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Abstract

We give a rigorous derivation of a continuum theory from atomic models for
thin films. This scheme has been proposed by Friesecke and James in [J. Mech.
Phys. Solids 48, 1519–1540 (2000)]. The resulting continuum energy expression
is obtained by integrating a stored energy density which not only depends on the
deformation gradient, but also on ν−1 director fields when ν is the (fixed) number
of atomic film layers.
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1. Introduction

The main focus of this—and its companion paper [30]—is on the derivation
and discussion of effective theories for thin elastic structures. These objects are
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of interest not only in technical applications. One also encounters completely new
phenomena (as, for example, large deformations at low energy). To find appropriate
energy functionals in the limit of singular geometries is a classical problem in
elasticity theory (see, for example, the work of Euler [15], Kirchhoff [24], von
Kármán [23], etc., also compare [3,11,12,28]). However, rigorous results deriving
membrane, plate, rod or shell theories from three-dimensional elasticity have been
obtained only recently (see the work of Anzellotti et al. [4], Le Dret and Raoult
[25–27] and Friesecke et al. [18–22]). By now there has emerged a whole hierarchy
of plate theories according to different scalings of the stored energy (compare [20]).
For ultra-thin films, that is, films consisting of only few atomic layers, however, a
pure continuum mechanical approach might not be justified any more.

Another area of research in elasticity theory concerns the passage from discrete
atomic models to continuum theories. Rigorous Γ -convergence results, especially
in one dimension, are proven in [8–10] by Braides and Gelli for pair potentials
under suitable growth assumptions on the atomic interactions. A general represen-
tation result for bulk energies of distinguishable particles under suitable growth
conditions has been obtained by Alicandro and Cicalese [1]. Continuum limits
in this regime for thin films are dealt with in a recent paper by Alicandro et al.
[2]. The results of Blanc et al. [6,7], on the other hand, deal with both pair poten-
tial and quantum mechanical energy models, but assume the Cauchy–Born rule to
deduce continuum limits in this general framework.

The main goal of this work (see Section 3) is to investigate effective theories
of thin films starting from atomistic models in the membrane energy regime. (For
recent developments in discrete-to-continuum limits for plates at finite bending
energies see [31].) Thus, in order to study new effects that may arise for ultra-thin
layers, we consider variational convergence schemes that simultaneously take into
account the effects of singular geometries and of atomistic particle interactions.
We will prove a rigorous version of a scheme that was proposed by Friesecke and
James [17]. The resulting continuum energy expression is obtained by integrating
a stored energy density which not only depends on the deformation gradient but
also on ν − 1 director fields, where ν is the (fixed) number of atomic film layers.
These vector fields will allow for a fine resolution of the relative layer positions in
the small film direction.

More precisely, we fix h > 0, the thickness of the film, and for k ∈ N consider
the reference configurations

Lk = Z
3 ∩ [0, k] × [0, k] × [0, h]

(more general lattices are possible, see Paragraph 3.6) subject to some deformation
y(k) : Lk → R

3. The elastic energy of such a deformation is denoted by E(y(k)).
In the membrane energy regime the macroscopic energy scales like the aspect ratio
of the film. The natural limiting objects in the limit k → ∞ are argued to be
(after rescaling) given by some function u : [0, 1] × [0, 1] → R

3 (the single layer
deformation) and vector fields bi : [0, 1] × [0, 1] → R

3, i = 1, . . . , ν − 1, where
the film consists of ν layers of atoms (the relative shifts of the film layers). Having
defined a suitable notion of convergence, we are led to the following fundamental
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Problem. Find ϕ : R
3·2 × (R3)ν−1 → R such that

E(u, b1, . . . , bν−1) := lim
k→∞

1

νk2 E(y(k)) =
∫
[0,1]2

ϕ(∇u, b1, . . . , bν−1),

whenever y(k) → (u, b1, . . . , bν−1).
In the spirit of Γ -convergence (compare, for example, [14]), we do not want

to restrict to pointwise limits, but rather calculate a variational limit of the energy
that also takes into account microscopic relaxation effects.

In Section 2 we introduce the model. In particular, we discuss the admissible
limiting deformations and energy functions that may be considered. We define pre-
cisely in what sense microscopic deformations are understood to converge to their
macroscopic representatives. Since after suitable interpolation all deformations in
our relaxation procedure will have a common Lipschitz constant and a common
bound on the relative layer displacements, it is natural to consider the convergence to
the single layer deformation u respectively to the relative layer shifts b1, . . . , bν−1

in the w∗-sense in W 1,∞ respectively L∞, that is in ‖ · ‖L∞ -norm respectively as
convergence of localized averages. However, in particular for the latter case, we
have to be careful that our interpolation gives the same local averages as the atomic
positions only.

The energy of a system of atoms will be supposed to be a frame indifferent
function of the atomic positions only required to satisfy mild (and physically rea-
sonable) regularity assumptions. Assumption 2 on the Lipschitz continuity of the
energy function implies that small changes in the configuration of the atoms will
only result in small changes of their elastic energy, while Assumption 1 on the
decay of the interaction energy with respect to atomic distances guarantees that the
energy becomes local in the continuum limit.

Section 3 is the core of the theory. It shows how to pass from atomic to continuum
theory in the framework set up so far. The scheme follows Friesecke and James
[17]:

– Replace u and b = (b1, . . . , bν−1) by their piecewise affine and piecewise
constant approximations uε and bε, respectively.

– Partition the body into mesoscopic regions where uε,bε are affine and constant,
respectively, and show that the energy decouples.

– Find minimizers separately on each of these regions.
– Patch them together.
– Obtain an integral expression in terms of ∇u and b.

We give a rigorous version of these steps which in part were derived formally in [17].
Note, however, that there are some major differences. In particular, the (central)
notion of weak neighborhood given here is at variance with that of [17] resulting in
some technical differences. These neighborhoods contain those deformations that
are close to the limiting objects u and b over which the energy is minimized. In the
limit k → ∞we then discover E(u,b) as the limit energy of these relaxed energies.
These neighborhoods are thus not only of mathematical interest but also describe
physically which deformation fluctuations are subject to relaxation and which will
be seen in continuum theory. We will therefore study them in some detail.
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Furthermore, we show that the hypotheses on the decay of the energy and on
the regularity of (u,b) made in [17] can be weakened. We also give a proof for
the convergence of the relaxed energy on a mesoscale level under homogeneous
conditions, thus showing that the continuum theory derived is indeed well-defined.
Our study of variants of weak neighborhoods will lead to a representation result for
the limiting energy density ϕ. The results are extended to systems with unbounded
interaction potential. This is of physical interest since many interaction potentials
contain terms that diverge for two atoms getting too close to each other. Finally, we
discuss some extensions, in particular to certain systems of distinguishable particles
and variants of the continuum theory.

In Section 4 we examine physical energy functions and exhibit conditions under
which these fit into the theory. In particular, we treat pair potentials, angular forces
(to incorporate materials whose binding energy depends on the bond-angles) and
pair functionals (derived by the embedded atom method). We show that under
reasonable hypotheses on the parameters these energies are admissible for our
passage to continuum theory. To give an explicit example we also treat the case of
an elementary nearest neighbor model.

It remains to study qualitative aspects of the theory derived here. This will be
done in detail in [30]. The dependence of ϕ on the relaxation parameter introduced
in Definition 1 measuring the maximal deviations of the atoms from their reference
position, which is also connected to the rate of the convergence of the deformations
(see Definition 2), will be examined. It turns out that our particular choice of the
rate of the convergence is the only rate which allows for atomistic relaxations and
gives a non-trivial continuum limit under the decay assumptions on the interaction
potential set forth in Assumption 1.

The limiting behavior of ϕ(A,b) under very tensile or compressive strains
and convexity properties will be discussed. The results for systems satisfying
Assumption 3 turn out to be different from those for nearest neighbor-like interac-
tions as in Paragraph 3.6.2. In [30] we will also consider more realistic mass-spring
models for which interesting phenomena will be observed when examining ϕ at A
near O(2, 3), that is, for deformations that are almost isometric immersions.

2. Microscopic model and macroscopic variables

After introducing the atomic model of a thin film subject to some deformation,
we identify the variables of continuum theory as limiting points of these deforma-
tions. Finally, we collect the basic assumptions on the admissible energy functions.

2.1. Kinematics

2.1.1. Atomistic model We consider a film of ν atomic layers. Our reference
configuration will be

Lk = L ∩ (Sk × [0, h]),
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where L = Z
3, Sk := [0, k] × [0, k] for k ∈ N and h := ν − 1 is the height of the

film. (Only minor changes are necessary to treat more general Bravais-lattices L,
see Paragraph 3.6.)
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It will sometimes be convenient to enumerate these points as x1, . . . , xν(k+1)2 .
The deformations of this configuration will be denoted by

y = y(k) : Lk → R
3.

(Also write y as (y1, . . . , yν(k+1)2) for yi = y(xi ).) In order for y to be defined not
only at the atomic positions, we will assume some interpolation between the atomic
positions. However, we then have to be careful that our results do not depend on
the particular interpolation chosen, see below.

Our aim being to study the limit k → ∞, it is natural to introduce the rescaled
functions ỹ defined on the common domain S1 × [0, h]:

ỹ(k)(x) := 1

k
y(k)(kx1, kx2, x3).

Assume for the moment some interpolation is chosen. As pointed out in [17],
imposing regularity assumptions on the deformations y implies existence of limi-
ting deformations in the limit k → ∞. It is argued that these limits have to be
considered the natural variables of continuum theory. In detail, the assumptions on
the deformations made in [17] are the following. There are constants c1, c2 > 0
such that,

(a) |y(x)| � c2k (boundedness),
(b) |y(x2)− y(x1)| � c2|x2 − x1| (Lipschitz),
(c) |y(x2)− y(x1)| � c1|x2 − x1| (minimal strain hypothesis),

for all x, x1, x2 ∈ Sk × [0, h].
While conditions (a) and (b) guarantee the existence of well-defined limiting

points by weak*-compactness of the set of admissible deformations as k → ∞, a
minimal strain hypothesis is needed in order localize the energy of a deformation.
Without that assumption the film could, by repeatedly folding back on itself, be
deformed into a block of bulk material. This would certainly not give rise to film-
like behavior.

2.1.2. Macroscopic variables As indicated above, for fixed c2 the set of admis-
sible functions ỹ is weak*-compact in W 1,∞(S1 × [0, h];R

3). Also, (k ỹ(k),3 ) is
bounded in L∞(S1 × [0, h];R

3). So there are limit points of these deformations
as k → ∞. There is a u such that (for a subsequence)

ỹ(k)
∗
⇀ u, ∇ ỹ(k)

∗
⇀ ∇u in L∞. (1)

It is easy to see that u is independent of x3.
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There is also a subsequence such that (k ỹ(k),3 )weak*-converges in L∞. However,
this cannot become a free variable of our continuum theory since the limit func-
tion must be determined by the atomic positions only. We instead follow [17] and
consider

∆i ỹ(k)(x p) = ỹ(k)(x p, i)− ỹ(k)(x p, 0), i = 1, . . . ν − 1,

x p = (x1, x2). These quantities measure the relative shift of the layers of the
film. By assumption, (k∆i ỹ(k)) is a bounded sequence, and so some subsequence
weak*-converges to, say, bi (x1, x2):

k
(

ỹ(k)(·, i)− ỹ(k)(·, 0)
) ∗
⇀ bi in L∞. (2)

These objects u and b = (b1, . . . , bν−1) constitute the natural variables of a conti-
nuum theory.
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While the first condition (1) does not depend too much on the particular inter-
polation chosen, we can expect condition (2) to hold only for suitable interpolations
(compare below).

In our derivation—deviating from [17]—we will take the point of view that
we are given u and b = (b1, . . . , bν−1) and would like to assign an energy to
these variables allowing for atomistic relaxation. Thus reflecting the fact that we
are interested in energies of macroscopic film-like configurations, we do not restrict
the lattice deformations themselves but rather impose the following conditions on
u and b.

Definition 1. Let c0 > 0, u ∈ W 1,∞(S1;R
3) and b ∈ L∞(S1; (R3)ν−1). We say

that (u,b) is c0-admissible (or simply admissible, if c0 > 0 is understood), that is
(u,b) ∈ A, if there exists c1 > 0 such that

|u(x)− u(z)| � c1|x − z| ∀x, z ∈ S1 (3)

(minimal strain hypothesis), and there exists b0 ∈ L∞ such that

‖b0‖L∞ , ‖bi − b0‖L∞ � c0, i = 1, . . . , ν − 1. (4)

The first hypothesis ensures the macroscopic deformation to be film-like. The
meaning of the second condition will become clear when we have specified our
convergence scheme. To be able to work also in un-rescaled variables, we define
U : Sk → R

3 by

Ũ (x) = 1

k
U (kx) = u(x). (5)

The following lemma is elementary but important. In particular, the lower bound
in (ii) gives a far field minimal strain hypothesis for deformations close to u.
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Lemma 1. Suppose u is admissible and y : Lk → R
3 some deformation with

supx∈Lk
|y(x)−U (x p)| � c, where U is as in (5). Then y is Lipschitz. Furthermore,

for any (rescaled) Lipschitz interpolation y : Sk ×[0, h] → R
3 (ỹ : S1 ×[0, h] →

R
3), there are constants C1,C2,C3 > 0 such that,

(i) supx∈S1×[0,h] |ỹ(x)| � C2 and
(ii) C1|x − z| − C3 � |y(x)− y(z)| � C2|x − z| ∀x, z ∈ Sk × [0, h].
Proof. Since u is admissible, there are 0 < c1 � c2 such that

c1|x − z| � |u(x)− u(z)| � c2|x − z| (6)

for all x, z ∈ S1. Then (i) is clear for x ∈ 1
k Lk ∩S1: choose C2 � |u(0)|+√

2c2 +
c/k. For x, z ∈ Lk , |y(x)− y(z)| on the one hand is greater than or equal to

|U (x p)− U (z p)| − 2c � c1|x p − z p| − 2c � c1|x − z| − c1h − 2c,

which proves the first inequality of (ii) for x, z ∈ Lk . On the other hand, for
x 
= z ∈ Lk this is less than or equal to

|U (x p)− U (z p)| + 2c � c2|x p − z p| + 2c � c2|x − z| + 2c � C |x − z|
since |x − z| � 1. In particular, y is Lipschitz. Choosing a Lipschitz-interpolation
with Lipschitz constant C2, we get for all x ∈ Sk × [0, h]

|y(x)− U (x p)| � C2 + c + |U (x̄ p)− U (x p)| � C ′ + c + c2 =: c′,

where x̄ ∈ Lk is such that |x̄ − x | � 1. Now repeat the above steps to conclude (i)
and the first part of (ii) for y on Sk × [0, h] (ỹ on S1 × [0, h]). �

Remarks. (i) The constants C1,C2,C3 only depend on u through c, c1 and c2
and on the Lipschitz constant of the chosen interpolation. Below, this constant
will be chosen independently of k.

(ii) If y is defined only on a subset of Lk and satisfies |y − U | � c on this set,
then clearly the implications of the lemma remain valid on this set.

2.1.3. Interpolation and convergence Weak*-convergence for bounded sequen-
ces in L∞ is equivalent to the convergence of the averages (for example over all
sub-squares a + [0, α]2 of the domain, compare [13]). We will, therefore, choose
our interpolation carefully such that

−
∫

Q
ỹ(z, i) dz ≈ 1

#( 1
k L ∩ Q)

∑
z∈ 1

k L∩Q

ỹ(z, i)

for Q a square in S1. For a deformation y : Lk → R
3 let x̄ = x + (1/2, 1/2) for

x ∈ {0, . . . , k − 1}2 and set

y(x̄, i) = 1

4

∑
z∈Z2,

|z−x̄ |=1/
√

2

y(z, i), i = 0, . . . , ν − 1.
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Now on each of the four triangles with corners (x̄, i), (z, i), (z′, i), where z, z′ ∈ Z
2

with |z − x̄ | = 1/
√

2, |z − z′| = 1, interpolate linearly to obtain y(x, i) for x ∈ Sk .
Interpolating in between the layers is not so subtle, for definiteness we choose y to
be linear on the segments [(x, i − 1), (x, i)].

