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Abstract

The fundamental theorem of surface theory classically asserts that, if a field of
positive-definite symmetric matrices (aαβ) of order two and a field of symmetric
matrices (bαβ) of order two together satisfy the Gauss and Codazzi-Mainardi equa-
tions in a simply connected open subset ω of R

2, then there exists an immersion
θ : ω → R

3 such that these fields are the first and second fundamental forms of the
surface θ(ω), and this surface is unique up to proper isometries in R

3. The main
purpose of this paper is to identify new compatibility conditions, expressed again
in terms of the functions aαβ and bαβ , that likewise lead to a similar existence and
uniqueness theorem. These conditions take the form of the matrix equation

∂1A2 − ∂2A1 + A1A2 − A2A1 = 0 in ω,

where A1 and A2 are antisymmetric matrix fields of order three that are functions of
the fields (aαβ) and (bαβ), the field (aαβ) appearing in particular through the square

root U of the matrix field C =
⎛
⎜⎝

a11 a12 0

a21 a22 0

0 0 1

⎞
⎟⎠. The main novelty in the proof of

existence then lies in an explicit use of the rotation field R that appears in the polar
factorization ∇Θ = RU of the restriction to the unknown surface of the gradient
of the canonical three-dimensional extension Θ of the unknown immersion θ . In
this sense, the present approach is more “geometrical” than the classical one. As
in the recent extension of the fundamental theorem of surface theory set out by
S. Mardare [22], the unknown immersion θ : ω → R

3 is found in the present
approach in function spaces “with little regularity”, such as W 2,p

loc (ω; R
3), p > 2.

This work also constitutes a first step towards the mathematical justification of
models for nonlinearly elastic shells where rotation fields are introduced as bona
fide unknowns.
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1. Introduction

All the notations used, but not defined, in this introduction are defined in the
next section.

Greek indices and exponents range in the set {1, 2}. Let S
2 denote the space

of all symmetric matrices of order two and let S
2
> denote the set of all symmetric

positive-definite matrices of order two. Let ω be an open subset of R
2 and let

θ ∈ C3(ω; R
3) be an immersion. Let

aαβ = ∂αθ · ∂βθ ∈ C2(ω) and bαβ = ∂αβθ · ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ | ∈ C1(ω)

denote the components of the first and second fundamental forms of the surface
θ(ω), and let

Γαβτ = 1
2 (∂βaατ + ∂αaβτ − ∂τaαβ), (aστ ) = (aαβ)

−1, Γ σαβ = aστΓαβτ .

Then it is well known that the functions aαβ and bαβ necessarily satisfy compatibility
conditions, which take the form of the Gauss and Codazzi-Mainardi equations, viz.,

∂βΓαστ − ∂σΓαβτ + Γ
µ
αβΓστµ − Γ µασΓβτµ = bασbβτ − bαβbστ in ω,

∂βbασ − ∂σbαβ + Γ µασbβµ − Γ
µ
αβbσµ = 0 in ω,

which in effect simply constitute a rewriting of the relations ∂ασβθ = ∂αβσ θ . The
functions Γαβτ and Γ σαβ are the Christoffel symbols of the first and second kinds
associated with the immersion θ .

In fact, the Gauss and Codazzi-Mainardi equations reduce to only three inde-
pendent equations, since the Gauss equations reduce to only one equation (corres-
ponding, for example, to α = 1, β = 2, σ = 1, τ = 2) and the Codazzi-Mainardi
equations reduce to only two equations (corresponding, for example, to α = 1,
β = 2, σ = 1 and α = 1, β = 2, σ = 2).

It is also well known that, if a field of positive-definite symmetric matrices
(aαβ) ∈ C2(ω; S

2
>) and a field of symmetric matrices (bαβ) ∈ C1(ω; S

2) satisfy the
Gauss and Codazzi-Mainardi equations and if the set ω is simply connected, then
conversely, there exists an immersion θ ∈ C3(ω; R

3) such that (aαβ) and (bαβ) are
the first and second fundamental forms of the surface θ(ω).

Furthermore, such an immersion is uniquely defined up to proper isometries
of R

3. This means that any other immersion θ̃ ∈ C3(ω; R
3) such that (aαβ) and

(bαβ) are the first and second fundamental forms of the surface θ̃(ω)must be of the
form θ̃(y) = c + Qθ(y) for all y ∈ ω, where c is a vector in R

3 and Q is a proper
orthogonal matrix of order three.

These existence and uniqueness results together constitute the fundamental
theorem of surface theory, which originates from the work of Janet [19] and
Cartan [5] (for a self-contained and essentially elementary proof see [12] or [7,
Chapter 2]). Its regularity assumptions have since been significantly weakened.
First, Hartman & Wintner [18] have shown that this theorem still holds if the
fields (aαβ) and (bαβ) are only of class C1 and C0, with a resulting immersion in

the space C2(ω; R
3). Then S. Mardare further relaxed these assumptions, first in
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[20] to fields (aαβ) and (bαβ) of class W 1,∞
loc and L∞

loc, then in [21] to fields (aαβ)

and (bαβ) of class W 1,p
loc and L p

loc for some p > 2, with resulting immersions in

the spaces W 2,∞
loc (ω; R

3) and W 2,p
loc (ω; R

3), respectively. Naturally, the Gauss and
Codazzi-Mainardi equations are only satisfied in the sense of distributions in such
cases.

