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Abstract

We investigate the evolution of rigid bodies in a viscous incompressible fluid.
The flow is governed by the 2D Navier–Stokes equations, set in a bounded domain
with Dirichlet boundary conditions. The boundaries of the solids and the domain
have Hölder regularity C1,α , 0 < α � 1. First, we show the existence and unique-
ness of strong solutions up to the collision. A key ingredient is a BMO bound on
the velocity gradient, which substitutes to the standard H2 estimate for smoother
domains. Then, we study the asymptotic behaviour of one C1,α body falling over a
flat surface. We show that a collision is possible in finite time if and only if α < 1/2.

1. Introduction

To understand the dynamics of solid bodies immersed in a fluid is of primary
physical interest, with regards to a wide range of phenomena such as sedimenta-
tion, filtration, or coagulation. For two-dimensional flows, under the assumption
that the N bodies are rigid and homogeneous, and that the fluid is incompressible
and viscous, one considers classically the following model:

(i) The velocity u and pressure p satisfy Navier–Stokes equations in the fluid
domain F(t):

ρ (∂t u + u · ∇u)− µ∆u = −∇ p + ρ f,

div u = 0, x ∈ F(t).
(1.1)

(ii) The N solid bodies are described by the closures Si (t) of connected bounded
domains Si (t), 1 � i � N . They have rigid velocity fields

ui (t, x) = vi (t)+ ωi (t)(x − xi (t))⊥, x ∈ Si (t), 1 � i � N , (1.2)

where vi and ωi are the translation and angular velocities, whereas xi is the
position of the center of mass.
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(iii) The moving fluid and solid domains occupy a fixed bounded domain Ω of
R

2, with the Dirichlet boundary condition:

F(t) = Ω\∪N
i=1 Si (t), u = 0, x ∈ ∂Ω. (1.3)

(iv) The fluid and solid systems are coupled by the continuity of the velocity,

u = ui , x ∈ ∂Si (t), (1.4)

and the continuity of the stresses:

mi v̇i (t) =
∫
∂Si (t)

(
µ
∂u

∂n
− pn

)
dσ +

∫
Si (t)

ρi f,

J i ω̇i (t) =
∫
∂Si (t)

(x − xi )⊥ ·
(
µ
∂u

∂n
− pn

)
dσ +

∫
Si (t)

(x − xi )⊥ · ρi f.

(1.5)

The positive constants ρ, µ are the density and viscosity of the fluid. The positive
constants mi , J i , ρi are the total mass, moment of inertia and density of the i th
solid. The source term f models an additional forcing (like gravity). The vector n
at the boundary ∂U of an open set U refers as usual to the outward unit normal
vector.

Although natural, these equations exhibit some unexpected features, in both
two and three dimensions. Hence, consider the case of one rigid body falling in
a cavity (N = 1), under the action of gravity. It can be shown that if the bound-
aries of the body and the cavity are smooth, then no collision can occur in finite
time. In other words, this system predicts that the kinetic energy of the body is
strongly dissipated by the viscosity, resulting in no collision between the body and
the boundary. This fact has been known from physicists for many years [4,6,9],
and was recently proved in one [31] and two dimensions [19,20].

This no-collision result is of course paradoxical. At the level of medium-sized
objects, it goes against Archimedes’ law, and is clearly denied by common experi-
ments. At a microscopic level, it also lacks relevance, as rebounds between particles
are often involved. Many physics papers have been devoted to this paradox, trying
to identify the flaw of the previous modelling. We refer to the articles [2,7] among
many. Among the possible explanations, one of the most popular is roughness.
Indeed, the no-collision result relies on the fact that the boundary of the solid struc-
ture is regular enough (namely C1,1). Small irregularities could then explain the
occurrence of collisions, see [25,27]. Moreover, the effect of surface roughness in
the dynamics of particles has been recently emphasized in experiments [8,23,32].

The aim of this paper is to study mathematically the roughness-induced effect
on the collision process. Therefore, we consider Hölder boundaries. Namely, we
assume that

∂Ω ∈ C1,α, ∂Si ∈ C1,α, ∀ i, 0 < α � 1. (1.6)

We will first consider the well-posedness of system (1.1)–(1.5), for such bound-
aries. We will establish existence and uniqueness of some strong solutions, up to
collision. Our result extends previous results obtained for C1,1 boundaries. Once
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this well-posedness is obtained, we will turn to the question of collision in finite
time. We will consider the special case of one C1,α rigid body, falling vertically
over a horizontal flat surface. Loosely, we will show the following:

1. For α � 1/2, no collision can occur, and the strong solution exists for all time.
2. For α < 1/2, one can find solutions for which collision occurs.

This sharp criteria illustrates that roughness might be the reason for collision in
fluid structure interaction, and the reason for the apparent paradox of the classical
modelling.

Before stating precisely the results, let us mention former mathematical stud-
ies. Fluid–solid interaction has been the subject of many papers, mostly devoted to
the existence theory for problem (1.1)–(1.5). A key ingredient in many existence
results is a weak formulation of the equations. Introducing the global quantities

v(t, x) :=u(t, x) 1F(t)(x) +
N∑

i=1

ui (t, x) 1Si (t)(x), (1.7)

ρ(t, x) :=ρF (t, x)+
N∑

i=1

ρi (t, x) := ρ 1F(t)(x) +
N∑

i=1

ρi 1Si (t)(x), (1.8)

the conservations of global momentum, global mass, and bodies masses yield,
respectively: for all T > 0, for all ϕ ∈ V , for all ψ ∈ D([0, T )×Ω),

∫ T

0

∫
Ω

(ρv · ∂tϕ + ρv ⊗ v : D(ϕ)− 2µD(v) : D(ϕ)+ ρ f · ϕ) dx ds

+
∫
Ω

ρ0v0 · ϕ(0) = 0,

∫ T

0

∫
Ω

(ρ∂tψ + ρu · ∇ψ)+
∫
Ω

ρ0ψ(0) = 0,

∫ T

0

∫
Ω

(
ρi∂tψ + ρi u · ∇ψ

)
+

∫
Ω

ρi
0ψ(0) = 0.

(1.9)

The space of test functions V is

V =
{
ϕ ∈ D([0, T )×Ω), ∇ · ϕ = 0, ρi (t)D(ϕ) = 0,∀ t,∀ 1 � i � N

}
.

The divergence, rigidity inside the fluid, and no-slip condition read, respectively:

∇ · v = 0, ρi D(v) = 0, 1 � i � N , v|∂Ω = 0. (1.10)

We refer to Desjardins and Esteban [10] for the derivation of these equations.
Similarly to ρ, ρi and v, the initial data ρ0, ρi

0 and v0 are built upon the initial
positions of the bodies Si

0 and the initial fluid and solid velocities u0, vi
0, ωi

0. We
will assume that there is no-contact initially, which means

Si
0 ∩ S j

0 = ∅, Si
0 ⊂ Ω, ∀ 1 � i, j � N , i 
= j. (1.11)

Broadly speaking, previous studies deal with two kinds of solutions: weak and
strong.
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Definition 1. A weak solution on (0, T ), T > 0, is a family

(Si (t), F(t), v), 1 � i � N , F(t) = Ω\∪N
i=1 Si (t)

such that

(i) Si (t) is a connected bounded domain, for all 0 < t < T , for all 1 � i � N .
(ii) The scalar functions ρ, ρi defined in (1.8) and the vector field v satisfy

(ρ, ρi ) ∈ L∞(0, T ×Ω), v ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1
0 (Ω)).

and Equations (1.9), (1.10).

By classical results of Di Perna and Lions [12] on the transport equations (1.9b,c),
any (ρ, ρi , v) satisfying (ii) has the following additional regularity:

ρ, ρi ∈ C([0, T ]; L1(Ω)),

and the initial data are satisfied in this stronger sense. Moreover, any ρi satisfying
(1.9c) is the characteristic function of a measurable set:

ρi (t, x) = 1Si (t)(x), for almost every t, x

see [12, vol1, th 2.1 page 23]. However, it is not clear that Si (t) should be open and
connected, so that this constraint i) is added to the definition of a weak solution.
Then, using the rigidity condition in (1.10), one can deduce that v(t, ·) is a rigid
vector field on each Si (t), and by (1.9c), which Si (t) = Rt Si

0, for a family of affine
isometries Rt Lipschitz in t .

The existence of global in time (T = +∞) weak solutions was proved by
Feireisl [14] and San Martin and coauthors [26] extending earlier studies “up
to collision between solids” [5,11,18,21,22]. It holds in dimensions two and three,
with initial data satisfying (1.11) and

v0 ∈ L2(Ω), div v0 = 0, f ∈ L2((0, T ); H−1(Ω)).

Following the construction by E. Feireisl, no smoothness of the boundaries of the
domain and the solids is necessary for the existence of weak solutions. However, the
uniqueness of such solutions is unknown in general, even considering dimension
two and pre-collisional times. After contact, it is known that uniqueness does not
hold, as some entropy condition is missing to describe properly the post-collisional
dynamics. This suggests that one should consider stronger solutions, namely

Definition 2. A strong solution on (0, T ) is a weak solution with the following
additional regularity:

v ∈ L∞ (
0, T ; H1

0 (Ω)
)

∩ L2
(

0, T ; W 1,p(Ω)
)

for all finitep,

∂tv ∈ L2(0, T ; L2(Ω)).

Our first result is the following:
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Theorem 1 (Well-posedness up to collision). Let v0 ∈ H1
0 (Ω), ρi

0 D(v0) =
0,∀ i, f ∈ L2((0, T ); W 1,∞(Ω)),∀ T > 0. Assume (1.11), and

∂Ω ∈ C1,α, ∂Si
0 ∈ C1,α, ∀ i, 0 < α � 1.

