions of the full Euler equations to the
hydrostatic limit, but only under the assumption that the profile of the horizontal
velocity is convex. They note the connection between this hypothesis and Rayleigh’s
stability criterion. Brenier [2] also notes that convexity cannot be expected to per-
sist for all times. Grenier [9,10] gives examples where solutions of the Euler and
Navier–Stokes equations do not converge to the hydrostatic limit, but these results
do not show ill-posedness of the hydrostatic equations themselves. Bresch et al.
[4] prove a well-posedness result for the hydrostatic Navier–Stokes equations, but
with a viscosity that is isotropic, i.e. equal in the horizontal and vertical directions.
This assumption is asymptotically inconsistent with the derivation of the hydro-
static approximation, as we shall see below. With proper asymptotic scalings, only
the second derivative in the vertical direction remains in the viscosity term. Indeed,
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the viscosity in [4] is intended to represent not the viscosity of the liquid, but rather
an eddy viscosity.

In this note, we shall give an elementary proof demonstrating the existence of
velocity profiles such that the linearization of the hydrostatic Euler and Navier–
Stokes equations is ill-posed. This ill-posedness is in essence not new, since it is
equivalent to a known long wave instability of the Euler equations. The implica-
tion of ill-posedness for the hydrostatic equations seems to have gone unnoticed
in the literature. In particular, velocity profiles leading to ill-posedness exist in any
neighborhood of the rest state.

The result shown here seems to indicate that the quest for a general existence
theorem for the hydrostatic Euler equations is basically hopeless, unless the equa-
tions are regularized by “viscosity” terms. This situation is rather discomforting,
since the viscosity that is used in the study of atmospheric and oceanic flows is of
uncertain size and physical origin (it does not represent the viscosity of the fluid, but
rather represents a crude way to account for the effects of turbulence on unresolved
scales, interaction with unresolved topography, etc.).

It is interesting that Hong and Hunter [12] do not find any analogue of the
ill-posedness reported here, even though the only difference in their equations is that
they prescribe the pressure rather than the vertical velocity at the upper boundary!
Therefore the Hadamard instability discussed here depends on boundary condi-
tions; see also the well-posedness results of Oleinik [15] and Xin and Zhang [20]
for the viscous case.

The ill-posedness result is based on finding unstable eigenvalues; in contrast,
there are no eigenvalues for the case with one free surface studied in [12]. Below,
we shall consider the case of two free surfaces. In this case, the linearization at any
nonconstant parallel flow is ill-posed. For the full Euler equations, this implies a
long wave instability of liquid sheets which have an internally nonuniform velocity.
We shall show that an analogous instability also exists in axisymmetric jets. The
dependence of well-posedness on boundary conditions is particularly unsettling
for the study of problems where the real world system actually has no well-defined
boundary, such as oceanic or atmospheric currents.

2. The hydrostatic Euler and Navier–Stokes equations

We consider the Euler or Navier–Stokes equations in the strip −∞ < x < ∞,
−ε < y < ε. The Euler equations have the form

ut + uux + vuy = −px ,

vt + uvx + vvy = −py, (1)

ux + vy = 0.

At the boundaries of the strip, we assume nonpenetration, that is v = 0.
The hydrostatic approximation arises in “thin” domains, that is if ε is small

relative to horizontal lengths relevant to the flow. It is then natural to rescale y and
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v with ε. The resulting equations are

ut + uux + vuy = −px ,

ε2(vt + uvx + vvy) = −py, (2)

ux + vy = 0.

In the hydrostatic limit, ε is set to 0. The pressure p is then a function P(x) of x
only, and we have the reduced system

ut + uux + vuy = −P ′(x), (3)

ux + vy = 0,

posed on the strip −1 < y < 1.
We shall also consider an analogous reduction for the Navier–Stokes equations.

In this case, we shall assume that the viscosity is also a small parameter, of order
ε2. The Navier–Stokes equations then have the form

ut + uux + vuy = ε2(uxx + uyy)− px ,

vt + uvx + vvy = ε2(vxx + vyy)− py, (4)

ux + vy = 0.

The boundary conditions are u = v = 0.
After rescaling v and y with ε and setting ε = 0, we now obtain the reduced

system

ut + uux + vuy = uyy − P ′(x),
ux + vy = 0. (5)

3. Linear stability of parallel shear flow

A solution of the Euler equations is given by u = U (y), v = p = 0, where
U (y) is any function. We linearize the hydrostatic Euler equations at this solution
and end up with the linearized problem

ut + U (y)ux + U ′(y)v = −P ′(x), (6)

ux + vy = 0.