The main objective of this paper is to identify new compatibility conditions
satisfied by the first and second fundamental forms of a surface θ(ω) that share
the same properties: they are necessary, they are sufficient for the existence of the
immersion θ : ω → R

3 if ω is simply connected, and they hold as well in function
spaces with little regularity, corresponding to immersions θ ∈ W 2,p

loc (ω; R
3) with

p > 2.
Let M

3 denote the space of all matrices of order three and let A
3 denote the

space of all antisymmetric matrices of order three. Then these new compatibility
equations, which are first identified in Theorem 1 as necessary conditions satisfied
by any immersion θ ∈ W 2,p

loc (ω; R
3), are formed as follows. With the Christoffel

symbols Γαβτ ∈ L p
loc(ω) and Γ σαβ ∈ L p

loc(ω) defined as above, let bσα = aβσbαβ ∈
L p

loc(ω) denote as usual the mixed components of the second fundamental form,

and let the matrix fields Γ α ∈ L p
loc(ω; M

3), C ∈ W 1,p
loc (ω; S

3
>), U ∈ W 1,p

loc (ω; S
3
>),

and Aα ∈ L p
loc(ω; M

3) be defined by

Γ α =
⎛
⎜⎝
Γ 1
α1 Γ 1

α2 −b1
α

Γ 2
α1 Γ 2

α2 −b2
α

bα1 bα2 0

⎞
⎟⎠ , C =

⎛
⎜⎝

a11 a12 0

a21 a22 0

0 0 1

⎞
⎟⎠ ,

U = C1/2, Aα = (UΓ α − ∂αU)U−1.

Then the matrix fields Aα are antisymmetric and their components necessarily
satisfy three compatibility conditions that take the form of the following matrix
equation:

∂1A2 − ∂2A1 + A1A2 − A2A1 = 0 in D′(ω; A
3).

We then establish in Theorem 7 the main result of this paper, namely that these
compatibility conditions are also sufficient, that is, under the assumption that the
open set ω ⊂ R

2 is simply connected, we show that, if for some p > 2 a field of
positive-definite symmetric matrices (aαβ) ∈ W 1,p

loc (ω; S
2
>) and a field of symmetric

matrices (bαβ) ∈ L p
loc(ω; S

2) satisfy the matrix equation

∂1A2 − ∂2A1 + A1A2 − A2A1 = 0 in D′(ω; A
3),

where the matrix fields Aα ∈ L p
loc(ω; A

3) are constructed as above from the matrix

fields (aαβ) and (bαβ), then there exists an immersion θ ∈ W 2,p
loc (ω; R

3), unique up
to proper isometries of R

3, such that

aαβ = ∂αθ · ∂βθ in W 1,p
loc (ω) and bαβ = ∂αβθ · ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ | in L p
loc(ω).
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The proof consists firstly in determining a proper orthogonal matrix field R of
class W 1,p

loc in ω by solving the Pfaff system ∂αR = RAα , secondly in determining

an immersion θ ∈ W 2,p
loc (ω; R

3) by solving the equations ∂αθ = Ruα , where uα
denotes the αth column vector field of the matrix field U = C1/2, and thirdly in
showing that (aαβ) and (bαβ) are indeed the first and second fundamental forms of
the surface θ(ω).

By contrast, the proof in the classical approach (once properly extended to
spaces with little regularity; cf. S. Mardare [21]) first seeks a matrix field
F ∈ W 1,p

loc (ω; M
3) as a solution of the Pfaff system ∂αF = FΓ α , and then looks

to the sought immersion θ ∈ W 2,p
loc (ω; R

3) as a solution to the system ∂αθ = fα ,
where fα denotes the αth column vector field of the matrix field F.

We emphasize that our existence result is global and that it holds in function
spaces with little regularity, viz., W 2,p

loc (ω; R
3), thanks to deep existence results

for Pfaff systems and Poincaré’s lemma (recalled in Theorems 2 and 3) recently
obtained by S. Mardare, first in R

2 (cf. [21]), then in R
N for an arbitrary dimension

N � 2 (cf. [22]). Note also that, as observed in [22], such regularities are optimal.
An inspection of the proof reveals the geometric nature of this approach. Let

the canonical three-dimensional extension Θ : ω × R → R
3 of an immersion

θ ∈ W 2,p
loc (ω; R

3) be defined by

Θ(y, x3) = θ(y)+ x3a3(y) for all y ∈ ω and x3 ∈ R,

where a3 = a1 × a2

|a1 × a2| and aα = ∂αθ , and let the matrix field F ∈ W 1,p
loc (ω; M

3) be

defined by F(y) = ∇Θ(y, 0). Then the fields R and U satisfy

F = RU in W 1,p
loc (ω; M

3).

In other words, the proper orthogonal matrix field R is nothing but the rotation
field that appears in the polar factorization of the gradient of the canonical three-
dimensional extension Θ of the immersion θ at x3 = 0.

The above compatibility conditions are in a sense the “surface analogues” of
similar “three-dimensional” compatibility conditions satisfied in an open subset�
of R

3 by the square root of the metric tensor field ∇ΘT ∇Θ ∈ C2(�; S
3
>) associa-

ted with a given immersion Θ ∈ C3(�; R
3). These three-dimensional conditions,

which were first identified (in componentwise form) by Shield [26], have been
recently shown to be also sufficient for the existence of such an immersionΘ when
the set� is simply connected, also in function spaces with little regularity (cf. [11]).

We conclude this paper by showing in Theorem 10 that these new compati-
bility conditions are, as expected, equivalent to the Gauss and Codazzi-Mainardi
equations.