Note that this choice guarantees that

−
∫

x̄+[− 1
2k ,

1
2k ]2

ỹ(z, i) dz = 1

4

∑
z∈x̄+{− 1

2k ,
1

2k }2

ỹ(z, i).

Now let D ⊂ S1 be some square of fixed side-length l and consider the measure ρ
on R

2 defined by ρ =∑x∈Z2 δx/k , where δz is the Dirac-measure at z. Supposing
|k∆i ỹ(k)| is bounded uniformly in k, we get that

∣∣∣∣−
∫

D
k∆i ỹ(z1, z2) dρ −−

∫
D

k∆i ỹ(z1, z2) dz1 dz2

∣∣∣∣ � C
1

kl
.

This shows that the limits bi are in fact only depending on atomic positions.
In the sequel, we will assume that y (respectively ỹ) are interpolated precisely

in this manner. As a consequence of the next definition and the previous lemma, all
deformations that will be taken into account for atomistic relaxation are Lipschitz
with a common Lipschitz constant independent of k.

Definition 2. Let u ∈ W 1,∞(S1;R
3), b ∈ L∞(S1;R

3). Choose c0 > 0, a constant.
We say that y(k) → (u,b) (with respect to c0) if

‖ỹ(k) − u‖ � c0/k and k∆i ỹ(k)
∗
⇀ bi in L∞.

Here and in the sequel we denote by ‖ f ‖, respectively ‖ f̃ ‖ in rescaled variables,

‖ f ‖ := sup
x∈Lk

| f (x)|, resp. ‖ f̃ ‖ := sup
x∈Lk

| f̃ (x p/k, x3)|.

Indeed, ‖ỹ(k) − u‖ → 0 and ‖∇ ỹ(k)‖L∞ � const. imply ỹ(k)
∗
⇀ u in W 1,∞.

Also note, if ‖ỹ(k)−u‖ � c0/k, then in fact k∆i ỹ(k) is bounded, so we can describe
weak*-convergence in L∞ by convergence of suitable averages. In order to shed
light on the compatibility assumption made for admissible b, we first prove the
following lemma.

Lemma 2. Suppose |ỹ(k)(z, i) − u(z)| � c0/k for all z ∈ 1
k Z

2 ∩ S1. Then there
exist w(k) ∈ L∞(S1;R) with ‖w(k)‖L∞ � C and w(k) → 0 pointwise almost
everywhere as k → ∞ such that

|ỹ(k)(x)− u(x p)| � c0 + w(k)(x p)

k
.

Proof. Since there is a common Lipschitz constant for all deformations and
|ỹ(x, i)−u(x)| � c0/k whenever x ∈ 1

k Z
2, we immediately get a constant C > c0

such that
|ỹ(x, i)− u(x)| � C/k ∀x ∈ S1. (7)
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Let x ∈ S1 such that ∇u(x) exists and define u′(x, z) = u(x) + ∇u(x)(z −
x). Choose z0 ∈ ( 1

k Z
2 + (1/2, 1/2)

) ∩ S1 such that |x − z0| is minimal and let

{z ∈ 1
k Z

2 : |z0−z| = 1/
√

2} = {z1, z2, z3, z4}. Without loss of generality, suppose
x lies in the triangle with corners z0, z1, z2. By our interpolation and since u′(x, ·)
is affine,

|ỹ(z0, i)− u′(x, z0)| =
∣∣∣∣∣∣
1

4

4∑
j=1

ỹ(z j , i)− 1

4

4∑
j=1

u′(x, z j )

∣∣∣∣∣∣

� 1

4

4∑
j=1

|ỹ(z j , i)− u(z j )| + |u(z j )− u′(x, z j )|

� c0

k
+ 1

4

4∑
j=1

|u(z j )− u′(x, z j )|.

Also, for j = 1, 2, 3, 4,

|ỹ(z j , i)− u′(x, z j )| � c0

k
+ |u(z j )− u′(x, z j )|.

Now since ỹ(·, i) and u′(x, ·) are affine on the triangle with corners z0, z1, z2,
we deduce from these inequalities that

|ỹ(x, i)− u(x)| = |ỹ(x, i)− u′(x, x)| � max
j∈{0,1,2} |ỹ(z j , i)− u′(x, z j )|

� c0

k
+ max

j∈{1,2,3,4} |u(z j )− u′(x, z j )|. (8)

Choosing

w(x) = min

{
C − c0, k max

i∈{1,2,3,4} |u(z j )− u′(x, z j )|
}
,

we see by (7) and (8) and our choice of interpolating linearly between the film
layers

|ỹ(x p, x3)− u(x p)| � max
0�i�ν−1

|ỹ(x p, i)− u(x p)| � c0

k
+ w(x p)

k

for almost every (x1, x2). To finish the proof just observe that z j → x as k → ∞
and |u(z j )− u′(x, z j )| = o(|x − z j |) = o(1/k) since |x − z j | �

√
2/k. �

As a consequence we obtain the following lemma.

Lemma 3. Suppose u ∈ W 1,∞(S1,R
3), b ∈ L∞(S1; (R3)ν−1). There exists a

sequence of deformations y(k) → (u,b) if and only if (4) holds.
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Proof. Assume y(k) → (u,b) and consider f (k)(z) = ku(z)− k ỹ(k)(z, 0). By the
previous lemma, f (k) is bounded in L∞, so there is a weak*-convergent subse-

quence f (k j )
∗
⇀ b0, say. Now if χ ∈ L1(S1) with ‖χ‖L1 = 1, then by Lemma 2,∫

χ · b0 = lim
j→∞

∫
χ · f (k j ) � lim

j→∞

∫
|χ | · |c0 + w(k j )| = c0

by dominated convergence since the w(k) are uniformly bounded and converge to

zero pointwise. It follows that ‖b0‖L∞ � c0. Now considering k j∆
i ỹ(k j )− f (k j )

∗
⇀

bi − b0, |k j∆
i ỹ(z) − f (k j )(z)| = |k ỹ(z, i) − ku(z)| � c0 + w(k)(z), the same

reasoning shows that ‖bi − b0‖L∞ � c0.
Conversely, suppose b0 satisfying (4) exists. Extend bi boundedly (constantly

if bi is constant) outside S1. For 0 � i � ν − 1 set

b̄i (x) = −
∫

x+[− 1
2k ,

1
2k ]2

bi (z) dz. (9)

Now consider the function v (V in un-rescaled variables) defined by (interpolation
of)

v(x1, x2, i) =
{

u(x1, x2)− 1
k b̄0(x1, x2) for i = 0,

u(x1, x2)+ 1
k (b̄

i (x1, x2)− b̄0(x1, x2)) for 1 � i � ν − 1,
(10)

for (x1, x2) ∈ 1
k Z

2 ∩ S1. Clearly, ‖v − u‖ � c0/k since for x ∈ 1
k Z

2 ∩ S1,∣∣∣b̄0(x)
∣∣∣ �

∥∥∥b0
∥∥∥

L∞ ,
∣∣∣b̄i (x)− b̄0(x)

∣∣∣ �
∥∥∥bi − b0

∥∥∥
L∞ .

Also, for each square D of side-length 0 < l � 1, −
∫

D k∆i ỹ = bi + O(l/k) which

implies that k∆i ỹ
∗
⇀ bi . �

2.2. Energy

The energy of a system of N atoms at positions y1, . . . , yN ∈ R
3 shall be a

function E : (R3)N → R only depending on atomic positions. To study E we will
endow the configuration space (R3)N with the norm

‖(y1, . . . , yN )‖ = sup
1�i�N

|yi |2.

The energy of a deformation y is denoted

E(y) = E(y(x) : x ∈ Lk).

More generally, the energy of the subset y(K), K ⊂ Lk , (counted with multiplici-
ties) of all the atoms is

E(y(K)) = E(y(x) : x ∈ K).
We normalize E so that E(∅) = 0.

Consider deformations y : K → R
3, where K = L∩(Ω×[0, h]),Ω ⊂ Sk . For

U with Ũ = u as before we write ‖y −U‖ = maxx∈K |y(x)−U (x p)|2. The main
assumption on E is the following—physically reasonable—decay hypothesis.
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Assumption 1. Suppose u is admissible. There exists a function ψ : [0,∞)→ R

such that
0 � ψ � M and ψ(r) � Mr−q , (11)

where M, q are constants, M > 0, q > 3, such that for disjoint sets M and N of
atoms we have

|E(M ∪ N )− E(M)− E(N )| �
∑

v∈M,w∈N
ψ(|v − w|)

whenever ‖y − U‖ � C . (The function ψ may depend on C and on u through c1
and c2 where c1|x1 − x2| � |u(x1)− u(x2)| � c2|x1 − x2|.)

The energy functionals E act on different spaces because of the different number
of atoms involved. The following assumption guarantees that, locally near admis-
sible us, we have control of ∂

∂yi
E(y1, . . . , yN ) uniformly in k.

Assumption 2. Let u be admissible. We assume that E is locally Lipschitz, and in
any C-neighborhood of U we have almost everywhere∣∣∣∣ ∂∂yi

E(y)

∣∣∣∣ � L ,

where L might depend on C and on U through c1, c2 but is independent of the
number of atoms involved.

Furthermore, we assume E to be frame indifferent and only depending on the
atomic positions, that is, E remains unchanged after a renumbering of atoms and
rigid motions of the configuration y(K).

So in particular E({y}), the (finite) self-energy of a single atom at y ∈ R
3, is

the same for all y ∈ R
3.

Remarks. (i) By Assumption 2 we could restrict to injective y. This would
result in energy errors as small as we wish.

(ii) The last requirement can be weakened to situations where E is merely trans-
lation invariant and more than one species of atoms is involved. In the latter
case one has to assume some periodicity condition. Also systems of distin-
guishable particles as arise for example in nearest neighbor models can be
treated. We will come back to this in Paragraph 3.6.

(iii) Energy functions E satisfying 1 and 2 will be called admissible in the sequel.
Note that the set of admissible E forms a vector space.

(iv) The assumption on the Lipschitz continuity can be rephrased by requiring
that ‖∇E‖l∞(N ) be bounded, that is, there be a universal Lipschitz constant
when the state space R

N is equipped with the l1(N )-norm rather than with
the l∞(N )-norm. Then the Lipschitz constant (for the usual norm) in a
C-neighborhood of U can be chosen as L · #K, where L might depend on
C, c1, c2, but is independent of K.

(v) In Paragraph 3.5 we will see that the boundedness assumptions on ψ and
∂E/∂yi can be weakened. Then also energies that become infinitely large as
the distance between two atoms tends to zero can be considered.
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In Lemma 1 we saw how the condition ‖y −U‖ � C led to a far field minimal
strain hypothesis |y(x)− y(z)| � C1|x − z|−C3 (with C1,C3 depending on C). In
fact, many interesting systems satisfy the above assumptions in a more restrictive
sense (see Section 4):

Assumption 3. Assume that ψ and L of Assumption 1 respectively 2 depend only
on C1 and C3 where y satisfies |y(x)− y(z)| � C1|x − z| − C3.

This assumption has far reaching consequences as will be detailed in [30]. For
the derivation of continuum theory, we will not make use of this.

3. Passage to continuum theory

Having defined the variables u and b1, . . . , bν−1 of the continuum theory, our
aim is to calculate a limit energy E(u,b) as a variational limit of E(y(k)) as y(k)

tends to (u,b). We will prove that this limit exists and give an integral expression
in terms of some macroscopic energy density ϕ. Furthermore, we will prove a
representation formula for ϕ. The results will be extended to other atomic systems,
in particular to systems with unbounded (pair-) interaction potential.

3.1. Main results

Suppose E satisfies Assumptions 1 and 2, and a relaxation parameter c0 > 0 is
chosen. Our main result is the following variational convergence result in the spirit
of Γ -convergence:

Theorem 1. There exists a macroscopic stored energy function ϕ such that,

(i) if y(k) → (u,b), (u,b) admissible, then

lim inf
k→∞

1

νk2 E(y(k)) � E(u,b).

(ii) For all admissible (u,b), there exists a sequence y(k) → (u,b) such that

lim
k→∞

1

νk2 E(y(k)) = E(u,b).

Here, E(u,b) is the macroscopic energy

E(u,b) =
∫
S1

ϕ(∇u, b1, . . . , bν−1). (12)

In proving this theorem our strategy will be to first reduce to homogeneous
conditions and study the limit for affine u and constant bi . Assuming this in (12)
leads to defining ϕ by solving a cell problem

ϕ(A,b) = lim inf
1

νk2 E(y(k)) as y(k) → (A,b) (13)
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for matrices A ∈ R
3·2 of rank 2 and admissible vectors bi ∈ R

3. However, it turns
out that there is a more explicit formula for ϕ. Let

N̂ 0,1
k (A,b)=

⎧⎨
⎩y : Lk → R

3 : ‖y−A‖ � c0 and
1

(k + 1)2
∑

x∈Z2∩Sk

∆i y(x) = bi

⎫⎬
⎭.

(14)
Then we have the following representation result:

Theorem 2. The macroscopic energy density ϕ of Theorem 3 (and Formula (13))
is given by

ϕ(A,b) = lim
k→∞

1

νk2 inf
y∈N̂ 0,1

k (A,b)
E(y). (15)

This limit is uniform on compact subsets of Ahom and depends continuously on
A,b.

Here, Ahom ⊂ R
3·2 × (R3)ν−1, the homogeneous version of A consisting of

admissible matrices A and vectors b, is defined by

Ahom := {(A, b1, . . . , bν−1) : rank(A) = 2,

∃ b0 ∈ R
3 s.t. |b0|, max

1�i�ν−1
|bi − b0| � c0}.

Measuring the convergence of k∆i ỹ(k) in terms of negative Sobolev norms, we
get the following sharper version of Theorem 1. In terms of the weak neighborhoods
to be introduced in the next paragraph, we will see that this amounts to arbitrarily
prescribing the scale of the convergence of the averages as long as the areas over
which to take averages are large compared to atomic dimensions.

Theorem 3. Suppose l = l(k) is such that l(k) → 0 and kl(k) → ∞ as k → ∞.
Let

W l
k(u,b) := {y : ‖ỹ − u‖ � c0/k, ‖k∆i ỹ − bi‖W−1,∞ � l},

where ‖ f ‖W−1,∞ := sup
{∫

f · χ : χ ∈ W 1,1
0 , ‖χ‖W 1,1

0
= ∫ |∇χ |2 = 1

}
. Then

lim
k→∞

1

νk2 inf
y∈W l

k (u,b)
E(y) =

∫
S1

ϕ(∇u(x),b) dx .

In Paragraph 3.6.2 we will sketch how to extend these results to certain finite
range interaction models for distinguishable particle systems.

For many physically interesting models, the requirement that the splitting func-
tionψ be bounded (compare (11)) is too restrictive. More generally, we should allow
for energy contributions tending to infinity when atoms are getting very close.
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Theorem 4. Suppose the energy is of the form

E(y) = 1

2

∑
i 
= j

W (|yi − y j |)+ E0(y), (16)

where E0 satisfies the usual assumptions (see Paragraph 2.2, also interactions as
discussed in Paragraph 3.6.2 are allowed for E0), but W (r) becomes infinitely large
as r tends to zero. For any r0 > 0 we assume that W is Lipschitz on [r0,∞) and
there exist M = M(r0) ∈ R and q = q(r0) > 3 such that for (almost every) r � r0

|W (r)| � Mr−q and |W ′(r)| � Mr−q+1.

