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Abstract

We consider the small time semi-classical limit for nonlinear Schrödinger
equations with defocusing, smooth, nonlinearity. For a super-cubic nonlinearity,
the limiting system is not directly hyperbolic, due to the presence of vacuum. To
overcome this issue, we introduce new unknown functions, which are defined non-
linearly in terms of the wave function itself. This approach provides a local version
of the modulated energy functional introduced by Y. Brenier. The system we obtain
is hyperbolic symmetric, and the justification of WKB analysis follows.

1. Introduction

1.1. Presentation

We study the behavior of the solution uε to

iε∂t u
ε + ε2

2
∆uε = ∣

∣uε
∣
∣2σ

uε; uε|t=0 = aε0eiφ0/ε, (1.1)

as the parameter ε ∈]0, 1] goes to zero. To fix matters, we work on R
n , yet all the

results are valid in the Torus T
n . Throughout all of this paper, we assume that the

space dimension is n � 3, which corresponds to the physical cases. The unknown
uε and the initial amplitude aε0 are complex valued, the phase φ0 is real-valued. The
case of a more general nonlinearity, of the form

iε∂t u
ε + ε2

2
∆uε = εκ f

(

|uε|2
)

uε; uε|t=0 = aε0eiφ0/ε,

was discussed in [11]. In particular, WKB type analysis is justified for κ � 1 (weak
nonlinearity). On the other hand, when κ = 0, there are only two cases in which
the mathematical analysis of the semi-classical limit for nonlinear Schrödinger
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equations is well developed. First, for analytic initial data. We refer to [23,36] for
this approach. Second, for the cubic defocusing nonlinear Schrödinger equation
(σ = 1 in (1.1)). Our goal is to justify geometric optics in Sobolev spaces for (1.1)
when σ � 2 (see also Section 6.2 for the nonhomogeneous case). This question has
remained open since the pioneering work of Grenier [27], where the nonlinearity
had to be cubic at the origin.

There are several motivations to study the semi-classical limit for (1.1). Let us
mention three. First, (1.1) with σ = 2 (quintic nonlinearity) is sometimes used as a
model for one-dimensional Bose–Einstein condensation [28]. An external potential
is usually considered in this framework (most commonly, an harmonic potential);
we refer to [11] to show that the results of the present paper can easily be adapted
to that case (see also Section 6.3).

Second, the limit ε → 0 relates classical and quantum wave equations. In
particular, the semi-classical limit ε → 0 for uε is expected to be described by the
laws of hydrodynamics; see, for example, [21–23,27]. If we assume that aε0 → a0
as ε → 0, then formally, uε is expected to be well approximated by aeiφ/ε, where

⎧

⎪⎨

⎪⎩

∂tφ + 1

2
|∇φ|2 + |a|2σ = 0; φ|t=0 = φ0,

∂t a + ∇φ · ∇a + 1

2
a∆φ = 0; a|t=0 = a0.

(1.2)

This system is to be understood as a compressible Euler equation. Indeed, setting
(ρ, v) = (|a|2,∇φ), we see that (ρ, v) solves the following:

{

∂tv + v · ∇v + ∇ (

ρσ
) = 0; v|t=0 = ∇φ0,

∂tρ + div (ρv) = 0; ρ|t=0 = |a0|2.
Note that for σ > 1, the above system is not directly hyperbolic symmetric, due
to the presence of vacuum. We will see that the above system suffices to describe
the convergences of the main two quadratic observables for uε, that is, position
and current densities. We will also see that passing to the limit ε → 0 in the
usual conservation laws for nonlinear Schrödinger equations, we recover important
conservation laws for the Euler equation (see Section 6.4). This also serves as
a background to note that some blow-up results for the nonlinear Schrödinger
equation on the one hand, and the compressible Euler equation on the other hand,
follow from very similar identities (see Section 6.5). This remark reinforces the
bridge noticed by Serre [33].

Another motivation lies in the study the Cauchy problem for nonlinear
Schrödinger equations with no small parameter (ε = 1 in (1.1), typically). As
noticed in [8, Appendix] and [9], one can prove ill-posedness results for energy-
supercritical equations by reducing the problem to semi-classical analysis for (1.1).
In [9, Appendix C], a result of loss of regularity was proved for the cubic, defocus-
ing nonlinear Schrödinger equation, in the spirit of the pioneering work of Lebeau
[29]. It concerned the flow associated to the nonlinear Schrödinger equation near
the origin. This was extended in [10] to the case of data of arbitrary size in Sobolev
spaces. When the nonlinearity is defocusing and not necessarily cubic, the result
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of [9, Appendix C] was extended in [2], by studying the semi-classical limit for
(1.1). However, [2] does not use the complete justification of geometric optics,
which makes it impossible to extend the results in [10] to the case of super-cubic
nonlinearities. The analysis presented in this paper makes it possible.

1.2. Main results

For s � 0, we shall denote Hs(Rn), or simply Hs , the Sobolev space of order s.
We equip H∞(Rn) = H∞ := ∩s>0 Hs(Rn) with the distance

d( f, g) =
∑

s∈N

2−s ‖ f − g‖Hs

1 + ‖ f − g‖Hs
·

Note that for any k ∈ N and any interval I , Ck(I ; H∞) = ∩s�0Ck(I ; Hs).

Assumption 1.1. We require σ ∈ N \ {0} without recalling this assumption explic-
itly in the statements. Similarly, it is assumed that a0, φ0 ∈ H∞, where recall that
φ0 is real-valued. We also suppose that aε0 belongs uniformly to H∞ and converges
towards a0 in H∞ as ε → 0. More precisely,

aε0 = a0 + O(ε) in Hs(Rn), ∀s � 0.

The first remark, based on a change of unknown due to Makino et al. [31] (see
also [15]), is that the limiting system (1.2) is locally well-posed in Sobolev spaces,
despite the possible presence of vacuum:

Lemma 1.2. (from [2]) Let n � 1, and let Assumption 1.1 be satisfied. There exists
T ∗ > 0 such that (1.2) has a unique maximal solution (φ, a) in C([0, T ∗[; H∞(Rn)).

The proof is recalled in Section 2. It is based on a change of unknown introduced
in [31] (see also [15]), which makes it possible to rewrite the equation under the
form of a quasi-linear symmetric hyperbolic system. This transformation of the
equations, which consists in introducing (v, u) := (∇φ, aσ ), clearly exhibits a key
dichotomy between σ = 1 and σ � 2. In particular, a stability analysis in the case
σ � 2 is not straightforward, since the above mentioned change of variables does
not seem to be well adapted to Schrödinger equations.

Here is the main result of this paper. In the context of Assumption 1.1, we
prove that the solutions of (1.1) exist and satisfy uniform estimates on a time
interval which is independent of ε.

Theorem 1.3. Let n � 3, and let Assumption 1.1 be satisfied. There exists
T ∈]0, T ∗[, where T ∗ is given by Lemma 1.2, such that the following holds. For all
ε ∈]0, 1] the Cauchy problem (1.1) has a unique solution uε ∈ C([0, T ]; H∞(Rn)).
Moreover,

sup
ε∈]0,1]

∥
∥
∥uεe−iφ/ε

∥
∥
∥

L∞([0,T ];Hk (Rn))
< +∞, (1.3)

where φ ∈ C∞
b ([0, T ] × R

n) is given by (1.2), and the index k is as follows:



318 Thomas Alazard & Rémi Carles

− If σ = 1, then k ∈ N is arbitrary.
− If σ = 2 and n = 1, then we can take k = 2.
− If σ = 2 and 2 � n � 3, then we can take k = 1.
− If σ � 3, then we can take k = σ .

Finally, define qε = 1
ε

Bσ
(|aε|2, |a|2), where we set, for r1, r2 � 0,

Bσ (r1, r2) = (r1 − r2)

(

2σ
∫ 1

0
(1 − s) (r2 + s(r1 − r2))

σ−1 ds

)1/2

.

Then for the same k as above,

sup
ε∈]0,1]

∥
∥qε

∥
∥

L∞([0,T ];Hk−1(Rn))
< +∞. (1.4)

Remark 1. The estimate (1.3) is trivial for k = 0, from the conservation of mass,
which holds even for weak solutions [25].

Remark 2. For sufficiently large σ , the approach followed in this paper makes it
possible to extend Theorem 1.3 to the case of higher dimensions, n � 4. We shall
not pursue this question.

Remark 3. The assumption aε0 = a0 + O(ε) plays a crucial role in the above
result. Indeed, the analysis in [9] shows that in the case σ = 1, if we assume
only aε0 = a0 + o(1), then the conclusion of Theorem 1.3 fails. For instance, if
aε0 = (1 + εα)a0 for some 0 < α � 1, then for arbitrarily small t > 0 independent
of ε, uεe−iφ/ε has oscillations of order ε1−α . So if α < 1, then uεe−iφ/ε is not
bounded in H1.

For σ = 1, the above result is a consequence of the analysis due to Grenier
[27], and remains valid in any space dimension n � 1. We propose an alternate
proof in Section 3.

In the quintic case σ = 2, for all ε > 0, the Cauchy problem (1.1) has a unique
global solution in C(R; H∞(Rn)). Indeed, for n = 1 this follows from standard
results for semi-linear equations; in the energy-subcritical case n = 2, this follows
from Strichartz estimate and the conservation laws; for the difficult energy-critical
case n = 3, this has been proved by Colliander et al. [20]. Therefore, the main
point in our result is the uniform bound (1.3). The same is true for the case n � 2
and σ � 3, since the nonlinearity is then H1-subcritical.

For σ � 3 and n = 3, the equation is H1-supercritical. Therefore, not only the
bound (1.3) is new, but also the fact that we can construct a smooth solution uε to
(1.1) on a time interval [0, T ] independent of ε ∈]0, 1].