As advocated, notably by Simmonds & Danielson [27], Valid [31], Pietrasz-
kiewicz [23, 24], Pietraszkiewicz & Badur [25], Başar [4], Simo & Fox [28],
and Galka & Telega [16] among others, rotation fields can be advantageously
introduced as bona fide unknowns in the mathematical modeling and numerical
simulation of nonlinearly elastic shells. The present study may thus be viewed as a
first step towards the mathematical justification of such an approach.
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This viewpoint is thus analogous to that of Antman [3], who, back in 1976,
was the first to suggest that the metric tensor field of a deformed configuration in
nonlinear three-dimensional elasticity could be considered as the primary unknown
on its own, instead of the position vector field as is customary. More recently, it
has been recognised that the first and second fundamental form of a deformed
middle surface in nonlinear shell theory could be considered as primary unknowns
on their own, instead of the position vector field of the middle surface (for recent
developments and references on such approaches see [14] and [9]).

The results of this paper have been announced in [10].

2. Notations and preliminaries

This section gathers together the various conventions, notations, definitions,
and preliminary results that will be used throughout the article.

Greek indices and exponents range in the set {1, 2}, and the summation conven-
tion with respect to repeated indices or exponents is used in conjunction with this
rule.

All matrices considered in this paper are real. The notations M
n , M

n+, S
n , S

n
>,

A
n , and O

n+ designate, respectively, the sets of all square matrices of order n, of all
matrices F ∈ M

n with det F > 0, of all symmetric matrices, of all positive-definite
symmetric matrices, of all antisymmetric matrices, and of all proper orthogonal
matrices, that is, orthogonal matrices Q with det Q = 1, of order n. The notation
M

m×n designates the space of all matrices with m rows and n columns. When it is
identified with a matrix, a vector in R

n is always understood as a column vector,
that is, a matrix in M

n×1. Given a matrix A ∈ M
n , [A] j denotes its j th column

vector.
The Euclidean norm of a ∈ R

n , the Euclidean inner product of a,b ∈ R
n , and

the vector product of a,b ∈ R
n are denoted, respectively, by |a|, a · b, and a ∧ b.

Given any matrix C ∈ S
n
>, there exists one and only one matrix U ∈ S

n
> such that

U2 = C (for a proof, see, for example, [6, Theorem 3.2-1]). The matrix U is denoted
by C1/2 and is called the square root of C. The mapping C ∈ S

n
> �→ C1/2 ∈ S

n
>

defined in this fashion is of class C∞ (for a proof, see, for example, Gurtin [17,
Section 13]). Clearly, the mapping A ∈ S

n
> �→ A−1 ∈ S

n
> is also of class C∞.

Any invertible matrix F ∈ M
n+ admits a unique polar factorization F = RU,

as a product of a matrix R ∈ O
n+ by a matrix U ∈ S

n
>, with U = (FT F)1/2 and

R = FU−1 (for a proof, see, for example, [6, Theorem 3.2-2]).
The coordinates of a point y ∈ R

2 are denoted by yα , and partial derivatives
of the first and second order, in the usual sense or in the sense of distributions, are
denoted by ∂α := ∂/∂yα and ∂αβ := ∂2/∂yα∂yβ .

An open subset � of R
n is simply connected if, as a topological space, it is

arcwise connected and any closed loop in � is homotopic to a point.
All the function spaces considered in this paper are over R. Let ω be an open

subset of R
2. The notation χ � ω means that χ is a compact subset of ω. The

notations D(ω) and D′(ω) designate, respectively, the space of all functions infi-
nitely differentiable on ω whose support is a compact subset of ω and the space
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of distributions over ω. The notations Cm(ω), W m,p(ω), and W m,p
loc (ω) designate

the usual spaces of continuous (for m = 0) and continuously differentiable (for
m � 1) functions and the usual Sobolev spaces, with W 0,p(ω) = L p(ω) and
W 0,p

loc (ω) = L p
loc(ω).

Let X denote a finite-dimensional space, such as R
n,Mn , or a subset thereof,

such as S
n
>,O

n+. Then the notations W 1,p
loc (ω; X), D′(ω; X), etc. designate spaces

or sets of vector fields or matrix fields with values in X and whose components
belong to W 1,p

loc (ω), D′(ω), etc.

Let ω be an open subset of R
2. Although an element f in the space W 1,p

loc (ω),
where p > 2, is an equivalence class of functions, it will be systematically identified
with a function f ∈ C0(ω), in view of the Sobolev imbeddings W 1,p(β) ⊂ C0(β)

that hold for all open balls β � ω. Likewise, an element f in W 2,p
loc (ω) will be

identified with a function f ∈ C1(ω). We also note that, for any p > 2, f g ∈ L p
loc(ω)

if f ∈ W 1,p
loc (ω) and g ∈ L p

loc(ω), and that f g ∈ W 1,p
loc (ω) if f ∈ W 1,p

loc (ω) and

g ∈ W 1,p
loc (ω), since W 1,p(β) is an algebra for all open balls β � ω.

Finally, we recall that a mapping θ ∈ C1(ω; R
3), where ω is again an open

subset of R
2, is an immersion if the two vectors ∂αθ(y) are linearly independent

for all y ∈ ω.

3. New compatibility conditions satisfied by the first and second fundamental
forms of a given surface

Our first task naturally consists of identifying the announced compatibility
conditions as necessary conditions.

