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Abstract

Higher order entropies are kinetic entropy estimators for fluid models. These
quantities are quadratic in the velocity and temperature derivatives and have temper-
ature dependent coefficients. We investigate governing equations for higher order
entropies and related a priori estimates in the natural situation where viscosity and
thermal conductivity depend on temperature. We establish positivity of higher order
derivative source terms in these governing equations provided that ‖ log T ‖BMO +
‖v/√T ‖L∞ is small enough. The temperature factors renormalizing temperature
and velocity derivatives then yield majorization of lower order convective terms
only when the temperature dependence of transport coefficients is taken into account
according to the kinetic theory. In this situation, we obtain entropic principles for
higher order entropies of arbitrary order. As an application, we investigate a priori
estimates and global existence of solutions when the initial values log(T0/T∞) and
v0/

√
T0 are small enough in appropriate spaces.

1. Introduction

We investigate higher order entropies for fluid models and related a priori esti-
mates. Higher order entropies are kinetic entropy estimators for fluid models. These
quantities may also be interpreted as Fisher information estimators or associated
with generalized Bernstein equations. For simple fluid models, higher order entro-
pies are quadratic or polynomial with respect to velocity and temperature derivatives
and have temperature dependent coefficients. They are investigated in this paper in
the situation of incompressible flows spanning the whole space with temperature
dependent thermal conductivity and viscosity. The cases of compressible flows or
zero Mach number flows are beyond the scope of the present paper.

As a preliminary study, we consider second order entropies for fluid models with
constant transport coefficients. We derive a governing equation for second order
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kinetic entropy correctors and investigate when higher order derivative terms, which
appear as sources, have a sign. Unconditional positivity of these source terms only
holds for a restricted family of second order entropy correctors. The temperature
weights renormalizing solution derivatives, however, do not yield majorization of
the corresponding lower order terms arising from convection. As a consequence
of this preliminary analysis, we need to investigate conditional positivity of higher
order derivative source terms as well as to modify the renormalizing temperature
weights by taking into account the natural temperature dependence of transport
coefficients.

Temperature dependence of viscosity and thermal conductivity is a consequence
of the kinetic theory of gases. Away from small temperatures, these coefficients
essentially behave like a power of temperature with a common exponent κ. In this
situation, we derive a balance equation for kinetic entropy correctors of arbitrary
order. These higher order kinetic entropy correctors are quadratic or polynomial in
the velocity and temperature derivatives with temperature dependent coefficients.
The corresponding balance equations have source terms in the form of sums of
products of solution derivatives.

We then obtain conditional positivity of higher order derivative source terms
when ‖ log T ‖BMO + ‖v/√T ‖L∞ is small enough. The lower order convective
source terms are then majorized thanks to the temperature dependence of transport
coefficients as given by the kinetic theory of gases, that is, only when κ � 1/2. In
order to establish these estimates, we use the Coifman–Meyer inequalities for mul-
tilinear operators and weighted interpolation inequalities for intermediate deriva-
tives with weights in Muckenhoupt classes. We next investigate higher order kinetic
entropy estimators obtained by summing up a zeroth order entropy estimator with
kinetic entropy correctors and we obtain entropic principles which are the main
result of the paper.

As an example of application of higher order entropic estimates, we establish a
global existence theorem provided that log(T0/T∞) and v0/

√
T0 are small enough

in appropriate spaces, which may be interpreted heuristically as an existence theo-
rem for small Mach number flows.

In Section 2 we discuss the concept of higher order entropies. In Section 3, as a
preliminary study, we investigate how this notion can be used by studying second
order entropies for fluid models with constant transport coefficients. In Section 4,
we gather material from harmonic analysis and establish various weighted inequali-
ties. In Section 5 we establish balance equations for higher order entropy correctors
in the natural situation of variable transport coefficients. In Section 6—the core of
the paper—we establish that higher order entropies satisfy conditional entropic
inequalities. Finally, in Section 7, as an example of application, we concentrate on
global solutions.

2. Higher order entropies

The notion of entropy has been shown to be of fundamental importance in fluid
modeling from both a physical and a mathematical point of view [2,5,6,11–14,
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17,21,22,28,44]. We discuss heuristically in this section a concept of higher order
mathematical entropies for fluid models [18].

2.1. Entropic interpretation of the Bernstein equation

For parabolic (or elliptic) scalar equations, a priori estimates of the solution
derivatives can be obtained by using the Bernstein method [1,30]. More specifi-
cally, consider (as a simple example) the heat equation

∂t u −∆u = 0. (2.1)

Defining ζ = |∂x u|2 = ∂x u·∂x u, we then have the Bernstein equation

∂tζ −∆ζ + 2|∂2
x u|2 = 0. (2.2)

In the Bernstein method, the higher order source term |∂2
x u|2 = ∂2

x u :∂2
x u =∑

i j (∂i j u)2 is discarded so that one obtains inequalities like ∂tζ − ∆ζ � 0 and
the maximum principle can then be used [1,30]. On the other hand, one can also
directly integrate Bernstein equation (2.2) to get estimates of the integrals of |∂x u|2
and |∂2

x u|2. The classical techniques which consist of multiplying the heat equation
by either the laplacian∆u or the time derivative ∂t u (and then integrating by parts)
are also equivalent to integrating the Bernstein equation (2.2).

Although the Bernstein method cannot be extended to systems of partial differ-
ential equations (in the absence of maximum principles), we may still try to derive
an equation similar to that of the Bernstein equation. In such a generalized equa-
tion, we do not expect a second order term in the simple form ∆ζ = ∂x ·(∂xζ )

since, for such systems, dissipative fluxes and gradients are not anymore related by
scalar or even diagonal matrices. However, we may focus on the source term whose
principal part |∂2

x u|2 has a sign. The structure of the Bernstein equation (2.2) then
appears to be formally similar to that of an entropy balance, where ζ plays the role
of a generalized entropy, even though there also exist zeroth order entropies like
u2. In the next section, we introduce a kinetic framework supporting this entropic
interpretation.

2.2. Enskog second order kinetic entropy corrector

We consider, for the sake of simplicity, a single monatomic dilute gas. The
state of the gas is described by a distribution function f (t, x, c) governed by Boltz-
mann’s equation, where t is time, x the n-dimensional spatial coordinate, and c the
molecular velocity [2,5,6,11,14,17,22,44]. Approximate solutions of Boltzmann’s
equation are obtained from a first order Enskog (formal) expansion

f = f (0)
(
1 + εφ(1) + O(ε2)

)
, (2.3)

where f (0) is the local Maxwellian distribution, φ(1) the perturbation associated
with the Navier–Stokes regime and ε the usual formal expansion parameter. The
perturbation φ(1) depends linearly on the temperature and velocity gradients and is
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the solution of a linearized Boltzmann equation [6,14,17]. The compressible Na-
vier–Stokes equations (or the zero Mach number equations) can then be obtained
by taking parts of Boltzmann’s equation [6,14,22].

A fundamental property is that the kinetic entropy defined by

Skin = −kB

∫

Rn
f
(
log f − 1

)
dc, (2.4)

where kB is the Boltzmann constant, obeys the H theorem, that is, the second princi-
ple of thermodynamics [6,11,14,17,44]. The expansion of Skin induced by a second
order Enskog expansion, however, can be written as

Skin = S(0) + ε2S(2) + O(ε3), (2.5)

where S(0) is the usual zeroth order macroscopic entropy evaluated from Maxwel-
lian distributions and where S(2) reads

S(2) = −kB

2

∫

Rn
f (0)(φ(1))2dc, (2.6)

so that −S(2) is quadratic in the temperature and velocity gradients and is a natural
candidate for deriving a balance equation like (2.2). For compressible monatomic
gases, after detailed calculations, one can establish that

S(2) = − 1

ρ

(
λ|∂x T |2 + 1

2η |d|2 ), (2.7)

where T denotes the absolute temperature, ρ the density, v the gas velocity, d the
strain rate tensor d = ∂xv + ∂xv

t − 2
n (∂x ·v) I and |d|2 =∑i j d2

i j , and where the

scalar coefficients λ and η only depend on temperature. In a first approximation,
using a single term in orthogonal polynomial expansions of perturbed distribu-
tion functions, one can establish that λ = (1/2rcp)λ

2/T 3 and η = (1/2r)η2/T 2,
where cp is the constant pressure specific heat per unit mass, r the gas constant per
unit mass, λ the thermal conductivity, η the shear viscosity, and the actual values
of the numerical factors in front of λ and η are evaluated here for n = 3. In the
special case of Maxwellian gases, such a calculation has already been performed
by Boltzmann [2].

2.3. Zeroth order entropy dissipation rate

A second kinetic interpretation can be obtained from the zeroth order entropy
balance equation

∂t S(0) + ∂x ·(vS(0))+ ∂x · F (0) = v(0), (2.8)

where F (0) is the zeroth order dissipative entropy flux and v(0) the zeroth order
entropy production given by

v(0) = λ

T 2 |∂x T |2 + 1
2
η

T
|d|2. (2.9)
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This entropy production is quadratic in the macroscopic variable gradients with
temperature dependent coefficients. It also appears as a natural norm of the sys-
tem and a natural candidate for deriving a balance equation like (2.2). Denoting
the linearized Boltzmann equation by J φ(1) = ψ(1), the second order entropy
and the entropy production are essentially in the form 〈φ(1), φ(1)〉 and 〈φ(1), ψ(1)〉,
respectively, where 〈ξ, ζ 〉 = ∫

Rn f (0)ξζdc.

2.4. Enskog second order kinetic information corrector

The logarithmic Sobolev inequality majorizes the relative entropy of f with
respect to f (0) by the relative Fisher information of f with respect to f (0) [3,4,26,
40,44]. Here f (0) is the Maxwellian distribution with the same local macroscopic
properties as f

f (0) = ρ

m

( m

2πkBT

) n
2

exp
(
−m(c − v)2

2kBT

)
, (2.10)

where m denotes the particle mass. After a rescaling ‘à la Boltzmann’, the loga-
rithmic Sobolev inequality can be written in the form

0 � kB

∫

Rn

(
f/ f (0)

)
log
(

f/ f (0)
)

f (0) dc � kB
2T

2m

∫

Rn

∣
∣∂c( f/ f (0))

∣
∣2

f/ f (0)
f (0) dc (2.11)

and one can establish that

Skin − S(0) = −kB

∫

Rn

(
f/ f (0)

)
log
(

f/ f (0)
)

f (0) dc,

so that the relative entropy of f with respect to f 0 coincides with S(0) − Skin. The
relative Fisher information thus appears as an estimator of kinetic entropy deviation.
One can also establish that the relative Fisher information is given by

I kin − I (0) = kB

∫

Rn

∣
∣∂c( f/ f (0))

∣
∣2

f/ f (0)
f (0) dc,

where I kin = kB

∫
Rn(|∂c f |2/ f ) dc and I (0) = kB

∫
Rn(|∂c f 0|2/ f 0) dc denote the

kinetic and zeroth order Fisher informations. Substituting a second order Enskog
expansion in the logarithmic Sobolev inequality (2.11), the leading order term of
the left-hand side is −S(2) and the leading order term I (2) of the right-hand side
reads

I (2) = kBT

2m
I (2) = kB

2T

2m

∫

Rn

∣
∣∂cφ
∣
∣2 f (0) dc,

and is a natural candidate for deriving a balance equation like (2.2). For compress-
ible monatomic gases, after detailed calculations, one can establish that

I (2) = 1

ρ

(
λ|∂x T |2 + 1

2η |d|2 ), (2.12)
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where again, λ and η only depend on temperature. In a first approximation, using
a single term in orthogonal polynomial expansions of perturbed distribution func-

tions, one can establish that λ = ((10r + 3cp)/4rc2
p

)
λ2/T 3 and η = (1/r)η2/T 2,

where the actual values of the numerical factors in front of λ and η are evaluated
here for n = 3. The rescaled second order information corrector I (2) is thus sim-
ilar to the second order entropy corrector −S(2) and to the zeroth order entropy
production rate v(0).

Remark 1. Logarithmic Sobolev inequalities have been investigated in a probabi-
listic framework by Cattiaux [4]. In this situation, the relative Fisher information
has been shown to represent a relative entropy in a path space, that is, in the space of
particle trajectories [4]. This further supports the idea that these quadratic quantities
represent an entropy.

2.5. Enskog higher order entropy correctors

Higher order Enskog expansions f/ f (0) = 1+εφ(1)+· · ·+ε2kφ(2k)+O(ε2k+1)

actually induce higher order expansions for Skin

Skin − S(0) = ε2S(2) + ε3S(3) + · · · + ε2k S(2k) + O(ε2k+1), (2.13)

where S(l) is a sum of terms in the form kB

∫
Rn

∏
1�i�l

(
φ(i)
)νi f (0) dc with non-

negative integers νi � 0, 1 � i � l, such that l =∑1�i�l iνi .

On the other hand, in the absence of external forces acting on the particles, φ(l)

is a sum of products of solution derivatives with a total number of l derivations

φ(l) = ( η

ρ
√

rT

)l ∑
ν cν

∏
1�|α|�l

(
∂αT

T

)να ( ∂αρ
ρ

)ν′
α
(
∂αv√

rT

)ν′′
α , where να, ν′

α, ν
′′
α ∈

N, α ∈ N
n , and ν = (να, ν

′
α, ν

′′
α)1�|α|�l , and the summation is over all ν such

that
∑

1�|α|�l |α|(να + ν′
α + ν′′

α) = l and where the coefficients cν are tensors in

the reduced velocity C = (c − v)/
√

2rT multiplied by smooth scalar functions
of |C |2 and log T . This result is established by examining the successive construc-
tion of φ(l) from φ(1), . . . , φ(l−1) applying l th time the (generalized) inverse of the
linearized collision operator which scales as η/ρrT and has isotropicity properties
[5,14]. After integration with respect to C , S(2k) is found in the form

S(2k) = rρ
( η

ρ
√

rT

)2k ∑

ν

cν
∏

1�|α|�2k

(∂αT

T

)να (∂αρ

ρ

)ν′
α
( ∂αv√

rT

)ν′′
α
, (2.14)

where να, ν′
α, ν

′′
α ∈ N, α ∈ N

n , and ν = (να, ν
′
α, ν

′′
α)1�|α|�2k must be such that

∑
1�|α|�2k |α|(να+ν′

α+ν′′
α) = 2k and where the coefficients cν are smooth scalar

functions of log T of order unity. After integrations by parts with respect to the spa-
tial variables in the integrals

∫
RnS(2k) dx , in order to eliminate spatial derivatives

of order strictly greater than k, and by using interpolation inequalities, one obtains
that the quantity | ∫

RnS(2k) dx | is essentially controlled by the integral of

γ [k] = rρ
( η

ρ
√

rT

)2k (∣
∣∂

k T

T

∣
∣2 + ∣∣ ∂

kv√
rT

∣
∣2 + ∣∣∂

kρ

ρ

∣
∣2
)
, (2.15)
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or equivalently of

γ̃ [k] = rρ
( η

ρ
√

rT

)2k (|∂k log T |2 + |∂k(v/
√

rT )|2 + |∂k log ρ|2). (2.16)

This suggests the quantities γ [k] or γ̃ [k] as (2k)th order kinetic entropy correctors
(or kinetic entropy deviation estimators). Furthermore, the quantity | ∫

RnS(2k−1) dx |
is controlled by

∫
Rnγ

[k] dx and
∫
Rnγ

[k−1] dx .

One could first consider using the corrector S(2k) as an entropy deviation esti-
mator. However, except in the simpler case k = 1, it is not clear that S(2k) has
a sign, or even its integral

∫
RnS(2k) dx . The calculations that can be found in the

literature for the perturbed distribution function φ(2) associated with the Burnett
regime and S(3) already show intricate analytical complexities. Therefore, all we
know about S(2k) is its structure (2.14), so that for some constant c depending on
the L∞ norm of the solution we have | ∫

RnS(2k) dx | � c
∫
Rnγ

[k] dx . As a conse-

quence, we will investigate γ [k] instead of S(2k) and we are therefore looking for
majorizing entropic correctors. The fact that entropic inequalities can be obtained
for such majorizing correctors can be seen to be a consequence of the structure of
the fluid equations.

A similar analysis can also be conducted for the Fisher information and sug-
gests the same quantities γ [k] or γ̃ [k] as higher order kinetic information correctors.
Moreover, denoting by γ [0] or γ̃ [0] zeroth order entropy estimators, and upon sum-
mation, we obtain the (2k)th order kinetic entropy estimators γ [0] + · · · + γ [k] and
γ̃ [0] + · · · + γ̃ [k].

A parallel can be made with the heat equation, for which the quantity ζ [k] =
|∂ku|2 can be considered as a (2k)th order entropy corrector. More generally, for
parabolic scalar equations with variable coefficients, Bernstein equations are asso-
ciated with sums of squares of derivatives [30].

2.6. Temperature scaling

Scaling properties of scalar partial differential equations are of fundamental
importance for investigating the behavior of solutions like asymptotic expansions,
singular limits, boundary layers, or even the existence of solutions with the concept
of renormalized solutions [12,32].

When considering systems of partial differential equations however, a possible
rescaling method could be to use functions of a single scalar quantity to rescale
all solution components and solution derivatives. For fluid models, a natural candi-
date of such a scalar quantity appears to be temperature. In particular, higher order
entropies provide a natural scaling of solution derivatives in terms of powers of
temperature.

Remark 2. There are also ρ factors at the denominator of the corresponding deriv-
atives ∂kρ in (2.15) (2.16). Similarly, for multicomponent flows, entropy production
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associated with diffusive processes is essentially in the form

∑

1�i�ns

∫

Rn

pD

T

|∂x Xi |2
Xi

dx,

where D is a typical diffusion coefficient, Xi the mole fraction of the ith species
and ns the number of species in the mixture [17].

2.7. Persistence of kinetic entropy and small Mach numbers

Various thermodynamic theories have already considered entropies differing
from that of zeroth order, that is, entropies depending on macroscopic variable
gradients. These generalized entropies have been associated notably with Burnett
type equations and extended thermodynamics. In both situations, new macroscopic
equations are correspondingly obtained, which are of a higher order than Navier–
Stokes type equations.

On the contrary, in this work, we want to investigate the properties of the solu-
tions of a given fluid model, that is, of a given second order system of partial
differential equations. In particular, we do not consider composite quantities like
S(0) + S(2) as the system entropy, since we typically deal with fluid equations
for which the zeroth order entropy S(0) is already of fundamental importance as
imposed by the hyperbolic-parabolic structure of these equations [17,28]. We only
want to use quantities like S(0), S(0)+ S(2) and more generally like γ [0] +· · ·+γ [l],
or γ̃ [0] + · · · + γ̃ [l], 0 � l � k, as a mean to obtain further information on the
solutions of the fluid model. These quantities should thus be considered as families
of mathematical entropy estimators (of kinetic origin) and we will establish that
they indeed satisfy conditional entropic principles for solutions of Navier–Stokes
type equations.

Enskog expansion is associated with small Knudsen numbers Kn = l/L , where
l is a typical mean free path and L a hydrodynamic length. On the other hand, we are
interested in fluid models which take into account dissipative effects like viscosity
and heat conduction and the corresponding characteristic length L is such that the
Reynolds number Re = ρvL/η is of order unity, that is, L = η/ρv. As a conse-
quence, since ρcl = η [14], where c is a typical sound velocity, we obtain that the
Knudsen number Kn = Kn Re = ρvl/η = v/c is equal to a typical Mach number
Ma = v/c. Therefore, since Ma � Kn, assuming that the Mach number is small
is equivalent to the underlying kinetic assumption of a small Knudsen number, we
expect the Mach number to play a role in the analysis [22].

3. Preliminary study

We investigate in this section how the notion of second order entropy can be
used in the simplified situation of incompressible fluids with constant transport
coefficients.
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3.1. Incompressible model

We consider a fluid governed by the incompressible Navier–Stokes equations

∂x ·v = 0, (3.1)

∂t (ρv)+ ∂x ·(ρv⊗v)+ ∂x p + ∂x ·Π = 0, (3.2)

∂t (ρe)+ ∂x ·(ρev)+ ∂x · Q = −Π :∂xv, (3.3)

where ρ is the constant density, v the velocity, p the pressure, I the unit tensor, Π
the viscous tensor, e the internal energy per unit mass, and Q the heat flux vector.
The viscous tensor is given by Π = −ηd, where d = ∂xv + ∂xv

t is the strain
rate tensor and η the shear viscosity, the heat flux by Q = −λ∂x T , where λ is the
thermal conductivity, and the energy per unit mass e is taken for simplicity in the
form e = cvT , where cv is the specific heat per unit mass. All the coefficients cv ,
λ, and η, are taken to be constant in this section.