Then Theorem 1 extends to energy functions of the form (16) where, as in Theorem
2, ϕ : Ahom → (−∞,∞] is given by (15) and is continuous as a function with
values in R ∪ {∞}.

Considering W 1,∞-weak*-converging sequences ỹ(k), it is natural to measure
deviations from u in L∞-norm, respectively ‖ · ‖. Our choice

‖ỹ − u‖ � l1(k)

with l1(k) := c0/k corresponds to a relaxation regime where the individual atoms
are allowed to move in a region comparable to atomic dimensions. As is shown in
[30], if Assumption 3 holds, l1 = c0/k is in fact the only scale which both accounts
for atomistic relaxation and yields a non-trivial continuum theory. Moreover, we
cannot relax sending the parameter c0 to infinity. This is due to our (physically
reasonable) decay assumptions on the energy (compare Assumption 1). The main
point is that finite c0 prevents fracture from happening. Mathematically this could
also be achieved by assuming growth conditions on the inter-atomic forces tending
to infinity as the distance between initially close atoms becomes large. But this is
physically not realistic. In our approach c0 enters as a parameter. By its physical
interpretation as an upper bound for the deviation of atoms from their macroscopic
limit, however, applicability of the theory should be decidable on physical grounds.

Following the proofs in the next paragraphs, it is possible (but tedious) to
give explicit error bounds under suitable regularity assumptions on ∇u and b (for
example requiring them to be (Hölder-)continuous).

3.2. Preparations

We are now going to prove these results. Note that in all that follows, k is
understood to be sufficiently large, even if not explicitly stated. The constants that
will appear in the energy estimates for deformations near some limiting deformation
u will depend on u, but only through the constants c1, c2 (compare below and
Assumptions 1 and 2).
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3.2.1. Splitting lemmas We begin our derivation by proving some preparatory
lemmas on deformations being close to some admissible u on a part of S1. So
let Ω ⊂ S1 (usually some mesoscopic sub-square) and consider deformations
y : kΩ × [0, h] → R

3. Throughout this paragraph u : Ω → R
3 (U in un-rescaled

variables) shall satisfy

c1|x − z| � |u(x)− u(z)| � c2|x − z|
for some 0 < c1 � c2 and all x, z ∈ Ω .

From Assumption 1, the following lemma is easily proven by induction.

Lemma 4. If M1, . . . ,Mn ⊂ y(L ∩ (Ω × [0, h])) are pairwise disjoint sets of
atoms and ‖ỹ − u‖ � c/k, then the following inequality holds:

∣∣∣∣∣∣E(M1 ∪ . . . ∪ Mn)−
n∑

j=1

E(M j )

∣∣∣∣∣∣ �
∑

1�i< j�n

∑
v∈Mi ,
w∈M j

ψ(|v − w|).

In the sequel, we will use the following statements for lattice sums, the proof
of which is elementary.

Lemma 5. Let d ∈ N, q > d. In addition, suppose c > 0. Then there is a constant
C (depending on c) such that for a > 0

∑
x∈Zd+1, 0�xd+1�c

|x |�a

|x |−q � Cad−q .

The next lemma quantifies the energy for subsets of atoms. It is important as
it allows to control the loss of energy when neglecting a (small) set of atoms of
the configuration. In particular we will see that E(M) = O(#M). Again we are
considering deformations y : kΩ × [0, h] → R

3.

Lemma 6. Let y be a deformation satisfying |ỹ − u| � c/k and K ⊂ L ∩ (kΩ ×
[0, h]). Then there is a constant C (not depending on K) such that, if K = K1 ∪K2
for disjoint K1 and K2, then

|E(y(x) : x ∈ K)− E(y(x) : x ∈ K1)| � C#K2.

Proof. From Lemma 4 we deduce that
∣∣∣∣∣∣E(y(K))− E(y(K1))−

∑
z∈K2

E({y(z)})
∣∣∣∣∣∣ �

∑
x∈K

z∈K2

ψ(|y(x)− y(z)|).

By (remark (ii) after) Lemma 1 there are constants C1 and C3 such that

C1|x − z| − C3 � |y(x)− y(z)| ∀x, z ∈ Sk × [0, h].
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Now fix z0 ∈ K2, y0 = y(z0). We will estimate
∑

x∈K ψ(|y(x)− y0|) by splitting
it into a short-range and a long-range part. Let δ = 2C3/C1. Since the number of
x ∈ K such that |z0 − x | � δ is bounded, we find

∑
{x :|x−z0|�δ}

ψ(|y(x)− y0|) � C M,

M being the global bound on ψ .
Now if |x − z0| > δ, then C1

2 |x − z0| < |y(x)− y0|, and we can estimate
∑

{x :|x−z0|>δ}
ψ(|y(x)− y0|) �

∑
{x :|x−z0|>δ}

M |y(x)− y0|−q

�
∑

{x :|x−z0|>δ}
M

(
C1

2

)−q

|x − z0|−q

� C
∑

{x∈L: x 
=0,
0�x3�h}

|x |−q .

Since q > 2, this last expression is bounded by Lemma 5 (with a = 1).
It follows that

|E(y(K))− E(y(K1))| �

∣∣∣∣∣∣
∑
z∈K2

E({y(z)})
∣∣∣∣∣∣+

∑
z∈K2

C � C#K2

by frame indifference of the energy. �
As an immediate consequence we get

Corollary 1. Let y, y′ be two deformations satisfying the hypotheses of Lemma 6
and K ⊂ L ∩ (kΩ × [0, h]). Then there is a constant C such that

∣∣E(y(x) : x ∈ K)− E(y′(x) : x ∈ K)∣∣ � C#{x ∈ K : y(x) 
= y′(x)}.
Proof. Apply Lemma 6 with K2 = {x ∈ K : y(x) 
= y′(x)} to y and y′. �

Suppose Q = [0, a)2, a � 1, is partitioned by squares U1, . . . ,Ur of side-
length l, where 1/k � l � a, plus some rest R with |R| = O(a · l ′), l ′ � a, as in
the following picture. (Then r ∼ (a/ l)2.)

�

�
a

a

l

l

x1

x2

R

U1

Ur

����
O(l ′)
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We need to estimate the error when replacing the full energy by the sum of the
energies over the individual sets Ui . Let Ki = L∩ (kUi ×[0, h]), K = L∩ (k Q ×
[0, h]).
Lemma 7. Suppose y : k Q × [0, h] satisfies |ỹ − u| � c/k for some admissible u.
Then

E(y(x) : x ∈ K) =
r∑

i=1

E(y(x) : x ∈ Ki )+ O(ka2/ l)+ O(k2al ′).

Proof. By Lemma 6 we have
∣∣∣∣∣E(y(x) : x ∈ K)− E

(
y(x) : x ∈

r⋃
i=1

Ki

)∣∣∣∣∣ = O(k2al ′). (17)

Lemma 4 implies that
∣∣∣∣∣E
(

y(x) : x ∈
r⋃

i=1

Ki

)
−

r∑
i=1

E(y(x) : x ∈ Ki )

∣∣∣∣∣ �
1

2

∑
i 
= j

∑
x∈Ki
z∈K j

ψ(|y(x)− y(z)|).

Again we will estimate this error term on the right-hand side by splitting it into a
short range term (1) where |x − z| � δ and a long range term (2) where |x − z| > δ,
δ := 2C3/C1.
1. Short range term: Since |ψ | � M , we have

1

2

∑
i 
= j

∑
x∈Ki
z∈K j

|x−z|�δ

ψ(|y(x)− y(z)|) � 1

2

∑
i 
= j

∑
x∈Ki
z∈K j

|x−z|�δ

M.

For fixed x ∈ Ki , the number of z ∈ L with |x − z| � δ is bounded. On the other
hand, in order to have at least one z ∈ K j with |x − z| � δ and i 
= j , we must
have dist(x p, ∂(kUi )) � δ. For fixed i , the number of these x is bounded by Ckl,
C constant. This yields

1

2

∑
i 
= j

∑
x∈Ki
z∈K j

|x−z|�δ

M � 1

2

∑
i

∑
x∈Ki

dist(x p ,∂kUi )�δ

C M � 1

2

∑
i

Ckl � Cka2/ l.

2. Long range term: As in the proof of Lemma 6, |x−z| > δ implies |y(x)−y(z)| >
C1
2 |x − z| and thus

1

2

∑
i 
= j

∑
x∈Ki
z∈K j

|x−z|>δ

ψ(|y(x)− y(z)|) � C
∑
i 
= j

∑
x∈Ki
z∈K j

|x−z|>δ

|x − z|−q ,
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C some constant. Now for fixed x ∈ Ki with dist(x p, ∂(kUi )) =: d(x) = d we
have by Lemma 5 (i fixed)

C
∑
j 
=i

∑
z∈K j

|x−z|>δ

|x − z|−q � C
∑

z∈L,0�z3�h
|x−z|�max{δ,d}

|x − z|−q � C (max{δ, d})2−q .

So we obtain for i fixed:

1

2

∑
j 
=i

∑
x∈Ki
z∈K j

|x−z|>δ

ψ(|y(x)− y(z)|) � C
∑
x∈Ki

(max{δ, d(x)})2−q . (18)

The number of x with d(x) � δ is bounded by Ckl. So summing over these x
will give a term of order Cδ2−qkl = Ckl in (18). Now let x be such that d(x) > δ.
There exists a unique m ∈ N0 such that d ∈ (δ + m, δ + m + 1]. The number of
points x corresponding to the same m is bounded by Cν(kl − 2(δ + m)) � Ckl.
So (i fixed)

∑
x∈Ki

with d(x)>δ

d2−q �
∑

m

∑
x∈Ki with

d(x)∈(δ+m,δ+m+1]

(δ + m)2−q �
∞∑

m=0

Ckl (δ + m)2−q

� Ckl

⎡
⎣δ2−q +

∑
m�δ

m2−q

⎤
⎦ � Ckl[δ2−q + Cδ3−q ]

by Lemma 5 with c = 0. Hence this part of the sum is also bounded by Ckl.
So finally summing over i we get the following upper bound for the long range

term:

Crkl � Cka2/ l.

This is the same bound as for the short range term. We have thus shown that the
remaining error term is indeed O(ka2/ l). Together with (17) this yields the desired
estimate. �

3.2.2. Weak neighborhoods It is illuminating to describe the deformations that
we will take into account for the atomistic energy relaxation more directly by weak
neighborhoods about the limit points u and b in terms of the atomic positions. To do
so, we consider mesoscopic local averages. As before, set ρ = ρ(k) =∑x∈Z2 δx/k .
Let Q ⊂ S1 be a sub-square of side-length l4, and recall the definition of b̄ from
(9). For admissible u, b define:

Definition 3. A deformation y : L ∩ (k Q × [0, h]) → R
3 (respectively its inter-

polation) belongs to the weak neighborhood
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(i) N l1,l2,l3
k,Q (u,b) of (u,b), l3 < l4, if

‖ỹ − u‖ � l1 and

∣∣∣∣−
∫
D

k∆i ỹ − b̄i dρ

∣∣∣∣ � l2 (19)

for all translates D of [0, l3)2 with D ⊂ S1, or
(ii) N̂ l1,l2,l3

k,Q (u,b) of (u,b), l3 < l4, if

‖ỹ − u‖ � l1 and

∣∣∣∣∣−
∫
D j

k∆i ỹ − b̄i dρ

∣∣∣∣∣ � l2 (20)

for all j = 1, . . . , N , where {D j } is a partition of Q into squares D j of side-
length l3 (up to some rest R of measure |R| = O(l3l4)) as in the following
picture.

�

�
l4

l4

l3

l3

x1

x2

R

D1

DN

In case l3 = l4 we require that (19) respectively (20) holds with D = Q respectively
D1 = Q.

Remark. Clearly, N l1,l2,l3
k,Q (u,b) ⊂ N̂ l1,l2,l3

k,Q (u,b), and V as defined in (10) lies in

N l1,l2,l3
k,Q (u,b) for admissible (u,b) and l1 = c0/k. Since we will mainly deal with

the choice l1 = c0/k, we will drop l1 from our notation.
Suppose Ω ⊂ S1, and for the next lemma assume b ∈ L∞(Ω; (R3)ν−1)

satisfies a stronger compatibility condition: there exists b0 ∈ L∞(Ω;R
3) such that

‖b0‖∞, ‖bi − b0‖∞ � c3 (21)

for all i ∈ {1, . . . , ν − 1} and some constant 0 < c3 < c0. So v : Ω → R
3 as

defined in (10) satisfies ‖v − u‖ � c3.

Lemma 8. Suppose ‖y − U‖ � c0 + δ, 0 � δ � c. Then there exists y′ with
‖y′ − U‖ � c0 such that

∣∣∣∣−
∫

D
k∆i ỹ′ dρ −−

∫
D

b̄i dρ

∣∣∣∣ � c0 − c3

c0 − c3 + δ

∣∣∣∣−
∫

D
k∆i ỹ dρ −−

∫
D

b̄i dρ

∣∣∣∣
whenever D ⊂ Ω , ρ(D) > 0, and

|E(y(x) : x ∈L ∩ (kΩ×[0, h]))−E(y′(x) : x ∈L ∩ (kΩ×[0, h]))| � Cρ(Ω)δ,

where C = Lν c0+c3
c0−c3

, L as in Assumption 2.
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Proof. Let v be as in (10) and define y′ such that

ỹ′ := λỹ + (1 − λ)v, λ = c0 − c3

c0 − c3 + δ
. (22)

Then indeed by (21),

‖ỹ′ − u‖ � λ‖ỹ − u‖ + (1 − λ)‖v − u‖ � λ
c0 + δ

k
+ (1 − λ)

c3

k
,

whence ‖y′ − U‖ � c0. For the local averages observe that
∫

D
k∆i ỹ′ − b̄i dρ = λ

∫
D

k∆i ỹ − b̄i dρ.

Now since ỹ = 1
λ

ỹ′ − 1−λ
λ
v,

‖ỹ − ỹ′‖ � 1 − λ

λ
(‖ỹ′ − u‖ + ‖u − v‖) � δ

c0 − c3
(c0/k + c3/k).

By (remark (iv) after) Assumption 2 the claim follows. �
In general, such a uniform bound c3 on b does not exist. So we prove:

Lemma 9. Let D j be as in Definition 3. Suppose |−∫D j
(k∆i ỹ − b̄i ) dρ| � δ � 1,

j = 1, . . . , N, and‖y−U‖ � c0+ε, ε � 1. Then there exists y′ with‖y′−U‖ � c0,
∣∣∣∣∣−
∫
D j

(k∆i ỹ′ − b̄i ) dρ

∣∣∣∣∣ � δ, and |E(y)− E(y′)| � C(ε1/5 + δ1/4)(kl4)
2.

Proof. We may assume that b̄i is constant on the sets D j (else for x ∈ D j replace
b̄i (x) by −

∫
D j

b̄i dρ in the sequel). Let ε′ = ε4/5. First consider those D j where

there do not exist b0 and c3 � c0 − ε′ as in the previous lemma. Choose b̄0 ∈ R
3

minimizing

max

{
max

1�i�ν−1
|b̄i − b̄0|, |b̄0|

}
(� c0).

Set
Bi = b̄i−1 − b̄0 for i = 2, . . . , ν, B1 = −b̄0, (23)

and define Y i and Y i by

Y i (x p) = k(ỹ(x p, i − 1)− u(x p)), Y i = −
∫
D j

Y i dρ (24)

for i = 1, . . . , ν. Then
∣∣∣(Y i − Y j )− (Bi − B j )

∣∣∣ � 2δ for i, j ∈ {1, . . . , ν},
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in particular for a = Y 1 − B1,

∣∣∣Y i − (Bi + a)
∣∣∣ � 2δ.

