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Two-phase Entropy Solutions
of a Forward–Backward Parabolic Equation

Corrado Mascia, Andrea Terracina & Alberto Tesei

Abstract

This article deals with the Cauchy problem for a forward–backward parabolic
equation, which is of interest in physical and biological models. Considering such
an equation as the singular limit of an appropriate pseudoparabolic third-order regu-
larization, we consider the framework of entropy solutions, namely weak solutions
satisfying an additional entropy inequality inherited by the higher order equation.
Moreover, we restrict the attention to two-phase solutions, that is solutions taking
values in the intervals where the parabolic equation is well-posed, proving existence
and uniqueness of such solutions.

1. Introduction

In this paper we study the forward–backward parabolic equation in one space
dimension

ut = (φ(u))xx in R × (0, T ] =: ST , (1)

subject to the initial condition

u(x, 0) = u0(x) for x ∈ R. (2)

We suppose that the function φ is nonmonotone and piecewise linear, namely (see
Fig. 1):

φ(u) =

⎧
⎪⎨

⎪⎩

φ−(u) for u � b,

φ0(u) for b < u < c,

φ+(u) for u � a,

where

φ±(u) := α± u + β±, φ0(u) := A(u − b)− B(u − c)

c − b
.
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Fig. 1. The function φ

Here −∞ < b < c < ∞, α± > 0, β± ∈ R, and A := φ+(c) < φ−(b) =:
B. We also denote by a ∈ (−∞, b) and d ∈ (c,∞) the roots of the equations
φ−(u) = A, respectively φ+(u) = B. Since u can take values in the interval (b, c),
the Cauchy problem (1), (2) is ill-posed.

Equation (1) with a cubic φ arises in the theory of phase transitions. In this
context the function u represents the phase field, whose values characterize the
difference between the two phases; the half-lines (−∞, b) and (c,∞) correspond
to stable phases and the interval (b, c) to an unstable phase (for example see [4]).
Therefore the sets

S− := {(u, φ−(u))|u ∈ (−∞, b)} ≡ {(s−(v), v)|v ∈ (−∞, B)}
and

S+ := {(u, φ+(u))|u ∈ (c,∞)} ≡ {(s−(v), v)|v ∈ (c,∞)}
are referred to as the stable branches, and S0 := {(u, φ(u))|u ∈ (b, c)} as the
unstable branch of the graph of φ.

With a (nonmonotone) function φ of a different shape, Equation (1) also arises
in mathematical models of population dynamics [20,21,30], oceanography [1],
image processing [22], and gradient systems associated with nonconvex functionals
([2,29] and references therein).

Quite a few regularizations have been proposed and investigated for problems
of this kind (for example see [1–3,11,32]). Among them, the pseudoparabolic
regularization

ut = (φ(u))xx + εuxxt (ε > 0) (3)

arises, if nonequilibrium effects are taken into account (see [3]). Remarkably, it
gives rise to a class of viscous entropy inequalities satisfied by classical solutions
of (3) for any ε > 0 (see Section 3). Analogue to the case of hyperbolic conservation
laws (see [7]), solutions of (3) with initial data (2) are expected to converge as ε → 0
to some solution of the Cauchy problem (1), (2), also satisfying a suitable limiting
entropy inequality.
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Results of this kind have been proved in [24] for the initial-boundary value
problem with homogeneous Dirichlet conditions, and in [23,25] for Neumann
conditions. However, due to the nonmonotone character of φ, the situation is more
cumbersome with respect to the case of scalar hyperbolic conservation laws. Firstly,
it turns out that weak entropy measure-valued solutions are obtained by such a limi-
ting procedure. Secondly, no uniqueness is known within this class.

Early nonuniqueness results for forward–backward parabolic equations were
proved in [14,26] (for a more recent result concerning the Perona–Malik equation,
see [33]). It can be argued that the class of solutions considered in these cases
is too wide, so that some narrower class of well-posedness, defined by additional
constraints, should be considered. The weak entropy measure-valued solutions dis-
cussed in [23–25] could be considered in this case. To date, uniqueness within this
class has not been proved.

This motivates our investigation, which concerns the well-posedness of problem
(1), (2) within a more restricted class of solutions (see Definition 1). Solutions of
this class, whose choice was suggested in [8], are of physical interest, for they des-
cribe the transition between stable phases. In some respects, they can be regarded
as the counterpart of piecewise smooth solutions in the theory of hyperbolic conser-
vation laws. Like the latter, they exhibit an interface which evolves according to the
Rankine–Hugoniot condition, obeying admissibility conditions which follow from
the entropy inequality. Such conditions can be viewed as prescriptions to select
admissible jumps between the stable branches of φ. As already pointed out in [23],
this gives rise to a hysteresis loop typical of first-order phase transitions (see [4]).
A numerical exploration of such solutions is performed in [16].

In this paper we prove the existence and uniqueness of such solutions, which
we call two-phase entropy solutions, for the Cauchy problem (1), (2) (the proof
of similar results for the Neumann initial-boundary value problem was outlined in
[17]; for the Riemann problem they have been studied in [13]). Results are stated
in Section 2 and proved in Section 4 for existence, in Section 5 for uniqueness.
In Section 3 we discuss the entropy formulation of the problem in the light of the
existing literature.

2. Results

To study the existence of solutions of the Cauchy problem (1), (2), we make
the following assumptions on the initial data u0:

(A1)

⎧
⎪⎨

⎪⎩

(i) u0(R−) ⊆ (−∞, b], u0(R+) ⊆ [c,∞) ;
(ii) u0 ∈ H2,∞(R−) ∩ H2,∞(R+), limx→±∞ u′

0(x) = 0 ;
(iii) limη→0+ φ(u0)(−η) = limη→0+ φ(u0)(η).

Here and below we set

Hk,∞(I ) := {u ∈ Ck(I ) | ‖u‖k,∞ < ∞} (I ⊆ R)
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with

‖u‖k,∞ :=
k∑

j=0

sup
x∈I

|u( j)(x)| (k ∈ {0} ∪ N).

To study uniqueness the following assumption will be also needed:

(A2)

{
The functions φ(u0)− A, φ(u0)− B change sign at most
a finite number of times in any compact subset of R.

Remark 1. In view of assumption (A1), there exist finite limits

lim
η→0+ u0(±η) =: u0(0

±), lim
η→0+ u′

0(±η) =: u′
0(0

±).

Since

u0(0
−) � b < c � u0(0

+),

the initial datum u0 has a jump discontinuity at the origin. On the other hand, φ(u0)

belongs to C(R), with

φ(u0)(0) := α−u0(0
−)+ β− = α+u0(0

+)+ β+. (4)

In the following, we denote by C2,1(Q) the set of functions u ∈ C(Q) such that
ux , uxx , ut ∈ C(Q) (Q ⊆ ST ) and by Cl([0, τ ]) (l > 0 noninteger, τ ∈ (0, T ])
the Banach space of functions u ∈ C [l]([0, τ ]) with norm

‖u‖(l)(0,τ ) := ‖u‖[l],∞ + 〈u([l])〉(l−[l])
(0,τ ) ,

where ‖u‖k,∞ (k � 0 integer) is defined as above and

〈u〉(σ )(0,τ ) := sup
s,t∈(0,τ ),s �=t

|u(s)− u(t)|
|s − t |σ (σ ∈ (0, 1)).

Inspired by [8,23,25], we make the following definition.

Definition 1. By a two-phase entropy solution of the Cauchy problem (1), (2) in
Sτ := R × (0, τ ] (τ ∈ (0, T ]) we mean any couple of functions ξ = ξ(t),
u = u(x, t) such that:

(i) ξ ∈ C
3
2 ([0, τ ]), ξ(0) = 0, and there exists at most a finite number of intervals

(τ ′, τ ′′) ⊆ (0, τ ] such that ξ ′(t) �= 0 for any t ∈ (τ ′, τ ′′);
(ii) u ∈ L∞(Sτ ) ∩ C

(
Ā+
τ \γ ) ∩ C

(
Ā−
τ \γ ), where

A±
τ := {(x, t) ∈ Sτ

∣
∣ ± (x − ξ(t)) > 0

}
,

γ := {(ξ(t), t) | t ∈ [0, τ ]} ,
and for any t ∈ (0, τ ] there exist finite the limits

lim
η→0+ u(ξ(t)± η, t) =: u(ξ(t)±, t).

Moreover,

u
(

A−
τ

) ⊆ (−∞, b], u
(

A+
τ

) ⊆ [c,∞); (5)
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(iii) u ∈ C2,1
(

A+
τ

)∩ C2,1
(

A−
τ

)
, ux ∈ L∞(Sτ ), and for any t ∈ (0, τ ] there exist

finite the limits

lim
η→0+ ux (ξ(t)± η, t) =: ux (ξ(t)

±, t);

(iv) u is a classical solution of the problem
{

ut = (φ(u))xx in A−
τ ∪ A+

τ

u(x, 0) = u0(x) x ∈ R\{0},
such that

lim
x→±∞ ux (x, t) = 0 (t ∈ (0, τ ]); (6)

(v) for any t ∈ (0, τ ] there holds:

φ(u)(ξ(t)+, t) := lim
η→0+ φ(u)(ξ(t)+ η, t)

= lim
η→0+ φ(u)(ξ(t)− η, t) =: φ(u)(ξ(t)−, t); (7)

(vi) the Rankine–Hugoniot condition

ξ ′(t) = −α+ ux (ξ(t)+, t)− α− ux (ξ(t)−, t)

u(ξ(t)+, t)− u(ξ(t)−, t)
(8)

holds for any t ∈ (0, τ ];
(vii) for any t ∈ (0, τ ] the entropy conditions

⎧
⎨

⎩

(a) ξ ′(t) � 0 if φ(u)(ξ(t), t) = A,
(b) ξ ′(t) � 0 if φ(u)(ξ(t), t) = B,
(c) ξ ′(t) = 0 if φ(u)(ξ(t), t) ∈ (A, B)

(9)

are satisfied.

The curve γ is called the interface. A two-phase entropy solution in ST is said
to be global.

Remark 2. In view of requirement (ii) in Definition 1, u has a jump discontinuity
at any point of the curve γ . However, φ(u) can be made continuous in Sτ by setting
(see 7):

φ(u)(ξ(t), t) := α−u(ξ(t)−, t)+β− = α+u(ξ(t)+, t)+β+ (t ∈ (0, τ ]). (10)

The definition of φ(u) can be further extended at t = 0 setting

φ(u)(x, 0) := φ(u0)(x) for any x ∈ R;
then φ(u) ∈ C

(
Sτ
)
, as is easily seen. In particular, this implies

lim
t→0

φ(u)(ξ(t), t) = φ(u0)(0),

thus

lim
t→0

u(ξ(t)±, t) = u0(0
±) (11)

(see 4 and 10).
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Remark 3. If u satisfies the properties (ii)–(iv) of Definition 1, its restrictions u
∣
∣

A±
τ

satisfy in the classical sense the following problems:
⎧
⎨

⎩

wt = α±wxx in A±
τ

w(ξ(t), t) = u(ξ(t)±, t) t ∈ (0, τ ]
w(x, 0) = u0(x) x ∈ R±.

Observe that equality (11) is the compatibility condition of order zero for the above
problem (for example see [15]).

Remark 4. If u satisfies (ii)–(iv) above, the Rankine–Hugoniot condition is satis-
fied if and only if u is a weak solution of Equation (1) in Sτ (see Section 3).