Our aim is not to study various boundary conditions and we only consider the
case of functions defined on R

n , with n � 2, that are ‘constant at infinity’. From
Galilean invariance and incompressibility, we can choose that v and p vanish at
infinity. We only consider smooth solutions of the Navier–Stokes equations, that is,
taken into account the eventual temperature dependence of the system coefficients
as in Section 5, we assume that

v, T − T∞ ∈ C
([0, t̄ ], Hl) ∩ C1([0, t̄ ], Hl−2) ∩ L2([0, t̄ ], Hl+1), (3.4)

where l is an integer such that l � [n/2] + 2, that is, l > n/2 + 1, t̄ is some
positive time, and T∞ > 0 is some fixed positive temperature. We will establish
in Section 7 that these solutions are as smooth as expected from initial data. In the
simpler case of constant coefficients, smoothness properties hold as soon as it is
established that v ∈ C([0, t̄ ], Ln) [32]. Existence of such smooth solutions can be
established locally in time, or globally in time for small initial data. We will also
assume that T is positive and bounded away from zero T � Tmin, where Tmin > 0
and this property is easily established as soon as it holds at initial time T0 � Tmin
thanks to the non-negativity of viscous heat dissipation [32]. We consider as usual
the momentum equation as projected on the space of divergence-free L2 functions.
More specifically, we introduce the Leray projector P defined on L2(Rn)n by

P = I + R⊗R, (3.5)

where R = (R1, . . . , Rn)
t and Ri = (−∆)−1/2∂i , 1 � i � n, are the Riesz trans-

forms, so that (Pv)i = vi +∑1� j�n Ri R jv j , 1 � i � n [31,32]. It is well known
that P is a continuous projector in any Sobolev space Hs , s ∈ R, and P is also con-
tinuous in Ls for 1 < s < ∞ [31,32]. Since the viscosity η is constant, the momen-
tum conservation equation is easily rewritten as ∂t (ρv)−η∆v = −P

(
∂x ·(ρv⊗v)

)
,

which is equivalent to defining the pressure from

p =
∑

1�i, j�n

Ri R j (ρ viv j ), (3.6)

and we have p ∈ C
([0, t̄ ], Hl

) ∩ C1
([0, t̄ ], Hl−2

) ∩ L2
([0, t̄ ], Hl+1

)
.
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3.2. Second order entropy corrector γ

As is traditional in mathematics, we change the sign of entropy, and thus of sec-
ond order entropies, and we define γ as one of the equivalent expressions −S(2),
v(0) or I (2). Specializing formally expressions (2.7), (2.9), or (2.12) to the situation
of incompressible gases, we are led to consider γ = λ|∂x T |2 + 1

2η|d|2, where
d = ∂xv + ∂xv

t , and we will use the coefficients λ = aλ/T 1+a and η = aη/T a ,
so that

γ = aλ
T 1+a

|∂x T |2 + 1
2

aη
T a

|d|2, (3.7)

where aλ > 0, aη > 0, and a > 0, are positive parameters at our disposal. Kinetic
theory suggests values a ∈ (0, 2], for example, for small Mach number flows or
incompressible flows. On the other hand, it is necessary to assume that a ∈ (0, 1]
in order to control log T from the second order entropy corrector γ .

Remark 3. A natural scaling associated with the temperature weights of −S(2),
v(0), I (2), and γ , is that v scales as

√
T .

Remark 4. The second order entropy corrector γ corresponds to γ [k] in (2.15) with
k = 1 if we replace d by ∂xv. These modifications are unessential and a similar
analysis can be conducted for γ [1] as for γ .

Remark 5. In the definition of higher order entropies, we have confined ourselves
to weights in the form of power functions of temperature but more general functions
of temperature could also be considered as well as functions of entropy.

3.3. Balance equation for γ

We write the balance equation for γ in the form

∂tγ + ∂x ·(vγ )+ ∂x ·ϕ + π + Σ + ω = 0, (3.8)

where ϕ represents a flux and π+Σ+ω a source term. We expect π to be non-neg-
ative and composed of higher order derivative terms, Σ to be composed of higher
order derivative split terms, and ω to be composed of lower order derivative terms
arising from convection.

Proposition 1. Let (v, T ) be a smooth solution of the incompressible Navier–Stokes
equations. Then we may take

π = 2aλλ

ρcv

|∂2
x T |2

T 1+a
+ (1 + a)(2 + a)aλλ

ρcv

|∂x T |4
T 3+a

+ aηη

ρ

|∂x d|2
T a

+ aaηη

4ρcv

|d|4
T 1+a

+
( (1 + a)aλη

2ρcv
+ a(1 + a)aηλ

2ρcv

) |d|2 |∂x T |2
T 2+a

,

Σ = −4(1 + a)aλλ

ρcv

∂2
x T :∂x T ⊗ ∂x T

T 2+a
−
(2aλη

ρcv
+ aaηλ

ρcv
+ aaηη

ρ

)∂x d ...d ⊗ ∂x T

T 1+a
,
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ω = aλ
d :∂x T ⊗ ∂x T

T 1+a
+ 2

aη
ρ

d :∂2
x p

T a
+ 2aη

d :(∂xv·∂xv)

T a
,

ϕ = aaηλ

2ρcv

|d|2 ∂x T

T 1+a
− aηη

ρ

d :∂x d

T a
+ (1 + a)aλλ

ρcv

|∂x T |2 ∂x T

T 2+a
− 2aλλ

ρcv

∂2
x T ·∂x T

T 1+a
.

In this proposition, for the sake of conciseness, we have introduced a conve-
niently compact notation. For a and b vectors, we denote by a ⊗ b the matrix with
elements ai b j , 1 � i, j � n. For a matrix and b vector we denote by a ⊗ b the
third order tensor with elements ai j bk , 1 � i, j, k � n. For a and b matrices we
denote by a :b the quantity

∑
i j ai j bi j and |a|2 = a :a. For a and b third order

tensors, like ∂x d or d ⊗ ∂x T , we denote by a ...b the quantity
∑

i jk ai jkbi jk and we

define |a|2 = a ...a. Some expressions would be ambiguous for general tensors, but
these ambiguities are easily resolved thanks to symmetry properties of multiple
derivatives.

Of course, the decomposition (3.8) is not unique since various integrations
by parts may be performed and terms may be exchanged between ϕ, π , and Σ. In
particular, all expressions involving tensor full contractions—for instance
∂2

x T :∂2
x T —can be replaced by similar expressions involving only partial tensor

contractions— for instance (∆T )2. Some of these expressions are derived in Section
3.4 where we investigate the sign of the higher order derivative terms

∫
Rn(π+Σ) dx .

In the decomposition of Proposition 1, we have tried to put in π all available
non-negative higher order derivative contributions and the remaining higher order
derivative terms have been put in Σ.

Proof. In order to derive a balanced equation for γ , we evaluate its time differential
in terms of temperature and velocity gradients. To this aim, letting λ = aλ/T 1+a ,
and η = aη/T a , we write that

∂tγ +
∑

1�l�n

vl∂lγ − (∂T λ|∂x T |2 + 1
2∂T η|d|2)

⎛

⎝∂t T +
∑

1�l�n

vl∂l T

⎞

⎠

− 2λ
∑

1�i�n

∂i T

⎛

⎝∂t∂i T +
∑

1�l�n

vl∂l∂i T

⎞

⎠

− η
∑

1�i, j�n

di j

⎛

⎝∂t di j +
∑

1�l�n

vl∂ldi j

⎞

⎠ = 0.

Upon using the governing equations we obtain

∂tγ +
∑

1�l�n

vl∂lγ −
(
∂T λ|∂x T |2 + 1

2∂T η|d|2
) 1

ρcv

(
λ∂x ·∂x T + 1

2η|d|2
)

− 2λ

⎛

⎝
∑

1�i�n

∂i T ∂i

(
1

ρcv
(λ∂x ·∂x T + 1

2η|d|2)
)

−
∑

1�i,l�n

∂i T ∂ivl∂l T

⎞

⎠
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− 2η

⎛

⎝
∑

1�i, j�n

di j∂ j

(
1

ρ
(η∂x ·∂xvi − ∂i p)

)

−
∑

1�i, j,l�n

di j∂ jvl∂lvi

⎞

⎠ = 0.

(3.9)

The governing equation for γ is then obtained after various integrations by parts.
More specifically, let us denote by T ∂ , T λ, and T η, the three last terms appear-
ing in the left-hand side of Equation (3.9). The contributions in T ∂ in the form
|∂x T |2|d|2 and |d|4 are left unchanged whereas the contributions in the form
|∂x T |2 ∂x ·∂x T and |d|2 ∂x ·∂x T are integrated by parts. This yields in particular
a term in the form |∂x T |4. The two first terms of T λ and T η are integrated by
parts, thereby eliminating third order derivatives, whereas the second term of T λ

is left unchanged. Finally, the third term of T λ and the second and third of T η

yield the lower order convective contributions of ω.

3.4. Unconditional positivity of higher order derivative source terms

Integrating the γ balance equation (3.8), thanks to assumptions (3.4), all the
flux terms are eliminated, and we obtain the identity

∂t

∫

Rn
γ dx +

∫

Rn
(π + Σ) dx = −

∫

Rn
ω dx . (3.10)

Our aim in this section is to study the sign of
∫
Rn(π + Σ) dx , where π and Σ are as

in Proposition 1. More specifically, we investigate the inequality

1

c

∫

Rn
π dx �

∫

Rn
(π + Σ) dx � c

∫

Rn
π dx, (3.11)

where c denotes a positive constant. This inequality implies in particular that

∂t

∫

Rn
γ dx + 1

c

∫

Rn
π dx �

∫

Rn
|ω| dx, (3.12)

which is a natural first step towards entropic type inequalities. Majorization of the
convective contribution

∫
Rn|ω| dx in terms of

∫
Rnπ dx and

∫
Rnγ dx is discussed in

Section 3.5. We investigate inequality (3.11) for v, T − T∞ ∈ H2(Rn) ∩ A(Rn),
and T � Tmin > 0, where A(Rn) ⊂ C0(R

n) denotes the Wiener algebra [36,37]

A(Rn) = { f̂ ∈ C0(R
n); ∃ f ∈ L1, f̂ = F f }.

We have denoted by F g the Fourier transform F g (ξ) = ∫
Rne−iξ ·x g(x) dx of

g ∈ L1(Rn), and the Wiener algebra (which naturally appears in multilinear deriv-
ative estimates [36,37]) is equipped with the norm ‖ f̂ ‖A = ‖ f ‖L1 . The Wiener
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algebra A(Rn) is a (dense) subalgebra of C0(R
n), the algebra of all continuous func-

tions on R
n which vanish at infinity. We remind the reader that, unless explicitly

stated, it is always assumed in the following that n � 2.

Proposition 2. Assume that the parameter a associated with γ is such that

0 < a < inf
( 4n − 1

2n2 + 1
, 2

(
λ

ηcv
+ ηcv

λ

)−1)
. (3.13)

Then there exist positive constants aλ and aη such that inequality (3.11) holds for
any v, T − T∞ ∈ H2(Rn) ∩ A(Rn), and T � Tmin > 0. On the other hand, there
exists a∗ < 1 so that for any a > a∗, there exists v, T − T∞ ∈ D(Rn) such that
the integral

∫
Rn(π + Σ) dx is negative and a fortiori (3.11) does not hold.

Proof. By a density argument, and thanks to classical interpolation inequalities, it
is sufficient to consider the situation where v, T −T∞ ∈ D(Rn), T � Tmin > 0. We
first consider the terms of

∫
Rn(π+Σ) dx which only involve temperature gradients.

Regrouping these terms, we have to investigate the sign of

z[T ] =
∫

Rn

(
2
|∂2

x T |2
T 1+a

− 4(1 + a)
∂2

x T :∂x T ⊗ ∂x T

T 2+a
+ (1 + a)(2 + a)

|∂x T |4
T 3+a

)
dx .

(3.14)

We use the polar decomposition of the Hessian matrix ∂2
x T . Defining for short

z[2] = ∂2
x T

T (1+a)/2
, z[1] = ∂x T ⊗ ∂x T

T (3+a)/2
, (3.15)

we have

z[T ] =
∫

Rn

(
2|z[2]|2 − 4(1 + a)z[2] :z[1] + (1 + a)(2 + a)|z[1]|2) dx . (3.16)

On the other hand, using integrations by parts, one easily establishes that

∫

Rn

(
trz[2])2 dx =

∫

Rn

(|z[2]|2−3(1+a)z[2] :z[1]+(1+a)(2+a)|z[1]|2) dx, (3.17)

∫

Rn
trz[2]trz[1] dx =

∫

Rn

(−2z[2] :z[1] + (2 + a)|z[1]|2) dx, (3.18)

and we also have z[1] :z[1] = (trz[1])2. We have denoted by trA the trace of a matrix
A and we define

Â = A − (trA/n)I, (3.19)
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where I is the unit matrix and tr( Â) = 0. After some manipulation, using (3.17)
(3.18) and polar decompositions, we obtain

(

1 − 1

n

)∫

Rn
|z[2]|2 dx =

∫

Rn

(

|̂z[2]|2 − 3(1 + a)

n + 2
ẑ[2] :̂z[1]

+ (1 + a)(2 + a)

n + 2
|̂z[1]|2

)

dx,

(

1 + 2

n

)∫

Rn
z[2] :z[1] dx =

∫

Rn

(
ẑ[2] :̂z[1] + (2 + a)

n − 1
|̂z[1]|2

)
dx,

(

1 − 1

n

)∫

Rn
|z[1]|2 dx =

∫

Rn
|̂z[1]|2 dx .

These relations imply (after some algebra) that
(

1 − 1

n

)(

1 + 2

n

)

z[T ] =
∫

Rn

(

2

(

1 + 2

n

)

|̂z[2]|2 − (1 + a)

(

4 + 2

n

)

ẑ[2] :̂z[1]

+(1 + a)(2 + a)|̂z[1]|2
)

dx, (3.20)

so that (

1 − 1

n

)(

1 + 2

n

)

z[T ] =
∫

Rn

∑

1�i, j�n

P
(
ẑ[2]

i j , ẑ[1]
i j

)
dx,

where

P(X,Y ) = 2

(

1 + 2

n

)

X2 − (1 + a)

(

4 + 2

n

)

XY + (1 + a)(2 + a)Y 2.

From the binomial formula, there exists δ > 0 such that

δ
(∫

Rn
|̂z[2]|2 dx +

∫

Rn
|̂z[1]|2 dx

)
� z[T ], (3.21)

provided that

(1 + a)2
(

4 + 2

n

)2

− 8

(

1 + 2

n

)

(1 + a)(2 + a) < 0,

that is, provided a < (4n − 1)/(2n2 + 1). The inequality (3.21) then implies that
for some positive constant δ we have

δ
(∫

Rn
|z[2]|2 dx +

∫

Rn
|z[1]|2 dx

)
� z[T ]. (3.22)

Note that we have used polar decompositions in (3.20) instead of (3.14) since the
discriminant of the corresponding second order polynomial 2X2 − 4(1 + a)XY +
(1 + a)(2 + a)Y 2 is always positive.
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We now have to consider the remaining terms of
∫
Rn(π+Σ) dx involving veloc-

ity gradients

z[v] =aηη

ρ

∫

Rn

|∂x d|2
T a

−
(

2
aλη

ρcv
+ aaηλ

ρcv
+ aaηη

ρ

) ∫

Rn

∂x d ...d ⊗ ∂x T

T 1+a

+
( (1 + a)aλη

2ρcv
+ a(1 + a)aηλ

2ρcv

) ∫

Rn

|d|2 |∂x T |2
T 2+a

+ aaηη

4ρcv

∫

Rn

|d|4
T 1+a

,

which can be written

z[v] =
∫

Rn

∑

1�i, j,k�n

Q
(∂kdi j

T a/2 ,
di j∂k T

T 1+a/2

)
dx + aaηη

4ρcv

∫

Rn

|d|4
T 1+a

,

where

Q(X,Y ) =aηη

ρ
X2 −

(
2

aλη

ρcv
+ aaηλ

ρcv
+ aaηη

ρ

)
XY

+
( (1 + a)aλη

2ρcv
+ a(1 + a)aηλ

2ρcv

)
Y 2.

Using the binomial formula, the existence of δ > 0 such that

δ
(∫

Rn

|∂x d|2
T a

+
∫

Rn

|d|2 |∂x T |2
T 2+a

+
∫

Rn

|d|4
T 1+a

)
� z[v],

is a consequence of

(
2

aλη

ρcv
+ aaηλ

ρcv
+ aaηη

ρ

)2 − 4
aηη

ρ

( (1 + a)aλη

2ρcv
+ a(1 + a)aηλ

2ρcv

)
< 0.

Defining ζ = aηcv/2aλ and ξ = λ/ηcv , this is equivalent to

a2ζ 2(1 + ξ2)+ aξζ
(
ξ−1 + 2(1 − ζ )

)+1 − ζ < 0, (3.23)

and it implies that ζ = aηcv/2aλ > 1. In this situation ζ > 1, there are two roots
of the left-hand side of (3.23), one negative a(ξ, ζ ) and one positive a(ξ, ζ ) given
by

a(ξ, ζ ) = −(ξ−1 + 2(1 − ζ )
)+ξ−1

(
4ξ2ζ 2 + ζ(4 − 4ξ − 4ξ2)+ 4ξ − 3

)1/2

2ζ(ξ + ξ−1)
.

Keeping in mind that a has to be positive, we must have 0 < a < a(ξ, ζ ). Noting
that a(ξ, 1) = 0 and a(ξ,∞) = 2/(ξ + ξ−1), we obtain for large ζ the sufficient
condition 0 < a < 2/(ξ + ξ−1) and the first part of Proposition 2 is proved.

We now assume that a = 1 and establish that
∫
Rn(π + Σ) dx can be negative,

keeping in mind that n � 2. To this purpose, it is sufficient to let v = 0 and to only
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consider the terms z[T ] involving temperature derivatives. Denoting τ = log T , it
is easily checked that

z[T ] =
∫

Rn

(
2|∂2

x τ |2 − 4∂2
x τ :∂xτ ⊗ ∂xτ

)
dx . (3.24)

Let ψ ∈ D(R) be a C∞ function with ψ(s) > 0 for |s| < 1 and ψ(s) = 0 for
|s| � 1, and consider ζ(x) =∏i ψ(xi ). Since the contributions

∫
Rn∂

2
k ζ (∂kζ )

2 dx ,

1 � k � n, in the sum
∫
Rn∂

2
x ζ :∂xζ ⊗ ∂xζ dx vanish and since ∂ jkζ ∂ jζ ∂kζ is non-

negative and nonzero for j �= k, it is easily checked that
∫
Rn∂

2
x ζ :∂xζ ⊗ ∂xζ dx is

strictly positive. Since the two terms scale differently in (3.24), letting τ−τ∞ = Λζ ,
that is, T = T∞ exp(Λζ), there exists Λ > 0 large enough such that the quantity
z[T ] is negative, and we also have v, T − T∞ ∈ D(Rn). By a continuity argument
with respect to a, using the same fixed τ , z[T ] remains negative for a close to unity.

We next assume that a > 1 and establish that z[T ] can be negative in any dimen-
sion n � 1. We first consider the one dimensional situation n = 1. The main idea is
to cancel the weight T 1−a by a change of variable and to rescale again the logarithm
of temperature. To this end we introduce τ̂ (ξ ) = τ(x) = log T (x), where ξ(x) is
a new variable to be determined, and we have

dx T

T
= dxτ = dξ τ̂ dxξ

d2
x T

T
= d2

x τ + (dxτ)
2 = d2

ξ τ̂ (dxξ)
2 + (dξ τ̂ )

2(dxξ)
2 + dξ τ̂ d2

x ξ.

It is then easily found that, after the change of variable from x to ξ , the new weight
in z[T ] is given by T 1−a(dxξ)

3 since the factor (dxξ)
4 naturally appears and since

one power of dxξ is used for the change of variable in the integral. Therefore, we
impose that

ξ =
∫ x

0
dxξ dx, dxξ = exp

(−(1 − a)τ/3
)
,

so that

x =
∫ ξ

0
dξ x dξ, dξ x = exp

(
(1 − a)̂τ /3

)
, (3.25)

and we further obtain that
d2

x ξ

(dxξ)2
= − 1−a

3 dξ τ̂ .

Finally, all calculations done, we obtain that

z[T ] =
∫

R

(
2(d2

ξ τ̂ )
2 − 1

9 (a + 2)(a − 1)(dξ τ̂ )
4) dξ, (3.26)

keeping in mind that terms like
∫
R

d2
ξ τ̂ (dξ τ̂ )

2 dξ vanish when τ̂ − τ∞ ∈ D(Rn).

Since the two terms scale differently in (3.26), we write τ̂ − τ∞ = Λψ̂ , where
ψ̂ ∈ D(R) is taken as an even function of ξ such that ψ̂ > 0 on (−1, 1) and ψ̂ = 0
elsewhere, and there exists Λ > 0 large enough such that z[T ] is negative. From
the relations (3.25) we can then evaluate x as a function of ξ and map τ̂ and ψ̂ as
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functions of x denoted by τ(x) = τ̂ (ξ ) and ψ(x) = ψ̂(ξ). Letting ψ1 = Λψ , we
finally have ψ1 > 0 on an interval in the form (−x̄1, x̄1), ψ1 = 0 on the comple-
mentary set, T1 = T∞ exp(ψ1), T1 − T∞ ∈ D(R) and z[T ](T1) < 0. Incidentally,
changing the back of the variable from ξ to x in relation (3.26) (or after a few
integrations by parts in (3.14)) it is easily checked that for n = 1, inequality (3.22)
holds for 0 < a < 1, and the bound 1 coincides with the bound (4n −1)/(2n2 +1).
Furthermore, in the degenerate situation a = 1 and n = 1, z[T ] is non-negative with
z[T ] = ∫

Rn2(d2
x τ)

2 dx but (3.22) does not hold since δ
∫
Rn(dxτ)

4 dx �
∫
Rnπ dx for

δ small enough.
We now generalize this counter example to any dimension by induction. We

assume that we have ψl ∈ D(Rl) with ψl > 0 on
∏

1�i�l(−x̄i , x̄i ) and ψl = 0
on the complementary set, such that for τl − τ∞ = ψl and Tl = T∞ exp(ψl) we
have z[T ](Tl) < 0. In order to build ψl+1 ∈ D(Rl+1), τl+1, and Tl+1, with similar
properties, we define

ψl+1(x1, . . . , xl , xl+1) = ψl(x1, . . . , xl)φl+1(xl+1),

where φl+1 is even φl+1(xl+1) = φl+1(−xl+1), φl+1(xl+1) = 1 over [0, x̄l+1 − 1]
and φl+1(xl+1) = Φ

(
xl+1 − (x̄l+1 − 1)

)
for xl+1 � x̄l+1 − 1, where x̄l+1 > 1 is to

be determined and where Φ ∈ C∞[0,∞) is such that Φ(s) = 1 for 0 � s � 1/2,
0 < Φ(s) < 1 for 1/2 < s < 1 and Φ(s) = 0 for s � 1. We have in particular
φl+1 = 1 over (−x̄l+1 +1, x̄l+1 −1), φl+1 = 0 on R\(−x̄l+1, x̄l+1), and we define
τl+1 − τ∞ = ψl+1 and Tl+1 = T∞ exp(ψl+1). In order to evaluate z[T ](Tl+1), we
use symmetry and we divide the integration over the xl+1 variable into the intervals
(0, x̄l+1−1), and (x̄l+1−1, x̄l+1). Keeping in mind that φl+1 = 1 over [0, x̄l+1−1)
we obtain that

z[T ](Tl+1) = 2(x̄l+1 − 1)z[T ](Tl)+ 2rl+1,

where rl+1 denotes the integral over
∏

1�i�l(−x̄i , x̄i )×(x̄l+1−1, x̄l+1), so that rl+1

is independent of x̄l+1 after the change of variable from xl+1 to xl+1 − (x̄l+1 − 1).
Since by induction we have z[T ](Tl) < 0 it is possible to take x̄l+1 large enough
such that z[T ](Tl+1) < 0 and the proof is complete.

