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Abstract

We study the dynamics of vortices in solutions of the Gross–Pitaevsky equation
iut = �u + 1

ε2 u
(
1 − |u|2) in a bounded, simply connected domain Ω ⊂ R

2

with natural boundary conditions on ∂Ω . Previous rigorous results have shown
that for sequences of solutions uε with suitable well-prepared initial data, one can
determine limiting vortex trajectories, and moreover that these trajectories satisfy
the classical ODE for point vortices in an ideal incompressible fluid. We prove that
the same motion law holds for a small, but fixed ε, and we give estimates of the
rate of convergence and the time interval for which the result remains valid. The
refined Jacobian estimates mentioned in the title relate the Jacobian J (u) of an
arbitrary function u ∈ H1(Ω; C) to its Ginzburg–Landau energy. In the analysis of
the Gross–Pitaevsky equation, they allow us to use the Jacobian to locate vortices
with great precision, and they also provide a sort of dynamic stability of the set of
multi-vortex configurations.

1. Introduction

This paper revisits the study of asymptotics of the Gross–Pitaevsky equation

iut = �u + 1

ε2 u
(

1 − |u|2
)

, x ∈ Ω, (1.1)

ν · ∇u = 0, x ∈ ∂Ω, (1.2)

u(x, 0) = u0(x), x ∈ Ω (1.3)

for suitable u0, where Ω is a bounded, simply connected, open domain in R
2 with

C1 boundary and u : Ω × [0, T ) → C. The equation describes the evolution of
the wave function associated with an idealized two-dimensional superfluid, and a
solution u encodes various physical attributes of the superfluid. For example |u|2
is interpreted as the density, and j (u) := i

2 (ū∇u − u∇ū) as the supercurrent. It is
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natural to interpret J (u) := 1
2∇ × j (u) as the vorticity. This same quantity is also

the Jacobian determinant of u; see (2.11). Another relevant quantity is the energy

Eε(u) =
∫

Ω

eε(u) dx, eε(u) = 1

2
|∇u|2 + 1

4ε2

(
1 − |u|2

)2
. (1.4)

A striking feature of superfluids is the presence of quantized vortices. As early
as 1966, it was predicted by Fetter [14], based on a formal analysis of (1.1),
that these vortices should evolve to leading order by the same system of ODEs
that governs point vortices in an ideal incompressible fluid. The same prediction
eventually entered the applied math literature with the work of Neu [27] and E
[13], who studied (1.1) using matched asymptotics. A rigorous description of vortex
dynamics in solutions of (1.1) in the ε → 0 limit was established in [9,24] in the
late 1990s, for a variety of boundary conditions. These results consider a sequence
of solutions uε of (1.1) with initial data u0ε for which the vorticity converges to a
sum of point masses at distinct points a0, j ∈ Ω, j = 1, . . . , n, and each having a
single quantum of vorticity with sign d j = ±1. More precisely, it is assumed that

1

2
∇ × j (u0ε) = J (u0ε) → π

n∑

j=1

d jδa0, j as ε → 0 (1.5)

in certain negative Sobolev spaces. The initial data are also assumed to be well-
prepared, in that the energy Eε(u0ε) is asymptotically as small as possible as ε → 0,
given the boundary conditions and the constraint (1.5). The papers alluded to above
show that under these assumptions,

1

2
∇ × j (uε(t)) = J (uε(t)) → π

n∑

j=1

d jδa j (t) (1.6)

for t > 0 where (a1(t), . . . , an(t)) solve the point vortex system

ȧ j = − 1

π
∇a j × W (a1, . . . , an), a j (0) = a0, j , j = 1, . . . , n. (1.7)

Here W (a1, . . . , an) := −π
∑

di d j ln |ai −a j |+boundary terms is the renormal-
ized energy introduced by Bethuel et al. [4], and also the conserved Hamiltonian
for classical point vortex dynamics. The boundary terms in the definition of W
depend on the boundary data for (1.1); see (2.20) for the precise definition in the
case of Neumann data (1.2). The conclusion (1.6) states that vortices in solutions
of (1.1), understood here as concentration points of the vorticity ∇ × j (uε), evolve
via the ODE (1.7) in the limit ε → 0.

The same papers also characterize the limits as ε → 0 of the supercurrents
j (uε(t)) (in L p(Ω), p < 2) and of the wave functions uε(t) (in W 1,p(Ω), p < 2,
modulo a multiplicative phase). If trajectories a j (·) collide, then these results hold
only up to the first collision. Based on results collected in [25], one strongly expects
that finite-time collisions can occur, and also that there are no collisions for generic
initial data {a0, j }.
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Similar results are established by the second author [34] for a system of equa-
tions in which an equation like (1.1) is coupled to an equation for a magnetic
potential.

We emphasize that if one fixes 0 < ε � 1 and initial data u0, these previous
results say nothing quantitative about the solution of (1.1)–(1.3); they only describe
limiting behavior of a sequence of solutions for a suitable sequence of initial data.
Moreover, the proofs in [9,24] rely at several points on soft compactness arguments,
so that no control of any rate of convergence can be extracted from the proofs.

1.1. Goals and motivations

The main goal of this paper is to study the dynamics of vortices in (1.1) for a
small but fixed value of the parameter ε, and to establish quantitative versions of the
earlier results. Our main new tools are estimates we establish that can be thought
of as refined Γ -convergence results.

We have several motivations for this project. First, a large number of outstanding
issues remain from the rigorous analysis found in [9,24], and many of these open
problems require a good quantitative description of vortices even in order to be
formulated precisely. For example, an important open problem concerns corrections
to the leading-order dynamics and the related question of long-time behavior of
vortices. An interesting formal discussion of these issues is given by Ovchinnikov
and Sigal [28], who study the radiation generated a pair of rotating vortices and
argue that it gives rise to small corrections to the limiting dynamical law (1.7) for
ε small and fixed. Related formal results in the physics literature date back at least
as far as work of Klyatskin [21] on vortices in a slightly compressible fluid. A
prerequisite for addressing this sort of question is the ability to say something about
vortex locations for fixed ε > 0. The results of [9,24] are, thus, too weak even to
be a suitable starting-point for this sort of problem, whereas with the results and
tools we develop here, one can at least begin to study these issues.

Also, we believe that the overall strategy we employ is new and of broader
interest. In particular, we use quantitative forms of Γ -convergence estimates to
obtain the same sort of control more commonly found, in different contexts, from
linearized stability estimates. We believe that this basic approach is potentially
useful for problems completely unrelated to Ginzburg–Landau equations.

1.2. Related results

The only prior rigorous work we know of that describes effective dynamics of
vortices in a nonlinear field theory for finite ε, rather than in the limit ε → 0, are
a paper of Stuart [35] on dynamics of pairs of vortices in the Maxwell–Higgs
system near the critical coupling, and later work of Gustafson and Sigal [16] on
vortex dynamics in solutions of both the Maxwell–Higgs system and a nonlinear
heat flow, for arbitrary (finite) numbers of vortices. In the equations studied in both
these papers, a complex scalar wave function u is coupled to a magnetic potential
A. The analyses in [16,35] ultimately rest on a linear stability analysis of magnetic
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vortices, carried out most fully in [15]. It turns out that this stability analysis is
made easier by the presence of the magnetic terms.

The same general approach, involving estimates obtained via control over the
spectrum of some linearized operator, has been used successfully in a variety of
settings, including dynamics of bubbles in the Cahn–Hilliard equation [2,3], soli-
tons in nonlinear dispersive equations [7,8,26,33,36], interfaces in the Allen–Cahn
equation [11] among many other examples. Roughly speaking, the linearized esti-
mates are used to prove an estimate of the form

‖U − P(U )‖2
X � C[H(U ) − H(P(U ))] + small error terms

U = (u, A) ∈ N ,
(1.8)

where N is an open set in a Hilbert space X , and P : N → M is a nonlinear
projection onto some explicitly constructed submanifold M of X ; and H may be
a Hamiltonian or Lyapunov functional associated with the dynamics one wants to
study. As far as we know, however, this sort of argument has not been carried out for
vortex dynamics in any equation that, like (1.1), does not involve a magnetic field.
This is presumably related to the fact that the linear analysis of vortices associated
with the energy Eε(·) is known to be more delicate than that of the magnetic vortices
of [16,35], although potentially useful estimates in the nonmagnetic case are given
by Del Pino et al. [12].

Most rigorous work on dynamics of vortices in (1.1) and related nonlinear field
theories has employed measure-theoretic methods, whereby vortices are located as
concentration points of a measure associated with a solution of the PDE in question.
In the work on (1.1) cited above, this measure comes from the Jacobian J (u), and
results about Ginzburg–Landau heat equations (see for example [5,19,22,30] for
example) typically rely instead on an “energy measure”, as do the few rigorous
results [17,23] about (nonmagnetic) wave equation analog of (1.1). All of these
earlier measure-theoretic results describe only the limiting behavior of a sequence
of solutions. Our main result is the first quantitative result about vortex dynamics
for any shows for problem involving nonmagnetic vortices, and it demonstrates in
particular that such results can be established in this measure-theoretic framework.

1.3. Main results

1.3.1. Dynamics For a solution u of (1.1) with suitable initial data, we obtain a
quantitative description of vortex dynamics, with estimates of

– ‖J (u(t))−π
∑n

j=1 d jδa j (t)‖Ẇ−1,1(Ω). We show in fact that J (u(t)) is very close

to a sum of delta functions at points ξi (t). The Ẇ −1,1, norm, the definition of
which is given in (2.5), controls

∑ |ξi (t)−ai (t)|, and so this estimate measures
the distance between vortices in solutions of (1.1) and ideal vortex trajectories:

– The difference between j (u(t)) and the current generated by ideal point vortices
at the points ai (t).

– The interval of time [0, τ�] for which the above estimates are valid.

Precise statements of these results are given in Theorem 1, which is stated in
Section 3. These estimates depend on ε, the number n of vortices and minimum



Refined Jacobian Estimates and Gross–Pitaevsky Vortex Dynamics 429

inter-vortex distance for the trajectories {a j (t)}n
j=1, t ∈ [0, τ�]. In particular, since

the minimum vortex separation depends on τ�, our formula for the latter is implicit.
Our results improve on earlier work in several ways:

– For n = O(1) and initial vortex configurations {a0 j } such that the inter-vortex
distance is bounded away from zero, our results imply that τ� � c ln 1

ε
. This

holds in particular if {a0 j } gives rise to a periodic solution of (1.7).
– For rather large numbers of vortices, say n ≈ | ln ε|α , α � 1, our results are

valid for τ� � 1/n (this is the natural time scale when there are many vortices,
for example if one wants to consider the hydrodynamic limit) if one has initial
vortex positions {a0 j }n

j=1 such that trajectories remain separated by distances

| ln ε|1/2 for times of order 1/n.
– Our results are valid even for large numbers of vortices, say n � ε−100, albeit

for extremely short times τ�.

Our estimates, therefore, provide quantitative information about behavior of vor-
tices that remains valid on time scales longer than O(1) or when the number of
vortices is greater than O(1), as ε → 0.

1.3.2. Refined Jacobian estimates The refined Jacobian estimates mentioned in
the title of this paper are quantitative results in the spirit of Γ -convergence. We
use them to obtain the same sort of control that in other settings is more typically
deduced from estimates such as (1.8) that ultimately refer to the spectrum of a
linearized operator.

Given a point a = (a1, . . . , an) ∈ Ωn∗ = {a ∈ Ωn : ai 	= a j for i 	= j}, and a
vector d ∈ {±1}n , we construct in Lemma 14 in Section 10 a function uε

�(·; a, d) ∈
H1(Ω; C) that has a vortex of degree di near the point ai for i = 1, . . . , n, and
that is very close to energetically optimal among functions with this property. We
show that if u ∈ H1(Ω; C) is such that

∥∥∥∥
∥

J (u) − π

n∑

i=1

diδai

∥∥∥∥
∥

Ẇ−1,1(Ω)

� Cρan−5, Eε(u) − Eε(u�(a)) � 1, (1.9)

where ρa = 1
4 min

({|ai ,−a j |, i 	= j} ∪ {dist(ai , ∂Ω), i = 1, . . . , n}), then J (u)

is very well-localized in the sense that there exists some ξ ∈ Ωn∗ such that
∥∥∥∥∥

J (u) − π

n∑

i=1

diδξi

∥∥∥∥∥
Ẇ−1,1(Ω)

� Cε[Eε(u) + n5ρ−1
ξ ] � Cε9/10, (1.10)

and in addition
∫

Ω\∪B
ε1/3 (ξi )

eε(u/uε
�(ξ)) dx � C[Eε(u) − Eε(u

ε
�(ξ))] + Cε1/3. (1.11)

These estimates are valid for n � ε−α for some α > 0. If we compare these results
to the approach of [16], assumption (1.9) is roughly analogous to the condition
u ∈ N appearing there. The map u �→ uε

�(ξ), with ξ as in (1.10), is analogous to
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the projection P : N → M . And (1.11) is analogous in a general way to (1.8).
Like that estimate, it is crucial in proving the dynamic stability of the class of
multi-vortex configurations.

Conclusion (1.10) is proved in Theorem 3, which appears in Section 9. The
theorem, which we refer to as a “localization” theorem, asserts that if J (u) is close
to a sum of point masses, and if the energy is not too large, then J (u) is concentrated
on length scales of order at most ε[Eε(u) + n5ρ−1

ξ ]. This theorem is close to sharp
when n is O(1). It can be viewed as a quantitative version of the sort of compactness
condition that one normally requires in the Γ -convergence framework.

Stability estimates in the spirit1 of (1.11) are stated and proved in Theorem 2, in
Section 8. We view this theorem as a sort of quantitative analog of Γ -convergence
results [1,10,18,24] which provide information about lim inf Eε(uε) when uε is
a sequence such that J (uε) → ∑

πdiδξi ; here by contrast we obtain information
about Eε(u) for a fixed function u, assuming quantitative control (1.10) over J (u)−
π

∑
diδξi . Since (1.11) is also analogous to the estimate (1.8), we refer to it as a

Γ -stability estimate.
Theorems 2 and 3 can also be seen as powerful refinements, in different direc-

tions, of Jacobian estimates as found for example in [1,18,31]. A typical such
estimate has roughly the form

‖J (u)‖Ẇ−1,1(Ω) � | ln ε|−1(Eε(u) + o(1)). (1.12)

Theorem 2 implies in particular much sharper lower bounds for Eε(u), once some
additional information about the Jacobian J (u) is assumed. And Theorem 3 sup-
plements the basic bounds on J (u) in (1.12) by very precise structural information
about the Jacobian, showing that it is extremely close to a sum of point masses.

1.3.3. Proof of main theorem, and organization of paper We next sketch the
proof of our main theorem. First, we define a time τ1 such that

∥∥∥∥∥∥
J (u(t)) −

n∑

j=1

πdiδai (t)

∥∥∥∥∥∥
Ẇ−1,1(Ω)

� ε1/4

and ρa(t) � ρ� for all 0 � t � τ1. Here ρ� is a parameter that is fixed at a late stage
of the proof. We verify that the hypothesis (1.9) of the Γ -stability and localization
results are satisfied, and that the right-hand side of (1.11) is smaller than ε1/5 for
all t ∈ [0, τ1]. Our main task is then to show that τ1 is as large as possible.