The jump discontinuity of u and the continuity of φ(u) across the curve γ
imply φ(u)(ξ(t), t) ∈ [A, B] for any t ∈ [0, τ ]. Further restrictions on two-phase
solutions derive from the Rankine–Hugoniot and entropy conditions. In particular,
the latter imply that at any fixed (x, t) ∈ Sτ we can jump between stable phases
only when φ(u)(x, t) takes one of the values A, B. Observe that the assumptions
made on the sign of ξ ′ (see (i), (vii) in Definition 1) imply that, at any fixed point
x̄ ∈ R, only a finite number of changes of phase can take place in the interval of
existence (0, τ ].

Our first result deals with local existence of two-phase solutions.

Theorem 1. Assume hypothesis (A1). Suppose that either φ(u0)(0) ∈ (A, B) or
α+ u′

0(0
+) �= α− u′

0(0
−). Then there exists τ ∈ (0, T ] such that the Cauchy pro-

blem (1), (2) has a two-phase entropy solution in Sτ .

To prove the above theorem, we address two different auxiliary problems, which
we describe as the moving boundary problem and the steady boundary problem. As
the name suggests, the first arises when the interface moves; it is a free boundary
problem formally similar to a two-phase Stefan problem (concerning the wide lite-
rature on the Stefan problem, see in particular [9,10]). With respect to the classical
case, the main difference is that different values of the unknown are prescribed on
either side of the interface. For this reason, we address the problem by a different
technique, based on an iterative procedure (see Section 4.1).

On the other hand, the second auxiliary problem arises when ξ ′ ≡ 0; formally,
it amounts to solve a parabolic problem with discontinuous diffusivity (see Section
4.2). After studying such problems, we show that for small times the solution of
either problem, depending on the assumption satisfied by initial data, is indeed a
two-phase entropy solution. Hence Theorem 1 follows.

Under more restrictive assumptions on the initial data, the same methods allow
one to prove global existence. This is the content the following theorem (actually, the
global solution mentioned in the statement is that of the steady boundary problem;
see Section 4.3).

Theorem 2. Let assumption (A1) be satisfied and φ(u0)(x) ∈ [A, B] for any
x ∈ R. Then there exists a global two-phase entropy solution of the Cauchy problem
(1), (2).

The following uniqueness result will be proved in Section 5.
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Theorem 3. Let assumptions (A1)–(A2) be satisfied. Then there exists at most one
two-phase entropy solution of the Cauchy problem (1), (2).

3. Entropy formulation

It is the purpose of this section to motivate Definition 1, concerning in particular
the entropy conditions (9). Let us first make the following definitions.

Definition 2. Let u0 ∈ L∞(R). By a weak solution to problem (1), (2) in Sτ , we
mean any couple u ∈ L∞(Sτ ), w ∈ L∞(Sτ ) ∩ L2((0, τ ); H1

loc(R)) such that
w = φ(u) and

∫∫

Sτ
{uψt − wxψx } dx dt +

∫

R

u0(x)ψ(x, 0) dx = 0

for any ψ ∈ C1,1(Sτ ) with compact support, ψ(·, τ ) = 0 in R.

Definition 3. Let u0 ∈ L∞(R). By a weak entropy solution of (1), (2) in Sτ we
mean any weak solution of the problem such that the entropy inequality

∫∫

Sτ

{
G(u)ψt − g(w)wxψx − g′(w)(wx )

2ψ
}

dx dt

+
∫

R

G(u0)(x)ψ(x, 0) dx � 0 (12)

holds for any g ∈ C(R) nondecreasing and any ψ as above, ψ � 0, where

G(u) :=
∫ u

0
g(φ(s)) ds + k (k ∈ R). (13)

The above definition of weak entropy solution can be motivated directly as
follows. Should Equation (1) admit a classical solution u, then multiplying the
equation by g(w) with g ∈ C1(R), g′ � 0, w = φ(u) one finds that

(G(u))t = g(w)wxx = (g(w)wx )x − g′(w)(wx )
2.

Subsequently, multiplying the above inequality by ψ as in Definition 3 and inte-
grating by parts, one obtains (12) with the equality sign. If applied to the Cauchy
problem for (3), with solution given by a couple uε, wε := φ(uε) + εut (ε > 0),
the same calculation gives the inequality

∫∫

ST

{
G(uε)ψt − g(wε)wεxψx − g′(wε)(wεx )2ψ

}
dx dt

+
∫

R

G(u0)(x)ψ(x, 0) dx � 0, (14)
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which can be regarded as a viscous entropy inequality. Hence only inequality could be
expected, if u were obtained by the “vanishing viscosity” method (in this connec-
tion, see Remark 5).

To establish a link between Definition 2 and Definition 1 we need the following
lemma. By [h] we denote the jump of any function h across the interfaceγ—namely,

[h] = [h](ξ(t), t) := h(ξ(t)+, t)− h(ξ(t)−, t),

where the limits

h(ξ(t)±, t) := lim
η→0+ h(ξ(t)± η, t)

are supposed to be finite. The standard proof is omitted.

Lemma 1. Let (u, w) be a weak entropy solution of problem (1), (2) in Sτ . Suppose
the following:

(i) u ∈ C2,1
(

A+
τ

) ∩ C2,1
(

A−
τ

)
, u ∈ C1,1(ω ∩ Ā+

τ ) ∩ C1,1(ω ∩ Ā−
τ ) for any

compact subset ω ⊆ Sτ , where A±
τ denote the subsets of Sτ introduced in

Definition 1;
(ii) w(·, t) ∈ C(R) for any t ∈ (0, τ ].

Set

γ := ∂A+
τ ∩ ∂A−

τ ≡ {(ξ(t), t) | t ∈ [0, τ ]}
with ξ ∈ C1 ((0, τ ]), ξ(0) = 0. Then both the Rankine–Hugoniot condition

ξ ′ = −[wx ]
[u] (15)

and the entropy condition

ξ ′ [G(u)] � −g(w)[wx ] (16)

hold on γ \{(0, 0)}.
The following result is proved arguing as for hyperbolic conservation laws (for

example see [28])—namely, selecting admissible directions of propagation of the
interface by a proper choice of g in (16).

Proposition 1. Let (u, w) be a weak entropy solution of problem (1), (2) in Sτ
satisfying the assumptions of Lemma 1 and the invariance conditions (5). Then both
the Rankine–Hugoniot condition (8) and the entropy conditions (9) are satisfied.

Proof. Inequality (8) follows immediately from (5) and (15). Concerning (9),
choose

g(s) = gk(s) := sgn (s − k) (s ∈ R), (17)

so that

G(u) =
∫ u

0
sgn (φ(s)− k) ds (k ∈ R)
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(see (13)). From (15), (16) we obtain:

ξ ′ {[G(u)] − g(w)[u]} � 0 on γ \{(0, 0)}
for any nondecreasing g. Then the choice (17) gives

ξ ′(t)
∫ u(ξ(t)+,t)

u(ξ(t)−,t)
{sgn (φ(s)− k)− sgn (w(ξ(t), t)− k)} ds � 0 (18)

for any t ∈ (0, τ ] and any k ∈ R. Observe that u(ξ(t)−, t) < u(ξ(t)+, t) by
assumption (5) (t ∈ (0, τ ]).

If w(ξ(t), t) = A, let us choose k ∈ (A, B). Then

w(ξ(t), t)− k = A − k < 0 ⇒ sgn (w(ξ(t), t)− k) = −1,

thus

sgn (φ(s)− k)− sgn (w(ξ(t), t)− k) = sgn (φ(s)− k)+ 1 � 0 (19)

for any s ∈ [u(ξ(t)−, t), u(ξ(t)+, t)] = [a, c] (t ∈ (0, τ ]). Since sgn (φ(·)−k)+1
does not identically vanish in [a, c], by inequality (18) we obtain ξ ′(t) � 0. This
proves condition (9)(a).

Condition (9)(b) similarly follows choosing k ∈ (A, B), which gives, since
w(ξ(t), t) = B,

sgn (φ(s)− k)− sgn (w(ξ(t), t)− k) = sgn (φ(s)− k)− 1 � 0 (20)

for any s ∈ [u(ξ(t)−, t), u(ξ(t)+, t)] = [b, d] (t ∈ (0, τ ]).
Finally, if w(ξ(t), t) ∈ (A, B), we choose first k ∈ (w(ξ(t), t), B), then

k ∈ (A, w(ξ(t), t)). Hence both (19) and (20) hold, which implies ξ ′(t) = 0
(t ∈ (0, τ ]). This proves condition (9)(c), and completes the proof. ��

In view of the above proposition, it is easy to give conditions ensuring that a
weak entropy solution be a two-phase entropy solution; we leave their formulation
to the reader.

Remark 5. It is natural to ask whether weak entropy solutions can be obtained as
the “vanishing viscosity” limit of a sequence of classical solutions of the Cauchy
problem (3), (2). It can be checked that results analogous to those proved in [19] for
the Neumann initial-boundary value problem (see also [8,17]) hold in the present
case, too. This allows one to associate with the sequence of “viscous solutions” a
family of Young measures, which is a natural candidate as a weak entropy measure-
valued solution of the problem.

Unfortunately, no results concerning the structure of such Young measures,
like those in [24], are known for the Cauchy problem (1), (2). Therefore the above
question to our knowledge is open. If such results were available, two-phase entropy
solutions would be a particular case of the weak entropy measure-valued solutions
obtained by the approximating procedure. However, even in this case their existence
would not follow from general existence results like those in [24].
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4. Existence

In this section we prove Theorem 1, following the outline in Section 2.

4.1. Moving boundary problem

For any C ∈ [A, B] define κ− ∈ (−∞, b], κ+ ∈ [c,∞) by the equalities

α−κ− + β− = α+κ+ + β+ = C. (21)

Definition 4. Let C ∈ [A, B]. By a solution in Sτ (τ ∈ (0, T ]) of the moving
boundary problem at the value C, we mean any couple of functions ξ = ξ(t),
u = u(x, t) such that:

(i) ξ ∈ C
3
2 ([0, τ ]), ξ(0) = 0, ξ ′(t) �= 0 for any t ∈ (0, τ ] ;

(ii) u satisfies requirements (ii)–(iv) of Definition 1;
(iii) for any t ∈ (0, τ ] there holds:

u(ξ(t)±, t) = κ±, (22)

ξ ′(t) = −α+ ux (ξ(t)+, t)− α− ux (ξ(t)−, t)

κ+ − κ−
. (23)

Clearly, equalities (21)–(23) imply (7)–(8), whereas condition (i) above implies
condition (i) of Definition 1. Hence any solution of the moving boundary problem
is a two-phase entropy solution of the Cauchy problem for (1), if it also satisfies
the entropy conditions (9). Since by Definition 4 ξ ′ �= 0 in (0, τ ], either (a) or (b)
of condition (9) holds; thus either C = A or C = B must be chosen. Therefore we
can exhibit two-phase entropy solutions by constructing solutions of the moving
boundary problem with C = A (respectively, C = B) such that ξ ′ � 0 (ξ ′ � 0,
respectively) in (0, τ ]. Conversely, any two-phase entropy solution such that ξ ′ < 0
(respectively, ξ ′ > 0) in (0, τ ] is a solution of the moving boundary problem at the
value B (respectively, at the value A).