Since the estimate (1.4) may seem a little mysterious prior to any analysis,
let us state its main consequences for the value k = 1. We infer that the quadratic
observables converge strongly towards the solution of compressible Euler equations
for potential flows in vacuum, hence giving the Wigner measure associated to (uε)ε
(see, for example, [7,24] for the definition and the main properties). The following
result is proved in Section 4.5.
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Corollary 1.4. Let n � 3, and let Assumption 1.1 be satisfied. There exists T ∈]0,
T ∗[, where T ∗ is given by Lemma 1.2, such that the position and current densities
converge strongly on [0, T ] as ε → 0:

|uε|2 −→
ε→0

|a|2 in C
(

[0, T ]; Lσ+1(Rn)
)

,

Im
(

εuε∇uε
)−→
ε→0

|a|2∇φ in C
(

[0, T ]; Lσ+1(Rn)+ L1(Rn)
)

.

In particular, there is only one Wigner measure associated to (uε)ε, and it is given
by

µ(t, dx, dξ) = |a(t, x)|2 dx ⊗ δ (ξ − ∇φ(t, x)) .

The analysis proposed to prove Theorem 1.3 allows us to compute the leading
order behavior of the wave function uε, provided that we know a more precise
WKB expansion of the initial amplitude.

Assumption 1.5. In addition to Assumption 1.1, we assume that there exists
a1 ∈ H∞(Rn) such that

aε0 = a0 + εa1 + O
(

ε2
)

in Hs(Rn), ∀s � 0.

Theorem 1.6. Let n � 3, and let Assumption 1.5 be satisfied. There exists
ã ∈ C([0, T ∗[; H∞), and for any T ∈]0, T ∗[, there exists ε(T ) > 0, such that
uε ∈ C([0, T ]; H∞) for ε ∈]0, ε(T )], and

∥
∥
∥uε − ãeiφ/ε

∥
∥
∥

L∞([0,T ];L2∩L p)
= O(ε) when σ = 2 and 2 � n � 3,

∥
∥
∥uε − ãeiφ/ε

∥
∥
∥

L∞([0,T ];L2∩L∞)
= O(ε) in the other cases,

(1.5)

where p is such that H1(Rn) ⊂ L p(Rn).

Remark 4. In general, ã �= a, unless a0 is real-valued and a1 ∈ iR (see Section 5).
Therefore, the system (1.2) does not suffice, in general, to describe the asymptotic
behavior of the wave function uε, even though it suffices to describe the position
and current densities (see Corollary 1.4 above).

1.3. Scheme of the proof of Theorem 1.3

To prove that the solutions to the Cauchy problem (1.1) exist for a time inde-
pendent of ε, it is enough to prove uniform estimates for the L∞ norm of uε (see
Lemma 2.1 below). To do so, our approach toward the semi-classical limit is to fil-
ter out the oscillations by the following change of unknown, involving the solution
(a, φ) of the limit system (1.2):

aε(t, x) := uε(t, x)e−iφ(t,x)/ε. (1.6)
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The key point is that, although it is obviously equivalent to prove L∞ estimates for
uε and aε, it is expected that one can prove uniform estimates in Sobolev spaces
for aε, thereby obtaining the desired L∞ estimates from the Sobolev embedding.
Obviously, uniform estimates in Sobolev spaces for uε are not expected to hold,
due to the rapid oscillations described by φ.

The amplitude aε solves the following evolution equation:
⎧

⎨

⎩

∂t a
ε + ∇φ · ∇aε + 1

2
aε∆φ − i

ε

2
∆aε = − i

ε

(∣
∣aε

∣
∣2σ − |a|2σ

)

aε,

aε|t=0 = aε0.
(1.7)

It is clear that the mass is conserved:
∥
∥aε(t)

∥
∥

L2 = ∥
∥uε(t)

∥
∥

L2 = ∥
∥uε(0)

∥
∥

L2 = ∥
∥aε0

∥
∥

L2 .

This can be seen by multiplying (1.7) by aε, taking the real part and integrating over
R

n . Note that the large term in ε−1 disappears from the energy estimate. Indeed,
the large term in ε−1 is a nonlinear rotation term. But precisely because this term is
nonlinear, it does not disappear from the estimate of the derivatives (the equation
is not translation invariant). Indeed, ∇aε solves

(

∂t + ∇φ · ∇ + 1

2
∆φ − i

ε

2
∆

)

∇aε + ∇aε · ∇∇φ + 1

2
aε∇∆φ

+ i

ε

(∣
∣aε

∣
∣2σ − |a|2σ

)

∇aε + i

ε
aε∇

(∣
∣aε

∣
∣2σ − |a|2σ

)

= 0.

(1.8)

This equation is of the form

(∂t + L(φ, ∂x )+ L(ε, ∂x ))∇aε + i

ε
aε∇

(∣
∣aε

∣
∣2σ − |a|2σ

)

= 0,

where L(ε, ∂x ) is skew-symmetric. Again, by multiplying (1.8) by ∇aε, taking the
real part and integrating over R

n , we obtain

1

2

d

dt

∥
∥∇aε

∥
∥2

L2 − 1

ε

∫

div(Im(aε∇aε))
(∣
∣aε

∣
∣2σ − |a|2σ

)

= − Re
∫

Rn

(

∇aε · ∇∇φ + 1

2
aε∇∆φ

)

∇aε dx .

Together with the mass conservation, this yields the following identity for the energy
Eε := ‖aε‖2

H1 :

1

2

dEε

dt
− 1

ε

∫

div(Im(aε∇aε))
(∣
∣aε

∣
∣
2σ − |a|2σ

)

� CφEε,

for some constant Cφ depending only on the known solution (a, φ) of the limit
system. The idea is then to find a second energy functional Eε such that

1

2

dEε
dt

+ 1

ε

∫

div(Im(aε∇aε))
(∣
∣aε

∣
∣2σ − |a|2σ

)

� Ca,φ(E
ε + Eε). (1.9)
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By adding the two inequalities, one obtains a uniform in ε energy estimate

Eε(t)+ Eε(t) � eCa,φ t (Eε(0)+ Eε(0)).
The previous strategy has many roots. For the semi-classical limit, this goes back
to the work of Brenier [6], Zhang [40], Lin and Zhang [30], and is referred to
as a modulated energy estimate. Here, we will get the same result in a different
way. Our approach amounts to trying to find a nonlinear change of unknown to
symmetrize the equations. We will define gε and qε such that

∂t q
ε + gε div(Im(aε∇aε))+ ∇φ · ∇qε + σ + 1

2
qε∆φ = 0,

and

qεgε = 1

ε

(∣
∣aε

∣
∣2σ − |a|2σ

)

.

Not only does this allow us to obtain (1.9) with Eε := ‖qε‖2
L2 , but also to derive

uniform estimates in Sobolev spaces. More precisely, we will see that the system of
equations satisfied by (aε,∇aε, qε) is essentially hyperbolic symmetric (plus some
skew-symmetric terms). Therefore, we can derive energy estimates, which in turn
imply Theorem 1.3. Note that the idea of introducing new unknown functions to
diminish the complexity of the initial problem is a strategy that has proven success-
ful in many occasions: for instance, blow-up for the nonlinear wave equation, [4]
(see also [3,5]), low Mach number limit of the full Navier–Stokes equations [1], or
geometric optics for the incompressible Euler or Navier–Stokes equations [16–18].

Remark 5. Several months after the submission of this paper, results similar to
those presented here were obtained in [19]. The assumptions are slightly different
from those considered here, the methods differ much more (the authors do not use
a local modulated energy, but a linearization argument, directly on the Schrödinger
equation), and the conclusions are similar to ours, but stronger: for instance, there
is no restriction on the values of n and k in the analogue of Theorem 1.3.

2. Preliminaries

Since, for σ ∈ N, the nonlinearity in (1.1) is smooth, the usual theorems for
semi-linear evolution equations (see, for example, [14]) imply the following result.

Lemma 2.1. Let σ, n ∈ N\{0}. For (fixed) ε ∈]0, 1], assume that uε|t=0 ∈ Hs(Rn)

with s > n/2. Then there exists T ε such that (1.1) has a unique maximal solution
uε ∈ C([0, T ε[; Hs(Rn)): if T ε < +∞, then

lim sup
t→T ε

∥
∥uε(t)

∥
∥

L∞(Rn)
= +∞. (2.1)

Consequently, if uε(0) ∈ H∞(Rn), then uε ∈ C∞([0, T ε[; H∞(Rn)).

With regards to the limit system (1.2), we recall the proof of Lemma 1.2.
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Lemma 2.2. Let σ ∈ N and n � 1. For all (φ0, a0) ∈ Hs+1(Rn) × Hs(Rn) with
s > n/2 + 1, there exists T ∗ > 0 such that (1.2) has a unique maximal solution
(φ, a) in C([0, T ∗[; Hs+1(Rn) × Hs−1(Rn)). In addition, if φ0, a0 ∈ H∞(Rn),
then φ, a ∈ C∞([0, T ∗[; H∞(Rn)).

Remark 6. The lifespan T ∗ is finite for all compactly support initial data (see
Proposition 6.1). If σ = 1, then a belongs to C([0, T ∗[; Hs(Rd)) as soon as
(φ0, a0) ∈ Hs+1(Rn)× Hs(Rn). What makes the previous result nontrivial is the
presence of vacuum when σ � 2: at the zeroes of a, (1.2) ceases to be hyperbolic,
and this may cause a loss of regularity.

Sketch of the proof. One can transform (1.2) into a quasi-linear system by differ-
entiating the equation for φ: with v = ∇φ, one has

⎧

⎨

⎩

∂tv + v · ∇v + ∇|a|2σ = 0; v|t=0 = ∇φ0,

∂t a + v · ∇a + 1

2
a div v = 0; a|t=0 = a0.