To do this we need to control the growth of
∥∥∥∥
∥∥

J (u(t)) −
n∑

j=1

πdiδai (t)

∥∥∥∥
∥∥

Ẇ−1,1(Ω)

.

1 We do not exactly prove (1.11), but it can easily be deduced by combining (8.5) with
results of Theorem 2.
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The time derivative of this is difficult to work with directly, so we define a function
η(t) of the form

η(t) =
n∑

j=1

∣∣∣∣

∫
J (u) φ(x − a j (t)) dx

∣∣∣∣

for a suitable C∞ function φ : R
2 → R

2, linear near the origin and with support
in B2ρ�(0). Using the localization results we check that

∥∥∥
∥∥∥

J (u(t)) −
n∑

j=1

πdiδai (t)

∥∥∥
∥∥∥

Ẇ−1,1(Ω)

= η(t) + O(ε9/10)

for t ∈ [0, τ�], and so the theorem reduces to to controlling the growth of η(t).
We estimate η̇ by directly differentiating and using conservation laws for the

Gross–Pitaevsky equation, in particular, an equation (2.15) for the evolution of
the Jacobian J (u). (This is akin to the equation for vorticity transport in the 2D
Euler equations.) We use this to decompose η̇ into a number of terms in Section 4.
Easy calculations, which however rely on the difficult Γ -stability and localization
results, lead in Section 5 to the conclusion

∣
∣∣∣

d

dt
η(t)

∣
∣∣∣ � Cn

ρ2
�

(η + ε2/5) + C
n2

ρ
3/2
�

(η + ε2/5)1/2 � Cε1/50 (1.13)

for t ∈ [0, τ�]. This is not strong enough to yield a good estimate for τ� via
Grönwall’s inequality. There are two bad terms in the decomposition of η̇ that
give rise to the (η + ε2/5)1/2 in (1.13), and in Section 6 we show that they can be
controlled after averaging in time. More precisely, we prove that

∣∣
∣∣

d

dt
〈η〉δε

∣∣
∣∣ � C

n

ρ2
�

〈η〉δε
+ Cε1/3, 〈η〉δε

(t) := 1

δε

∫ t

t−δε

η(s) ds. (1.14)

We prove this estimate for δε = ε1/2. This leads to good estimates of 〈η〉δε
, and

hence (using (1.13)) to good pointwise control of η.
The crucial point in the time-averaging step is that, via averaging, we are

able to convert the equation (2.12) for conservation of mass into estimates of the
divergence of

〈
j (u(t)) − j (uε

�(ξ(t))
〉
δε

. Thus the time-averaged flow is very nearly
incompressible—this is what is gained by the averaging procedure. The curl of〈
j (u(t)) − j (uε

�(ξ(t))
〉
δε

is controlled using the localization estimate (1.10). These
calculations lead to improved estimates of the terms that give rise to the bad scaling
in (1.13).

The proof of the theorem is completed in Section 7.
Section 8 is devoted to the proof of theΓ -stability result, Theorem 2. In Section 9

we establish the localization result, Theorem 3. Some ideas in the proofs of these
theorems are explained at the beginning of Section 8. Section 10 contains some
results on the renormalized energy and the canonical harmonic map. These are
used throughout the paper.
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As we noted, the proof of Theorem 1 relies heavily on the compactness estimates
of Sections 8 and 9 and estimates on the renormalized energy of Section 10. The
results from Sections 8 to 10 are independent of dynamics arguments. Section 8
relies on results from Section 10 and [20], and Section 9 relies on results from
Section 8 and Section 10 and [20]. Section 10 uses only notation introduced in
Section 2.

1.4. Other remarks

The results proved here are for Neumann boundary conditions, but the basic
arguments should work both for Dirichlet boundary conditions for arbitrary vortex
configurations and over R

2 when
∑n

j=1 d j = 0. In both cases the Γ -stability
argument needs slight modification.

2. Notation and background

In this section we first fix notation and define some weak norms that are used
throughout the paper. We then recall the system of conservation laws, often referred
to as the Madelung transformation, that a solution to (1.1) satisfies. These show
that conserved quantities for GP equations satisfy a set of nearly incompressible 2D
Euler equations. At the end of the section we recall the definitions of the canonical
harmonic map and renormalized energy W (a; d) of Bethuel et al. [4], and we
introduce the notion of surplus energy. We need a number of specific lemmas
concerning these functions; most of these facts are established in Section 10.

2.1. General notation

We first define some notation.
Throughout this paper we implicitly sum over repeated indices, except where

explicitly noted otherwise.
We always assume that Ω is a bounded, connected, simply connected domain

with C1 boundary. We believe that it would not be terribly difficult to extend our
results to non-simply connected domains.

For u, w ∈ R
2 let v × w = v1w2 − v2w1. If w : R

2 → R
2 we let ∇ × w =

∂x1w2−∂x2w1 whereas ifφ : R
2 → R, we let∇×φ = (∂x2φ,−∂x1φ). Furthermore,

for v,w ∈ C we use the real inner product (v,w) = 1
2 (vw + vw). For v,w ∈ C

2,
we define the tensor product v ⊗ w to be the 2 × 2 matrix with i, j entry

(
vi , w j

)
.

We use the notation

Us(x) = {y ∈ R
2 : |x − y| < s}, Us = Us(0),

Bs(x) = {y ∈ R
2 : |x − y| � s}, Bs = Bs(0)

for open and closed balls, respectively. Let Ω be a bounded, simply connected,
open subset of R

2 with a C1 boundary. For a = (a1, . . . , an) ∈ Ωn , we define

ρa = 1

4
min

{
min
j 	=k

∣∣a j − ak
∣∣ , dist(a j , ∂Ω)

}
(2.1)
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and

Ωs(a) = Ω\ ∪n
j=1 Bs(a j ). (2.2)

We often work with functions W : Ωn ⊂ R
2n → R. For such a function we write

∇i W (x) to denote ( ∂
∂x2i−1

W, ∂
∂x2i

W ), so that if we think of W as a function of
arguments a1, . . . , an ∈ Ω , then ∇i W is the gradient of W with respect to ai .

We will write J to denote the 2 × 2 matrix

J :=
(

0 1
−1 0

)
.

2.2. Some weak norms

For an open set U ⊂ R
n and a closed set Γ (typically a subset of ∂U ), we use

the notation

W 1,p
Γ (U ) := {φ ∈ W 1,p(U ) : φ = 0 on Γ }, (2.3)

or more precisely the closure in W 1,p(U ) of the set of smooth functions that vanish
on Γ . For Γ = ∅, we use the convention that W 1,p

∅ = W 1,p(Ω). We also define
the dual norms

‖µ‖
Ẇ−1,q

Γ (U )
:= sup

{∫
φ dµ : ‖∇φ‖L p � 1, φ ∈ W 1,p

Γ (U )

}
,

1 = 1

p
+ 1

q
.

(2.4)

In this paper we will only consider ‖µ‖
Ẇ−1,q

Γ (U )
for 1

q > 1− 1
n and µ a (finite signed)

measure; in this situation ‖µ‖
Ẇ−1,q

Γ (U )
is always finite, by the Sobolev embedding

theorem and the Riesz representation theorem. Note that these norms scale nicely
if µ,Γ , and U are all dilated. We use special notation for certain norms that are
employed frequently throughout the paper:

‖µ‖Ẇ−1,q (U ) := ‖µ‖
Ẇ−1,q

∂U (U )
, ‖µ‖Lip∗(U ) := ‖µ‖Ẇ−1,1

∅ (U )
. (2.5)

Note that ‖µ‖Lip∗(U ) = +∞ unless
∫

U µ = 0. Clearly ‖µ‖Ẇ−1,1(U ) � ‖µ‖Lip∗(U )

for every measure µ on every open set U .
The Ẇ −1,1(Ω) and Lip∗(Ω) norms of measures of the form

∑
(δpi −δni ) have

interpretations as the “length of a minimal connection”, see Brezis et al. [6], and
from this it follows that if a, ξ ∈ Ωn∗ and |ai − ξi | � ρa for all i , then

∥∥
∥π

∑
di (δai − δξi )

∥∥
∥

Ẇ−1,1(Ω)
=

∥∥
∥π

∑
di (δai − δξi )

∥∥
∥

Lip∗(Ω)

= π
∑

|di | |ai − ξi |. (2.6)
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2.3. Conserved quantities

For the reader’s convenience, we collect here some definitions given in the
Introduction, where the physical relevance of these quantities is discussed.

j (u) = (iu,∇u) , (2.7)

J (u) = 1

2
∇ × j (u), (2.8)

eε(u) = 1

2
|∇u|2 + 1

4ε2

(
1 − |u|2

)2
. (2.9)

In view of the importance for our analysis of j (u), J (u), we note that they can be
written in several different ways. If we write u locally in the form u = ρeiφ , with
ρ, φ real-valued, then

j (u) = ρ2∇φ, J (u) = ρ∇ρ × ∇φ. (2.10)

And if we identify u with the R
2-valued function (Re u, I m u) = (u1, u2), then

J (u) = det ∇u = det

(
u1,x1 u1,x2

u2,x1 u2,x2

)
. (2.11)

A solution u of (1.1)–(1.2) satisfies the following set of conservation laws:

1

2

d

dt
|u|2 = div j (u), (2.12)

1

2

d

dt
j (u) = div (∇u ⊗ ∇u) + ∇ P, (2.13)

d

dt
eε(u) = div (ut ,∇u) , (2.14)

where in (2.14) we use the notation

P = −1

2
|∇u|2 − 1

2
(u,�u) + |u|4 − 1

4ε2 .

In (2.12)–(2.14), our boundary conditions (1.2) are such that the corresponding
integrals are conserved, so that for example t �→ Eε(u(t)) is constant. By taking
the curl of (2.13), we obtain

d

dt
J (u) = curl div (∇u ⊗ ∇u) = Jkl∂xk xm

(
uxm , uxl

)
. (2.15)
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2.4. Canonical harmonic map, renormalized energy, and surplus energy

A number of lemmas concerning the renormalized energy are stated and proved
in the final section. Here we just give the definitions of these quantities, mostly
following Bethuel et al. [4].

Given a ∈ Ωn∗ and d ∈ Z
n , the canonical harmonic map u� ∈ W 1,1(Ω; S1)

with singularities at points a = (a1, . . . , an) of degree d = (d1, . . . dn) and natural
boundary condition (corresponding to (1.2)) satisfies

∇ · j (u�) = 0, ∇ × j (u�) = 2π
∑

diδai , (2.16)

and ν · j (u�) = 0 on ∂Ω . The first equation in (2.16) states that u� is a harmonic map
into S1, and the second equation specifies the positions and degrees of the singu-
larities. These conditions uniquely determine j (u�). In addition, j (u�) determines
u� up to a constant phase; see [4] Chapter 1.

We will sometimes write u�(·; a, d), but more often we do not explicitly indicate
the dependence of u� on a, d, and we never indicate in our notation the dependence
of u� on the domain Ω .

It is easy to check that j (u�) = −∇ × G, where G satisfies

�G = 2π

n∑

i=1

diδai in Ω, G = 0 on ∂Ω. (2.17)

Note also that if we define H(·; y) for y ∈ Ω as the solution of

�x H(·, y) = 0 in Ω, H(x, y) = − ln |x−y| for x ∈ ∂Ω, y ∈ Ω (2.18)

then

G(x; a) =
n∑

i=1

di [ln |x − ai | + H(x, ai )]. (2.19)

Following Bethuel et al. [4], we define the renormalized energy WΩ(a, d) by

WΩ(a, d) = lim
r→0

(∫

Ωr (a)

|∇u�|2 dx − nπ ln
1

r

)
, (2.20)

and we recall from [4] that

WΩ(a, d) = −π

⎛

⎝
∑

i 	= j

di d j log |ai − a j | +
∑

i, j

di d j H(ai , a j )

⎞

⎠. (2.21)

We give a proof of the equivalence of (2.21) and (2.20), with estimates of the rate
of convergence of the right-hand side of (2.20), in Lemma 12, in Section 10.

Next, we recall from [4] the notation

I (r, ε) := inf

{∫

Ur

eε(u) ; u ∈ H1(Br ; C), u = eiθ on ∂ Br

}
, (2.22)
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and we define

γ = lim
r→∞

(
I (r, ε) − π ln

r

ε

)
. (2.23)

It is known that γ exists, is finite and is independent of ε. Moreover, in Lemma 9
we prove that γ − (I (r, ε) − π ln r

ε
) = O((ε/r)2). For a ∈ Ωn∗ and d ∈ {±1}n

we will write

W ε
Ω(a, d) := n

(
γ + π ln

1

ε

)
+ WΩ(a, d). (2.24)

Like the renormalized energy, W ε
Ω depends on the domain and the prescribed bound-

ary conditions (here Neumann) in a way that is not explicitly indicated in the nota-
tion. Informally, W ε

Ω(a, d) provides an approximate lower bound for the energy Eε

of a function with vortices of degree di near ai , i = 1, . . . , n. This is made precise
in Theorem 2, see Section 8. This lower bound is very close to sharp; this follows
from Lemma 14 (see Section 10), in which we construct, for given a ∈ Ωn∗ and
d ∈ {±1}n , a function uε

� with a vortex of degree di at the point ai , i = 1, . . . , n,
and with energy extremely close to W ε

Ω(a, d). As remarked in the Introduction,
our results can be seen as, among other things, establishing the dynamic stability
of the manifold {uε

�(a, d) : a ∈ Ω∗n} ⊂ H1(Ω).
We will also use the notation

Σε
Ω(u; a, d) :=

∫

Ω

eε(u) dx − W ε
Ω(a, d)

≈
∫

Ω

[eε(u) − eε(u
ε
�(a, d))] dx . (2.25)

We refer to this quantity as the surplus energy; the terminology is justified again by
Theorem 2. This quantity is only meaningful when ‖J (u)−π

∑
diδai ‖Ẇ−1,1(Ω) is

small.
We remark that one can check that for a single vortex of degree ±1 at the center

of a ball of radius r , the associated renormalized energy is WUr (a)(a,±1) = π ln r ,
and so the associated surplus energy is

Σε
Ur (a)(u, a,±1) =

∫

Ur (a)

eε(u) dx −
(
π ln

r

ε
+ γ

)
. (2.26)

This quantity appears in the statement of a number of results.