Remark 6. It is convenient for further developments to write the moving boundary
problem in a slightly different form. Let ξ = ξ(t), u = u(x, t) be a solution of the
problem; set

v(y, t) := u(ξ(t)+ y, t). (24)

In view of Definitions 1 and 4, the moving boundary problem amounts to find a
couple ξ = ξ(t), v = v(y, t) such that:

(i) ξ ∈ C
3
2 ([0, τ ]), ξ(0) = 0, ξ ′(t) �= 0 for any t ∈ (0, τ ];

(ii) v ∈ L∞(Sτ ) ∩ C
(

Q
+
τ \ {y = 0}

)
∩ C

(
Q

−
τ \{y = 0}

)
, where

Q±
τ := R± × (0, τ ] (τ ∈ (0, T ]),
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and for any t ∈ (0, τ ] there exist finite the limits

lim
η→0+ v(±η, t) =: v(0±, t).

Moreover,

v
(
Q−
τ

) ⊆ (−∞, b], v
(
Q+
τ

) ⊆ [c,∞) ; (25)

(iii) v ∈ C2,1
(
Q+
τ

)∩ C2,1
(
Q−
τ

)
, vy ∈ L∞(Sτ ), and for any t ∈ (0, τ ] there exist

finite the limits

lim
η→0+ vy(±η, t) =: vy(0

±, t) ;

(iv) v is a classical solution of the problem
{
vt = {φ(v)}yy + ξ ′vy in Q−

τ ∪ Q+
τ

v(y, 0) = u0(y) y ∈R\{0}, (26)

such that

lim
y→±∞ vy(y, t) = 0 (τ ∈ (0, T ]) ;

(v) for any t ∈ (0, τ ]
v(0±, t) = κ± ; (27)

(vi) for any t ∈ (0, τ ]

ξ ′(t) = −α+ vy(0+, t)− α− vy(0−, t)

κ+ − κ−
. (28)

Concerning existence of solutions to the moving boundary problem, we shall
prove the following result (as always in the following equalities, either upper or
lower signs must be chosen).

Theorem 4. Let assumption (A1)be satisfied; suppose u0(0±)= κ±, andα+u′
0(0

+)
�= α−u′

0(0
−). Then for some τ ∈ (0, T ] there exists a solution u in Sτ of the moving

boundary problem with C given by (21).

Remark 7. Condition (22) and assumption (i) of the above theorem obviously
imply (11); they are equivalent to φ(u)(ξ(t), t) = C for any t ∈ [0, τ ], whence
φ(u) ∈ C(Sτ ) (see Remark 2).

As already mentioned, Theorem 4 will be proved by an iteration procedure. To
this purpose we need existence, uniqueness and regularity results concerning the
problem:

⎧
⎪⎨

⎪⎩

vt = α vyy + ξ ′vy in Q+
τ

v(0, t) = κ t ∈ (0, τ ]
v(y, 0) = v0(y) y ∈ R+,

(29)
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where α > 0, τ ∈ (0, T ], κ ∈ R and ξ ′ is the derivative of a given smooth function
ξ = ξ(t). For, if u is a solution of the moving boundary problem in Sτ , the function

v±(y, t) := u(ξ(t)± y, t) (y ∈ R+, t ∈ [0, τ ])
satisfies the problem (see (26), (27)):

(P)±

⎧
⎪⎨

⎪⎩

vt = α±vyy ± ξ ′vy in Q+
τ

v(0, t) = κ± t ∈ (0, τ ]
v(y, 0) = v±

0 (y) y ∈ R+

with ξ ∈ C
3
2 ([0, τ ]), ξ(0) = 0 and v±

0 (y) := u0(±y).

Remark 8. It is worth pointing out the relationship between the functions v± and
the restrictions v

∣
∣
Q±
τ

of the function v defined in (24):

v

∣
∣
∣Q±

τ
(y, t) = v±(±y, t) for any y ∈ R+, t ∈ [0, τ ].

In particular, there holds

(v±)y(0, t) = ±vy(0
±, t) (t ∈ (0, τ ]) (30)

whenever the above quantities exist.

Let us recall the definition of some function spaces to be used in the sequel. By

Cl, l
2 (Q) (l > 0 noninteger, Q ⊆ ST ), we denote the Banach space of functions u

continuous in Q, together with all derivatives of the form Dr
t Ds

x u for 2r + s < l,
with norm

‖u‖(l)Q :=
[l]∑

j=0

∑

2r+s= j

‖Dr
t Ds

x u‖∞ +
∑

2r+s=[l]
〈Dr

t Ds
x u〉(l−[l])

x,Q

+
∑

0<l−2r−s<2

〈Dr
t Ds

x u〉(
l−2r−s

2 )

t,Q ,

where

〈u〉(σ )x,Q := sup
(x,t),(x ′,t)∈Q,x �=x ′

|u(x, t)− u(x ′, t)|
|x − x ′|σ ,

〈u〉(σ )t,Q := sup
(x,s),(x,t)∈Q,s �=t

|u(x, s)− u(x, t)|
|s − t |σ (σ ∈ (0, 1)).

In the above expression and in the following, we denote

‖ f ‖∞ := sup
(x,t)∈Q

| f (x, t)|

for any function f defined in a subset Q ⊆ ST .
Concerning problem (29), we can state the following result.
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Proposition 2. Let ξ ∈ C1+ σ
2 ([0, τ ]) (σ ∈ (0, 1)), ξ(0) = 0. Suppose

v0 ∈ H2,∞(R+), v0(0) = κ , lim
y→∞ v

′
0(y) = 0. Then there exists a unique clas-

sical solution v ∈ C2,1(Q+
τ ) ∩ C([0, τ ]; H1,∞(R+)) of problem (29). Moreover,

(i) there holds

lim
y→∞ vy(y, t) = 0 for any t ∈ (0, τ ] ;

(ii) vt , vyy ∈ L∞(Q+
τ );

(iii) there exists a constant C1 > 0 (only depending on ‖v′
0‖∞, ‖v′′

0‖∞ and
A := sup

t∈[0,τ ]
|ξ ′(t)|) such that

|vy(y, t1)− vy(y, t2)| � C1
√|t1 − t2| (31)

for any (y, t1), (y, t2) ∈ Q
+
τ ;

(iv) v ∈ C1+σ, 1+σ
2 (Q

+
τ ), and there exists a constant C2 > 0 (only depending on

the norm ‖v0‖2,∞ and A) such that

‖v‖(1+σ)
Q+
τ

� C2 (σ ∈ (0, 1)). (32)

Remark 9. The solution v mentioned in the above proposition does not belong to
C2,1(Q

+
τ ). In fact, this would imply the first order compatibility conditionαv′′

0 (0)+
ξ ′(0)v′

0(0) = 0, which we do not assume.

The following lemma will be used to prove Proposition 2.

Lemma 2. Let ξ ∈ C([0, τ ]), ξ(0) = 0. Suppose u0 ∈ H0,∞(R+), θ ∈ C([0, τ ]),
αu0(0) = θ(0). Then there exists a unique classical solution u ∈ C2,1(A+

τ ) ∩
C( Ā+

τ ) ∩ L∞(A+
τ ) of the problem

⎧
⎪⎨

⎪⎩

ut = α uxx in A+
τ

α u(ξ(t), t) = θ(t) t ∈ (0, τ ]
u(x, 0) = u0(x) x ∈ R+.

(33)

In addition, if u0 ∈ H1,∞(R+) and lim
x→∞ u′

0(x) = 0, then lim
x→∞ ux (x, t) = 0 for

any t ∈ (0, τ ].
Proof. For (x, t) ∈ A+

τ , set

u(x, t) := −
∫ t

0
Kx (x − ξ(s), t − s) h(s) ds +

∫ ∞

0
�(x, y; t) u0(y) dy, (34)

where K (x, t) := (4π α t)−1/2 e− x2
4α t denotes the heat kernel,

�(x, y; t) := K (x − y, t)− K (x + y, t) (35)
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and h solves the integral equation

h(t)

2α
−
∫ t

0
Kx (ξ(t)− ξ(s), t − s) h(s) ds

= θ(t)

α
−
∫ ∞

0
�(ξ(t), y; t) u0(y) dy. (36)

for t ∈ (0, τ ]. Under the present assumptions there exists a unique solution
h ∈ C([0, τ ]) of the above equation (for example see [5]). Then by standard cal-
culations the function u defined in (34) belongs to C2,1(A+

τ )∩ C(A
+
τ )∩ L∞(A+

τ )

and solves problem (33) in the classical sense; moreover, it is the unique bounded
solution (for example see [31] for details).

In addition, there holds

ux (x, t) = −
∫ t

0
Kxx (x − ξ(s), t − s) h(s) ds +

∫ ∞

0
�x (x, y; t) u0(y) dy.

Using the Lebesgue convergence theorem, it is easily seen that the first integral on
the right-hand side vanishes as x → ∞; moreover,

lim
x→∞

∫ ∞

0
�x (x, y; t) u0(y) dy = lim

x→∞ u′
0(x) = 0.

Then the conclusion follows. ��
Proof (Proposition 2).

(i) Let u be the solution of problem (33) considered in the previous lemma,
with θ(t) = ακ . Then the function v defined by (24) belongs to C2,1(Q+

τ )∩
C(Q

+
τ ) ∩ L∞(Q+

τ ) and solves problem (29) with v0 = u0 in the classical
sense. By comparison results there holds

‖v‖∞ � ‖v0‖∞. (37)

Moreover, v is the unique bounded solution of the problem, and its derivative
vy belongs to L∞(Q+

τ ) (for example see [C, Theorem 20.3.1]). A standard
calculation shows that

‖vy‖∞ � M1, (38)

with some constant M1 > 0, which only depends on ‖v′
0‖∞ and A.

(ii) It follows from Lemma 2 that claim (i) of the statement is satisfied. To prove
claim (ii), observe that v satisfies the integral equation

v(y, t) = κ +
∫ ∞

0
�(y, z; t)(v0(z)− κ) dz

+
∫ t

0
ξ ′(s)

∫ ∞

0
�(y, z; t − s)vz(z, s) dz ds. (39)
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Differentiating twice with respect to y the above equation and using the
equality �yy = �zz (see (35)), we obtain

vyy(y, t) =
∫ ∞

0
�zz(y, z; t)(v0(z)− κ) dz

+
∫ t

0
ξ ′(s)

∫ ∞

0
�zz(y, z; t − s)vz(z, s) dz ds.

Since v0(0) = κ , �(y, 0; t) = 0 and �z(y, 0; t) = −2 Ky(y, t), integrating
by parts gives plainly

vyy(y, t) =
∫ ∞

0
�(y, z; t) v′′

0 (z) dz + 2
∫ t

0
ξ ′(s)Ky(y, t − s) vz(0, s) ds

−
∫ t

0
ξ ′(s)

∫ ∞

0
�z(y, z; t − s)vzz(z, s) dz ds.