We satisfy the incompressibility condition by introducing a streamfunction,

u = ψy, v = −ψx , (7)

and we differentiate the first equation of (7) with respect to y to eliminate the
unknown pressure. The result is

ψyyt + U (y)ψyyx − U ′′(y)ψx = 0, (8)

subject to the boundary conditions

ψ(x,−1, t) = ψ(x, 1, t) = 0. (9)

The following theorem shows that, for certain velocity profiles U (y) the line-
arized equations are ill-posed in the sense of Hadamard.
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Theorem 1. The Equation (8), with the boundary conditions (9), has solutions of
the form

ψ(x, y, t) = χ(y) exp(iα(x − ct)), (10)

where c is given by the equation

∫ 1

−1
(U (y)− c)−2 dy = 0. (11)

If the roots of (11) are complex, this implies Hadamard instability, since the growth
rate is α Im c, and c is independent of α.

For the proof, we insert (10) in (8). The result is the hydrostatic Orr–Sommerfeld
equation

(U (y)− c)χ ′′(y)− U ′′(y)χ(y) = 0, (12)

with the boundary conditions χ(−1) = χ(1) = 0. We note that this equation is
independent of α.

We see by inspection that χ1(y) = U (y) − c is a solution of the differential
equation for any value of c. We can then use reduction of order to find the general
solution. If we set χ(y) = q(y)(U (y)− c), we find

(U (y)− c)q ′′(y)+ 2U ′(y)q ′(y) = 0. (13)

This has the general solution

q(y) = k1 + k2

∫
(U (y)− c)−2 dy. (14)

We note that this solution is simply the leading term in Heisenberg’s [11] long
wave expansion for the solution of the Orr–Sommerfeld equation. If we impose the
boundary condition χ(−1) = 0, we find that

χ(y) = K (U (y)− c)
∫ y

−1
(U (z)− c)−2 dz (15)

for some constant K . The other boundary condition χ(1) = 0 then leads to the
eigenvalue relation (11).

One must now show that the profiles leading to complex roots of (11) actu-
ally exist. It was pointed out by Heisenberg [11] and later by Rosenbluth and
Simon [18] that the existence of nonreal solutions of (11) is sufficient for long wave
instability of the Euler equations; however, they did not exhibit specific profiles for
which this condition is satisfied. We shall give a very simple argument showing
the existence of a class of such profiles. Using different arguments, researchers
have shown in the literature that specific profiles lead to complex eigenvalues, for
example the profile U (y) = tanh(y/L) for large enough L [5], and piecewise linear
profiles (see [7, p. 147], [17, p. 388]).

Lemma 1. Assume that U (y) is an odd continuous function and that U (y)−2 is
integrable. Then there are purely imaginary roots of (11).
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Note that this assumption prevents U from being smooth at 0; we shall address
this point below. We look for an imaginary eigenvalue c = iβ. Equation (11) then
becomes ∫ 1

−1

1

U (y)2 − β2 + 2iβU (y)
dy = 0. (16)

The imaginary part of this vanishes as a result of symmetry. The real part is negative
if β is large, but by the Lebesgue dominated convergence theorem it converges to
the positive limit ∫ 1

−1
U (y)−2 dy (17)

as β → 0. Consequently, there exists a nonzero β such that c = ±iβ is a solution
of (11).

Let U (y) be a given function as specified in the lemma above. The requirement
that U−2 is integrable prevents U from being smooth at the origin. We can, how-
ever, find a sequence Un such that Un is smooth and Un converges uniformly to U .
Let now β0 be such that

Re

[∫ 1

−1

1

U (y)2 − β2
0 + 2iβ0U (y)

dy

]
> 0. (18)

Then it follows that also

Re

[∫ 1

−1

1

Un(y)2 − β2
0 + 2iβ0Un(y)

dy

]
> 0. (19)

for large enough n. As above, we conclude the existence of a β > β0 for which
∫ 1

−1

1

Un(y)2 − β2 + 2iβU (y)
dy = 0. (20)

For the viscous case, we obtain the linearized equation

ψyyt + U (y)ψyyx − U ′′(y)ψx = ψyyyy, (21)

and the hydrostatic Orr–Sommerfeld equation becomes

(U (y)− c)χ ′′(y)− U ′′(y)χ(y) = − i

α
χ ′′′′(y). (22)