Remark 6. Many refinements of Proposition 2 are feasible but are beyond the scope
of this work. Note that we have investigated inequality (3.11) independently of the
fact that (v, T ) is a solution of the governing equations and independently of any
constraint on (v, T ). This is in contrast with Section 6, where we will impose con-
straints on the norms of log T and v/

√
T . The ratio (4n − 1)/(2n2 + 1) can be

written 1 − 2(n − 1)2/(2n2 + 1), which is always smaller than unity (keeping in
mind that n � 2 — and is 11/19 for n = 3).

Remark 7. Inequalities like
∫

Rn

|∂x T |4
T 3+a

dx � c
∫

Rn

|∂2
x T |2

T 1+a
dx, (3.27)

hold whenever a �= −2, T − T∞ ∈ H2(Rn)∩ A(Rn) and T � Tmin > 0. It can be
established by considering ∂x ·

(|∂x T |2∂x T/T (2+a)
)

and using a density argument.
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The particular case a = −1 has been investigated by Lions and Villani [33].
Different inequalities will be established in Section 4 with powers of ‖ log T ‖BMO

as multiplicative factors in the right-hand side of (3.27).

Proposition 2 shows that unconditional positiveness of higher order derivative
source terms

∫
Rn(π + Σ) dx only holds for a restricted family of second order

entropy correctors. In particular, unconditional positiveness does not hold for the
natural logarithmic scaling a = 1. An inescapable consequence is that only condi-
tional positiveness of higher order derivative source terms will allow stronger and
more satisfactory results. Conditional positivity will be investigated in Section 6
for generalized entropies of arbitrary order with temperature dependent transport
coefficients.

3.5. Estimates of convective terms

In order to estimate convective terms, we need to express velocity gradients in
terms of the strain rate tensor.

Proposition 3. For any v ∈ H1 and any index pair (i, j) we have [42]

2∂ jvi = di j −
∑

1�l�n

Rl R j dli +
∑

1�l�n

Rl Ri dl j , (3.28)

where Ri = (−∆)−1/2∂i are the Riesz transforms, 1 � i � n, and we also have

2∂ j∂kvi = ∂kdi j + ∂ j dik − ∂i d jk . (3.29)

In the following proposition, we obtain a typical estimate of
∫
Rn|ω| dx in terms

of
∫
Rnπ dx and

∫
Rn|d|2 dx .

Proposition 4. Assume that v, T − T∞ ∈ H2(Rn) ∩ A(Rn), T � Tmin > 0, and
that a � 1/3. Then the following estimate holds

∫

Rn
|ω| dx � c

(∫

Rn
π dx
)1/2(

∫

Rn
|d|2 dx

)1/2
sup
Rn

T (1−a)/2. (3.30)

Proof. We have ω = λd :∂x T ⊗ ∂x T + 2(η/ρ)d :∂2
x p + 2ηd :∂xv·∂xv, where

λ = aλ/T 1+a and η = aη/T a and we examine each term at a time. The first term
λd :∂x T ⊗ ∂x T can directly be estimated by using the Holder inequality
∫

Rn

|d :∂x T ⊗ ∂x T |
T 1+a

dx � c
(∫

Rn
π dx
)1/2(

∫

Rn
|d|2 dx

)1/2
sup T (1−a)/2.

In order to estimate |2ηd :∂xv·∂xv|, we use the expression of ∂xv in terms of d, and
we obtain a sum of terms in the form

∫

Rn

|d| ∣∣R(d)∣∣ ∣∣R ′(d)
∣
∣

T a
dx,

where R and R ′ are products of Riesz transforms. Upon introducing temperature
factors as
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∫

Rn

|d|
T

1+a
4

∣
∣R

(
d

T
1+a

4

T
1+a

4

)
∣
∣
∣
∣R ′(d)

∣
∣T (1−3a)/4 dx, (3.31)

and applying the Holder inequality with exponents

1

4
+ 1

4
+ 1

∞ + 1

2
+ 1

∞ = 1,

we obtain the desired estimate provided that a � 1/3. Upon using the expression
of ∂2

x p in terms of velocity gradients and the expression of velocity gradients in
terms of the strain rate tensor, we can finally express 2(η/ρ)d :∂2

x p as a sum of
terms in the form ∫

Rn

d R
(
R ′(d)R ′′(d)

)

T a
dx,

where R, R ′, and R ′′ are products of Riesz transforms so that the pressure term
can be treated as the term |2ηd :∂xv·∂xv|.

3.6. Temperature weights

The main difficulties of the Navier–Stokes equations arise from the nonlinear
convective terms v·∂xφ, where φ stands for v or T . These terms introduce nonlin-
earities through a multiplication by the velocity v of the gradient ∂xφ appearing in
the φ equation. On the other hand, the natural scaling associated with the temper-
ature weights of γ is that v scales as

√
T . Therefore, we expect extra temperature

factors in the form
√

T to appear when estimating
∫ |ω| dx in terms of

∫
π dx and∫

γ dx , as inherited from original nonlinearities. Indeed, a direct consequence of
Proposition 4 is that

∫

Rn
|ω| dx � c

(∫

Rn
π dx
)1/2(

∫

Rn
γ dx
)1/2

sup
Rn

T 1/2, (3.32)

and we are now presented with the problem of controlling these supRnT factors. A
first possibility could be to use (3.30) with a = 1 and the natural kinetic energy esti-
mates of

∫ t
0

∫
Rn|d|2 dxdt , assuming that we can eliminate the limitation a � 1/3 in

Proposition 4. However, this seems hopeless since inequality (3.11) does not hold
unconditionally for a = 1. More generally, larger values of a promote majorization
of convective terms, but prevent inequality (3.11), and, conversely, smaller values
of a promote inequality (3.11), but prevent majorization of convective terms. An-
other possibility could be to estimate supRnT in terms of

∫
Rnπ dx and

∫
Rnγ dx , but

this is not possible since T∞ > 0 and only T − T∞ can be estimated in this manner,
as for instance for n = 3

sup
Rn

|T − T∞| � c
(∫

Rn
π dx

∫

Rn
γ dx
) 1

2(1−a)
. (3.33)

Therefore, it appears that, in the estimates of Proposition 4, the powers of the solu-
tion derivatives are straightforward thanks to the terms |∂x T |4, |d|4, |∂2

x T |2, and
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|∂x d|2, but difficulties arise however, in the temperature exponents appearing at the
denominator of the convective term ω, which are too small in comparison to those
appearing in the higher derivative terms π associated with transport fluxes.

A natural phenomenon which reduces the temperature exponents appearing
at the denominator of the higher order derivative terms of π is the temperature
dependence of transport coefficients. When λ and η scale as T κ, all temperature
exponents at the denominators of π are decreased by κ whereas those of ω are
unchanged. The corresponding system of partial differential equations is inves-
tigated in the following sections using somewhat different methods. The direct
techniques used in this section do not apply anymore because of a new pressure
term pη = −∑1�i, j�n Ri R j (ηdi j ) due to the derivatives of viscosity with respect
to temperature, which vanishes for constant η. This pressure term introduces extra
contributions in Σ which are not simply controlled by those of π . Furthermore, the
simple direct method of this section cannot be used for the higher order entropy
correctors γ [k] or γ̃ [k] when k � 2.

Remark 8. The same discussion can be conducted in a periodic framework and
yields the same conclusions. In this situation, we also have estimates in the form

∫

Ω

|ω| dx � c
(∫

Ω

π dx
)3/4(

∫

Ω

T 3−a dx
)1/4

, (3.34)

where the periodic domainΩ is a product of intervals, but the quantity
∫
Ω

T 3−a dx
cannot be estimated in terms of

∫
Ω
π dx and

∫
Ω
γ dx . Only the difference T − T ,

where T denotes the average of T over the periodic domain Ω , can be estimated
in terms of

∫
Ω
π dx and

∫
Ω
γ dx .

Remark 9. Assuming that ∂x T/T ∈ L2 ∩ L4 when n = 3 implies that log T has a
finite limit at infinity [15] so that T∞ must be positive. In other words, it does not
make sense to try to rescale with T∞ = 0.

Remark 10. The convective term ω, after a few integrations by parts, can also be
written as a sum of terms proportional to the velocity v. This does not improve the
estimates of

∫
Rn|ω| dx since the gains obtained with the v factor are compensated

by the loss of one derivative factor.

4. Weighted inequalities

We collect in this section various weighted inequalities that we will use in our
investigation of the situation of temperature dependent transport coefficients.

4.1. Differential identities

Let αi , 1 � i � n, be non-negative integers and α = (α1, . . . , αn) ∈ N
n be the

corresponding multiindex. We denote by ∂α the differential operator ∂α1
1 · · · ∂αn

n
and by |α| its order |α| = α1 + · · · + αn . The derivative of superpositions has
been investigated in particular by Vol’pert and Hudjaev [43] and the following
proposition is established by induction on |α|.
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Lemma 1. Let f and g be smooth functions and α = (α1, . . . , αn) be a multiindex.
Then we have

∂α( f g) =
∑

0�β�α
cαβ ∂

β f ∂(α−β)g, (4.1)

where cαβ = α!/β!(α−β)! are non-negative integer coefficients, β! = β1! · · ·βn !,
and where we write 0 � β � α when 0 � βi � αi , 1 � i � n.

Furthermore, let f and g be smooth scalar functions, and let α be a multiindex
α = (α1, . . . , αn) with |α| � 1. The partial derivatives of the superposition g ◦ f
can be written in the form

∂α(g ◦ f ) =
∑

σµ

cσµ ∂
σ g
∏

1�|β|�|α|

(
∂β f
)µβ , (4.2)

where cσµ are non-negative integer coefficients, and the sum is over 1 � σ � |α|,
µ = (µβ)1�|β|�|α| with µβ ∈ N, β ∈ N

n, such that

∑

1�|β|�|α|
µβ = σ,

∑

1�|β|�|α|
β µβ = α, (4.3)

so that we have in particular
∑

1�|β|�|α| |β| µβ = |α|.

A natural scaling induced by higher order entropies is that v scales as
√

T . As
a consequence, we introduce the rescaled unknowns τ and w defined by

τ = log T, w = v√
T
, (4.4)

which will naturally appear in higher order entropy estimates. In particular, we will
need the following differential identities, easily established by induction on |α|.
Lemma 2. Let T be smooth and positive and α be a multiindex. Then we have

∂αT

T
=
∑

µ

cµ
∏

1�|β|�|α|

(
∂βτ
)µβ = ∂ατ +

∑

µ

cµ
∏

1�|β|�|α|−1

(
∂βτ
)µβ , (4.5)

where µ = (µβ)1�|β|�|α| with µβ ∈ N, β ∈ N
n, and cµ are non-negative integer

coefficients. The sum is extended over the µ such that
∑

1�|β|�|α|
β µβ = α,

so that we have in particular
∑

1�|β|�|α| |β| µβ = |α|, and the only term with
|β| = |α| corresponds to ∂ατ . Conversely, we have

∂ατ =
∑

µ

c′
µ

∏

1�|β|�|α|

(∂βT

T

)µβ = ∂αT

T
+
∑

µ

c′
µ

∏

1�|β|�|α|−1

(∂βT

T

)µβ , (4.6)

where c′
µ are integer coefficients and the sum is extended over the same set of µ.
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Lemma 3. Let T and v be smooth, T be positive, i with 1 � i � n, and α be a
multiindex. Then we have

∂αvi√
T

=
∑

µα̃

cµα̃
∏

1�|β|�|α|

(
∂βτ
)µβ ∂α̃wi , (4.7)

where µ = (µβ)1�|β|�|α|, µβ ∈ N, β ∈ N
n, α̃ ∈ N

n, cµα̃ are non-negative integer
coefficients, and the sum is extended over the µ and α̃, such that

0 � α̃ � α,
∑

1�|β|�|α|
β µβ + α̃ = α.

More precisely, isolating the only term ∂αwi corresponding to α̃ = α and all the
terms corresponding to α̃ = (0, . . . , 0), we have

∂αvi√
T

= ∂αwi +
∑

µα̃

cµα̃
∏

1�|β|�|α|

(
∂βτ
)µβ ∂α̃wi +

∑

µ

cµ0

∏

1�|β|�|α|

(
∂βτ
)µβ wi , (4.8)

where the α̃ in the middle sum are such that 1 � |α̃| < |α|. Conversely, we have

∂αwi =
∑

µα̃

c′
µα̃

∏

1�|β|�|α|

(∂βT

T

)µβ ∂α̃vi√
T
, (4.9)

and more precisely

∂αwi = ∂αvi√
T

+
∑

µα̃

c′
µα̃

∏

1�|β|�|α|

(∂βT

T

)µβ ∂α̃vi√
T

+
∑

µ

c′
µ0

∏

1�|β|�|α|

(∂βT

T

)µβ vi√
T
,

(4.10)
where c′

µα̃
are integer coefficients and the sums are extended over the same sets.

4.2. Weighted operators

We investigate the norm of weighted Calderón–Zygmund operators in Lebesgue
spaces [8,16,36,37]. A natural condition associated with weights has been shown
to be the Muckenhoupt property Ap, where 1 � p � ∞ [8,9,16,23–25,35].

Definition 1. Let G : D(Rn) −→ D ′(Rn) be a continuous linear operator and
denote by K the restriction of the distribution kernel associated with G to the open
set x �= y of R

n × R
n . We say that G is a Calderón–Zygmund operator when the

following properties are satisfied [35]:

(i) K is a locally integrable function and there exists c0 such that for x �=
y|K (x, y)| � c0|x − y|−n .

(ii) There exists δ ∈ (0, 1] and c1 such that for x �= y and |x ′ − x | � 1
2 |x − y|

we have |K (x ′, y)− K (x, y)| � c1|x ′ − x |δ|x − y|−n−δ.
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(iii) Similarly if x �= y and |y′ − y| � 1
2 |x − y| we have |K (x, y′)− K (x, y)| �

c1|y′ − y|δ|x − y|−n−δ.
(iv) G can be extended into a continuous linear operator over L2(Rn)with a norm

lower or equal to c2.

Definition 2. Let g ∈ L1
loc(R

n) be positive and locally integrable and 1 < p < ∞.
We say that g satisfies the Muckenhoupt condition Ap if

[g]Ap
= sup

Q

(
1

|Q|
∫

Q
g dx

)(
1

|Q|
∫

Q
g− 1

p−1 dx

)p−1

< ∞, (4.11)

where the supremum is taken over all cubes.

For detailed studies about the Muckenhoupt property we refer to the book of
Garcia-Cuerva and Rubio de Francia [16]. We have in particular Ap ∩ Aq =
Amin(p,q) and the weights of Ap have their logarithms in BMO [16,35]. A locally
summable function f belongs to the space BMO(Rn) if

‖ f ‖BMO = sup
Q

1

|Q|
∫

Q

∣
∣ f (x)− f̄Q

∣
∣ dx < ∞,

where the supremum is taken over all cubes Q and f̄Q = 1/|Q|
∫

Q f (x) dx denotes
the average of f over Q [27,34]. The function space BMO has been introduced
by John and Nirenberg [27] and naturally arises when estimating the norms of
the weighted operators T θ Ri T −θ , where Ri = (−∆)−1/2∂i , 1 � i � n, are Riesz
transforms, or when using the Coifman and Meyer inequalities [36,37]. The space
BMO and its dual H 1 have already been used in the context of the Navier–Stokes
equations [29,31,32].

Theorem 1. Let G be a Calderón–Zygmund operator, 1 < p < ∞, and g be a
weight in Ap. Then the operator G is bounded in L p

(
gdx
)
, or equivalently, the

operator g1/pG g−1/p is bounded in L p, with a norm lower than C (c0, c1, c2, n, p,
[g]Ap ), where C only depends on c0, c1, c2, n, p, and [g]Ap .

Proof. We refer to Meyer [34,35], Garcia-Cuerva and Rubio de Francia [16],
and Coifman and Fefferman [8]. A careful examination of the above mentioned
references reveals that the constant C only depends on c0, c1, c2, n, p, and [g]Ap .

Theorem 2. There exist constants b(n) and B(n) such that for any θ ∈ R, any
u ∈ BMO, and any 1 < p < ∞, the condition

|θ |‖u‖BMO < 1
2 b(n)min(1, p − 1),

implies that exp(θu) ∈ Ap and

[
exp(θu)

]
Ap

�
(
1 + B(n)

)p
.
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Proof. From a result of John and Nirenberg [27], there exist positive constants
b(n) and B(n), depending only on n, such that for any u ∈ BMO , any cube Q and
any positive s the following inequality holds

µQ(s) = 1

|Q|mes
{

x ∈ Q, |u(x)− ūQ | > s
}

� B(n) exp
(
− s b(n)

‖u‖BMO

)
,

where ūQ denotes the average of u over Q. Using the identity

1

|Q|
∫

Q
f (|u − ūQ |) dx =

∫ ∞

0
µQ(s) d f (s),

valid for increasing continuously differentiable functions f such that f (0) = 0,
with f (s) = exp(b′s)− 1 and 0 < b′‖u‖BMO < b(n)/2, we obtain that

1

|Q|
∫

Q
exp
(
b′|u − ūQ |) dx � 1 + B(n)b′‖u‖BMO

b(n)− b′‖u‖BMO
� 1 + B(n).

Therefore, we deduce that

sup
Q

(
1

|Q|
∫

Q
exp(θu) dx

)(
1

|Q|
∫

Q
exp(− θu

p − 1
) dx

)p−1

� sup
Q

(
1

|Q|
∫

Q
exp(|θ | |u − ūQ |) dx

)(
1

|Q|
∫

Q
exp(

|θ |
p − 1

|u − ūQ |) dx

)p−1

�
(
1 + B(n)

)p
,

provided that |θ |‖u‖BMO < 1
2 b(n)min(1, p − 1).

As a direct application of Theorems 1 and 2, we investigate operators with
weights in the form exp(θu), where θ ∈ R and u ∈ BMO .

Corollary 1. Let G be a Calderón–Zygmund operator and 1 < p < ∞. There
exist constants δ(n, p) and C (c0, c1, c2, n, p), depending respectively on (n, p)
and (c0, c1, c2, n, p), such that for any θ ∈ R and u ∈ BMO, the condition
|θ |‖u‖BMO < δ(n, p) implies that the operator G is bounded in L p

(
exp(θu)dx

)
,

or equivalently, that the operator exp(θu/p)G exp(−θu/p) is bounded in L p, with
a norm lower than C (c0, c1, c2, n, p).

4.3. Multilinear estimates

We investigate weighted multilinear estimates, with weights in Ap, and we
denote by A(Rn) the Wiener algebra in R

n [36,37,39].

Theorem 3. Let k, l be positive integers, and α j , 1 � j � l, be multiindices
such that |α j | � 1, 1 � j � l, and k = ∑1� j�l |α j |. Let 1 < p < ∞,
g ∈ Ap, and u1, . . . , ul , be such that there exist constants u j,∞ with u j − u j,∞ ∈
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Hk(Rn)∩ A(Rn), and such that g
1
p ∂ku j ∈ L p, 1 � j � l. There exists a constant

c = c(k, n, p, [g]Ap ) only depending on k, n, p, and [g]Ap , such that

∥
∥g1/p

∏

1� j�l

∂α
j
u j
∥
∥

Lp � c
( ∑

1� j�l

‖u j‖BMO

)l−1( ∑

1� j�l

∥
∥g1/p∂ku j

∥
∥

Lp

)
, (4.12)

where we define
∥
∥g1/p∂kv

∥
∥p

Lp =
∑

|α|=k

k!
α!
∫

Rn
g
∣
∣∂αv
∣
∣p dx,

using the multinomial coefficients [10,41]
(

k
α

)

= k!
α! = k!

α1! · · ·αn ! .