Theorem 1. Let ω be an open subset of R
2, let p > 2, and let θ ∈ W 2,p

loc (ω; R
3)

be an immersion. Define the vector fields ai ∈ W 1,p
loc (ω; R

3), 1 � i � 3, and the

matrix fields (aαβ) ∈ W 1,p
loc (ω; S

2
>) and (bαβ) ∈ L p

loc(ω; S
2) by

aα := ∂αθ and a3 := a1 ∧ a2

|a1 ∧ a2| ,
aαβ := aα · aβ and bαβ := ∂αaβ · a3.

Define also the matrix fields (aστ ) ∈ W 1,p
loc (ω; S

2
>) and the functions

Γαβτ ∈ L p
loc(ω), Γ

σ
αβ ∈ L p

loc(ω), and bσα ∈ L p
loc(ω) by

(aστ ) := (aαβ)
−1, Γαβτ := 1

2 (∂βaατ + ∂αaβτ − ∂τaαβ),

Γ σαβ := aστΓαβτ , bσα := aβσbαβ.
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Finally, define the matrix fields Γ α ∈ L p
loc(ω; M

3), C ∈ W 1,p
loc (ω; S

3
>),

U ∈ W 1,p
loc (ω; S

3
>), and Aα ∈ L p

loc(ω; M
3) by

Γ α :=
⎛
⎜⎝
Γ 1
α1 Γ 1

α2 −b1
α

Γ 2
α1 Γ 2

α2 −b2
α

bα1 bα2 0

⎞
⎟⎠ , C :=

⎛
⎜⎝

a11 a12 0

a21 a22 0

0 0 1

⎞
⎟⎠ ,

U := C1/2, Aα := (UΓ α − ∂αU)U−1.

Then the matrix fields Aα are antisymmetric and they necessarily satisfy compati-
bility conditions that take the form of the following matrix equation:

∂1A2 − ∂2A1 + A1A2 − A2A1 = 0 in D′(ω; A
3).

Proof. (i) Technical preliminaries. Recall that any function in W 1,p
loc (ω) is identified

with a function in C0(ω) (cf. Section 2). Given any open ball β � ω, there thus
exists a constant c(β) > 0 such that

|a1(y) ∧ a2(y)| � c(β) and det(aαβ(y)) � c(β) for all y ∈ β.
Consequently, the vector a3(y) and the matrix (aστ (y)) are well defined for all
y ∈ β. That the components of the vector field a3 : β → R

3 and of the matrix
field (aστ ) : β → S

2
> defined in this fashion belong to the space W 1,p

loc (ω) then
simply follows from their explicit expressions in terms of the components of the
vector fields aα and of the matrix field (aαβ) and from the property that W 1,p(β)

is an algebra for p > 2. We thus have

a3 ∈ W 1,p
loc (ω; R

3) and (aστ ) ∈ W 1,p
loc (ω; S

2
>).

Since the mappings C ∈ S
3
> → C1/2 ∈ S

3
> and U ∈ S

3
> → U−1 ∈ S

3
> are both

of class C∞, analogous arguments likewise show that the matrix fields U and U−1

are well defined and they satisfy

U ∈ W 1,p
loc (ω; S

3
>) and U−1 ∈ W 1,p

loc (ω; S
3
>).

The definitions of the functions aαβ , Γαβτ , and Γ σαβ immediately imply that
Γαβτ = ∂αaβ · aτ and Γ σαβ = ∂αaβ · aσ , where aσ := aστaτ . Together with the
definitions of the functions bαβ and bσα , these relations in turn imply that

∂αaβ = Γ σαβaσ + bαβa3 and ∂αa3 = −bσαaσ in L p
loc(ω; R

3).

Of course, these relations are nothing but the extensions of the classical formulas
of Gauss and Weingarten to function spaces with little regularity.

(ii) Introduction of the antisymmetric matrix fields Aα . To begin with, we note
that the matrix field F ∈ W 1,p

loc (ω; M
3+) defined by [F] j := a j , 1 � j � 3, satisfies

C = FT F in W 1,p
loc (ω; S

3
>) and ∂αF = FΓ α in L p

loc(ω; M
3).

The first relation follows immediately from the relations aα · aβ = aαβ and ai ·
a3 = δi3. The definition of the vector field a3 in terms of the vector fields aα also
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shows that F(y) ∈ M
3+ for all y ∈ ω. The second relation is simply a convenient

rewriting in matrix form of the formulas of Gauss and Weingarten, based on the
relations

[FΓ α]β = ∂αaβ and [FΓ α]3 = ∂αa3,

which themselves follow from the definition of the matrix fields F and Γ α (this
observation is due to S. Mardare [20]).

At each point y ∈ ω, let F(y) = R(y)U(y) denote the polar factorization
(Section 2) of the matrix F(y) ∈ M

3+, with

U(y) := (FT (y)F(y))1/2 ∈ S
3
> and R(y) = F(y)U(y)−1 ∈ O

3+.

Since U ∈ W 1,p
loc (ω; S

3
>) as already noted in part (i), it follows that

R ∈ W 1,p
loc (ω; O

3+).

Noting that the polar factorization F = RU implies that

∂αF = RUΓ α = (∂αR)U + R∂αU,

and that the matrices U(y) are invertible at all y ∈ ω, we obtain

∂αR = RAα in L p
loc(ω; M

3) where Aα := (UΓ α − ∂αU)U−1 ∈ L p
loc(ω; M

3).

The relations I = RT R and ∂αR = RAα then imply that

0 = (∂αR)T R + RT ∂αR = AT
α + Aα in ω,

which shows that the matrix fields Aα are antisymmetric.