Then using (38), we obtain easily

|vyy(y, t)| � M2

2
+ 2 A√

π α

∫ t

0

1√
t − s

‖vyy(·, s)‖∞ ds ((y, t) ∈ Q+
τ )

with a constant M2 > 0 only depending on ‖v′
0‖∞, ‖v′′

0‖∞ and A. It follows
that

sup
s∈[0,t]

‖vyy(·, s)‖∞ � M2
√
α π

2
(√
α π − 4 A

√
t
) ,

thus

sup
s∈[0,t]

‖vyy(·, s)‖∞ � M2

for any t ∈ [0, t1] with t1 := α π
64A2 . Repeating the argument

[
τ

t1

]

times, we

obtain

sup
s∈[0,τ ]

‖vyy(·, s)‖∞ = ‖vyy‖∞ � M2. (40)

From the first equation in (29) and inequalities (38), (40), we also have

‖vt‖∞ � AM1 + αM2; (41)

thus the claim follows.
(iii) The above estimate of vyy implies that vy(·, t) is Lipschitz continuous for

any fixed t ∈ (0, τ ]. In fact, by (40) there holds

|vy(y1, t)− vy(y2, t)| � M2 |y1 − y2| (42)

for any (y1, t), (y2, t) ∈ Q+
τ . This implies

|vy(y, t1)− vy(y, t2)| � C ′√|t1 − t2| (43)



902 Corrado Mascia, Andrea Terracina & Alberto Tesei

for any (y, t1), (y, t2) ∈ Q+
τ,δ := {(y, t) ∈ Q+

τ | y � δ}, with C ′ > 0 only
depending on ‖v′

0‖∞, ‖v′′
0‖∞, A and δ (see [12]). Observe that inequality

(42) implies the continuity of vy in R+ × (0, τ ]. Then by the results in [12]
claim (iii) will follow, if we prove that

|vy(0, t1)− vy(0, t2)| � C ′′√|t1 − t2| (44)

for any t1, t2 ∈ [0, τ ], with C ′′ > 0 only depending on ‖v′
0‖∞, ‖v′′

0‖∞ and A.

It also follows that vy ∈ C(Q
+
τ ); thus v ∈ C([0, τ ]; H1,∞(R+)) (see (38)).

To prove (44) we proceed as above to prove claim (ii). Differentiating with
respect to y (39), integrating by parts and using again the equalities v0(0) = κ ,
�z(y, 0; t) = −2 Ky(y, t) we obtain

vy(0, t) = 2
∫ ∞

0
K (z, t)v′

0(z) dz − 2
∫ t

0
ξ ′(s)

∫ ∞

0
Kz(z, t − s)vz(z, s) dz ds.

For any t1, t2 ∈ [0, τ ], there holds
∣
∣
∣
∣

∫ ∞

0
(K (z, t1)− K (z, t2)) v

′
0(z) dz

∣
∣
∣
∣

� 1√
π

∫ ∞

0
exp (−z2)

∣
∣
∣v

′
0(
√

4αt1 z)− v′
0(
√

4αt2 z)
∣
∣
∣ dz

�
√
α

π
‖v′′

0‖∞
√|t1 − t2|.

Similarly, using inequality (40) we obtain by a lengthy calculation: (with
vz = vz(z, s))
∣
∣
∣
∣

∫ t1

0
ξ ′(s)

∫ ∞

0
Kz(z, t1 − s)vz dz ds −

∫ t2

0
ξ ′(s)

∫ ∞

0
Kz(z, t2 − s)vz dz ds

∣
∣
∣
∣

� C ′′′√|t1 − t2|
with C ′′′ > 0 only depending on ‖v′

0‖∞, ‖v′′
0‖∞ and A. Hence inequality (44)

follows.

(iv) Observe that

‖v‖(1+σ)
Q+
τ

= ‖v‖∞ + ‖vy‖∞ + sup
(y,s),(y,t)∈Q+

τ ,s �=t

|v(y, s)− v(y, t)|
|s − t |(1+σ)/2

+ sup
(y,t),(y′,t)∈Q+

τ ,y �=y′

|vy(y, t)− vy(y′, t)|
|y − y′|σ

+ sup
(y,s),(y,t)∈Q+

τ ,s �=t

|vy(y, s)− vy(y, t)|
|s − t |σ/2 .

Then Claim (iv) of the statement follows from the above results (in particular, see
(31), (37), (38), (41) and (42)). This completes the proof. ��
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For any k ∈ N, consider the problem

(Pk)±

⎧
⎪⎨

⎪⎩

vkt = α±vkyy ± ξ ′
k−1(t)vky in Q+

τ

vk(0, t) = κ± t ∈ (0, τ ]
vk(y, 0) = v±

0 (y) y ∈ R+,

where the sequence {ξk} is defined as follows:

ξ0(t) := Mt (M ∈ R),

ξ ′
k(t) := −α+v+

ky(0, t)+ α−v−
ky(0, t)

κ+ − κ−
, ξk(0) = 0 (k ∈ N) (45)

for any t ∈ (0, τ ].
In view of Proposition 2, a recursive argument shows that for any k ∈ N there

exists a unique classical solution v±
k of problem (Pk)±. Both v−

k and v+
k have the

regularity asserted in Proposition 2 for the solution v of problem (29); thus in

particular v±
k ∈ C1+σ, 1+σ

2 (Q
+
τ ), v

±
ky(0, ·) ∈ C

σ
2 ([0, τ ]) and ξk ∈ C1+ σ

2 ([0, τ ])
(see (45); σ ∈ (0, 1)).

Theorem 4 will be proved by letting k → ∞ both in (Pk)± and in (45). To
this purpose uniform estimates of the sequences {‖v±

k ‖(1+σ)
Q+
τ

} and {Ak}, where

Ak := supt∈[0,τ ] |ξ ′
k(t)|, are needed. Actually, since ‖v±

k ‖(1+σ)
Q+
τ

can be estimated

in terms of ‖v±
0 ‖2,∞ and Ak−1 (see Proposition 2(iv)), a uniform estimate of {Ak}

will do. Such estimate is the content of Proposition 3, whose proof requires two
preliminary lemmata.

Lemma 3. Let w be the solution of the problem
⎧
⎪⎨

⎪⎩

wt = αwyy + Mwy in Q+
τ

w(0, t) = 0 t ∈ (0, τ ]
w(y, 0) = w0(y) y ∈ R+,

(46)

where w0 ∈ H0,∞(R+), w0(0) = 0 with derivative w′
0 ∈ L∞(R+). Then

|wy(0, t)| � ‖w′
0‖∞

{

M

√
t

απ
exp

(

− M2t

4α

)

+
(

2 + M2t

α

)

Erf

(
M

2

√
t

α

)}

(47)

for any t ∈ (0, τ ], where

Erf (y) := 1√
π

∫ y

−∞
exp (−z2) dz (y ∈ R).
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Proof. The solution of problem (46) reads

w(y, t) = exp

(

− My

2α
− M2t

4α

)∫ ∞

0
�(y, z; t) w0(z) exp

(
Mz

2α

)

dz,

with the kernel � defined in (35) (for example see [31]). Plainly, we have

wy(0, t) = exp

(

− M2t

4α

)∫ ∞

0
�y(0, z; t) w0(z) exp

(
Mz

2α

)

dz

= 1

2
√
π (α t)3/2

∫ ∞

0
zw0(z) exp

[

− 1

4α

(
z√
t

− M
√

t

)2
]

dz

= 1

α
√
π t

∫ ∞

− M
2

√
t
α

(
2
√
α p + M

√
t
)
w0

(
2
√
αt s + Mt

)
e−p2

d p,

whence

|wy(0, t)| � ‖w′
0‖∞

α
√
π

∫ ∞

− M
2

√
t
α

(
2
√
α p + M

√
t
)2

e−p2
d p.

From the above inequality the estimate (47) follows by elementary calculations.
��

Lemma 4. Let v be the solution of problem (29) considered in Proposition 2. Then
for any t ∈ (0, τ ]

|vy(0, t)| � ‖v′
0‖∞ P

(
A

2

√
t

α

)

, (48)

where A := sup
t∈[0,τ ]

|ξ ′(t)| and

P(p) := 2p3

√
π

+ p2 + 4 p√
π

+ 1. (49)

Proof. The function w := v − κ solves the problem

⎧
⎪⎨

⎪⎩

wt = α wyy + ξ ′wy in Q+
τ

w(0, t) = 0 t ∈ (0, τ ]
w(y, 0) = w0(y) y ∈ R+

(50)

with initial data w0 := v0 − κ . Set

[w0]+(y) := max{w0(y), 0} (y � 0),

w̃0(y) :=
{

0 if y = 0
max

z∈[0,y][w0]+(z) if y > 0.
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It is easily seen that w̃0 ∈ H0,∞(R+), w̃0(0) = 0 with derivative w̃′
0 ∈ L∞(R+);

moreover, w̃0 is nondecreasing and w̃0 � 0 in R+. Hence by the maximum principle
there holds w̃y � 0 in Q+

τ , w̃ being the solution of the problem

⎧
⎪⎨

⎪⎩

wt = α wyy + Awy in Q+
τ

w(0, t) = 0 t ∈ (0, τ ]
w(y, 0) = w̃0(y) y ∈ R+.

(51)

Plainly, this implies that w̃ is a supersolution of problem (50) (recall that by defi-
nition w̃0 � [w0]+ � w0). Thus by classical comparison results

w(y, t) � w̃(y, t) in Q+
τ .

Since w(0, t) = w̃(0, t) = 0, we also have

vy(0, t) = wy(0, t) � w̃y(0, t) for any t ∈ (0, τ ]. (52)

In addition, there holds

‖w̃′
0‖∞ � ‖v′

0‖∞. (53)

Then by inequalities (47), (52) and (53) we have

vy(0, t) � ‖v′
0‖∞

{

A

√
t

απ
exp

(

− A2t

4α

)

+
(

2 + A2t

2α

)

Erf

(
A

2

√
t

α

)}

(54)

for any t ∈ (0, τ ].
Similarly, set

[w0]−(y) := − min{w0(y), 0} (y � 0),

ŵ0(y) :=
{

0 if y = 0
− max

z∈[0,y][w0]−(z) if y > 0 ;

then ŵ0 ∈ H0,∞(R+), ŵ0(0) = 0 with derivative ŵ′
0 ∈ L∞(R+).; moreover,

ŵ0 � 0 and nonincreasing in R+. Arguing as before, it is easily checked that the
solution v̂ of problem (51) with w̃0 replaced by ŵ0 is a subsolution of problem
(50), and

vy(0, t) = wy(0, t) � ŵy(0, t) for any t ∈ (0, τ ]. (55)

Since

‖ŵ′
0‖∞ � ‖v′

0‖∞, (56)
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by inequalities (47), (55) and (56) we have

vy(0, t) � −‖v′
0‖∞

{

A

√
t

απ
exp

(

− A2t

4α

)

+
(

2 + A2t

2α

)

Erf

(
A

2

√
t

α

)}

(57)

for any t ∈ (0, τ ]. Then from the inequality

Erf (p) � Erf (0)+ Erf ′(0) p = 1

2
+ p√

π
(p ∈ R+)

and inequalities (54), (57) we easily obtain (48). Hence the conclusion follows. ��
Proposition 3. Let v±

k solve problem (Pk)± and ξk be defined by (45) (k ∈ N).
Then there exist a constant K > 0 and τ = τ(K ) ∈ (0, T ], only depending on
‖v′

0‖∞, such that

Ak := sup
t∈[0,τ ]

|ξ ′
k(t)| � K for any k ∈ N. (58)

Proof. Set

K := max

{

A0, 2 max
{‖(v+

0 )
′‖∞, ‖(v−

0 )
′‖∞
} α− + α+
κ+ − κ−

}

,

Q(t) := C

{

α+ P

(
K

2

√
t

α+

)

+ α− P

(
K

2

√
t

α−

)}

(t � 0),

where

C := max
{‖(v+

0 )
′‖∞, ‖(v−

0 )
′‖∞
}

κ+ − κ−

and the function P is defined by (49) (recall that by definition ξ ′
0(t) ≡ M ; thus

A0 = |M |). Set τ := min
{

Q−1(K ), T
}
; the definition is well posed and τ ∈ (0, T ],

since Q is increasing and

Q(0) = max
{‖(v+

0 )
′‖∞, ‖(v−

0 )
′‖∞
} α− + α+
κ+ − κ−

.