Since |Y i | � c0 + ε, we also have |Y i | � c0 + ε, and it follows that |Bi + a| �
c0 + ε + 2δ. By our choice of b̄0 there is an i0 with |Bi0 | � c0 − ε′ such that
a · Bi0 � 0, so |Bi0 + a|2 � (c0 − ε′)2 + a2. But then |a| = O(√ε + ε′ + 2δ),
that is ∣∣∣Y i − Bi

∣∣∣ � C
√
ε′ + δ for i = 1, . . . , ν. (25)

Now suppose i is such that |Bi | � c0−ε′. To estimate |Y i −Bi |, assume without

loss of generality that Y i = (Y i
1, 0, 0), Y i

1 � c0−C
√
ε′ + δ. Since |Y i (z)| � c0+ε

for z ∈ 1
k Z

2 ∩ D j ,

∑
z∈ 1

k Z2∩D j

∣∣∣Y i
1(z)− Y i

1

∣∣∣ �
∑

z∈ 1
k Z2∩D j

Y i
1(z)>Y i

1

Y i
1(z)− Y i

1 +
∑

z∈ 1
k Z2∩D j

Y i
1(z)�Y i

1

Y i
1(z)− Y i

1

= 2
∑

z∈ 1
k Z2∩D j

Y i
1(z)>Y i

1

Y i
1(z)− Y i

1 +
∑

z∈ 1
k Z2∩D j

Y i
1(z)− Y i

1

� 2
∑

z∈ 1
k Z2∩D j

Y i
1(z)>Y i

1

C
√
ε′ + δ + 0

� C(kl3)
2
√
ε′ + δ.

The second and third component can be estimated by noting that

|Y i
m(z)|2 � 2(c0 + ε)(c0 + ε − Y i

1(z)) � C(c0 + ε)(|Y i
1 − Y i

1(z)| +
√
ε′ + δ)

for m = 2, 3, hence also

∑
z∈ 1

k Z2∩D j

∣∣∣Y i
m(z)− Y i

m

∣∣∣ � C
∑

z∈ 1
k Z2∩D j

√∣∣∣Y i
1(z)− Y i

1

∣∣∣+ 4
√
ε′ + δ

� C

(
#

1

k
Z

2 ∩ D j

)1/2

⎛
⎜⎝ ∑

z∈ 1
k Z2∩D j

∣∣∣Y i
1(z)− Y i

1

∣∣∣
⎞
⎟⎠

1/2

+C(kl3)
2 4
√
ε′ + δ

� Ckl3
(

C(kl3)
2
√
ε′ + δ

)1/2 + C(kl3)
2 4
√
ε′ + δ

= C(kl3)
2 4
√
ε′ + δ.
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Together with (25) this proves that
∑

z∈ 1
k Z2∩D j

∣∣∣Y i (z)− Bi
∣∣∣ � C(kl3)

2(
4
√
ε′ + 4

√
δ). (26)

Now define a new configuration y′′ by replacing Y i by Bi for those i with
|Bi | � c0 − ε′, that is, Y ′′i , defined analogously to Y i , equals to Bi for these i and
equals Y i for the other i . By (remark (iv) after) Assumption 2,

|E(y′′)− E(y)| � C
(

4
√
ε′ + 4

√
δ
)
(kl4)

2.

Finally, exactly as in the proof of Lemma 8, we choose ỹ′ as a convex combi-
nation of ỹ′′ and v with c3 = c0 − ε′. Noting that

|E(y′)− E(y′′)| � C
ε

ε′
(kl4)

2 = Cε1/5(kl4)
2

finishes the proof. �
We can now investigate the relationship of the various weak neighborhoods.

Lemma 10. Suppose u and b are admissible, and scales 0 � l2, l ′2 � 1 and 1/k �
l3, l ′3 � l4 are given with l ′2 � l3/ l ′3.

(i) For all y ∈ N̂ l2,l3
k,Q (u,b) there exists y′ ∈ N̂ 0,l3

k,Q (u,b) such that

|E(y′)− E(y)| � Cl1/5
2 (kl4)

2.

If there is c3 < c0 such that (21) holds, then the error term O(k2l2
4l1/5

2 ) may
be replaced by O(k2l2

4l2).

(ii) N̂ 0,l3
k,Q (u,b) ⊂ N l ′2,l ′3

k,Q (u,b).

Proof. Let y ∈ N̂ l2,l3
k,Q (u,b) be arbitrary. Write Q as a disjoint union of N trans-

lates of [0, l3)2, D1, . . . ,DN , and a rest R whose area is of order O(l3 · l4) as in
Definition 3 (ii). Set mi

j = −
∫
D j

k∆i ỹ − b̄i dρ and define y0 : k Q × [0, h] → R
3

by (interpolation of)

ỹ0(x p, i) =
⎧⎨
⎩

ỹ(x p, 0) for i = 0, x p ∈ 1
k L ∩ D j ,

ỹ(x p, i)− 1
k mi

j for 1 � i � ν − 1, x p ∈ 1
k L ∩ D j ,

ỹ0(x p, i) for 0 � i � ν − 1, x p ∈ 1
k L ∩ R.

(27)

Then we have
‖y0 − y‖ � max

1�i�ν−1
1� j�N

|mi
j | � l2 (28)

since y ∈ N̂ l2,l3
k,Q (u,b). In particular, ‖y0 −U‖ � c0 + l2. So because −

∫
D j

k∆i ỹ0 −
b̄i dρ = 0 by construction of y0, invoking Lemma 9 (respectively 8), we find
y′ ∈ N̂ 0,l3

k,Q (u,b) satisfying

|E(y′)− E(y0)| � Cl1/5
2 (kl4)

2 (respectively � Cl2(kl4)
2).
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Now by (28) and the Lipschitz Assumption 2 on E we also have

|E(y)− E(y0)| � C(kl4)
2l2.

This proves (i).

In order to prove (ii), suppose y ∈ N̂ 0,l3
k,Q (u,b) and D ⊂ S1 is some translate

of [0, l ′3)2. Let J be the set of those indices of sets D j that intersect D and set

D′ =
⋃
j∈J

D j .

Then ρ((D′ \ D) ∪ (D \ D′)) � Ck2l3l ′3, hence since |k∆i y − bi | is bounded,

∣∣∣∣ 1

ρ(D)
∫
D

k∆i y − b̄i dρ − 1

ρ(D′)

∫
D′

k∆i y − b̄i dρ

∣∣∣∣
� C

ρ(D \ D′)
ρ(D) + C

ρ(D′ \ D)
ρ(D′)

+
∣∣∣∣
(

1

ρ(D) −
1

ρ(D′)

)∫
D∩D′

k∆i y − b̄i dρ

∣∣∣∣
� C

k2l3l ′3
(kl ′3)2

+ C
k2l3l ′3
(kl ′3)2

+ C
k2l3l ′3
(kl ′3)4

(kl ′3)2

= O(l3/ l ′3).

But
∫
D′ k∆i y − b̄i dρ = 0, so

∣∣∣∣−
∫
D

k∆i y − b̄i dρ

∣∣∣∣ � C
l3
l ′3

� l ′2,

that is y ∈ N l ′2,l ′3
k,Q (u,b). �

The connection between W l
k(u,b) (see Theorem 3) and the neighborhoods

defined in Definition 3 is described by the following lemma.

Lemma 11. Let u,b be admissible. Assume 1/k � l3 � l, and 1/k � l ′ � l ′2l ′3.
Then

N̂ 0,l3
k (u,b) ⊂ W l

k(u,b) and W l ′
k (u,b) ⊂ N l ′2,l ′3

k (u,b).

Proof. Suppose y ∈ N̂ 0,l3
k and f ∈ W 1,1

0 (S1;R
3) with ‖ f ‖W 1,1

0
= 1, without loss

of generality f smooth. Choose x j ∈ D j such that |∇ f (x j )|·|D j | �
∫
D j

|∇ f (x j )|.
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Then∫
S1

f · (k∆i ỹ − bi ) = 1

k2

∫
S1

f · (k∆i ỹ − b̄i ) dρ + O(1/k)

= 1

k2

∑
j

∫
D j

f · (k∆i ỹ − b̄i ) dρ + O(1/k + l3)

= 1

k2

∑
j

∫
D j

(
f (x j )+ ∇ f (x j )(x − x j )+ o(l3)

) · (k∆i ỹ − b̄i ) dρ + O(l3)

� 1

k2

∑
j

∫
D j

|∇ f (x j )||x − x j | · |(k∆i ỹ − b̄i )| dρ + O(l3)

� 1

k2

∑
j

∫
D j

C |∇ f (x j )|
√

2l3 + O(l3)

� C(1 + ‖∇ f ‖L1)l3 � Cl3 � l,

that is y ∈ W l
k(u,b). This proves N̂ 0,l3

k (u,b) ⊂ W l
k(u,b).

Now suppose y ∈ W l ′
k (u,b) and let D be some translate of [0, l ′3)2 ⊂ S1.

Consider the function fa with support in D and

fa(x) = 1

4l ′3
min

{
1,

1

a
dist(x, ∂D)

}
e

for x ∈ D, e ∈ R
3 a unit vector. Then for a � l ′3/2,

‖ f ‖W 1,1
0

= ‖∇ f ‖L1 = 1

4l ′3a
· 4(l ′3 − a)a � 1.

In particular, sending a → 0,
∣∣∣∣ 1

4l ′3

∫
D

e · (k∆i ỹ − bi )

∣∣∣∣ = lim
a→0

∣∣∣∣
∫

fa · (k∆i ỹ − bi )

∣∣∣∣ � l ′.

This implies
∣∣∣∣−
∫
D
(k∆i ỹ − b̄i ) dρ

∣∣∣∣ �
∣∣∣∣−
∫
D
(k∆i ỹ − bi )

∣∣∣∣+ C

kl ′3
� Cl ′

l ′3
+ C

kl ′3
� l ′2,

that is y ∈ N l ′2,l ′3
k (u,b). Therefore, W l ′

k (u,b) ⊂ N l ′2,l ′3
k (u,b). �

3.3. Proof of Theorem 2

In this paragraph we will prove Theorem 2, the representation formula for ϕ.
Setting

ϕk(A,b) = 1

νk2 inf
y∈N̂k (A,b)

E(y), (29)
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we need to show that ϕk converges uniformly on compact subsets of Ahom to
some continuous function ϕ. First, we will show that ϕ exists as a pointwise limit
(Proposition 1), then in the second part of this paragraph we will investigate the
continuity properties of the functions ϕk (Corollary 2) leading to the final result.

Existence We start with a preparatory lemma. Throughout this paragraph
A ∈ R

3·2 is some admissible matrix and b ∈ (R3)ν−1 some admissible vector.
Set for short N̂k(A,b) := N̂ 0,1

k,S1
(A,b).

Lemma 12. Suppose k0 ∈ N. Then there is a constant C (independent of k0) such
that, if k > k0 is sufficiently large, for every y ∈ N̂k0(A,b) there is a ŷ ∈ N̂k(A,b)
with ∣∣∣∣ 1

νk2 E(ŷ(x) : x ∈ Lk)− 1

νk2 E(y(x) : x ∈ Lk0)

∣∣∣∣ � C

(
1

k0
+ k0

k

)1/5

.

Proof. Let y ∈ N̂k0(A,b), and cover Sk by translates of [0, k0 + 1)2, denoted
U1, . . . ,Us as in the following picture:

�

�
k

k

k0 + 1

k0 + 1

x1

x2

�
zs

U1

Us

Let z j ∈ Z
2 be the lower left corner of U j and set f j = Az j . Then define

y′ : S × [0, h] → R
3 by (interpolation of)

y′(x) := y(x − (z j
1, z j

2, 0))+ f j

for x ∈ L ∩ ((U j ∩ S)× [0, h]), 1 � j � s. It is easy to see that

‖y′ − A‖ � c0 and

∣∣∣∣−
∫
S1

k∆i ỹ′ dρ(k) − bi
∣∣∣∣ = O

(
k0

k

)
.

So by Lemma 10 there exists ŷ ∈ N̂k(A,b) with
∣∣∣∣ 1

k2 E(ŷ)− 1

k2 E(y′)
∣∣∣∣ � C

(
k0

k

)1/5

. (30)

We estimate the energy of y′. Using Lemma 7 for translates of [0, k0+1
k )2 and

denoting the set of indices i for which Ui ⊂ Sk by I, we see that

E(y′(x) : x ∈ Lk) =
∑
i∈I

E(y′(x) : x ∈ L ∩ (Ui × [0, h]))+ O(k2/k0 + kk0)

= #I · E(y(x) : x ∈ Lk0)+ O(k2/k0 + k0k). (31)
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by the periodic construction of y′ and frame indifference. Since #I = �k/k0�2 =
(k/k0)

2(1 + O(k0/k)), we obtain from (31), noting that E(y(x) : x ∈ Lk0) =
O(k2

0) by Lemma 6,

1

νk2 E(y′(x) : x ∈ Lk) = 1

νk2
0

E(y(x) : x ∈ Lk0)+ O
(

1

k0

)
+ O

(
k0

k

)
.

This finishes the proof by (30). �

Recall the definition of ϕk from (29).

Proposition 1. The limit

ϕ(A,b) := lim
k→∞ϕk(A,b)

exists in R for all admissible A,b.

Proof. By Lemma 6 we have for y ∈ N̂k(A,b)

1

νk2 E(y(x) : x ∈ Lk) = O(1),

so (ϕk(A,b))k∈N is a bounded sequence. We may therefore define ϕ by

ϕ(A,b) := lim inf
k→∞ ϕk(A,b).

For δ > 0 we may choose arbitrarily large k0 such that ϕk0(A,b) < ϕ(A,b)+
δ/3. By definition of ϕk0 , there also exists y ∈ N̂k0(A,b) satisfying 1

νk2
0

E(y) �
ϕk0(A,b)+ δ/3. Now let k > k0 be so large that

C

(
1

k0
+ k0

k

)1/5

< δ/3,

where C is the constant from Lemma 12. Then there is ŷ ∈ N̂k(A,b) such that

1

νk2 E(ŷ(x) : x ∈ Lk) � 1

νk2
0

E(y(x) : x ∈ Lk0)+ C

(
1

k0
+ k0

k

)1/5

< ϕ(A,b)+ δ/3 + δ/3 + δ/3.

It follows ϕk(A,b) � 1
νk2 E(ŷ(x) : x ∈ Lk) � ϕ(A,b)+ δ.

Since by definition of ϕ also ϕk(A,b) � ϕ(A,b) − δ for k sufficiently large,
the proposition is proven. �
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Continuity Here we investigate the remaining parts of Theorem 2, namely if
ϕk → ϕ uniformly on compact subsets of Ahom and if (A,b) �→ ϕ(A,b) is
continuous. We start by investigating the continuity properties of ϕk , first with
respect to the variables bi .

Lemma 13. Let (A,b), (A,b′) ∈ Ahom. Then

|ϕk(A,b)− ϕk(A,b′)| � C

(
max

1�i�ν−1
|bi − b′i |

)1/5

,

C a constant (independent of k, and on A only depending through c1, c2 if the
singular values s1(A) � s2(A) of A lie in [c1, c2]).
Proof. For every y ∈ N̂k(A,b), |−∫S1

k∆i ỹ dρ − b′i | � |bi − b′i |, that is,

y ∈ N̂ l2,1
k,S1

(A,b′) for l2 = maxi |bi − b′i | fixed. By Lemma 10,

ϕk(A,b′) = 1

νk2 inf
y′∈N̂k (A,b′)

E(y′) � 1

νk2 E(y)+ Cl1/5
2 .