3. Vortex dynamics: main result

We will study solutions of (1.1)–(1.2) for initial data u0 with vortices of degree2

di = ±1 near points a0
i , i = 1, . . . , n. We always write a(t) = (a1(t), . . . an(t))

2 Throughout the next few sections d = (d1, . . . , dn) ∈ {±1}n is fixed.
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to denote the solution of the ODE

ȧ j (t) = 1

π
J∇ j WΩ(a(t), d)

a j (0) = a0
j ,

(3.1)

Our main theorem about solutions of (1.1)–(1.3) is the following

Theorem 1. Let u solve the Schrödinger equation with initial u0 satisfying

∥∥
∥∥∥∥

J (u0) −
n∑

j=1

πd jδa0
j

∥∥
∥∥∥∥

Ẇ−1,1(Ω)

� Cε9/10 (3.2)

for some n � ε−1/100, with d ∈ {±1}n and a0 = (a0
1 , . . . , a0

n) ∈ Ωn∗ such that

ρa0 � Cε1/25 (3.3)

and assume also that

Σε
Ω(u; a0, d) = Eε(u0) − W ε

Ω(a0, d) � Cε1/2 (3.4)

for some C > 0.
Then there exist ε0 > 0 and C > 0, depending only on Ω and the constants in

(3.2), (3.4) above, with the following properties:
Given any ε < ε0, let τ� be implicitly defined by

τ� = C

n
ρmin(τ�)

2 ln
1

ε
, ρmin(t) = inf{ρα(s) : 0 � s � t}. (3.5)

Then
∥∥∥∥∥∥

J (u(t)) −
n∑

j=1

πd jδa j (t)

∥∥∥∥∥∥
Ẇ−1,1(Ω)

� Cε1/4. (3.6)

Moreover,

∫

Ωρmin(τ�)(a(t))
eε(|u(t)|) + 1

4

∣∣∣
∣

j (u(t))

|u(t)| − j (u�(a(t), d))

∣∣∣
∣

2

� Cε1/5, (3.7)

and

‖ j (u(t)) − j (u�(a(t), d))‖L4/3(Ω) � Cε1/9 (3.8)

for all 0 � t � τ�.
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The theorem asserts that the vortices in the solution of (1.1) remain close to
the point vortex trajectories from the ODE (3.1), and moreover that the associ-
ated supercurrents j (u(t)), j (u�(a(t))) are close3 for relatively long time intervals,
unless two vortices nearly collide or one vortex comes very close to ∂Ω .

For example, for a0 ∈ Ωn∗ such that the solution of (3.1) is periodic, ρ�(t) is
bounded away from 0, and so (3.6), (3.8) remain valid at least for times of order
ln 1

ε
.
All the powers of ε appearing in the hypotheses are a bit arbitrary, and they

could be jiggled a little, with corresponding small changes in the conclusions. We
have no reason to believe that the conclusions are sharp.

In view of Lemma 13 and the conservation of energy, the assumptions on n, ρa0

imply that

Eε(u(t)) � ε−1/5 for all t ∈ R. (3.9)

In the remainder of this section we carry out the first part of the proof of the
above theorem, in which we reduce the theorem to controlling the rate of growth
of a scalar quantity that we call η(t), defined in (3.15). In the subsequent three
sections, we compute and bound d

dt η and d
dt 〈η〉δ for a suitable δ, where

〈η〉δ (t) = 1

δ

∫ t

t−δ

η(s) ds.

The proof of the theorem is finally completed in Section 7 by applying Grönwall’s
inequality to 〈η〉δ and using a preliminary, weaker estimate of d

dt η to deduce point-
wise bounds on η.

The reduction in this section to the problem of controlling η(t), and the sub-
sequent estimates in the proof of Theorem 1 rely crucially on Theorems 2 and 3,
which are proved in Sections 8 and 9, respectively.

Throughout the proof of the theorem, one can check that, whenever we require ε

to be small, we actually require ε p � C , where p is some fixed positive number and
C depends only on the domain Ω and on the constants in assumptions (3.2), (3.4).
This occurs several times, so that in the end we require ε pi � Ci for some positive
constants p1, . . . , pK and C1, . . . , CK , which are not identified explicitly. The
number ε0 in the statement of the theorem can be taken to be ε0 = min{(Ci )

1/pi },
Step 1: finding good points ξ j . We first define

τ0 = inf
{
t > 0 : ρa(t) � ρ�

}
, (3.10)

where ρ� � ε1/20 is a parameter that will be fixed at the end the proof; and

τ1 = sup

{

0 � t � τ0 : ‖J (u) −
n∑

i=1

πdiδai (s)‖Ẇ−1,1(Ω) � ε1/4 ∀s ∈ [0, t]
}

.

(3.11)

3 in L4/3. It would not be difficult to obtain estimates of ‖ j (u)− j (u�)‖L p(Ω) for 4/3 <

p < 2, by interpolating between (3.8) and easy bounds on j (u), j (u�) in L2 and Lq ,
p < q < 2, respectively.
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We will see that every choice of ρ� leads to a lower bound for τ1. We will eventually
choose ρ� to optimize this lower bound.

By conservation of the Hamiltonian for the ODE (3.1) and the PDE (1.1) with
Neumann conditions (1.2), we deduce from (3.4) that

Σε
Ω(u(t); a(t), d) = Σε

Ω(u(0); a(0), d) � Cε1/2 for all t .

The definition of τ1 implies that

ρa(t) � ρ� � ε1/20,

∥∥∥∥∥
J (u) −

n∑

i=1

πdiδai (s)

∥∥∥∥∥
Ẇ−1,1(Ω)

� ε1/4,

t ∈ [0, τ1]
(3.12)

and hence that the hypotheses of Theorem 3 (see Section 9) are satisfied by
u(t), a(t), d for all t ∈ [0, τ1], when ε is sufficiently small. Therefore when this
holds, there exist ξ(t) = (ξ1(t), . . . , ξn(t)) ∈ Ωn∗ such that |ξi − ai | � ρa(t)

4 for
all i , and

∥∥∥∥
∥

J (u)(s) −
n∑

i=1

πdiδξi (s)

∥∥∥∥
∥

Ẇ−1,1(Ω)

� sε, (3.13)

where here and throughout this proof,

sε := Cε

[
n5

ρ�

+ Eε(u)

]

� Cε9/10. (3.14)

Step 2: definition, basic properties of η(t). In some sense the main point of
the theorem is to estimate |ξ(t) − a(t)|. It is difficult to work directly with this
quantity, however, and so we define

η(t) :=
n∑

j=1

∣∣∣∣

∫
J (u)Φ j (x, t) dx

∣∣∣∣ :=
n∑

j=1

|η j (t)|, (3.15)

where

Φ j (x, t) = ϕ(x − a j (t)), ϕ(x) = xχρ�(x)

and χρ�(x) = χ( x
ρ �

) for a fixed χ ∈ C∞
0 (R2) satisfying χ(x) =

{
1 for |x | � 1
0 for |x | � 2

.

Note that Φ j (x, t) is supported on B2ρ�(a j (t)), so that
{
supp Φ j (x, t)

}
are pairwise

disjoint when ρa(t) � ρ� and in particular for all 0 � t � τ1. As we shall see, it is
easy to compute dη/dt , using the equation (2.15) for d

dt J (u).
We now argue that

η(t)= π
∑

i

|ξi (t) − ai (t)|+O(sε)=
∥∥
∥∥∥

J (u(t))−
n∑

i=1

πdiδai (t)

∥∥
∥∥∥

Ẇ−1,1(Ω)

+O(sε)

as long as all these quantities remain small, and in particular for 0 � t � τ1.
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First note that in view of (2.6), the definition of τ1, and (3.13),

π
∑

j

|ξ j (t) − a j (t)| =
∥
∥∥∥∥

n∑

i=1

πdi (δξi (t) − δai (t))

∥
∥∥∥∥

Ẇ−1,1(Ω)

� ε1/4 + sε � ρ� (3.16)

when ε is sufficiently small, for all t ∈ [0, τ1]. As a result, the definition of Φ j

implies that ξ j (t)−a j (t) = Φ j (ξ j (t), t) for all such t . It follows that there exists a
unit vector v j (t) such that |ξ j (t) − a j (t)| = d jv j · Φ j (ξ j (t), t), and hence (using
the support properties of Φ j ) that

π
∑

j

|ξ j (t) − a j (t)|

=
∫ (

π
∑

diδξi (t)

) (∑
v j · Φ j (t)

)
dx

�
∫ (

π
∑

diδξi (t) − J (u(t))
) (∑

v j · Φ j (t)
)

dx + η(t)

�
∥∥∥J (u(t)) − π

∑
diδξi (t)

∥∥∥
Ẇ−1,1

∥∥∥∥
∥∥

∑

j

v j · Φ j (t)

∥∥∥∥
∥∥

W 1,∞
+ η(t)

� Csε + η(t) for all t ∈ [0, τ1]. (3.17)

A similar argument shows that for such t ,

η(t) � π
∑

|ξi (t) − ai (t)| + Csε. (3.18)

We also note that, in view of the triangle inequality and the interpretation (2.6) of
the Ẇ −1,1 norm as the length of a minimal connection,

∥∥∥
∥∥

J (u(t)) −
n∑

i=1

πdiδai (t)

∥∥∥
∥∥

Ẇ−1,1(Ω)

�
∥∥
∥∥∥

J (u(t)) −
n∑

i=1

πdiδξi (t)

∥∥
∥∥∥

Ẇ−1,1(Ω)

+
∥∥∥∥∥

n∑

i=1

πdi (δξi (t) − δai (t))

∥∥∥∥∥
Ẇ−1,1(Ω)

� sε + π
∑

|ξi (t) − ai (t)|
� Csε + η(t) for all t ∈ [0, τ1]. (3.19)

And one can similarly check that

η(t) � Csε +
∥∥∥∥∥

J (u(t)) −
n∑

i=1

πdiδai (t)

∥∥∥∥∥
Ẇ−1,1(Ω)

for all t ∈ [0, τ1]. (3.20)
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In particular this implies that when ε is sufficiently small,

η(t) � 2ε1/4 for all t ∈ [0, τ1]. (3.21)

Step 3: approximation by canonical harmonic maps. We next will use The-
orem 2 to show that u(t) is well approximated in certain ways by the canonical
harmonic map u�(t) := u�(·; ξ(t), d) for t � τ1. To do this, we need to estimate
the surplus energy Σε

Ω(u(t); ξ(t), d) with respect to the points ξ(t) found in Step
1 above. In fact, we will show that this too is controlled by η(t) when ε is small.

Fix t ∈ [0, τ1], and observe from the definition (2.25) of Σε
Ω that

Σε
Ω(u(t); ξ(t), d)

= Σε
Ω(u(t); a(t), d) + WΩ(a(t), d) − WΩ(ξ(t), d)

� Cε1/2 +
⎛

⎝
n∑

j=1

|ξ j (t) − a j (t)|
⎞

⎠
(

sup
j

sup
|y−a(t)|�|ξ(t)−a(t)|

|∇y j W (y)|
)

.

(3.22)

From (3.16) it follows that if y ∈ Ωn is such that |y − a(t)| � |ξ(t) − a(t)|,
then ρy � 1

2ρa(t) for all sufficiently small ε, and so we can use (10.3) to find that
|∇y j W (y)| � Cn

ρ�
. Hence (3.22) and (3.17) yield

Σε
Ω(u(t); ξ(t), d) � Cε1/2 + (Csε + η(t))

Cn

ρ�

. (3.23)

Thus the first conclusion (8.3) of Theorem 2 implies that

∫

Ωρ�(ξ(t))
eε(|u(t)|) + 1

4

∣∣∣∣
j (u(t))

|u(t)| − j (u�(t))

∣∣∣∣

2

dx

� Cn

ρ�

(η(t) + Csε) + Cε1/2 + C

(
n5

ρ�

(sε + εEε(u))

)1/2

� Cn

ρ�

(η(t) + �ε) (3.24)

for all t ∈ [0, τ1], where (since sε � CεEε(u), see the definition (3.14))

�ε := C
(
ρ�n3sε

)1/2 + Cε1/2n−1ρ� � Cε2/5.

(Note that a condition σ ∗ � ρa appearing as a hypothesis for conclusion (8.3) of
Theorem 3 is satisfied as a result of the definitions of τ1, sε, etc.)

From the other conclusion (8.4) of Theorem 2, we deduce that

‖ j (u)(t) − j (u�)(t)‖L4/3(Ω) � C

(
nη

ρ�

)1/2

+ λε (3.25)
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where

λε = Cε1/2 Eε(u)3/4 + Cns1/4
ε

[(
n

ρa(t)

)1/4

+ ρ
1/4
a(t)

(

1 +
√

Eε(u)

n3

)]

� Cε1/5. (3.26)

In the sections that follow, we use (3.24), (3.25) and conservation laws for the
Gross–Pitaevsky equation to control the growth in time of η. The conclusion of the
proof appears in Section 7, where we use these estimates to show that τ1 cannot be
too small.

4. Decomposition of η̇

We use the notation η j (t) := ∫
J (u(t))Φ j (x, t) dx ∈ R

2 as introduced in
(3.15).

Lemma 1. Let u be a solution to the Schrödinger equation. Then for 0 � t � τ1
and j = 1, . . . , n

η̇ j = Tj,1 + Tj,2 + Tj,3 + Tj,4 + Tj,5 + Tj,6, (4.1)

where

Tj,1 = d j∇ϕ(ξ j − a j ) · J
(∇ j WΩ(ξ) − ∇ j WΩ(a)

)
,

Tj,2 = −
∫ (

J (u) −
n∑

i=1

πdiδξi

)

J∇ j WΩ(a) · ∇Φ j dx,

Tj,3 =
∫

Jkl∂xl xm Φ j∂xk |u| ∂xm |u| dx,

Tj,4 =
∫

Jkl∂xl xm Φ j

(
j (u)

|u| − j (u�)

)

k

(
j (u)

|u| − j (u�)

)

m
dx,

Tj,5 =
∫

Jkl∂xl xm Φ j

(
j (u)

|u| − j (u�)

)

k
( j (u�))mdx,

Tj,6 =
∫

Jkl∂xl xm Φ j

(
j (u)

|u| − j (u�)

)

m
( j (u�))kdx,

where ( j (u))m is the mth component of the vector j (u(t)) and u� = u�(·; ξ(t), d).

In the statement and proof of the lemma, we do not implicitly sum over the
index j when it is repeated.

Proof. Differentiating in time yields

η̇ j =
∫

J (u)
d

dt
Φ j dx +

∫
Φ j

d

dt
J (u)dx .
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Since d
dt Φ j (x) = d

dt ϕ(x − a j ) = (−ȧ j
) · ∇ϕ(x − a j ), we can use the ODE (3.1)

and the fact that Φ j (ξi (t)) = 0 for i 	= j to write
∫

J (u)
d

dt
Φ j dx

=
∫

J (u)
(−ȧ j

) · ∇ϕ(x − a j )dx

= −d j J∇ j WΩ(a) · ∇ϕ(ξ j − a j ) (4.2)

+
∫ (

J (u) −
n∑

i=1

πdiδξi

)(
− 1

π
J∇ j WΩ(a)

)
· ∇ϕ(x − a j )dx . (4.3)

For the second term
∫

Φ j
d
dt J (u)dx we use the conservation law for the Jacobian

(2.15). In particular for each j
∫

Φ j
d

dt
J (u)dx =

∫
Φ j Jkl∂xk xm

(
uxm , uxl

)

=
∫

Jkl∂xk xm Φ j
(
uxm , uxl

)
.