Consider problem (Pk)± with the above choice of τ . By inequality (48), we have

|v±
ky(0, t)| � ‖(v±

0 )
′‖∞ P

(
Ak−1

2

√
t

α±

)

(k ∈ N)

for any t ∈ (0, τ ]. Then from the definition (45), we obtain immediately

|ξ ′
k(t)| � C

{

α+ P

(
Ak−1

2

√
t

α+

)

+ α− P

(
Ak−1

2

√
t

α−

)}
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for any t ∈ (0, τ ] and k ∈ N. Since P is increasing, this gives

Ak � C

{

α+ P

(
Ak−1

2

√
τ

α+

)

+ α− P

(
Ak−1

2

√
τ

α−

)}

(59)

for any k ∈ N. Since A0 � K , from (59), we obtain

A1 � C

{

α+ P

(
K

2

√
τ

α+

)

+ α− P

(
K

2

√
τ

α−

)}

= Q(τ ) � K .

By the same token, the inequalities Ak−1 � K and (59) imply Ak � K for any
k ∈ N. Hence the conclusion follows. ��

Now we can prove Theorem 4.

Proof. Consider problem (Pk)± with initial data v±
0 (y) := u0(±y). Let v±

k be its
solution, and ξk be defined by (45) (k ∈ N). Choose K > 0 and τ ∈ (0, T ] as in
Proposition 3; observe that now

K = max

{

A0, 2‖u′
0‖∞

α− + α+
κ+ − κ−

}

.

Then inequality (58) holds; moreover, by Proposition 2 there exists K1 � K (only
depending on the norm ‖u0‖2,∞) such that

‖v±
k ‖(1+σ)

Q+
τ

� K1 for any k ∈ N (σ ∈ (0, 1)). (60)

In particular, there holds

‖v±
ky‖(σ )Q+

τ
� K1 for any k ∈ N; (61)

thus

‖ξk‖(1+ σ
2 )

(0,τ ) := sup
t∈(0,τ )

{|ξk(t)| + |ξ ′
k(t)|

}+ sup
s,t∈(0,τ ),s �=t

|ξ ′
k(s)− ξ ′

k(t)|
|s − t |σ/2

� α− + α+
κ+ − κ−

(1 + τ)K1 for any k ∈ N (σ ∈ (0, 1)). (62)

Now recall that for any σ, σ ′ ∈ (0, 1), σ ′ > σ the embedding operators from

C1+σ ′, 1+σ ′
2 (B

+
τ ) to C1+σ, 1+σ

2 (B
+
τ ), B+

τ denoting any bounded subset of Q+
τ , and

from C1+ σ ′
2 ([0, τ ]) to C1+ σ

2 ([0, τ ]) are compact. Hence for any σ ∈ (0, 1):

– in view of the uniform estimate (62), there exist a subsequence {ξk} ⊆ C1+ σ
2

([0, τ ]) and ξ ∈ C1+ σ
2 ([0, τ ]) such that

ξk → ξ in C1+ σ
2 ([0, τ ]) ; (63)
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– in view of the uniform estimate (60), by a diagonal argument there exist a

subsequence {v±
k } ⊆ C1+σ, 1+σ

2 (Q
+
τ ) and a function v± ∈ C1+σ, 1+σ

2 (B
+
τ ) such

that

v±
k → v± in C1+σ, 1+σ

2 (B
+
τ )

for any bounded subset B+
τ ⊆ Q+

τ . In particular, there holds

v±
ky(0, ·) → v±

y (0, ·) in C
σ
2 ([0, τ ]). (64)

Consider the weak formulation of the differential equation in problem (Pk)±,
namely:

∫

R+
v±

k (y, t1) η(y, t1) dy −
∫ t1

0

∫

R+
v±

k ηt dy dt

=
∫ t1

0

∫

R+
v±

ky

{−α± ηy ± ξ ′
k−1(t)η

}
dy dt

for any t1 ∈ (0, τ ], η ∈ C∞
0 (Q

+
τ ). In view of the above remarks, taking the limit

as k → ∞ in the above equality gives:
∫

R+
v±(y, t1) η(y, t1) dy −

∫ t1

0

∫

R+
v± ηt dy dt

=
∫ t1

0

∫

R+
v±

y

{−α± ηy ± ξ ′(t)η
}

dy dt

for any t1 and η as above. Moreover, v± solves problem (P)± in Q+
τ with ξ given

by (63), for it belongs to C(Q
+
τ ) ∩ L∞(Q+

τ ) and satisfies the initial and boundary
condition of problem (P)±. By uniqueness results in the class of bounded solutions,
v± coincides with the classical solution of the same problem, whose existence is
ensured by Proposition 2; in particular, v±

y ∈ L∞(Q+
τ ), and there holds

lim
y→∞ v

±
y (y, t) = 0 for any t ∈ (0, τ ].

On the other hand, taking the limit as k → ∞ in equality (45) gives by (63), (64):

ξ ′(t) = −α+v+
y (0, t)+ α−v−

y (0, t)

κ+ − κ−
for any t ∈ [0, τ ]. (65)

Since the trace vy(0, ·) belongs to C
1
2 ([0, τ ]) (see Proposition 2(iii)), we obtain

that ξ ∈ C
3
2 ([0, τ ]). Observe also that for t = 0 the above equation reads

ξ ′(0) = −α+ u′
0(0

+)− α− u′
0(0

−)
κ+ − κ−

. (66)

Define v = v(y, t) in Sτ as follows:

v(y, t) :=
{
v+(y, t) if (y, t) ∈ Q

+
τ

v−(−y, t) if (y, t) ∈ Q
−
τ \{y = 0}.
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It is easily seen that the above function has all the properties mentioned in Remark 6.
In particular,

(α) The invariance property (25) follows from assumption (A)(i) and the inequa-
lities κ− � b, κ+ � c. In fact, b is a supersolution of problem (Pk)−, c a
subsolution of problem (Pk)+ for any k ∈ N, and the property follows by
comparison results.

(β) The Rankine–Hugoniot condition (28) follows from (65) and the definition
of v (see (30)).

(γ ) by assumption (ii) and (66)) there holds ξ ′(0) �= 0; thus ξ ′(t) �= 0 for any
t ∈ (0, τ ] by continuity, with a possibly smaller τ .

Then the couple (u, ξ) with

u(x, t) := v(x − ξ(t), t) ((x, t) ∈ Sτ )

is a solution in Sτ of the moving boundary problem at the value C given by (21).
This completes the proof. ��

4.2. Steady boundary problem

Let us make the following definition, which is the counterpart of Definition 4
in the present case.

Definition 5. By a solution in Sτ (τ ∈ (0, T ]) of the steady boundary problem we
mean any couple (0, u) such that the function u = u(x, t) satisfies the following:

(i) u ∈ L∞(Sτ ) ∩ C
(

Q
+
τ \{x = 0}

)
∩ C

(
Q

−
τ \{x = 0}

)
and for any t ∈ (0, τ ]

there exist finite the limits

lim
η→0+ u(±η, t) =: u(0±, t) ;

(ii) u ∈ C2,1
(
Q+
τ

)∩ C2,1
(
Q−
τ

)
, ux ∈ L∞(Sτ ) and for any t ∈ (0, τ ] there exist

finite the limits

lim
η→0+ ux (±η, t) =: ux (0

±, t) ;

(iii) u is a classical solution of the problem
{

ut = α±uxx in Q±
τ

u(x, 0) = u0(x) x ∈ R±\{0},
such that

lim
x→±∞ ux (x, t) = 0 ;

(iv) for any t ∈ (0, τ ]
α−u(0−, t)+ β− = α+u(0+, t)+ β+, (67)

α− ux (0
−, t) = α+ ux (0

+, t). (68)
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Remark 10. If a solution u of the steady boundary problem satisfies the invariance
condition:

u
(
Q−
τ

) ⊆ (−∞, b], u
(
Q+
τ

) ⊆ [c,∞), (69)

the couple (0, u) satisfies the requirements (i)–(vi) of Definition 1. Moreover, since
ξ ′ = 0 and (68) holds, both Rankine–Hugoniot and entropy conditions are satisfied
(see (8)–(9)); then (0, u) is a two-phase entropy solution of problem (1).

Concerning existence of solutions to the steady boundary problem, the follo-
wing holds.

Theorem 5. Let assumption (A1) be satisfied. Then there exists a solution in ST of
the steady boundary problem.

To prove the above result, consider preliminarily the problems

(N )±

⎧
⎨

⎩

ut = α±uxx in Q+
T

ux (0, t) = ± θ(t)
α± t ∈ (0, T ]

u(x, 0) = u±
0 (x) := u0(±x) x ∈ R+

with θ ∈ C
1
2 ([0, T ]). For any (x, t) ∈ Q+

T define:

u±
θ (x, t) := ∓ 2

∫ t

0
K±(x, t − s) θ(s) ds +

∫ ∞

0
�±(x, y; t) u±

0 (y) dy, (70)

where

�±(x, y; t) := K±(x − y, t)+ K±(x + y, t)

and

K±(x, t) := 1√
4π α± t

e
− x2

4α± t .

It is easily seen that u±
θ belongs to C2,1

(
Q+

T

) ∩ C
(

Q
+
T

)
∩ L∞(Q+

T ). From (70)

we obtain (with θ = θ(s) and u±
0 = u±

0 (y), (u
±
0 )

′ = (u±
0 )

′(y))

(u±
θ )x (x, t) = ∓ 2

∫ t

0
(K±)x (x, t − s) θ ds +

∫ ∞

0
(�±)x (x, y; t) u±

0 dy ds

= ∓ 2
∫ t

0
(K±)x (x, t − s) θ ds +

∫ ∞

0
�±(x, y; t) (u±

0 )
′ dy ds, (71)

where �± denotes the function (35) with K replaced by K±. Arguing as in the
proof of Lemma 2, one easily sees that

(u±
θ )x (0, t) := lim

η→0+(u
±
θ )x (η, t) = ±θ(t)

α±
(72)

for any t ∈ (0, T ]; thus u±
θ is a classical solution of problem (N )±. Moreover,

(u±
θ )x ∈ L∞(Q+

T ) and there holds:

lim
x→∞(u

±
θ )x (x, t) = 0.
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Remark 11. The derivative (u±
θ )x satisfies the problem

⎧
⎪⎨

⎪⎩

wt = α wxx in Q+
τ

w(0, t) = ± θ(t)
α

t ∈ (0, τ ]
w(x, 0) = (u±

0 )
′(x) x ∈ R+.

(73)

Observe that equality (73) corresponds to (34), with h replaced by ±2θ and u0 by
(u±

0 )
′ (in fact, the integral equation (36) reduces to the equality h = 2θ if ξ ≡ 0).

Since by assumption θ ∈ C
1
2 ([0, T ]), there holds:

(u±
θ )x (0, 0) := lim

t→0
(u±
θ )x (0, t) = ±θ(0)

α±
.

However, (u±
θ )x is not continuous at (0, 0), since we do not assume the compatibility

condition of order zero for problem (73), namely θ(0) = ±α±(u±
0 )

′(0). Observe
that the latter would imply the equalityα+ u′

0(0
+) = α− u′

0(0
−) (in this connection,

see Remark 12).

Now we can prove Theorem 5.