Taking the infimum over y ∈ N̂k(A,b), we get

ϕk(A,b′) � ϕk(A,b)+ C

(
max

1�i�ν−1
|bi − b′i |

)1/5

.

Now interchanging the roles of b and b′ finishes the proof. �
In the next lemma we investigate continuity with respect to A.

Lemma 14. Let (A,b), (A′,b) ∈ Ahom. Then there exist constants c,C > 0 such
that

|ϕk(A,b)− ϕk(A
′,b)| � k|A − A′|

for |A − A′| < c/k.

Proof. Let y ∈ N̂k(A,b) and define y′ by

y′(x) = y(x)− Ax p + A′x p.

Then ‖y′ − y‖ � |A − A′|√2k2 + h2 � C |A − A′|k, so by Assumption 2,

|E(y′)− E(y)| � Ck2|A − A′|k. (32)

On the other hand, we clearly have y′ ∈ N̂k(A′,b). Together with (32) it follows
that ϕk(A′,b) � 1

νk2 E(y)+ C |A − A′|k. Since y was arbitrary, we get

ϕk(A
′,b) � ϕk(A,b)+ C |A − A′|k.

Interchanging the roles of A and A′ finishes the proof. �
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This lemma proves continuity of the ϕk with respect to A. The condition that
|A − A′| � c/k can easily be dropped considering intermediate points between A
and A′. However, the Lipschitz constant Ck obtained this way blows up as k → ∞.
In order to prove the main continuity result, we therefore need another preparatory
lemma:

Lemma 15. Let (A,b), (A′,b) ∈ Ahom and c > 0 a constant. Suppose 1/k �
l = l(k) � 1. Then there is a constant C > 0 such that

|ϕk(A,b)− ϕk(A
′,b)| � C(1/kl + l + kl|A − A′|)

whenever |A − A′| � c/kl.

Proof. Cover S1 by translates U1, . . . ,Us of [0, l)2 with
∣∣⋃Ui \ S1

∣∣ = O(l) as
in the following picture:

�

��

�

1

1

l

l

x1

x2


z1

zs

U1

Us

Let zi ∈ Z
2 be the lower left lattice point of kUi and set f i = (A − A′)zi . For

y ∈ N̂k(A,b), we define y′ by (interpolation and)

y′(x) = y(x)− Ax p + A′x p + f i

if x ∈ L ∩ (kUi × [0, h]). Then

‖y′ − y‖ � |A − A′|
√

2(kl)2 + h2 � C |A − A′|kl � Cc,

so Assumption 2 shows that

|E(y′)− E(y)| � Ck2kl|A − A′|. (33)

Now let I denote the set of those indices i for which Ui ⊂ S1. Applying Lemma 7
to y′ first, then using frame indifference, and finally applying Lemma 7 to y′′(x) =
y(x)− Ax p + A′x p gives

E(y′(x) : x ∈ Lk) =
r∑

i=1

E(y′(x) : x ∈ L ∩ (kUi × [0, h]))+ O(k/ l + k2l)

=
r∑

i=1

E(y′′(x) : x ∈ L ∩ (kUi × [0, h]))+ O(k/ l + k2l)

= E(y′′(x) : x ∈ Lk)+ O(k/ l + k2l).
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Since clearly y′′ ∈ N̂k(A′,b), this shows that

ϕk(A
′,b) � 1

νk2 E(y′′) � 1

νk2 E(y)+ C(1/kl + l + kl|A − A′|)

by (33). Since y was arbitrary, we get

ϕk(A
′,b) � ϕk(A,b)+ C(1/kl + l + kl|A − A′|).

Again interchanging the roles of A and A′ concludes the proof. �

As a consequence of Lemmas 13, 14 and 15 we obtain:

Proposition 2. The set {ϕk} is equicontinuous.

Proof. Let δ > 0 be given. Choose constants c,C as in the previous lemma, and
let l = 3C/kδ. Then for k so large that

Cl = 3C2/δk � δ/3

we get from the above lemma for |A − A′| � c/kl, that is |A − A′| � cδ/3C ,

|ϕk(A,b)− ϕk(A
′,b)| � C(1/kl + l + kl|A − A′|)

� δ/3 + δ/3 + 3C2|A − A′|/δ.

So for |A−A′| � min{δ2/9C2, cδ/3C}, we have for sufficiently large k, say k > k0,

|ϕk(A,b)− ϕk(A
′,b)| � δ.

This shows equicontinuity of {ϕk(·,b) : k ∈ N} since the remaining finitely many
ϕ1(·,b), . . . , ϕk0(·,b) are continuous by Lemma 14. By Lemma 13 the family
{ϕk(A, ·) : A admissible with s1(A), s2(A) ∈ [c1, c2], k ∈ N} is also equiconti-
nuous for all c2 � c1 > 0. The claim follows. �

From Propositions 1 and 2 we can now easily finish the proof of Theorem 2.

Proof of Theorem 2. By Proposition 1, ϕk(A,b) → ϕ(A,b) pointwise and, by
Proposition 2, {ϕk} is equicontinuous. This implies that ϕk(A,b) → ϕ(A,b) uni-
formly on compact subsets of Ahom, in particular that ϕ is continuous since by
Arzela–Ascoli every subsequence has a further subsequence that converges. By the
pointwise convergence its limit must be ϕ. �
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3.4. Proofs of Theorems 1 and 3

First note that Theorem 1 is an immediate consequence of Theorem 3. So we
only have to prove the latter result.

Fix admissible u ∈ W 1,∞(S1),b ∈ L∞(S1) and constants c1, c2 > 0 as in (6).
We will show that for l3 → 0 and kl3 → ∞,

lim
k→∞

1

νk2 inf
N̂ 0,l3

k (u,b)
E(y) = E(u,b). (34)

This will be sufficient since from Lemmas 10 and 11 (and the obvious inclusions
of neighborhoods) we obtain the following corollary which precisely describes our
relaxation procedure in terms of weak neighborhoods.

Corollary 2. Suppose (34) holds. Then in fact

lim
k→∞

1

νk2 inf
y∈Uk (u,b)

E(y) = E(u,b),

where the minimum is taken over Uk(u,b) = N̂ l2,l3
k (u,b) with l2, l3 → 0 and

kl3 → ∞, or Uk(u,b) = W l
k(u,b) with l → 0 and kl → ∞, or over Uk(u,b) =

N l2,l3
k (u,b) with l2, l3 → 0 and kl2l3 → ∞.

If Q ⊂ S1 is some square in S1 of side-length l = l(k) we write N̂Q(u,b) :=
N̂ 0,l

k,Q(u,b).
Fix σ > 0 and 0 < δ < min{1/2, c1/2}. Since u ∈ W 1,∞(S1), we may choose

a measurable set B ⊂ S1 and ū ∈ C1(S1) such that |B| � σ and

S1 \ B = {x ∈ S1 : u(x) = ū(x),∇u(x) = ∇ū(x)}.
Furthermore, there exists c̄2 only depending on c2 such that supx∈S1

|∇ū(x)| � c̄2
(compare [16]).

In order to pass from microscopic to macroscopic dimensions, we will introduce
a mesoscale 1/k � ε � l3. As detailed below, we will consider a partition of S1
by mesoscopic squares Qi of side-length ε plus some rest R whose area is of the
order O(l3), see the next picture.

�

�
1

1

ε

ε

x1

x2

R

Qi

Then ū ∈ C1(S1) can be approximated by a piecewise affine function uε. More
precisely, there is an increasing and continuous function g only depending on the
modulus of continuity of ∇ū such that g(ε)→ 0 as ε → 0 and

‖ū − uε‖∞ < εg(ε), (35)
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where uε is affine on each of the squares Qi . (If ū ∈ C1,α , one can for example
choose g(ε) = Cεα .) We fix such a function g satisfying (35) from now on.

Let 0 < γ < 1 be a constant. We choose ε′ = ε′(k) such that

kε′g(ε′)γ ≡ c0. (36)

Note that (35) and (36) imply that

‖ū − uε‖∞ � c0/k if ε � ε′ (37)

while ε′ → 0 and kε′ → ∞.

Lemma 16. Let Q ⊂ S1 be one of the squares Qi (on which ∇uε is constant).
Suppose c1 − δ � s1(∇uε) � s2(∇uε) � c2 + δ on Q, and let b be a constant
admissible vector in (R3)ν−1. Then if ε � ε′,

∣∣∣∣∣ inf
y∈N̂Q(u,b)

E(y)− inf
y∈N̂Q(uε,b)

E(y)

∣∣∣∣∣ � C

(
δ1/5|Q| + |B ∩ Q|

δ3

)
k2.

Proof. Let y ∈ N̂Q(u,b). We set

rQ := #

{
x ∈ 1

k
Z

2 ∩ Q : |u(x)− ū(x)| > δ/k

}

and define y′ by

ỹ′(x) =
{

ỹ(x) if |u(x p)− ū(x p)| � δ/k,
vε(x) else,

for x p ∈ 1
k Z

2 ∩ Q and interpolation (vε defined analogously to (10) with respect
to uε and b). Then by (37) for ε � ε′,

‖ỹ′ − uε‖ � (c0 + δ + o(1))/k � (c0 + 2δ)/k,

and since k∆i ỹ′ is bounded,∣∣∣∣−
∫

Q

(
k∆i ỹ′ − b̄i

)
dρ

∣∣∣∣ =
∣∣∣∣−
∫

Q
k∆i ỹ′ dρ − −

∫
Q

k∆i ỹ dρ

∣∣∣∣ � CrQ

|k Q| .

Furthermore, by Corollary 1,

|E(y)− E(y′)| � CrQ . (38)

Invoking Lemma 10 (with c0 replaced by c0 + 2δ and c3 by c0), we find a
deformation y′′ on Q with

‖ỹ′′ − uε‖ � (c0 + 2δ)/k and −
∫

Q
∆i ỹ′′ dρ = b̄i

satisfying

E(y′′) � E(y′)+ 1

δ

CrQ

|k Q| |k Q|. (39)
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(Note that the constant found in the proof of Lemma 10 by applying Lemma 8 is—
in the terminology of this lemma—Cl2/(c0 − c3). Here, this equals CrQ/|k Q|δ.)
Finally, by Lemma 9 there is yet another deformation y′′′ with

‖ỹ′′′ − uε‖ � c0/k and −
∫

Q
∆i ỹ′′′ = b̄i

and

|E(y′′′)− E(y′′)| � Cδ1/5|k Q|. (40)

Since y′′′ ∈ N̂Q(uε,b) and y ∈ N̂Q(u,b)was arbitrary, we deduce from (38), (39)
and (40)

inf
y∈N̂Q(uε,b)

E(y) � inf
y∈N̂Q(u,b)

E(y)+ C
(
δ1/5|k Q| + rQ

δ

)
.

Interchanging the roles of u and uε (but defining rQ as before and only replacing
vε by v in the definition of y′) gives an analogous inequality.

To finish the proof, it remains to estimate rQ . For δ small enough, the balls
B(x, δ/(c2 + c̄2)k) with x ∈ 1

k Z
2 are disjoint. Since |∇u| � c2 and |∇ū| � c̄2, we

have B(x, δ/(c2 + c̄2)k) ∩ (S1 \ B) = ∅ if |u(x)− ū(x)| > δ/k. So indeed

Cδ2

k2 rQ � |B ∩ Q|.

�

Now consider a partition of S1 with squares D j of side-length l3 and R, |R| �
2l3 (see the next picture). Since kl3 → ∞ and kε′ → ∞ (compare (36)), we
may choose ε = ε(k) � ε′ → 0 with kε → ∞ as k → ∞ such that eventually
l3/ε ∈ N. This also induces a partition of S1 into squares Qi of side-length ε and
R as in the picture below.

�

�
x1

x2

1

1

Qi
U j

R

�

�� l3

�
�
ε��l3

Proof of Theorem 3. Define G to be the union of those D j where c1 − δ <

s1(∇ū) � s2(∇ū) < c2 + δ. Since ∇ū is continuous, for k large enough, G ⊃
{x : c1 � s1(∇ū(x)) � s2(∇ū(x)) � c2} \ R ⊃ S1 \ (B ∪ R), whence
|G| � 1 − |B ∪ R| � 1 − σ − 2l3.
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Let M j = y(L ∩ (kD j × [0, h])). It follows from Lemmas 7 and 6 that

∣∣∣∣∣∣ inf
y∈N̂ 0,l3

k (u,b)
E(y)− inf

y∈N̂ 0,l3
k (u,b)

∑
D j⊂G

E(M j )

∣∣∣∣∣∣ � C

(
k

l3
+ k2l3 + |S1\G|

l2
3

(kl3)
2

)

� Ck2
(

1

kl3
+ l3 + σ

)
,

where by definition of N̂ 0,l3
k ,

inf
y∈N̂ 0,l3

k (u,b)

∑
D j⊂G

E(M j ) =
∑

D j⊂G

inf
y∈N̂D j (u,b)

E(y).

Now using Lemma 7 again,
∣∣∣∣∣∣ inf
y∈N̂D j (u,b)

E(y)− min
∑

Qi⊂D j

inf
y∈N̂Qi (u,b j,i )

E(y)

∣∣∣∣∣∣ � C
kl2

3

ε
, (41)

where the minimum is to be taken over admissible vectors b j,1, . . . ,b j,(l3/ε)2 such

that
∑

i
ρ(Qi )
ρ(D j )

b j,i = b j := −
∫
D j

b̄ dρ.

Since ∇uε → ∇ū uniformly, we may choose matrices A j such that sup j |A j −
∇uε| = o(1) on D j . We now want to replace u by A j in the right-hand side of
(41). First replacing u by uε on Qi leads to an error bounded by C(δ1/5|Qi |+ |B ∩
Qi |/δ3)k2 by Lemma 16. Now replacing ∇uε by A j leads to an additional error of
order o(|k Qi |) because for matrices A,

inf
y∈N̂Qi (A,b j,i )

E(y) = ϕm(A,b j,i )ν|k Qi | + O(kε),

where m is the integer part of kε or kε− 1 (use translational invariance), and (ϕk)k
is equicontinuous by Proposition 2, hence also {ϕk(·,b) : k ∈ N,b admissible} by
compactness. It follows that
∣∣∣∣∣∣ inf
y∈N̂ 0,l3

k (u,b)
E(y)−

∑
D j⊂G

⎛
⎝min

∑
Qi⊂D j

inf
y∈N̂Qi (A j ,b j,i )

E(y)

⎞
⎠
∣∣∣∣∣∣

� C
∑

Qi⊂G

((
δ1/5 + o(1)

)
|Qi |k2 + |B ∩ Qi |

δ3 k2
)

+ Ck2
(

1

kε
+ l3 + σ

)
.

Now reasoning as above, for n = n(k) = �kl3� or �kl3� − 1,

min
∑

Qi⊂D j

inf
y∈N̂Qi (A j ,b j,i )

E(y) = inf
y∈N̂D j (A j ,b j )

E(y)+ O(kl2
3/ε)

= ϕn(A j ,b j )ν|kD j | + O(kl2
3/ε + kl3).
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Summarizing (using Theorem 2 to choose n = �kl3� uniquely), we obtain
∣∣∣∣∣∣

1

νk2 inf
y∈N̂ 0,l3

k (u,b)
E(y)−

∑
D j⊂G

ϕn(A j ,b j )|D j |
∣∣∣∣∣∣ � C(δ1/5 + |B|/δ3 + σ + o(1))

� C(δ1/5 + σ/δ3).

LetΩ = {x : c1−δ < s1(∇ū) � s2(∇ū) < c2+δ)}. Then lim infk G ⊃ Ω . The
piecewise linear respectively constant approximations A j respectively b j converge
to ∇ū uniformly respectively to b boundedly in measure. (This is not hard to see:
approximate b by continuous functions in measure.) So we deduce from Lemma
17 and Theorem 2

∑
D j⊂G

ϕn(A j ,b j )|D j ∩Ω| →
∫
Ω

ϕ(∇ū,b).