(2.2)

For the cubic case where σ = 1, this system enters the standard framework of
quasi-linear symmetric hyperbolic systems, with a constant symmetrizer. Thus,
one can solve the Cauchy problem (1.2) in standard fashion: one first solves (2.2)
and then checks that curlv = 0, so that v = ∇φ for some φ. In contrast, for σ > 1,
System (2.2) is no longer symmetric. However, as in [31], one can prove that the
Cauchy problem for (2.2) is well-posed, with loss of (at most) one derivative for
a, by introducing A = aσ . Indeed, (v, A) solves a quasi-linear hyperbolic system
with constant symmetrizer:

⎧

⎨

⎩

∂tv + v · ∇v + ∇|A|2 = 0; v|t=0 = ∇φ0,

∂t A + v · ∇ A + σ

2
A div v = 0; A|t=0 = aσ0 .

(2.3)

This allows us to determine v, and hence φ, by setting

φ(t, x) = φ0(x)−
∫ t

0

(
1

2
|v(τ, x)|2 + |A(τ, x)|2

)

dτ.

Then ∂t (∇φ − v) = ∇∂tφ−∂tv = 0, hence v = ∇φ. Once this is granted, one can
define a as the solution of the second equation in (2.2), where v is now viewed as
a given coefficient. Since A and aσ satisfy the same linear equation, with identical
initial data, we obtain A = aσ . Therefore, (a, φ) solves (1.2). Finally, the local
existence time T ∗ may be chosen independent of s > n/2 + 1, thanks to tame
estimates (see, for example, [35]). �
For further references, we conclude this paragraph by recalling a standard estimate
in Sobolev spaces for systems of the form

∂tU +
∑

1� j�n

A j (Φ,U )∂ jU + εL(∂x )U = E(Φ,U ), (2.4)

where U : [0, T ] × R
n → C

d with d � 1, ε ∈ R and:
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− Φ : [0, T ] × R
n → C

d is a given function.
− The A j ’s are d ×d Hermitian matrices depending smoothly on their arguments.
− L(∂x ) = ∑

L jk∂ j∂k is a skew-symmetric second-order differential operator
with constant coefficients.

− E a C∞ function of its arguments, vanishing at the origin.

Lemma 2.3. Let n � 1 and s > n/2 + 1. There exists a smooth nondecreasing
function C from [0,+∞[ to [0,+∞[ such that, for all T > 0, all ε ∈ R, all
coefficient Φ ∈ C([0, T ]; Hs(Rn)) and all unknown U ∈ C([0, T ]; Hs(Rn))

satisfying (2.4), there holds

sup
t∈[0,T ]

‖U (t)‖Hs � ‖U (0)‖Hs eC(M)T ,

with M := ‖(Φ,U )‖L∞([0,T ];Hs (Rn)).

Proof. We want to estimate the L2(Rn) norm ofΛsU , whereΛs is the Fourier mul-
tiplier (Id −∆)s/2. To deal with smooth functions, we use the Friedrichs mollifiers:
let j ∈ C∞

0 (R
n) be such that j (ξ) = 1 for |ξ | � 1, then we define Jδ = j (δDx )

as the Fourier multiplier with symbol j (δξ).
With these notations, set Uδ := JδΛsU . Since s − 1 > n/2, Hs−1(Rn) is

an algebra which is stable by composition (F(u) ∈ Hs−1(Rn) whenever u ∈
Hs−1(Rn) and F ∈ C∞ satisfies F(0) = 0): U ∈ C1([0, T ]; Hs−2(Rn)). There-
fore, Uδ is smooth: Uδ ∈ C1([0, T ]; H∞(Rn)). Now write

∂tUδ +
∑

1� j�n

A j (Φ,U )∂ jUδ + εL(∂x )Uδ = fδ,

with

fδ =
∑

1� j�n

[A j (Φ,U ), JδΛ
s]∂ jU + JδΛ

s E(Φ,U ).

Since L(∂x ) = −L(∂x )
∗, and since Uδ ∈ C1([0, T ]; L2(Rn)), by taking the inner

product in L2(Rn), we get

d

dt
‖Uδ‖2

L2 =
∑

1� j�n

〈 ∂ j A j (Φ,U )Uδ , Uδ 〉 + 2〈 fδ , Uδ 〉

�

⎛

⎝1 +
∑

1� j�n

∥
∥∂ j A j (Φ,U )

∥
∥

L∞

⎞

⎠ ‖Uδ‖2
L2 + ‖ fδ‖2

L2 ,

where we have used the symmetry of the matrices A j . The Sobolev embedding and
the usual nonlinear estimates (see [35]) imply

∥
∥∂ j A j (Φ,U )

∥
∥

L∞ � C(‖(Φ,U )‖W 1,∞) � C(‖(Φ,U )‖Hs ),
∥
∥[A j (Φ,U ), JδΛ

s]∂ jU
∥
∥

L2 � K
∥
∥ Ã j (Φ,U )

∥
∥

Hs

∥
∥∂ jU

∥
∥

Hs−1 � C(‖(Φ,U )‖Hs ),
∥
∥JδΛ

s E(Φ,U )
∥
∥

L2 � K ‖E(Φ,U )‖Hs � C(‖(Φ,U )‖Hs ),
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where Ã j = A j − A j (0) and C denotes a smooth nondecreasing function
independent of δ. To complete the proof, apply Gronwall lemma and let δ go to 0
in the inequality thus obtained. �

3. Proof of Theorem 1.3 in the case σ = 1

Recall that aε is defined as:

aε(t, x) := uε(t, x)e−iφ(t,x)/ε,

where φ ∈ C∞([0, T ∗[×R
n) is given by (1.2). Assume in the rest of this paragraph

that σ = 1. Then, (1.7) reads
⎧

⎨

⎩

∂t a
ε + ∇φ · ∇aε + 1

2
aε∆φ − i

ε

2
∆aε = − i

ε

(∣
∣aε

∣
∣
2 − |a|2

)

aε,

aε|t=0 = aε0.

Let s > n/2 + 1 and set τ ε := min(T ∗, T ε), where T ∗ and T ε are given by
Lemmas 2.1 and 2.2. We prove that there exists a function C from [0,+∞[ to
[0,+∞[ such that, for all ε ∈]0, 1] and all t ∈ [0, τ ε[,

∥
∥aε(t)

∥
∥

Hs �
∥
∥aε(0)

∥
∥

Hs etC(Mε(t)), (3.1)

where

Mε(t) := ∥
∥aε

∥
∥

L∞([0,t];Hs (Rn))
+ ‖(a, φ)‖L∞([0,t];Hs+3(Rn)) .

This suffices to conclude by a standard continuity argument. Indeed, set

M0 := sup
ε∈]0,1]

∥
∥aε0

∥
∥

Hs + ‖(a, φ)‖L∞([0,T ∗/2];Hs+3(Rn)) < +∞,

and choose T0 ∈]0, T ∗/2] small so that M0 exp(T0C(2M0))<2M0. Since Mε(0) <
2M0 and since Mε ∈ C0([0, τ ε[), (3.1) implies

Mε(t) < 2M0, ∀t ∈ [0,min{T0, T ε}[.
Sobolev embedding then shows that ‖uε(t)‖L∞ = ‖aε(t)‖L∞ is uniformly bounded
for all ε ∈]0, 1] and all t ∈ [0,min{T0, T ε}[. Hence, the continuation principle (2.1)
implies that T ε � T0 > 0 for all ε ∈]0, 1]. The estimate (1.3) with σ = 1 then
follows from the bound sup

ε∈]0,1]
sup

t∈[0,T0]
Mε(t) � 2M0.

Theorem 1.3 for σ = 1 was first established by Grenier [27], whose approach
is based on a subtle phase/amplitude representation of the solution. Here, we give
an alternate proof which consists in symmetrizing the large terms in ε−1 in the
equation for aε by introducing

qε := |aε|2 − |a|2
ε

·
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We find directly, in view of Assumption 1.1:

∂t q
ε + div

(

Im
(

aε∇aε
)) + div(qε∇φ) = 0; ‖qε|t=0‖Hs (Rn) = O(1), ∀s � 0.

Furthermore, with this notation the equations for aε and ψε := ∇aε read

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t a
ε + ∇φ · ∇aε + 1

2
aε∆φ − i

ε

2
∆aε + iqεaε = 0,

∂tψ
ε + ∇φ · ∇ψε + 1

2
ψε∆φ + ψε · ∇∇φ + 1

2
aε∇∆φ

+ iqεψε + iaε∇qε = i
ε

2
∆ψε.

It is easily verified that U ε := (2qε, aε, aε, ψε, ψε) ∈ C∞([0, τ ε[; H∞(Rn))

satisfies a system of the form (2.4), that is

∂tU
ε +

∑

1� j�n

A j (Φ,U
ε)∂ jU

ε + εL(∂x )U
ε = E(Φ,U ε),

where Φ := (∇φ,∆φ,∇∆φ). Hence, by Lemma 2.3, we obtain the desired esti-
mate (3.1) and conclude the proof of Theorem 1.3 in the case σ = 1.

4. The case σ � 2

We now follow the strategy presented in Section 1.3. We introduce a nonlinear
change of unknown functions which, together with (1.7), yields a quasi-linear sys-
tem of the form (2.4). We conclude the proof of Theorem 1.3 thanks to a general
result on the composition by nonsmooth functions in Sobolev spaces.

4.1. A nonlinear change of variable

As already explained, to symmetrize the equations, our idea is to split the term
|aε|2σ − |a|2σ as a product

∣
∣aε

∣
∣
2σ−|a|2σ =gεβε=(G B)(

∣
∣aε

∣
∣
2
, |a|2)=G(r1, r2)B(r1, r2) | (r1,r2)=(|aε |2,|a|2) ,

where βε satisfies an equation of the form

∂tβ
ε + L(a, φ, ∂x )β

ε + gε div
(

ε Im(aε∇aε)
) = 0, (4.1)

and L is a first-order differential operator. Proposition 4.3 below shows that it is
possible to do so. Before giving this precise statement, we introduce convenient
notations, and explain how to formally find βε.