Then, there exists a maximal T∗ ∈ (0,∞] with a unique strong solution on (0, T )
for all T < T∗. Moreover, this strong solution exists up to the first collision, which
means one of the following alternatives holds true:

(i) T∗ = ∞, δ(t) > 0 ∀ t.
(ii) T∗ < ∞, δ(t) > 0 ∀ t < T∗, lim

t→T∗
δ(t) = 0,

where δ(t) := min{d(Si (t), S j (t)), d(Si (t), ∂Ω), 1 � i, j � N , i 
= j}.
Note that by condition (1.11), and the Lipschitz dependance of Rt described above,
δ is positive at least for small times. Our theorem is an extension of results of
Desjardins and Esteban [10], and Takahashi [30], who proved respectively exis-
tence and uniqueness of strong solutions in the case α = 1. See also [17] for well-
posedness under further technical assumptions on the solids. A key argument in
these papers is the classical L2 �→ H2 regularity property for the inverse of the
Stokes operator, which holds in C1,1 domains. In particular, one can show that

∫ T

0

∫
F(t)

|∇2v(t, ·)|2 < +∞, 0 < T < T∗. (1.12)

In the case of general C1,α domains, this H2 regularity result is still true away
from the boundaries, and (ρ, v) still satisfies (1.1) in the strong sense, which is for
almost every x, t. However Theorem 1 requires a control up to the boundary. We
will show that the following BMO bound:

∫ T

0
‖∇v(t, ·)‖2

BMO(F(t)) < +∞, 0 < T < T∗,

substitutes to (1.12), allowing for our well-posedness result.
In a second part, we study if bodies can collide in finite time, that is if T∗ is finite

or not. We consider one C1,α solid moves vertically near a flat horizontal surface
under the action of gravity. More precisely, let us denote S(t) = Rt S0 the position
of the solid at time t . We make the following assumptions:

1. The source term is f = −ge2, with g > 0, e2 = (0, 1).
2. The solid moves along the axis x1 = 0, that is Rt is a vertical translation.
3. The only possible collision points are on x1 = 0.
4. Near x1 = 0, ∂Ω is flat and horizontal.
5. Near x1 = 0, the lower and upper parts of ∂S(t) are given by

x2 − x−(t) = |x1|1+α, x2 − x+(t) = −|x1|2, 0 < t < T∗.

6. The solid is heavier than the fluid, that is ρ|S(t) > ρ|F(t) .
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Fig. 1. Typical situation

Note that if the initial configuration (Ω , S0, v0) is symmetric with respect to the
x1-axis, then the unique strong solution will be symmetric for all 0 < t < T∗, and
the solid will move along the vertical axis. Hence, there are plenty of configurations
satisfying 1–6. A typical one is shown in Fig. 1.

Our main result is the following.

Theorem 2 (Link between collision and boundary regularity) . For any strong solu-
tion satisfying 1–5, T∗ < ∞ if and only if α < 1/2.

In physical terms, the theorem emphasizes the role of roughness in the collision
scenario. Our result extends the results of Hillairet [20] and Hesla [19] in the
case α = 1, for which it was shown that no collision occurs. Theorem 2 relies on
the study of the stress

∫
∂S(t)(∂nu − p n). When the boundary is regular, this stress

diverges strongly as the distance to the boundary δ goes to zero. This mechanism
prevents collision. When the regularity is weakened, the stress is also weakened,
and contact may occur. The proof of the theorem involves the construction of appro-
priate test functions. In that respect, assumptions 2–5 are mostly technical, allowing
to handle the computations. As can be seen from our proof, most of our arguments
are local, and use only the weak bounds given by the conservation of energy. We
believe that, as far as “real” (not grazing) collisions are concerned, the result might
persist for more general domains and weak solutions. However, the source term
must remain sufficiently integrable, as shown by an interesting example of Staro-
voitov [29]. Loosely, Starovoitov exhibits an example of a weak solution, colliding
in finite time, whenΩ and the solid are two spheres. But the corresponding source
term satisfies only

f ∈ L2(0, T ; H−1(Ω)), ∀ T > 0.

The L2 norm of f (t, ·) diverges as δ → 0, t → T∗. This allows one to compensate
for the divergence of the stress and to allow collision, even with regular boundaries.
As shown by the first part of our theorem, this phenomenon is ruled out for more
realistic forcing (such as gravity).
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The rest of the article is organized in three sections. Section 2 gathers regularity
properties for the Stokes operator in C1,α domains. Section 3 is devoted to the proof
of Theorem 1. Section 4 contains the proof of Theorem 2.

2. Regularity properties in C1,α domains

Existence and uniqueness of strong solutions have only been considered when
solids have C1,1 boundaries. More precisely, a key argument in the papers of Des-
jardins and Esteban or Takahashi is the regularity estimate

‖∇u‖H1(O) + ‖p‖H1(O)/R � C
(‖F‖H1(O) + ‖g‖H1(O)

)
(2.1)

satisfied by the weak solution (u, p) of the Stokes system⎧⎪⎨
⎪⎩

−∆u + ∇ p = div F, x ∈ O,
div u = g, x ∈ O,
u|∂O = 0,

(2.2)

when O is a bounded domain with C1,1 boundary. Such inequality is no longer
valid when ∂O has weaker regularity. Only the interior estimate

‖∇u‖H1(K ) + ‖p‖H1(K )/R � C(K )
(‖F‖H1(O) + ‖g‖H1(O)

)
(2.3)

is satisfied, where K is any relatively compact open subset of O. As regards
well-posedness issues, this interior bound is not sufficient. We will need a con-
trol up to the boundary, given by the following:

Proposition 1. Assume that O has a C1,α boundary, 0 < α < 1. Assume also that

F ∈ L2(O) ∩ BMO(O), g ∈ L2(O) ∩ BMO(O).
Then, the weak solution (u, p) of (2.2) satisfies

‖ (∇u, p) ‖BMO(O) � C
(‖ (F, g) ‖BMO(O) + ‖ (F, g) ‖L2(O)

)
. (2.4)

We remind that BMO(O) is the set of functions f ∈ L1(O) such that

sup
B

1

|B|
∫

B
| f (x)− f B | dx < +∞, f B = 1

|B|
∫

B
f (x) dx,

where the supremum is taken over all the open balls B of O, that is all the inter-
sections of O with open disks. Note that the application

|| f ||BMO(O) := sup
B

1

|B|
∫

B
| f (x)− f B | dx

defines only a semi-norm, as it is invariant by the addition of constants. An easy
remark is that BMO(O) is also characterized by: f ∈ L1(O), and

sup
B

inf
m

(
1

|B|
∫

B
| f (x)− m| dx

)
< +∞,
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where the infimum is taken over all real constants, providing an equivalent semi-
norm. One can build an extension operator: BMO(O) �→ BMO(R2), f �→ f̃ ,
satisfying

c ‖ f ‖BMO(O) � ‖ f̃ ‖BMO(R2) � C
(‖ f ‖BMO(O) + ‖ f ‖L1(O)

)
.

Hence, standard results for the whole space apply directly to our setting. For in-
stance, f ∈ BMO(O) belongs to L p(O) for any finite p, and

sup
B

(
1

|B|
∫

B
| f (x)− f B |p dx

)1/p

< +∞,

this expression defining again a semi-norm which is equivalent to the previous one.
We also remind the Sobolev imbedding in dimension 2:

H1(O) ↪→ BMO(O), ‖ f ‖BMO(O) � C ‖∇ f ‖L2(O), (2.5)

which is simply deduced from Poincaré inequality. Finally, we remind the interpo-
lation inequality: for all θ ∈ (0, 1), for all 1 � p, q < +∞ with (1 − θ)q = p

‖ f ‖Lq (O) � C ‖ f ‖1−θ
L p(O)

(‖ f ‖BMO(O) + ‖ f ‖L1(O)
)θ
. (2.6)

We refer to [13,24] for exhaustive study of the space BMO.

Proof of the proposition. In the case of the whole space O = R
2, the estimate

(2.4) follows from the continuity of the Riesz transform on BMO. In the case of
a C1,α bounded domain, it is connected to the Hölder theory for elliptic systems.
Such theory has been of course widely considered, from various perspectives: see
[1,3,15,16] for some examples. Although a BMO estimate like (2.4) is probably
part of the folklore of this domain, we could not find a proper reference for it. For
the sake of completeness, we give here the main steps of (one possible) proof. The
last step of the proof relies on ideas of Giaquinta and Modica, used to establish
Hölder estimates for the Stokes system with Neumann boundary condition [15].

We start with a simple remark, to be used implicitly throughout the sequel: any
f ∈ L2(U ), U open set, can be written f = div F , where F ∈ H1(U ) satisfies

‖F‖BMO(U ) � C‖F‖H1(U ) � C ′ ‖ f ‖L2(U ). (2.7)

This will allow one to keep the source term in divergence form as we apply trans-
formations to the Stokes system.