Since S1 \ Ω ⊂ B, |B| � σ , and ϕn, ϕ are uniformly bounded on compact
subsets of admissible matrices, we finally obtain that

lim sup
k→∞

∣∣∣∣∣
1

νk2 inf
y∈N̂ 0,l3 (u,b)

E(y)−
∫
S1

ϕ(∇u,b)

∣∣∣∣∣ � C(δ1/5 + σ/δ3).

Now let σ → 0, δ → 0. �
Remark. Assuming regularity for ∇u, b, for example to lie in some Hölder class,
the above proof gives explicit error estimates.

Lemma 17. Let Ω ⊂ R
n be of finite measure, vk : Ω → K , k = 1, 2, . . .,

measurable, K some compact subset of R
m and fk : K → R such that fk ◦ vk is

integrable. Furthermore suppose that Ωk ⊂ Ω is measurable with |Ω \Ωk | → 0
as k → ∞. If fk → f uniformly on K , f : K → R continuous and vk → v in
measure, then

lim
k→∞

∫
Ωk

fk(vk) =
∫
Ω

f (v).

The proof of this lemma is a straightforward ε/4-argument.

3.5. Extension to infinite pair-interactions

We will now prove Theorem 4. For this paragraph we assume that Proposition 5
is already proven.

Suppose E is given as in (16). For given δ we choose

Eδ(y) = 1

2

∑
i 
= j

Wδ(|yi − y j |)+ E0(y), (42)
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where Wδ � W satisfies the hypotheses of Proposition 5, and

Wδ(r) = W (r) for r � δ, Wδ(r) � min
0<s�δ

W (s) for r � δ. (43)

Proposition 5 implies that Eδ is an admissible energy function. If δ is small enough,
we may assume that W (r) > 0 for r � δ. Note also that there exists C = C(δ, c)
such that for all z ∈ Lk and y with ‖ỹ − u‖ � c/k (u admissible)

∑
x∈Lk
x 
=z

|Wδ(|y(x)− y(z)|)| � C. (44)

This follows from Lemma 6 (with K2 = {z}) applied to the pair potential given by
|Wδ|.
Definition 4. Let δ > 0, and suppose y is some deformation. We call (yi , y j ),
i 
= j , a δ-critical bond if |yi − y j | < δ. We say that y satisfies a minimal distance
hypothesis with δ if it does not contain δ-critical bonds.

Lemma 18. Suppose y is a deformation with ‖ỹ − u‖ � c/k, u admissible.

(i) The number of atoms in a ball B of radius R is bounded by a constant
n = n(R).

(ii) There exists C > 0 such that if (y(x), y(z)) is 1-critical, then |x − z| � C.

Proof. (i) Suppose yi = y(xi ) ∈ B. Choose δ = 2C3/C1 as in the proof of Lemma
6. Then for |x − z| � δ we have C1

2 |x − z| � |y(x)− y(z)| and thus

|y(x)− y(z)| � 2R ⇒ |x − z| � δ or |x − z| � 4R/C1.

So #{ j : y j ∈ B} � #{ j : |xi − x j | � max{2C3/C1, 4R/C1}} =: n(R).
(ii) Just note that by Lemma 1 (ii), |x − z| � (|y(x)− y(z)| + C3)/C1. �

We will prove Theorem 4 by reducing to the case of admissible energy functions
already treated. The main point is to show that we may impose an additional minimal
distance hypothesis on the deformations. To this end, for given y we have to find
a new configuration y′ satisfying this hypothesis whose energy does not exceed
E(y) too much. The main difficulty comes again from the condition on local spatial
averages.

Let (A,b) ∈ Ahom. As in the proof of Lemma 9 we choose

b0 ∈ argmin
b0

max

{
max

1�i�ν−1
|bi − b0|, |b0|

}
(45)

and set
Bi = bi−1 − b0, i = 2, . . . , ν, B1 = −b0. (46)

We will first assume that there is some θ > 0 such that, if |Bi |, |B j | � c0 − θ and
there is z ∈ Z

2 with |Bi − B j − Az| � θ , then i = j and z = 0.
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Now suppose y ∈ N̂ l2,l3
Q (A,b) where Q is a square of side-length l3 � 1/k.

We construct a new deformation y′ : L ∩ k Q × [0, h] → R
3 in two steps. Let

0 < δ1 < δ′1 <
δ2

6n(2δ2)
, 3δ2 < δ′2 � min{1, c1} (47)

be small enough (n(2δ2) as in the previous lemma, c1 = s1(A)).

Step 1. We first derive an intermediate deformation from y by successively moving
the atoms around. At each intermediate step we are dealing with deformations ŷ
such that ‖ŷ − A‖ � c0, so Lemma 18 is applicable.

We will reorder layer by layer of the film starting with i = 0. Suppose the first
i − 1 layers and the first m atoms of the i th layer y(·, i) have been reordered in the
way described below. Let x = (x1, x2, i) be the (m + 1)th atom. We reorder in the
following way:

If y(x) has a distance greater than or equal to δ1 to all the other atomic positions,
it remains unchanged.

Now suppose y(x) takes part in a δ1-critical bond. If there exists another atom
at y(x ′), x ′ = (x ′

p, i), and a unit vector e ∈ R
3 such that

|y(x)+ re − Ax p| � c0 and |y(x ′)− re − Ax ′
p| � c0

for 0 � r � δ2, then both of the atoms y(x) and y(x ′) will be moved in opposite
directions. Let L = {y(x)+ re : 0 � r � δ2}, L ′ = {y(x ′)− re : 0 � r � δ2}.
Claim. There are points Y (x) ∈ L ,Y (x ′) ∈ L ′ with

y(x)+ y(x ′) = Y (x)+ Y (x ′)

such that

|Y (x)− Y (x ′)|, |Y (x)− y(z)|, |Y (x ′)− y(z)| � δ′1
for all z ∈ Lk , z 
= x, x ′.

Proof of the claim. Let B, B ′ be balls of radius 2δ2 centered at y(x) respectively
y(x ′). Clearly, dist(z, z̄) � δ2 > δ1 if z ∈ L and z̄ /∈ B (respectively if z ∈ L ′
and z̄ /∈ B ′). By the preceding lemma there are at most n(2δ2) atoms in these balls.
Consider balls Bl , respectively B ′

l ′ with radius δ′1 around the atoms in the balls
B, respectively B ′. Since by assumption δ′1 < δ2/6n(2δ2) we get (H1 denoting
one-dimensional Hausdorff measure)

H1

(
L \
⋃

l

Bl

)
� 2δ2/3, H1

(
L ′ \

⋃
l ′

B ′
l ′

)
� 2δ2/3.

Since the mapping L → L ′ with z �→ z′ such that z + z′ = y(x) + y(x ′), that is,
z′ = y(x)+ y(x ′)− z is isometric, we find that

H1

({
z ∈ L \

⋃
l

Bl : z′ /∈
⋃
l ′

B ′
l ′

})
� δ2/3.
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Noting that |z − z′| � δ′1 ⇒ |y(x)+ y(x ′)− 2z| � δ′1, we also get that

H1({z ∈ L : |z − z′| � δ′1}) � δ′1,

so we have shown that

H1

({
z ∈ L \

⋃
l

Bl : z′ /∈
⋃
l ′

B ′
l ′ , |z − z′| � δ′1

})
� δ2/3 − δ′1 > 0.

In particular, there exist points Y (x) = z ∈ L , Y (x ′) = z′ ∈ L ′ as claimed.
We now update the deformation by replacing y(x) by Y (x) and y(x ′) by Y (x ′).

If each atom has been considered this way we arrive at a new configuration again
denoted y. We repeat the process until there are no more δ1-critical bonds that can
be removed this way. (There may still be δ1-critical bonds left.)

Step 2. If there are no more δ1-critical bonds, we are done. If there still are, using
the new configuration constructed in Step 1 (again called y), we now construct y′.
Suppose y(x) takes part in a δ1-critical bond. Then it is not possible to find another
atom in the same film layer and the unit vector e as described above. But then for
all x ′ ∈ L ∩ (k Q × [0, h]) with x3 = x ′

3,

|y(x ′)− Ax ′
p − [y(x)− Ax p]| � δ2, (48)

for otherwise we could define

e = y(x ′)− Ax ′
p − [y(x)− Ax p]

|y(x ′)− Ax ′
p − [y(x)− Ax p]| .

In particular, there are no δ1-critical bonds within the set y(k Q × {i}). (If (y(x ′),
y(x ′′)) was critical, then by |y(x ′)− Ax ′

p − [y(x ′′)− Ax ′′
p]| � 2δ2 we would have

|Ax ′
p − Ax ′′

p| � 2δ2 + δ1 < c1 in contradiction to (47).)

Now suppose (y(x), y(x ′)) is critical where x ′ = (x ′
p, i ′), i ′ 
= i . Then again,

as in (48), for all z p, z′p ∈ Z
2 ∩ k Q,

|y(z p, i)− Az p − [y(x)− Ax p]| � δ2

and

|y(z′p, i ′)− Az′p − [y(x ′)− Ax ′
p]| � δ2.

In particular for z′p − z p = x ′
p − x p,

∣∣∣y(z′p, i ′)− Az′p − [y(x ′)− Ax ′
p] −

(
y(z p, i)− Az p − [y(x)− Ax p]

)∣∣∣ � 2δ2,

so

|y(z′p, i ′)− y(z p, i)| � |y(x)− y(x ′)+ Ax ′
p − Ax p + Az p − Az′p| + 2δ2

� δ1 + 2δ2 � 3δ2.
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Since |x p − x ′
p| � C (compare Lemma 18 (ii)), we find (up to a constant

boundary layer) at least one 3δ2-critical bond per atom of the i th layer. If this case
occurs, that is, we have more than (kl3)2 − Ckl3 3δ2-critical bonds, we reorder all
the atoms in k Q × [0, h], first by placing atom x at position V (x) (V such that
Ṽ = v, compare (10)). Now suppose δ′2 is small enough. Then since |Bi | < c0 − θ
or |B j | < c0 − θ if |Bi − B j − Az| � θ for i 
= j and some z ∈ Z

2, we can
eliminate all 3δ2-critical bonds as in Step 1, arriving at a new deformation y such
that no atom in y(k Q × [0, h]) takes part in a δ′2-critical bond.

Lemma 19. Suppose |Bi | = |B j | = c0 and Bi − B j ∈ AZ
2 only for i = j . (So θ

as above can be chosen.) There are 0 < δ1, δ
′
1, δ2, δ

′
2 (only depending on W , E0,

and θ) such that (47) holds, and (compare (42)) for all y ∈ N̂ l2,l3
Q (A,b)

Eδ1(y
′) � Eδ1(y),

where y′ is derived from y as described above. In fact, y′ ∈ N̂ l2,l3
Q (A,b) with

E(y′) � Eδ1(y).

Proof. We prove that each step of the above construction lowers energy. Assume
δ′2 is so small that W (r) � 0 on (0, δ′2] and thus also Wδ � 0 on (0, δ′2] for δ � δ′2
(compare (43)). Suppose ŷ and ŷ′ are intermediate configurations in Step 1 above
and ŷ′ arises from ŷ by moving the atoms x and x ′. By Corollary 1, changing the
position of two atoms yields an energy error in E0 bounded by some constant C .
For given (small) δ′1 choose δ1 so small that

Wδ1(r) > C + 4 sup
‖y−A‖�c0

sup
z

∑
z′ 
=z

|Wδ′1(|y(z′)− y(z)|)|

for all r � δ1 (which is possible by (44) and (43)). Now y(x) having a critical bond
of length r < δ1,

Eδ1(ŷ)− Eδ1(ŷ
′)

=
∑

z 
=x,x ′
Wδ1(|ŷ(z)− ŷ(x)|)+

∑
z 
=x,x ′

Wδ1(|ŷ(z)− ŷ(x ′)|)

−
∑

z 
=x,x ′
Wδ1(|ŷ′(z)− ŷ′(x)|)−

∑
z 
=x,x ′

Wδ1(|ŷ′(z)− ŷ′(x ′)|)

+Wδ1(|ŷ(x)− ŷ(x ′)|)− Wδ1(|ŷ′(x)− ŷ′(x ′)|)+ C

�
∑

z 
=x,x ′
|ŷ(z)−ŷ(x)|�δ′1

Wδ′1(|ŷ(z)− ŷ(x)|)+
∑

z 
=x,x ′
|ŷ(z)−ŷ(x ′)|�δ′1

Wδ′1(|ŷ(z)− ŷ(x ′)|)

−
∑

z 
=x,x ′
Wδ′1(|ŷ′(z)− ŷ′(x)|)−

∑
z 
=x,x ′

Wδ′1(|ŷ′(z)− ŷ′(x ′)|)

+Wδ1(r)− Wδ′1(|ŷ′(x)− ŷ′(x ′)|)− C

� 0.
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Now consider the construction of y′ in Step 2 and suppose there are (kl3)2 −
Ckl3 > (�kl3 + 1)2/2 3δ2-critical bonds between the i th and i ′th layer in y(L ∩
(k Q × [0, h])). The energy change due to the E0-term is bounded by C(kl3)2. So
if for given δ′2, δ1 and δ2 are chosen such that

Wδ1(r) > 2C + sup
‖y−A‖�c0

sup
x

2ν
∑
x ′ 
=x

|Wδ′2(|y(x ′)− y(x)|)|

for all r � 3δ2, then

Eδ1(y)− Eδ1(y
′)

= 1

2

∑
x ′ 
=x

Wδ1(|y(x ′)−y(x)|)− 1

2

∑
x ′ 
=x

Wδ1(|y′(x ′)−y′(x)|)+E0(y)−E0(y
′)

� 1

2

∑
x ′ 
=x

|y(x)−y(x ′)|�3δ2

Wδ1(|y(x)− y(x ′)|)+ 1

2

∑
x ′ 
=x

|y(x)−y(x ′)|>δ′2

Wδ′2(|y(x ′)− y(x)|)

−1

2

∑
x ′ 
=x

Wδ′2(|y′(x ′)− y′(x)|)+ E0(y)− E0(y
′)

� (�kl3 + 1)2

2

⎛
⎝2C + 2ν sup

‖y−A‖�c0

sup
x

∑
x ′ 
=x

|Wδ′2(|y(x ′)− y(x)|)|
⎞
⎠

−1

2
ν(�kl3 + 1)2 sup

x

∑
x ′ 
=x

|Wδ′2(|y(x ′)− y(x)|)|

−1

2
ν(�kl3 + 1)2 sup

x

∑
x ′ 
=x

|Wδ′2(|y′(x ′)− y′(x)|)| − C(kl3)
2

� 0.

Clearly, ‖ỹ′ − A‖∞ � c0/k. Since Step 1 leaves −
∫

Q k∆i ỹ dρ unchanged and

k∆iv = b̄i , we have indeed y′ ∈ N̂ l2,l3
Q (A,b). By construction y′ satisfies a

minimal distance hypothesis with δ1, so Eδ1(y
′) = E(y′). �

Write N̂ l2,l3
k,c0

(u,b) to highlight the dependence of the weak neighborhoods on
c0. In the non-homogeneous setting we will need the following

Lemma 20. Let δ2 > 0. For all y ∈ N̂ l2,l3
k,c0−δ2

(u,b) there exists y′ ∈ N̂ l2,l3
k,c0

(u,b)
with E(y′) � Eδ1(y) if δ1 is sufficiently small.