Proof. We use the Coifman–Meyer theory of multilinear operators [36,37]. We
can first assume that u j,∞ = 0, 1 � j � l, since these constants do not modify the
norms in (4.12). Since the Schwartz space S (Rn) is dense in Hk(Rn) ∩ A(Rn),
we can assume that u j ∈ S (Rn), 1 � j � l. In this situation, we can write that

∏

1� j�l

∂α
j
u j (x) = Cte

∫ ∏

1� j�l

exp
(
ix · ξ j )(ξ j )α

j
û j (ξ

j ) dξ j ,

where ξ j ∈ R
n , 1 � j � l, and û j denotes the Fourier transform of u j . We

introduce Φ ∈ C∞[0,∞) such that supp(Φ) ⊂ [0, 1], 0 � Φ � 1, Φ = 1 over
[0, 1/2], and we setΨ = 1−Φ. We further defineΦi = Φ(

∑
i+1� j�l |ξ j |2/|ξ i |2)

and Ψi = 1 −Φi , for 1 � i � l − 1, and we have the partition of unity

1 = Φ1 + Ψ1Φ2 + Ψ1Ψ2Φ3 + · · · +
∏

1� j�l−2

Ψ j Φl−1 +
∏

1� j�l−1

Ψ j .

We multiply this partition of unity by the product
∏

1� j�l(ξ
j )α

j
and each factor

is rewritten in the form

∏

1� j�l

(ξ j )α
j ∏

1� j�i−1

Ψ j Φi = |ξ i |k
∏

1� j�l

( ξ j

|ξ i |
)α j ∏

1� j�i−1

Ψ j Φi ,

with the convention that Φl = 1. Denoting by Hi the multilinear operator associ-
ated with the kernel

ζi =
∏

1� j�l

( ξ j

|ξ i |
)α j ∏

1� j�i−1

Ψ j Φi ,

we have obtained that
∏

1� j�l

∂α
j
u j =

∑

1�i�l

Hi
(
u1, . . . , ui−1, (−∆)

k
2 ui , ui+1, . . . , ul

)
.
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We claim that the operator Hi , where 1 � i � l is fixed, satisfies the assumptions
of the Coifman and Meyer Theorem (Theorem 2, page 434, Section III.XIII.4 of
[36,37]), so that it can be extended into a continuous operator over BMOi−1 ×
L2 × BMOl−i . Indeed, for 1 � i � l −1, the kernel ζi of Hi is nonzero only when∏

1� j�i−1 Ψ jΦi is nonzero, that is, only when

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

i+1� j�l

|ξ j |2 � |ξ i |2,

|ξ i−k |2 � 2
∑

i−k+1� j�l

|ξ j |2, 1 � k � i − 1.

These conditions imply |ξ i−k |2 � 4k |ξ i |2, 1 � k � i − 1, and
∑

j �=i |ξ j |2 �
4i |ξ i |2. On the other hand, for i = l, we have Φl = 1, and the kernel ζl of Hl is
nonzero only when

∏
1� j�l−1 Ψ j is nonzero, that is, only when

|ξ l−k |2 � 2
∑

l−k+1� j�l

|ξ j |2, 1 � k � l − 1,

and these conditions imply that |ξ l−k |2 � 4k |ξ l |2, 1 � k � l−1, and
∑

j �=l |ξ j |2 �
4l |ξ l |2. As a consequence, for any 1 � i � l, the kernel ζi of Hi is bounded
and smooth for (ξ1, . . . , ξl) �= (0, . . . , 0). Furthermore, for β = (β1, . . . , βl),
β j ∈ N

n , we have
|∂βζi | � C

(|ξ1| + · · · + |ξ l |)−|β|
,

where |β| = |β1|+· · ·+|βl |. Finally, we have ζi (ξ1, . . . , ξl) = 0 whenever ξ j = 0
for any j �= i . Therefore, from the Coifman and Meyer theorem we obtain that for
v ∈ L2(Rn)

∥
∥Hi (u1, . . . , ui−1, v, ui+1, . . . , ul)

∥
∥

L2 � c
∏

j �=i

‖u j‖BMO ‖v‖L2 ,

and that for u j , j �= i fixed, the operator

v −→ Hi (u1, . . . , ui−1, v, ui+1, . . . , ul),

is a Calderón–Zygmund operator. From the results of Coifman–Meyer (Theorem 2,
page 434, Section III.XIII.4 of [36,37]), we also obtain that the distribution kernel
Ki associated with Hi is such that

|Ki (x, y)| � c
∏

j �=i

‖u j‖BMO |x − y|−n,

with similar inequalities for the derivatives. Therefore, the operator Hi rescaled by∏
j �=i ‖u j‖BMO satisfies the properties (i)–(iv) of Definition 1 with δ = 1 and with

constants c0, c1 and c2 depending only on k and n. As a consequence, as soon as
the weight g satisfies the Muckenhoupt condition Ap, we have
∥
∥g1/pHi (u1, . . . , ui−1, v, ui+1, . . . , ul)

∥
∥

Lp � c
∏

j �=i

‖u j‖BMO ‖g1/pv‖Lp ,
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where c only depends on n, k, p and [g]Ap . Summing over i , we have obtained that

∥
∥g1/p

∏

1� j�l

∂α
j
u j
∥
∥

Lp � c
∑

1�i�l

∏

1� j�l
j �=i

‖u j‖BMO
∥
∥g1/p(−∆) k

2 ui
∥
∥

Lp .

The proof is then complete upon noting that there exists a constant c only depending
on n, k, p and [g]Ap such that

∥
∥g1/p(−∆) k

2 ui
∥
∥

Lp � c
∥
∥g1/p∂kui

∥
∥

Lp .

This is obvious when k is even since then k = 2l and (−∆)k/2 = (−∆)l whereas for
k odd k = 2l +1 we have (−∆)k/2 = (−∆)l(−∆)1/2 and from

∑
1� j�n R2

j = −I

we obtain that −(−∆)k/2 = ∑1� j�n(−∆)l(−∆)1/2 R2
j = ∑1� j�n R j (−∆)l∂ j

and
∥
∥g1/p(−∆)k/2φ∥∥Lp �

∑
1� j�n

∥
∥g1/p(−∆)l∂ jφ

∥
∥

Lp since g1/p R j g−1/p is

continuous in L p, 1 � j � n, thanks to g ∈ Ap, as established in Theorem 1.

Remark 11. The definition of ‖∂kv
∥
∥p

Lp using the multinomial coefficients yields
in particular that for p = 2

‖∂kv‖2
L2 =

∑

|α|=k

k!
α!
∫

Rn

(
∂αv
)2

dx =
∑

1�i1,...,ik�n

‖∂i1 · · · ∂ik v‖2
L2 , (4.13)

so that it is compatible with the classical definition |∂2v|2 =∑i j (∂i∂ j v)2 already
used in Section 3.3. This natural definition also simplifies the analytic form of
higher order entropies governing equations.

Remark 12. The space of smooth functions with compact support D(Rn) is dense
in Hk(Rn) ∩ BMO(Rn) (for the norm ‖ · ‖Hk + ‖ · ‖BMO of course) if and only

if k � n/2. Indeed, for k < n/2, D(Rn) is not even dense in Hk(Rn) ∩ L∞(Rn)

and counterexamples are classically found in the form of a series of needles as for
instance

ϕ =
∑

i�1

ϕxi ,εi
, ϕy,δ(x) =

{(
1 − ‖x − y‖2

δ2

)+}k
,

where δ > 0, xi = (i, 0, . . . , 0), and the sequence {εi } is such that 0 < εi < 1/2 and∑
i�1 ε

n−2k
i < ∞. On the other hand, for k = n/2, we have Hk(Rn)∩BMO(Rn) =

Hk(Rn), whereas for k > n/2, Hk(Rn) is included in the Wiener algebra A(Rn).
We have introduced the natural simplifying assumption u j − u j,∞ ∈ Hk(Rn) ∩
A(Rn) since it will be sufficient for our applications and since for k < n/2, D(Rn)

is dense in Hk(Rn) ∩ A(Rn) and A(Rn) ⊂ L∞(Rn) ⊂ BMO(Rn). Extending
inequalities (4.12) to Hk(Rn) ∩ BMO(Rn) when k < n/2 by using the notion of
strict convergence [36,37] is not relevant to our study.
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4.4. Weighted interpolation inequalities

We generalize here some Nirenberg interpolation inequalities for intermediate
derivatives [38] with weights satisfying the Muckenhoupt properties.

Theorem 4. Let k, j be non-negative integers, let 1 < q < ∞, 1 < r < ∞,
and assume that k � 1 and 0 � j � k. Further assume that g is a weight of the
muckenhoupt class Ar ∩ Aq = Amin(q,r) and let p be such that

1

p
= k − j

k

1

q
+ j

k

1

r
. (4.14)

Then for any v such that v ∈ Lq(gdx) and ∂kv ∈ Lr (gdx), the intermediate deriv-
ative ∂ j v is in L p(gdx) and there exists a constant C only depending on n, k, q,
r , [g]Aq

and [g]Ar
such that

(∫

Rn
g|∂ j v|p dx

) 1
p � C

(∫

Rn
g|v|q dx

)(1− j
k )

1
q
(∫

Rn
g|∂kv|r dx

) j
k

1
r
. (4.15)

Proof. By induction on k, the proof of (4.15) is easily reduced to the special case
j = 1 and k = 2. In this situation, we have 2/p = 1/q+1/r and defining p′ = p/2
we have 1/2 < p′ < ∞ and

1

p′ = 1

q
+ 1

r
. (4.16)

Inequality (4.15) can then be rewritten in terms of the square of the gradient

(∫

Rn
g
(|∂v|2)p′

dx
) 1

p′ � c
(∫

Rn
g|v|q dx

) 1
q
(∫

Rn
g|∂2v|r dx

) 1
r
. (4.17)

In order to estimate the square of the gradient |∂v|2 we consider any pair of indices
i1 and i2, any functions u1, u2, in the Schwartz space S (Rn), and we write (as in
the proof of Theorem 3) that

∂i1u1(x) ∂i2u2(x) = Cte
∫

exp
(
ix · (ξ1 + ξ2)

)
ξ1

i1
ξ2

i2
û1(ξ

1)û2(ξ
2) dξ1dξ2, (4.18)

where ξ1, ξ2 ∈ R
n , and û j is the Fourier transform of u j , j = 1, 2. Introducing

again a partition of unity Φ1 + Ψ1 = 1 as in Theorem 3, we can write that

∂i1u1 ∂i2u2 = H1
(
u1, (−∆)u2

)+ H2
(
(−∆)u1, u2

)
, (4.19)

where H1 is the multilinear operator with symbolΦ1 ξ
1
i1
ξ2

i2
/|ξ1|2 and H2 the mul-

tilinear operator with symbol Ψ1 ξ
1
i1
ξ2

i2
/|ξ2|2. Using the results of Grafakos and

Torres [23–25] we deduce that the operators H1 et H2 are multilinear Calderón–
Zygmund operators (Proposition 6 of [23] or Section 2 of [25]). On the other hand,
the weight g also belongs to the class A∞, that is, there exists constants C > 0 and
ε ∈ (0, 1] such that for any cube Q and any measurable set E ⊂ Q we have

g(E)

g(Q)
� C
( |E |
|Q|
)ε
,
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where g(E) = ∫E g(x) dx and |E | denotes the Lebesgue measure of E . More spe-
cifically, for any 1 < s < ∞ and g ∈ As , we have g ∈ A∞, where the constants C
and ε only depend on s and [g]As [8,16]. As a consequence, we can use the weighted
inequalities established by Grafakos and Torres (Corollary 3 of [24] or Corollary
5 of [25]) taking into account that 1 < r < ∞, 1 < q < ∞, 1/2 < p′ < ∞, (4.16)
and letting u1 = u2 = v, and the interpolation constant C depending finally only
on n, k, q, r , [g]Aq and [g]Ar .

We now consider the case q = ∞ by combining the interpolation inequality of
Theorem 4 with the multilinear estimates of Theorem 3.

Theorem 5. Let k, j be non-negative integers, 1 < r < ∞, assume that k � 1,
and 1 � j � k. Further assume that g is a weight in the Muckenhoupt class Ar

and let p be such that
1

p
= j

kr
. (4.20)

Then for any v such that v − v∞ ∈ Hk(Rn)∩ A(Rn), where v∞ is a constant, and
such that ∂kv ∈ Lr (gdx), the intermediate derivative ∂ j v is in L p(gdx) and there
exists a constant C only depending on n, k, r , and [g]Ar

such that

(∫

Rn
g|∂ j v| rk

j dx
) j

rk � C
∥
∥v
∥
∥1− j

k
BMO

(∫

Rn
g|∂kv|r dx

) j
rk
. (4.21)

Proof. Letting p = r , |α j | = 1, and k = l in Theorem 3, we deduce that

(∫

Rn
g|∂v|rk dx

) 1
rk � c

∥
∥v
∥
∥1− 1

k
BMO

(∫

Rn
g|∂kv|r dx

) 1
rk
, (4.22)

and this yields (4.21) for j = 1. For 1 < j < k we can then interpolate ∂ j v
between ∂1v and ∂kv and combine inequality (4.15) of Theorem 4 with (4.22).

Remark 13. The elegant elementary proofs of Nirenberg [38] are easily adapted
to weights in A∗

p classes [16] but not to weights in Muckenhoupt classes Ap . The A∗
p

classes are defined as in Definition 2 with (4.11) but with n-dimensional products
of intervals instead of cubes. Nirenberg elementary proofs are indeed first given
in one dimension and then extended to higher dimensions, and only weights in
A∗

p classes are such that the induced weights in smaller dimensions (obtained by
freezing some of the coordinates) satisfy Ap conditions in the smaller dimensions,
uniformly with respect to the frozen variables [16].

4.5. Weighted products of derivatives

We first investigate products of derivatives of the rescaled unknowns τ and w,
with powers of temperature as natural weights.
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Theorem 6. Let k � 1 be an integer, θ̄ > 0 be positive, 1 < p < ∞, τ be such that
τ − τ∞ ∈ Hk(Rn) ∩ A(Rn) for some constant τ∞. There exist positive constants
δ(n, k, θ̄ , p) and c(n, k, p), only depending on (n, k, θ̄ , p) and (n, k, p), respec-
tively, such that if ‖τ‖BMO < δ, then for any real θ with |θ | � θ̄ , any integer
l � 1, and any multiindices α j , 1 � j � l, with |α j | � 1, 1 � j � l, and∑

1� j�l |α j | = k, whenever exp(θτ/p)∂kτ ∈ L p(Rn), we have the estimates

∥
∥
∥e

θτ
p
∏

1� j�l

(
∂α

j
τ
)∥∥
∥

Lp
� c
∥
∥τ
∥
∥l−1

BMO

∥
∥e

θτ
p ∂kτ
∥
∥

Lp . (4.23)

Further assuming thatw ∈ Hk(Rn)∩ A(Rn), eθτ/p∂kw ∈ L p(Rn), and 0 � l̄ � l,
we have

∥
∥
∥e

θτ
p
∏

1� j�l̄

(
∂α

j
τ
) ∏

l̄+1� j�l

(
∂α

j
w
)∥∥
∥

Lp
� c
(∥
∥τ
∥
∥

BMO + ∥∥w∥∥BMO

)l−1

×
(∥
∥e

θτ
p ∂kτ
∥
∥

Lp + ∥∥e θτp ∂kw
∥
∥

Lp

)
,

(4.24)

where we have naturally defined

∥
∥e

θτ
p ∂kw

∥
∥p

Lp =
∑

1�i�n

∥
∥e

θτ
p ∂kwi

∥
∥p

Lp =
∑

|α|=k
1�i�n

k!
α!
∫

Rn
eθτ
∣
∣∂αwi

∣
∣p dx,

and where, in the left-hand member of (4.24), with a slight abuse of notation, we
have denoted by w any of its components w1, . . . , wn.

Proof. This is an application of Theorems 2 and 3 since for θ̄‖τ‖BMO < b(n)/2
and θ̄‖τ‖BMO < b(n)(p − 1)/2 we have [eθτ ]Ap

�
(
1 + B(n)

)p.

We now estimate products of derivatives of temperature and velocity compo-
nents rescaled by the proper temperature factors.

Theorem 7. Let k � 1 be an integer, θ̄ > 0 be positive, 1 < p < ∞, T be such that
T � Tmin > 0 and T − T∞ ∈ Hk(Rn)∩ A(Rn) for some positive T∞. There exists
positive constants δ(n, k, θ̄ , p) and c(n, k, p), only depending on (n, k, θ̄ , p) and
(n, k, p), respectively, such that if ‖ log T ‖BMO < δ, then for any real θ such that
|θ | � θ̄ , any integer l � 1, and any multiindices α j , 1 � j � l, with |α j | � 1,
1 � j � l, and

∑
1� j�l |α j | = k, whenever T θ/p(∂k T )/T ∈ L p(Rn), we have

the estimates

∥
∥
∥T

θ
p
∏

1� j�l

(∂α
j
T

T

)∥
∥
∥

Lp
� c
∥
∥log T

∥
∥l−1

BMO

∥
∥T

θ
p
∂k T

T

∥
∥

Lp . (4.25)
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Further assumingv ∈ Hk(Rn)∩A(Rn),‖ log T ‖BMO+‖v/√T ‖L∞ <δ(n, k, θ̄ , p),

whenever T θ/p(∂kv)/
√

T ∈ L p(Rn), we have for 0 � l̄ � l

∥
∥
∥T

θ
p
∏

1� j�l̄

(∂α
j
T

T

) ∏

l̄+1� j�l

(∂α
j
v√

T

)∥
∥
∥

Lp
� c
(∥
∥log T

∥
∥

BMO + ∥∥ v√
T

∥
∥

L∞
)l−1

×
(∥
∥T

θ
p
∂k T

T

∥
∥

Lp + ∥∥T θ
p
∂kv√

T

∥
∥

Lp

)
,

(4.26)

where, in the left hand member, with a slight abuse of notation, we have denoted
by v any of its components v1, . . . , vn.

Proof. Assume that δ < b(n)/2θ̄ and δ < (p − 1)b(n)/2θ̄ so that all the weights
T θ = exp(θ log T ) satisfy the Muckenhoupt condition Ap as soon as‖ log T ‖BMO<

δ, and are such that [T θ ]Ap �
(
1 + B(n)

)p. Let l � 1 be an integer, and α j ,
1 � j � l, be multiindices with |α j | � 1, 1 � j � l, and

∑
1� j�l |α j | = k. From

Theorem 6 applied with τ = log T we have

∥
∥T

θ
p
∏

1� j�l

∂α
j
τ
∥
∥

Lp � c‖ log T ‖l−1
BMO

∥
∥T

θ
p ∂kτ
∥
∥

Lp ,

where c = c(n, k, p), and, thus, we only have to estimate integrals like

∥
∥
∥T

θ
p

⎛

⎝
∏

1� j�l

(∂α
j
T

T

)−
∏

1� j�l

∂α
j
τ

⎞

⎠
∥
∥
∥

Lp
.

Thanks to the differential identities established in Lemma 2, we can write that

∏

1� j�l

(∂α
j
T

T

) =
∏

1� j�l

∂α
j
τ +

∑

µ1···µl

∏

1� j�l

cµ j

∏

1�|β|�|α j |

(
∂βτ
)µ j

β , (4.27)

whereµ j = (µ
j
β)1�|β|�|α j |, withµ j

β ∈ N, β ∈ N
n , and where cµ j are non-negative

integer coefficients. The µ j are also such that
∑

1�|β|�|α j | |β| µ j
β = |α j |, so that

we have in particular
∑

1�|β|�|α j |
1� j�l

|β| µ j
β =

∑

1� j�l

|α j | = k.

When k = l, all derivatives must be of first order so that the sum in the right-hand
side of (4.27) is absent. On the other hand, when l < k, in each term of this sum,
there are always at least l + 1 derivative factors in the product, since the only term
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with exactly l factors has been isolated, and at most k derivative factors. From the
multilinear estimates of Theorem 3 applied to each of these terms we obtain

∥
∥
∥T

θ
p

( ∏

1� j�l

(∂α
j
T

T

)−
∏

1� j�l

∂α
j
τ
)∥
∥
∥

Lp

� c
(∥
∥log T

∥
∥l

BMO + · · · + ∥∥log T
∥
∥k−1

BMO

) ∥
∥T

θ
p ∂kτ
∥
∥

Lp .

Therefore, assuming δ < 1, we have established for any 1 � l � k that

∥
∥
∥T

θ
p

⎛

⎝
∏

1� j�l

(∂α
j
T

T

)−
∏

1� j�l

∂α
j
τ

⎞

⎠
∥
∥
∥

Lp
� c
∥
∥log T

∥
∥l

BMO

∥
∥T

θ
p ∂kτ
∥
∥

Lp . (4.28)

We now consider the special case l = 1 and we sum the above estimates (4.28)
over all α with |α| = k. This yields

∥
∥
∥T

θ
p

(
∂k T

T
− ∂kτ

)∥
∥
∥

Lp
� c
∥
∥log T

∥
∥

BMO

∥
∥T

θ
p ∂kτ
∥
∥

Lp ,

where c = c(n, k, p) so that for c(n, k, p)‖ log T ‖BMO < 1/2 we have

1
2

∥
∥T

θ
p ∂kτ
∥
∥

Lp �
∥
∥T

θ
p
∂k T

T

∥
∥

Lp � 3
2

∥
∥T

θ
p ∂kτ
∥
∥

Lp . (4.29)

Then reinserting inequality (4.29) in inequality (4.28) completes the proof of (4.25).
The proof of inequality (4.26) is similar, and it is found in particular that when

‖ log T ‖BMO + ‖v/√T ‖L∞ < δ(n, k, θ̄ , p), we have

∥
∥
∥T

θ
p

(
∂kv√

T
− ∂kw

)∥
∥
∥

Lp

� c
(∥
∥log T

∥
∥

BMO + ∥∥ v√
T

∥
∥

L∞
)(∥
∥T

θ
p ∂kτ
∥
∥

Lp + ∥∥T θ
p ∂kw

∥
∥

Lp

)
, (4.30)

where the terms proportional to w in relations (4.8) have been taken into account
with the factors ‖v/√T ‖L∞ .