Introduce the position densities

ρ := |a|2 ∈ C∞([0, T ∗[×R
n); ρε := |aε|2 = ∣

∣uε
∣
∣2 ∈ C∞([0, T ε[×R

n).
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Let v = ∇φ. Elementary computations show that:

∂tρ + div(ρv) = 0, (4.2)

∂tρ
ε + div Im

(

εuε∇uε
) = 0, (4.3)

∂tρ
ε + div

(

Im(εaε∇aε)+ ρεv
) = 0. (4.4)

Denote

J ε := ε Im(aε∇aε).

By writing

∂tβ
ε = (∂r1 B)(ρε, ρ)∂tρ

ε + (∂r2 B)(ρε, ρ)∂tρ,

we compute, from (4.2) and (4.4):

∂tβ
ε + (∂r1 B)(ρε, ρ) div(J ε + ρεv)+ (∂r2 B)(ρε, ρ) div(ρv) = 0.

Hence, in order to have an equation of the desired form (4.1), we impose

∂r1 B(r1, r2) = G(r1, r2).

Since on the other hand,

G(r1, r2)B(r1, r2) = rσ1 − rσ2 ,

this suggests to choose βε such that

(βε)2 = 2

σ + 1
(ρε)σ+1 − 2ρσρε + f (ρ). (4.5)

To obtain an operator L which is linear with respect to βε we choose

(βε)2 = 2

σ + 1
(ρε)σ+1 − 2

σ + 1
ρσ+1 − 2ρσ (ρε − ρ). (4.6)

With this choice, we formally compute:

∂tβ
ε + εgε div(Im(aε∇aε))+ v · ∇βε + σ + 1

2
βε div v = 0.

Before deriving this equation rigorously, examine the right-hand side of (4.6).
Taylor’s formula yields

2

σ + 1
(ρε)σ+1 − 2

σ + 1
ρσ+1 − 2ρσ (ρε − ρ) = (ρε − ρ)2 Qσ (ρ

ε, ρ),

where Qσ is given by:

Qσ (r1, r2) := 2σ
∫ 1

0
(1 − s) (r2 + s(r1 − r2))

σ−1 ds. (4.7)

Note that there exists Cσ such that:

Qσ (r1, r2) � Cσ
(

rσ−1
1 + rσ−1

2

)

. (4.8)
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Notation 4.1. Let σ ∈ N. Introduce

Gσ (r1, r2) = Pσ (r1, r2)√
Qσ (r1, r2)

; Bσ (r1, r2) := (r1 − r2)
√

Qσ (r1, r2),

where Qσ is given by (4.7) and

Pσ (r1, r2) = rσ1 − rσ2
r1 − r2

=
σ−1
∑

�=0

rσ−1−�
1 r�2 .

Note that the definition of Bσ is the definition given in Theorem 1.3.

Example 4.2. For σ = 1, 2, 3, we compute

G1 = 1, B1 = r1 − r2.

G2 =
√

3

2

r1 + r2√
r1 + 2r2

, B2 =
√

2

3
(r1 − r2)

√

r1 + 2r2.

G3 = √
2

r2
1 + r1r2 + r2

2
√

(r1 − r2)2 + 2r2
2

, B3 = 1√
2
(r1 − r2)

√

(r1 − r2)2 + 2r2
2 .

A remarkable fact is that, although the functions Gσ and Bσ are not
smooth for σ � 2, one can compute an evolution equation for the unknown
βε := Bσ

(|aε|2 , |a|2). We have the following key proposition.

Proposition 4.3. With Gσ and Bσ as above, define

βε := Bσ
(∣
∣aε

∣
∣
2
, |a|2

)

, gε := Gσ

(∣
∣aε

∣
∣
2
, |a|2

)

.

Then βε ∈ C1([0, τ ε[×R
n) and gε ∈ C0([0, τ ε[×R

n), where τ ε = min(T ∗, T ε).
Moreover,

∂tβ
ε + εgε div(Im(aε∇aε))+ v · ∇βε + σ + 1

2
βε div v = 0. (4.9)

Remark 7. Again, note the dichotomy between σ = 1 and σ � 2. If σ = 1 then,
by definition, gε = 1 and βε = ρε − ρ are C∞ functions. Moreover (4.9) simply
reads

∂tβ
ε + ε div(Im(aε∇aε))+ div(vβε) = 0,

corresponding to the equation for qε = ε−1βε in Section 3, and which follows
directly by subtracting (4.2) from (4.4).

Proof. The regularity properties of βε and gε follow from Lemmas 2.1 and 2.2,
along with the definition of βε and gε (see Notation 4.1, and (4.8)).

Since by definition

βε(∂r1 Bσ )(ρ
ε, ρ) = (ρε)σ − ρσ ,

βε(∂r2 Bσ )(ρ
ε, ρ) = σ(ρσ − ρσ−1ρε),
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we have

βε∂tβ
ε

= βε(∂r1 Bσ )(ρ
ε, ρ)∂tρ

ε + βε(∂r2 Bσ )(ρ
ε, ρ)∂tρ

= −βε(∂r1 Bσ )(ρ
ε, ρ) div(Jε + ρεv)− βε(∂r2 Bσ )(ρ

ε, ρ) div(ρv)

= −((ρε)σ − ρσ ) div(Jε + ρεv)− σ(ρσ − ρσ−1ρε) div(ρv).

From this we compute

βε
(

∂tβ
ε + εgε div(Im(aε∇aε))+ v · ∇βε + σ + 1

2
βε div v

)

= 0.

Introduce

ωε := {ρε = ρ} = {

(t, x) ∈ [0, τ ε[×R
n | ρε(t, x) = ρ(t, x)

}

= ([0, τ ε[×R
n)\{βε �= 0} (by (4.8)).

Then (4.9) holds on ([0, τ ε[×R
n)\ωε; hence on ([0, τ ε[×Rn)\ωε by continuity.

To prove the proposition, it thus suffices to show

∂tβ
ε + εgε div(Im(aε∇aε))+ v · ∇βε + σ + 1

2
βε div v = 0 on

◦
ωε,

where
◦
A denotes the interior of the set A. Since βε = 0 on

◦
ωε, it is enough to prove

that div(Im(aε∇aε)) = 0 on
◦
ωε. This in turn follows from (4.2) and (4.4), which

yield the following:

div(Im(aε∇aε)) = −ε−1 (

∂t (ρ
ε − ρ)+ div((ρε − ρ)v)

)

.

This completes the proof. �
We will see that |aε|2σ − |a|2σ is of order O(ε), so we naturally set

ψε := ∇aε; qε := ε−1βε.

We infer from the previous computations that (aε, ψε, qε) solves the following:
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t a
ε + v · ∇aε + 1

2
aε div v − i

ε

2
∆aε = −igεqεaε.

∂tψ
ε + v · ∇ψε + 1

2
ψε div v + ψε · ∇v + 1

2
aε∇ div v − i

ε

2
∆ψε

= −iqε∇ (

aεgε
) − iaεgε∇qε,

∂t q
ε + v · ∇qε + gε div(Im(aεψε))+ σ + 1

2
qε div v = 0.

(4.10)

Simply by writing

gε div(Im(aεψε)) = Im(gεaε divψε),
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we can rewrite the previous system as
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t a
ε + v · ∇aε − i

ε

2
∆aε = −1

2
aε div v − igεqεaε.

∂tψ
ε + v · ∇ψε + iaεgε∇qε − i

ε

2
∆ψε

= −1

2
ψε div v − ψε · ∇v − 1

2
aε∇ div v − iqε∇ (

aεgε
)

,

∂t q
ε + v · ∇qε + Im(gεaε divψε) = −σ + 1

2
qε div v.

(4.11)

Note that in view of Assumption 1.1,
∥
∥
∥aε|t=0

∥
∥
∥

Hs (Rn)
+ ∥

∥ψε |t=0

∥
∥

Hs (Rn)
= O(1), ∀s � 0. (4.12)

A similar estimate for the initial data of qε is a more delicate issue, since Bσ is not
a smooth function. We postpone this estimate to Section 4.2.

The left-hand side of (4.11) is a first-order quasi-linear symmetric hyperbolic
system, plus a second-order skew-symmetric term. The right-hand side can be
viewed as a semi-linear source term. We deduce from Proposition 4.3:

Corollary 4.4. On [0, τ ε[×R
n, the function U ε := (2qε, aε, aε, ψε, ψ

ε
) satisfies

an equation of the form

∂tU
ε+

∑

1� j�n

A j (v, aεgε, aεgε)∂ jU
ε + εL(∂x )U

ε = E(Φ,U ε, aεgε,∇(aεgε)),

(4.13)

where Φ = (∇φ,∇2φ,∇3φ), the A j ’s are Hermitian matrices linear in their
arguments, L(∂x ) = ∑

L jk∂ j∂k is a skew-symmetric second-order differential
operator with constant coefficients, and E is a C∞ function of its arguments,
vanishing at the origin.