Let (u, p) be the weak solution of (2.2), where p is normalized such that∫
O p = 0. Standard energy estimates yield

‖u‖H1(O) + ‖p‖L2(O) � C
(‖F‖L2(O) + ‖g‖L2(O)

)
. (2.8)

Step 1 : Localization. Let Õi � Oi , i = 1 . . . N , two families of open sets covering
O. Let ψ i a smooth function with compact support in Oi , such that ψ i = 1 on Õi .
The functions

ui := ψ i u, pi := ψ i p
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satisfy

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−∆ui + ∇ pi = div
(
ψ i F

)
− F ∇ψ i + 2(∇u)t∇ψ i +∆ψ i u + p∇ψ i

:= div Fi , x ∈ Oi ∩ O,
div u = g + ∇ψ i · u := gi , x ∈ Oi ∩ O,

u|∂(Oi ∩O) = 0.
(2.9)

By (2.8), the L2 ∩BMO norms of Fi and gi are controlled by the L2 ∩BMO norms
of F and g. Thus, we can restrict ourselves to a subdomain, that is establish (2.4)
with Oi ∩ O instead of O.
Step 2 : Local coordinates. If Oi does not intersect the boundary of O, one can
extend all functions by 0 and return to the case of R

2 : the estimate follows from
the continuity of the Riesz transforms over BMO. If Oi intersects the boundary,
we can assume with no loss of generality that it is a local chart: there exists a C1,α

diffeomorphism

χ : Oi �→ D(0, R), χ
(
Oi ∩ ∂O

)
= (−R, R)× {0},

χ
(
Oi ∩ O

)
= D+(0, R),

where D+(0, R) is the upper half disk of radius R centered at the origin. We define
new fields v, q, F ′, g′ by the relations

ui (x) = v(χ(x)), pi (x) := q(χ(x)), Fi (x) = F ′(χ(x)),
gi (x) = g′(χ(x)).

They satisfy
⎧⎨
⎩

−div (A∇v)+ div (Bq) = div (B F ′), x ∈ D+(0, R),
B : ∇v = g′, x ∈ D+(0, R),
v|∂D+(0,R) = 0,

where

A = 1

det(∇χ) (∇χ)
t ∇χ, B = 1

det(∇χ)(∇χ)
t .

Note that A is uniformly elliptic over D(0, R), and that A, B have C0,α coefficients.
As usual, (div M)i := ∂ j M ji , and M : N = Mi j Ni j for any 2 × 2 matrices M, N .
Step 3 : Frozen coefficients. We write the previous system as

⎧⎨
⎩

−div (A(0)∇v)+ div (B(0)q) = div (F̃), x ∈ D+(0, R),
B(0) : ∇v = g̃, x ∈ D+(0, R),
v|∂D+(0,R) = 0,

(2.10)

where
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F̃ := B F ′ + (A(0)− A(x))∇v + (B(0)− B(x))q,

g̃ := g′ + (B(0)− B(x)) · ∇v.
Let us assume for a while that F̃ ∈ L2 ∩ BMO, g̃ ∈ L2 ∩ BMO, and that the
estimate

‖ (∇v, q) ‖BMO(D+(0,R))�C
(

‖(F̃, g̃)‖BMO(D+(0,R)) + 1

R
‖(F̃, g̃)‖L2(D+(0,R))

)
,

(2.11)
holds. A simple scaling argument shows that the constant C can be chosen indepen-
dently of the radius R. We now state the following a priori estimate: there exists a
universal constant C′, and ε(R) going to zero with R such that

‖(F̃, g̃)‖BMO(D+(0,R)) + 1

R
‖(F̃, g̃)‖L2(D+(0,R))

� ε(R) ‖(∇v, q)‖BMO(D+(0,R)) + C′
(

‖(F ′, g′)‖BMO(D+(0,R))

+ 1

R
‖(F ′, g′)‖L2(D+(0,R)) + 1

R
‖(∇v, q)‖L2(D+(0,R))

)
.

(2.12)

For the sake of brevity, we focus on the BMO bound, as the L2 bound is straight-
forward. More precisely, we just show how to bound ‖(A(0) − A(x))∇v‖BMO,

because the other terms composing F̃ and g̃ can be handled along the same lines.
As emphasized at the beginning of the section, we need to control

IB := 1

|B|
∫

B
|(A(x)− A(0)) ∇v(x) − c| dx

for any ball B of D+(0, R) and some constant vector c (possibly depending on B).
Let r be the diameter of B and x0 a point in B. We choose c = (A(x0)− A(0)) (∇v)B .
We get

IB � C

r2

(∫
B

|A(x)− A(x0)| (∇v)B dx

+
∫

B
|A(x)− A(0)| |∇v(x)− (∇v)B | dx

)

� C ′
(

rα−2
∫

B
|∇v(x)| dx + Rα ‖∇v‖BMO(D+(0,R))

)

� C ′ (rα−2+2/q ‖∇v‖L p(D+(0,R)) + Rα ‖∇v‖BMO(D+(0,R))
)

(2.13)

for any finite conjugate exponents p, q, that is p−1 + q−1 = 1. We choose q close
enough to 1 so that α − 2 + 2/q > 0. We stress that v has compact support in
{|x | < R, x2 � 0} (see step 1). Defining an extension Dv of ∇v by

Dv(x1, x2) = (∇v)(x1,−x2), x2 < 0,

we have that Dv ∈ BMO(R2) ∩ L1(R2), and

||Dv||BMO(R2) � C ||∇v||BMO(O)
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with no lower order term. Hence, the interpolation inequality (2.6) can be improved
into

||∇v||Lq (D+(0,R)) � C ||∇v||1−θ
L p(D+(0,R)) ||∇v||θBMO(D+(0,R)),

still with no lower order term, and therefore with a constant C which does not
depend on R. We deduce that

IB � C ′′ (Rα−2+2q‖∇v‖2/p
L2(D+(0,R)) ‖∇v‖

1−2/p
BMO(D+(0,R))+Rα ‖∇v‖BMO(D+(0,R))

)

� C1 Rγ ‖∇v‖BMO(D+(0,R)) + C2‖∇v‖L2(D+(0,R))

for some universal positive constants γ , C1,C2. The estimate (2.12) follows.
Note that estimates (2.11) and (2.12) yield the bound (2.4). Indeed, up to take

smaller R, that is up to refine the covering of open sets Oi , we can assume that
ε(R) � 1/(2C). Hence, combining (2.12)–(2.11), we obtain

‖ (∇v, q) ‖BMO(D+(0,R)) � CR
(‖(∇v, q)‖L2(D+(0,R))

+‖(F ′, g′)‖BMO(D+(0,R)) + ‖(F ′, g′))‖L2(D+(0,R))
)
.

Then, it is well-known that L2, H1 and BMO norms are preserved by C1 diffeo-
morphisms. This allows one to bound the right-hand side of the previous inequality:

‖(∇v, q)‖L2(D+(0,R)) + ‖(F ′, g′)‖BMO(D+(0,R)) + ‖(F ′, g′)‖L2(D+(0,R))

� C
(
‖ui‖H1(Oi ∩O) + ‖pi‖L2(Oi ∩O) + ‖(Fi , gi )‖L2(Oi ∩O)

+‖(Fi , gi )‖BMO(Oi ∩O)
)

� C ′ (‖(F, g)‖L2(O) + ‖(F, g)‖BMO(O)
)
,

where the last line involves the basic estimate (2.8). As regards the left-hand side,
we obtain the lower bound

‖pi‖BMO(Oi ∩O) � C‖q‖BMO(D+(0,R))

and along the lines of (2.13)

‖∇ui‖BMO(Oi ∩O) = ‖∇χ∇v(χ(·))‖BMO(Oi ∩O)
� C

(‖∇v‖BMO(D+(0,R)) + ‖∇v‖L2(D+(0,R))
)
.

This altogether implies (2.4).
We stress that (2.11) and (2.12) are only a priori estimates: ∇u, p, and therefore

∇v, q are only supposed to be in L2, and not in BMO. Nevertheless, regularizing
the coefficients of A and B, establishing the same estimates for the regularized
problem and passing to the limit allows one to show that the weak solutions are
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indeed in BMO and that the inequality holds. As this regularization argument is
very classical, we leave it to the reader.
Step 4: BMO estimate for the Stokes system in a half-disk. The final step of the
proof is to derive the estimate (2.11) for the system (2.10). By the reverse change
of variables:

x �→ (∇χ(0)t)−1
x

we can assume that A(0) = B(0) = I2 is the identity matrix. By this linear map-
ping, the domain D+(0, R) turns into the intersection of a plane and an ellipse, say
E+. As all the vector fields involved are compactly supported in E+, this Stokes
system with Dirichlet boundary conditions still holds in any half-disk containing
E+. As this system is rotationally invariant, we can furthermore assume the half-
disk to be D+(0, R′) for some large enough R′. Finally, as the estimate (2.11) is
invariant by the dilations x �→ R′x , we can consider the case R′ = 1. Eventually,
we only have to establish the inequality

‖(∇u, p)‖BMO(D+(0,1)) � C
(‖(F, g)‖BMO(D+(0,1)) + ‖(F, g)‖L2(D+(0,1))

)

for the system ⎧⎨
⎩

−∆u + ∇ p = div F, x ∈ D+(0, 1),
div u = g, x ∈ D+(0, 1),
u|∂D+(0,1) = 0.

We remind that, if p is chosen such that
∫

D+(0,1)
p = 0, we already have the L2

estimate

‖(∇u, p)‖L2(D+(0,1)) � C‖(F, g)‖L2(D+(0,1)).

We shall rely on ideas of Giaquinta and Modica, who prove in article [15] a
Hölder estimate for the Stokes equation with Neumann type boundary conditions.
Let 0 < ρ � R � 2, and y in D+(0, 1). We will denote

B(y, ρ) := D(y, ρ) ∩ D+(0, 1), f y,ρ := 1

|B(y, ρ)|
∫

B(y,ρ)
f, ∀ 0 < ρ � R.