Remark 14. As a special case of Theorem 7, we obtain that for T −T∞ ∈ H2(Rn)∩
A(Rn), T � Tmin > 0 and ‖ log T ‖BMO small enough, we have

∫

Rn

|∂x T |4
T 3+a

dx � c‖ log T ‖2
BMO

∫

Rn

|∂2
x T |2

T 1+a
dx . (4.31)

This inequality differs from that of Remark 7 by the factors ‖ log T ‖BMO .
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Remark 15. The inequalities obtained in Theorems 6 and 7 will be used in Section
6 in order to establish positiveness of source terms in higher order entropy gov-
erning equations. As a typical example we use here inequality (4.31) in order to
investigate the solutions of the scalar parabolic equation

∂t T − ∂x ·(λ∂x T ) = 0.

We assume that T − T∞ ∈ C
([0, t̄ ], Hl

) ∩ C1
([0, t̄ ], Hl−2

) ∩ L2
([0, t̄ ], Hl+1

)
,

where l is an integer such that l � [n/2] + 2, t̄ is some positive time, T∞ > 0 is a
fixed positive temperature, and we assume that λ = T κ. After a few integrations
by parts, it is easily established that

∂t

∫

Rn

|∂x T |2
T 1+a

dx+2
∫

Rn

|∂2
x T |2

T 1+a−κ
dx − (4(1 + a)− 2κ

)
∫

Rn

∂2
x T :∂x T ⊗ ∂x T

T 2+a−κ
dx

+ (1 + a)(2 + a − 2κ)

∫

Rn

|∂x T |4
T 3+a−κ

dx = 0,

and we already know from Proposition 2 that, when κ = 0, there exists T with
T − T∞ ∈ D(Rn) such that the sum of the three last terms is negative, either
assuming n � 1 and a > 1, or assuming n � 2 and a > a∗, where a∗ < 1. Even
more, the second counter example given in the proof of Proposition 2 can easily be
extended to the situation where κ > 0 and yields T with T − T∞ ∈ D(Rn) such
that the sum of the three last terms is negative, for n � 1 and a > 1 − 2κ. In par-
ticular, starting from such an initial temperature field, the corresponding solution
of the heat equation will be such that

∫
Rn(|∂x T |2/T 1+a) dx is increasing for some

time interval.
On the other hand, we obtain from the Cauchy inequality that

∂t

∫

Rn

|∂x T |2
T 1+a

dx +
∫

Rn

|∂2
x T |2

T 1+a−κ
dx � C(a,κ)

∫

Rn

|∂x T |4
T 3+a−κ

dx,

so that from inequality (4.31), applied with a and replaced by a − κ we have

∂t

∫

Rn

|∂x T |2
T 1+a

dx + (1 − c‖ log T ‖2
BMO)

∫

Rn

|∂2
x T |2

T 1+a−κ
dx � 0,

for some constant c, and this yields a priori estimates as long as ‖ log T ‖BMO is
small enough.

5. Higher order entropies governing equations

We first discuss the temperature dependence of transport coefficients as obtained
from the kinetic theory of gases. We then derive a governing equation for kinetic
entropy correctors of arbitrary order in the situation of incompressible flows span-
ning the whole space. The case of compressible flows or zero Mach number flows
are beyond the scope of the present paper [19].
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5.1. Temperature dependent coefficients

Thermal conductivity and viscosity of a gas depend on temperature

λ = λ(T ), η = η(T ), (5.1)

as shown by the kinetic theory [6,14,17]. When one term Sonine polynomial expan-
sions are used to evaluate perturbed distribution functions, the coefficients λ/cv and
η are found in the form

λ/cv = aλT 1/2

Ω(2,2)∗ , η = aηT 1/2

Ω(2,2)∗ ,

where aλ and aη are constants and Ω(2,2)∗ is a reduced collision integral, and the
ratio λ/cvη is then a constant. For the rigid sphere model for instance, we have
exactly λ/cv = aλT 1/2 and η = aηT 1/2. Similarly, for particles interacting as
point centers of repulsion with an interaction potential V = c/rν , where r is the
distance between two particles, one establishes thatΩ(2,2)∗ is proportional to T −2/ν

so that we have λ/cv = aλT κ, and η = aηT κ with κ = 1/2 + 2/ν, [6,14]. The
temperature exponent κ then varies from κ = 1/2 for rigid spheres with ν = ∞
up to κ = 1 for Maxwell molecules with ν = 4. More generally, consider particles
interacting with a Lennard–Jones ν-ν′ potential

V = 4ε
((σ

r

)ν − (σ
r

)ν′)
,

where V denotes the interaction potential, σ the collision diameter, ε the poten-
tial well depth, and ν, ν′ are integers with ν > ν′ and typical values ν = 12,
ν′ = 6 [6,14]. Collision integrals like Ω(2,2)∗ then only depend on the reduced
temperature kBT/ε, and, when kBT/ε is large, the repulsive part r−ν is dominant,
whereas when kBT/ε is small the attractive part r−ν′

is dominant [6]. As a con-
sequence, like for point centers of repulsion, collision integrals behave like T s′

with s′ = 1/2 + 2/ν′ for small T and like T s with s = 1/2 + 2/ν for large
T [6]. In particular, the logarithm logΩ(2,2)∗ has linear asymptotes as functions
of log T , and dk logΩ(2,2)∗/d(log T )k is bounded for any k � 1. As a conse-
quence, log η and log λ have parallel linear asymptotes as functions of log T , and
dk log η/d(log T )k and dk log λ/d(log T )k are bounded for any k � 1, or equiva-
lently, (1/η)T kdkη/dT k and (1/λ)T kdkλ/dT k are bounded for any k � 1.

Similar results are also obtained when more than one term is taken into account
in orthogonal polynomial expansions of perturbed distribution functions. Indeed,
all collision integrals Ω(i, j)∗, i, j � 1, have a common temperature behavior, that
is, all ratios of collision integrals are bounded, as for instance for Lennard–Jones
or Stockmayer potentials [14,17]. These collision integrals are then used to define
the coefficients of the transport linear systems which thus share a common tem-
perature scaling. As a consequence, the transport coefficients, which are obtained
through solutions of transport linear systems, inherit a common temperature scal-
ing [17]. The same conclusion is also reached with polyatomic molecules when
Wang–Chang–Uhlenbeck–Sonine polynomial expansions are used [17]. As a con-
sequence, the relevant mathematical assumptions are that all transport coefficients



Higher Order Entropies 255

have a common temperature scaling in such a way that λ/cvη remains positive
and bounded, and dk log η/d(log T )k and dk log λ/d(log T )k are bounded for any
k � 1.

On the other hand, in our particular application, using the maximum principle
for temperature yields a uniform lower bound for T , only depending on initial data.
Therefore, we may assume that T � Tmin, where Tmin is fixed and positive. In
this situation, the behavior of transport coefficients for small temperatures is not
relevant. In other words, only the repulsive part of the interaction potential between
particles plays a role and we may assume that such behavior is asymptotically that
of point centers of repulsion as we have discussed for Lennard–Jones potentials.
Therefore, from a mathematical point of view, since we are not interested in small
temperatures, we may simplify the assumptions about the temperature dependence
of transport coefficients and assume that λ and η are C∞(0,∞), that there exist κ,
a > 0, and a > 0 with

a T κ � λ/cv � a T κ, a T κ � η � a T κ, (5.2)

and that, for any integer σ � 1, there exists aσ > 0 with

T σ |∂σT λ| � aσ T κ, T σ |∂σT η| � aσ T κ. (5.3)

Kinetic theory suggests that 1/2 � κ � 1 but the situations where 0 � κ < 1/2
or κ > 1 are still interesting to investigate from a mathematical point of view.

Remark 16. Assumptions on transport coefficients valid for all temperatures may
be written

c ζ � λ/cv � c ζ, c ζ � η � c ζ,

T σ |∂σT λ| � cσ ζ, T σ |∂σT η| � cσ ζ, σ � 1,

where c, c, and cσ , σ � 1, are positive constants. The function ζ is a smooth
function of T such that T σ |∂σT ζ | � cσ ζ , σ � 1. For Lennard–Jones ν-ν′ poten-
tials, we can take for instance ζ = T s for large T and ζ = T s′

for small T , with
s = 1/2 + 2/ν and s′ = 1/2 + 2/ν′ [6]. We have made in this paper the simpler
choice ζ = T s = T κ since we can exclude small temperatures. It is interesting
to note that with an interaction potential which is infinite at small interparticle
distances, we always have ν = ∞ so that ζ = T 1/2 for large temperatures.

5.2. Fluid governing equations

With variable transport coefficients, the fluid governing equations can be written

∂x ·v = 0, (5.4)

∂t (ρv)+ ∂x ·(ρv⊗v + pI )− ∂x ·
(
η(T ) d

) = 0, (5.5)

∂t (ρe)+ ∂x ·(ρev)− ∂x ·
(
λ(T ) ∂x T

) = 1
2η(T )d :d, (5.6)

where ρ is the constant density, v the velocity, p the pressure, d = ∂xv + ∂xv
t the

strain rate tensor, η(T ) the viscosity, e the internal energy per unit mass, and λ(T )
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the thermal conductivity. The energy per unit mass e is still taken for simplicity in
the form e = cvT , where cv is a constant.

We again consider the case of functions defined on R
n with n � 2, that are

‘constant at infinity’, and we only consider solutions such that

v, T − T∞ ∈ C
([0, t̄ ], Hl) ∩ C1([0, t̄ ], Hl−2) ∩ L2([0, t̄ ], Hl+1), (5.7)

where l is an integer such that l � [n/2] + 2, that is, l > n/2 + 1, t̄ is some
positive time, and T∞ > 0 is a fixed positive temperature. We also assume that T
is positive and bounded away from zero T � Tmin where Tmin is positive. It will be
shown in Section 7 that these solutions are smooth when the initial data is smooth,
whenever they exist. Since the viscosity η is no longer a constant, the momentum
conservation equation is rewritten in the form ∂t (ρv) = P

(
∂x ·(−ρv⊗v+η(T )d)),

which is equivalent to defining the pressure by

p =
∑

1�i, j�n

Ri R j
(
ρviv j − ηdi j

)
. (5.8)

We also have p ∈ C
([0, t̄ ], Hl

)∩ C1
([0, t̄ ], Hl−2

)∩ L2
([0, t̄ ], Hl+1

)
from (5.5)

and from the identity ∂k p =∑1�i, j�n Rk R j
(
ρvi∂iv j − 2∂T η∂i T ∂ jvi

)
.

Remark 17. In the special case where λ = aλT κ, η = aηT κ, and cv is constant, if
v(t, x) and T (t, x) are a solution of the Navier–Stokes equations (5.4)– (5.6), then

ξ v(ξ2(1−κ)t, ξ (1−2κ)x), ξ2 T (ξ2(1−κ)t, ξ (1−2κ)x), (5.9)

are also a solution for any positive ξ . The special situation κ = 0 corresponds to
the usual rescaled solutions [7,31]. Note that space and time are not stretched in
the same direction when 1/2 < κ < 1.

Remark 18. All the results obtained in this section and the following are also valid
if the internal energy e per unit mass is taken to be e = e0 + ∫ T

0 cv(s) ds with a
heat capacity coefficient cv depending on temperature in such a way that

c � cv � c, T σ |∂σT cv| � cσ , σ � 1,

where c > 0, c > 0, and cσ > 0, σ � 1, are positive constants. For the sake of
simplicity we will not explicate the corresponding results.

5.3. Higher order kinetic entropy estimators

Specializing formally expression (2.15) to the situation of an incompressible
gas, we define the (2k)th order kinetic entropy corrector γ [k] by

γ [k] = a[k]
λ

|∂k T |2
T 1+ak

+ a[k]
η

|∂kv|2
T ak

, (5.10)

with

|∂k T |2 =
∑

|α|=k

k!
α! (∂

αT )2, |∂kv|2 =
∑

1�i�n

|∂kvi |2,
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where k!/α! are the multinomial coefficients [10,41], and a[k]
λ > 0, a[k]

η > 0,
ak ∈ R, are parameters at our disposal. We do not assume anymore that ak is
positive since some negative values will naturally appear in the discussion. Sim-
ilarly, following (2.16), we also define the (2k)th order kinetic entropy corrector
γ̃ [k] by

γ̃ [k] = exp
(
(1 − ak)τ

)(
a[k]
λ |∂kτ |2 + a[k]

η |∂kw|2
)
, (5.11)

where τ = log T and w = v/
√

T . The entropy correctors γ [k] and γ̃ [k] will be
shown to have similar properties and both may be used to derive a priori estimates.

In order to recast the zeroth order entropy balance into a more convenient form,
we also define γ [0] = γ̃ [0], for 0 < a0 � 1, by

γ [0] = γ̃ [0] = (a[0]
λ + a[0]

η )ζ
[0], (5.12)

where a[0]
λ > 0, a[0]

η > 0, and

ζ [0] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T − T∞
T∞

− log

(
T

T∞

)

+ 1
2
v2

cvT∞
, if a0 = 1,

T − T∞
T

a0∞
− T 1−a0 − T

1−a0∞
1 − a0

+ 1
2
v2

cvT
a0∞
, if 0 < a0 < 1.

Finally, we introduce the (2k)th order kinetic entropy estimators defined by

Γ [k] = γ [0] + · · · + γ [k], k � 0, (5.13)

Γ̃ [k] = γ̃ [0] + · · · + γ̃ [k], k � 0, (5.14)

which will play an important role. Strictly speaking, we should term γ [k] and γ̃ [k]
“mathematical (2k)th order partial entropies” or “(2k)th order kinetic entropy cor-
rectors” or “(2k)th order kinetic entropy deviation estimators” and Γ [k] and Γ̃ [k]
“mathematical (2k)th order entropies”, or “(2k)th order kinetic entropy estimators”.
We have also seen in Section 2 that all these quantities can also be associated with
Fisher information. However, we will often informally term γ [k], γ̃ [k], Γ [k] and
Γ̃ [k] “mathematical (2k)th order entropies” or simply “higher order entropies”.
Our aim is now to establish balance equations for γ [k] and γ̃ [k]. In Section 6, we
will use these equations to derive a priori estimates and to establish that Γ [k] and
Γ̃ [k] satisfy conditional entropic principles.

Remark 19. Replacing ∂xv by d in the definition of γ [k] would yield

γ̂ [k] = a[k]
λ

|∂k T |2
T 1+ak

+ 1
2 a[k]
η

|∂k−1d|2
T ak

, (5.15)

which coincides for k = 1 with the quantity γ introduced in Section 3. However,
the definitions (5.10) and (5.15) are equivalent for k � 2 from (3.29) and yield
similar results for k = 1 from the expression (3.28) of ∂xv in terms of d and the
continuity of T θ Ri T −θ for ‖ log T ‖BMO small enough.
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5.4. Balance equation for γ [k]

We investigate the γ [k] balance equation for incompressible fluids with tem-
perature dependent transport coefficients.

Proposition 5. Let k � 1 be an integer and (v, T ) be a smooth solution of the
incompressible Navier–Stokes equations (5.4)– (5.6). Then the following balance
equation holds

∂tγ
[k] + ∂x ·(vγ [k])+ ∂x ·ϕ[k]

γ + π [k]
γ + Σ

[k]
γ + ω[k]

γ = 0, (5.16)

where ϕ[k]
γ is a flux and π [k]

γ + Σ
[k]
γ + ω

[k]
γ a source term. The quantity π [k]

γ con-

tains higher order derivative non-negative terms, Σ[k]
γ higher order derivative split

terms, and ω[k]
γ lower order derivative terms of convective origin. The term π

[k]
γ

can be taken as

π [k]
γ = 2λa[k]

λ

ρcv

|∂k+1T |2
T 1+ak

+ 2ηa[k]
η

ρ

|∂k+1v|2
T ak

, (5.17)

in such a way that

2bk γ
[k+1] � π [k]

γ T −(ak+1−ak+κ) � 2bk γ
[k+1], (5.18)

ρbk = a min(a[k]
λ /a

[k+1]
λ ,a[k]

η /a
[k+1]
η ), ρbk = a max(a[k]

λ /a
[k+1]
λ ,a[k]

η /a
[k+1]
η ).

The term Σ
[k]
γ is in the form

Σ
[k]
γ =

∑

σνµ

T σ−κ(cσνµ∂
σ
T λ+ c′

σνµ∂
σ
T η) Π

(k+1)
ν Π(k+1)

µ

+
∑

σνµR

cσνµRΠ
(k+1)
ν R

(
T σ−κ∂σT η Π

(k+1)
µ

)
, (5.19)

where the sums are over 0 � σ � k,ν= (να, ν′
α)1�|α|�k+1,µ = (µα, µ

′
α)1�|α|�k+1,

να, ν
′
α, µα, µ

′
α ∈ N, α ∈ N

n, and for R singular operator in the form T −θ Ri R j T θ

with θ = (ak + κ)/2 and 1 � i, j � n. The products Π(k+1)
ν and Π(k+1)

µ are
defined by

Π(k+1)
ν = T (1−ak+κ)/2

∏

1�|α|�k+1

(∂αT

T

)να ∏

1�|α|�k+1

(∂αv√
T

)ν′
α
, (5.20)

where v denotes (with a slight abuse of notation) any of its components v1, . . . , vn,
and µ and ν must be such that

∑

1�|α|�k+1

|α|(να + ν′
α) = k + 1,

∑

1�|α|�k+1

|α|(µα + µ′
α) = k + 1,

∑

|α|=k+1

(να + ν′
α + µα + µ′

α) � 1,
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so that there is at most one derivative of order (k +1) in the productΠ(k+1)
ν Π

(k+1)
µ .

In particular, one of the terms Π(k+1)
ν or Π(k+1)

µ is always split between two or

more derivative factors. Furthermore the term ω
[k]
γ is given by

ω[k]
γ T −(1−2κ+ak−1−ak)/2 =

∑

νµ

cνµΠ
(k)
ν Π(k+1)

µ +
∑

νµR

cνµRΠ
(k)
ν R
(
Π(k+1)
µ

)
,

(5.21)
where we use similar notation for Π(k)

ν as for Π(k+1)
µ and the summation extends

over
∑

1�|α|�k

|α|(να + ν′
α) = k,

∑

1�|α|�k

|α|(µα + µ′
α) = k + 1,

so that in particular
∑

|α|=k+1(µα + µ′
α) = 0 and there are always at least two

factors in the product Π(k+1)
µ , and where the singular operator R is in the form

T −θ Ri R j T θ with θ = (1 + ak − κ)/2 and 1 � i, j � n. Finally the flux ϕ[k]
γ =

(ϕ
[k]
γ 1 , . . . , ϕ

[k]
γ n) is given by the following formula with R taken as in (5.19)

ϕ
[k]
γ l T −(ak−1−ak )/2 =

∑

σνµ

T σ−κ(cσνµl∂
σ
T λ+ c′

σνµl∂
σ
T η) Π

(k)
ν Π(k+1)

µ

+
∑

σνµR

cσνµRlΠ
(k)
ν R
(
T σ−κ∂σT η Π

(k+1)
µ

)
. (5.22)

Proof. The proof (given in Appendix A) is lengthy and tedious but presents no
serious difficulties other than notational.

5.5. Balance equation for γ̃ [k]

We will need in the following the γ̃ [k] balance equation that we correspondingly
write in terms of the auxiliary variables w and τ .

Proposition 6. Let k � 1 be an integer and (v, T ) be a smooth solution of the
incompressible Navier–Stokes equations (5.4)– (5.6). Then the following balance
equation holds

∂t γ̃
[k] + ∂x ·(vγ̃ [k])+ ∂x ·ϕ[k]

γ̃
+ π

[k]
γ̃

+ Σ
[k]
γ̃

+ ω
[k]
γ̃

= 0, (5.23)

where ϕ[k]
γ̃

is a flux and π [k]
γ̃

+ Σ
[k]
γ̃

+ ω
[k]
γ̃

a source term. The term π
[k]
γ̃

can be
taken as

π
[k]
γ̃

= e(1−ak )τ
(2λa[k]

λ

ρcv
|∂k+1τ |2 + 2ηa[k]

η

ρ
|∂k+1w|2

)
, (5.24)
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in such a way that

2bk γ̃
[k+1] � π

[k]
γ̃

e−(ak+1−ak+κ)τ � 2bk γ̃
[k+1], (5.25)

where bk and bk are as in Proposition 5. The term Σ
[k]
γ̃

is in the form

Σ
[k]
γ̃

=
∑

σνµ

e−κτ (cσνµ∂
σ
τλ+ c′

σνµ∂
σ
τ η) Π

(k+1)
ν Π(k+1)

µ

+
∑

σνµιR

cσνµιRΠ
(k+1)
ν Π

(k+1)
µιRσ + a[k]

η

ρ

( λ

cv
− η
)

e(1−ak )τw · ∂k+1w ∂k+1τ,

(5.26)

where we have isolated the new terms which contain two derivatives of order (k+1)

w · ∂k+1w ∂k+1τ =
∑

|α|=k+1
1�i�n

(k + 1)!
α! wi∂

αwi∂
ατ.