Proof. Derive y′ from y similarly as in Step 1 of the procedure described above
applied to the sets L ∩ (D j × [0, h]) for j = 1, . . . , N individually. If the unit
vector e is taken to be the same for each atom to be considered, we may choose x ′
to be the next (the (m + 2)th) lattice point, respectively the first if x was the last
one of the points in kD j ∩ Z

2. Clearly, y′ ∈ N̂ l2,l3
k,c0

(u,b). As before, we see that
E(y′) � Eδ1(y). �
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We first analyze ϕ. The first part of Theorem 4 is contained in the following
proposition.

Proposition 3. Suppose A and b are admissible. Then the limit

ϕ(A,b) = lim
k→∞

1

νk2 inf
y∈N̂ 0,1

k (A,b)
E(y)

exists in (−∞,∞], ϕ is continuous on Ahom (as a function with values in R∪{∞}),
and ϕ(A,b) = ∞ if and only if there are z ∈ Z

2, i 
= j ∈ {1, . . . , ν} such that
Bi − B j = Az and |Bi | = |B j | = c0. (Bi as in (46), (45).)

Furthermore, ϕδ denoting the limiting energy density corresponding to Eδ
(compare (42)) ϕδ ↗ ϕ pointwise on Ahom as δ ↘ 0.

Proof. Suppose first that Bi − B j /∈ AZ
2 if |Bi |=|B j |=c0, i 
= j . By Lemma 19,

inf
y∈N̂ 0,1

k (A,b)
E(y) � inf

y∈N̂ 0,1
k (A,b)

Eδ1(y)

for δ1 sufficiently small. But Eδ1 � E , so the reverse inequality it true, too. We
may therefore replace E by Eδ1 and infer from Theorem 2 that ϕ(A,b) exists in
R, and ϕ is continuous at these A,b.

For 0 < θ � 1 given, suppose now there are z ∈ Z
2 and i 
= j such that

|Bi |, |B j | � c0 − θ , |Bi − B j − Az| � θ . We define Y i and Y i as in the proof of
Lemma 9. There it was shown that for |Bi0 | � c0 − θ we have (compare (25) and
(26) with ε′ = θ and δ = 0)∣∣∣Y i0 − Bi0

∣∣∣ � C
√
θ,

∑
x∈ 1

k Z2∩S1

∣∣∣Y i0(x)− Y i0

∣∣∣ � Ck2 4
√
θ.

For |Bi − B j − Az| � θ this implies (modulo boundary terms)
∑

x∈ 1
k Z2∩S1

k |ỹ(x, i − 1)− ỹ(x + z/k, j − 1)|

=
∑

x∈ 1
k Z2∩S1

∣∣∣Y i (x)− Y j (x + z/k)− Az
∣∣∣

�
∑

x∈ 1
k Z2∩S1

∣∣∣Y i (x)− Y i
∣∣∣+
∣∣∣Y i − Bi

∣∣∣+
∣∣∣Bi − B j − Az

∣∣∣

+
∣∣∣B j − Y j

∣∣∣+
∣∣∣Y j − Y j (x)

∣∣∣
� Ck2 4

√
θ,

so the number of 4C 4
√
θ -critical bonds is at least k2/2. This holds for all

y ∈ N̂ 0,1
k (A,b), so by (29),

ϕ(A,b) := lim inf
k→∞ ϕk(A,b) � 1

2ν
inf

0<s�4C 4√
θ

W (s)− C.
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Since the right-hand side of this inequality converges to ∞ as θ → 0, the first part
of the proposition is proven.

It remains to prove that ϕδ ↗ ϕ. This is clear on the set {b : Bi − B j /∈
AZ

2 for i 
= j} since there ϕ = ϕδ for δ sufficiently small as just shown. If
Bi − B j ∈ AZ

2, then the above calculations show that

ϕ(A,b) � ϕδ(A,b) � 1

2ν
Wδ(0)− C → ∞ as δ → 0.

�
For the inhomogeneous case define

Mθ := {x ∈ S1 : ∃z ∈ Z
2, i 
= j ∈ {1, . . . , ν} s.t. |Bi (x)|, |B j (x)| � c0 − θ,

|Bi (x)− B j (x)− ∇u(x)z| � θ}
for (u,b) admissible, where b0, Bi satisfy (45) and (46) pointwise.

Proof of Theorem 4. By Proposition 3 it remains to prove upper and lower bounds
for general admissible (u,b). This is done in four steps:
1. It is easy to get lower bounds. Since E � Eδ1 , we have for y(k) → (u,b),

lim inf
k→∞

1

νk2 E(y(k)) � lim inf
k→∞

1

νk2 Eδ1(y
(k)) �

∫
S1

ϕδ1(∇u,b)

for all δ1 > 0. Now by Proposition 3 ϕδ1 ↗ ϕ pointwise as δ1 → 0, so

lim inf
k→∞

1

νk2 E(y(k)) �
∫
S1

ϕ(∇u,b)

by monotone convergence.
2. First suppose that |Bi (x)| � c0 − θ almost everywhere for some θ > 0. Then
by Lemma 20 for appropriately chosen δ1, δ2 small,

inf
y∈N̂ l2,l3

k,c0
(u,b)

E(y) � inf
y∈N̂ l2,l3

k,c0−δ2 (u,b)
Eδ1(y).

Now by Theorems 2 and 3 (see also Corollary 2), denoting the macroscopic energy
density corresponding to Eδ by ϕδ ,

lim
k→∞

1

νk2 inf
y∈N̂ l2,l3

k,c0−δ2 (u,b)
Eδ1(y) =

∫
S1

ϕ
δ1
c0−δ2

(∇u,b) �
∫
S1

ϕc0−δ2(∇u,b)

for l2, l3 → 0, kl3 → ∞, and hence also

lim sup
k→∞

1

νk2 inf
y∈N̂ l2,l3

k,c0
(u,b)

E(y) �
∫
S1

ϕc0−δ2(∇u,b).

Now this holds for all δ2, therefore

lim sup
k→∞

1

νk2 inf
y∈N̂ l2,l3

k,c0
(u,b)

E(y) �
∫
S1

ϕc0(∇u,b)
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by dominated convergence, provided ϕc0−δ → ϕc0 boundedly on {|Bi | � c0 − θ}
as δ → 0. To see this, note first that on this set we may replace ϕ by ϕδ0 for δ0 > 0
small enough only depending on θ (see the proof of Proposition 3). Now an easy
consequence of Lemma 9 is that |ϕδ0

k,c0−δ − ϕ
δ0
k,c0

| � Cδ1/5. It remains to note that

y(k) ∈ N̂ l2,l3
k,c0

(u,b) for all k implies y(k) → (u,b).
3. Now drop the assumption |Bi | < c0, but still suppose that |Mθ | = 0 for some

fixed θ > 0. Define approximations bη
η→0−→ b in L∞ by

Bi
η =

{
Bi if |Bi | � c0 − η,

(c0 − η) Bi

|Bi | if |Bi | > c0 − η.

By continuity and boundedness of ϕ on (Mθ )c,

lim
η→0

∫
S1

ϕ(∇u,bη) =
∫
S1

ϕ(∇u,b).

Now choose an appropriate diagonal sequence y(k) → (u,b) with

lim sup
k→∞

1

νk2 E(y(k)) �
∫
S1

ϕ(∇u,b).

4. For general (u,b) we may suppose that |M0| = 0 (for |M0| > 0 the upper
bound is trivial). For given b ∈ L∞(S1; (R3)ν−1) we define bθ by bθ (x) = b(x) if

x /∈ Mθ , bθ ≡ 0 else. By the previous results, |ϕ(∇u(x), 0)| � C . Since bθ
∗
⇀ b,

we again find y(k) → (u,b) such that

lim sup
k→∞

1

νk2 E(y(k)) � lim sup
θ→0

∫
S1

ϕ(∇u,bθ ) �
∫
S1

ϕ(∇u,b)

by Proposition 3. �

3.6. Extensions and variants

In the last paragraph of this section we discuss some extensions of the theory
and possible changes of our set-up.

3.6.1. Basic extensions

General Bravais lattices and domains More generally, we could deal with
Bravais-lattices

L =
{

x ∈ R
3 : x =

3∑
i=1

µi ei , µi ∈ Z

}
,

where (e1, e2, e3) are linearly independent in R
3 and Sk := {x1e1 + x2e2 : x1, x2 ∈

[0, k]} for k ∈ N. Then our reference configuration will be L ∩ (Sk × [0, h]e3)

where h := (ν − 1), and ∆i y(x p) = y(x p + ie3)− y(x p), x p ∈ Sk . This amounts
to a simple coordinate change in the physical space R

3.
Covering S with mesoscopic squares up to a negligible error at the boundary, it

is not hard to see that the convergence scheme in fact applies to bounded Lipschitz
domains S ⊂ R

2 (where ϕ is given as in Theorem 2).
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Alternative definition of convergence In our definition of convergence y(k) →
(u,b), it is not possible to consider the limiting case of very restricted relaxation,
that is c0 → 0, unless all bi are zero. Instead of asking ‖ỹ − u‖ in Definition 2 to
be less than c0/k one could demand that

‖ỹ − v‖ � c0/k, (49)

where v is as in (10) corresponding to u,b with b0 set to zero. (Condition (4) is not
needed for this definition of convergence.) The results are analogous.

Different types of atoms The theory developed so far may be generalized to films
consisting of more than one species of atoms. Then E does not only depend on the
positions yi of the atoms but also on their type, labeled by, say, t (i) ∈ {1, . . . , s},

E = E(y1, t (1), . . . , yN , t (N )).

Note that in our derivation we only made use of translational invariance of E .
The theory still applies if the atoms of different type are arranged periodically on
the lattice with some fixed (microscopic) period, that is, there exist p1, p2 ∈ N

such that for all x the atoms at (x1, x2, x3), (x1 + p1, x2, x3) and (x1, x2 + p2, x3)

are of the same type.

3.6.2. Distinguishable particle systems Similarly, the convergence scheme also
applies to certain systems with distinguishable particles. We will state a general
result for systems with finite range interaction. The basic assumption is that only
atoms that are close in the reference configuration are supposed to interact. This
violates Assumption 2 since the energy is not a function of atomic positions in the
deformed configuration any more. It rather also depends on the reference confi-
guration, that is, the atoms are distinguishable. It will be clear, however, that the
convergence scheme described so far still applies.

Let a > 0. To each xi ∈ Lk we assign a neighborhood

Uxi = {x j ∈ L : |x j − xi | � a} = {xi
1, . . . , xi

ra
},

where the enumeration of elements of Uxi shall be such that xi
1 = xi and, if

(xi1)3 = (xi2)3, then xi1
j − xi1 = xi2

j − xi2 for j = 1, . . . , ra .
Our goal is to study energy functions of the form

Efr(y) =
∑

xi∈L∩([a,k−a]2×[0,h])
fxi (y(x

i
2)− y(xi

1), . . . , y(xi
ra
)− y(xi

1))+ O(k),

where fxi : R
3(ra−1) → R are given functions representing the energy of the inter-

actions between the i th atom at its position y(xi ) = y(xi
1) and its neighboring atoms

in their positions y(xi
2), . . . , y(xi

ra
). (The term O(k) is introduced to compensate

for boundary effects since Uxi is not contained in Sk × [0, h] for xi in a boundary
layer of constant width a.)
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More precisely, since we also have to consider energies of subsets of our ato-
mic lattice, suppose the fxi are functions on (R3 ∪ {α})ra−1 with α /∈ R

3 and
dist(α, x) := 1 for all x ∈ R

3. For a subset K of Lk we define

Efr(y(K)) =
∑
xi∈K

fxi (y(x
i
2)− y(xi

1), . . . , y(xi
ra
)− y(xi

1)) (50)

with y(xi
j )− y(xi

1) replaced by α whenever xi
j /∈ K.

We do not assume fxi to satisfy any symmetry conditions. However, as noted
earlier, we do need some periodicity, so we suppose there exist fixed p1, p2 ∈ N

such that
f(x1+p1,x2,x3) = fx = f(x1,x2+p2,x3) (51)

for x = (x1, x2, x3) ∈ (Z+)2 × {0, . . . , ν − 1}.
Proposition 4. Suppose Efr is defined as in (50) and (51) holds. Assume that the
fxi are locally Lipschitz. Then the limit ϕfr of Theorem 2 exists, and we have

lim
k→∞

1

νk2 inf
y∈W l

k (u,b)
Efr(y) =

∫
S1

ϕfr(∇u(x),b(x)) dx

as l → 0 and kl → ∞.

(Adopting the notion of δ-criticality suitably (compare Definition 4), also
unbounded pair-interaction parts can be treated analogously to Theorem 4.)

Sketch of Proof. First note that by (51) there are only finitely many different func-
tions fx . Due to Lemma 1, a bound on the distance of two atoms in the reference
configuration implies a bound on their distance in the deformed state. So by a cut-off
argument we may suppose that the functions fxi are uniformly bounded and have
common Lipschitz constants. But each atom occurs in at most ra summands of (50).
This proves the desired Lipschitz property of E . As noted earlier, the remaining
part of Assumption 2 can be weakened to requiring that the periodicity assumption
(51) is satisfied.

As for Assumption 1, to estimate

|E(y(K1 ∪ K2)− E(y(K1))− E(y(K2))|
note that, if xi ∈ K1 is such that Uxi ∩ (K1 ∪ K2) 
= Uxi ∩ K1, then there exists
x ′ ∈ Uxi ∩ K2, that is, by Lemma 1, |y(x)− y(x ′)| � C , a constant, analogously
for K1, K2 interchanged. On the other hand, due to the uniform boundedness of the
fxi s, the error term can be estimated by a constant (C ′, say) times the number (N ,
say) of such xi in K1 ∪ K2. Now if ψ = 2C ′χ{x :|x |�C}, then indeed

|E(y(K1 ∪ K2)− E(K1)− E(K2)| � C ′N �
∑

x∈K1,x ′∈K2

ψ(|y(x)− y(x ′)|).

�
Remark. Dealing only with interactions whose range is bounded in the reference
configuration, there is no need for a minimal strain hypothesis on u, that is, for
these interactions we might set c1 = 0 in (3).
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4. Examples/applications

In this section, we will investigate some examples of atomic interactions and
explore under what circumstances these models fit into the theory developed in
the last section. The first three models will satisfy Assumptions 1 and 2 even in
the more restrictive sense of Assumption 3. For the last one this will be obviously
false. Throughout this discussion we will assume that u ∈ W 1,∞(S1;R

3), bi ∈
L∞(S1;R

3) are admissible. Applying the chain rule ∇ f ◦ g(x) = f ′(g(x))∇g(x)
almost everywhere for Lipschitz functions f : R → R, g : R

n → R, as usual,
the right-hand side is interpreted as zero whenever ∇g = 0 regardless of f ′(g(x))
being well-defined or not.

4.1. Pair potentials

As a first example we consider pair potentials, that is, energy functions of the
form

Epp(y) = 1

2

∑
i 
= j

W (|yi − y j |), (52)

where W : [0,∞)→ R.

Proposition 5. Suppose Epp is defined as in (52). Assume that W : [0,∞)→ R is
Lipschitz. If there exist M > 0 and q > 3 such that for almost every r � 0

|W (r)| � Mr−q and |W ′(r)| � Mr−q+1,

then Epp is admissible.