Noting that

∇u = ∇|u| u

|u| + i
j (u)

|u|
u

|u| ,

and that (∇|u| u
|u| , i j (u)

|u|
u
|u| ) = (∇|u| · j (u)

|u| )( u
|u| , i u

|u| ) = 0, we continue by writing
∫

Φ j
d

dt
J (u)dx

=
∫

Jkl∂xk xm Φ j∂xm |u|∂xl |u|

+
∫

Jkl∂xk xm Φ j

(
j (u)

|u|
)

m

(
j (u)

|u|
)

l
dx

=
∫

Jkl∂xk xm Φ j∂xm |u|∂xl |u|dx (4.4)

+
∫

Jkl∂xk xm Φ j

(
j (u)

|u| − j (u�)

)

m

(
j (u)

|u| − j (u�)

)

l
dx (4.5)

+
∫

Jkl∂xk xm Φ j

(
j (u)

|u| − j (u�)

)

m
( j (u�))l dx (4.6)

+
∫

Jkl∂xk xm Φ j

(
j (u)

|u| − j (u�)

)

l
( j (u�))m dx (4.7)

+
∫

Jkl∂xk xm Φ j ( j (u�))m ( j (u�))l dx . (4.8)

It is known (see Lemma 8 in Section 10) that (4.8) satisfies
∫

Jkl∂xk xm Φ j ( j (u�))m ( j (u�))l = d j∇ϕ(ξ j − a j ) · ∇ j WΩ(ξ). (4.9)
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Now combining (4.2) and (4.9) gives Tj,1, and the remaining terms Tj,2, . . . , Tj,6
are exactly (4.3)–(4.7).

5. Estimate of η̇

In this section we obtain an estimate of η̇ by separately considering contributions
from the different terms isolated in Lemma 1. We will prove

Lemma 2. For t ∈ [0, τ1] and ε < ε0,

|η̇(t)| � Cn

ρ2
�

(η + �ε) + C
n2

ρ
3/2
�

(η + �ε)
1/2.

This is not good enough to get any very strong result from Gronwall’s inequality,
but in view of the assumptions about n, ρ�, the definition of �ε and the bounds
(3.21) on η, it implies the useful estimate

|η̇| � Cε1/50 for t ∈ [0, τ1]. (5.1)

The proof of Lemma 2 relies on the powerful Γ -stability and Localization
Theorems 2 and 3.

We now present the

Proof of Lemma 2. The condition ε < ε0 is needed to guarantee the validity of
estimates (3.17), (3.20), (3.24) from Section 3.

Note from Lemma 1 and the definition (3.15) of η that

η̇ = T1 + · · · T6, where Tk =
n∑

j=1

η j

|η j | · Tj,k . (5.2)

We estimate these terms in turn. We suppress the argument t throughout the proof.
First, note that ∇φ(ξ j − a j ) = ξ j − a j for 0 � t � τ1, by the definition of φ

and (3.16). Thus, in view of (3.17),

|T1| �
∑

j

|Tj,1| � C(η + sε)
∑

j

|∇ j WΩ(ξ) − ∇ j WΩ(a)|.

And arguing as in the proof of (3.23) we see that

|∇ j WΩ(ξ)−∇ j WΩ(a)| �
n∑

k=1

|ξk(t)−ak(t)|
(

sup
k

sup
|y−a(t)|�|ξ(t)−a(t)|

|∇k∇ j W (y)|
)

� (η(t) + Csε)C
n

ρ2
�

,

using (3.17) again, as well as bounds on ∇2WΩ from (10.3). Thus

|T1| � C
n2

ρ2
�

(η(t) + Csε)
2. (5.3)
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Next,

|T2| =
∣∣
∣∣∣∣

∫ (

J (u) −
n∑

i=1

πdiδξi

)⎛

⎝
∑

j

J∇ j WΩ(a) · ∇
(

Φ j · η j

|η j |
)⎞

⎠ dx

∣∣
∣∣∣∣

�
∥∥
∥∥∥

J (u) −
∑

i

πdiδξi

∥∥
∥∥∥

Ẇ−1,1(Ω)

∥∥
∥∥∥∥
∇

∑

j

∇ j WΩ(a) · ∇
(

Φ j · η j

|η j |
)
∥∥
∥∥∥∥

L∞
.

Since the Φ j ’s have disjoint support

∥∥∥
∥∥∥
∇

∑

j

∇ j WΩ(a) · ∇
(

Φ j · η j

|η j |
)
∥∥∥
∥∥∥

L∞
� sup

j
|∇ j WΩ(a)| ‖∇2Φ j‖∞ � C

n

ρ2
�

.

We conclude from (3.13) and the above that

|T2| � Csε

n

ρ2
�

. (5.4)

Continuing, we use the fact that ∇2Φ j vanishes in Bρ�(a j ), together with (3.24),
to find that

|T3| �

∥∥
∥∥∥∥

∑

j

η j

|η j | · ∇2Φ j

∥∥
∥∥∥∥

L∞

∫

Ωρ� (a)

|∇|u||2 dx � Cn

ρ2
�

(η + �ε). (5.5)

Exactly the same considerations show that

|T4| � Cn

ρ2
�

(η(t) + �ε). (5.6)

Next,

|T5| �

∥
∥∥∥∥∥

∑

j

η j

|η j | · ∇2Φ j

∥
∥∥∥∥∥

L∞

∥∥∥∥
j (u)

|u| − j (u�)

∥∥∥∥
L2(Ωρ� )

‖ j (u�)‖L2(∪ j supp∇2Φ j )
.

Using (10.2), one can easily check that ‖ j (u�)‖L2(∪ j supp∇2Φ j )
� Cn

ρ�
(Cnρ2

� )1/2,
hence we conclude that

|T5| � Cn2

ρ
3/2
�

(η + �ε)
1/2 . (5.7)

Exactly the same argument shows that |T6| � Cn2

ρ
3/2
�

(η + �ε)
1/2.
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6. Time averages of η

In this section we get improved estimates of T5 and T6, after eventually averaging
in time.

Definition 1. Define the time average

〈g〉δε
(t) = 1

δε

∫ t

t−δε

g(s)ds.

Note that in view of (5.1),

|η(s) − 〈η(t)〉δε
| � Cε1/50δε if 0 � t − δε � s � t � τ1. (6.1)

We state our result

Proposition 1. For δε = ε1/2,
∣∣∣∣

d

dt
〈η〉δε

(t)

∣∣∣∣ � C
n

ρ2
�

〈η(t)〉δε
+ Cε1/3. (6.2)

for all t ∈ [δε, τ1].
We will verify later that τ1 � δε for the initial data that we consider.

Proof. Note that

d

dt
〈η〉δε

= 〈T1〉δε
+ · · · + 〈T6〉δε

using the notation of (5.2). In view of (5.3)—(5.6),

4∑

i=1

| 〈Ti 〉δε
| �

4∑

i=1

〈|Ti |〉δε
� Cn

ρ2
�

〈η + �ε〉δε
� Cn

ρ2
�

〈η〉δε
+ Cε1/3.

Thus it is only necessary to show that

6∑

i=5

| 〈Ti 〉δε
| � Cn

ρ2
�

〈η〉δε
+ Cε1/3. (6.3)

Since the proof for T6 is identical to the proof for T5 we only consider the latter.
Because | 〈g〉 | � 〈|g|〉, estimates valid for every t automatically imply estimates

for time-averaged quantities. Thus it is not necessary to average in t until rather
late in the proof.

We generally write δε instead of ε1/2 when we want to make it clear how our
estimates depend on the interval over which we are averaging.

Throughout the proof we frequently use the facts that n � ε−1/100, ρ� � ε1/20.
Step 1: For simplicity let

ζk :=
∑

j

Jkl∂xl xm

(
η j

|η j | · Φ j

)
jm(u�), k = 1, 2, (6.4)
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where jm denotes the m component of j (u�), m =1, 2, and u�(x, t)=u�(x; ξ(t), d)

as usual. From the definitions and (10.2) it is easy to see that |ζ | � C n
ρ2

�
, and in

addition ζ is supported on a set of measure cnρ2
� . It follows that

‖ζ‖Lq (Ω) � Cn1+ 1
q ρ

2
q −2
� . (6.5)

Now we write

T5 =
∫

ζ · j (u)

|u| (1 − |u|)dx +
∫

ζ · ( j (u) − j (u�)) dx

= T5,1 + T5,2.

The first term is easily estimated. Indeed, by Cauchy–Schwarz,

|T5,1| � ‖ζ‖L∞
∥∥∥∥

j (u)

|u|
∥∥∥∥

L2
‖(1 − |u|2)‖L2 � C

n

ρ2
�

εEε(u) � Cε1/2. (6.6)

Step 2. The boundary conditions for (1.1) and the definition of the canonical har-
monic map imply that ν · ( j (u) − j (u�)) = 0 on ∂Ω . As a result, we can write

j (u) − j (u�) = ∇ f + ∇ × g

for some f ∈ W 1,p(Ω) and g ∈ W 1,p(Ω; R
2), for p < 2, such that

ν · ∇ f = 0, g = 0 on ∂Ω. (6.7)

In fact f and g can be found by solving

� f = ∇ · ( j (u) − j (u�)) = ∇ · j (u), (6.8)

−�g = ∇ × ( j (u) − j (u�)) = 2J (u) − 2π
∑

diδξi (6.9)

in Ω with boundary conditions (6.7). We write T5,2 = T5,2a + T5,2b, where

T5,2a :=
∫

ζ · ∇ × g dx, T5,2b :=
∫

ζ · ∇ f dx .

Step 2a. We claim that

|T5,2a | � Csε
3/5

[
n6/5 ρ

−8/5
� (Eε(u) + nπ)2/5

]
� Cε1/3. (6.10)

To prove this, we first use the equation (6.9), (6.7) satisfied by g, together with
standard elliptic estimates (see for example [29], Chapter 5)

‖g‖W 1,p(Ω) � C‖J (u) − π
∑

diδξi ‖Ẇ−1,p(Ω)

for p > 1, where the constant depends on p and Ω . By duality and the Sobolev
embedding theorem, the dual space C0,α(Ω)∗ embeds into Ẇ −1,p(Ω) for 1 � p <

2 and α
1 + 1−α

2 = 1
p , and

‖v‖Ẇ−1,p(Ω) � C‖v‖C0,α
0 (Ω)∗
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for all v ∈ C0,α
0 (Ω)∗. In addition, an interpolation inequality [18] states that

‖v‖C0,α
0 (Ω)∗ � C(‖v‖C0,1

0 (Ω)∗)
α(‖v‖C0,0

0 (Ω)∗)
1−α,

where C0,0
0 (Ω)∗ denotes the space of finite signed Radon measures on Ω , and

the norm is just the total mass of the measure. Note that the C0,1
0 (Ω)∗ norm is

equivalent to the Ẇ −1,1(Ω) norm, and so ‖J (u)−π
∑

diδξi ‖C0,1
0 (Ω)∗ is estimated

by (3.13). Also,
∥∥∥J (u) − π

∑
diδξi

∥∥∥
C0,0

0 (Ω)∗
�

∥∥∥|∇u|2
∥∥∥

L1(Ω)
+ nπ � C Eε(u) + nπ.

Combining these, we find that

‖∇ × g‖L p(Ω) � ‖g‖W 1,p(Ω) � Csε

2
p −1

(Eε(u) + n)
2− 2

p

for 1 � p < 2, with a constant depending on p. Taking 1
q = 1 − 1

p in (6.5) for
p ∈ [1, 2) to be selected, we conclude that

|T5,2a | � ‖ζ‖Lq ‖∇ × g‖L p � Cn2− 1
p ρ

− 2
p

� sε

2
p −1

(Eε(u) + nπ)
2− 2

p .

Choosing p = 5
4 , we arrive at (6.10).

Step 2b.
The time-averaging that appears in the statement of the lemma is needed to deal

with the final term T5,2b. We first note that

〈
T5,2b

〉
δε

(t)

= 1

δε

∫ t

t−δε

∫
ζ · ∇ f dxds

=
∫

〈ζ 〉δε
· ∇ 〈 f 〉δε

dx + 1

δε

∫ t

t−δε

∫ (
ζ − 〈ζ 〉δε

) · ∇ (
f − 〈 f 〉δε

)
dxds

=: T5,2b(i) + T5,2b(i i),

where the cross terms disappear since
∫

g − 〈g〉 ds = 0.
Step 2b(i). Recalling the equation that defines f and the equation for conser-

vation of mass (2.12), we compute
∥∥� 〈 f 〉δε

∥∥
L2(Ω)

= ∥∥〈∇ · j (u)〉δε

∥∥
L2(Ω)

=
∥∥
∥∥∥

〈
1

2

d

dt

(
|u|2 − 1

)〉

δε

∥∥
∥∥∥

L2(Ω)

= 1

2δε

∥∥
∥∥
(
|u|2 − 1

)∣∣∣
t

t−δε

∥∥
∥∥

L2(Ω)

� ε

δε

√
Eε(u).
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Hence ‖∇ · 〈 f 〉δε
‖L2 � ‖ 〈 f 〉δε

‖W 2,2 � C‖� 〈 f 〉δε
‖L2 � C ε

δε

√
Eε(u), and so

recalling (6.5), we conclude that

|T5,2b(i)| � Cn3/2ρ−1
�

ε

δε

√
Eε(u) � Cε1/3. (6.11)

Step 2b(ii). The arguments in this final step are rather involved, but the overall
point is to take advantage of the fact that δε is small to show that ζ is close to 〈ζ 〉δε

,
and similarly ∇ f and 〈∇ f 〉δε

. First observe that

|T5,2b(i i)|
� sup

s∈[t−δε,t]
‖ζ(s) − 〈ζ 〉δε

‖L4(Ω) sup
s∈[t−δε,t]

‖∇( f (s) − 〈 f 〉δε
)‖L4/3(Ω)

� sup
s,s′∈[t−δε,t]

‖ζ(s) − ζ(s′)‖L4(Ω) sup
s,s′∈[t−δε,t]

‖∇( f (s) − f (s′))‖L4/3(Ω).