Proof. Fix θ ∈ C
1
2 ([0, T ]). Define uθ in ST as follows:

uθ (x, t) :=
{

u+
θ (x, t) if (x, t) ∈ Q

+
T

u−
θ (−x, t) if (x, t) ∈ Q

−
T \{x = 0},

(74)

with u±
θ given by (70). In view of the properties of u±

θ , the above function has the
properties (i)–(iii) of Definition 5; moreover, equality (68) follows from (72) and
the definition (74) of u. Then the conclusion follows, if we prove the following

Claim: There exists θ̄ ∈ C
1
2 ([0, T ]) such that u θ̄ satisfies equality (67).

To this purpose, observe that the definition (70) for x = 0 gives easily:

[
φ+(u+

θ )− φ−(u−
θ )
]
(0, t) = −

√
α+ + √

α−√
π

∫ t

0

θ(s)√
t − s

ds

+2
∫ ∞

0
K+(y, t) [φ+(u+

0 )](y) dy

−2
∫ ∞

0
K−(y, t) [φ−(u−

0 )](y) dy.

Hence equality (67) holds, if the function θ satisfies the Abel integral equation:
∫ t

0

θ(s)√
t − s

ds = 2
√
π F(t), (75)

where

F(t) := 1√
α+ + √

α−

∫ ∞

0

{
K+(y, t) [φ+(u+

0 )](y)

− K−(y, t) [φ−(u−
0 )](y)

}
dy. (76)
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Clearly, F ∈ C1((0, T ]) and limt→0 F(t) = 0; thus F ∈ C([0, T ]) (here use of
assumption (A1)(iii) is made). Moreover, observe that

∫ ∞

0
(K±)t (y, t)[φ±(u±

0 )](y) dy

= α±
∫ ∞

0
(K±)yy(y, t) [φ±(u±

0 )](y) dy

= α±[φ±(u±
0 )]′(0)√

4α±t
+ α±

∫ ∞

0
K±(y, t) [φ±(u±

0 )]′′(y) dy. (77)

Then it is easily seen that

F ′(t) = C√
t

+ g(t) for any t ∈ (0, T ], (78)

where

C := 1

2
√
π

√

α3+ u′
0(0

+)+
√

α3− u′
0(0

−)
√
α+ + √

α−
,

g(t) := 1√
α+ + √

α−

∫ ∞

0

{
α+K+(y, t) [φ+(u+

0 )]′′(y)

− α−K−(y, t) [φ−(u−
0 )]′′(y)

}
dy.

In view of (78), there holds F ∈ W 1,1((0, T )). Observe that

lim
t→0

g(t) = α2+u′′
0(0

+)− α2−u′′
0(0

−)
2
(√
α+ + √

α−
) ,

thus g ∈ C([0, T ]).
By a standard calculation from (75) we obtain

∫ t

0
θ(s) ds = 2√

π

∫ t

0

F(s)√
t − s

ds.

In view of the regularity of F , we can integrate by parts the right-hand side of the
above equality, obtaining

∫ t

0
θ(s) ds = 4√

π

∫ t

0
F ′(s)

√
t − s ds,

which in turn implies:

θ(t) = 2√
π

∫ t

0

F ′(s)√
t − s

ds for any t ∈ (0, T ].

To complete the proof of the claim, let us show that the function

θ̄ (t) := 2√
π

∫ t

0

F ′(s)√
t − s

ds
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belongs to C
1
2 ([0, T ]). In fact, using (78), we obtain:

θ̄ (t) = 2C√
π

∫ t

0

ds√
s(t − s)

+ 2√
π

∫ t

0

g(s)√
t − s

ds

=
√

α3+ u′
0(0

+)+
√

α3− u′
0(0

−)
√
α+ + √

α−
+ G(t), (79)

where

G(t) := 2√
π

∫ t

0

g(s)√
t − s

ds.

Since g ∈ C([0, T ]), for any t ∈ (0, T ] there holds:

|G(t)| � 4‖g‖∞√
π

√
t . (80)

In addition, for any t1, t2 ∈ (0, T ] with t1 < t2, we have plainly:

|G(t1)− G(t2)| � 2√
π

{∫ t2

t1

|g(s)|√
t2 − s

ds

+
∫ t1

0
|g(s)|

[
1√

t1 − s
− 1√

t2 − s

]

ds

}

� 6‖g‖∞
√

t2 − t1.

This shows that θ̄ ∈ C
1
2 ([0, T ]); thus completing the proof of the claim; hence the

conclusion follows. ��

Remark 12. As already observed, the space derivative (u θ̄ )x is discontinuous at
the origin whenever α+ u′

0(0
+) �= α− u′

0(0
−) . In fact, by (79), (80) there holds

lim
t→0

θ̄ (t) = α+ lim
t→0

(u θ̄ )x (0
+, t) =

√

α3+ u′
0(0

+)+
√

α3− u′
0(0

−)
√
α+ + √

α−
,

hence

lim
t→0

(u θ̄ )x (0
+, t) = u′

0(0
+)−

√
α−
α+

α+ u′
0(0

+)− α− u′
0(0

−)√
α+ + √

α−
.

This is a remarkable difference with respect to the moving boundary problem,
where ux ∈ C( Ā+

τ ) (see Proposition 2 and the proof of Theorem 4).
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4.3. Proof of existence results

Now we can prove Theorem 1.

Proof. (i) Let φ(u0)(0) ∈ (A, B)—namely, u0(0−) < b and u0(0+) > c. We
claim that in this case the solution (0, u θ̄ ) of the steady boundary problem
given by Theorem 5 is for small times a two-phase entropy solution of the
problem.

To prove the claim, it suffices to show that the invariance conditions (69) are
satisfied (see Remark 10). Since u±

θ̄
is continuous in Q

±
T , by the definition of u θ̄ (see

(74)) there exists τ > 0 such that u θ̄ (0
−, t) < b, u θ̄ (0

+, t) > c for any t ∈ (0, τ ].
Hence by assumption (A1)(i) v = c is a subsolution of the problem:

⎧
⎪⎨

⎪⎩

vt = α+ vxx in Q+
τ

v(0, t) = u θ̄ (0
+, t) t ∈ (0, τ ]

v(x, 0) = u0(x) x ∈ R+.

This implies u
(
Q+
τ

) ⊆ [c,∞) by comparison results. The proof of u
(
Q−
τ

) ⊆
(−∞, b] is similar; thus the conclusion follows in this case.

(ii) Let φ(u0)(0) = B, α+ u′
0(0

+) < α− u′
0(0

−) . We claim that the couple
(0, u θ̄ ) is a local two-phase entropy solution in this case, too.

Consider the function

φ(u θ̄ )(0, t) = α−u θ̄ (0
−, t)+ β− = α+u θ̄ (0

+, t)+ β+ (t ∈ (0, T ])
(see (67)). From (70) and (75), (76) we obtain:

φ(u θ̄ )(0, t) = 2
∫ ∞

0
K+(y, t) [φ+(u+

0 )](y) dy −
√
α+
π

∫ t

0

θ(s)√
t − s

ds

= 2√
α+ + √

α−

{√
α−
∫ ∞

0
K+(y, t) [φ+(u+

0 )](y) dy

+ √
α+
∫ ∞

0
K−(y, t) [φ−(u−

0 )](y) dy

}

. (81)

Deriving the above expression and using (77) plainly gives:

d

dt
[φ(u θ̄ )(0, t)] = D√

t
+ h(t) for any t ∈ (0, T ], (82)

where

D :=
√
α+α−
π

α+ u′
0(0

+)− α− u′
0(0

−)√
α+ + √

α−
, (83)

h(t) :=
√
α+α−√

α+ + √
α−

{√
α+
∫ ∞

0
K+(y, t) [φ+(u+

0 )]′′(y) dy

+ √
α−
∫ ∞

0
K−(y, t) [φ−(u−

0 )]′′(y) dy

}

.
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Observe that h ∈ C([0, T ]), since

lim
t→0

h(t) =
√
α+α−√

α+ + √
α−

√

α3+ u′′
0(0

+)+
√

α3− u′′
0(0

−)
2

.

Then from (82), (83), we obtain

lim
t→0+

d

dt
φ(u θ̄ )(0, t) = −∞.

This entails φ(u θ̄ )(0, t) ∈ (A, B) for any t in some neighbourhood (0, τ ]. The
invariance property (69) is satisfied with this choice of τ ; hence the claim follows.

The case φ(u0)(0) = A, α+ u′
0(0

+) > α− u′
0(0

−) can be dealt with similarly,
since in this case

lim
t→0+

d

dt
φ(u θ̄ )(0, t) = ∞,

thus again φ(u θ̄ )(0, t) ∈ (A, B) for any t sufficiently small.

(iii) Let φ(u0)(0) = B, α+ u′
0(0

+) > α− u′
0(0

−) . We claim that in such
case the solution (ξ, u) of the moving boundary problem given by Theo-
rem 4 is a two-phase entropy solution. In fact, by (66) there holds
ξ ′(0) < 0; thus by continuity ξ ′(t) < 0 for any t in some neighbou-
rhood (0, τ ]. Since the entropy condition (9)(b) is satisfied, the claim
follows.

The case φ(u0)(0) = A, α+ u′
0(0

+) < α− u′
0(0

−) is similar. In fact, by (66)
there holds ξ ′(0) > 0; thus by the same argument the entropy condition (9)(a) is
satisfied. This completes the proof. ��
Remark 13. It is informative to add some comments to the above proof. Let
φ(u0)(0) = B, α+ u′

0(0
+) < α− u′

0(0
−) . If use of the solution (ξ, u) of the

moving boundary problem were made in this case, we would have ξ ′(0) > 0 (see
(66)); thus ξ ′(t) > 0 for any t in some neighbourhood (0, τ ], which contradicts
the entropy condition (9)(b). On the other hand, using the solution u θ̄ of the steady
boundary problem was expedient, for

sgn

{

lim
t→0

√
t

d

dt
[φ(u θ̄ )(0, t)]

}

= sgn
{
α+ u′

0(0
+)− α− u′

0(0
−)
}

(84)

(see (82), (83)). Similar remarks hold for the remaining three cases, namely:

(α) φ(u0)(0) = B, α+ u′
0(0

+) > α− u′
0(0

−);
(β) φ(u0)(0) = A, α+ u′

0(0
+) > α− u′

0(0
−);

(γ ) φ(u0)(0) = A, α+ u′
0(0

+) < α− u′
0(0

−).
In view of the entropy conditions (9)(a), (b) and of equalities (66), (84), using

the solution (ξ, u) of the moving boundary problem is right in cases (α) and (γ ),
while it is wrong in case (β). Conversely, using the solution of the steady boundary
problem is wrong in cases (α) and (γ ), and right in case (β).

Finally, let us prove Theorem 2.
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Proof. (Theorem 2) Let us show that the couple (0, u θ̄ ), u θ̄ being the solution of the
steady boundary problem in ST given by Theorem 5, is a global two-phase entropy
solution. In fact, by assumption there holds φ±(u±

0 )(x) ∈ [A, B] for any x ∈ R+.
By (81), this implies φ(u θ̄ )(0, t) ∈ [A, B], namely u θ̄ (0

−, t) � b, u θ̄ (0
+, t) � c

for any t ∈ [0, T ]. Arguing as in part (i) of the proof of Theorem 1, we see that the
invariance conditions (69) are satisfied; thus (0, u θ̄ ), is a two-phase solution of the
problem for any t ∈ [0, T ]. This proves the result. ��
Remark 14. In connection with the above proof, observe that φ(u0)(0) = B and
φ±(u±

0 )(x) ∈ [A, B] for any x ∈ R+ imply u′
0(0

+) � 0 � u′
0(0

−). Similarly, if
φ(u0)(0) = A there holds u′

0(0
+) � 0 � u′

0(0
−). Hence cases (α) and (γ ) above

cannot arise. In the other cases using the solution of the moving boundary problem
contradicts the entropy condition, as already discussed.