Proof. We need only check that Epp satisfies Assumptions 1 and 2. Clearly, Epp
only depends on atomic positions, is frame indifferent, and satisfies Assumption 1
with ψ(r) = |W (r)|. Furthermore, W Lipschitz (with Lipschitz constant M ′, say)
implies that E is Lipschitz, and we have almost everywhere

∣∣∣∣∂E

∂yl
(y)

∣∣∣∣ =
∣∣∣∣∣∣
1

2

∑
i 
= j

W ′(|yi − y j |) · yi − y j

|yi − y j | · (δil − δ jl)

∣∣∣∣∣∣
�
∑
j 
=l

∣∣W ′(|yl − y j |)
∣∣ . (53)

We have to find a bound on this quantity assuming ‖ỹ − u‖ � C/k. But then
as in Lemma 1 y satisfies |y(x) − y(z)| � C1|x − z| − C3, and we can apply
the technique of splitting the sum into long-range and short-range terms as in the
proof of Lemma 6. From |W ′(r)| � M ′ and |W ′(r)| � Mr−q+1 (if existing) for
some q > 3, we then deduce that the right-hand side of (53) is bounded almost
everywhere (independently of k and l). �

An example is given by the Morse potential with interaction function

WM(r) := W0(e
−2a(r−r0) − 2e−a(r−r0))

for positive parameters W0, a and r0 (cf. [29]).
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Having proven this proposition independently of Theorem 4, also pair potentials
with W as in (16) are covered by our convergence scheme, for example, the

Lennard–Jones potential given by

WLJ(r) = W0 ·
((σ

r

)12 −
(σ

r

)6
)
,

W0 > 0 and σ constants (compare [29]), and the Pettifor–Ward pair potentials
(compare [33]) given by

WPW(r) = W0

r

3∑
n=1

an cos(knr + αn)e
−κnr ,

W0 > 0, an, kn, αn, κn constants such that
∑

n an cos(αn) > 0.

4.2. Pair functionals

More generally, in this paragraph we will discuss pair functionals as examples of
the embedded atom method. These models have the advantage of also covering some
environmental dependence of the bond strength between the nuclei at positions {yi }
(compare [29]). We let

Epf(y) = 1

2

∑
i 
= j

W (|yi − y j |)+
∑

i

F(ρi ), (54)

where W : [0,∞)→ R as above, F : [0,∞)→ R, and ρi is given by

ρi =
∑
j 
=i

f (|yi − y j |), (55)

f : [0,∞)→ [0,∞).
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The interpretation of such an energy function is the following (compare [29]).
As always, {yi } denotes the positions of the nuclei of some material. These nuclei are
supposed to be embedded in some electron gas consisting of the valence electrons
of the atoms of that material. Now suppose that the total energy associated with y
can be split into two parts: one that describes the interaction of the various nuclei,
leading to the first summand in (54), and the sum of the energy it costs to embed a
single nucleus into an electron gas of some density ρ. Denoting this energy

Eembedding = F(ρ),

where ρ denotes the electron density at the point the nucleus is embedded, and
assuming that the electron density at yi depends on the positions of the other nuclei
through

ρi =
∑
j 
=i

f (|yi − y j |),

this embedding energy of a single nucleus at yi is indeed F(ρi ).
We aim at exhibiting conditions on W , F and f such that Epf satisfies

Assumptions 1 and 2. First note that since

Epf(y) = 1

2

∑
i 
= j

W (|yi − y j |)+
∑

i

F

⎛
⎝∑

j 
=i

f (|yi − y j |)
⎞
⎠ ,

Epf only depends on atomic positions and, depending in fact only on the inter-
atomic distances, is frame indifferent.

Lemma 21. Suppose Epf is defined as in (54) and W is as in Proposition 5 (res-
pectively Theorem 4). Assume F : [0,∞) → (−∞, 0] is convex and Lipschitz,
f : [0,∞)→ [0,∞) is Lipschitz and, for almost every r � 0,

|F ◦ f (r)| � Mr−q , | f ′(r)| � Mr−q+1.

Then Epf is admissible (respectively Theorem 4 applies).

Note that—as is plausible—by the decay hypothesis and assumptions on F ,
necessarily f (r) → 0 as r → ∞ (if F is not trivial). In the following proposition
we will see that F need not be Lipschitz. While the decay assumption on f ′ is
in the spirit of the previous result, |F ◦ f (r)| � Mr−q poses quite severe decay
conditions on f , if we take, for example, F(a) ∼ √

a. This will be remedied in
Proposition 6.

Proof. First note that F � 0 being convex implies that −F is subadditive. By
Proposition 5 it remains to verify Assumptions 1 and 2 for the embedding term
Eemb(y) =∑i F(ρi ). So let M and N be disjoint sets of atoms. Setting

ρK
v =

∑
w∈K
w 
=v

f (|v − w|),



48 Bernd Schmidt

we find

|Eemb(M ∪ N )− Eemb(M)− Eemb(N )|

=
∣∣∣∣∣
∑

v∈M∪N
F(ρM∪N

v )−
∑
v∈M

F(ρM
v )−

∑
v∈N

F(ρN
v )

∣∣∣∣∣

=
∣∣∣∣∣
∑
v∈M

(F(ρM∪N
v )− F(ρM

v ))+
∑
v∈N

(F(ρM∪N
v )− F(ρN

v ))

∣∣∣∣∣ .

Consider the first sum: f � 0 implies that

ρM∪N
v =

∑
w∈M∪N
w 
=v

f (|v − w|) �
∑
w∈M
w 
=v

f (|v − w|) = ρM
v .

So since F is decreasing (because it is convex and non-positive), we have

∣∣∣∣∣
∑
v∈M

(F(ρM∪N
v )− F(ρM

v ))

∣∣∣∣∣ =
∑
v∈M

(−F(ρM∪N
v )+ F(ρM

v ))

�
∑
v∈M

⎛
⎜⎝
⎡
⎢⎣−F

⎛
⎜⎝∑

w∈M
w 
=v

f (|v − w|)
⎞
⎟⎠+

∑
w∈N

−F( f (|v − w|))
⎤
⎥⎦+ F(ρM

v )

⎞
⎟⎠

=
∑
v∈M

∑
w∈N

−F( f (|v − w|))

by subadditivity of −F . Treating the term
∣∣∑

v∈N (F(ρM∪N
v )− F(ρN

v ))
∣∣ analo-

gously and summing up, we have shown that

|Eemb(M ∪ N )− Eemb(M)− Eemb(N )| �
∑
v∈M,
w∈N

−2F ◦ f (|v − w|),

so we may choose ψ(r) = −2F ◦ f (r). Note that since f is bounded, F ◦ f is
bounded too. Clearly the decay hypothesis on ψ(r) as r → ∞ is satisfied. This
concludes the first part of the proof.

For the remaining part we again only need to consider the embedding term
of the energy. (The first one is dealt with as in the proof of Proposition 5.) F is
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Lipschitz, say ‖F ′‖∞ � M ′. So almost everywhere

∣∣∣∣∣∣
∂

∂yl

∑
i

F

⎛
⎝∑

j 
=i

f (|yi − y j |)
⎞
⎠
∣∣∣∣∣∣

=
∣∣∣∣∣∣
∑

i

⎛
⎝F ′

⎛
⎝∑

j 
=i

f (|yi − y j |)
⎞
⎠ ·
∑
j 
=i

f ′(|yi − y j |) · yi − y j

|yi − y j | · (δil − δ jl)

⎞
⎠
∣∣∣∣∣∣

� M ′
∣∣∣∣∣∣
∑
i 
= j

f ′(|yi − y j |) · yi − y j

|yi − y j | · (δil − δ jl)

∣∣∣∣∣∣
� 2M ′∑

j 
=l

∣∣ f ′(|yl − y j |)
∣∣ . (56)

Just as before, for ỹ in a C/k-neighborhood of u, the decay and boundedness
hypotheses on f ′ allow us to split this sum into long-range and short-range terms.
We thus find a bound on this quantity independent of k and l. �
Proposition 6. Suppose W is as in Proposition 5 (respectively Theorem 4). Assume
now F : [0,∞)→ (−∞, 0] is convex, f : [0,∞)→ (0,∞) is Lipschitz, and, for
almost every r � 0,

| f (r)| � Mr−q , | f ′(r)| � Mr−q+1.

Then Theorems 1, 2, and 3 (respectively 4) apply to Epf as given in (54) and (55).

Remark. Before we prove this proposition we would like to comment on the
plausibility of the various assumptions. F is non-positive since placing a positively
charged particle into an electron cloud yields energy. The non-negativity of f is
clear since f is supposed to be a density. Strict positivity is plausible since perfect
screening is not to be expected. The convexity condition on F can be understood
as reflecting the fact that, due to screening, adding more electrons, that is, raising
the electron density, results in smaller and smaller effects. This seems to match
experimental data (compare [29], p. 171). A qualitatively reasonable scaling would
be given by F(a) ∼ −√

a as, for example, in the Finnis–Sinclair model where
F(a) ∝ −√

a (compare [29]). The remaining are decay assumptions on f similar
to those for W .

Proof. Let y be some deformation satisfying ‖ỹ − u‖ � C/k. Then for each
yi = y(xi ) there is y j = y(x j ) with j 
= i and |yi − y j | � 2C + c2 (choose x j

to be a neighbor of xi ). So
∑

j 
=i f (|yi − y j |) (i fixed) is bounded from below by

some δ > 0. Defining F̂ suitably by

F̂(ρ) =
⎧⎨
⎩

0 for ρ = 0,
linear for 0 � ρ � δ,

F(ρ) for ρ � δ,
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F̂ is convex and Lipschitz. Furthermore, |F̂ ◦ f (r)| � |F(δ)|
δ

| f (r)| � C Mr−q . So

the corresponding energy Êpf(y) is admissible. Since for all y with ‖ỹ−u‖ � c0/k

Epf(y) = Êpf(y),

Theorems 1, 2, and 3 also apply to E . �
Remark. Epf is not admissible in the usual sense since, for example, for two atoms
y1, y2

Epf(y1, y2) = W (|y1 − y2|)+ 2F ( f (|y1 − y2|)) ,
and F ◦ f (r) is in general not O(r−q) for some q > 3.

4.3. Angular forces

In this paragraph we consider energy functions that may also depend on the
angles between atomic bonds. For a physical motivation of such models we refer
to [29]. Mathematically this leads to the consideration of potentials depending on
triplets of atomic positions:

Eaf(y) = 1

2

∑
i 
= j

W (|yi − y j |)+ 1

6

∑
i, j,k

i 
= j 
=k 
=i

Ŵ (yi , y j , yk), (57)

where W : [0,∞)→ R, and Ŵ is given by

Ŵ (yi , y j , yk) = h(|yi − y j |, |y j − yk |, θi jk)+ h(|y j − yk |, |yk − yi |, θ jki )

+ h(|yk − yi |, |yi − y j |, θki j ), (58)

θi jk denoting the angle between yi − y j and yk − y j , and

h :
{ [0,∞)× [0,∞)× R → R,

(r1, r2, θ) �→ h(r1, r2, θ),

is 2π -periodic and symmetric in the last variable.
Again we are seeking conditions on W and Ŵ (respectively h) such that Eaf

satisfies Assumptions 1 and 2. As before, it is easy to see that Eaf(y) depending
only on inter-atomic distances and angles is determined by atomic positions and is
frame indifferent.

Proposition 7. Suppose Eaf is defined as in (57). Assume that W is as in Proposi-
tion 5 (respectively Theorem 4) and h is Lipschitz. Furthermore, there are bounded
functions χ1, χ2, α1, α2 : [0,∞)→ [0,∞) with

χµ(r) � Mr−q , αµ(r) � Mr−q+1, µ = 1, 2

such that

|h(r1, r2, θ)| � χ1(r1)χ2(r2)

and (almost everywhere)
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∣∣∣∣ ∂h

∂rµ
(r1, r2, θ)

∣∣∣∣ � α1(r1)α2(r2), µ = 1, 2,

and ∣∣∣∣∂h

∂θ
(r1, r2, θ)

∣∣∣∣ � α1(r1)α2(r2)min{r1, r2}.

Then Eaf is admissible (respectively Theorem 4 applicable).

Remark. Note that it is plausible to require that ∂h/∂θ vanish as r1 → 0 or
r2 → 0 since Ŵ (yi , y j , yk) should depend continuously on yi , y j , yk , but the
angle θi jk does not when the triangle becomes degenerate.

The proof is tedious but not very hard. Splitting into long- and short-range
terms, all sums occurring in the error terms can be bounded appropriately. ψ can
be chosen as ψ(r) = |W (r)| + C max{χ1(r), χ2(r)}.
Example. If h splits into

h(r1, r2, θ) = f1(r1) f2(r2)g(θ),

as, for example, for Stillinger–Weber-type energies (compare [29]). Then h satisfies
the conditions of Proposition 7 if fµ, f ′

µ are bounded, | fµ| � Mr−q , | f ′
µ| �

Mr−q+1 for µ = 1, 2, f1(r1) f2(r2) � min{r1, r2} and g and g′ are bounded. This
is satisfied, for example, for the angular term

g(θ) = (cos(θ)+ 1/3)2

discussed in [29].

4.4. A simple example

Even for fairly elementary microscopic energies as, for example, given by pair
potentials, not much is known about their ground state deformations. (Some one-
dimensional results in this direction can be found in [5], a recent two-dimensional
result for certain pair potentials is proven in [34].) We conclude this section cal-
culating ϕ explicitly for a simple nearest neighbor model. Although it lacks some
physical requirements (for example shear resistance), it captures some realistic
features as, for example, quadratic energy growth near the reference configuration
(a natural state) for pure tensions. The model consisting of two different types of
bonds, the energy minimizer will not be a simple crystal. A pointwise limit would
overestimate the macroscopic energy.
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Suppose the atoms of our reference configuration interact only with nearest
neighbors and the interaction potential is harmonic, that is, given by springs of
strength d1 and d2 with equilibrium at distance 1.

We assume that bonds in the reference configuration parallel to the x2- or
x3-axes have d1 = 1, while bonds parallel to the x1 axis have alternating d1 = 1
and d2 = 2 as in the previous picture. So the energy is given by

Enn(y) = 1

2

∑
|xi−x j |=1

di j (|yi − y j | − 1)2, (59)

di j = 1 or 2 as described above.

Proposition 8. Enn is admissible in the sense of Proposition 4. In particular, the
limit ϕnn of Theorem 2 exists for Enn and

Enn(u,b) =
∫
S1

ϕnn(∇u(x),b(x)) dx.

Furthermore (set b0 = 0), if c0 is not too small,

ϕnn(A,b) = 4

3
(max{0, |a·1| − 1})2 + (max{0, |a·2| − 1})2

+
ν−1∑
i=1

(max{0, |bi − bi−1| − 1})2,

where a· j denotes the j th column of A.

This is clearly a special case of (50) with a = 1 and periodicity p1 = 2, p2 = 1.
So we only have to prove the representation formula for ϕnn.

Sketch of Proof. The main observation in the elementary but tedious proof is that
the energy decouples into energies of one dimensional atomic chains

i �→ y(i, x2, x3), resp. i �→ y(x1, i, x3), i = 0, . . . , k,

with k + 1 atoms ((x2, x3) respectively (x1, x3) fixed), and ν − 1 chains with
(k+1)2+1 atoms whose difference of successive atoms (labeled by 0 � x1, x2 � k)
is given by y(x1, x2, i)− y(x1, x2, i − 1), i fixed:
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E(y) =
∑

0�x2�k
0�x3�ν−1

∑
0�x1�k−1

d(x1)(|y(x1 + 1, x2, x3)− y(x1, x2, x3)| − 1)2

+
∑

0�x1�k
0�x3�ν−1

∑
0�x2�k−1

(|y(x1, x2 + 1, x3)− y(x1, x2, x3)| − 1)2

+
∑

0�x3�ν−2

∑
0�x1,x2�k

(|y(x1, x2, x3 + 1)− y(x1, x2, x3)| − 1)2,

where d(x1) = d1 = 1 if x1 is even, d(x1) = d2 = 2 if x1 is odd. Now the energy
can be bounded from below by minimizing the energy of these chains separately
subject to boundary conditions ỹ = v on ∂S1 × [0, h] respectively −

∫
∆i ỹ = bi .

Allowing for negligible error terms, these configurations can be patched together
to yield the desired result. �
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