For the two first contributions in (5.26) composed of strictly differential terms, the
sums are over ν = (να, ν

′
α)0�|α|�k+1, µ = (µα, µ

′
α)0�|α|�k+1, 0 � σ � k, and

να, ν
′
α, µα, µ

′
α ∈ N, α ∈ N

n, with the products Π(k+1)
ν and Π(k+1)

µ defined by

Π(k+1)
ν = e(1−ak+κ)τ/2

∏

1�|α|�k+1

(
∂ατ
)να
∏

0�|α|�k+1

(
∂αw
)ν′
α , (5.27)

wherew denotes (with an abuse of notation) any of its componentsw1, . . . , wn. As
for Σ[k]

γ , µ and ν are such that
∑

1�|α|�k+1 |α|(να + ν′
α) =∑1�|α|�k+1 |α|(µα +

µ′
α) = k + 1,

∑
|α|=k+1(να + ν′

α + µα + µ′
α) � 1, so that there is at most one

derivative of (k + 1)th order in the productΠ(k+1)
ν Π

(k+1)
µ . In particular, one of the

terms Π(k+1)
ν or Π(k+1)

µ is always split between two or more derivative factors.
Note also that the products over the velocity factors extend up to |α| = 0 in con-
trast with the γ [k] balance equation. The non strictly differential termsΠ(k+1)

µιRσ are
defined by

Π
(k+1)
µιRσ = Π̃(k+1,l)

µ R
(

e−κτ ∂στ η Π̃
(k+1,k+1−l)
ι

)
(5.28)

with

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Π̃
(k+1,l)
µ = e(1−ak+κ) lτ

2(k+1)
∏

1�|α|�k+1

(
∂ατ
)µα
∏

0�|α|�k+1

(
∂αw
)µ′

α ,

Π̃
(k+1,k+1−l)
ι = e(1−ak+κ)

(k+1−l)τ
2(k+1)

∏

1�|α|�k+1

(
∂ατ
)ια
∏

0�|α|�k+1

(
∂αw
)ι′α .

(5.29)
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The sums are over 0 � σ � k, ν = (να, ν
′
α)1�|α|�k+1, µ = (µα, µ

′
α)1�|α|�k , and

ι = (ια, ια)1�|α|�k , where ν, µ, and ι must be such that

∑

1�|α|�k+1

|α|(µα + µ′
α) = l,

∑

1�|α|�k+1

|α|(ια + ι′α) = k + 1 − l,

∑

|α|=k+1

(να + ν′
α + µα + µ′

α + ια + ι′α) � 1,

for some 0 � l � k, so that there is at most one derivative of (k + 1)th order

in the product Π(k+1)
ν Π

(k+1)
µιRσ , and R singular operator in the form e−θτ Ri R j eθτ ,

1 � i, j � n, with

θ = ak + κ

2
+ l

2(k + 1)
(1 − ak + κ).

Note that, in contrast with the γ [k] balance equation, the integral operator R breaks
the term Π

(k+1)
µιRσ into two pieces. Furthermore the term ω

[k]
γ̃

is given by

ω
[k]
γ̃

e−(1−2κ+ak−1−ak )τ/2 =
∑

νµ

cνµΠ
(k)
ν Π(k+1)

µ +
∑

νµιR

cνµιRΠ
(k)
ν Π

(k+1)
µιR ,

(5.30)
where we use similar notation for Π(k)

ν as for Π(k+1)
µ and where Π(k+1)

µlR is given
by

Π
(k+1)
µιR = Π̃(k+1,l)

µ R
(
Π̃(k+1,k+1−l)
ι

)
. (5.31)

The summations are over
∑

1�|α|�k |α|(να+ν′
α) = k,

∑
1�|α|�k |α|(µα+µ′

α) =
k + 1, and

∑
|α|=k+1(µα +µ′

α) = 0 for the strictly differential termsΠ(k)
ν Π

(k+1)
µ ,

so that there are always at least two derivative factors in the product Π(k+1)
µ . For

the non strictly differential terms Π(k)
ν Π

(k+1)
µιR we have

∑
1�|α|�k |α|(να + ν′

α) =
k,
∑

1�|α|�k |α|(µα + µ′
α) = l,

∑
1�|α|�k |α|(ια + ι′α) = k + 1 − l, and

∑
|α|=k+1(µα + µ′

α + ια + ι′α) = 0 for some 0 � l � k, so that there are always

at least two derivative factors in the product Π(k+1)
µlR , and the singular operator R

is in the form e−θτ Ri R j T θτ with 1 � i, j � n and

θ = 1 − k + 1 − l

2(k + 1)
(1 − ak + κ).

Finally the flux ϕ[k]
γ̃

= (ϕ
[k]
γ̃ ,1, . . . , ϕ

[k]
γ̃ ,n) is given by the following formula with R

taken as in (5.27)

ϕ
[k]
γ̃ ,l e−(ak−1−ak )τ/2 =

∑

σνµ

e−κτ (cσνµl∂
σ
τ λ+ c′

σνµl∂
σ
τ η) Π

(k)
ν Π(k+1)

µ

+
∑

σνµιR

cσνµιRlΠ
(k)
ν Π

(k+1)
µιRσ . (5.32)
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Proof. The proof is lengthy and tedious but similar to that of Proposition 5. The new
complications arise from commutators between temperature weights and differen-
tial operators.

6. Higher order entropy estimates

In this section (the core of the paper) we investigate higher order entropy esti-
mates for incompressible flows spanning the whole space in the natural situation of
temperature dependent viscosity and thermal conductivity. We establish conditional
entropic inequalities for higher order kinetic entropy estimators, that is, entropic
inequalities that hold whenever ‖ log T ‖BMO + ‖v/√T ‖L∞ is small enough.

6.1. Positiveness of higher order derivative source terms

We first investigate the control of
∫
Rn|Σ[k]

γ | dx by
∫
Rnπ

[k]
γ dx , using the weighted

inequalities established in Section 4. We will denote by χ the quantity

χ = ‖ log T ‖BMO + ‖ v√
T

‖L∞ = ‖τ‖BMO + ‖w‖L∞ , (6.1)

which will play a fundamental role in the analysis. We will establish in particular
that entropic inequalities hold for γ [k] and γ̃ [k] when χ is small enough. Note that
this quantity invariant under the change of scales (5.9) described in Remark is 17. It
can also be interpreted as involving the natural variables log T and v/

√
rT appear-

ing in Maxwellian distributions [5]. Since we have formally v/
√

rT = O(Ma) and
log(T/T∞) = O(Ma), the constraint that χ remains small may also be interpreted
as a small Mach number constraint, which is consistent with the Enskog expansion
[22].

Proposition 7. Let k � 1 be an integer and (v, T ) be a smooth solution of the
incompressible Navier–Stokes equations (5.4)– (5.6). There exists positive con-
stants δ(k, n) and c(k, n) such that for χ = ‖ log T ‖BMO + ‖v/√T ‖L∞ < δ, we
have the estimates ∫

Rn
|Σ[k]
γ | dx � c χ

∫

Rn
π [k]
γ dx . (6.2)

Proof. From (5.19), (5.20), since T σ−κ∂σT λ and T σ−κ∂σT η are uniformly bounded
from assumptions (5.2) and (5.3), and since the operators T θ Ri R j T −θ are contin-
uous over L2 for ‖ log T ‖BMO small enough, we only have to estimate the L2 norm
of the products Π(k+1)

ν and Π(k+1)
µ . However, using Theorem 7 with p = 2, we

obtain when ‖ log T ‖BMO + ‖v/√T ‖L∞ < δ(k, n), the weighted inequalities

‖Π(k+1)
ν ‖L2 � cχNν−1

(
‖T

θ
2
∂k+1T

T
‖L2 + ‖T

θ
2
∂k+1v√

T
‖L2

)
,
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with θ = 1 − ak + κ, c = c(k, n), and

Nν =
∑

1�|α|�k+1

(να + ν′
α).

As a consequence, we have

‖Π(k+1)
ν ‖L2‖Π(k+1)

µ ‖L2 � cχNν+Nµ−2
∫

Rn
π [k]
γ dx,

and the proof is complete from

Nν + Nµ − 2 =
∑

1�|α|�k+1

(να + ν′
α + µα + µ′

α)− 2 � 1,

since at least one of the products Π(k+1)
ν or Π(k+1)

µ is split into two or more deriv-
ative factors.

We have a similar result for γ̃ [k] which is more technical to establish because
of the special structure of the products Π(k+1)

µιRσ in (5.28).

Proposition 8. Let k � 1 be an integer and (v, T ) be a smooth solution of the
incompressible Navier–Stokes equations (5.4)– (5.6). There exists positive con-
stants δ(k, n) and c(k, n) such that for χ = ‖τ‖BMO + ‖w‖L∞ < δ we have the
estimates ∫

Rn
|Σ[k]
γ̃

| dx � c χ
∫

Rn
π

[k]
γ̃

dx . (6.3)

Proof. We use the expression (5.26)– (5.27) in order to estimate Σ[k]
γ̃

. On one hand,

for strictly differential terms, the proof is similar to that for γ [k]. Indeed, the terms
e−κτ ∂στ λ Π

(k+1)
ν Π

(k+1)
µ or e−κτ ∂στ η Π

(k+1)
ν Π

(k+1)
µ are easily majorized since the

quantities e−κτ ∂στ λ and e−κτ ∂στ η are uniformly bounded and since the L2 norm of

the productsΠ(k+1)
ν andΠ(k+1)

µ is directly obtained from the multilinear estimates
of Theorem 6. The fact that there is always a factor χ in the upper bound (6.3)
results from the fact that one of the two productsΠ(k+1)

ν orΠ(k+1)
µ is always split.

On the other hand, the special contributions involving two derivatives of (k + 1)th

order are rewritten in the form

e−κτ
( λ

cv
− η
)

e(1−ak+κ)τw · ∂k+1w ∂k+1τ,

and are easily taken into account with a ‖w‖L∞ factor.

The new difficulty is to evaluate the L2 norm of Π(k+1)
µιRσ . These terms Π(k+1)

µιRσ
are in the form

Π
(k+1)
µιRσ = Π̃(k+1,l)

µ R
(

e−κτ ∂στ η Π̃
(k+1,k+1−l)
ι

)
(6.4)
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where R = e−θτ Ri R j eθτ and θ is given in Proposition 6, and with

Π̃(k+1,l)
µ = e(1−ak+κ) lτ

2(k+1)
∏

1�|α|�k+1

(
∂ατ
)µα
∏

0�|α|�k+1

(
∂αw
)µ′

α . (6.5)

The sums are over 0 � σ � k, ν = (να, ν
′
α)1�|α|�k+1, µ = (µα, µ

′
α)1�|α|�k+1,

ι = (ια, ι
′
α)1�|α|�k+1, 0 � l � k, R singular operator as described in Proposition

6 and ν, µ and ι must be such that
∑

1�|α|�k+1

|α|(µα + µ′
α) = l,

∑

1�|α|�k+1

|α|(ια + ι′α) = k + 1 − l,

∑

|α|=k+1

(να + ν′
α + µα + µ′

α + ια + ι′α) � 1,

so that there is at most one derivative of order (k +1) in the productΠ(k+1)
ν Π

(k+1)
µlRσ .

We first split the exponential term in Π̃(k+1,l)
µ over each derivative factor thanks

to the relation
∑

1�|α|�k+1 |α|(µα + µ′
α) = l and we obtain

Π̃(k+1,l)
µ =

∏

1�|α|�k+1

e
(1−ak+κ )τ |α|µα

2(k+1)
(
∂ατ
)µα
∏

0�|α|�k+1

e
(1−ak+κ )τ |α|µ′

ατ

2(k+1)
(
∂αw
)µ′

α . (6.6)

Letting pα = 2(k + 1)/µα|α|, and p′
α = 2(k + 1)/µ′

α|α|, we have

∑

1�|α|�k+1

( 1

pα
+ 1

p′
α

)
= l

2(k + 1)
,

and we can use the Hölder inequality to estimate
∥
∥Π̃(k+1,l)

µ

∥
∥

L
2(k+1)

l
. To this purpose,

from the weighted interpolation inequalities of intermediate derivatives established
in Theorem 5 applied with r = 2, j = |α|, and k replaced by k + 1, we obtain

∥
∥
∥e

(1−ak+κ )τ |α|µα
2(k+1)

(
∂αφ
)µα
∥
∥
∥

L pα

� cχµα(1− |α|
k+1 )
(
‖e

θτ
2 ∂k+1τ‖L2 + ‖e

θτ
2 ∂k+1w‖L2

)µα |α|
k+1

,

where φ denotes τ or w. Upon multiplying these inequalities for 1 � |α| � k + 1,
and from the Hölder inequality, we deduce that

∥
∥Π̃(k+1,l)

µ

∥
∥

L
2(k+1)

l
� cχNµ− l

k+1

(
‖e

θτ
2 ∂k+1τ‖L2 + ‖e

θτ
2 ∂k+1w‖L2

) l
k+1
,

where θ = 1 − ak + κ, c = c(k, n), and

Nµ =
∑

1�|α|�k+1

(µα + µ′
α).
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We can treat similarly the factor Π̃(k+1,k+1−l)
ι to obtain that

∥
∥Π̃(k+1,k+1−l)

ι

∥
∥

L
2(k+1)
k+1−l

� cχNι− k+1−l
k+1

(
‖e

θτ
2 ∂k+1τ‖L2 + ‖e

θτ
2 ∂k+1w‖L2

) k+1−l
k+1
.

Since the operator R is continuous in L
2(k+1)
k+1−l for ‖ log T ‖BMO small enough, we

deduce that
∥
∥Π(k+1)

µιRσ

∥
∥

L2 � c
∥
∥Π̃(k+1,l)

µ

∥
∥

L
2(k+1)

l

∥
∥Π̃(k+1,k+1−l)

ι

∥
∥

L
2(k+1)
k+1−l

so that
∥
∥Π

(k+1)
µιRσ

∥
∥

L2 � cχNµ+Nι−1
(
‖e

θτ
2 ∂k+1τ‖L2 + ‖e

θτ
2 ∂k+1w‖L2

)
,

and finally

∥
∥Π(k+1)

ν

∥
∥

L2

∥
∥Π

(k+1)
µιRσ

∥
∥

L2 � cχNν+Nµ+Nι−2
∫

Rn
π

[k]
γ̃

dx,

and the end of the proof is similar to that of Proposition 7.

Corollary 2. Let k � 1 be an integer and (v, T ) be a smooth solution of the
incompressible Navier–Stokes equations (5.4)– (5.6). There exists positive con-
stants δ(k, n) and c(k, n), only depending on (k, n), such that for χ < δ the
following inequalities hold

∂t

∫

Rn
γ [k] dx + (1 − c χ)

∫

Rn
π [k]
γ dx �

∫

Rn
|ω[k]
γ | dx, (6.7)

∂t

∫

Rn
γ̃ [k] dx + (1 − c χ)

∫

Rn
π

[k]
γ̃

dx �
∫

Rn
|ω[k]
γ̃

| dx . (6.8)

In particular, when χ � 1/2c(k, n), we have made a first step towards entropic
inequalities for γ [k] and γ̃ [k].

We have established in Corollary 2 that inequalities (6.7) and (6.8) hold as
long as the quantity χ is small enough. In order to obtain global estimates, we
will have to ensure that this quantity χ remains small if it is initially small. The
inequality (6.2) also implies that (1 − c χ)

∫
Rnπ

[k]
γ dx �

∫
Rn(π

[k]
γ + Σ

[k]
γ ) dx �

(1+c χ)
∫
Rnπ

[k]
γ dx and (6.3) implies (1−c χ)

∫
Rnπ

[k]
γ̃

dx �
∫
Rn(π

[k]
γ̃

+Σ
[k]
γ̃
) dx �

(1 + c χ)
∫
Rnπ

[k]
γ̃

dx . These inequalities, as well as (3.11), could be informally
termed ‘entropicity inequalities’ since they induce the first steps (6.7) (6.8) and
(3.12) towards entropic inequalities.

Remark 20. For the heat equation (2.1), the quantity ζ [k] = |∂ku|2 can also be con-
sidered as a (2k)th order entropy corrector. The corresponding balance equations
can then be written

∂tζ
[k] −∆ζ [k] + 2|∂k+1

x u|2 = 0.

In contrast with the Navier–Stokes system, we observe that for the heat equation,
unconditional positiveness of the source terms hold in the ζ [k] balance equation.
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6.2. Estimates of convective terms and of γ [0] = γ̃ [0]

We estimate the lower order convective terms
∫
Rn|ω[k]

γ | dx by the higher order

dissipative terms
∫
Rnπ

[k]
γ dx and

∫
Rnπ

[k−1]
γ dx .

Proposition 9. Let k � 1 be an integer and (v, T ) be a smooth solution of the
incompressible Navier–Stokes equations (5.4)– (5.6). There exists positive con-
stants δ(k, n) and c(k, n) such that for χ < δ we have the estimates

∫

Rn
|ω[k]
γ | dx � cχ sup

Rn
{T (1−2κ+ak−1−ak )/2}

(∫

Rn
π [k−1]
γ dx

) 1
2
(∫

Rn
π [k]
γ dx

) 1
2
,

(6.9)

∫

Rn
|ω[k]
γ̃

| dx � cχ sup
Rn

{e(1−2κ+ak−1−ak )τ/2}
(∫

Rn
π

[k−1]
γ̃

dx
) 1

2
(∫

Rn
π

[k]
γ̃

dx
) 1

2
.

(6.10)

Proof. From the expression (5.21) and the continuity of the operators T θ Ri R j T −θ
for ‖ log T ‖BMO small enough, we deduce that

∫

Rn
|ω[k]
γ | dx � c sup

Rn
{T (1−2κ+ak−1−ak)/2} ‖Π(k)

ν ‖L2 ‖Π(k+1)
µ ‖L2 , (6.11)

and the estimate (6.9) is a direct consequence of the inequalities established in
Section 4 and in the proof of Proposition 7, since there are at least two factors in
the productΠ(k+1)

µ . The proof of (6.10) is similar mutatis mutandis since the terms

Π
(k+1)
µlR can be estimated by using the inequalities of Proposition 8.

We now recast the classical zeroth order entropic estimate in a convenient form
that will be needed to investigate entropic principles associated with Γ [k].

Proposition 10. Let 0 < a0 � 1 and let γ [0] be given by (5.12). Then γ [0] � 0 and
there exist positive constants δ0 > 0 and b′

0 such that for χ < δ0 small enough

∂t

∫

Rn
γ [0] dx + b′

0

∫

Rn
π [0]
γ dx � 0, (6.12)

where we define from (5.17)

π [0]
γ = 2λa[0]

λ

ρcv

|∂1T |2
T 1+a0

+ 2ηa[0]
η

ρ

|∂1v|2
T a0

.

Equivalently, there exists a positive constant b0 such that for χ < δ0, we have

∂t

∫

Rn
γ [0] dx + 2b0

∫

Rn
T κ+a1−a0γ [1] dx � 0. (6.13)
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Proof. We only consider the case 0 < a0 < 1 since the case a0 = 1 is similar. It
is first easily established that the temperature part of γ [0] is non-negative so that
γ [0] � 0. Dividing the temperature equation by T a0 and integrating over R

n we
obtain after some algebra

−∂t

∫

Rn

T 1−a0 − T
1−a0∞

1 − a0
dx + a0

ρcv

∫

Rn

λ|∂x T |2
T 1+a0

dx + 1

2ρcv

∫

Rn

η|d|2
T a0

dx = 0.

On the other hand, dividing the total energy conservation equation by T
a0∞ and

integrating over R
n we obtain

∂t

∫

Rn

(T − T∞
T

a0∞
+ 1

2
v2

cvT
a0∞

)
dx = 0.

Finally, from the relations (3.28), we obtain the inequality

∫

Rn

|∂xv|2
T a0−κ

dx � c
∫

Rn

|d|2
T a0−κ

dx,

for ‖ log T ‖BMO small enough and combining these estimates completes the proof.

We also recast the classical zeroth order entropic estimate in a convenient form
that will be needed to investigate entropic principles associated with Γ̃ [k].

Proposition 11. Let 0 < a0 � 1 and let γ̃ [0] by given be (5.12). Then γ̃ [0] � 0 and
there exist positive constants δ0 > 0, b′

0, and c such that for χ < δ0

∂t

∫

Rn
γ̃ [0] dx + (b′

0 − cχ)
∫

Rn
π

[0]
γ̃

dx � 0, (6.14)

where we define from (5.24)

π
[0]
γ̃

= e(1−a0)τ
(2λa[0]

λ

ρcv
|∂1τ |2 + 2ηa[0]

η

ρ
|∂1w|2

)
.

Equivalently, there exist positive constants δ0 > 0, b0, and c such that for χ < δ0

∂t

∫

Rn
γ̃ [0] dx + (2b0 − cχ)

∫

Rn
e(κ+a1−a0)τ γ̃ [1] dx � 0. (6.15)

Proof. This is a direct consequence of Proposition 10 and of the differential
relations

∂iv√
T

= ∂iw + 1
2w∂iτ,

which yield that
∫
Rnπ

[0]
γ dx is minorized by (1 − cχ)

∫
Rnπ

[0]
γ̃

dx .
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6.3. Natural scale of temperature weights

The estimates established in the previous sections are valid for any positive a[k]
λ

and a[k]
η , k � 0, and we now set for simplicity

a[k]
λ = 1, a[k]

η = 1

r
, k � 0. (6.16)

With this simple choice, we note that the constants bk = a/ρ in Proposition 5
and Proposition 6 are independent of k � 1, and we correspondingly denote b =
min(b0, a/ρ).

In order to combine the estimates of Corollary 2 and Propositions 9, 10 and 11,
obtained for various values of k � 0, we now need to specify the scale of tempera-
ture weights ak , k � 0, used to renormalize the successive derivatives of T and v. In
this section, we impose that the supRnT 1−2κ+ak−1−ak factors appearing in the con-
vective term estimates of Proposition 9 disappear, by letting 1−2κ+ak−1−ak = 0,
k � 1, in such a way that

ak = a0 + k(1 − 2κ), k � 0. (6.17)

This scale fulfills the natural requirement that estimates for π [k−1]
γ and inequality

(6.7) for γ [k] yield estimates for π [k]
γ . This scale of temperature weights also cor-

responds to the scale given by the kinetic theory of gases with (2.15), (2.16) since
the factor (η/ρ

√
rT )2k = (η2/ρ2rT )k yields the temperature exponent k(1 − 2κ)

from assumptions (5.2), (5.3). Therefore, this scale ak = a0 + k(1 − 2κ), k � 0,
will be termed the natural scale of temperature weights, and this scale also arises
in the compressible case [19]. It is interesting to note that with this scale, ak is
decreasing with k for physical values of κ, that is, for values such that κ � 1/2.
On the other hand, ak is increasing with k for unphysical values of κ, that is, for
values such that 0 � κ < 1/2. This means in particular that, in the unphysical
situation 0 � κ < 1/2, larger powers of T are needed in order to renormalize
higher derivatives.