(iii) Compatibility relations satisfied by the matrix fields Aα . In what follows,

p′ := p

p − 1
designates the conjugate exponent of p and X ′ 〈·, ·〉X designates the

duality pairing between a topological vector space X and its dual X ′. For notational
brevity, spaces such as D(ω; M

3), W 1,p
0 (ω; M

3), etc., appearing in duality pairings

will be abbreviated as D(ω), W 1,p
0 (ω), etc.

Given matrix fields R ∈ W 1,p
loc (ω; M

3) and A ∈ L p
loc(ω; M

3), the distribu-
tion RA ∈ D′(ω; M

3) is well defined since RA ∈ L p
loc(ω; M

3). Likewise, each
distribution R∂αA ∈ D′(ω; M

3) is well defined by the relations

D′(ω)〈R∂αA,ϕ〉D(ω) :=W−1,p′
(χ)

〈∂αA,RTϕ〉
W 1,p

0 (χ)
for all ϕ ∈ D(ω; M

3),

where χ designates the interior of the support of ϕ.
The relations ∂αR = RAα in L p

loc(ω; M
3) satisfied by the matrix fields

R ∈ W 1,p
loc (ω; O

3+) and Aα ∈ L p
loc(ω; A

3) found in part (ii) imply that

∂βαR = (∂βR)Aα + R∂βAα = RAβAα + R∂βAα in D′(ω; M
3),

∂αβR = (∂αR)Aβ + R∂αAβ = RAαAβ + R∂αAβ in D′(ω; M
3)
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(the products RAβAα are well-defined distributions, since AβAα ∈ L p/2
loc (ω; M

3)).
Hence the relations ∂βαR = ∂αβR imply that

R∂αAβ − R∂βAα + RAαAβ − RAβAα = 0 in D′(ω; M
3).

Consequently,

W−1,p′
(χ)

〈∂αAβ−∂βAα+AαAβ−AβAα,RTϕ〉
W 1,p

0 (χ)
=0 for all ϕ∈ D(ω; M

3).

As the matrices RT (y) are invertible at each y ∈ ω, any matrix fieldψ ∈ D(ω; M
3)

can be written as ψ = RTϕ with ϕ ∈ D(ω; M
3), and the fields ψ and ϕ have the

same support. Consequently,

W−1,p′
(χ)

〈∂αAβ − ∂βAα + AαAβ − AβAα,RTϕ〉
W 1,p

0 (χ)

=D′(ω) 〈∂αAβ − ∂βAα + AαAβ − AβAα,ψ〉D(ω) = 0

for all ψ ∈ D(ω; M
3) and thus

∂αAβ − ∂βAα + AαAβ − AβAα = 0 in D′(ω; A
3).

In order that these relations hold for all α, β ∈ {1, 2}, it clearly suffices that the
relation corresponding to α = 1 and β = 2 holds. 
�

Several comments about this result are in order. First, the various functions
aαβ , aστ , bαβ , bσα , Γαβτ , and Γ σαβ are all familiar. They represent, respectively,
the covariant and contravariant components of the first fundamental form and the
covariant and mixed components of the second fundamental form of the surface
θ(ω), and the associated Christoffel symbols of the first and second kinds. Their
specific expressions, together with those of the matrix fields Γ α , C, U, and Aα ,
show that the matrix equation ∂1A2 − ∂2A1 + A1A2 − A2A1 = 0 in D′(ω; A

3) is
indeed a set of compatibility conditions involving only the components of the first
and second fundamental forms of the surface θ(ω).

Like the Gauss and Codazzi-Mainardi equations, the compatibility conditions
found in Theorem 1 reduce to only three scalar equations, since an antisymmetric
matrix of order three has only three independent coefficients.

As expected, these three equations are equivalent to the Gauss and Codazzi-
Mainardi equations; cf. Theorem 10.

A different set of necessary compatibility conditions, also related to a rotation
field on a surface, has been proposed by Vallée & Fortuné [30].

4. Some fundamental existence and uniqueness theorems for linear
differential systems

Our next objective is to show that the necessary compatibility conditions found
in Theorem 1 are also sufficient for the existence of a surface if ω is simply connec-
ted. Our proof will rely in an essential way on fundamental existence and uniqueness
theorems for linear differential systems with little regularity (see Theorems 2 and 3
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below) that are due to S. Mardare [21, Theorems 7, 8]. Note that these existence
theorems have been recently extended, again by S. Mardare [22, Theorems 3.6,
6.5], to the W 1,p

loc (�)-setting for any dimension N � 2, when� is a simply connec-

ted open subset of R
N and p > N . Existence theorems in the W 1,∞

loc (�)-setting,
again for any dimension N � 2, had been earlier obtained, also by S. Mardare
[20, Theorem 3.1]. For smooth data, such existence results go back to Cartan [5]
and Thomas [29].

The first theorem applies to Pfaff systems:

Theorem 2. Let ω be a simply connected open subset of R
2, let p > 2, and let

m � 1 and n � 1 be integers. Let there be given matrix fields Aα ∈ L p
loc(ω; M

n)

that satisfy

∂1A2 − ∂2A1 + A1A2 − A2A1 = 0 in D′(ω; M
n),

and let a point y0 ∈ ω and a matrix F0 ∈ M
m×n be given. Then there exists one

and only one matrix field F ∈ W 1,p
loc (ω; M

m×n) that satisfies the Pfaff system

∂αF = FAα in D′(ω; M
m×n), F(y0) = F0.

The second theorem is a Poincaré lemma with little regularity. Note that other
Poincaré lemmas with little regularity, this time in the H−1(ω)-setting instead of
the L p

loc(ω)-setting considered here, have also been recently established; see [8] and
[2].