We decompose u = v + w, p = q + r , where (v, q) solves

⎧⎨
⎩

−∆v + ∇q = div F, x ∈ B(y, R),
div v = g − gy,R, x ∈ B(y, R),
v|∂B(y,R) = 0.

and (w, r) solves
⎧⎨
⎩

−∆w + ∇r = 0, x ∈ B(y, R),
div w = gy,R, x ∈ B(y, R),
w|∂B(y,R) = u|∂B(y,R).
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We must first derive an estimate on v and q. We state without proof the well-
known inequality (see [28])

‖q − q y,ρ‖L2(B(y,ρ)) � C‖∇v‖L2(B(y,ρ)), (2.14)

where C does not depend on ρ by a simple scaling argument. Then, a standard
energy estimate yields
∫

B(y,R)
|∇v|2 = −

∫
B(y,R)

(
F − F y,R

) · ∇v +
∫

B(y,R)

(
g − gy,R

) · (q − q y,R),

which combined with (2.14) yields

‖∇v‖L2(B(y,R)) � C
(‖F − F y,R‖L2(B(y,R)) + ‖g − gy,R‖L2(B(y,R)

)
. (2.15)

We now wish to obtain an estimate onw and r . As for q, the pressure r satisfies

‖r − r y,ρ‖L2(B(y,ρ)) � C‖∇w‖L2(B(y,ρ)), (2.16)

As regards w, we want to show the estimate

‖∇w − (∇w)y,ρ‖L2(B(y,ρ)) � C
ρ2

R2 ‖∇w − (∇w)y,R‖L2(B(y,R)), (2.17)

where C does not depend on ρ or R. At first, up to replacew byw− x2

(
(∂2w1)y,R

gy,R

)
,

which would still be zero at the flat part of the boundary ∂B(y, R)∩ {x2 = 0}, and
would still satisfy (2.17), we can assume that

(∂2w1)y,R = gy,R = 0.

If ρ > R/2, inequality (2.17) is trivially satisfied. If ρ < R/2, there are two cases.
If B(y, R) ⊂ {x2 > 0}, the ball B(y, R) does not intersect the boundary of

D+(0, 1). We can use the interior estimate provided by Giaquinta and Modica in
[15]: we can apply Proposition 1.9, estimate (1.14) to the derivatives of w, which
are still solutions of the Stokes equation, and this yields exactly (2.17).

If B(y, R) ∩ {x2 = 0} 
= ∅, we write

‖∇w − (∇w)y,ρ‖L2(B(y,ρ))�C ρ ‖∇2w‖L2(B(y,ρ))

�C ρ2 ‖∇2w‖L∞(B(y,ρ))�Cρ2 ‖∇2w‖L∞(B(y,R/2))

�C(R) ρ2‖∇w‖L2(B(y,R)).

Note that the first inequality is simply poincaré’s inequality, whereas the last one
stems from classical interior regularity results for the Stokes operator. Simple scal-
ing considerations give the bound C(R) � C/R2 for some constant C that does not
depend on R. To prove (2.17), it is therefore enough to show that: for any solution
w of the Stokes equation

{
−∆w + ∇ p = 0, x ∈ B(y, R),

div w = 0, x ∈ B(y, R),
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satisfying moreover

(∂2w1)y,R = 0, w = 0 on ∂B(y, R) ∩ {x2 = 0} (2.18)

we have

‖∇w‖L2(B(y,R)) � C ‖∇w − (∇w)y,R‖L2(B(y,R)) if ∂B(y, R) ∩ {x2 = 0} 
= ∅.
(2.19)

Again, the constant C in the right-hand side can be chosen independently of R.
If inequality (2.19) were not to be satisfied, one could find solutions wn satis-

fying (2.18), and such that

‖∇wn‖L2(B(y,R)) = 1, ‖∇w − (∇wn)y,R‖L2(B(y,R)) −−−−→
n→+∞ 0.

From the first equality, up to a subsequence, wn → w weakly in H1(B(y, R)).
This implies the convergence of the averages (∇wn)y,R → (∇w)y,R . Moreover,
by standard ellipticity properties of the Stokes operator, we have

‖∇2wn‖L2(B) � C(R, B), ∀ B � B(y, R)

so that wn → w strongly in H1(B). Hence, we obtain, as n → +∞,

∇w = (∇w)y,R on B.

From the second condition in (2.18) and the divergence-free condition, we get

(∂1w)y,R = 0, (∂2w2)y,R = 0.

Moreover, by the first condition in (2.18), we also have (∂2w1)y,R = 0. Hence,
(∇w)y,R = 0, and ∇w = 0 in any subset B relatively compact in B(y, R). Thus,
∇w = 0 on B(y, R) which contradicts the assumption that its L2 norm is 1.

This last argument leads to the desired inequality (2.19) on (2.17). Combining
(2.15) and (2.17), we obtain

‖∇u − (∇u)y,ρ‖L2(B(y,ρ)) � ‖∇w − (∇w)y,ρ‖L2(B(y,ρ))

+‖∇v − (∇v)y,ρ‖L2(B(y,ρ))

� C

(
ρ2

R2 ‖∇w − (∇w)y,R‖L2(B(y,R)) + ‖∇v‖L2(B(y,R))

)

� C ′
(
ρ2

R2 ‖∇u − (∇u)y,R‖L2(B(y,R)) + ‖F − F y,R‖L2(B(y,R))

+ ‖g − gy,R‖L2(B(y,R)

)

� C ′′
(
ρ2

R2 ‖∇u − (∇u)y,R‖L2(B(y,R)) + ‖(F, g)‖BMO(D+(0,1)) R2
)
.

We use lemma 0.6 of [15] to conclude that

‖∇u − (∇u)y,ρ‖L2(B(y,ρ)) � C ‖(F, g)‖BMO(D+(0,1)) ρ
2,
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which provides the BMO control of ∇u. The BMO control of the pressure p then
follows from (2.14), (2.16). This ends the proof.

In the next section, we will use this proposition to show well-posedness of the
PDE’s system (1.1)–(1.5). Before that, we state a regularity result of Sobolev type
for the Stokes system in C1,α domains. It will allow one to give a meaning in the
trace sense to the stress tensor at the solid boundary (∂nu − p n)|∂Si .

Proposition 2. Assume that O has a C1,α boundary, 0 < α < 1. Let s, τ such that
s < α and s � 2/τ . Assume that

F ∈ L2(O) ∩ W s,τ (O), g ∈ L2(O) ∩ W s,τ (O).

Then, the weak solution (u, p) of (2.2) satisfies

‖ (∇u, p) ‖W s,τ (O) � C
(‖ (F, g) ‖W s,τ (O) + ‖ (F, g) ‖L2(O)

)
. (2.20)

We remind that for all 0 < s < 1, the fractional Sobolev space W s,τ (O) is the set
of measurable functions u ∈ Lτ (Ω) satisfying

‖u‖W s,τ (O) :=
(∫ ∫

O×O
|u(x)− u(y)|τ
|x − y|n+sτ

dx dy

)1/τ

< +∞,

this last expression defining a semi-norm. The assumption s � 2/τ in the proposi-
tion ensures the continuous imbedding

H1(O) ↪→ W s,τ (O), ‖ f ‖W s,τ (O) � C ‖ f ‖H1(O). (2.21)

Similarly, the constraint s < α is such that C0,α(O) ↪→ W s,τ (O).
Sketch of proof of the proposition. The proof of the Sobolev estimate (2.20)

mimics the proof of the BMO estimate (2.4), so that we only quote the few changes
to be made.

Steps 1 and 2 (localization and use of local coordinates) remain the same, up
to the replacement of BMO by W s,τ in every argument.

In step 3, the only change is in the derivation of

‖(F̃, g̃)‖W s,τ (D+(0,R)) + 1

Rα
‖(F̃, g̃)‖L2(D+(0,R)) � ε(R) ‖(∇v, q)‖W s,τ (D+(0,R))

+ C′
(

‖(F ′, g′)‖W s,τ (D+(0,R)) + 1

Rα
‖(F ′, g′)‖L2(D+(0,R))

+ 1

Rα
‖(∇v, q)‖L2(D+(0,R))

)
,

α = s + 1 − 2τ , which substitutes to (2.12). Again, we just show how to bound
‖(A(0)− A(x))∇v‖W s,τ , as all other terms that compose F̃ and g are treated in the
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same manner. We write
∫ ∫

D+(0,R)×D+(0,R)

|(A(0)− A(x))∇v(x)− (A(0)− A(y))∇v(y)|τ
|x − y|n+sτ

dx dy

� C

(∫ ∫
D+(0,R)×D+(0,R)

|A(0)− A(x)|τ |∇v(x)− ∇v(y)|τ
|x − y|n+sτ

dx dy

+
∫ ∫

D+(0,R)×D+(0,R)
|∇v(y)|τ |A(x)− A(y)|τ

|x − y|n+sτ
dx dy

)

� C

(
‖∇v‖τW s,τ (D+(0,R)) sup

x∈D+(0,R)
|A(x)− A(0)|τ

+Rτ(α−s) ‖∇v‖τLτ (D+(0,R))

)

� ε′(R)
(
‖∇v‖τW s,τ (D+(0,R)) + ||∇v||τLτ (D+(0,R))

)
,

which allows one to conclude as in the previous proof.
Step 4, which is the W s,τ estimate, 0 < s < 1, for the Stokes equation in a

half-disk, follows from a simple interpolation of similar inequalities for W 0,τ and
W 1,τ .

3. Strong solutions

This section is devoted to the proof of Theorem 1. Broadly, we shall prove
existence and uniqueness of strong solutions as long as the distance between solid
boundaries δ(t) satisfies δ(t) > δ0, where δ0 > 0 is arbitrary. The fact that strong
solutions can not exist after collision will be discussed eventually. This altogether
will of course imply the result. In what follows, constants will depend implicitly
on δ0.

We treat separately the existence and uniqueness parts. The existence result
follows the lines of [10], whereas the uniqueness result is inspired by [30]. We thus
rely substantially on these articles, and put the stress only on the changes due to
our not so regular C1,α boundaries.

Our (refined) existence result reads:

Proposition 3 (Existence of strong solutions). Let δ0>0,v0 ∈ H1
0 (Ω), ρ

i
0 D(v0)=

0,∀ i, f ∈ L2((0, T )×Ω),∀ T > 0. Assume (1.11), and

∂Ω ∈ C1,α, ∂Si
0 ∈ C1,α, ∀ i, 0 < α � 1.