We can restate Theorem 1.3:

Theorem 4.5. Let n � 3, and let Assumption 1.1 be satisfied. There exists
T ∈]0, T ∗[, where T ∗ is given by Lemma 1.2, such that the following holds. For all
ε ∈]0, 1], the Cauchy problem (1.1) has a unique solution uε ∈ C([0, T ]; H∞(Rn)).
Moreover,

sup
ε∈]0,1]

(∥
∥aε

∥
∥

L∞([0,T ];Hk (Rn))
+ ∥

∥qε
∥
∥

L∞([0,T ];Hk−1(Rn))

)

< +∞, (4.14)

where the index k is as follows:

− If σ = 1, then k ∈ N is arbitrary.
− If σ = 2 and n = 1, then we can take k = 2.
− If σ = 2 and 2 � n � 3, then we can take k = 1.
− If σ � 3, then we can take k = σ .
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4.2. Quasi-linear analysis

We now have to estimate (aε, qε, ψε) in Sobolev spaces. Let us briefly explain
the difficulty. To clarify matters, suppose that gε = G(|aε|2 , |a|2) for some smooth
function G ∈ C∞(R2). In particular this is so in the cubic case σ = 1. Then, in
view of Corollary 4.4, U ε := (2qε, aε, aε, ψε, ψε) ∈ C([0, τ ε[; H∞(Rn))3+2n

satisfies a system of the form (2.4),

∂tU
ε +

∑

1� j�n

A j (Φ,U
ε)∂ jU

ε + εL(∂x )U
ε = E(Φ,U ε),

where Φ := (|a|2 ,∇ |a|2 ,∇φ,∇2φ,∇3φ). The key difference with the system
in Corollary 4.4 is the absence of dependence upon the extra unknown gε. Then,
Lemma 2.3 yields estimates in Sobolev spaces (of arbitrary order).

Assume now σ � 2. One can check that the previous symmetrization provides
us with uniform a priori estimates in L2. However, the estimates of the derivatives
require a careful analysis. Indeed, recall that

gε = Gσ (
∣
∣aε

∣
∣2
, |a|2) with Gσ (r1, r2) = Pσ (r1, r2)√

Qσ (r1, r2)
,

where Pσ and Qσ are defined in Notation 4.1 and (4.7), respectively. Therefore,
Gσ need not be smooth at the origin. The classical approach, which consists in
differentiating the equations, thus certainly fails here. Yet, as we will see, we need
only estimate aεgε in Hσ . Introduce

Fσ (z, z′) = zGσ

(

|z|2 , ∣∣z′∣∣2
)

: aεgε = Fσ
(

aε, a
)

. (4.15)

One can check that Fσ ∈ Cσ−1 but Fσ �∈ Cσ . Hence, to estimate aεgε in Hσ , one
cannot use the usual nonlinear estimates. Instead, we will use that Fσ is homoge-
neous of degree σ and the following lemma.

Lemma 4.6. Let p � 1 and m � 2 be integers and consider F : R
p → C. Assume

that F ∈ C∞(Rp\{0}) is homogeneous of degree m, that is:

F(λy) = λm F(y), ∀λ � 0, ∀y ∈ R
p.

Then, for n � 3, there exists K > 0 such that, for all u ∈ Hm(Rn) with values in
R

p, F(u) ∈ Hm(Rn) and

‖F(u)‖Hm � K ‖u‖m
Hm .

The same is true when m = 1 and n ∈ N.

Remark 8. Note that the result is false for n � 4 and m = 2. Also, one must not
expect F(u) ∈ Hm+1(Rn), even for u ∈ H∞(Rn). For instance, if

n = 1 = p, m = 2, F(y) = y |y| , u(x) = xe−x2
,

then F(u) ∈ H2(R) and F(u) �∈ H3(R). Similarly, in general, one must not expect
Fσ (u, v) ∈ Hσ+1(Rn), even for (u, v) ∈ H∞(Rn)2.
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Proof. We prove the result by induction on m. Consider first the case m = 2.
Observe that, by assumption, F ∈ Cm−1(Rp). To regularize F , let χ ∈ C∞

0 (R
p)

be such that 0 � χ � 1, χ(y) = 1 for |y| � 1 and χ(y) = 0 for |y| � 3, with
|∇χ(y)| � 1. For � ∈ N, define F� ∈ C∞(Rp) by

F�(y) = (1 − χ (�y)) F(y).

We claim that, for all y ∈ R
p and all � ∈ N,

|F�(y)| � CF |y|2, ∣
∣∂ j F�(y)

∣
∣ � 4CF |y| , ∣

∣∂ j∂k F�(y)
∣
∣ � 4CF ,

where ∂ j = ∂y j and

CF := sup
|z|�3

|F(z)| + sup
1� j�p

sup
|z|�3

∣
∣∂ j F(z)

∣
∣ + sup

1� j,k�p
sup
|z|=1

∣
∣∂ j∂k F(z)

∣
∣ .

Since F� vanishes in a neighborhood of the origin, it suffices to establish these
bounds for y �= 0. The first bound follows from the homogeneity: |F�(y)| �
|F(y)| = |y|2|F(y/|y|)|. For the second one, compute

∂ j F�(y) = (1 − χ(�y))∂ j F(y)− �−1(∂ jχ)(�y)F(�y),

where we used �F(y) = �−1 F(�y). Since 1 � |�y| � 3 on the support of
(∂ jχ)(�y), and since ∂ j F : R

p → C is homogeneous of degree 1, we infer

|∂ j F�(y)| � |y|
(

sup
|z|�3

∣
∣∂ j F (z)

∣
∣ + 3 sup

z∈Rp

∣
∣(∂ jχ)(z)F(z)

∣
∣

)

� 4CF |y|.

The same reasoning yields

∂ j∂k F�(y) = (1 − χ(�y))∂ j∂k F(y)− (∂ jχ)(�y)(∂k F)(�y)

−(∂kχ)(�y)(∂ j F)(�y)− (∂ j∂kχ)(�y)F(�y).

The last three terms are clearly bounded by CF since |�y| � 3 on the support
of χ(�y). Also, the first term is bounded by CF since ∂ j∂k F : R

p \{0} → C is
homogeneous of degree 0. This completes the proof of the claim.

With these preliminary established, we easily obtain that there exists K such
that for all � ∈ N and all u ∈ H2(Rn) with values in R

p,

‖F�(u)‖L2 � K ‖u‖L∞ ‖u‖L2 ,

‖∇F�(u)‖L2 � K ‖u‖L∞ ‖∇u‖L2 ,
∥
∥
∥∇2 F�(u)

∥
∥
∥

L2
� K ‖u‖L∞

∥
∥
∥∇2u

∥
∥
∥

L2
+ K ‖∇u‖2

L4 .

The Sobolev embeddings H1(Rn) ⊂ L6(Rn) and H2(Rn) ⊂ L∞(Rn) for
n ∈ {1, 2, 3} then imply that there exists a constant K such that, for all � ∈ N

and all u ∈ H2(Rn),

‖F�(u)‖H2 � K ‖u‖2
H2 .
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This in turn implies the desired result for F(u) by using the dominated convergence
theorem and a duality argument. Indeed, for all ϕ ∈ C∞

0 (R
n),

∣
∣
∣
∣

∫

F(u)ϕ dx

∣
∣
∣
∣
=

∣
∣
∣
∣

lim
�→+∞

∫

F�(u)ϕ dx

∣
∣
∣
∣
� lim sup

�→+∞
‖F�(u)‖H2 ‖ϕ‖H−2

� K ‖u‖2
H2 ‖ϕ‖H−2 ,

which implies F(u) ∈ H2(Rn) together with ‖F(u)‖H2 � K ‖u‖2
H2 .

Assume now the result at order m � 2, and prove the result at order m + 1. Let
F ∈ C∞(Rp\{0}) be homogeneous of degree m + 1. We have

‖F(u)‖L2 � K ‖u‖m
L∞ ‖u‖L2 � ‖u‖m+1

Hm+1 .

Since m > 3/2 � n/2, Hm(Rn) is an algebra and

‖∇F(u)‖Hm � K ‖∇u‖Hm

∥
∥F ′(u)

∥
∥

Hm .

By assumption, F ′ ∈ C∞(Rp\{0}) is homogeneous of degree m; hence the induction
assumption yields the following:

∥
∥F ′(u)

∥
∥

Hm � K ‖u‖m
Hm .

Therefore,

‖∇F(u)‖Hm � K ‖u‖m+1
Hm+1 .

The case m = 1 can be treated in a similar fashion. �
The lemma turns out to be useful to estimate the source term in (4.11), but also to
estimate the initial data for qε. By definition, we have

qε = |z|2 − |z′|2
ε

Qσ (z, z′) | (z,z′)=(aε,a) ,

where

Qσ (z, z′) =
√

Qσ

(|z|2, |z′|2)

=
(

2σ
∫ 1

0
(1 − s)

(

|z′|2 + s(|z|2 − |z′|2)
)σ−1

ds

)1/2

.

The function Qσ is not smooth, but homogeneous of degree σ −1. So when σ � 3,
we can estimate qε in Hσ−1 at time t = 0 thanks to this lemma. See Section 4.3.

To complete the proof of Theorem 4.5, in view of Lemma 2.1, we seek an H2

estimate of aε, since

H2(Rn) ⊂ L∞(Rn), n � 3.

This boils down to an H1 estimate of U ε defined in Corollary 4.4. Moreover,
Lemma 2.3 requires to control U ε in Hs with s > n/2 + 1, so we would demand
s = 3 for n = 3 and s ∈ N. In view of Lemma 2.3 and Corollary 4.4, we
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have to estimate aεgε in H4. Because of the lack of smoothness of Gσ , such an
estimate seems hopeless in general. We, therefore, proceed in two steps. First,
using the particular structure exhibited in Corollary 4.4, we relax the assumption
s > n/2 + 1 in Lemma 2.3, to s > n/2. Next, we use Lemma 4.6 to overcome the
lack of smoothness of Gσ , and obtain the desired a priori estimates.

Proposition 4.7. Assume σ � 2. Let U ε be the vector-valued function given by
Corollary 4.4, and m > n/2. Then for all t ∈ [0, τ ε[, it satisfies the following a
priori estimate:

sup
s∈[0,t]

∥
∥U ε(s)

∥
∥

Hm �
∥
∥U ε(0)

∥
∥

Hm etC(N ε(t)),

with N ε(t) := ‖Φ‖L∞([0,t];Hm ) + ‖U ε‖L∞([0,t];Hm ) + ‖aεgε‖L∞([0,t];Hm+1).