5. Uniqueness

In this section we prove Theorem 3 (the same proof holds for a general "cubic-
like" function φ). The following result will be needed.

Proposition 4. Let assumptions (A1)–(A2) be satisfied. Let (ξ, u) be a solution of
the moving boundary problem, or (0, u) a solution of the steady boundary problem
in Sτ . Then for any t ∈ (0, τ ] the functions φ(u)(·, t)− A, φ(u)(·, t)− B change
sign at most a finite number of times in any compact subset of R.

Proof. In view of the invariance property (5), there holds

φ(u)− B =
{
α− u + β− − B in A−

τ

α+ u + β+ − B in A+
τ

(recall that A±
τ = Q±

τ if ξ ≡ 0). Then the function

w±(y, t) := φ(u)(ξ(t)± y, t)− B (y ∈ R+, t ∈ [0, τ ])
satisfies the problem

⎧
⎪⎨

⎪⎩

wt = α±wyy ± ξ ′wy in Q+
τ

w(0, t) = φ(u)(ξ(t), t)− B t ∈ (0, τ ]
w(y, 0) = w±

0 (y) := φ(u0)(±y)− B y ∈ R+.

By assumption (A2) w
±
0 changes sign at most a finite number of times in any

compact subset of R+. Moreover, φ(u)(ξ(t), t) ∈ [A, B]; thus φ(u)(ξ(t), t)− B �
0 for any t ∈ (0, τ ]. In view of [18] (Lemma 2.6), the function w±(·, t) changes
sign at most a finite number of times in any compact subset of R+; then the result
follows in this case. The proof is the same forφ(u)− A; thus the conclusion follows.

��
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Let (ξ1, u1), (ξ2, u2) be two two-phase entropy solutions of problem (1), (2)
in Sτ1 and Sτ2 , respectively (τ1, τ2 ∈ (0, T ]). Define τ := min{τ1, τ2}. Recall that
v1 := φ(u1) and v2 := φ(u2) are continuous in Sτ (see Remark 2).

Consider a family of functions {ηε} ⊆ C2(R) (ε > 0), such that

(i) ηε converges to the absolute value | · | in C(R) as ε → 0;
(ii) η′

ε(s) → sgn (s) as ε → 0 for any s �= 0, and |η′
ε(s)| � 1 for any s ∈ R and

ε > 0;
(iii) there holds for some C > 0

0 � η′′
ε (s) � C

ε
for any s ∈ R, η′′

ε (s) = 0 for any s /∈ (−ε, ε).

Multiplying by η′
ε(u1 − u2) the difference of the equations satisfied by u1 and u2,

one easily sees that the following equality holds in Sτ :

0 = [ηε(u1 − u2)]t − [η′
ε(u1 − u2)(v1x − v2x )

]

x

+η′′
ε (u1 − u2) (u1x − u2x ) (v1x − v2x )

= [ηε(u1 − u2)]t − [η′
ε(u1 − u2)(v1x − v2x )

]

x

+η′′
ε (u1 − u2) (φ

′(u1)− φ′(u2)) u2x (u1x − u2x )

+η′′
ε (u1 − u2) φ

′(u1) (u1x − u2x )
2.

Since any two-phase entropy solution only takes values in the stable branches of φ′,
there holds φ′(u1) � 0. Hence the last term on the right-hand side of the above
equality is nonnegative, and we obtain

[ηε(u1 − u2)]t − [η′
ε(u1 − u2)(v1x − v2x )

]

x

+η′′
ε (u1 − u2) (φ

′(u1)− φ′(u2)) u2x (u1x − u2x ) � 0.

Set Iε := {(x, t) | |u1 − u2| � ε}. Then for any subset � ⊆ Sτ
∫∫

�

η′′
ε (u1 − u2) |(φ′(u1)− φ′(u2)) u2x (u1x − u2x )| dx dt

� max{α−, α+} M

ε
‖u2x‖∞

∫∫

�∩Iε
|u1 − u2| |(u1 − u2)x | dx dt

� max{α−, α+} M ‖u2x‖∞
∫∫

�∩Iε
|(u1 − u2)x | dx dt.

for some M > 0. By Saks’ Lemma (see [27]), the last term in the above inequalities
converges to zero as ε → 0, thus giving

lim
ε→0

∫∫

�

{
[ηε(u1 − u2)]t − [η′

ε(u1 − u2)(v1x − v2x )
]

x

}
dx dt � 0 (85)

for any � ⊂ Sτ . Set

ζ1 := min{ξ1, ξ2}, ζ2 := max{ξ1, ξ2}.
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Fig. 2. The subsets �l
t , �c

t and �r
t

Both ζ1 and ζ2 are Lipschitz continuous, thus differentiable almost everywhere in
[0, τ ]. Set also

γi := {(ξi (t), t) | t ∈ [0, τ ]} (i = 1, 2),

Ht := {s ∈ (0, t] | ζ1(s) < ζ2(s)} t ∈ (0, τ ],
Kt := {s ∈ (0, t] | ζ1(s) = ζ2(s)} t ∈ (0, τ ].

Observe that Hτ and Kτ are a countable union of intervals.
We shall use the following notations:

hi,±(t) := lim
η→0+ h(ζi (t)± η, t) ≡ h(ζi (t)

±, t),

[h]i ≡ [h]i (t) := hi,+(t)− hi,−(t) (i = 1, 2; t ∈ [0, τ ])
for any piecewise continuous function h defined in Sτ . On the subset Kτ we use
the simpler notation ξ ≡ ζ ≡ ζ1 ≡ ζ2, [h] ≡ [h]1 ≡ [h]2.

Let R > max {‖ξ1‖∞, ‖ξ2‖∞}, Q R,t := [−R, R] × [0, t] (t ∈ (0, τ ]). For any
t ∈ (0, τ ], there holds

Q R,t = �l
t ∪�c

t ∪�r
t ,

where (see Fig. 2):

�l
t := {(x, s) ∈ St | − R � x � ζ1(s), s ∈ (0, t]},

�c
t = {(x, s) ∈ St | ζ1(s) < x � ζ2(s), s ∈ (0, t]},

�r
t = {(x, s) ∈ St | ζ2(s) < x � R, s ∈ (0, t]}.

Plainly, there holds:
∫∫

�l
t

{[ηε(u1 − u2)]t − [η′
ε(u1 − u2)(v1x − v2x )

]

x

}
dx ds

=
∫ ζ1(t)

−R
ηε(u1 − u2)(x, t) dx −

∫ t

0

{
η′
ε(u1 − u2) (−v1x + v2x )

}
(−R, s) ds

+
∫ t

0

{
−ηε(u1,−

1 − u1,−
2 ) ζ ′

1 + η′
ε(u

1,−
1 − u1,−

2 )
(
−v1

1,−
x + v2

1,−
x

)}
ds ;
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∫∫

�c
t

{[ηε(u1 − u2)]t − [η′
ε(u1 − u2)(v1x − v2x )

]

x

}
dx ds

=
∫ ζ2(t)

ζ1(t)
ηε(u1 − u2)(x, t) dx

+
∫

Ht

{
ηε(u

1,+
1 − u1,+

2 ) ζ ′
1 − η′

ε(u
1,+
1 − u1,+

2 )
(
−v1

1,+
x + v2

1,+
x

)}
ds

+
∫

Ht

{
−ηε(u2,−

1 − u2,−
2 ) ζ ′

2 + η′
ε(u

2,−
1 − u2,−

2 )
(
−v1

2,−
x + v2

2,−
x

)}
ds ;

∫∫

�r
t

{[ηε(u1 − u2)]t − [η′
ε(u1 − u2)(v1x − v2x )

]

x

}
dx ds

=
∫ R

ζ2(t)
ηε(u1 − u2)(x, t) dx +

∫ t

0

{
η′
ε(u1 − u2) (−v1x + v2x )

}
(R, s)ds

+
∫ t

0

{
ηε(u

2,+
1 − u2,+

2 ) ζ ′
2 − η′

ε(u
2,+
1 − u2,+

2 )
(
−v1

2,+
x + v2

2,+
x

)}
ds.

In view of inequality (85), summing up the above equalities and passing to the limit
as ε → 0, we obtain for any t ∈ (0, τ ]

∫ R

−R
|u1(x, t)− u2(x, t)| dx

� −
∫ t

0
{sgn (u1 − u2) (−v1x + v2x )} (R, s) ds

+
∫ t

0
{sgn (u1 − u2) (−v1x + v2x )} (−R, s) ds

+
∫

Ht

{− [|u1 − u2|]1 ζ
′
1 + [sgn (u1 − u2)(−v1x + v2x )

]

1

}
ds

+
∫

Ht

{− [|u1 − u2|]2 ζ
′
2 + [sgn (u1 − u2)(−v1x + v2x )

]

2

}
ds

+
∫

Kt

{− [|u1 − u2|] ζ ′ + [sgn (u1 − u2)(−v1x + v2x )
]}

ds. (86)

Now we can prove Theorem 3.

Proof. Let (ξ1, u1), (ξ2, u2), Sτ1 , Sτ2 as above and τ := min{τ1, τ2}. The conclu-
sion will follow by an iterative argument, if we prove the following
Claim: There exists a time ϑ ∈ (0, τ ] such that ξ1 = ξ2 in [0, ϑ] and u1 = u2 in
Sϑ .

Two cases are possible: (i) φ(u0)(0) ∈ (A, B); (ii) either φ(u0)(0) = A, or
φ(u0)(0) = B.

(i) Let φ(u0)(0) ∈ (A, B). In view of the continuity of φ(u1), φ(u2), ξ1 and ξ2,
there existsϑ ∈ (0, τ ] such thatφ(u1)(ξ1(t), t) ∈ (A, B), φ(u2)(ξ2(t), t) ∈
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(A, B) for any t ∈ (0, ϑ]. Then by the entropy condition (9)(c), we have
ξ1 = ξ2 = ζ1 = ζ2 = 0 in [0, ϑ]. Hence Ht = ∅ for any t ∈ (0, ϑ] and
equality (86) reads:

∫ R

−R
|u1(x, t)−u2(x, t)| dx �

∫ t

0
[sgn (u1−u2)(−v1x+v2x )]ds +

−
∫ t

0
{sgn (u1−u2) (−v1x+v2x )} (R, s) ds

+
∫ t

0
{sgn (u1−u2) (−v1x+v2x )} (−R, s) ds (87)

for any t ∈ (0, ϑ].
By the Rankine–Hugoniot condition, we have [v1x ] = [v2x ] = 0 in (0, t). On

the other hand, the continuity of φ(u1) and φ(u2) across the line x = 0 gives

α−u1(0
−, t)+ β− = α+u1(0

+, t)+ β+,
α−u2(0

−, t)+ β− = α+u2(0
+, t)+ β+

(see (10)). Since α± > 0, from the above equalities we obtain

sgn (u1 − u2)(0
−, t) = sgn (u1 − u2)(0

+, t) (88)

for any t ∈ (0, ϑ]. It follows that the first integral in the right-hand side of (87) is
equal to zero; thus

∫ R

−R
|u1(x, t)− u2(x, t)| dx

� −
∫ t

0
{sgn (u1 − u2) (−v1x + v2x )} (R, s) ds

+
∫ t

0
{sgn (u1 − u2) (−v1x + v2x )} (−R, s) ds (89)

for any R > 0 sufficiently large and t ∈ (0, ϑ]. Now observe that by (6)

lim
x→−∞ vi x = α− lim

x→−∞ ui x = lim
x→∞ vi x = α+ lim

x→∞ ui x = 0 (i = 1, 2).