As a direct consequence of the preceding sections, we obtain the following
estimates concerning higher order entropies. A similar proposition can also be
established for γ̃ [k] but the details are omitted.

Proposition 12. Let (v, T ) be a smooth solution of the incompressible Navier–
Stokes equations (5.4)– (5.6). Assume that al = a0 + l(1 − 2κ), l � 0, and let
k � 1 be fixed. There exist positive constants δ(k, n) and c(k, n) such that for
χ < δ we have the estimates

∂t

∫

Rn
γ [k] dx + (2b − cχ

)
∫

Rn
T 1−κγ [k+1] dx � cχ

∫

Rn
T 1−κγ [k] dx . (6.18)

Proof. These estimates are direct consequences of Corollary 2 and Proposition 9
since π [k]

γ � 2bT 1−κγ [k+1] for b = min(b0, a/ρ).



Higher Order Entropies 269

After some algebra, it is easily checked that inequality (6.18) can also be written
with factors χ replaced by χ2. We can now combine the inequalities obtained for
k = 1, . . . , l in Proposition 12 together with the inequality obtained for k = 0
in Proposition 10, in order to estimate the (2k)th order kinetic entropy estimator
Γ [k] = γ [0] + · · · + γ [k].

Theorem 8. Let (v, T ) be a smooth solution of the incompressible Navier–Stokes
equations (5.4)– (5.6). Assume that al = a0 + l(1 − 2κ), l � 0, and let k ∈ N be
fixed. There exist positive constants b = min(b0, a/ρ) and δn(k, n) such that for
χ < δn we have

∂t

∫

Rn

(
γ [0]+γ [1]+· · ·+γ [k]) dx+b

∫

Rn
T 1−κ

(
γ [1]+γ [2]+· · ·+γ [k+1]) dx � 0.

(6.19)

Proof. This results upon summing the estimates of Propositions 12 and 10.

This theorem shows that the (2k)th order kinetic entropy estimator Γ [k] obeys
an entropic principle and similar results also hold for Γ̃ [k].

Remark 21. Note that, from a practical point of view, only the situation where
κ � 1/2 seems interesting since the sequence ak , k � 0, is then decreasing so
that the weights 1/T ak−1 are minorized by a common weight 1/T a0−1 and the
derivatives can be estimated with this common weight. Assuming that κ � 1/2,
we indeed have inequalities such as

c
(
γ [0] +

∑

1�k�l

( |∂k T |2
T 2 + |∂kv|2

T

)
1

T a0−1

)
� Γ [l], (6.20)

where c depends on Tmin and the resulting estimates are similar to the estimates
obtained in the next section with uniform scales of temperature weights.

6.4. Uniform scale of temperature weights

In this section we still use the simple values a[k]
λ = 1 and a[k]

η = 1/r , for k � 0.
On the other hand, in contrast with Section 6.3, we impose that the temperature
weights are all equal

ak = a0, k � 0. (6.21)

This scale of temperature weights will be termed the uniform scale. It is important
to note that if 1 − 2κ + ak−1 − ak > 0, the supRnT 1−2κ+ak−1−ak factors of the
right members of (6.9) and (6.10) in Proposition 9 cannot be majorized in terms
of the solution derivatives since T∞ > 0. As a consequence, taking into account
the natural lower bound for temperature in terms of initial data T � Tmin > 0,
controlling these supRnT 1−2κ+ak−1−ak factors requires the negative exponents in
(6.9) and (6.10). Therefore, we must have 1 − 2κ + ak−1 − ak � 0, k � 1, and
thus a0 + k(1 − 2κ) � ak , for k � 0, and the natural scale of temperature weights
appears to be a lower bound among all the useful scales. In particular, selecting a
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uniform scale requires that k(1 − 2κ) � Cte, so that we must have κ � 1/2. In
other words, the transport coefficients have to follow the temperature dependence
indicated by the kinetic theory in order to use a uniform scale. With this scale,
higher order entropy estimates directly yield estimates for higher order derivatives
of log T and v/

√
T . This scale will be used in Section 7 in order to investigate

asymptotic stability of equilibrium states for incompressible flows.

Proposition 13. Let (v, T ) be a smooth solution of the incompressible Navier–
Stokes equations (5.4)– (5.6). Assume that κ � 1/2, that al = a0, l � 0, let k � 1
be fixed, and assume that Tmin � T . There exist positive constants δ(k, n, Tmin)

and c(k, n, Tmin) such that for χ < δ, we have the estimates

∂t

∫

Rn
γ [k] dx + (2b − cχ

)
∫

Rn
T κγ [k+1] dx � cχ

∫

Rn
T κγ [k] dx, (6.22)

∂t

∫

Rn
γ̃ [k] dx + (2b − cχ

)
∫

Rn
T κγ̃ [k+1] dx � cχ

∫

Rn
T κγ̃ [k] dx . (6.23)

Proof. The proof is similar to that of Proposition 12 and the Tmin dependence arises
from the negative powers of the supRnT factors.

After some algebra, it is easily checked that inequalities (6.22) and (6.23) can
also be written with factors χ replaced by χ2.

Theorem 9. Let (v, T ) be a smooth solution of the incompressible Navier–Stokes
equations (5.4)– (5.6). Assume that κ � 1/2, that al = a0, l � 0, let k ∈ N be
fixed, and assume that Tmin � T . There exist positive constants b = min(b0, a/ρ)
and δu(k, n, Tmin) such that for χ < δu we have the estimates

∂t

∫

Rn

(
γ [0] +γ [1] + · · ·+γ [k]) dx +b

∫

Rn
T κ

(
γ [1] +γ [2] + · · ·+γ [k+1]) dx � 0.

(6.24)

∂t

∫

Rn

(
γ̃ [0] + γ̃ [1] + · · ·+ γ̃ [k]) dx +b

∫

Rn
T κ

(
γ̃ [1] + γ̃ [2] + · · ·+ γ̃ [k+1]) dx � 0.

(6.25)

Proof. This is a direct consequence of Propositions 10, 11 and 13.

Theorem 9 shows that the (2k)th order kinetic entropy estimators Γ [k] and Γ̃ [k]
obey entropic principles. These estimates will be used in the next section in the
situation of logarithmic scaling ak = 1, k � 0. Note that the estimates obtained
with a uniform scale are similar to the estimates obtained with the natural scale
combined with inequalities such as (6.20).
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7. Global solutions

We present in this section an example of the application of higher order entropy
estimates. We first establish a local existence theorem for incompressible flows
spanning the whole space with temperature dependent transport coefficients and
also establish that these solutions are smooth depending on initial data. We next
combine the local existence theorem with higher order entropy estimates in order
to obtain global existence and asymptotic stability when log(T0/T∞) and v0/

√
T0

are small in appropriate spaces. We assume throughout this section that the scale of
temperature weights is uniform with ak = 1, k � 0, and that the transport coeffi-
cients λ and η satisfy assumptions (5.2), (5.3) with κ � 1/2. We only investigate
strong solutions and (to the author’s knowledge) assumptions (5.2), (5.3) were not
previously used.

7.1. Local existence

We denote by v the combined unknown v = (v, T ), keeping in mind that
the momentum conservation equation is considered as projected on the space of
divergence free functions. We denote accordingly by v∞ the equilibrium point
v∞ = (0, T∞) with v∞ = 0 and T∞ > 0. We denote by Ov = R

n × (0,∞) the
natural domain for the variable v, where n � 2.

Theorem 10. Let n � 2 and l � [n/2]+2 be integers and let b > 0 be given. Let O0
be an open bounded convex set such that O0 ⊂ Ov, d1 with 0 < d1 < d(O0, ∂Ov),
and define O1 = { v ∈ Ov; d(v,O0) < d1 }. There exists t̄ > 0 small enough,
which only depend on O0, d1, and b, such that for any v0 with ‖v0 − v∞‖Hl < b

and v0 ∈ O0, there exists a unique local solution v = (v, T ) to the system (5.4)–
(5.6) with the initial condition

v(0, x) = v0(x), (7.1)

such that
v(t, x) ∈ O1, (7.2)

and

v − v∞ ∈ C0([0, t̄ ], Hl(Rn)
) ∩ C1([0, t̄ ], Hl−2(Rn)

) ∩ L2((0, t̄ ), Hl+1(Rn)
)
.

(7.3)
In addition, denoting for short v(t) = v(t, ·), there exists C > 0 which only depends
on O0, d1, and b, such that

sup
0�s�t̄

‖v(s)− v∞‖2
Hl +

∫ t̄

0
‖v(s)− v∞‖2

Hl+1 ds � C‖v0 − v∞‖2
Hl . (7.4)

Proof. The following proof is adapted from Kawashima to the situation of incom-
pressible flows [17,20,28]. Solutions to the nonlinear system (5.4)– (5.6) are fixed
points ṽ = v of the linear system of equations in ṽ = (̃v, T̃ )

{
∂t (ρṽ)− P

(
∂x ·
(
η(T ) ∂x ṽ

)) = P

(
fv(v, ∂x v)

)
,

∂t (ρcv T̃ )− ∂x ·
(
λ(T ) ∂x T̃

) = fT (v, ∂x v),
(7.5)
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with fv=−∂x ·(ρv⊗v)+ ∂T η(T )∂x T ·∂xv
t and fT =−∂x ·(ρcvT v)+ 1

2η(T )d :d.
Fixed points ṽ = v are investigated in the function space Xt̄

(
O1,M,M1

)
, that is

defined by v ∈ Xt̄
(
O1,M,M1

)
if v(t, x) ∈ O1,

v − v∞ ∈ C0([0, t̄ ], Hl(Rn)
) ∩ L2((0, t̄ ), Hl+1(Rn)

)
,

∂t v ∈ C0([0, t̄ ], Hl−2(Rn)
) ∩ L2((0, t̄ ), Hl−1(Rn)

)
,

sup
0�s�t̄

‖v(s)− v∞‖2
Hl +

∫ t̄

0
‖v(s)− v∞‖2

Hl+1 ds � M2,

and
∫ t̄

0
‖∂t v(s)‖2

Hl−1 ds � M2
1 .

For v in Xt̄
(
O1,M,M1

)
, 1 � k � l, and f = ( fv, fT ), we have the estimates

‖̃v(t)− v∞‖2
Hk +

∫ t

0
‖̃v(s)− v∞‖2

Hk+1 ds � C2
1 exp
(
C2(t + M1

√
t )
)

×
(
‖v0 − v∞‖2

Hk + C2

∫ t

0
‖ f (s)‖2

Hk−1 ds
)
, (7.6)

where C1 = C1(O1) depends on O1 and C2 = C2(O1,M) depends on O1 and
M , and is an increasing function of M . These a priori estimates for solutions of
the linear equations (7.5) are obtained by deriving the governing equations, mul-
tiplying by the derivative of the solution, and using the properties of the Leray
projector P [28,32]. On the other hand, existence of such solutions ṽ to the linear
equations are obtained from a priori estimates by standard arguments like Galerkin
approximations.

Furthermore, using the classical estimates

‖ψ(φ)− ψ(0)‖Hk � C0‖ψ‖
Ck (Oφ)

(1 + ‖φ‖L∞)k−1 ‖φ‖Hk , (7.7)

where Oφ is a convex open set with φ(x) ∈ Oφ , x ∈ R
n , and increasing eventually

the constant C2(O1,M) of (7.6), we obtain for f = ( fv, fT )

‖ f (t)‖2
Hl−1 � C2 M2, 0 � t � t̄ . (7.8)

From the governing equations, we also deduce that

∫ t

0
‖∂t ṽ(s)‖2

Hl−1 ds � C2
3

(
M̃2 + t (M2 + M̃2)

)
, (7.9)

where M̃ is defined for ṽ as M for v and C3 depends on O1 and M , and is an
increasing function of M . We now define for any α ∈ (0, b]

Mα = 2C1(O1)α, M1α = 2C3(O1,Mb)2C1(O1)α.
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Then let t̄ � 3/2 be small enough such that

exp
(
C2(O1,Mb)(t̄ + M1b

√
t̄ )
)

� 2,

C2
2 (O1,Mb)t̄

(
2C1(O1)

)2 � 1,

and C0 M1b
√

t̄ < d1, where C0 is such that ‖φ‖L∞ � C0‖φ‖Hl−1 . Then, for any

α ∈ (0, b], any v ∈ Xt̄
(
O1,Mα,M1α

)
, any v0(x), such that v0 − v∞ ∈ Hl(Rd),

v0 ∈ O0, and ‖v0 − v∞‖Hl � α, the solution ṽ to the linearized equations with

the initial data v0 stays in the same space Xt̄
(
O1,Mα,M1α

)
. More specifically, we

obtain from (7.6) and (7.8) that

M̃2 � 2C2
1α

2(1 + 4C2
1 C2

2 t
)

� 4C2
1α

2 = M2
α,

and from (7.9) we deduce that M̃2
1 � C2

3 M2
α(1 + 2t) � M2

1α . Finally, we also have

‖̃v − v0‖L∞ � C0 M1α
√

t̄ < d1, since C0 M1b
√

t̄ < d1, so that ṽ ∈ O1.
In order to obtain fixed points, we establish that for t̄ small enough, the map

v → ṽ is a contraction in all the spaces Xt̄
(
O1,Mα,M1α

)
, α ∈ (0, b]. Let v

and v̂ be in Xt̄
(
O1,Mb,M1b

)
, let v0(x) and v̂0(x) such that v0 − v∞ ∈ Hl(Rd),

v̂0 − v∞ ∈ Hl(Rd), v0, v̂0 ∈ O0, ‖v0 − v∞‖l < α, ‖̂v0 − v∞‖l < α, and
define δv = v − v̂ and δ̃v = ṽ −˜̂v. Forming the difference between the linearized
equations, we obtain for δv = (δv, δT ) and δ̃v = (δ̃v, δ̃T )

{
∂t (ρδ̃v)− P

(
∂x ·
(
η(T ) ∂x δ̃v

)) = P

(
δ fv
)
,

∂t (ρcvδ̃T )− ∂x ·
(
λ(T ) ∂x δ̃T

) = δ fT ,
(7.10)

where

δ fv = fv(v, ∂x v)− fv(̂v, ∂x v̂)+ ∂x ·
(
(η(T )− η(T̂ ))∂x

˜̂v
)
,

δ fT = fT (v, ∂x v)− fT (̂v, ∂x v̂)+ ∂x ·
(
(λ(T )− λ(T̂ ))∂x

˜̂T
)
.

These expressions now imply that ‖δ f ‖Hl−2 � C4‖δv‖Hl−1 , where the constant

C4 depends on O1 and b, since v, ṽ, v̂ and ˜̂v are in the space Xt̄
(
O1,Mb,M1b

)
,

and thanks to estimates in the form

‖ψ(φ)−ψ(φ̂)‖Hk � C0‖ψ‖
Ck+1(Oφ)

(1+‖φ‖Hk +‖φ̂‖Hk )
k ‖φ− φ̂‖Hk , (7.11)

where Oφ is a convex open set with φ(x) ∈ Oφ , φ̂(x) ∈ Oφ , x ∈ R
n , and k is such

that k � [n/2] + 1. As a consequence, defining

|||δ̃v|||2l−1 = sup
0�s�t̄

‖δ̃v(s)‖2
Hl−1 +

∫ t̄

0
‖δ̃v(s)‖2

Hl ds,

we obtain that

|||δ̃v|||2l−1 � C5‖v0 − v̂0‖2
Hl−1 + C5 t̄ sup

0�s�t̄
‖δv(s)‖2

Hl−1,
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where the constant C5 only depends on O1 and b. Now if t̄ is small enough so
that C5 t̄ < 1/4, by letting v0 = v̂0, we obtain that |||δ̃v|||l−1 � 1

2 |||δv|||l−1 so that
the map v → ṽ is a contraction in all the spaces Xt̄

(
O1,Mα,M1α

)
, α ∈ (0, b].

Introducing the iterates vn starting at the initial condition v0 = v0 and such that
vn+1 = ṽn , that is, vn+1 is obtained as the solution of linearized equations, then the
sequence {vn}n�0 is easily shown to be convergent to a local solution of the non-
linear equations satisfying the estimates (7.4) at order l − 1. Finally, the estimates
(7.4) at order l are recovered since for any α ∈ (0, b], the space Xt̄

(
O1,Mα,M1α

)

is invariant, and the proof is complete.

7.2. Properties of the solutions

We establish in this section that the solutions constructed in Theorem 10 are as
smooth as expected from initial data.

Theorem 11. The solutions obtained in Theorem 10 inherit the regularity of v0,
that is, for any k � l such that v0 − v∞ ∈ Hk, we have

v − v∞ ∈ C0([0, t̄ ], Hk(Rn)
) ∩ C1([0, t̄ ], Hk−2(Rn)

) ∩ L2((0, t̄ ), Hk+1(Rn)
)
.

(7.12)
In particular, v is smooth when v0 − v∞ ∈ Hk(Rn) for any k ∈ N.

Proof. Let k � l such that v0 − v∞ ∈ Hk and denote by e[k] the quantity e[k] =
|∂k T |2 + |∂kv|2. We have to estimate e[k] in order to establish (7.12).

A balance equation for e[k] can easily be derived (and is much simpler than that
of γ [k] of γ̃ [k]) and written in the form

∂t e
[k] + ∂x ·(ve[k])+ ∂x ·ϕ[k]

e + π [k]
e + Σ

[k]
e + ω[k]

e = 0. (7.13)

The term π
[k]
e is given by

π [k]
e = 2λ

ρcv
|∂k+1T |2 + 2η

ρ
|∂k+1v|2, (7.14)

in such a way that 2b e[k+1] � π
[k]
e T −κ � 2b e[k+1], where b and b are positive

constants. The term Σ
[k]
e is in the form

Σ
[k]
e =

∑

σνµ

(cσνµ∂
σ
T λ + c′

σνµ∂
σ
T η) Π

(k+1)
ν Π(k+1)

µ , (7.15)

where the sums are over 0 � σ � kν= (να, ν′
α)1�|α|�k+1,µ = (µα, µ

′
α)1�|α|�k+1,

να, ν
′
α, µα, µ

′
α ∈ N, α ∈ N

n . The products Π(k+1)
ν and Π(k+1)

µ are defined by

Π(k+1)
ν =

∏

1�|α|�k+1

(
∂αT
)να
∏

1�|α|�k+1

(
∂αv
)ν′
α , (7.16)

where v denotes any of its components v1, . . . , vn , and µ and ν must be such
that
∑

1�|α|�k+1 |α|(να + ν′
α) = k + 1,

∑
1�|α|�k+1 |α|(µα + µ′

α) = k + 1,
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∑
|α|=k+1(να + ν′

α + µα + µ′
α) � 1, so that there is at most one derivative of

(k +1)th order in the productΠ(k+1)
ν Π

(k+1)
µ . Furthermore the term ω

[k]
e is given by

ω[k]
e =

∑

νµ

cνµΠ
(k)
ν Π(k+1)

µ , (7.17)

where we use similar notation for Π(k)
ν as for Π(k+1)

µ and the summation extends
over
∑

1�|α|�k |α|(να + ν′
α) = k,

∑
1�|α|�k |α|(µα + µ′

α) = k + 1 so that in

particular
∑

|α|=k+1(µα +µ′
α) = 0 and there are always at least two factors in the

product Π(k+1)
µ . Finally the flux ϕ[k]

e = (ϕ
[k]
e1 , . . . , ϕ

[k]
en ) is given by the following

formula

ϕ
[k]
el =

∑

σνµl

(cσνµl∂
σ
T λ + c′

σνµl∂
σ
T η) Π

(k)
ν Π(k+1)

µ +
∑

α

cα∂
αvl∂

α p. (7.18)

Now instead of regrouping the termΣ
[k]
e withπ [k]

e , as in Corollary 2, Propositions
12 and 13, we regroup it with ω[k]

e [43], thanks to the L∞ a priori estimates for
gradients, available from l > n/2 + 1. Whenever the product Π(k+1)

ν is split, we
indeed have estimates in the form [43]

‖Π(k+1)
ν ‖2

L2 � c
(
1 + ‖∂T ‖L∞ + ‖∂v‖L∞

)2(k−1)
∫

Rn

(
e[1] + · · · + e[k]) dx,

so that from

∂t

∫

Rn
e[k] dx +

∫

Rn
π [k]

e dx �
∫

Rn

(|Σ[k]
e | + |ω[k]

e |) dx,

we obtain that

∂t

∫

Rn
e[ j] dx + δ

∫

Rn
e[ j+1] dx � c

∫

Rn

(
e[1] + · · · + e[k]) dx, 1 � j � k,

where δ and c depend on L∞ estimates of v and ∂v. We can then sum up these
inequalities and use the Gronwall lemma to conclude that

∫
Rne[k] dx and

∫ t
0

∫
Rne[k+1] dx dt remain uniformly bounded over the whole time interval under

consideration [0, t̄ ]. Finally, when v0 − v∞ is in Hk for any k � 0, v − v∞ is in
C0([0, t̄ ], Hk) for any k, and we recover the regularity with respect to time from
the governing equations so that v is smooth.