Theorem 3. Let ω be a simply connected open subset of R
2 and let p � 1. Let

hα ∈ L p
loc(ω) be functions that satisfy

∂1h2 = ∂2h1 in D′(ω).

Then there exists a function p ∈ W 1,p
loc (ω), unique up to an additive constant, such

that

∂α p = hα in L p
loc(ω).

As shown by S. Mardare [22, Theorem 6.8], the existence and uniqueness
result of Theorem 2 can be extended to one in the space W 1,p(ω; M

m×n) (cf.
Theorem 4). In order to state this extension, we recall the following definition: an
open setω ⊂ R

2 satisfies the uniform interior cone condition if there exists an open
cone κ such that, for every y ∈ ω, there exists a cone κy congruent to κ (this means
that κy is obtained from κ by a rigid motion), with vertex y, such that κy ⊂ ω (for
details, see, for example, Adams [1, Chapter 4]).

As a complement to Theorem 2, we then have:

Theorem 4. Let ω be a simply connected bounded open subset of R
2 that satisfies

the uniform interior cone condition, let p > 2, and let m � 1 and n � 1 be integers.
Let there be given matrix fields Aα ∈ L p(ω; M

n) that satisfy

∂1A2 − ∂2A1 + A1A2 − A2A1 = 0 in D′(ω; M
n),
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and let a point y0 ∈ ω and a matrix F0 ∈ M
m×n be given. Then there exists one

and only one matrix field F ∈ W 1,p(ω; M
m×n) that satisfies the Pfaff system

∂αF = FAα in D′(ω; M
m×n), F(y0) = F0.

Likewise, the existence result of Theorem 3 can be extended to the space
W 1,p(ω) (the proof of this extension is analogous to that in [22, Theorem 6.8]):

Theorem 5. Let ω be a simply connected bounded open subset of R
2 that satisfies

the uniform interior cone condition and let p > 1. Let hα ∈ L p(ω) be functions
that satisfy

∂1h2 = ∂2h1 in D′(ω).

Then there exists a function p ∈ W 1,p(ω), unique up to an additive constant, such
that

∂α p = hα in L p(ω).

We conclude this section with a uniqueness result that complements that of
Theorem 2.

Theorem 6. Let ω be a connected open subset of R
2, let p > 2, let n � 1 be an

integer, let Bα and Cα be matrix fields in the space L p
loc(ω; M

n), and let a point
y0 ∈ ω and a matrix F0 ∈ M

n be given. Then there exists at most one matrix field
F ∈ W 1,p

loc (ω; M
n) that satisfies the Pfaff system

∂αF = FBα + CαF in D′(ω; M
n), F(y0) = F0.

Proof. Let m := n2. If a matrix field F = (Fi j ) ∈ W 1,p
loc (ω; M

n) satisfies the above

Pfaff system, then the matrix field F̃ ∈ W 1,p
loc (ω; M

1×m) defined by

F̃ := (F11 · · · F1n F21 · · · F2n · · · Fn1 · · · Fnn)

satisfies a Pfaff system of the form

∂αF̃ = F̃Ãα in D′(ω; M
1×m), F̃(y0) = F̃0,

where the elements of the matrix fields Ãα : ω → M
m , which are linear combi-

nations with constant coefficients of the elements of the matrix fields Bα and Cα ,
thus belong to the space L p

loc(ω; M
m), and the matrix F̃0 ∈ M

1×m is defined by

F̃0 := (F0
11 · · · F0

1n F0
21 · · · F0

2n · · · F0
n1 · · · F0

nn), where F0 = (F0
i j ).

The conclusion then follows from the uniqueness result in S. Mardare [22,
Theorem 4.2]. 
�
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5. Sufficiency of the compatibility conditions

Under the assumption that the open set ω ⊂ R
2 is simply connected, we now

show that, if a field of positive-definite symmetric matrices (aαβ) and a field of
symmetric matrices (bαβ), both defined on ω, satisfy together the compatibility
conditions that were found to be necessary in Theorem 1, then conversely, there
exists an immersion θ : ω → R

3 such that (aαβ) and (bαβ) are the first and second
fundamental forms of the surface θ(ω).

The assumption that ω is connected (recall that this assumption is contained
in that of simple-connectedness) ensures that the solution is unique up to proper
isometries of R

3 (also known as rigid-body motions in R
3), that is, any other

solution θ̃ is such that θ̃(y) = c + Qθ(y) for all y ∈ ω, for some vector c ∈ R
3

and some proper orthogonal matrix Q ∈ O
3+. Otherwise, if ω is not connected, this

uniqueness result holds over any connected component of ω.

Theorem 7. Let ω be a simply connected open subset of R
2 and let p > 2. Let

there be given two matrix fields (aαβ) ∈ W 1,p
loc (ω; S

2
>) and (bαβ) ∈ L p

loc(ω; S
2) that

satisfy

∂1A2 − ∂2A1 + A1A2 − A2A1 = 0 in D′(ω; A
3),

where the matrix fields Aα ∈ L p
loc(ω; A

3) are constructed from the matrix fields
(aαβ) and (bαβ) by means of the following sequence of definitions:

Γαβτ := 1
2 (∂βaατ + ∂αaβτ − ∂τaαβ) ∈ L p

loc(ω), (aστ ) :=(aαβ)−1 ∈ L p
loc(ω; S

2
>),

Γ σαβ := aστΓαβτ ∈ L p
loc(ω), bσα := aβσbαβ ∈ L p

loc(ω),

Γ α:=
⎛
⎜⎝
Γ 1
α1 Γ 1

α2 −b1
α

Γ 2
α1 Γ 2

α2 −b2
α

bα1 bα2 0

⎞
⎟⎠∈ L p

loc(ω; M
3), C:=

⎛
⎜⎝

a11 a12 0

a21 a22 0

0 0 1

⎞
⎟⎠∈W 1,p

loc (ω; S
3
>),

U := C1/2 ∈ W 1,p
loc (ω; S

3
>), Aα := (UΓ α − ∂αU)U−1 ∈ L p

loc(ω; A
3).