Then as R → ∞ from (89), we obtain
∫ ∞

−∞
|u1(x, t)− u2(x, t)| dx � 0 (90)

for any (t ∈ (0, ϑ]); thus u1 = u2 in Sϑ . This proves the claim in this case.

(ii) Let φ(u0)(0) = B (the case φ(u0(0)) = A is analogous; thus we leave it
to the reader). By the continuity of φ(u1), φ(u2), ξ1 and ξ2, there exists
a time τ ∈ (0, τ ] such that φ(u1)(ξ1(t), t) > A, φ(u2)(ξ2(t), t) > A
for any t ∈ (0, τ ]. Then by the entropy conditions (9)(b), (c) we have
ξ ′

1(t) � 0, ξ ′
2(t) � 0 for any t ∈ [0, τ ].

In view of the assumption on ξ ′ made in Definition 1(i), there exists τ ∗ ∈
(0, τ ] such that either ξ ′

i (t) = 0, or ξ ′
i (t) < 0 for any t ∈ (0, τ ∗] (i = 1, 2).
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Hence three cases are possible: (a) ξ ′
1(t) = ξ ′

2(t) = 0; (b) ξ ′
1(t) < 0, ξ ′

2(t) < 0;
(c) ξ ′

1(t) < 0, ξ ′
2(t) = 0 (t ∈ (0, τ ∗]). Let us prove the claim in cases (a), (b) and

show that the case (c) is excluded, since it would lead to a contradiction.

(a) If ξ ′
1(t) = ξ ′

2(t) = 0 for any t ∈ (0, τ ∗], there holds ξ1 = ξ2 = 0 in [0, τ ∗]
and the claim is proved arguing as in (i) with ϑ = τ ∗.

(b) Let ξ ′
1(t) < 0, ξ ′

2(t) < 0 (thus ξ1(t) < 0, ξ2(t) < 0) for any t ∈ (0, τ ∗].
Then u1 and u2 are solutions of the moving boundary problem at the level
B; in particular, there holds ui (ξi (t)+, t) = d (i = 1, 2). Moreover, for any
l > 0 and ϑ ∈ (0, τ ∗] ui satisfies the problem

(L)i

⎧
⎨

⎩

wt = (φ(w))xx in B(i)ϑ
w(ξi (t)+, t) = d, w(l, t) = ui (l, t) t ∈ (0, ϑ]
w(x, 0) = u0(x) x ∈ (0, l),

where

B(i)l,ϑ := {(x, t) ∈ Sτ
∣
∣ x ∈ (ξi (t), l), t ∈ (0, ϑ)} (i = 1, 2).

By assumption (A2) there exist 0 � δ1 < δ2 such that φ(u0)(x) = B for any
x ∈ [0, δ1] and either φ(u0)(x) < B, or φ(u0)(x) > B for any x ∈ (δ1, δ2). Let us
show that the former possibility is excluded.

In fact, assume φ(u0)(x) < B for any x ∈ (δ1, δ2). Fix x̄ ∈ (δ1, δ2); thus
φ(u0)(x̄) < B, that is u0(x̄) < d. Since φ(u1) and φ(u2) are continuous in Sτ ,
there exists ϑ ∈ (0, τ ∗] such that φ(u1)(x̄, t) < B, φ(u2)(x̄, t) < B—namely,
u1(x̄, t) < d, u2(x̄, t) < d for any t ∈ (0, τ ∗]. This implies that w ≡ d is
a supersolution of problem (L)i with l = x̄ ; thus by comparison ui � d in
B(i)x̄,ϑ (i = 1, 2).

The above remarks imply ui x (ξi (t)+, t) � 0 . On the other hand, by the same
condition (9)(b) there holds ui (ξi (t)−, t) = b; thus ui x (ξi (t)−, t) � 0 (observe
that ui (x, t) � b for any x � ξi (t), t ∈ (0, τ ∗]; (i = 1, 2)). Then by the Rankine–
Hugoniot condition we obtain ξ ′

1(t) � 0, ξ ′
2(t) � 0 for any t ∈ (0, ϑ], a contradic-

tion. This rules out the possibility that φ(u0) < B in (δ1, δ2).
Hence there holds u0(x) � d for any x ∈ (0, δ2). Arguing as above, we find

that there exists ϑ ∈ (0, τ ∗] such thatw = d is a subsolution of problem (L)i with
l = x̄ ; thus by comparison ui � d in B(i)x̄,ϑ (i = 1, 2). Since ξ1(t) < 0, ξ2(t) < 0
for any t ∈ (0, τ ∗], we conclude that for any t ∈ (0, ϑ]

u1(ξ2(t), t) � d if ξ1(t) � ξ2(t),
u2(ξ1(t), t) � d if ξ2(t) � ξ1(t).

(91)

Now consider the third and fourth integral in the right-hand side of equality (86).
If Ht �= ∅, there holds ξ1(s) �= ξ2(s) for any s ∈ Ht (t ∈ (0, ϑ]). Let I := {s ∈
Ht | ξ1(s) < ξ2(s)}; thus ζ1 ≡ ξ1, ζ2 ≡ ξ2 on I . Since u2 is regular along γ1, we
have

u1,−
2 (t) = u1,+

2 (t) = u2(ξ1(t), t) � b < d ; (92)

moreover,

u1,−
1 (t) = b, u1,+

1 (t) = d (t ∈ (0, ϑ]).
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From (92) and the above equality we obtain:

[|u1 − u2|]1 = |u1,+
1 − u1,+

2 | − |u1,−
1 − u1,−

2 | = d − b = [u1]1,

sgn
(

u1,−
1 − u1,−

2

)
= sgn

(
u1,+

1 − u1,+
2

)
= 1,

[
sgn (u1 − u2)(−v1x + v2x )

]

1 = −[v1x ]1 + [v2x ]1 = −[v1x ]1.

By the Rankine–Hugoniot condition, this gives

− [|u1 − u2|]1 ξ
′
1 + [sgn (u1 − u2)(−v1x + v2x )

]

1 = −[u1]1 ξ
′
1 − [v1x ]1 = 0

at any point of I . Hence
∫

I

{− [|u1 − u2|]1 ζ
′
1 + [sgn (u1 − u2)(−v1x + v2x )

]

1

}
ds = 0. (93)

Similarly, observe that

u2,−
2 (t) = b, u2,+

2 (t) = d.

From the first inequality in (91) and the above equality we get:

[|u1 − u2|]2 = |u2,+
1 − u2,+

2 | − |u2,−
1 − u2,−

2 | = −d + b = −[u2]2,

sgn
(

u2,−
1 − u2,−

2

)
= sgn

(
u2,+

1 − u2,+
2

)
= 1,

[sgn (u1 − u2)(−v1x + v2x )]2 = −[v1x ]2 + [v2x ]2 = [v2x ]2.

(recall that u1 is regular along γ2). Then by the Rankine–Hugoniot condition

−[|u1 − u2|]2 ξ
′
2 + [sgn (u1 − u2)(−v1x + v2x )]2 = [u2]2 ξ

′
2 + [v2x ]2 = 0

at any point of I ; whence
∫

I

{− [|u1 − u2|]2 ζ
′
2 + [sgn (u1 − u2)(−v1x + v2x )

]

2

}
ds = 0. (94)

It is similarly seen that
∫

J

{− [|u1 − u2|]1 ζ
′
1 + [sgn (u1 − u2)(−v1x + v2x )

]

1

}
ds

=
∫

J

{− [|u1 − u2|]2 ζ
′
2 + [sgn (u1 − u2)(−v1x + v2x )

]

2

}
ds = 0, (95)

where J := {s ∈ Ht | ξ1(s) > ξ2(s)} (here use of the second inequality in (91) is
made).

In view of (93)–(95), the third and the fourth integral in the right-hand side of
(86) vanish. Concerning the last integral, since ζ1 ≡ ζ2 we can argue as in (i) above
to prove that

sgn (u1 − u2)(ζ(s)
−, s) = sgn (u1 − u2)(ζ(s)

+, s) (s ∈ Kt , t ∈ (0, ϑ]).
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Hence by the Rankine–Hugoniot condition

− [|u1 − u2|] ξ ′ + [sgn (u1 − u2)(−v1x + v2x )
]

= sgn (u1 − u2)
{−[u1] ξ ′ − [v1x ] + [u2] ξ ′ + [v2x ]

} = 0

at any point of Kt . Then the last integral in the right-hand side of (86) is also equal
to zero.

Arguing as in (i), we conclude that inequality (90) holds. Therefore u1(x, t) =
u2(x, t) for any x ∈ R\{ξ1(t) ∪ ξ2(t)) | t ∈ (0, ϑ]}. In view of the Rankine–
Hugoniot condition, this implies ξ ′

1(t) = ξ ′
2(t); hence ξ1(t) = ξ2(t) for any

t ∈ (0, ϑ]. Then the claim follows in the present case, too.

(c) Let us prove that the case ξ ′
1(t) < 0, ξ ′

2(t) = 0 (thus ξ1(t) < 0, ξ2(t) = 0)
for any t ∈ (0, τ ∗] is excluded under the present assumptions.

By contradiction, let ξ ′
1(t) < 0, ξ ′

2(t) = 0 for any t ∈ (0, τ ∗]. Since u1 is a
solution of the moving boundary problem at the level B, we can argue as in the
previous case (b) and prove that there exists ϑ ∈ (0, τ ∗] such that

u1(0, t) � d (96)

for any t ∈ (0, ϑ].
In this case ξ1(s) < ξ2(s) for any s ∈ Ht ; thus ζ1 ≡ ξ1, ζ2 ≡ ξ2 on Ht . Using

inequality (96) instead of the first inequality in (91), we can argue as in (b) and
prove that the third and the fourth integral in the right-hand side of (86) vanish in
this case, too. The last integral is obviously equal to zero, since Kt = ∅ for any
t ∈ ϑ ; hence equality (90) follows.

As before, this implies u1(x, t) = u2(x, t) for any x ∈ R\{ξ1(t) ∪ ξ2(t)) |
t ∈ (0, ϑ]} and ξ1(t) = ξ2(t) for any t ∈ (0, ϑ]. However, this is impossible, since
ξ1(t) < ξ2(t) for any t ∈ (0, τ ∗]. The contradiction proves that the case (c) is
excluded. This completes the proof of the claim.

To complete the proof, define

E := {ϑ ∈ (0, τ ] | ξ1 = ξ2 in [0, ϑ] and u1 = u2 in Sϑ }.
In view of the claim, the set E is nonempty; thus ϑ∗ := sup E ∈ (0, τ ] is well
defined. Were ϑ∗ < τ , two cases again would be possible: (i) φ(ui )(0, ϑ∗) ∈
(A, B) for any i = 1, 2; (ii) either φ(ui )(0, ϑ∗) = A or φ(ui )(0, ϑ∗) = B for
some i = 1, 2. In both cases we could argue as before to show that ϑ∗ is not
an upper bound of E , in contrast with its definition; here use of Proposition 4 is
made, to repeat the above arguments in case (ii) (namely, when φ(u0)(0) = A or
φ(u0)(0) = B). The contradiction shows that ϑ∗ = τ ; then the conclusion follows.

��
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