Proof (Sketch of the proof). Resume the proof of Lemma 2.3. The quantities that
appear in N ε are those on the last three lines of the proof of Lemma 2.3. First, we
have the following:

∥
∥∇ A j (v, aεgε, aεgε)

∥
∥

L∞ � C
(‖v‖W 1,∞ + ∥

∥aεgε
∥
∥

W 1,∞
)

� C
(‖v‖Hm+1 + ∥

∥aεgε
∥
∥

Hm+1

)

.

Since A j is linear in its arguments one has Ã j = A j . In addition, since m + 1 >
n/2 + 1, a standard commutator estimate implies that

∥
∥[A j ,Λ

m]∂ jU
ε
∥
∥

L2 � K
∥
∥A j

∥
∥

Hm+1

∥
∥U ε

∥
∥

Hm

� C
(‖v‖Hm+1 + ∥

∥aεgε
∥
∥

Hm+1

) ∥
∥U ε

∥
∥

Hm .

Finally,
∥
∥E(Φ,U ε, aεgε,∇(aεgε))∥∥Hm � C

(‖Φ‖Hm ,
∥
∥U ε

∥
∥

Hm ,
∥
∥aεgε

∥
∥

Hm+1

)

.

We conclude the proof thanks to Gronwall lemma. �

4.3. The case σ � 3

Recall that from (4.15),

aεgε = Fσ
(

aε, a
)

,

where Fσ is homogeneous of degree σ . For σ � 3 and n � 3, Lemma 4.6 yields

‖aεgε‖Hσ � K
(‖aε‖Hσ + ‖a‖Hσ

)σ
.

Hence Proposition 4.7 with m = σ − 1 � 2 > n/2 shows that there exists a
function C from [0,+∞[ to [0,+∞[ such that, for all ε ∈]0, 1] and all t ∈ [0, τ ε[,

∥
∥U ε(t)

∥
∥

Hσ−1 �
∥
∥U ε(0)

∥
∥

Hσ−1 exp(tC(Mε(t))),
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where

Mε(t) := ∥
∥U ε

∥
∥

L∞([0,t];Hσ−1(Rn))
+ ‖(a, φ)‖L∞([0,t];Hσ+2(Rn)) .

It remains to estimate the initial data. By definition, we have

∥
∥U ε(0)

∥
∥

Hσ−1 �
∥
∥qε(0)

∥
∥

Hσ−1 + ∥
∥aε(0)

∥
∥

Hσ .

The second term is uniformly bounded by assumption. To estimate the first term,
recall that

qε = |z|2 − |z′|2
ε

Qσ (z, z′) | (z,z′)=(aε,a) ,

where

Qσ (z, z′) =
√

Qσ

(|z|2, |z′|2)

=
(

2σ
∫ 1

0
(1 − s)

(

|z′|2 + s(|z|2 − |z′|2)
)σ−1

ds

)1/2

.

The function Qσ is not smooth, but homogeneous of degree σ−1. To estimate qε at
time t = 0, we use the usual product rule in Sobolev space and Lemma 4.6 (applied
with F(y1, . . . , y4) = Qσ (y1 + iy2, y3 + iy4)): if σ � 3, with m = σ − 1 � 2,
we obtain

∥
∥qε(0)

∥
∥

Hσ−1 �
∥
∥
∥ε

−1
(∣
∣aε(0)

∣
∣2 − |a(0)|2

)∥
∥
∥

Hσ−1

∥
∥Qσ

(

aε(0), a(0)
)∥
∥

Hσ−1

�
∥
∥
∥ε

−1
(∣
∣aε(0)

∣
∣
2 − |a(0)|2

)∥
∥
∥

Hσ−1

∥
∥
(

aε(0), a(0)
)∥
∥
σ−1
Hσ−1 .

The assumption aε0 − a0 = O(ε) in Hs for all s > 0 then implies

sup
ε∈]0,1]

∥
∥qε(0)

∥
∥

Hσ−1 < +∞, (4.16)

hence

sup
ε∈]0,1]

∥
∥U ε(0)

∥
∥

Hσ−1 < +∞.

Consequently, since
∥
∥uεe−iφ/ε

∥
∥

Hσ = ‖aε‖Hσ � ‖U ε‖Hσ−1 , the same continuity
argument as in Section 3 completes the proof of Theorem 4.5 in the case σ � 3.
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4.4. The case σ = 2

For σ = 2, we have m = σ − 1 > n/2 only when n = 1. The last point in
Lemma 4.6 shows that

sup
ε∈]0,1]

∥
∥qε(0)

∥
∥

H1(R)
< +∞.

We can then proceed as in the case σ � 3, to prove the second case in Theorem 4.5.
Finally, when σ = 2 and 2 � n � 3, recall that we already know that for fixed

ε ∈]0, 1], uε is global in time, uε ∈ C(R, H1). For n = 2, this is so since every
defocusing, homogeneous nonlinearity is H1-subcritical. For n = 3, the nonlinear-
ity is H1 critical, and this property follows from [20]. The proof of the estimate is
based on an interesting feature of the equation for βε (see Proposition 4.3), which
does not appear in Corollary 4.4. In the introduction, we claimed that the previous
nonlinear symmetrization of the equations implies a local version of the modulated
energy estimate. To see this, introduce

eε := ∣
∣aε

∣
∣2 + ∣

∣ψε
∣
∣2 + ∣

∣qε
∣
∣2 ∈ C1([0, τ ε[×R

n).

It satisfies an equation of the form ∂t eε + div(ηε)+ �ε = O(eε), where
∫

�ε = 0.
Indeed, directly from (4.10), we compute

∂t e
ε + div(veε)+ 2 div

(

Im(gεqεaεψε)
) + ε Im

(

aε∆aε + ψε∆ψε
)

= −σ ∣
∣qε

∣
∣2 div v − Re

(

(2ψε · ∇v + aε∇ div v)ψε
)

.

Hence, we have obtained an evolution equation for a modulated energy, which
yields the desired modulated energy estimate. Gronwall lemma yields

‖eε(t)‖L1(Rn) � ‖eε(0)‖L1(Rn) exp (Ct) .

Finally, (eε(0))ε is bounded in L1(Rn). This is obvious for the first two terms of
eε. For qε, a rough estimate yields:

∥
∥qε(0)

∥
∥

L2 �
∥
∥ε−1

(|aε(0)|2 − |a(0)|2)∥∥L2 ‖Q2 (aε(0), a(0))‖L∞ ,

and the assumption aε0 − a0 = O(ε) in H∞ shows that

sup
0<ε�1

‖eε(0)‖L1(Rn) < ∞.

This completes the proof of Theorem 4.5.
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4.5. Convergence of position and current densities

Corollary 1.4 follows from both information in (4.14). Indeed, for k = 1, (4.14)
implies the “usual” modulated energy estimate, as in [6,30,40] (see also [2]). The
boundedness of qε in C([0, T ]; L2), and the convexity argument (4.8), yield

sup
t∈[0,T ]

∫

Rn

(

|aε(t, x)|2 − |a(t, x)|2
)2 (

|aε(t, x)|2σ−2 + |a(t, x)|2σ−2
)2

dx � ε2.

Therefore,

sup
t∈[0,T ]

∫

Rn

∣
∣
∣|aε(t, x)|2 − |a(t, x)|2

∣
∣
∣

σ+1
dx � ε2. (4.17)

This yields the first part of Corollary 1.4, along with a bound on the rate of conver-
gence as ε → 0. For the current density, write

Im
(

εuε∇uε
) = |aε|2∇φ + Im

(

εaε∇aε
)

.

Since ∇φ ∈ L∞([0, T ] × R
n), (4.17) yields

|aε|2∇φ−→
ε→0

|a|2∇φ in C([0, T ]; Lσ+1).

On the other hand, since aε is bounded in C([0, T ]; H1), we have the following:

Im
(

εaε∇aε
) = O(ε) in C([0, T ]; L1).

This completes the proof of Corollary 1.4.

Remark 9. Since we have used (4.14) with k = 1 only, we could also refine the
statements of Corollary 1.4 when k � 2 is allowed in (4.14).

5. Proof of Theorem 1.6

To prove Theorem 1.6, resume the approach of Grenier [27]. His idea was to
seek

uε(t, x) = aε(t, x)eiφε(t,x)/ε,

where the pair U ε = (aε,∇φε) is given by a system of the form (2.4) (with E ≡ 0).
The point is that the form (2.4) for this U ε meets all the requirements that we have
listed, if and only if the nonlinearity is defocusing, and cubic at the origin. In the
case of the homogeneous nonlinearity of (1.1), the only admissible case is then
σ = 1. The second step of the analysis in [27] consists in showing that under
suitable assumptions, aε and φε have an asymptotic expansion of the form

aε ∼
ε→0

a + εa(1) + ε2a(2) + · · · ; φε ∼
ε→0

φ + εφ(1) + ε2φ(2) + · · ·
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The pair (a, φ) solves (the analogue of) (1.2). Note that because the phase φε

is divided by ε, we need to take φ(1) into account in order to have a pointwise
description of uε:

uε ∼
ε→0

aeiφ(1)eiφ/ε.

Therefore, the rapidly oscillatory phase for uε is given by φ, and its amplitude at
leading order is given by aeiφ(1) (which does not depend on ε). If uε solves

iε∂t u
ε + ε2

2
∆uε = f

(∣
∣uε

∣
∣
2
)

uε; uε|t=0 = aε0eiφ0/ε,

where aε0 satisfies Assumption 1.5, then φ(1) is given by the system
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tφ
(1) + ∇φ · ∇φ(1) + 2 Re

(

aa(1)
)

f ′ (|a|2
)

= 0,

∂t a
(1) + ∇φ · ∇a(1) + ∇φ(1) · ∇a + 1

2
a(1)∆φ + 1

2
a∆φ(1) = i

2
∆a,

φ(1) | t=0 = 0; a(1) | t=0 = a1.