The boundary conditions are χ(−1) = χ ′(−1) = χ(1) = χ ′(1) = 0. We note that
the assumptions on U above allow the no-slip condition U (−1) = U (1) = 0 to be
satisfied so that the profile U is an admissible initial condition for the Navier–Stokes
equation. It is a routine application of matched asymptotics (see, for example [19]
for a discussion of the rigorous justification of formal expansions) to show that if
the inviscid problem has a purely imaginary eigenvalue c = iβ, where α and β have
the same sign, then the viscous problem has an eigenvalue close to iβ if α is large.
Hence the hydrostatic equation remains ill-posed if viscosity is included. We note
that E and Engquist [8] prove the nonexistence of global smooth solutions for the
hydrostatic Navier–Stokes equations. The linear ill-posedness would suggest that
for general initial data smooth solutions do not exist even locally.
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4. Remarks on the nonlinear problem

The ill-posedness discussed in the preceding section concerns the linearization
at a given shear flow profile. It is not obvious what this implies for the nonlin-
ear problem. One simple consequence is that the nonlinear problem cannot have a
solution which depends smoothly on the initial data.

We shall consider the nonlinear hydrostatic Euler equations (4) with periodic
boundary conditions in the x direction: u(x + 2π, y, t) = u(x, y, t) and the flow
rate constraint ∫ 1

−1
u(x, y, t) dy = 0. (23)

We formulate the equations in terms of the stream function, which leads to

ψyyt + ψyψyyx − ψxψyyy = 0. (24)

We impose the initial condition

ψ(x, y, 0) = �(y)+ ε

∞∑
n=1

exp(−√
n)Re[exp(inx)χ(y)], (25)

where

�(y) =
∫ y

−1
U (ξ) dξ, (26)

U (y) is a profile as discussed in the previous section, and χ(y) is the eigenfunction
corresponding to the unstable eigenvalue. If U (y) is C∞, then ψ(x, y, 0) is a C∞
function.

Assume that this initial value problem has a solution, which we represent as
ψ(x, y, t) = �(y)+ ψε(x, y, t). We put (24) into the form

ψεt = Lψε + N (ψε), (27)

where

Lψε = −D−1(� ′ψεyyx −� ′′′ψεx ), (28)

N (ψε) = −D−1(ψεyψ
ε
yyx − ψεxψ

ε
yyy).

Here D−1 stands for the inverse of ∂2/∂y2 with Dirichlet boundary conditions.
With these notations, we have the following result which rules a smooth depen-

dence of ψε on ε.

Theorem 2. Let U (y) be one of the Hadamard unstable profiles discussed in the
preceding section. Assume that X,Y and Z are Banach spaces of periodic functions
on IR × (−1, 1), and that L maps Y continuously into X and N satisfies a bound
of the form

‖N (ψ)‖X � ‖ψ‖Z‖ψ‖Y . (29)

Then it is not possible that ψε is a differentiable function of ε as an element of
L p((0, τ ),Y ) for some τ > 0 and that ψε tends to zero in Lq((0, τ ), Z), where
1/p + 1/q = 1.



Ill-posedness of the Hydrostatic Euler and Navier–Stokes Equations 883

For the proof, let φε = ψε/ε, and χ = limε→0 φ
ε. We find that

φεt = Lφε + 1

ε
N (ψε), (30)

and
1

ε
‖N (ψε)‖X � ‖ψε‖Z‖φε‖Y . (31)

Letting ε → 0, we therefore find

χt = Lχ, (32)

in the function space L1((0, τ ), X). That is,χ is a solution of the linearized problem
for a finite interval (0, τ ). This solution, however, does not exist.

We can argue similarly for the hydrostatic Navier–Stokes equations if we aug-
ment the equations by a forcing term to compensate for the fact that the profile
U (y) is not a solution.

5. The role of boundary conditions

In Hong and Hunter [12], the difference is that the condition p = 0 is imposed
on one of the boundaries (actually at infinity, but it does not make a difference)
rather than v = 0. This condition corresponds to a free surface rather than a wall.
We shall now consider the case where this condition is imposed on both boundaries.
We shall consider the Euler equation in a domain bounded by two free surfaces,
−h1(x, t) < y < h2(x, t). The evolution of the free surfaces is determined by a
kinematic free surface condition, and the pressure is zero at the free surfaces.