Then there exists a strong solution on (0, T ) for some T > 0. Moreover, one of the
following alternatives holds true:

(i) One can take T arbitrarily large and δ(t) > δ0 for all t � T .
(ii) One can take T such that δ(t) > δ0 for all t < T and limt→T δ(t) = δ0.
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In both cases, the strong solution has the additional regularity

∫ T

0
‖∇v(t)‖2

BMO(F(t)) dt +
∫ T

0
‖q‖2

BMO(F(t)) dt < +∞

and

∫ T

0
‖∇v(t)‖2

H1(Fε(t))
dt +

∫ T

0
‖q‖2

H1(Fε(t))/R
dt < +∞,

where q is the corresponding pressure field, and

Fε(t) := {x ∈ F(t) s.t. dist(x, ∂F(t)) > ε}, ε > 0.

Proof of the proposition. Following [10], we establish a priori estimates for a suf-
ficiently smooth solution (v, q) on (0, T ), s.t. δ(t) > δ0 for all t < T .

We first take ϕ = v as a test function, which yields the standard energy inequal-
ity

‖v‖L∞(0,T ; L2(Ω)) + ‖v‖L2(0,T ;H1
0 (Ω))

� C
(‖v0‖L2(Ω) + ‖ f ‖L2((0,T )×Ω)

)
.

(3.1)
Then, we take ϕ = ∂tv as a test function, which yields

∫ t

0

∫
Ω

|∂tv|2 + µ

∫
Ω

|D(v)(t)|2 � C

(∫
Ω

|D(v0)|2 +
∫ t

0

∫
Ω

| f |2

+
∫ t

0

∫
Ω

|v · ∇v|2
)
. (3.2)

Note that the left-hand side in (3.1), respectively (3.2) controls the L∞∩L2 norm of
vi , ωi , respectively the L2 norm of v̇i , ω̇i . We now use Stokes regularity to bound
the last term in (3.2).

The Navier–Stokes equation for the fluid part can be written

{
µ∆v − ∇q = ρ (∂tv + v · ∇v − f ) , div v = 0, x ∈ F(t),

v|∂Si (t) = vi (t)+ ωi (t)(x − xi (t))⊥, v|∂Ω∩∂F(t) = 0.
(3.3)

As the solids and the cavity do not touch (δ(t) � δ0), it is standard to build a
solenoidal vector field w(t, ·) ∈ H∞(Ω) such that

w(t, ·)|Si (t) = vi (t)+ ωi (t)(x − xi (t))⊥, w(t, ·)|∂Ω = 0,

with the estimate ‖w(t, ·)‖Hs � Cs
∑

i (|vi (t)| + |ωi (t)|). Then, the function
u = v − w satisfies

{
µ∆u − ∇q = ρ (∂tv + v · ∇v − f )− µ∆w, div u = 0, x ∈ F(t),

u|∂F(t) = 0.
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As F(t) is a C1,α open domain, we can apply the estimates of the previous section.
If q is normalized so that

∫
F(t) q(t, ·) = 0, we have, by (2.7) and Propositions 1,2

‖(∇u, q)(t)‖L2(F(t)) + ‖(∇u, q)(t)‖H1(Fε(t)) + ‖(∇u, q)(t)‖BMO(F(t))

+ ‖(∇u, q)(t)‖W s,τ (F(t)) � C

(
‖∂tv(t)‖L2(F(t)) + ‖v · ∇v(t)‖L2(F(t))

+‖ f (t)‖L2(F(t)) +
∑

i

(|vi (t)| + |ωi (t)|)
)
.

We remind that this bound holds for all s, τ such that s < α, and s � 2/τ . Back
to the original field v, and using the interpolation inequality (2.6), we get: for all
finite r

‖(∇v, q)(t)‖2
Lr (F(t)) + ‖(∇v, q)(t)‖2

H1(Fε(t))
+ ‖(∇v, q)(t)‖2

BMO(F(t))

+ ‖(∇v, q)(t)‖2
W s,τ (F(t)) � C ′

(
‖∂tv(t)‖2

L2(F(t)) + ‖v · ∇v(t)‖2
L2(F(t))

+‖ f (t)‖2
L2(F(t)) +

∑
i

(|vi (t)|2 + |ωi (t)|2)
)
.

(3.4)
By a time integration of (3.4) from 0 to t , and a linear combination with (3.1) and
(3.2), we obtain

∫ t

0

(
‖∂tv(s)‖2

L2(Ω)
+ ‖∇v(s)‖2

Lr (Ω) + ‖(∇v, q)(s)‖2
H1(Fε(s))

+‖(∇v, q)(s))‖2
BMO(F(s)) + ‖(∇v, q)(s)‖2

W s,τ (F(s))

)
ds + ‖∇v(t)‖2

L2(Ω)

� C(T )

(
‖v0‖2

H1(Ω)
+ ‖ f ‖2

L2((0,T )×Ω) +
∫ t

0
‖v · ∇v(s)‖2

L2(Ω)
ds

)
,

(3.5)
where C(T ) is an increasing function of T . To have a closed estimate, the nonlinear
term must still be handled. We split it into

∫ t

0

∫
Ω

|v · ∇v|2 =
∫ t

0

∫
F(s)

|v · ∇v(s)|2 ds +
∑

i

∫ t

0

∫
Si (s)

|v · ∇v(s)|2 ds.

The last term in the decomposition clearly satisfies

∑
i

∫ t

0

∫
Si (s)

|v · ∇v(s)|2 ds � C
∑

i

∫ t

0
|vi (s)|4 + |ωi (s)|4 ds � C ′,
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where C ′ depends on ‖v0‖L2 and ‖ f ‖L2((0,T )×Ω). The first term is bounded in the
following way:

∫ t

0
‖v · ∇v(s)‖2

L2(F(s)) ds �
∫ t

0
‖v(s)‖2

L4(F(s))‖∇v(s)‖2
L4(F(s)) ds

� C
∫ t

0
‖v(s)‖L2(F(s))‖v(s)‖H1(F(s))‖∇v(s)‖L2(F(s))

× (‖∇v(s)‖BMO(F(s)) + ‖∇v‖L2(F(s))

)
ds

� C ‖v‖L∞(0,T ; L2(Ω))

∫ t

0
‖∇v(s)‖2

L2(Ω)

× (‖∇v(s)‖BMO(F(s)) + ‖∇v(s)‖L2(F(s))

)
ds

� C ′ + α

∫ t

0
‖∇v(s)‖2

BMO(F(s)) ds + Cα

∫ t

0
‖∇v(s)‖4

L2(Ω)
ds,

(3.6)

where α is arbitrary and C ′, Cα are increasing functions of ‖v0‖L2(Ω) and
‖ f ‖L2((0,T )×Ω). Note that the second line is deduced from the use of Gagliardo–
Nirenberg inequality and the interpolation inequality (2.6). Choosingα small enough,
(3.6) and (3.5) imply that

‖∇v(t)‖2
L2(Ω)

� C +
∫ t

0
‖∇v(s)‖2

L2(Ω)
‖∇v(s)‖2

L2(Ω)
ds

using Gronwall lemma, and the fact that
∫ T

0 ‖∇v(s)‖2
L2(Ω)

is bounded through
(3.1), we obtain

‖∇v‖L∞(0,T ;L2(Ω)) � C,

where C is an increasing function of T , ‖v0‖H1(Ω) and ‖ f ‖L2((0,T )×Ω). using this
bound in (3.5), we finally obtain:

∫ T

0

(
‖∂tv(t)‖2

L2(Ω)
+ ‖∇v(t)‖2

Lr (Ω) + ‖(∇v, q)(t)‖2
H1(Fε(t))

+‖(∇v, q)(t)‖2
BMO(F(t) + ‖(∇v, q)(t)‖2

W s,τ (F(t))

)
dt + ‖∇v‖L∞(0,T ;L2(Ω))

� C
(
T, ‖v0‖H1(Ω), ‖ f ‖L2(0,T ×Ω)

)
. (3.7)

These a priori estimates are as usual the key element in the construction of strong
solutions, as it provides compactness for a sequence of approximate solutions. In
the case of C1,1 boundaries, the issue of building such approximate solutions and
passing to the limit has been addressed in Desjardins and Esteban, as well as in
many other studies. As it adapts straightforwardly to our case, we do not give further
detail and refer to these papers.

Let us stress that the W s,τ regularity of (∇v, q) allows one to define the stress
tensor at the boundary (∂nv − q n) |∂F(t). Indeed, taking indices s, τ such that
τ s > 1 (together with the requirements s < α, τ s � 2), one can define the
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traces of ∇v and q as elements of W s−1/τ,τ (∂F(t)) for almost all t . Note also that
the regularity properties

v ∈ L2(0, T ; W 1,4(Ω)), ∂tv ∈ L2(0, T ; L2(Ω))

of a strong solution v are enough to ensure that the right-hand side in (3.3) belongs to
L2((0, T )×Ω). If δ(t) � δ0 for all t < T , this automatically implies the L2(H2

loc),
L2(BMO) and L2(W s,τ ) bounds on (∇v, q) restricted to the fluid domain. This
shows the last statement of the proposition, and concludes the existence part.

We now turn to the uniqueness of strong solutions. Our result is

Proposition 4 (uniqueness of strong solutions). Let δ0 > 0, v0 ∈ H1
0 (Ω),

ρi
0 D(v0) = 0,∀ i, f ∈ L2(0, T ; W 1,∞(Ω)),∀ T > 0. Assume (1.11), and

∂Ω ∈ C1,α, ∂Si
0 ∈ C1,α, ∀ i, 0 < α � 1.

There is at most one strong solution on (0, T ) such that δ(t) > δ0 for all t < T .