This coupling shows that φ(1) is a (nonlinear) function of a, φ, and a1, the term of
order ε in the expansion of the initial data aε0. In our case, f (y) = yσ , we introduce
the system

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tφ
(1) + ∇φ · ∇φ(1) + 2σ Re

(

aa(1)
)

|a|2σ−2 = 0,

∂t a
(1) + ∇φ · ∇a(1) + ∇φ(1) · ∇a + 1

2
a(1)∆φ + 1

2
a∆φ(1) = i

2
∆a,

φ(1) | t=0 = 0; a(1) | t=0 = a1.

(5.1)

Lemma 5.1. Let n � 1, and let Assumption 1.5 be satisfied. Then (5.1) has a unique
solution (φ(1), a(1)) in C([0, T ∗[; H∞(Rn)), where T ∗ is given by Lemma 1.2.

Proof. Again, at the zeroes of a, (5.1) ceases to be hyperbolic, and we cannot solve
the Cauchy problem by a standard argument. The strategy of the proof is to transform
the equations so as to obtain an auxiliary hyperbolic system for (∇φ(1), A1) for some
good unknown A1, depending linearly upon a(1). The definition of A1 depends on
the parity of σ . This allows one to determine a function φ(1) and next to define a
function a(1) by solving the second equation in (5.1). We conclude the proof by
checking that (φ(1), a(1)) does solve (5.1). The first change of unknown consists in
considering v1 := ∇φ(1). The first equation in (5.1) yields:

∂tv1 + v · ∇v1 + 2σ∇ Re
(

|a|2σ−2aa(1)
)

= −v1 · ∇v,
where we have denoted v = ∇φ.
First case: σ � 2 is even. Consider the new unknown

A1 := |a|σ−2 Re
(

aa(1)
)

.
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We check that, if (φ(1), a(1)) solves (5.1), then
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tv1 + v · ∇v1 + 2σ |a|σ∇ A1 = −v1 · ∇v − 2σ A1∇
(|a|σ )

,

∂t A1 + v · ∇ A1 + 1

2
|a|σ div v1 = − 1

σ
∇ (|a|σ ) · v1 − σ

2
A1 div v

+ i

2
Re

(

|a|σ−2a∆a
)

.

(5.2)

This linear system is hyperbolic symmetric, and its coefficients are smooth since
σ ∈ 2N and a, v ∈ C∞([0, T ∗[; H∞(Rn)), from Lemma 2.2. In particular, unique-
ness for (5.1) follows from the uniqueness for (5.2). Note that, since σ − 2 ∈ 2N,

(v1, A1) | t=0 =
(

0, |a0|σ−2 Re (a0a1)
)

∈ H∞ (

R
n)2

.

Therefore, (5.2) possesses a unique solution in C∞([0, T ∗[; H∞(Rn)). We next
define φ(1) ∈ C∞([0, T ∗[: H∞(Rn)) by

φ(1)(t, x) = −
∫ t

0

(

v(τ, x) · v1(τ, x)+ 2σ |a(τ, x)|σ A1(τ, x)
)

dτ.

Then ∂t
(∇φ(1) − v1

) = 0; therefore v1 = ∇φ(1) and hence φ(1) satisfies

∂tφ
(1) + v · ∇φ(1) + 2σ |a|σ A1 = 0, φ(1) | t=0 = 0.

Once this is granted, we can define a(1) ∈ C∞([0, T ∗[: H∞(Rn)) as the unique
solution of the linear equation

⎧

⎨

⎩

∂t a
(1) + v · ∇a(1) + ∇φ(1) · ∇a + 1

2
a(1) div v + 1

2
a∆φ(1) = i

2
∆a,

a(1) | t=0 = a1.

By construction, A1 and |a|σ−2 Re
(

aa(1)
)

solve the same linear equation, where
φ(1) is viewed as a smooth coefficient. Therefore, these two functions coincide, and
(φ(1), a(1)) solves (5.1).
Second case: σ is odd. In this case, σ = 2m + 1, for some m ∈ N. We consider
the new unknown

A1 := |a|σ−1a(1) = |a|2ma(1).

We check that (v1, A1) must solve
⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tv1 + v · ∇v1 + 2σ Re
(

|a|2ma∇ A1

)

= − v1 · ∇v − 2σ Re
(

A1∇
(

|a|2ma
))

,

∂t A1 + v · ∇ A1 + 1

2
|a|2ma div v1 = − σ

2
A1 div v − |a|2m∇a · v1

+ i

2
|a|2m∆a.

We can then conclude as in the first case, by considering (v1, A1, A1). �
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Theorem 1.6 follows from:

Proposition 5.2. Let n � 3, and let Assumption 1.5 be satisfied. Set ã := aeiφ(1) .
Then for any T ∈]0, T ∗[, there exists ε(T ) > 0 such that aε ∈ C([0, T ]; H∞) for
ε ∈]0, ε(T )], and

∥
∥aε − ã

∥
∥

L∞([0,T ];Hk )
= O(ε),

where k is as in Theorem 4.5.

Proof. Since the proof follows the same lines as the proof of Theorem 1.3, we shall
indicate its main steps only. Denote

rε = aε − ã; ã(1) = a(1)eiφ(1) .

From (1.2), (1.7) and (5.1), we see that rε solves
⎧

⎪⎨

⎪⎩

∂t r
ε + v · ∇rε + 1

2
rε div v − i

ε

2
∆rε = i

ε

2
∆ã − i Sε,

rε|t=0 = aε0 − a0 = εa1 + O
(

ε2
)

,

where the term Sε is given by the following:

Sε = 1

ε

(∣
∣aε

∣
∣2σ − |̃a|2σ

)

aε − 2σ ã |̃a|2σ−2 Re
(

ãã(1)
)

.

We check that for all s � 0, we have, in Hs(Rn):

Sε = 1

ε

(
∣
∣aε

∣
∣2σ −

∣
∣
∣̃a + εã(1)

∣
∣
∣

2σ
)

aε + 2σrε |̃a|2σ−2 Re
(

ãã(1)
)

+ O(ε).

The last term should be viewed as a small source term. The second one is linear
in rε, and is suitable in view of an application of the Gronwall Lemma. There
remains to handle the first term. At this stage, we can mimic the approach detailed
in Section 4. Introduce the nonlinear change of unknown:

q̃ε = 1

ε
Bσ

(
∣
∣aε

∣
∣2
,

∣
∣
∣̃a + εã(1)

∣
∣
∣

2
)

; g̃ε = Gσ

(
∣
∣aε

∣
∣2
,

∣
∣
∣̃a + εã(1)

∣
∣
∣

2
)

,

where Bσ and Gσ are defined in Notation 4.1. We check that (rε,∇rε, q̃ε) solves a
system of the form (4.11), plus some extra source terms of order O(ε) in Hs(Rn).
We also note that the initial data are of order O(ε), from Assumption 1.5:

∥
∥(rε,∇rε) | t=0

∥
∥

Hs = O(ε), ∀s � 0.

We also have
∥
∥q̃ε | t=0

∥
∥

Hk−1 = O(ε),
where k is as Theorem 4.5.

Following the approach of Section 4, the proposition stems from the Gronwall
lemma. Note also that the time T can be taken arbitrarily close to T ∗, by the usual
continuity argument, since we now have an error estimate that goes to zero with
ε. �
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To conclude this paragraph, we note that unless a0 is real valued and a1 ∈ iR, one
must not expect ã = a. Indeed, we see that

φ
(1)
|t=0 = 0; ∂tφ

(1)
|t=0 = −2σ Re (a0a1) |a0|2σ−2.

So in general, φ(1) �≡ 0, and ã �= a. On the other hand if a0 is real-valued, then so
is a. In this case,

Im (a∆a) ≡ 0,

and (φ(1),Re(aa(1))) solves an homogeneous linear system. Therefore, if
Re(aa(1)) = 0 at time t = 0, then φ(1) ≡ 0.

6. Further remarks

The following remarks clarify some features of the systems we produced.

6.1. Regularity of the initial data

It is a matter of routine to extend the previous analysis to the case where the
initial data belong to Hs(Rn) with s < +∞ large enough.

6.2. Nonhomogeneous nonlinearity

It is important to note that one can consider nonlinearity which are not homo-
geneous. More precisely, consider the equation

iε∂t u
ε + ε2

2
∆uε = f

(

|uε|2
)

uε; uε|t=0 = aε0eiφ0/ε,

where f is a finite sum of smooth defocusing homogeneous nonlinearities:

f (r) =
M

∑

m=1

cmrm (cm � 0).

Let us set σ := min{m : cm > 0}. If σ = 1, then f ′ > 0, and we are in the
situation already studied in [27]. We explain how to symmetrize the equations in
the case where σ � 2, provided we are given a smooth classical solution (a, φ) of
the limit system

⎧

⎨

⎩

∂tv + v · ∇v + ∇ f (|a|2) = 0; v|t=0 = ∇φ0,

∂t a + v · ∇a + 1

2
a div v = 0; a|t=0 = a0.

Again, set aε(t, x) := uε(t, x)e−iφ(t,x)/ε which satisfies

∂t a
ε + ∇φ · ∇aε + 1

2
aε∆φ − i

ε

2
∆aε = − i

ε

(

f (
∣
∣aε

∣
∣2
)− f (|a|2)

)

aε.
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For m = 1, . . . ,M , introduce

qεm = 1

ε
(ρε − ρ)

√

Qm(ρε, ρ), gεm = (ρε)m − ρm

(ρε − ρ)
√

Qm(ρε, ρ)
,

where Qm is as defined in (4.7). Then, one has
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t a
ε + v · ∇aε − i

ε

2
∆aε = −1

2
aε div v − i

∑

m

cm gεmqεmaε.