(6.12)

We choose L4 and L4/3 because the estimates of ‖∇( f (s)− f (s′))‖L4/3(Ω) are
slightly easier for p = 4/3 than for other choices 1 � p < 2. In estimating the
quantities in (6.12), we will repeatedly use the fact that for s, s′ ∈ [t − δε, t] with
t ∈ [δε, τ1],

|a j (s) − a j (s
′)| � C

n

ρ�

δε � Cε2/5. (6.13)

This follows from the ordinary differential equation (3.1) satisfied by a(·), which
together with (10.3) implies that |ȧ j | � Cn

ρ�
. From (6.13) and (3.17), (3.21), it

follows that for s, s′ as above,

n∑

j=1

∣
∣ξ j (s) − ξ j (s

′)
∣
∣ � C

n2

ρ�

δε + η(s) + η(s′) + Csε � Cε1/4. (6.14)

Estimate of ‖ζ(s) − ζ(s′)‖L4(Ω) .
Throughout this discussion we assume that 0 � t − δε � s, s′ � t � τ1. To

find a time-Lipschitz bound on ζ , we note from the definition (6.4) that

ζk(s) − ζk(s
′) =

∑

j

Jkl∂xl xm

(
η j

|η j | · Φ j

)
(s) jm(u�)(s)

−
∑

j

Jkl∂xl xm

(
η j

|η j | · Φ j

)
(s′) jm(u�)(s

′)

=
∑

j

Jkl∂xl xm

[
η j

|η j | · (Φ j (s) − Φ j (s
′))

]
jm(u�)(s)

+
∑

j

Jkl∂xl xm

(
η j

|η j | · Φ j

)
(s′)

[
jm(u�)(s) − jm(u�)(s

′)
]

= Z1 + Z2.
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We first consider Z1. From the definitions,
∥∥∥∥∂xl xm

[
η j

|η j | · (Φ j (s) − Φ j (s
′))

] ∥∥∥∥
L∞(Ω)

�
∥∥∂xl xm [ϕ(x − a j (s)) − ϕ(x − a j (s

′))]∥∥L∞(Ω)

� C
∥
∥∂xl xm xn ϕ

∥
∥

L∞
∣
∣a j (s) − a j (s

′)
∣
∣

� C
n

ρ3
�

δε

using (6.13).
We next assert that

supp ∇2Φ j (s) ∪ supp ∇2Φ j (s
′) ⊂ B3ρ�(ξ j (s)) \ B 1

2 ρ�
(ξ j (s)) (6.15)

for all ε sufficiently small. This follows from (6.13), (6.14), and (3.17), which
imply that the distances separating ai (s), ai (s′), ξi (s), ξi (s′) are much smaller than
ε1/20 � ρ�.

From (6.15) we infer that | j (u�)(ξ(s))| � Cn
ρ�

on the support of Z1, and since

the support of Z1 has measure bounded by Cnρ2
� , we conclude that

‖Z1‖L4 � Cn2

ρ4
�

(
Cnρ2

�

)1/4
δε = C

n9/4

ρ
7/2
�

δε � Cε3/10. (6.16)

Next we consider Z2. Since
∥∥
∥
∑

j ∂xl xm Φ j

∥∥
∥

L∞ � C
ρ�

, and noting that supp Z2 has

measure at most Cnρ2
� , we use Hölder’s inequality to estimate

‖Z2‖L4 � C

ρ�

∥∥ j (u�)(s) − j (u�)(s
′)
∥∥

L∞(∪ j supp∇2Φ j (s′)) (Cnρ2
� )1/4.

Note that (6.15) is still true if we reverse the roles of s and s′. It follows that
supp ∪ j∇2Φ j (s′) ⊂ Ωρ�/2(ξ(s)) ∩ Ωρ�/2(ξ(s′)). We can thus use (10.6) to find
that

∥∥ j (u�)(s) − j (u�)(s
′)
∥∥

L∞(∪ j supp∇2Φ j (s′)) � C

ρ2
�

n∑

j=1

∣∣ξ j (s) − ξ j (s
′)
∣∣ .

Consequently, using the left-hand inequality in (6.14) together with (6.1), we deduce
that

‖Z2‖L4 � C

(
n

ρ2
�

)5/4 (
n2

ρ�

δε + η(s) + η(s′) + Csε

)
(6.17)

� Cε−1/30 n

ρ2
�

〈η(t)〉 + Cε1/4. (6.18)

Combining (6.16) and (6.18) yields

∥∥ζ(s) − ζ(s′)
∥∥

L4(Ω)
� Cε−1/30 n

ρ2
�

〈η(t)〉 + Cε1/4. (6.19)
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Estimate of ‖∇( f (s) − f (s′))‖L4/3(Ω).
We continue to assume that s, s′ ∈ [t − δε, t] for t ∈ [δε, τ1].
First note that, by elliptic regularity, and using the equation and boundary con-

ditions (6.7), (6.8) that define f ,

‖∇( f (s) − f (s′))‖L4/3(Ω) � C‖�( f (s) − f (s′))‖W−1,4/3(Ω)

= ‖∇ · [ j (u)(s) − j (u)(s′)]‖W−1,4/3(Ω)

� ‖ j (u)(s) − j (u)(s′))‖L4/3(Ω). (6.20)

Using the triangle inequality and (3.25), we see that it follows that

‖ j (u)(s) − j (u)(s′))‖L4/3(Ω)

� Cn

ρ�

(η(s) + η(s′) ) + 2λε + ‖ j (u�)(s) − j (u�)(s
′))‖L4/3(Ω).

The last term on the right-hand side is estimated in by combining (10.7) and (6.14).
This leads to

‖ j (u�)(s) − j (u�)(s
′))‖L4/3(Ω) � Cn1/2

(
n2

ρ�

δε + η(s) + η(s′) + Csε

)1/2

� Cε1/9.

The other terms on the right-hand side of (6.20) are smaller, in view of the estimate
(3.26) and the constraints on n, ρ�, so we conclude that

‖∇( f (s) − f (s′))‖L4/3(Ω) � Cε1/9. (6.21)

Finally we combine the above with (6.12) and (6.19) to deduce that

|T5,2b(i i)| � C
n

ρ2
�

〈η(t)〉 + Cε1/3.

Together with (6.11), (6.10), and (6.6), this implies (6.3), which is what we needed
to show.

7. Conclusion of the proof of Theorem 1

Proof (conclusion of the proof of Theorem 1). Step 1. Note from (3.2) and (3.20)
that η(0) � Cε9/10. It also follows from (3.20) that

τ1 � τ2 := sup

{
0 � t � τ0 : η(s) � 1

2
ε1/4 ∀s ∈ [0, t]

}
.

Thus for t ∈ [0, τ2], all the conclusions of the previous sections hold. In particular,
from the estimate (5.1) of |η̇|, it follows that

η(t) � Cε9/10 + Ctε1/50 for 0 � t � τ2. (7.1)
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This implies that τ2 � ε1/4 and that

〈η〉δε
(δε) = 1

δε

∫ δε

0
η(s)ds � δε = √

ε

for ε sufficiently small. Next observe from (6.1) that

τ2 � τ3 := sup

{
δε � t � τ0 : 〈η(s)〉 � 1

4
ε1/4 ∀s ∈ [δε, t]

}
� δε

and that (5.1), (6.2) hold for all t ∈ [δε, τ3]. Hence from Grönwall’s inequality,

〈η〉δε
(t) � C exp

(
Cn(t − δε)

ρ2
�

)
ε1/3 � C exp

(
Cnt

ρ2
�

)
ε1/3 (7.2)

for t ∈ [δε, τ3]. It follows that

τ1 � τ3 � min

{
C

ρ2
�

n
ln

1

ε
, τ0

}
.

Step 2. We now fix ρ� � ε1/20 by requiring that

τ0 = τ(ρ�) = C
ρ2

�

n
ln

1

ε
, (7.3)

where we write

τ(ρ) = inf{t � 0 : ρa(t) � ρ}.
To prove this, we first note that τ(ε1/20) � ε1/12. This follows from the ODE
(3.1), and estimates (10.3) on the renormalized energy, which imply that d

dt ρa(t) �
− C

nρa(t)
, and consequently that

ρa(t) �
[
ρ2

a0 − Cnt
]1/2

.

In (3.3) we assumed that ρa0 � ε1/25, and it follows that ρa(t) � ε1/20 whenever
t � ε1/12. As a result,

g(ρ) := τ(ρ) − C
ρ2

n
ln

1

ε
� 0

when ρ = ε1/20. It is clear that ρ �→ g(ρ) is a continuous, strictly decreasing
function and that it is negative for large values of ρ, so the existence of ρ� as in
(7.3) follows.

We remark that τ� as defined in (3.5) is equal to the common value τ(ρ�) =
C ρ2

�

n ln 1
ε
; this is just a rewriting of (7.3).

Step 3. It follows from (7.2) and (6.1) that η(t) � C exp
(

Cnt
ρ2

�

)
ε1/3 � 1

2ε1/4

for 0 � t � τ�. The conclusion (3.6) of the theorem follows from this and (3.19).
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To prove (3.7), note first from Theorem 2 that (3.24) remains valid if the integral∫
Ωρ� (ξ(t)) . . . dx on the left-hand side is replaced by an integral over the larger set

Ωε2/5(ξ(t)). Since Ωρ�(a(t)) ⊂ Ωε2/5(ξ(t)), it follows that
∫

Ωρ� (a(t))
eε(|u(t)|) + 1

4

∣∣
∣∣

j (u(t))

|u(t)| − j (u�(ξ(t)))

∣∣
∣∣

2

� Cε1/5.

In addition, since ρ� � ε1/20 and
∑ |ξi (t) − ai (t)| � Cε1/4 by (3.16), we readily

estimate from (10.6) that ‖ j (u�(ξ(t))) − j (u�(a(t)))‖L2(Ωρ� (a)) � Cε1/10. With
the triangle inequality and the above estimate, this yields (3.7).

Finally, again using the fact that
∑ |ξi (t) − ai (t)| � Cε1/4, we deduce (3.8)

from (3.25) and (10.7).

8. Γ -stability

This section proves the Γ -stability theorem discussed in the introduction and
used extensively in the previous arguments.

The proof rests on the identity
∫

Ωσ (α)

eε(|u|) + 1

2

∣∣∣
∣

j (u)

|u| − j (u�(α))

∣∣∣
∣

2

dx

=
∫

Ωσ (α)

[eε(u) − eε(u�(α))] dx

+
∫

Ωσ (α)

| j (u�(α))|2 − j (u)

|u| · j (u�(α)) dx . (8.1)

In fact the integrands on the left and right-hand sides are pointwise equal. The
above follows from a short calculation, using the fact that |∇u�| = | j (u�)|. The
main hypothesis of the theorem is that ‖J (u)−π

∑
diδαi ‖Ẇ−1,1 is small, and under

this hypothesis we wish to bound the left-hand side of (8.1) by the surplus energy
Σε(u;α, d) ≈ ∫

Ω
[eε(u) − uε

�(α, d)], see (2.25) for the definition. We rewrite the
first term on the right-hand side as a sum of the surplus energy and contributions
from balls Uσ (αi ):

∫

Ωσ (α)

[eε(u) − eε(u�(α))] dx

≈ Σε(u;α, d) +
∑

i

∫

Uσ (αi )

[eε(u�(α)) − eε(u)] dx .

The integrals over the balls Uσ (αi ) are shown to be small using results from [20],
which require the hypothesis ‖J (u) − π

∑
diδαi ‖Ẇ−1,1 . The second term on the

right-hand side of (8.1) is approximately (suppressing the dependence on α)
∫

Ωσ

j (u�) · ( j (u�) − j (u)) =
∫

Ωσ

∇ × G · ( j (u�) − j (u))

≈
∫

Ω

G̃ ∇ × ( j (u�) − j (u)).
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Here G is defined in (2.17), and G̃ is a modification of G obtained by modifying
Ωσ sightly (so that G is constant on each component of ∂Ωσ ) and then setting
G̃ equal to the suitable constant on each component of Ω \ Ωσ . The right-hand
side is then controlled using the assumed bounds on ‖J (u) − π

∑
diδαi ‖Ẇ−1,1 =

1
2‖∇ × ( j (u) − j (u�))‖Ẇ−1,1 ; note that this hypothesis turns out to be extremely
natural at this point. These arguments yield an estimate of the left-hand side of
(8.1) in terms of the surplus energy and small error terms.

Thus, the main result of this section is

Theorem 2. Let Ω be a bounded, open simply connected subset of R
2 with C1

boundary. Then there exists absolute constants C and K1 such that for any u ∈
H1(Ω; C), if there exist n � 0, α = (α1, . . . , αn) ∈ Ωn∗ and d ∈ {±1}n such that

∥∥
∥∥∥∥

J (u) −
n∑

j=1

πd jδα j

∥∥
∥∥∥∥

Ẇ−1,1(Ω)

� sε for some sε ∈ [ε√ln(ρα/ε),
ρα

4nK1
],

(8.2)

and if 4sε � σ ∗ :=
[

ρα

n3 (sε + εEε(u))
]1/2

� ρα

nK1
, then

∫

Ωσ∗ (α)

eε(|u|) + 1

4

∣∣∣∣
j (u)

|u| − j (u�)

∣∣∣∣

2

dx

� Σε
Ω(u;α, d) + C

[
n5

ρα

(sε + εEε(u))

]1/2 (8.3)

for u� = u�(·;α, d) as defined in (2.16). Finally,

‖ j (u) − j (u�)‖L4/3(Ω) � C
√

Σ(u;α.d) + error terms (8.4)

with

error terms � Cε1/2 Eε(u)3/4

+Cn(sε + εEε(u))1/4

[(
n

ρα

)1/4

+ ρ1/4
α

(

1 +
√

Eε(u)

n3

)]

.

The conclusion (8.3) is deduced from a more general estimate, which is dis-
played in (8.8).

Note that the left-hand side of (8.3) approximately equals
∫
Ωσ∗ (α)

eε(u/u�).

Indeed, a short calculation shows that eε(u/u�) = eε(|u|) + 1
2 | j (u)

|u| − |u| j (u�))|2.
As a result,

eε(|u|) + 1

2

∣∣∣
∣

j (u)

|u| − j (u�)

∣∣∣
∣

2

− eε(u/u�)

= j (u)

|u| · j (u�)(|u| − 1) + 1

2
| j (u�)|2(1 − |u|2) (8.5)
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and the terms on the right-hand side are small in L1(Ωσ ∗) if the energy is not too
large.

In many situations, such as in the study of vortex dynamics in the first part of
this paper, the error terms in (8.4) are of order ε1/5 or smaller. We remark that it
would be possible to establish estimates of ‖ j (u) − j (u�)‖L p(Ω) for 1 � p < 2,
in the spirit of (8.4).

The proof of the theorem uses the following lemma from [20]. Note that it is
essentially the n = 1 case of Theorem 2 on a ball with a single vortex at the center,
except that the positive terms on the left-hand side of (8.3) are missing.

Lemma 3. There exists an absolute constant C > 0 such that if u ∈ H1(Uσ ; C)

satisfies

‖J (u) ± πδ0‖Ẇ−1,1(Uσ ) � σ

4
,

then

0 � Σε
Uσ

(u; 0,±1) + C
ε

σ

√
ln

σ

ε
+ C

σ
‖J (u) − πδ0‖Ẇ−1,1(Uσ ). (8.6)

This is Theorem 5 in [20]; the statement there appears slightly different, but the
two versions are easily seen to be equivalent using Lemma 9.

For the time being we assume one additional lemma, the proof of which is given
below, and we use it to complete the

Proof of Theorem 2. Step 1. We first rewrite W ε
Ω(α, d) using facts about the renor-

malized energy that are collected in Section 10. Recall from (2.24) that W ε
Ω is

defined by W ε
Ω(α, d) = WΩ(α, d) + n(γ + π ln 1

ε
), where γ is defined in (2.23).