Proof of the proposition. We follow closely the work of T. Takahashi related to
C1,1 boundaries. We focus on changes due to our not so regular C1,α domains. As
in [30], we just consider the case N = 1, F = 0, which is one solid S(t) immersed
in the cavityΩ , without forcing. To lighten notations, we also assume that the den-
sity ρ = 1 in the solid and the fluid domains. Minor changes allow one to handle
the general case.
Step 1: Lagrangian coordinates. The first step in the analysis of uniqueness for
this free surface problem is to get back to a fixed domain, by a change of variables
of lagrangian type. Let v0 ∈ H1(Ω) and S(0) the initial velocity field and solid
position. We will denote by h(t) the position of the center of mass of the solid at
time t . We can always assume that h(0) = 0. Let (v, q) a strong solution on (0, T )
such that δ(t) > δ0 for all t < T .

We consider the same change of variables as in [30, paragraph 4.1, p1504]: as
δ(t) > δ0, a solenoidal velocity field �(x, t) is defined such that

�(t, x) = 0, for x in an δ0/4 neighborhood of ∂Ω,

�(t, x) = ḣ(t)+ ω(t)(x − h(t))⊥, for x in an δ0/4 neighborhood of S(t).

Then, one considers the flow

X (t, ·) : Ω → Ω,
∂

∂t
X (y, t) = �(t, X (t, y)), X (0, y) = y,

which maps S(0) to S(t) and F(0) to F(t). More precisely, in a neighborhood of
S(0),

X (t, y) = ḣ(t)+ Rα(t) y, α(t) =
∫ t

0
ω(s) ds, Rα = (

cosα − sin α
sin α cosα

)
,

and near ∂Ω , X (t, y) = y. Note that, as (v, q) is a strong solution, h, α ∈ H2(0, T ).
The mapping X inherits the regularity estimate

‖∂ i
t X (t, ·)‖Hs (Ω) � Cs (|h(i)(t)| + |α(i)(t)|), ∀ i = 0, 1, 2, ∀ s ∈ N.
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We then introduce the new functions

u(t, y) := (∇Y )t (t, X (t, y)) v(t, X (t, y)), p(t, y) := q(t, X (t, y)),

where Y := X−1 denotes the inverse of X with respect to the space variable, and
as usual (∇Y )i j = ∂xi Y j .

Following [30, paragraph 4.2, p.1507], Equations (1.1)–(1.5) turn into

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u + Mu + Nu − µLu + Gp = 0, y ∈ F(0),

div u = 0, y ∈ F(0),

u(y, t) = R−α(t)ḣ(t)+ ω(t)y⊥, y ∈ S(0),

mḧ(t) = Rα(t)

∫
∂S(0)

(µ∇u − p)n dy,

J ω̇(t) =
∫
∂S(0)

(µ∇u − p)n · y⊥ dy,

plus the initial condition

u|t=0 = u0(t, y) := v0(t, X (t, y)).

We refer to [30] for the exact expression of the various operators. In short, (∂t +M)u
corresponds to the original time derivative ∂tv, Nu corresponds to v · ∇v, Lu
corresponds to ∆v, and Gp corresponds to ∇ p. An important point is that

Nu = u · ∇u, Lu = ∆u, Gp = ∇ p near ∂Ω and S(0). (3.8)

Indeed, we have X (t, y) = y near ∂Ω , so that the change of variables is triv-
ial near the boundary of the cavity. Similarly, ∇ X (t, y) = Rα(t) near S(0). As
Navier–Stokes equations are rotationally invariant, we get (3.8).
Step 2: Stokes-like formulation. The operators above involve the flow X (t, ·), which
depends on the solution u itself: hence, they are nonlinear. But X (0, y) = y, which
means that for small time, nonlinearities are expected to be small. We shall therefore
treat these nonlinear perturbations as source terms. We introduce

H(t) :=
∫ t

0
R−α(s)ḣ(s) ds

and write the system as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u − µ∆u + ∇ p = f − Mu − u · ∇u, y ∈ F(0),

div u = 0, y ∈ F(0),

u(y, t) = Ḣ(t)+ ω(t)y⊥, y ∈ S(0),

m Ḧ(t) =
∫
∂S(0)

(µ∇u − p)n dy + w(t),

J ω̇(t) =
∫
∂S(0)

(µ∇u − p)n · y⊥ dy,

(3.9)
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where

f := −(Nu − u · ∇u)+ µ(L −∆)u − (G − ∇)p,
and

w(t) = m ω(t)Rα(t) Ḣ(t)
⊥.

Step 3: Uniqueness. The uniqueness of the strong solution will be established thanks
to the formulation (3.9). Let (v1, q1), (v2, q2) two strong solutions on (0, T ),
T > 0, corresponding to the same initial velocity field v0 ∈ H1(Ω) and same
initial configuration S(0), F(0) = Ω\S(0). We remind that for the sake of brevity,
we consider the force-free case. We assume that the boundaries ∂Ω and ∂S(0) are
C1,α , and that

δ1(t) > δ0, δ2(t) > δ0, ∀ t ∈ [0, T ).

We can associate to vi the change of variable Xi , the new functions ui , pi and so
on. We shall prove that u1 = u2 on (0, T )×Ω . The differences

u := u1 − u2, H := H1 − H2, ω := ω1 − ω2

satisfy with obvious notations
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u−µ∆u+∇ p= f 1− f 2+M2u2−M1u1+u2 · ∇u2−u1 · ∇u1, y ∈ F(0),

div u = 0, y ∈ F(0),

u(y, t) = Ḣ(t)+ ω(t)y⊥, y ∈ S(0),

m Ḣ(t) =
∫
∂S(0)

(µ∇u − p)n dy + w1(t)− w2(t),

J ω̇(t) =
∫
∂S(0)

(µ∇u − p)n · y⊥ dy

(3.10)
with initial condition u|t=0 = 0. Now, we can perform the exact same estimates as
those performed earlier to show existence of strong solutions. In particular, we get
(see estimate (3.5))

∫ T

0

(
‖∂t u(t)‖2

L2(Ω)
+ ‖∇u(t)‖2

Lr (Ω) + ‖∇u(t)‖2
H1(Fε(0))

+ ‖∇u(t)‖2
BMO(F(0))

+‖p(t)‖2
H1(K )

)
dt + ‖∇u‖L∞(0,T ; L2(Ω))

� Right-hand side :=C(T )
(
‖ f 1 − f 2‖2

L2((0,T )×Ω)
+‖u1 · ∇u1 − u2 · ∇u2‖2

L2((0,T )×Ω) + ‖M1u1 − M2u2‖2
L2((0,T )×Ω)

+‖w1 − w2‖L2(0,T )

)
, (3.11)

where ε is any constant lower than δ0/4, and C(T ) an increasing function of T . As
usual, the pressure p is normalized so that

∫
F(0) p = 0. One must still estimate the

right-hand side.
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By the remark (3.8), f 1 − f 2 has a support Fε which is compact in F(0).
The L2(H1) bound on (∇u, p), which was true up to the boundary for C1,1

domains, holds in Fε. Moreover, the L2((0, T ) × Ω) estimate on ∂t u and the
L∞(0, T ; L2(Ω)) estimate on ∇u also hold. Hence, the same bounds as those
derived in [30, Corollary 6.16, p.1523] apply:

‖ f 1 − f 2‖L2(0,T ×Ω) � C T 1/10 (‖(∇u, p)‖L2(0,T ;H1(Fε(0)))

+‖∂t u‖L2((0,T )×Ω) + ‖∇u‖L∞(0,T ;L2(Ω))

)
,

where C denotes here and in the sequel an increasing function of T and ‖v0‖H1(Ω).
As the L2 bound on ∂t u is still available, we deduce as in [30, corollary 6.16]

that

‖w1 − w2‖L2(0,T ) � C T 1/2 ‖∂t u‖L2((0,T )×Ω).

We remind that Mu = ω(t) u⊥ + ∂t Y · ∇u,. Therefore,

‖M1u1 − M2u2‖L2((0,T )×Ω) � ‖M1u‖L2((0,T )×Ω) + ‖Mu2‖L2((0,T )×Ω)
� C

(
‖(ω1, ḣ1)‖L2(0,T )‖u‖L2(0,T ;H1(Ω)) + ‖(ω, ḣ)‖L2(0,T )‖u2‖L2(0,T ;H1(Ω))

)

� C T 1/2 ‖∇u‖L∞(0,T ;H1(Ω)).

Finally, we must control the quadratic term

u1 · ∇u1 − u2 · ∇u2 = u · ∇u1 + u2 · ∇u.

Like in previous computations, we get

‖u · ∇u1‖2
L2((0,T )×F(0))

� C‖u‖2
L∞(0,T ; L4(Ω))

‖∇u1‖L∞(L2(Ω))

×
∫ T

0

(
‖∇u1(t)‖BMO(F(0)) + ‖∇u1(t)‖L2(F(0))

)

� C
√

T ‖∇u‖2
L∞(0,T ;H1(Ω))

,

using the L2(BMO) ∩ L2(H1) bound on ∇u1. Similarly,

‖u2 · ∇u‖2
L2((0,T )×F(0))

� C‖u2‖2
L∞(L4(Ω))

‖∇u‖L∞(L2(Ω))

∫ T

0

(‖∇u(t)‖BMO(F(0)) + ‖∇u‖L2(F(0))
)

� C
√

T
(
‖u‖2

L∞(0,T ;H1(Ω))
+ ‖∇u‖2

L2(0,T ;BMO(F(0)))

)
.