Remark 22. Boundedness of first order spatial derivatives is sufficient to establish
the estimates of Theorem 11 because the coefficients of the time derivative terms
in (5.5)– (5.6) are constants. For general quasilinear parabolic systems, one further
needs to control second order spatial derivatives, whereas for general nonlinear
parabolic systems, it is necessary to control third order spatial derivatives [43].

In the next propositions, we reformulate for convenience the local existence
theorem in terms of the combined unknown w = (w, τ) associated with the renor-
malized variables w and τ .
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Lemma 3. Denote by F :Rn×(0,∞) → R
n+1 the application defined by F (v) =

w, that is, F (v, T ) = (w, τ) = (v/
√

T , log T ). Then F is a C∞ diffeomorphism
and its jacobian matrix reads

∂vF =
(

I√
T

− 1
2

v
T 3/2

0 1
T

)

.

Moreover, for any mw > 0, mτ > 0, defining Õ = (−mw,mw)n × (−mτ ,mτ ), the
corresponding open set O = F−1(Õ) is convex.

Proof. The fact that F is a C∞ diffeomorphism is straightforward to establish. Let
then mw > 0, mτ > 0, and assume that (v, T ) ∈ O , (v′, T ′) ∈ O . By definition, we
have |vi | < mw

√
T , |v′

i | < mw
√

T ′, for 1 � i � n, and e−mτ < T < emτ , e−mτ <

T ′ < emτ . For 0 < α < 1, we easily obtain that e−mτ < αT + (1 − α)T ′ < emτ

and
|αvi + (1 − α)v′

i | < mw(α
√

T + (1 − α)
√

T ′),

but we have α
√

T + (1 − α)
√

T ′ �
√
αT + (1 − α)T ′ from concavity properties

so that O is convex.

Proposition 14. Let mw > 0, mτ > 0, Õ0 = (−mw,mw)n × (−mτ ,mτ ) and
O0 = F−1(Õ0). Let 0 < d1 < d(O0, ∂Ov), O1 = { v ∈ Ov; d(v,O0) < d1 },
and select an arbitrary b > 0. From Theorem 10 we have a local solution built
with the paramaters O0, d1, and b. This solution is then

w − w∞ ∈ C0([0, t̄ ], Hl(Rn)
) ∩ C1([0, t̄ ], Hl−2(Rn)

) ∩ L2((0, t̄ ), Hl+1(Rn)
)
,

(7.19)
and there exists C > 0 which only depends on O0, d1, and b, such that

sup
0�s�t̄

‖w(s)− w∞‖2
Hl +

∫ t̄

0
‖w(s)− w∞‖2

Hl+1 ds � C‖w0 − w∞‖2
Hl . (7.20)

Moreover, the kinetic estimators are such that Γ [l], Γ̃ [l] ∈ C
([0, t̄ ], L1(Rn)

)
.

Proof. The set O0 = F−1(Õ0) is convex and from Theorem 10, there exists a
local solution built with O0, d1 and b. We then have estimates in the form

cv‖w − w∞‖Hl � ‖v − v∞‖Hl � cv‖w − w∞‖Hl , (7.21)

where cv and cv only depend on O1 and l thanks to the estimates (7.7). Similarly, the
regularity properties are direct consequences of the estimates (7.11). The properties
Γ [l], Γ̃ [l] ∈ C

([0, t̄ ], L1(Rn)
)

are then straightforward to establish.

Lemma 4. There exists a constant c
Γ

only depending on Tmin such that for any
k � 0 and any w with w − w∞ ∈ Hk and log Tmin � τ we have

c
Γ
‖w − w∞‖2

Hk �
∫

Rn
Γ̃ [k] dx . (7.22)
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Proof. This is a direct consequence of w2 � v2/Tmin and of the inequality

Tmin

2T∞
|ζ − τ∞|2 � exp(ζ − τ∞)− 1 − (ζ − τ∞),

valid for τmin = log Tmin � ζ , where τ∞ = log T∞ and Tmin � T∞.

7.3. Global existence

In this section, we investigate global existence of solutions v = (v, T ) for
which the quantity χ = ‖ log T ‖BMO + ‖v/√T ‖L∞ remains small.

Theorem 12. Let n � 2 and l � [n/2]+2 be integers. Assume that the coefficients
λ and η satisfy (5.2) (5.3) with κ � 1/2. There exists δΓ (l, n, Tmin) > 0 such that
for T0 and v0 satisfying Tmin � infRnT0, ∂x ·v0 = 0, v0 − v∞ ∈ Hk, k ∈ N, and

∫

Rn
Γ̃

[l]
0 dx � δΓ , (7.23)

where Γ̃ [l]
0 denotes the functional Γ̃ [l] evaluated at initial conditions, there exists

a unique global solution v = (v, T ) such that

{
v − v∞,w − w∞ ∈ C

([0,∞), Hl(Rn)
) ∩ C1

([0,∞), Hl−2(Rn)
)
,

∂x v, ∂x w ∈ L2
(
(0,∞), Hl(Rn)

)
,

(7.24)

and we have the estimates
∫

Rn
Γ̃ [l] dx + b

∫ t

0

∫

Rn
T κ
(
Γ̃ [l+1] − γ̃ [0]) dxdt �

∫

Rn
Γ̃

[l]
0 dx, (7.25)

where b = min(b0, a/ρ). Furthermore, this solution is smooth and we have

lim
t→∞ ‖v(t, ·)− v∞‖L∞ = 0. (7.26)

Proof. Letting l0 = [n/2] + 1, we have the inequalities

χ = ‖τ‖BMO + ‖w‖L∞ � ‖τ − τ∞‖L∞ + ‖w‖L∞ � c0‖w − w∞‖Hl0 .

In order to obtain a value of δΓ small enough, so that the higher order entropic
estimates of Theorem 9 hold, we set

δΓ = δ2
u

4c2
0

c
Γ
,

where δu is defined in Theorem 9 and c
Γ

in Lemma 4, and this value will indeed
ensure that χ � δu/2. Corresponding to this value of δΓ , we have estimates in the
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forms ‖w − w∞‖L∞ � c0(δΓ /cΓ )
1/2 and ‖w − w∞‖

Hl � (δΓ /cΓ )
1/2. We now

select mw > 0 and mτ > 0 large enough such that

{ z ∈ R
n+1; ‖z − w∞‖ � c0(δΓ /cΓ )

1/2 + 1 } ⊂ (−mw,mw)
n × (−mτ ,mτ ).

We next define Õ0 = (−mw,mw)n×(−mτ ,mτ ), O0 = F−1(Õ0), and we know that
O0 is convex. Let 0 < d1 < d(O0, ∂Ov), and define O1 = { z ∈ Ov; d(z,O0) <

d1 } and Õ1 = F (O1). Now for functions taking their values in O1 we have inequal-
ities in the form ‖v − v∞‖Hk � cv‖w − w∞‖Hk , where cv only depends on k and

O1. We thus obtain the a priori estimate ‖v − v∞‖Hl � cv(δΓ /cΓ )
1/2. We now

set b = cv(δΓ /cΓ )
1/2 + 1 and from Theorem 10 and Proposition 14 we have local

solutions over a time interval [0, t̄ ] built with the paramaters O0, d1, and b.
Let now T0 and v0 satisfy Tmin � infRnT0, ∂x ·v0 = 0, v0 − v∞ ∈ Hk , k ∈ N,

and
∫
RnΓ̃

[l]
0 dx � δΓ . Then by construction v0 ∈ O0 and ‖v − v∞‖Hl < b, and we

have a local solution over the time interval [0, t̄ ]. Letting χ(t) = ‖τ(t, ·)‖BMO +
‖w(t, ·)‖L∞ we also have by construction χ(0) � δu/2 and we claim that for any
t ∈ [0, t̄ ] we also have χ(t) � δu/2. We introduce the set

E = { s ∈ (0, t̄ ]; ∀t ∈ [0, s], χ(t) � (2/3)δu },
which is not empty since t → χ(t) is continuous and χ(0) � δu/2. Denoting
a = sup E we have χ(t) � (2/3)δu over [0, a] so that the entropic estimates of
Theorem 9 hold and we have

∫

Rn
Γ̃ [l] dx �

∫

Rn
Γ̃

[l]
0 dx � δΓ , 0 � t � a.

This now implies that χ(t) � δu/2 over [0, a] so that a = t̄ . From the above a
priori estimates, we also obtain that for t ∈ [0, t̄ ] we have ‖w(t) − w∞‖L∞ �
c0(δΓ /cΓ )

1/2, so that v(t) ∈ O0, and ‖v(t)− v∞‖Hl � b − 1 < b, in particular at
t = t̄ . We may now use again the local existence theorem over [t̄, 2t̄ ] and an easy
induction shows that the solution is a global solution.

The asymptotic stability is obtained by letting Φ(t) = ‖∂x w(t, ·)‖2
Hl−2 and

establishing that
∫ ∞

0
|Φ(t)| dt +

∫ ∞

0
|∂tΦ(t)| dt � C

∫

Rn
Γ̃

[l]
0 dx .

This shows that limt→∞ ‖∂x w(t, ·)‖Hl−2 = 0, and using the interpolation
inequality

‖φ‖C0 � C0 ‖∂ l−1
x φ‖a

L2 ‖φ‖1−a
L2 ,

where n/a = 2(l − 1) we conclude that limt→∞ ‖w(t, ·) − w∞‖
C0 = 0,

and next that limt→∞ ‖v(t, ·) − v∞‖
C0 = 0. Thanks to ‖φ‖Cl−([n/2]+2) �

C0 ‖∂ l−1
x φ‖a

L2 ‖φ‖1−a
Hl we also have limt→∞ ‖w(t, ·) − w∞‖

Cl−([n/2]+2) =
limt→∞ ‖v(t, ·)− v∞‖

Cl−([n/2]+2) = 0.
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Remark 23. It is also possible to obtain global existence by assuming that both
χ(0) and

∫
RnΓ

[k]
0 dx are small enough.

Remark 24. Asymptotic stability of constant equilibrium states is usually obtained
for v0 − v∞ small enough in appropriate spaces. Assuming that log(T0/T∞) and
v0/

√
T0 are small enough seems more natural since these quantities are scale invari-

ant and since the Knudsen and Mach numbers are of the same order of magnitude.
In addition, the corresponding a priori estimates have a natural thermodynamic
interpretation with higher order entropies. A complete analysis of the asymptotic
expansions for small Mach and Knudsen numbers, however, is out of the scope of
the present paper.

8. Conclusion

We have investigated higher order kinetic entropy estimators for incompress-
ible fluid models in the natural situation where viscosity and thermal conductivity
depend on temperature. We have established that entropic inequalities hold for
such estimators provided that ‖ log T ‖BMO + ‖v/√T ‖L∞ is small enough. Dom-
ination of lower order convective terms has been obtained when the temperature
dependence of transport coefficients is that suggested by the kinetic theory, that
is, essentially a power of temperature with a common exponent κ � 1/2. As an
illustration, we have established a global existence theorem provided that the initial
values log(T0/T∞) and v0/

√
T0 are small enough in appropriate spaces. Similar

ideas can be introduced for compressible fluid models as well as zero Mach number
models mutatis mutandis [19].

Appendix A. Proof of Proposition 5

We investigate the γ [k] balance equation for incompressible fluids with temper-
ature dependent transport coefficients. The proof is lengthy and tedious but presents
no serious difficulties other than notational.

Proof. Differentiating the expression of γ [k] we obtain

∂tγ
[k] +

(

(1 + ak)a
[k]
λ

|∂k T |2
T 2+ak

+ aka[k]
η

|∂kv|2
T 1+ak

)

∂t T

− 2a[k]
λ

∑

|α|=k

k!
α!
∂αT ∂α∂t T

T 1+ak
− 2a[k]

η

∑

1�i�n
|α|=k

k!
α!
∂αvi∂

α∂tvi

T ak
= 0,
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so that from the governing equations

∂tγ
[k] + (1 + ak)a

[k]
λ

|∂k T |2
T 2+ak

(
1

ρcv
(∂x ·(λ∂x T )+ 1

2η|d|2)− v·∂x T

)

+ aka[k]
η

|∂kv|2
T 1+ak

(
1

ρcv
(∂x ·(λ∂x T )+ 1

2η|d|2)− v·∂x T

)

− 2a[k]
λ

∑

|α|=k

k!
α!

∂αT

T 1+ak
∂α
(

1

ρcv
(∂x ·(λ∂x T )+ 1

2η|d|2)− v·∂x T

)

− 2a[k]
η

∑

1�i�n
|α|=k

k!
α!
∂αvi

T ak
∂α
(

1

ρ
(∂x ·(ηdi ·)− ∂i p)− v·∂xvi

)

= 0,

and we denote by T ∂ the two first sums of the left-hand side, by T λ the third sum
and by T η the last sum. We first examine separately higher order derivative con-
tributions associated with each sum T ∂ , T λ, and T η. The lower order convective
terms in T ∂ , T λ, and T η, are examined all together at the end.

The terms in T ∂ associated with ∂x ·(λ∂x T ) are integrated by parts. They yield
flux contributions and source terms in the form

−
∑

1�l�n

∂l

(
(1 + ak)a

[k]
λ

ρcv

|∂k T |2
T 2+ak

+ aka[k]
η

ρcv

|∂kv|2
T 1+ak

)

λ∂l T,

which are easily rewritten as sums of terms like cσνµT σ−κ∂σT λ Π
(k+1)
ν Π

(k+1)
µ

with at most one derivative of (k + 1)th order. On the other hand, the terms of T ∂

associated with |d|2 are left unchanged and have the same structure.
We now consider the term T λ with each contribution at a time. The most impor-

tant contribution in T λ is that associated with the terms ∂α∂l(λ∂l T ), 1 � l � n.
These terms are integrated by parts and yield sources in the form

+2a[k]
λ

ρcv

∑

1�l�n
|α|=k

k!
α!∂l

( ∂αT

T 1+ak

)
∂α
(
λ∂l T
)
.

After expanding the derivatives, the above sum can be written

∑

1�l�n
|α|=k

k!
α!
∂α∂l T

T 1+ak

(
λ∂α∂l T +

∑

α̃σν

cαα̃ν∂
α−α̃∂l T ∂

σ
T λ
∏

β

(∂βT )νβ
)

−
∑

1�l�n
|α|=k

k!
α! (1 + ak)

∂αT ∂l T

T 2+ak

(
λ∂α∂l T +

∑

α̃σν

cαα̃ν∂
α−α̃∂l T ∂

σ
T λ
∏

β

(∂βT )νβ
)
,
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where the summations and products extend over 1 � l � n, |α| = k, 0 � α̃ � α,
α̃ �= 0, 1 � σ � |α̃|,∑β |β|νβ = |α̃|, 1 � |β| � |α̃|, and

∑
β νβ = σ . We can

now extract for π [k]
γ the term in the form λ(∂α∂l T )2 which can be written

2λa[k]
λ

ρcv

∑

1�l�n
|α|=k

k!
α!
(∂α∂l T )2

T 1+ak
= 2λa[k]

λ

ρcv

∑

|α|=k+1

(k + 1)!
α!

(∂αT )2

T 1+ak
,

thanks to the properties of multinomial coefficients [10,41]. All other terms are of
admissible form for Σ[k]

γ , that is, in the form cσνµT σ−κ∂σT λ Π
(k+1)
ν Π

(k+1)
µ with at

most one derivative of (k +1)th order since
∑
β |β|νβ +1+|α− α̃| = k +1. More

specifically, we can factorize T −ak in the first factors, T 1+κ in the parenthesis, and
all the terms involving derivatives of ∂σT λ are multiplied and divided by T σ thanks
to
∑
β νβ = σ .

The contributions inT λ associated with |d|2 are treated in a similar way. Indeed,
we decompose each multiindex α with |α| = k into α = α̃+eiα , where |α̃| = k −1,
iα is chosen arbitrarily with αiα �= 0, and e1, . . . , en denotes the canonical basis of
N

n , so that we have ∂α = ∂α̃∂iα . We can then integrate these terms by parts and
obtain sources in the form

+a[k]
λ

ρcv

∑

1�i, j�n
|α|=k

∂iα

( ∂αT

T 1+ak

)
∂α̃
(
ηd2

i j

)
.

Upon expending the derivatives with the help of the differential identities estab-
lished in the previous section, all these terms are of the admissible form for Σ[k]

γ .
We now consider the sum T η and its most important contribution is that cor-

responding to ∂α∂x ·(ηd) which reads

2a[k]
η

ρ

∑

1�i,l�n
|α|=k

k!
α!
∂αvi∂

α∂l(ηdil)

T ak
.

We then use the identity
∑

l ∂l(ηdil) = ∑l ∂l(η∂lvi ) +∑l ∂lη∂ivl and focus on
the contributions of the terms ∂l(η∂lvi ). The contributions associated with ∂lη∂ivl

are of admissible form for Σ[k]
γ after one integration by parts using α = α̃+ eiα and

the corresponding details are omitted. After integration by parts, we obtain sources
in the form

+2a[k]
η

ρ

∑

1�i,l�n
|α|=k

k!
α!∂l

(∂αvi

T ak

)
∂α(η∂lvi ),
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and after expanding the derivatives, the sum can be written

∑

1�i,l�n
|α|=k

k!
α!
∂α∂lvi

T ak

(
η∂α∂lvi +

∑

α̃σν

cαα̃ν∂
α−α̃∂lvi∂

σ
T η
∏

β

(∂βT )νβ
)

−
∑

1�i,l�n
|α|=k

k!
α!ak

∂αvi∂l T

T 1+ak

(
η∂α∂lvi +

∑

α̃σν

cαα̃ν∂
α−α̃∂lvi∂

σ
T η
∏

β

(∂βT )νβ
)
,

where the summations and products extend over 1 � i, l � n, |α| = k, 0 � α̃ � α,
α̃ �= 0, 1 � σ � |α̃|,∑β |β|νβ = |α̃|, 1 � |β| � |α̃|, and

∑
β νβ = σ . We can

now extract the term in the form η(∂α∂lvi )
2 for π [k]

γ which is rewritten as

2ηa[k]
η

ρ

∑

1�i,l�n
|α|=k

k!
α!
(∂α∂lvi )

2

T ak
= 2ηa[k]

η

ρ

∑

1�i�n
|α|=k+1

(k + 1)!
α!

(∂αvi )
2

T ak
,

thanks to the properties of multinomial coefficients. All the other terms are of
admissible form for Σ[k]

γ , that is, in the form cσνµT σ−κ∂σT η Π
(k+1)
ν Π

(k+1)
µ with at

most one derivative of (k + 1)th order. The pressure can be divided as (5.8) and we
consider here the contribution −∑i, j Ri R j

(
ηdi j
)
. After one integration by parts,

we obtain the sources

+2a[k]
η

ρ

∑

1�i,l,m�n
|α|=k

k!
α!∂i

(∂αvi

T ak

)
∂αRl Rm(ηdlm).

Since Riesz transforms and derivatives commute, the sum can be written, after
expanding derivatives

−
∑

1�i,l,m�n
|α|=k

k!
α!ak

∂αvi∂i T

T 1+ak
Rl Rm

⎛

⎝
∑

α̃σν

cαα̃ν∂
α−α̃dlm∂

σ
T η
∏

β

(∂βT )νβ

⎞

⎠ ,

where the summations and products extend over 1 � i, l,m � n, |α| = k, 0 � α̃ �
α, 1 � σ � |α̃|,∑β |β|νβ = |α̃|, 1 � |β| � |α̃|, and

∑
β νβ = σ . All these terms

can be written as cσνµRΠ
(k+1)
ν R

(
T σ−κ∂σT η Π

(k+1)
µ

)
, where R = T −θ Rl Rm T θ

with θ = (ak + κ)/2.
Lower order convective terms first yield the contributions

− (1 + ak)a
[k]
λ

|∂k T |2
T 2+ak

(
v·∂x T

)− aka[k]
η

|∂kv|2
T 1+ak

(
v·∂x T

)

+ 2a[k]
λ

∑

|α|=k

k!
α!

∂αT

T 1+ak
∂α
(
v·∂x T

)+ 2a[k]
η

∑

1�i�n
|α|=k

k!
α!
∂αvi

T ak
∂α
(
v·∂xvi

)
,
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and the terms proportional to v are easily recast in the form v·∂xγ
[k], so that the

only remaining contributions are the sources

+ 2a[k]
λ

∑

|α|=k
1�l�n

∑

0�β�α
1�|β|

cαβ
k!
α!

∂αT

T 1+ak
∂βvl∂

(α−β)∂l T

+ 2a[k]
η

∑

1�i,l�n
|α|=k

∑

0�β�α
1�|β|

cαβ
k!
α!
∂αvi

T ak
∂βvl∂

(α−β)∂lvi ,

which are easily rewritten in the form cνµΠ
(k)
ν Π

(k+1)
µ T (1−2κ+ak−1−ak)/2. We finally

have to consider the contributions toω[k]
γ due to the pressure term

∑
i, j Ri R j

(
ρviv j

)
,

which read

+2a[k]
η

ρ

∑

1�i,l,m�n
|α|=k

k!
α!
∂αvi

T ak
∂α∂i
(
Rl Rm(vlvm)

)
.

We now use ∂i∂iα Rl Rm = Ri Riα ∂m∂n , whereα = α̃+eiα , and
∑

mn ∂m∂n(vmvn) =∑
mn ∂mvn∂nvm , in order to obtain

+2a[k]
η

ρ

∑

1�i,l,m�n
|α|=k

∂αvi

T ak
Ri Riα

(
∂α̃(∂mvn∂mvn)

)
,

and these terms can be written cνµRT (1−2κ+ak−1−ak )/2Π
(k)
ν R
(
Π
(k+1)
µ

)
with R =

T −θ Ri R j T θ and θ = (1 + ak − κ)/2.
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