In the hydrostatic approximation, h1 and h2 get rescaled along with y and v.
The pressure is equal to zero in the hydrostatic limit, and we find

ut + uux + vuy = 0,

ux + vy = 0. (33)

This system, however, is underdetermined without the imposition of a boundary
condition. To resolve this difficulty, we impose the constraint

∫ h2

−h1

vt + uvx + vvy dy = 0, (34)

which arises from integrating the vertical momentum equation and imposing the
pressure boundary condition.

We now linearize at a shear flow u = U (y) and flat surfaces h1 = h2 = 1.
With ψ denoting the stream function of the perturbation as before, we find

ψyt + U (y)ψyx − U ′(y)ψx = 0, (35)

with the constraint ∫ 1

−1
ψxt + U (y)ψxx dy = 0. (36)
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Theorem 3. The Equation (35) with the constraint (36) has solutions of the form
ψ(x, y, t) = exp(iα(x − ct))χ(y), where c satisfies

∫ 1

−1
(U (y)− c)2 dy. (37)

Unless U is constant, the roots of this equation are always complex.

The ansatz for ψ yields the equation

(U (y)− c)χ ′(y)− U ′(y)χ(y) = 0, (38)

with the constraint ∫ 1

−1
(U (y)− c)χ(y) dy = 0. (39)

This yields the eigenfunction χ(y) = U (y)− c and the eigenvalue relation

∫ 1

−1
(U (y)− c)2 dy. (40)

The Cauchy–Schwarz inequality implies that

(∫ 1

−1
U (y) dy

)2

� 2
∫ 1

−1
U (y)2 dy, (41)

with equality only if U is constant. It is an immediate consequence that c must
be complex. Hence the hydrostatic equations are ill-posed in the same manner as
above, for any non-constant velocity profile.

The eigenvalue relation just obtained is the same which arises in the long wave
limit of the full Euler equations.

6. Long wave instability of jets

In the preceding section, we showed that liquid sheets with a nonconstant veloc-
ity profile are always unstable. It is natural to expect an analogous instability for an
axisymmetric jet. Stability of jets is extensively discussed in the literature, see, for
example the monographs of Lin [13] and Yarin [21], but the focus is usually on a
jet of uniform velocity which is destabilized by capillarity or by Kelvin–Helmholtz
instability at the interface. Little seems to be known about inviscid stability or
instability of jets with nonuniform internal velocities. Debler and Yu [6] analyze
inviscid linear stability of jets with nonuniform speed, but they miss the instability
found here because they consider only axisymmetric perturbations.

We consider a jet occupying the region

r =
√

y2 + z2 < εh(x, φ, t), (42)
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whereφ is the polar angle in the (y, z)-plane, and ε is small. The Euler equations are

ut + uux + vuy + wuz = −px ,

vt + uvx + vvy + wvz = −py, (43)

wt + uwx + vwy + wwz = −pz,

ux + vy + wz = 0.

The boundary condition on the surface of the jet is p = 0.
In the long wave (hydrostatic) approximation, we scale y, z, v, w with ε and p

with ε2; the only reduction arising from this is the pressure drops out of the axial
momentum equation. We linearize at a quadratic velocity profile U (r) = 1 − r2,
r < 1 and look for disturbances proportional to exp(iα(x − ct)). The linearized
equations become

(U − c)iαu + vUy + wUz = 0,

(U − c)iαv = −py, (44)

(U − c)iαw = −pz,

iαu + vy + wz = 0.

We can combine these equations into the single equation

�p

(U − c)2
+ ∇ p · ∇ 1

(U − c)2
= 0. (45)

Here the operations ∇ and � refer only to the y and z variables.
We look for snakelike perturbations of the form p(r) exp(iφ). This leads to the

eigenvalue problem

p′′ + 1

r
p′ − 1

r2 p − 2U ′

U − c
p′ = 0. (46)

The substitution
p(r) = rq(r2/(1 − c)) (47)

transforms this equation to

ρ(1 − ρ)q ′′(ρ)+ 2q ′(ρ)+ q(ρ) = 0. (48)

This is a hypergeometric equation (see, for example [1]). We thus find the solution

p(r) = r 2 F1

(
−1

2
−

√
5

2
,−1

2
+

√
5

2
, 2,

r2

1 − c

)
. (49)

The boundary condition p(1) = 0, thus, reduces to finding the zeros of

2 F1

(
−1

2
−

√
5

2
,−1

2
+

√
5

2
, 2, z

)
. (50)

One of the roots is at z = 2.39779 + 1.35603i ; we therefore have a complex
eigenvalue c = 0.68401 + 0.17870i .
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