Then there exists an immersion θ ∈ W 2,p
loc (ω; R

3) such that

aαβ = ∂αθ · ∂βθ in W 1,p
loc (ω) and bαβ = ∂αβθ · ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ | in L p
loc(ω).

If any other immersion θ̃ ∈ W 2,p
loc (ω; R

3) satisfies the above relations (with θ̃ in
lieu of θ), then there exists a vector c ∈ R

3 and a matrix Q ∈ O
3+ such that

θ̃(y) = c + Qθ(y) for all y ∈ ω.
Proof. For notational brevity, the function spaces are most often omitted in this
proof.
(i) The matrix fields Aα = (UΓ α−∂αU)U−1 are antisymmetric. Since the matrices
U(y) are symmetric and invertible at all y ∈ ω, proving this property is the same
as proving that the matrix fields

UAαU = CΓ α − U∂αU
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are themselves antisymmetric. A direct computation, based on the definition of the
functions Γαβτ , aστ , Γ σαβ , and bσα , and of the matrix fields Γ α and C, shows that

CΓ α + Γ T
αC = ∂αC.

Consequently,

UAαU = CΓ α − U∂αU = 1
2 CΓ α − U∂αU + 1

2 (∂αC − Γ T
αC)

= 1
2 (CΓ α − Γ T

αC)+ 1
2 [(∂αU)U + U∂αU] − U∂αU

= 1
2 (CΓ α − Γ T

αC)+ 1
2 [(∂αU)U − U∂αU] ,

and thus the matrix fields UAαU are antisymmetric.

(ii) Let there be given a point y0 ∈ ω and a matrix R0 ∈ O
3+. Then there exists

one and only one matrix field R ∈ W 1,p
loc (ω; O

3+) that satisfies

∂αR = RAα in L p
loc(ω; M

3), R(y0) = R0.

Since the matrix fields Aα satisfy ∂αAβ − ∂βAα + AαAβ − AβAα = 0 in
D′(ω; A

3), Theorem 2 provides the existence and uniqueness of a solution R ∈
W 1,p

loc (ω; M
3). In order to show that this matrix field R is proper orthogonal, we

note that the matrix field RT R ∈ W 1,p
loc (ω,M

3) satisfies the differential system

∂α(RT R) = (∂αR)T R + RT ∂αR = AT
α (R

T R)+ (RT R)Aα in L p
loc(ω; M

3),

(RT R)(y0) = I.

Because the matrix fields Aα are antisymmetric by part (i), RT R = I is a
solution to this system, and it is its unique solution by Theorem 6. Hence the
matrix field R is orthogonal. In order to show that it is proper orthogonal, we note
that R ∈ W 1,p

loc (ω; M
3) ⊂ C0(ω; M

3). Hence det R(y) = 1 for all y ∈ ω since
det R(y0) = det R0 = 1 and ω is connected.

(iii) The matrix field R ∈ W 1,p
loc (ω; O

3+) being that determined in (ii), there

exists an immersion θ ∈ W 2,p
loc (ω,R

3) that satisfies

∂αθ = Ruα in W 1,p
loc (ω; R

3),

where uα := [U]α ∈ W 1,p
loc (ω; R

3).
Resorting this time to Theorem 3, we conclude that this system has a solution

θ ∈ W 1,p
loc (ω; R

3) if the compatibility relations

∂β(Ruα) = ∂α(Ruβ) in L p
loc(ω; R

3)

are satisfied. In view of the relations ∂αR = RAα (cf. part (ii)), we thus need to
check that

RAβuα + R∂βuα = RAαuβ + R∂αuβ with Aα = (UΓ α − ∂αU)U−1,
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or equivalently (since the matrices R(y) are invertible at all points y ∈ ω), that

(UΓ β − ∂βU)U−1uα + ∂βuα = (UΓ α − ∂αU)U−1uβ + ∂αuβ.

However, a straightforward computation shows that this relation reduces in fact to
the relation

[UΓ 1]2 = [UΓ 2]1, with [UΓ 1]2 = U

⎛
⎜⎝
Γ 1

12

Γ 2
12

b12

⎞
⎟⎠ and [UΓ 2]1 = U

⎛
⎜⎝
Γ 1

21

Γ 2
21

b21

⎞
⎟⎠ .

Hence the assertion follows from the symmetries Γ σαβ = Γ σβα and bαβ = bβα .

The existence of a vector field θ ∈ W 1,p
loc (ω; R

3) that satisfies ∂αθ = Ruα in
L p

loc(ω; R
3) is thus established. Since the fields R and uα are, respectively, in the

spaces W 1,p
loc (ω; O

3+) and W 1,p
loc (ω; R

3), it follows that θ ∈ W 2,p
loc (ω; R

3). Since the
vectors uα(y) are linearly independent and the matrix R(y) is proper orthogonal at
all points y ∈ ω, it further follows that θ is an immersion.