The L2 bound in S(0) is straightforward, and we end up with

‖u1 · ∇u1 − u2 · ∇u2‖L2(0,T ×Ω) � C T 1/4
(
‖u‖2

L∞(0,T ;H1(Ω))

+‖∇u‖L2(0,T ;BMO(F(0)))
)
.
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Eventually, these inequalities lead to

Right-hand side � C T 1/10 (‖u‖L∞(0,T ;H1(Ω)) + ‖∂t u‖L2((0,T )×Ω)
+‖∇u‖L2(0,T ;BMO(F(0))) + ‖(∇u, p)‖L2(0,T ;H1(Fε(0)))

)

with C an increasing function of T and ‖v0‖H1(Ω). By reporting this bound in (3.11),
we deduce that there exists a small T0 such that u1 = u2 on [0, T0]. Moreover, T0
depends only on ‖v0‖H1(Ω) (decreasing as ‖v0‖H1(Ω) increases).

Global uniqueness follows. Indeed, we know that u1 and u2 are in L∞([0, T ],
H1(Ω)) for all times T such that ∀ t � T, δ1(t), δ2(t) � δ0. Hence, up to con-
sider a smaller T0, we can apply the above local uniqueness result on [T0, 2T0],
then [2T0, 3T0] and so on up to reach time T . This concludes the uniqueness part.

So far, we have shown existence and uniqueness of strong solutions at least up
to the first collision. Theorem 1 asserts more, namely that no strong solution can
exist beyond the first collision time. This result can be deduced from [29, Theorems
3.1 and 3.2b]. Indeed, V. Starovoitov has shown the following: suppose that two
C1,α solids Si1(t) and Si2(t), respectively a C1,α solid Si (t) and the C1,α cavity
Ω , collide for the first time at t = T . Denote for t � T ,

hi1,i2(t) := dist
(

Si1(t), Si2(t)
)

respectively hi (t) := dist
(

Si (t),Ω
)

and assume that

u ∈ L∞(0, T ; L2(Ω)) ∩ L1(0, T ; W 1,p(Ω)). (3.12)

Then, hi1,i2 , hi are lipschitz continuous on [0, T ] and for example,

∣∣∣∣dhi

dt
(t)

∣∣∣∣ � C hi (t)
β ‖u(t)‖W 1,p(Ω), β = 2 − 1

1 + α

p + 1

p
− 1

p
,

for almost all t � T .
In particular, if T is the first collision time, and the strong solution exists

beyond it, the regularity assumption (3.12) is satisfied for arbitrary p. Taking p
large enough, one can assume that β � 1. We note also that, by hypothesis (1.11),
h(0) 
= 0. Then, by integration of the previous differential inequality, we obtain
h(T ) 
= 0, which yields a contradiction.

We emphasize that for strong solutions, (3.12) holds a priori only for T < T∗.
Thus, the argument of Starovoitov does not allow one to conclude on the occurrence
of collision. In the next section, we will exhibit configurations for which collision
occurs. For such examples, we have the following:

∫ T∗

0
‖u‖W 1,p(Ω) = ∞.
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4. The collision/no-collision result

This section is devoted to the proof of Theorem 2. We consider the simplified
configuration described at the end of the introduction, assumptions 1–6. In this
framework, the position of the solid is characterized by h(t) := dist((0, x−(t)),
∂Ω). Later on, it will be convenient to use a parameterization by h, which is the
translated domains

Sh := S(0)+ (h − h(0))e2, h ∈ R.

Of course, Sh(t) = S(t). By assumption 5, the boundary of S(t) is C1,1 near
its “upper tip” (0, x+(t)), so that contact is impossible at this point, cf. [20]. By
assumption 6, gravity pushes S(t) downwards. So, we can even assume that

inf
t∈(0,T∗)

dist ((0, x+(t)), ∂Ω) > 0. (4.1)

Thus, collision can occur if and only if limt→T∗ h(t) = 0. We will show that it
is equivalent to α < 1/2. The proof is based on the use of a quasistationary velocity
field w and quasistationary pressure field q. By quasistationary, we mean that for
all t < T∗,

w(t, x) = wh(t)(x), q(t, x) = qh(t)(x)

for some stationary fields wh(·), qh(·) defined on Ω and parameterized by h > 0.
Moreover, they will satisfy

w∈C1((0, T∗); H1(Ω)), ∆w(t, ·)∈ L p(F(t)), p small enough, t ∈(0, T∗), (4.2)

div w = 0 in Ω, w|S(t) = e2, w|∂Ω = 0. (4.3)

as well as

q ∈ C1([0, T∗), L2(Ω)), ∇q(t, ·) ∈ L p(F(t)), p small enough, t ∈ (0, T∗).
(4.4)

In particular, we can use w as a test function in the variational formulation to get

∫ t

0

∫
Ω

(ρv · ∂tw + ρv ⊗ v : D(w)− 2µD(v) : D(w)− ρge2 · w)

=
∫
Ω

ρ(t)v(t) · w(t)−
∫
Ω

ρ(0)v0 · w(0).

Note that by (4.3)

∫
Ω

ρge2 · w =
∫

S(t)
ρge2 · e2 +

∫
F(t)

ρg∇(x �→ x2) · w

= ρS g |S(0)| + ρF g

∫
∂F(t)

x2 e2 · n = (ρS − ρF ) g|S(0)|,
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where ρS := ρ|S(t), ρF := ρ|F(t). We also write

2µ
∫
Ω

D(v)(t) : D(w)(t) = ḣ(t)
∫
∂F(t)

(
µ
∂w

∂n
− qn

)
· e2 −

∫
F(t)

(µ∆w − ∇q)v

:= ḣ(t) n(h)−
∫

F(t)
(µ∆w − ∇q) · v.

Thus, the variational formulation yields

N (h(t))+ (ρS − ρF ) g|S(0)| t = R(t), (4.5)

where N is the antiderivative of n that vanishes at h(0), and the remainder is

R(t) :=
∫ t

0

∫
Ω

(ρv · ∂tw + ρv ⊗ v : D(w))

+
∫
Ω

ρ(0)v0 · w(0)−
∫
Ω

ρ(t)v(t) · w(t)

+
∫ t

0

∫
F(s)

(∆w(s, ·)− ∇q(s, ·)) · v(s, ·).

Theorem 2 will be deduced from the following proposition:

Proposition 5. One can find wh : Ω �→ R
2, qh : Ω �→ R, such that w, q satisfy

(4.2), (4.3), (4.4), and such that

(i) For h > 0 small enough

−c � n(h) � C h−β, β = 3α

1 + α
, c,C > 0. (4.6)

(ii) For all t < T∗,

|R(t)| � C(‖u0‖L2)
(

1 + √
t
)
. (4.7)

Before tackling the proof of this proposition, let us show how it implies Theorem 2.
If α � 1/2, then β � 1. We get from (4.5) and point (ii) of the proposition:

N (h(t)) � (ρF − ρS)|S(0)|t − C (1 + √
t).

By point (i), we also get for h small enough

N (h) � −C | ln(h)|.
In fact, one can take h1−β instead of | ln(h)| when β > 1, which is α > 1/2.
Combining those inequalities, we deduce

C | ln h(t)| � (ρS − ρF )|S(0)|t + C(1 + √
t) < +∞, ∀ t < T∗

which means that h does not go to zero in finite time. Hence, T∗ = +∞ and there
is no collision
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If α < 1/2, then β < 1, and n ∈ L1. Thus, N is continuous. As h(t) is bounded,
we deduce from (4.5): ∀ t < T∗ � +∞,

−∞ < inf
t∈(0,T∗)

N (h(t)) � (ρF − ρS)|S(0)|t + C(1 + √
t).

If T∗ = +∞, and ρS > ρF , one can let t → +∞ in the previous inequality. As the
right-hand side goes to −∞ in this limit, it yields a contradiction. Thus, T∗ < +∞.
This ends the proof.

The rest of the paper will be devoted to the proof of Proposition 5.

4.1. Construction of the test function

We mimic the construction presented in article [20] for C1,1 boundaries. We
want a function wh(x) such that

div wh = 0 in Ω, wh |Sh = e2, wh |∂Ω = 0. (4.8)

We always consider 0 < h < hM := sup0<t<T∗ h(t), as no other value of h is
involved in our problem.

By a change of coordinates, we can assume (0, 0) ∈ ∂Ω , which is x−(t) = h(t).
By assumption 5, there exists δ > 0, such that

∀ x ∈ ∂Sh ∩ D((0, h), 2δ), x2 = γh(x1) := h + |x1|1+α,

where as usual D(x, r) is the disk of center x and radius r . Moreover, by assumption
3 and (4.1),

δmin := inf
0,h<hM

dist
(
∂Sh ∩ D((0, h), δ)c, ∂Ω

)
> 0.

To describe wh away from the origin, we introduce a smooth function ϕ = ϕ(x),
x ∈ R

2 such that

ϕ = 1 in a δmin/2-neighborhood of Sh(0), ϕ = 0 outside a δmin-neighborhood of Sh(0),

We introduce another smooth function χ = χ(x), x ∈ R
2, such that

χ = 1 in (−δ, δ)2, χ = 0 outside (−2δ, 2δ)2.

Finally, we set wh = ∇⊥(x1ϕh), with

ϕh =1 in Sh,

ϕh = (1 − χ(x)) ϕ(x1, x2 − h + h(0))+χ(x) x2
2

γh(x1)2

(
3 − 2x2

γh(x1)

)
in Ω\Sh .