∂tψ
ε + v · ∇ψε + iaε

∑

m

cm gεm∇qεm − i
ε

2
∆ψε

= −1

2
ψε div v − ψε · ∇v − 1

2
aε∇ div v − i

∑

m

cmqεm∇ (

aεgεm
)

,

∂t q
ε
m + v · ∇qεm + Im(gεmaε divψε) = −m + 1

2
qεm div v, m = 1, . . . ,M.

We thus find that

U ε :=
(

2
√

c1qε1 , . . . , 2
√

cMqεM , aε, aε, ψε, ψ
ε
)

satisfies a equation of the form (4.13) with gε replaced with (gε1, . . . , gεM ). We are
now in position to establish the uniform estimates (4.14) (recall that we have set
σ := inf{m, cm > 0}).

To conclude, let us note that one can solve the Cauchy problem for the limit
system if f (r) = F(rσ ) for some smooth function satisfying F ′ > 0, by following
the same approach as in the proof of Lemma 2.2. This includes for instance the
case

f
(

|uε|2
)

= α|uε|4 + β|uε|8, α, β > 0.

In the case

f
(

|uε|2
)

= α|uε|4 + β|uε|6, α, β > 0,

one may use the same trick as in [31]: the main difference with the proof of
Lemma 2.2 is that a non constant symmetrizer must be introduced, which is bounded
from above, and from below away from zero. See [19].

6.3. Introducing an external potential

To treat a possibly more physically relevant case, one might want to consider
(1.1) with an extra external potential:

iε∂t u
ε + ε2

2
∆uε = V uε + ∣

∣uε
∣
∣2σ

uε; uε|t=0 = aε0eiφ0/ε,

where V = V (t, x) is real-valued, and possibly time-dependent. As noticed in [11],
it is sensible to consider an external potential V and an initial phase φ0 which are
smooth and sub-quadratic:

∂αx V ∈ C(R; L∞(Rn)), ∂αφ0 ∈ L∞(Rn), ∀α ∈ N
n, |α| � 2.
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This includes the case of the harmonic oscillator, commonly used in the theory of
Bose–Einstein condensation [28]. The main remark in [11] is that the introduction
of this assumption does not deeply change the analysis. Indeed, we can resume the
analysis of (1.1): introduce the solution to the standard eikonal equation

∂tφeik + 1

2
|∇φeik|2 + V = 0; φeik | t=0 = φ0 .

Decomposing the phase φ of the above quasi-linear analysis as

φ = φeik + φ,

and seeking φ in Sobolev spaces, we see that the extra terms appearing after this
sort of linearization can be treated like semi-linear terms. Therefore, mimicking
the above computations, and using only extra perturbative arguments, it is easy to
adapt Theorems 1.3 and 1.6 to this case.

6.4. About conservation laws

Recall some important evolution laws for (1.1):

Mass:
d

dt
‖uε(t)‖L2 = 0 .

Energy:
d

dt

(
1

2
‖ε∇uε‖2

L2 + 1

σ + 1
‖uε‖2σ+2

L2σ+2

)

= 0 .

Momentum:
d

dt
Im

∫

uε(t, x)ε∇uε(t, x) dx = 0 .

Pseudo-conformal law:
d

dt

(
1

2
‖J ε(t)uε‖2

L2 + t2

σ + 1
‖uε‖2σ+2

L2σ+2

)

= t

σ + 1
(2 − nσ)‖uε‖2σ+2

L2σ+2 ,

where J ε(t) = x + iεt∇. These evolutions are deduced from the usual ones (ε = 1,
see, for example, [13,34]) via the scaling ψ(t, x) = u(εt, εx).

Writing uε = aεeiφ/ε and passing to the limit formally in the above formulae
yield:

d

dt
‖a(t)‖L2 = 0 .

d

dt

∫ (
1

2
|a(t, x)|2|∇φ(t, x)|2 + 1

σ + 1
|a(t, x)|2σ+2

)

dx = 0 .

d

dt

∫

|a(t, x)|2∇φ(t, x) dx = 0 .

d

dt

∫ (
1

2
|(x − t∇φ(t, x)) a(t, x)|2 + t2

σ + 1
|a(t, x)|2σ+2

)

dx

= t

σ + 1
(2 − nσ)

∫

|a(t, x)|2σ+2 dx .
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Note that we also have the conservation [12]:

d

dt
Re

∫

uε(t, x)J ε(t)uε(t, x) dx = 0,

which yields:

d

dt

∫

(x − t∇φ(t, x)) |a(t, x)|2 dx = 0 .

All these expressions involve only (|a|2,∇φ) = (|̃a|2,∇φ). Recall that if we set
(ρ, v) = (|a|2,∇φ), then (1.2) implies

{

∂tv + v · ∇v + ∇ (

ρσ
) = 0; v|t=0 = ∇φ0,

∂tρ + div (ρv) = 0; ρ|t=0 = |a0|2.
(6.1)

Rewriting the above evolution laws, we get the following:

d

dt

∫

ρ(t, x) dx = 0 .

d

dt

∫ (
1

2
ρ(t, x)|v(t, x)|2 + 1

σ + 1
ρ(t, x)σ+1

)

dx = 0 : energy.

d

dt

∫

ρ(t, x)v(t, x) dx = 0 .

d

dt

∫ (
1

2
|(x − tv(t, x))|2 ρ(t, x)+ t2

σ + 1
ρ(t, x)σ+1

)

dx

= t

σ + 1
(2 − nσ)

∫

ρ(t, x)σ+1 dx . (6.2)

d

dt

∫

(x − tv(t, x)) ρ(t, x) dx = 0 .

We thus retrieve formally some evolution laws for the compressible Euler equa-
tion (6.1) (see, for example, [33,38]), with the pressure law p(ρ) = cρσ+1.

6.5. About global in time results

We point out that the solution to (1.2) must not be expected to be smooth for all
time: the time T ∗ in Lemma 2.2 is finite in general. Recall that (ρ, v) = (|a|2,∇φ)
solves (6.1). Theorem 3 in [31] (see also [38]) implies that, if ∇φ0 and |a0|2 are
compactly supported, then the life span T ∗ in Lemma 2.2 is necessarily finite. Note
that these initial data can be chosen arbitrarily small: the phenomenon remains.

Proposition 6.1. Let n � 1 and σ � 1. For all initial data (a0, φ0) ∈ C2(Rn) with
compact support, there does not exist (a, φ) ∈ C2([0,+∞[×R

n) satisfying the
Cauchy problem (1.2).
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A word of caution: because of one technical assumption in the definition of regular
solution in [31], Theorem 3 in [31] does not apply directly. Yet, one can prove our
claim by combining the proof of Lemma 2.2 with the approach in [31]. Indeed,
recall that U := (aσ ,∇φ) satisfies ∂tU + ∑

A j (U )∂ jU = 0 where the A j ’s are
n × n matrices linear in their argument. Therefore, the proof of Theorem 2 in [31]
shows that U is compactly supported, and so is (ρ, v) := (|a|2,∇φ), with support
included in the support of (|a0|2 ,∇φ0). And this is the only point which requires
the above mentioned technical assumption.

Note also that the proof of this result in [38] relies on the evolution law for the
total pressure

∫

Rn
p(t, x) dx =

∫

Rn
ρ(t, x)σ+1 dx . (6.3)

This approach is very similar to the Zakharov–Glassey method [26,39], which
yields a sufficient condition for the finite time blow-up of solutions to the focusing
nonlinear Schrödinger equation. As noticed by Weinstein [37], the identity used
by Zakharov, and generalized by Glassey, follows from the pseudo-conformal law,
along with the conservation of energy. For σ � 2/n and a defocusing nonlinearity,
this approach yields an upper bound for the L2-norm of xu, the momentum of u.
When this upper bound may become negative, finite time blow-up occurs.

In the present context, the nonlinearity is defocusing, but the idea is similar.
Note that (the generalized version of) (6.2) is the key ingredient in the proof of
Xin [38] (Xin considers Navier–Stokes equations). Expanding (6.2), and using the
conservation of energy, we recover an upper bound for (6.3) which goes to zero
as t → ∞. But so long as v remains bounded, (6.1) is an ordinary differential
equations for ρ, thus contradicting the upper bound for (6.3), unless v ceases to be
smooth in finite time (see [38] for the details).

6.6. About focusing nonlinearities

The main feature of the limit system we used is that it enters, up to a change
of unknowns, into the framework of quasi-linear hyperbolic systems. This comes
from the fact that we consider the defocusing case. Had we worked instead with the
focusing case, where +|u|2σu is replaced with −|u|2σu, the corresponding limit
system would have been ill-posed. We refer to [32], in which G. Métivier establishes
Hadamard’s instabilities for nonhyperbolic nonlinear equations.

As an example, consider the Cauchy problem
⎧

⎪⎨

⎪⎩

∂tφ + 1

2
|∂xφ|2 − |a|2σ = 0; φ|t=0 = φ0,

∂t a + ∂xφ∂x a + 1

2
a∂2

xφ = 0; a|t=0 = a0.

(6.4)

The following result follows from Hadamard’s argument (see [32]).

Proposition 6.2. Suppose that (φ, a) in C2([0, T ]×R) solves (6.4). If φ0(x) is real
analytic near x and if a0(x) > 0, then a0(x) is real analytic near x. Consequently,
there are smooth initial data for which the Cauchy problem has no solution.
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This shows that to study the semi-classical limit for the focusing analogue
of (1.1), working with analytic data, as in [23,36], is not only convenient: it is
necessary.
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