Hence by Lemma 12,

W ε
Ω(α, d) =

∫

Ωσ

eε(u�) dx + O

((
nσ

ρα

)2
)

+ n
(
γ + π ln

σ

ε

)

for any 0 � σ � ρα . Thus, recalling the formula (2.26) for the surplus energy
Σε

Ur (a)(u, a,±1) on a ball,

Σε
Ω(u;α, d)

=
∫

Ω

eε(u) dx − W ε
Ω(α, d)

=
∫

Ωσ (α)

[eε(u) − eε(u�)]dx +
n∑

i=1

Σε
Uσ (αi )

(u, αi , di ) + O

((
nσ

ρα

)2
)

.

(8.7)

Step 2. We give a lower bound for
∫
Ωσ (α)

[eε(u) − eε(u�)]dx in Lemma 4 below;
valid for all σ � ρα

nK1
, with K1 being fixed in the course of the proof of this lemma.

The contributions from Bσ (αi ), i = 1, . . . , n are estimated using Lemma 3. Note
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that the definitions of the norms imply that ‖J (u) − πδαi ‖Ẇ−1,1(Uσ (αi ))
� sε, so

the hypotheses of this lemma are satisfied whenever 4sε � σ . We may, thus, apply

that lemma to deduce that Σε
Uσ (αi )

(u, αi , di ) � −C ε
σ

√
ln σ

ε
− C

σ
sε for each i . We

assemble these estimates and simplify, using our assumption that sε � ε
√

ln ρα/ε

and the fact that ( nσ
ρα

)2 � n4 σ
ρα

, to find that

∫

Ωσ (α)

eε(|u|) + 1

4

∣∣
∣∣

j (u)

|u| − j (u�)

∣∣
∣∣

2

dx

� Σε
Ω(u, α, d) + C

(
n4 σ

ρα

+ n

σ
(sε + εEε(u))

)
.

(8.8)

for any σ such that 4sε � σ � ρα

nK1
. By taking σ = σ ∗ in (8.8), we arrive at (8.3).

Step 3. The remaining conclusion (8.4) is essentially a corollary of (8.3) and
is proved as follows. First note that

‖ j (u) − j (u�)‖L4/3(Ω)

�
∥∥∥
∥ j (u) − j (u)

|u|
∥∥∥
∥

L4/3(Ω)

+
∥∥∥
∥

j (u)

|u| − j (u�)

∥∥∥
∥

L4/3(Ω)

= A1 + A2.

(8.9)

The first term is easily estimated:

A1 � ‖ |∇u| |1 − |u| |‖L4/3(Ω) � ‖∇u‖L2(Ω) ‖1 − |u|‖L4(Ω)

� Eε(u)1/2(ε2 Eε(u))1/4.

As for the second term, note that

A2 �
∥∥∥
∥

j (u)

|u| − j (u�)

∥∥∥
∥

L4/3(Ωσ∗ (α))

+
∥∥∥
∥

j (u)

|u| − j (u�)

∥∥∥
∥

L4/3(∪i Bσ∗ (αi ))

,

for σ ∗ as in Theorem 2. By Hölder’s inequality,
∥∥
∥∥

j (u)

|u| − j (u�)

∥∥
∥∥

L4/3(Ωσ∗ (α))

� C

∥∥
∥∥

j (u)

|u| − j (u�)

∥∥
∥∥

L2(Ωσ∗ (α))

, (8.10)

and the right-hand side is estimated in (8.3), so we move on by observing that
∥
∥∥∥

j (u)

|u| − j (u�)

∥
∥∥∥

L4/3(∪i Bσ∗ (αi ))

�
∥
∥∥∥

j (u)

|u|
∥
∥∥∥

L4/3(∪i Bσ∗ (αi ))

+ ‖ j (u�)‖L4/3(∪i Bσ∗ (αi ))
.

Both terms are easily handled. First, by Hölder’s inequality,
∥∥∥∥

j (u)

|u|
∥∥∥∥

L4/3(∪i Bσ∗ (αi ))

� (πnσ ∗2
)1/4

∥∥∥∥
j (u)

|u|
∥∥∥∥

L2(∪i Bσ∗ (αi ))

� Cn1/4
√

σ ∗(Eε(u))1/2.
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Second, using (10.2) and the co-area formula, we compute

‖ j (u�)‖L4/3(∪i Bσ∗ (αi ))
� C

(
∑

i

∫ σ ∗

0

(n

r

)4/3
r dr

)3/4

� Cn7/4
√

σ ∗.

We obtain (8.4) by combining (8.9), (8.10), (8.3) and the other estimates above,
and then recalling the definition of σ ∗.

We finish the proof by giving the lower bound for eε(u) used above.

Lemma 4. Let Ω ⊂ R
2 be bounded, open, and simply connected, with ∂Ω of class

C1, and let u ∈ H1(Ω; C), α ∈ Ωn∗ and d ∈ {±1}n satisfy (8.2). Then there exist
constants C and K1, depending only on Ω , such that for any σ ∈ (0,

ρα

nK1
),

∫

Ωσ (α)

eε(|u|) + 1

4

∣
∣∣∣

j (u)

|u| − j (u�)

∣
∣∣∣

2

dx

�
∫

Ωσ (α)

[eε(u) − eε(u�)] + C

(
n

σ
(sε + εEε(u)) + n4 σ

ρα

) (8.11)

for u� = u�(·;α, d) as defined in (2.16).

This lemma is used again in the next section, in the proof of Theorem 3.

Proof. Step 1. Assume that u, α, d satisfy (8.2), and let σ > 0 be such that

σ � ρα

K1n
(8.12)

for K1 to be fixed below. Throughout the proof of this lemma, C will denote a
constant that may depend on Ω but is independent of all other parameters. We
write Ωσ for Ωσ (α) and G for G(·;α, d) as defined in (2.17).

Step 2. In Step 3 below we will verify that when (8.12) holds, there exists a set
Ω̃σ ⊂ Ωσ such that

|Ωσ \Ω̃σ | � C
n2σ 3

ρα

, (8.13)

and a function G̃σ of the form

G̃σ =
{

G in Ω̃σ ,

constant on each connected component of Ω\Ω̃σ ,
(8.14)

such that G̃σ ∈ W 1,∞(Ω) (in particular G̃σ is continuous across Ω ∩ ∂Ω̃σ ), with

χ̃ j (u�) = ∇ × G̃σ . (8.15)

Here χ̃ is the characteristic function of Ω̃σ .
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For now we assume the existence of Ω̃σ (α), G̃σ as described above, and we
use them to prove that

∣∣∣
∣

∫

Ωσ

| j (u�)|2 − j (u)

|u| · j (u�) dx

∣∣∣
∣

� C

[
n

σ
(sε + εEε(u)) + n4 σ

ρα

]
+ 1

4

∫

Ωσ

∣∣∣∣
j (u)

|u| − j (u�)

∣∣∣∣

2

dx .

(8.16)

Note that in view of (8.1), this immediately implies the conclusion of the lemma.
To prove (8.16), we write

∫
Ωσ

| j (u�)|2 − j (u)
|u| · j (u�) dx = A1 + A2 + A3,

where

A1 =
∫

Ω̃σ

j (u�) · ( j (u�) − j (u)) dx,

A2 =
∫

Ω̃σ

j (u�) · j (u)

|u| (|u| − 1) dx,

and

A3 =
∫

Ωσ \Ω̃σ

j (u�) ·
(

j (u�) − j (u)

|u|
)

dx .

We analyze these terms in turn. First, using (8.15),

A1 =
∫

Ω

∇ × G̃σ · ( j (u�) − j (u)).

Since G̃σ = G = 0 on ∂Ω , we can integrate by parts and use (2.16) and (2.7) to
find that

A1 = 2
∫

Ω

G̃σ

(

π

n∑

i=1

diδαi − J (u)

)

.

So

A1 � C
∥∥∥∇G̃σ

∥∥∥
L∞(Ω)

∥∥∥J (u) − π
∑

diδαi

∥∥∥
Ẇ−1,1(Ω)

� Csε

n

σ

by (10.2), since ‖∇G̃σ ‖L∞(Ω) = ‖ j (u�)‖L∞(Ω̃σ ).

Next, since (1 − |u|) � |1 − |u|2|, Cauchy–Schwarz implies

A2 � ‖ j (u�)‖L∞(Ω̃σ )

∥∥
∥∥

j (u)

|u|
∥∥
∥∥

2
‖1 − |u|2‖2.

and using (10.2) again we get an estimate of the first term, leading to

A2 � C
n

σ
εEε(u). (8.17)



Refined Jacobian Estimates and Gross–Pitaevsky Vortex Dynamics 459

Finally, (8.13) and (10.2) imply that

A3 �
∫

Ωσ\Ω̃σ

| j (u�)|2 + 1

4

∫

Ωσ\Ω̃σ

∣∣
∣∣ j (u�) − j (u)

u

∣∣
∣∣

2

� Cn4 σ

ρα

+ 1

4

∫

Ωσ\Ω̃σ

∣∣
∣∣ j (u�) − j (u)

u

∣∣
∣∣

2

.

Step 3. To complete the proof, we construct the set Ω̃σ used in Step 2 above.
We introduce some notation: First, for i = 1, . . . n and σ � ρα/2, we define

�i (σ ) = min|x−αi |=σ
G(x) if di < 0, �i (σ ) = max|x−αi |=σ

G(x) if di > 0. (8.18)

We write R := σ(1 + K1
nσ
ρα

), where K1 is the constant in (8.12), and we define

B̃i,σ = {x ∈ BR(αi ) : G(x) � �i (r)} if di < 0,

B̃i,σ = {x ∈ BR(αi ) : G(x) � �i (r)} if di > 0. (8.19)

We fix K1 to be large enough that

R � 2σ � ρα

2n
� ρα and ln

(
1 + K1

nσ

ρα

)
> 8

nσ

ρα

whenever (8.12) holds.
(8.20)

In fact it is enough to take K1 = 40 say. Finally we define

Ω̃σ (α) = Ω\
(
∪i B̃i,σ

)
(8.21)

and

G̃σ (x) :=
{

G(x) if x ∈ Ω̃σ

�i (σ ) if x ∈ B̃i,σ .
(8.22)

We now verify that the required properties hold. First, as a consequence of
Remark 1 (which appears immediately after Lemma 10) we infer that Bσ (αi ) ⊂
B̃i,σ for all i , and hence that Ω̃σ ⊂ Ωσ as claimed.

Second, it is clear that

|Ωσ \Ω̃σ | �
n∑

i=1

|BR(αi )\Bσ (αi )| � Cn2 σ 3

ρα

.

Finally, it is obvious that (8.15) holds almost everywhere, so we only need to verify
that G̃σ is continuous across Ω ∩ ∂Ω̃σ and consequently globally Lipschitz. For
concreteness, consider the case di = −1. Then it suffices to verify that G(x) �
�i (σ ) for x ∈ ∂ BR(αi ).

We use the notation Hi (x) = G(x) − di ln |x − αi |. Recall from (8.20) that
R � ρα , and so (10.4) implies that |∇Hi | � 2n

ρα
in BR(αi ). Fix a point x0 ∈ ∂ Bσ (α)

at which G(x0) = �i (σ ). For any y ∈ ∂ BR(αi )

G(y) = �i (σ ) + G(y) − G(x0) = �i (σ ) + Hi (y) − Hi (x0) + ln
σ

R
.
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Also, |x0 − y| � R + σ < 4σ , so

|Hi (y) − Hi (x0)| � 4σ‖∇Hi‖L∞(BR(αi )) � 8σ
n

ρα

and ln σ
R = − ln(1 + K1

nσ
ρα

), so it follows from (8.20) that Hi (y) < �i (σ ) as
required. This completes the proof.

9. Localization

In this section we prove the localization theorem discussed in the introduction
and used throughout the dynamics proof.

The analysis is a continuation of estimates of the authors in [20], and the proof
relies crucially on two results from that paper. We know from Lemma 6 how to
resolve a single vortex in a ball, and with error depending on the surplus energy in the
ball. We also have a global estimate from Lemma 7 that controls ‖J (u)‖Ẇ−1,1(Ωr )

by the total energy over Ωr . In order to use these results, we use some techniques
from Section 8 to compute bounds the energy about each vortex and bounds on the
energy in Ωr .

Our main result of this section is the following:

Theorem 3. Let Ω be a bounded, open, simply connected subset of R
2 with C1

boundary. Then there exists constants C and K2, depending on diam(Ω), with the
following property:

For any u ∈ H1(Ω; C), if there exist n � 0, α = (α1, . . . , αn) ∈ Ωn∗ and
d ∈ {±1}n such that

∥
∥∥∥∥∥

J (u) −
n∑

j=1

πd jδα j

∥
∥∥∥∥∥

Ẇ−1,1(Ω)

� ρα

8K2n5
, (9.1)

and if in addition Eε(u) � 1 and

[
n5

ρα

Eε(u) + n10

ρ2
α

√
Eε(u)

]

� 1

ε
, (9.2)

then there exist (ξ1, . . . , ξd) ∈ Ωn∗ such that |ξi − αi | � ρα

2K2n4 for all i , and

∥∥∥∥
∥

J (u) − π

n∑

i=1

diδξi

∥∥∥∥
∥

Ẇ−1,1

(9.3)

� C ε

[

n(C + Σε
Ω)2e

1
π

Σε
Ω + (C + Σε

Ω)
n5

ρα

+ Eε(u),

]

where Σε
Ω = Σε

Ω(u, α, d) = Eε(u) − W ε
Ω(α, d).
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The first assumption (9.1) says that vortices are well-localized compared to the
length-scale determined by the vortex separation ρα . The second assumption (9.2)
is a weak assumption that allows n � ε−α, ρα � εβ for certain α, β > 0.

Some of the results from [20] that we will need are stated in terms of the
modified Jacobian J ′(u), a useful technical device that we learned about from [1].
They define

J ′(u) = ζ(|u|)J (u), (9.4)

where ζ : [0,∞) → [0,∞) is a smooth function with support in [0, 1/2), and
such that

∫
R2 ζ(|y|) dy = π . In other words, the two-form J ′(u) dx1 ∧ dx2 is the

pullback by u of ζ(|y|)dy1 ∧ dy1. The choice of ζ implies that

supp J ′(u) ⊂
{

x : |u(x)| <
1

2

}
(9.5)

so that J ′(u) is more concentrated than J (u). In addition, the following lemma
implies that J ′(u) is close to J (u) if

∫
eε(u) is not too large.

Lemma 5. ([1, Lemma 3.6]) IfΩ is a bounded open subset of R2 and u ∈ H1(Ω; C)

then

‖J ′(u) − J (u)‖Ẇ−1,1(Ω) � C‖∇u‖L2(Ω) ‖1 − |u|2‖L2(Ω) � CεEε(u)

for a constant C depending only on the choice of the auxiliary function ζ appearing
in the definition of J ′(u).