See Fig. 2 to clarify the main notations. Note that ϕh and therefore wh are regular
up to h = 0 outside

Ωh,δ := Ω ∩ {|x1| < δ} ∩ {x2 < γh(x1)}.
Singularities at h = 0 correspond to the second term in the definition of ϕh .
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Fig. 2. Geometry of the possible contact zone

It is straightforward thatwh satisfies (4.8). Asϕh involves the boundary function
γh , the stream function x1ϕh has regularity C2,α in the fluid domain. Moreover,wh is
continuous across the solid boundary, so that it belongs to C∞((0, hM ); W 1,∞(Ω)).
In the fluid domain, its most singular second order derivatives behave like xα−1

1 .
We deduce thatw(t, x) = wh(t)(x) satisfies (4.2). We postpone to the appendix the
proof of the following estimates:

Proposition 6. There exists 0 < c < C such that

‖wh‖L2(Ω) � C,

c � h
3α

2(1+α) ‖∇wh‖L2(Ω) � C,

‖∇wh‖L∞(Ω\Ωh,δ) � C,

(4.9)

and

sup
x1∈(−δ,δ)

|γh(x1)|3/2
(∫ γh(x1)

0
|∇wh(x1, x2)|2 dx2

)1/2

� C,

∫ δ

−δ

∫ γh(x1)

0
γh(x1)

2 |∂hwh(x)|2 dx � C.

(4.10)

Besides these estimates onwh , the control of n(h) and R(t) shall involve quantities
of the type ∫

F(t)
(µ∆wh − ∇qh)w̃,

where w̃ ∈ H1
0 (Ω) is divergence free and satisfies w̃|∂Sh = e2. We prove in the

appendix the following estimate

Proposition 7. There exists a pressure field h �→ qh ∈ C∞(0, hM ; C1(Ω)) such
that for all divergence free w̃ ∈ H1

0 (Ω) satisfying w̃|∂Sh = e2,∣∣∣∣
∫

F(t)
(µ∆wh − ∇qh)w̃

∣∣∣∣ � C ‖w̃‖H1
0 (Ω)

.
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4.2. Proof of Proposition 5

Thanks to the estimates of the previous section, we are able to control the
functions n(h) and the remainder term R(t).

By integration by parts,

n(h) := 2µ
∫
Ω

D(wh) : D(wh)+
∫

Fh

(µ∆wh − ∇qh)wh .

By estimate (4.9)b, we have

ch− 3α
2(1+α) � ‖∇wh‖L2(Ω) � Ch− 3α

2(1+α) ,

and Proposition 7 leads to
∣∣∣∣
∫

F(t)
(µ∆wh − ∇qh)wh

∣∣∣∣ � C ‖∇wh‖L2(Ω) � Cε + ε‖∇wh‖2
L2(Ω)

.

Combining these last two inequalities yields point (i) of Proposition 5.
To establish point (ii), we need to control each term in the remainder. Still using

bound (4.9), we have∣∣∣∣∣
∫

Fh(t)

(µ∆wh(t) − ∇qh(t)) v

∣∣∣∣∣ � C‖v(t)‖H1
0 (Ω)

.

Integration from 0 to t and Cauchy–Schwarz inequality lead to
∫ t

0

∣∣∣∣
∫

F(s)
(µ∆w(s, ·)− ∇q(s, ·)) v(s, ·)

∣∣∣∣
� C ‖v‖L2(0,t;H1(Ω))

√
t � C(‖u0‖L2(Ω))

√
t . (4.11)

We also get
∣∣∣∣
∫
Ω

ρ(0)v0 · w(0)−
∫
Ω

ρ(t)v(t) · w(t)
∣∣∣∣�C ‖v‖L∞(0,t;L2(Ω)) sup

h∈(0,hM )

‖wh(t)‖L2(Ω)

�C(‖u0‖L2(Ω)). (4.12)

We stress that the quantities ‖u‖L∞(0,t; L2(Ω)) and ‖∇u‖L2(0,T ; L2(Ω)) are uniformly
bounded with respect to t , as gravity is a conservative force (cf. [10]).

To deal with the term involving ∂tw, we shall use the following general bound:
for any h ∈ (0, hM ) and any (ρ, v) ∈ L∞(Ω) × H1

0 (Ω) we have, for any
w̃ ∈ H1

0 (Ω):

∣∣∣∣
∫
Ω

ρv · w̃
∣∣∣∣ � C‖ρ‖L∞(Ω) ‖∇v‖L2(Ω)

⎛
⎝‖w̃‖L2(Ω\Ωh,δ)

+
(∫ δ

−δ

∫ γh(x1)

0
|γh(x1)|2|w̃(x)|2dx

)1/2
⎞
⎠ ,
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This is a simple consequence of Cauchy–Schwarz and Hardy inequalities, and its
proof is therefore left to the reader. Note that ∂tw = ḣ(t)∂hwh(t). The previous
formula yields

∣∣∣∣
∫ t

0

∫
Ω

ρv · ∂tw

∣∣∣∣ � C sup
[0,T∗)

|ḣ|
∫ t

0
‖∇v(s)‖L2(Ω)

⎛
⎝‖∂hwh(s)‖L2(Ω\Ωh(s),δ)

+
(∫ δ

−δ

∫ γh(s)(x1)

0
|γh(s)(x1)|2|∂hwh(s)|2 d

)1/2
⎞
⎠ ds � C(‖u0‖L2(Ω))

√
t, (4.13)

where the last inequality involves (4.10)b. Finally, to deal with the nonlinear term,
we use another general formula, namely: for any h ∈ (0, hM ) and any (ρ, v) ∈
L∞(Ω)× H1

0 (Ω) we have, for any w̃ ∈ H1
0 (Ω):∣∣∣∣

∫
Ω

ρv ⊗ v : D(w̃)

∣∣∣∣ � C‖ρ‖L∞(Ω) ‖∇v‖2
L2(Ω)

(‖D(w̃)‖L∞(Ω\Ωh,δ)

+ sup
x1∈(−δ,δ)

⎛
⎝|γh(x1)| 3

2

(∫ γh(x1)

0
|∇w̃(x)|2dx1

) 1
2
⎞
⎠

⎞
⎠ .

This formula follows from Cauchy–Schwarz inequality together with a refined
Poincaré’s inequality. We refer to lemma 12 in [20] for all necessary details. We
infer from this bound and (4.10) that

∫ t

0

∫
Ω

ρv ⊗ v : D(w) � C(‖u0‖L2(Ω)). (4.14)

Gathering (4.11) to (4.14) gives the bound on R(t).

Acknowledgments. The authors wish to thank Bertrand Maury and François Bouchut for
useful discussions.

Appendix: Proofs of Propositions 6 and 7

In this section, we estimate the rate of divergence of various Sobolev norms of wh

as h goes to 0. As explained in Section 4, wh is regular up to h = 0 in Sh and
Ω\(Sh ∪Ωh,δ). Hence, there holds:

‖∇wh‖L∞(Ω\Ωh,δ) � C,

and the rate of divergence of wh is one of its restriction to Ωh,δ , which is one of
∇⊥(x1ϕh) where

ϕh(x) = x2
2

γh(x1)

(
3 − 2

x2

γh(x1)

)
, ∀ x ∈ Ωh,δ.

Proposition 6 is then a straightforward consequence of:
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Lemma 1. Given (α, p, q) ∈ (0,∞)3, the quantity:∫ δ

−δ
|x1|pdx1

(h + |x1|1+α)q

behaves like

(i) ch
(p+1)
1+α −q , if p + 1 < q(1 + α),

(ii) c ln(h), if p + 1 = q(1 + α),

(iii) c, if p + 1 > q(1 + α),

when h goes to 0, with c a constant depending only on (α, p, q).

The proof of this lemma as well as the induced bounds on wh are direct adaptation
of [20, Lemma 13].
One must sitll build the pressure field qh in order to prove Proposition 7. For sim-
plicity, we assume now µ = 1. With the same notations as in Sect. 4, we set:

qh(x) = ∂21(x1ϕh(x))+ 12
∫ x1

0

t

γh(x1)2
dt, ∀ x ∈ Ω.

We stress that

qh(x) = ∂21(x1ϕh(x))−
∫ x1

0
∂222(t ϕh(t, x2))dt, ∀ x ∈ Ωh,δ.

As for wh, this pressure field is smooth up to h = 0 in the fluid domain outside
Ωh,δ.Consequently, the rate of divergence of∆wh −∇qh is the one of its restriction
to this latter domain. Standard computations lead to the following:

∆wh(x)− ∇qh(x) =
(−2∂112(x1 ϕh(x))

∂111(x1ϕh(x))

)
, ∀ x ∈ Ωh,δ.

We recall that∇2wh ∈ L p(Ωh,δ) for p sufficiently small. As H1(Ωh,δ) ⊂ Lr (Ωh,δ0)

for arbitrary r < ∞, the integral to be estimated in Proposition 7 is well-defined.
Up to a truncation (which leaves aside a term that is regular with respect to h), we
can assume w̃ = 0 in (Ω\Sh)\Ωh,δ . A fortiori:∫

Ω\Sh

(∆wh − ∇qh) · w̃ =
∫
Ωh,δ

(∆wh − ∇qh) · w̃.

After an integration by parts, accounting for w̃|∂Sh = (0, w̃2):∫
Ωh,δ

(∆wh − ∇qh) · w̃ = −
∫
∂Sh

∂11(x1 ϕh)w̃2n1dσ

−
∫
Ωh,δ

∂11(x1 ϕh)(2∂2w̃1 − ∂1w̃2).

Thanks to Lemma 1, one can check that ∂11(x1 ϕh) is bounded uniformly in h in
L2(Ωh,δ). Moreover, the boundary term reads
∣∣∣∣
∫
∂Sh

∂11(x1 ϕh) w̃2n1dσ

∣∣∣∣�‖w̃2‖L∞(∂Ωh,δ)

∫ δ

0

∣∣∣∣∣
6x1(γ

′
h(x1))

2

(γh(x1))2

γ ′
h(x1)

1 + (γ ′
h(x1))2

∣∣∣∣∣ dx1,

where |γ ′
h(x1)| � c|x1|α. So, this boundary term is again uniformly bounded by

Lemma 1. This ends the proof of Proposition 7.
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