(iv) The given matrix field (aαβ) ∈ W 1,p
loc (ω; S

2
>) is the first fundamental form

of the surface θ(ω). Define the matrix and vector fields

F := RU ∈ W 1,p
loc (ω; M

3) and f j := [F] j ∈ W 1,p
loc (ω; R

3), 1 � j � 3,

where R ∈ W 1,p
loc (ω; O

3+) is the matrix field found in (ii), U = C1/2 ∈ W 1,p
loc (ω; S

3
>),

and the matrix field C is defined in terms of the functions aαβ as in the statement of
the theorem. Then the relation FT F = C and the specific form of the matrix field C
imply that fT

α fβ = aαβ on the one hand, and the relations F = RU and ∂αθ = Ruα
(cf. part (iii)) imply that fα = ∂αθ on the other. Hence

∂αθ · ∂βθ = aαβ.

(v) The given matrix field (bαβ) ∈ L p
loc(ω; S

2) is the second fundamental form
of the surface θ(ω). The relation FT F = C and the specific form of the matrix field

C imply that fT
i f3 = δi3. Hence either f3 = f1 ∧ f2

|f1 ∧ f2| or f3 = − f1 ∧ f2

|f1 ∧ f2| . However,

det F(y) = det R(y) det U(y) > 0 for all y ∈ ω. Hence

f3 = f1 ∧ f2

|f1 ∧ f2|
on the one hand. On the other hand,

∂αβθ = ∂β(Ruα) = (∂βR)uα + R∂βuα = RAβuα + R∂βuα
= R(Aβuα + ∂βuα) = R[AβU + ∂βU]α = R[UΓ β ]α
= [RUΓ β ]α = [FΓ β ]α.

Consequently,

∂αβθ · f3 = (∂αβθ)
T f3 = [Γ β ]T

αFT f3 = (Γ 1
βα Γ

2
βα bβα)

⎛
⎜⎝

0

0

1

⎞
⎟⎠ = bβα.
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(vi) The uniqueness of the immersion θ ∈ W 1,p
loc (ω; R

3) up to proper isometries
of R

3 follows from the rigidity theorem with little regularity established in [13,
Theorem 3]. 
�

An inspection of the above proof immediately leads to an existence result in
spaces of continuously differentiable functions:

Theorem 8. Assume in Theorem 7 that the matrix fields (aαβ) and (bαβ) belong,
respectively, to the spaces Cm+1(ω; S

2
>) and Cm(ω; S

2) for some integer m � 0,
all the other assumptions and definitions of Theorem 7 holding verbatim. Then the
immersion θ found in Theorem 7 belongs to the space Cm+2(ω; R

3).

Under an additional assumption on the set ω, a similar existence result holds in
the space W 2,p(ω; R

3).

Theorem 9. Assume in Theorem 7 thatω is bounded and satisfies the uniform inter-
ior cone condition and that the matrix fields (aαβ) and (bαβ) belong, respectively, to
the spaces W 1,p(ω; S

2
>) and L p(ω; S

2), all the other assumptions and definitions
of Theorem 7 holding verbatim. Then the immersion θ found in Theorem 7 belongs
to the space W 2,p(ω,R3).

Proof. The proof is analogous to that of Theorem 7, save that the existence results
of Theorems 2 and 3 are now replaced by those of Theorems 4 and 5. 
�

6. Equivalence between the new compatibility conditions and the Gauss and
Codazzi-Mainardi equations

To conclude our analysis, we establish the equivalence between the compatibi-
lity conditions of Theorems 1 or 7 and the Gauss and Codazzi-Mainardi equations.

Theorem 10. Let ω be an open subset of R
2. Then two matrix fields (aαβ) ∈

W 1,p
loc (ω; S

2
>) and (bαβ) ∈ L p

loc(ω; S
2) satisfy the matrix equation

∂1A2 − ∂2A1 + A1A2 − A2A1 = 0 in D′(ω; A
3),

where the matrix fields Aα ∈ L p
loc(ω; A

3) are constructed from the matrix fields
(aαβ) and (bαβ) as in Theorems 1 or 7, if and only if they satisfy the Gauss and
Codazzi-Mainardi equations in the space D′(ω).

Proof. Since the equivalence between the two sets of compatibility conditions is a
“local” property, we may assume without loss of generality thatω is simply connec-
ted. Assume that two matrix fields (aαβ) ∈ W 1,p

loc (ω; S
2
>) and (bαβ) ∈ L p

loc(ω; S
2)

satisfy the above matrix equation in D′(ω; A
3). Then, by Theorem 7, there exists

an immersion θ ∈ W 2,p
loc (ω; R

3) such that (aαβ) and (bαβ) are the first and second
fundamental forms of the surface θ(ω). Hence they necessarily satisfy the Gauss
and Codazzi-Mainardi equations in D′(ω).

Assume conversely that two matrix fields (aαβ) ∈ W 1,p
loc (ω; S

2
>) and (bαβ) ∈

L p
loc(ω; S

2) satisfy the Gauss and Codazzi-Mainardi equations in D′(ω). Then,
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thanks to the fundamental theorem of surface theory “with little regularity” of S.
Mardare [21], there exists an immersion θ ∈ W 2,p

loc (ω; R
3) such that (aαβ) and

(bαβ) are the two fundamental forms of the surface θ(ω). Hence the two matrix
fields necessarily satisfy the above matrix equation in D′(ω; A

3) by Theorem 1.
The two sets of compatibility conditions are therefore equivalent. 
�
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