It follows from calculations in Section 3.5 of [1] that

J ′(u) = J (u′), where u′ = g(|u|)u,

and g(s) = 1

s

(∫ s

0
2ζ(t) dt

)1/2

.
(9.6)

The first result from [20] that we will use in this section is essentially the n = 1
case of Theorem 3 when Ω is a ball:

Lemma 6. ([20, Theorem 3]) There exists an absolute constant C such that for any
0 < ε � τ and any u ∈ H1(Uτ ; C) satisfying

‖J (u) − πdδ0‖Ẇ−1,1(Uτ ) <
τ

4
with d = ±1, (9.7)

if we write Σε
Uτ

:= Σε
Uτ

(u; 0, 1) = ∫
Uτ

eε(u) dx − (π ln τ
ε

+ γ ) and

�ε := ε C(C + Σε
Uτ

)eΣε
Uτ

/π
, (9.8)

then there exists a point ξ ∈ Uτ/2 such that for any σ < τ − �ε,

|{s ∈ [σ, τ ] : u satisfies (9.10) on Us}| � τ − σ − �ε. (9.9)

where the estimate referred to is

‖J ′(u) − πdδξ‖Lip∗(Us ) � εC(C + Σε
Uτ

)2eΣε
Uτ

/π = �ε(C + Σε
Uτ

). (9.10)
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The result clearly remains true, with appropriate modifications, if Uτ = Uτ (0)

is replaced by an open ball Uτ (y) centered at an arbitrary point y ∈ R
2.

The second result from [20] can be thought of as the n = 0 case of Theorem 3.
For present purposes we only need this result when the domain is a set of the form
Ωσ (α) = Ω\∪n

i=1 Bσ (αi ).

Lemma 7. ([20, Theorem 4]) There exists an absolute constant C such that for any
bounded open Ω ⊂ R

2, any α ∈ Ωn. any w ∈ H1(Ω; C), any 0 < ε � 1/2, and
any τ > 0, if we write

�ε := Cε exp

(
1

π

∫

Ωτ (a)

eε(w)dx

)
, (9.11)

then for any σ > sε,

|{s ∈ [τ, τ + σ ] : w satisfies (9.14), (9.13) below on Ωs(α)}| � σ − sε.

(9.12)

The conditions appearing in (9.12) are

|u| >
1

2
on ∪i ∂ Bs(αi ) (9.13)

and

‖J ′(w)‖Ẇ−1,1
Γ (Ωs (α))

� �ε

∫

Ωτ (α)

eε(w)dx, (9.14)

where W −1,1
Γ is defined in (2.4) and Γ = ∂Ω .

Proof of Theorem 3. Step 1. We will take K2 = max{K1,
1
4 diam(Ω)}. In particu-

lar this implies that ρα

K2
� 1

2 , which is used below.
We will start by using inequalities (8.7) and (8.11) from the previous section,

for various choices of the parameter σ , and with ρα/8K2n5 from (9.1) playing the
role of sε in the hypothesis (8.2) for these estimates. We will always select

σ ∈
[

3

4
σ1, σ1

]
, σ1 := ρα

n4 K2
.

(Actually, we will only need the two endpoints).
Throughout the proof we will write Σε

Ω for the surplus energy Σε
Ω(u;α, d) on

the whole domain Ω , and Σε
i (σ ) for the surplus energy Σε

Uσ (αi )
(u;αi , di ) of u on

a ball Uσ (αi ) about the i th point.
For σ ∈ [ 3

4σ1, σ1
]

in this range and sε as specified above:

4sε = ρα

2K2n5
� σ

n
� σ � ρα

nK1
. (9.15)
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In particular the hypotheses for (8.7) and (8.11) are always satisfied. In addition, for
these choices of σ, sε, the error terms in these two inequalities are always bounded
by constants C , independent of ε, n, ρα . Thus

Σε
Ω(u;α, d)

�
∫

Ωσ (α)

[eε(u) − eε(u�)]dx +
∑

Σε
i (σ ) − C by (8.7)

�
∫

Ωσ (α)

eε(|u|) + 1

4

∣∣∣
∣

j (u)

|u| − j (u�)

∣∣∣
∣

2

+
∑

Σε
i (σ ) − C by (8.11). (9.16)

Step 2. We will next apply Lemma 6 on each Uσ1(αi ). First note that by the
definition of the norms, and since {α1, . . . , αn} ∩ Uσ1(αi ) = {αi },

∥
∥J (u) − πdiδαi

∥
∥

Ẇ−1,1(Uσ1 (αi ))
�

∥∥
∥∥∥

J (u) − π

n∑

i=1

diδαi

∥∥
∥∥∥

Ẇ−1,1(Ω)

� ρα

8K2n5
� 1

4

σ1

n

(9.17)

for each i , by (9.1) and (9.15). Thus the hypotheses of Lemma 6 are satisfied on
each ball. In addition, we see from (9.16) that for each such ball

Σε
i (σ ) � Σε

Ω + C, for all i = 1, . . . , n and σ ∈
[

3

4
σ1, σ1

]

and so for each i

�i
ε := ε C(C + Σε

i (σ1))e
Σε

i (σ1)/π � ε C(C + Σε
Ω)eΣε

Ω/π =: �ε
Ω (9.18)

after increasing the constant C as necessary. Then Lemma 6 implies that for each
i there exists a point ξi ∈ Uσ1/2(αi ) such that

∣∣∣∣

{
s ∈

[
3

4
σ1, σ1

]
: u does not satisfy (9.20) on Us(αi )

}∣∣∣∣ � �ε
Ω, (9.19)

where the estimate referred to is

‖J ′(u) − πdδξi ‖Lip∗(Us (αi )) � εC(C + Σε
Ω)2eΣε

Ω/π = �ε
Ω(C + Σε

Ω). (9.20)

Step 3: In this step we will prove that, after taking C still larger if necessary,
the estimate

‖J ′u‖Ẇ−1,1
Γ (Ωs (α))

� C(C + Σε
Ω)

[

�ε
Ω + ε

n5

ρα

]

(9.21)

holds for many choices of the parameter s. More precisely, we show that
∣
∣∣∣

{
s ∈

[
3

4
σ1, σ1

]
: (9.21) does not hold

}∣∣∣∣ � �ε
Ω. (9.22)

The argument has three parts.
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Step 3a. lower bound Σε
i � −C/n for all i , using Lemma 3.

First note that from Lemma 3 and (9.17), if σ ∈ [ 3
4σ1, σ1], then

Σε
i (σ ) � −C

ε

σ1

√
ln

σ1

ε
− C

σ1

∥
∥J (u) − πdiδαi

∥
∥

Ẇ−1,1(Uσ1(αi ))
� −C

n
.

In view of (9.2), it follows that Σε
i (σ ) � C

n for all such σ . It then follows from
(9.16) that for σ as above,

∫

Ωσ

eε(|u|) + 1

4

∣∣
∣∣

j (u)

|u| − j (u�)

∣∣
∣∣

2

� C + Σε
Ω. (9.23)

Step 3b: Let w := u/u�, where u� = u�(·;α, d) denotes the canonical har-
monic map. By (8.5) and (9.23) for σ ∈ [ 3

4σ1, σ1
]
,

∫

Ωσ

eε(w) �2Σε
Ω + C

+
∫

Ωσ

j (u)

|u| · j (u�)(1 − |u|) − 1

2
(1 − |u|2)| j (u�)|2 dx .

(9.24)

One can easily check from the definitions in (9.6) that
∣
∣∣ j (u)

|u|
∣
∣∣
2

� |∇u|2, and it is

clear that |1 − |u| | � |1 − |u|2|, so that (very much as in the proof of (8.17))
∫

Ωσ

j (u)

|u| · j (u�)(1 − |u|) � ‖ j (u�)‖L∞(Ωσ )ε Eε(u) � εC
n

σ
Eε(u) � C

when σ � 3
4σ1 = C ρα

n4 , in view of (9.2) and (10.2). Using the same two inequalities
and the choice of σ1, we similarly estimate

−
∫

Ωσ

1

2
(1 − |u|2)| j (u�)|2 dx � ε

√
Eε(u)‖| j (u�)|2 ‖L2(Ωσ )

� ε
√

Eε(u)‖ j (u�)‖2
L∞(Ωσ ) |Ω|1/2

� Cε
√

Eε(u)
n2

σ 2 � C. (9.25)

It follows that
∫

Ωσ

eε(w) � C + Σε
Ω. (9.26)

Taking σ = 3
4σ1, we conclude from Lemma 7 that

∣∣∣
∣

{
s ∈

[
3

4
σ1, σ1

]
: w satisfies (9.28), (9.29) below on Ωσ (α)

}∣∣∣
∣ � 1

4
σ − �ε

Ω

(9.27)

with

‖J ′(w)‖Ẇ−1,1
Γ (Ωs (α))

� εC(C + Σε
Ω)2eΣε

Ω/π = C�ε
Ω(C + Σε

Ω) (9.28)
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and

|w| >
1

2
on ∪ ∂ Bs(αi ). (9.29)

(Lemma 7 actually gives somewhat better estimates, but this is all that we need.)
Step 3c: Next we check that J ′(u) is close to J ′(w) on Ωs(α) for s such that

(9.29) holds. To do this we use the notation of (9.6) to write J ′(u) = J (u′) and
J ′(w) = J (w′), with u′ = g(|u|)u and similarly w′ = g(|w|)w = g(|u|)w (since
|u| = |w|). Then u′ = w′u�, and so one can check that

j (u′) = j (w′) + |w′|2 j (u�)

and hence that

J ′(u) − J ′(w) = 1

2
∇ ×

[
(|w′|2 − 1) j (u�)

]
.

If φ ∈ W 1,∞
Γ (Ωs) (and hence vanishes on Γ = ∂Ω), then for s such that |u| =

|w| > 1/2 on ∪∂ Bs(αi ), the definitions imply that |w′| = 1 in a neighborhood
of ∪∂ Bs(αi ), so we can integrate by parts without any contributions coming from
boundary terms, to conclude that

∫

Ωs

φ(J ′(u) − J ′(w)) =
∫

Ωs

∇ × φ ·
[
(|w′|2 − 1) j (u�)

]

� ‖∇φ‖L∞(Ωs ) ‖ j (u�)‖L2(Ωs )
‖|w′|2 − 1‖L2(Ωs )

.

From the definitions,
∣∣|w′|2 − 1

∣∣ � C
∣∣|w|2 − 1

∣∣ and so ‖|w′|2 − 1‖L2(Ωs )
is con-

trolled by (9.26). Also, ‖ j (u�)‖L2(Ωs )
� ‖ j (u�)‖L∞(Ωs ) |Ω|1/2 � Cn/s. Thus

‖J ′(u) − J ′(w)‖Ẇ−1,1
Γ (Ωs )

� Cε(C + Σε
Ω)

n5

ρα

for s ∈ [ 3
4σ1, σ1

]
such that |w| > 1

2 on ∂Ωs\Γ . By combining this with the
conclusions of Step 3a, we find that (9.21), (9.22) hold once C is taken to be large
enough.

Step 4. Now define the set

S :=
{

s ∈
[

3

4
σ1, σ1

]
: (9.20) holds ∀i, and (9.21) also holds

}
.

In this step we show that if S is nonempty then the points ξ1, . . . , ξn found above
satisfy

∥
∥∥∥∥

J (u) − π

n∑

i=1

diδξi

∥
∥∥∥∥

Ẇ−1,1(Ω)

� C(n + 1)(C + Σε
Ω)

[
�ε
Ω + ε

n4

ρα

]
+ CεEε(u)

(9.30)

for a suitable constant C . For future use, we assume that C � 1.
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Assuming S 	= ∅, we fix some s ∈ S. Then if φ ∈ W 1,∞
0 (Ω), the restriction of

φ to Us(αi ) belongs to Lip(Us), and similarly the restriction of u to Ωs(α) belongs
to W 1,∞

Γ (Ωs). If in addition ‖∇φ‖∞ � 1, then

∫

Ω

φ

(

J ′(u) − π

n∑

i=1

diδξi

)

=
∫

Ωs

φ J ′(u) +
n∑

i=1

∫

Us (αi )

φ(J ′(u) − πdiδξi )

� ‖J ′(u)‖Ẇ−1,1
Γ (Ωs )

+
n∑

i=1

‖J ′(u) − πdiδξi ‖Lip∗(Us (αi ))

� C(n + 1)(C + Σε
Ω)

[
�ε
Ω + ε

n4

ρα

]
.

By taking the supremum over all such φ, we find that
∥∥∥∥∥

J ′(u) − π

n∑

i=1

diδξi

∥∥∥∥∥
Ẇ−1,1(Ω)

is bounded by the right-hand side of the above inequality. Now (9.30) follows from
the above estimate and Lemma 5.

Step 5. We now prove that (9.3) holds, with the constant C appearing in (9.30)
and the points ξ1, . . . , ξn found above. To do this, note that we may assume that

σ1

4
= ρα

4K2n4 � C(n +1)(C +Σε
Ω)

[

�ε
Ω +ε

(
n ln

Cn

ρα

)1/2
]

+CεEε(u) (9.31)

since otherwise (9.3) (with ξi = αi for all i) follows from (9.1). So in view of Step
4, it suffices to verify that the S is nonempty whenever (9.31) is satisfied.

To see that S 	= ∅, note that by (9.19) and (9.22),
[ 3

4σ1, σ1
] \S has measure at

most (n + 1)�ε
Ω . So we must check that

(n + 1)�ε
Ω � 1

4
σ1.

Since we have assumed that C � 1, this follows directly from (9.31) and (9.15),
and so the proof is finished.

10. More about the canonical harmonic map and the renormalized energy

In this section, we first give a series of lemmas concerning the canonical har-
monic map and the renormalized energy. At the end of the section, we construct
maps that are close to energetically optimal, for a fixed ε and prescribed configura-
tion of vortices. This construction proves in particular that one can find initial data
satisfying the hypotheses of Theorem 1.

We start with a characterization of the gradient of the renormalized energy. We
include the proof for the sake of completeness.
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Lemma 8. Let ξ ∈ Ωn∗ and d ∈ {±1} then the canonical harmonic map u� =
u�(·; ξ, d) and the renormalized energy WΩ(ξ, d) satisfy

∫
Jkl∂xk xm η ( j (u�))m ( j (u�))l =

n∑

j=1

d j∂kη(ξ j )
(∇ξ j WΩ(ξ, d)

)
k
, (10.1)

where η ∈ C2(Ω) and ∇2η has support in a neighborhood of the ξ j ’s.

Proof. This statement has been proved in [9] for periodic boundary conditions and
[24] for Dirichlet boundary conditions. The proof in the case of Neumann boundary
conditions follows along exactly the same lines.

Recall from (2.23) the constant γ := limr→∞[I (r, ε)−π ln r/ε]. The following
lemma establishes the rate at which the right-hand side converges.

Lemma 9. ([20, Lemma 16])
∣∣γ − (I (r, ε) − π ln r

ε
)
∣∣ � C( ε

r )2.

Next we estimate the derivatives of the canonical harmonic map and renormal-
ized energy.

Lemma 10. There exists absolute constants C such that for every bounded, open
Ω ⊂ R

2, a ∈ Ωn∗ and d ∈ {±1}n, the renormalized energy WΩ(a, d), canonical
harmonic map u�(·, ; a, d) and its potential G(·; a, d) as defined in (2.17) satisfy

‖ j (u�)‖L∞(Ωr (a)) = ‖∇G‖L∞(Ωr (a)) � 2n

r
(10.2)

for all r � ρa, and

|∇i WΩ(a, d)| � Cn

ρa
, |∇i∇ j WΩ(a, d)| � Cn

ρ2
a

(10.3)

for every i, j ∈ {1, . . . , n}. Finally, for Hi (x) := G(x) − di ln |x − ai |,

‖∇Hi‖L∞(Bρα (αi )) � 2n

ρα

. (10.4)

Remark 1. For every i , it follows from (10.4) that G cannot have any critical points
in {x : 0 < |x − αi | < ρα/2n}.
Proof. In view of the definitions (2.19), (2.20), the conclusions all follow from the
estimates

|∇x H(x, y)| � 1

dist(y, ∂Ω)
, |∇2

x H(x, y)| � C

dist(y, ∂Ω)2 .

By differentiating the definition (2.18) of the auxiliary function H , we find that

−�x Hxi (·, y) = 0 in Ω,

Hxi (x, y) = − xi − yi

|x − y|2 for x ∈ ∂Ω, y ∈ Ω
(10.5)
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for i = 1, 2. It follows that −�|∇H | � 0 in Ω , and so the maximum principle
implies that

|∇H(x; y)| � dist(y, ∂Ω)−1

for all x ∈ Ω, y ∈ Ω . A similar argument shows that |∇2
x H(x, y)| � C

dist(y,∂Ω)2 .

In order to determine rate of change of the canonical harmonic map, we have

Lemma 11. Let ξ = (ξ1, . . . , ξn) and ξ ′ = (ξ ′
1, . . . , ξ

′
n) with ξ, ξ ′ ∈ Ωn∗. Let

Ωr (ξ, ξ ′) = Ω\
(
∪n

j=1 Br (ξ j ) ∪ Br (ξ
′
j )
)

, then for every d ∈ {±1}n,

∥∥ j (u�)(ξ, d) − j (u�)(ξ
′, d)

∥∥
L∞(Ωr (ξ,ξ ′)) � 1

r2

n∑

j=1

∣∣
∣ξ j − ξ ′

j

∣∣
∣ (10.6)

for all r � min{ρξ , ρξ ′ }. In addition, for 1 < p < 2,

‖ j (u(ξ)) − j (u(ξ ′))‖L p(Ω) �
(
π

∑
|ξi − ξ ′

i |
) 2

p −1
(2nπ)

2− 2
p . (10.7)

Proof. The local Lipschitz bound (10.6) follows from the vector identity
∣∣∣
∣

x − a

|x − a|2 − x − b

|x − b|2
∣∣∣
∣

2

= |a − b|2
|x − a|2 |x − b|2 (10.8)

and the maximum principle. In particular

j (u�)(ξ) = −∇ × G(x, ξ) = −
n∑

j=1

d j∇ × (
log

∣∣x − ξ j
∣∣ + H(x, ξ j )

)

so

j (u�)(ξ) − j (u�)(ξ
′) = −

n∑

j=1

d j∇ ×
(

log

∣
∣∣∣∣
x − ξ j

x − ξ ′
j

∣
∣∣∣∣
+ H(x, ξ j ) − H(x, ξ ′

j )

)

.

We argue as in the proof of Lemma 10. Letting Q j = H(x, ξ j ) − H(x, ξ ′
j ) then

−�Q j
xm = 0 in Ω and Q j

xm = −d j

[
(x−ξ j )m

|x−ξ j |2 − (x−ξ ′
j )m

∣∣
∣x−ξ ′

j

∣∣
∣
2

]

on ∂Ω , and since

−�
∣∣∇Q j

∣∣ � 0, by (10.8) and the maximum principle

∣∣∣∇Q j
∣∣∣ �

∣∣
∣ξ j − ξ ′

j

∣∣
∣

dist(ξ j , ∂Ω) dist(ξ ′
j , ∂Ω)

.

Summing over indices we find
∣∣
∣∣∣∣

n∑

j=1

∇
(

H(x, ξ j ) − H(x, ξ ′
j )
)
∣∣
∣∣∣∣
�

n∑

j=1

∣∣∣ξ j − ξ ′
j

∣∣∣

dist(ξ j , ∂Ω) dist(ξ ′
j , ∂Ω)

.
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On the other hand,
∣∣∣∣∣∣

n∑

j=1

∇ log

∣∣∣∣∣
x − ξ j

x − ξ ′
j

∣∣∣∣∣

∣∣∣∣∣∣
�

n∑

j=1

∣∣∣∣∣∣
∣

x − ξ j
∣∣x − ξ j

∣∣2
− x − ξ ′

j
∣∣∣x − ξ ′

j

∣∣∣
2

∣∣∣∣∣∣
∣
�

n∑

j=1

∣
∣∣ξ j − ξ ′

j

∣
∣∣

∣
∣x − ξ j

∣
∣
∣
∣∣x − ξ ′

j

∣
∣∣

also follows from (10.8). Combining both bounds yields (10.6).
To prove (10.7), note that for 1 < p < 2

∥∥ j (u(ξ)) − j (u(ξ ′))
∥∥

L p(Ω)
= ∥∥∇ × (G(ξ) − G(ξ ′))

∥∥
L p(Ω)

� C
∥∥G(ξ) − G(ξ ′)

∥∥
W 1,p(Ω)

� C
∥
∥�(G(ξ) − G(ξ ′))

∥
∥

W−1,p(Ω)

= C
∥∥∥π

∑
di (δξi − δξ ′

i
)

∥∥∥
W−1,p(Ω)

� C
∥∥∥π

∑
di (δξi − δξ ′

i
)

∥∥∥
C

0, 2
p −1

0 (Ω)∗
.

The last line is the dual of the standard Sobolev embedding theorem. We use the
interpolation inequality

‖µ‖C0,α
0 (Ω)∗ � (‖µ‖C0,1

0 (Ω)∗)
α(‖µ‖C0(Ω)∗)

1−α

(see [18, Lemma 3.3]) together with (2.6), to deduce (10.7).

We next estimate the rate of convergence of the limit used in (2.20) to define
the renormalized energy.

Lemma 12. There exists an absolute constant C such that

WΩ(α, d) + nπ ln
1

r
−

∫

Ωr (α)

1

2
|∇u�|2 dx � Cn3

(
r

ρα

)2

(10.9)

for all bounded, open Ω ⊂ R
2, all n � 1, α ∈ Ωn∗, d ∈ {±1}n, and r < ρα .

Proof. We will write Ωr as shorthand for Ωr (α). We define Hi as in Lemma 10
and compute

1

2

∫

Ωr

|∇u�|2 dx = 1

2

∫

Ωr

|∇G|2 dx

= 1

2

∫

∂Ωr

1

2
G∇νG dH1

= −1

2

∑

i

[∫

∂ Br (αi )

(Hi + di ln r)

(
∇ν Hi + di

r

)
dH1

]
.

The sign changes because the outward normal to ∂Ωr is the inward normal to ∂ Br

and vice versa. Using the mean value property of harmonic functions and integrating
by parts again in the terms involving H∇ν H , we get

1

2

∫

Ωr

|∇u�|2 dx =
∑

i

π

(
d2

i ln
1

r
− di Hi (αi )

)
− 1

2

∫

Br (αi )

|∇Hi |2 dx .
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When |di | = 1 for all i , (2.20) implies that WΩ(α, d) = −π
∑

di Hi (αi ), and so

WΩ(α, d) + nπ ln
1

r
−

∫

Ωr

1

2
|∇u�|2 dx = 1

2

∑

i

∫

Br (αi )

|∇Hi |2 dx (10.10)

� Cn3
(

r

ρα

)2

by (10.4).

The next lemma gives a very crude estimate of the how the renormalized energy
scales with the number n of vortices.

Lemma 13. For a smooth, bounded domain Ω ⊂ R
n, if a ∈ Ωn∗

and d ∈ {±1}n,
then

WΩ(a, d) � C

(
n3 + n2

ρa

)
. (10.11)

Proof. Let u� = u�(·, a, d). For r < ρa we compute

∫

Ωr

|∇u�|2 =
∫

Ωρa

|∇u�|2 +
n∑

i=1

∫

Bρa\Br (ai )

∣∣
∣∣∇Hi + di

x − ai

|x − ai |2
∣∣
∣∣

2

dx

using the notation of Lemma 10. From (10.2), we estimate

∫

Ωρa

|∇u�|2 dx � Cn2

ρ2
a

.

Next, since Hi is harmonic in Bρa (ai ),

∫

Bρa\Br (ai )

∇Hi · x − ai

|x − ai |2 dx =
∫ ρa

r

1

s

∫

∂ Bs (ai )

ν · ∇Hi H1(dx) ds = 0,

so using (10.4), we check that for i = 1, . . . , n,

∫

Bρa\Br (ai )

∣∣∣∣∇Hi + di
x − ai

|x − ai |2
∣∣∣∣

2

dx =
∫

Bρa\Br (ai )

|∇Hi |2 +
∣∣∣∣

x − ai

|x − ai |2
∣∣∣∣

2

dx

� Cn2 + 2π ln
ρa

r
.

Combining these estimates and recalling the characterization of WΩ(a, d) in (2.20),
we deduce (10.11).
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We conclude this section by constructing maps that are close to energetically
optimal for fixed ε and configuration of vortices a, d. Recall the definition

I (r, ε) = inf

{∫

Ur

eε(u) ; u ∈ H1(Br ; C), u = eiθ on ∂ Br

}
.

It is known that the infimum on the right-hand side of the above definition is attained,
and moreover the minimizer uε,r has the form

uε,r (x) = fε,r (|x |) x

r
(10.12)

for an increasing function fε,r : [0,∞) → [0, 1] such that fε,r (0) = 0 and
fε,r (r) = 1. One can easily check that fε,r (s) = fλε,λr (λs) for all λ > 0, and
hence I (r, ε) = I (r/ε, 1) for all r, ε.

We will use the notation

ur,ε
� (x; a, d) = u�(x; a, d)

d∏

i=1

fε,r (|x − ai |). (10.13)

For r � ρa , this yields a map with vortex configuration a, d and with nearly optimal
energy. We will usually write simply ur,ε

� when no confusion can result.

Lemma 14. For any a ∈ Ωn∗ and d ∈ {±1}n and for r � ρa, the map ur,ε
� (·; a, d)

constructed above satisfies

∫

Ω

eε(u
r,ε
� ) dx � W ε

Ω(a, d) + Cn
(ε

r

)2
(10.14)

and
∥∥∥∥∥

J (ur,ε
� ) − π

n∑

i=1

diδai

∥∥∥∥∥
Ẇ−1,1(Ω)

� Cnε

(
1 + ε

n3

ρ2
a

)
. (10.15)

The proof will show that

∥∥∥∥
∥

J (ur,ε
� ) − π

n∑

i=1

diδai

∥∥∥∥
∥

Ẇ−1,1(Ω)

� Cnε (10.16)

if r � ρa/cn for a suitable constant c. Throughout the body of this paper we refer
to a function uε

�(a, d). We define

uε
�(a, d) := ur�,ε

� (a, d) for r� := ρa

cn
,

so that in particular (10.16) holds for uε
�(a, d).
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Proof. 1. To prove (10.14), note that
∫

Ω

eε(u
r,ε
� ) dx =

∫

Ωr (a)

1

2
|∇u�|2 dx +

∑

i

∫

Br (ai )

eε(u
r,ε
� ) dx . (10.17)

In Br (ai ) = Br , ur,ε
� = fε,r (|x − ai |)u�(x) and so we compute that

eε(u
r,ε
� ) = 1

2
(|∇ fε,r |2 + f 2

ε,r |∇u�|2) + 1

4ε2 ( f 2
ε,r − 1)2.

Writing f 2
ε,r |∇u�|2 = f 2

ε,r |∇Hi +di
x−ai

|x−ai |2 |2 as in the proof of Lemma 13, we find
as before that the cross-terms integrate to 0, using the radial symmetry of fε,r . Thus

∫

Br (ai )

eε(u
r,ε
� ) =

∫

Br (ai )

[

eε( fε,r ) + 2 f 2
ε,r

|x − ai |2
]

dx

+
∫

Br (ai )

1

2
f 2
ε,r |∇Hi |2 dx .

(10.18)

The first integral on the right-hand side is exactly I (r, ε), by the definition of fε,r .
So combining (10.17) with (10.18) and recalling (10.10), we deduce that
∫

Ω

eε(u
r,ε
� ) dx =WΩ(a, d) + n

(
π ln

1

r
+ I (r, ε)

)
+ 1

2

∑

i

∫

Br (ai )

( f 2
ε,r −1)|∇Hi |2.

The integrals on the right-hand side are all negative, and by using (9) we find that
∫

Ω

eε(u
r,ε
� ) dx � W ε

Ω(a, d) + O

(
n
(ε

r

)2
)

.

2. Because J (ur,ε
� ) = 0 in Ωr (a), (10.15) will follow once we check that

‖J (ur,ε
� ) − πdiδai ‖Lip∗(Br (ai )) � Cnε

(
1 + ε

n3

ρ2
a

)
, i = 1, . . . , n. (10.19)

We assume for convenience that ai = 0 and that di = 1. We also write f instead
of fε,r . Using (2.10) and the definition of the potential G associated with u�, we
see that

J (ur,ε
� )(x) = f (|x |) f ′(|x |) x

|x | × j (u�) =
(

f 2

2

)′
x

|x | · ∇G.

Writing G = ln |x |+Hi (x) in Br (ai ) = Bi (0), as in Lemma 10, the above becomes

J (ur,ε
� )(x) =

(
f 2

2

)′ (
1

|x | + x

|x | · ∇Hi

)
. (10.20)

It then follows from (10.4) that J (ur,ε
� ) > 0 in Bρ/Cn(0). Various arguments show

that
∫

Br

J (ur,ε
� )(x) = π.
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For example, this follows from (10.20) and integration by parts. Thus if Lip(φ) � 1
then

∫

Br

φ[J (ur,ε
� ) − πδ0]

=
∫

Br

(φ(x) − φ(0))J (ur,ε
� )(x) dx

�
∫

Br

|x | |J (ur,ε
� )(x)| dx

=
∫

Bρa/Cn

|x |J (ur,ε
� )(x) dx +

∫

Br\Bρa/Cn

|x | |J (ur,ε
� )(x)| dx .

Again using (10.20) and arguing as in the proof of Lemma 13, one can check that

∫

Bρa/Cn

|x |J (ur,ε
� )(x) dx =

∫

Bρa/Cn

(
f 2

2

)′
dx = π

∫ ρa/Cn

0
s( f 2)′(s)ds,

where f = fε,r . After integrating by parts and using the fact that fε,r � fε,∞ �
max{0, 1 − (Cε/s)2}, a short calculation shows that

π

∫ ρa/Cn

0
s( f 2)′(s)ds � Cε.

Finally, from (10.20) and (10.4) it is easy to see that |J (ur,ε
� )| � 1

2 ( f 2)′ Cn
ρa

in

Br\Bρa , and from this one can check (using again f � max{0, 1 − (Cε/s)2}) that

∫

Br \Bρa/Cn

|x | |J (ur,ε
� )(x)| dx �

(
Cn

ρa

)3

ε2r � Cn3

ρ2
a

ε2.

Combining the above inequalities, we arrive at (10.19)
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