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Abstract

The present paper is concerned with semi-linear partial differential equations
involving a particular pseudo-differential operator. It investigates both fractal con-
servation laws and non-local Hamilton–Jacobi equations. The idea is to combine
an integral representation of the operator and Duhamel’s formula to prove, on
the one hand, the key a priori estimates for the scalar conservation law and the
Hamilton–Jacobi equation and, on the other hand, the smoothing effect of the oper-
ator. As far as Hamilton–Jacobi equations are concerned, a non-local vanishing
viscosity method is used to construct a (viscosity) solution when existence of reg-
ular solutions fails, and a rate of convergence is provided. Turning to conservation
laws, global-in-time existence and uniqueness are established. We also show that
our formula allows us to obtain entropy inequalities for the non-local conserva-
tion law, and thus to prove the convergence of the solution, as the non-local term
vanishes, toward the entropy solution of the pure conservation law.

1. Introduction

In this paper, we are interested in solving semi-linear partial differential equa-
tions involving the fractal operator, also called the Lévy operator, defined on the
Schwartz class S(RN) by

gλ[ϕ] = F−1 (| · |λF(ϕ)) with 0 < λ < 2, (1)

where F is the Fourier transform. The study of partial differential equations involv-
ing gλ is motivated by a number of physical problems, such as overdriven deto-
nations in gases [8] or anomalous diffusion in semiconductor growth [26], and by
mathematical models in finance (see below for references). We consider

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL ----------------------------------------
File Options:
     Compatibility: PDF 1.2
     Optimize For Fast Web View: No
     Embed Thumbnails: No
     Auto-Rotate Pages: No
     Distill From Page: 1
     Distill To Page: All Pages
     Binding: Left
     Resolution: [ 600 600 ] dpi
     Paper Size: [ 595 842 ] Point

COMPRESSION ----------------------------------------
Color Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Grayscale Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Monochrome Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 600 dpi
     Downsampling For Images Above: 900 dpi
     Compression: Yes
     Compression Type: CCITT
     CCITT Group: 4
     Anti-Alias To Gray: No

     Compress Text and Line Art: Yes

FONTS ----------------------------------------
     Embed All Fonts: Yes
     Subset Embedded Fonts: No
     When Embedding Fails: Warn and Continue
Embedding:
     Always Embed: [ ]
     Never Embed: [ ]

COLOR ----------------------------------------
Color Management Policies:
     Color Conversion Strategy: Convert All Colors to sRGB
     Intent: Default
Working Spaces:
     Grayscale ICC Profile: 
     RGB ICC Profile: sRGB IEC61966-2.1
     CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
     Preserve Overprint Settings: Yes
     Preserve Under Color Removal and Black Generation: Yes
     Transfer Functions: Apply
     Preserve Halftone Information: Yes

ADVANCED ----------------------------------------
Options:
     Use Prologue.ps and Epilogue.ps: No
     Allow PostScript File To Override Job Options: Yes
     Preserve Level 2 copypage Semantics: Yes
     Save Portable Job Ticket Inside PDF File: No
     Illustrator Overprint Mode: Yes
     Convert Gradients To Smooth Shades: No
     ASCII Format: No
Document Structuring Conventions (DSC):
     Process DSC Comments: No

OTHERS ----------------------------------------
     Distiller Core Version: 5000
     Use ZIP Compression: Yes
     Deactivate Optimization: No
     Image Memory: 524288 Byte
     Anti-Alias Color Images: No
     Anti-Alias Grayscale Images: No
     Convert Images (< 257 Colors) To Indexed Color Space: Yes
     sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments false
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo false
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue false
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.2
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends false
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo false
     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /sRGB
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 150
     /EndPage -1
     /AutoPositionEPSFiles false
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 600
     /AutoFilterGrayImages true
     /AlwaysEmbed [ ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 150
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 576.0 792.0 ]
     /HWResolution [ 600 600 ]
>> setpagedevice
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perturbations by gλ of Hamilton–Jacobi equations or scalar conservation laws,
that is to say






∂tu(t, x)+ gλ[ u(t, ·)] (x)
= F(t, x, u(t, x),∇u(t, x)) t > 0 , x ∈ R

N ,

u(0, x) = u0(x) x ∈ R
N

(2)

or





∂tu(t, x)+ div(f (t, x, u(t, x)))+ gλ[ u(t, ·)] (x)
= h(t, x, u(t, x))

t > 0 , x ∈ R
N ,

u(0, x) = u0(x) x ∈ R
N.

(3)

These kinds of equations have already been studied. As far as scalar conser-
vation laws are concerned, some recent papers have investigated them. One of the
first works on this subject is probably [3], which deals with (3) when h = 0 and
f (t, x, u) = f (u). Using energy estimates, it states some local-in-time existence
and uniqueness results of weak solutions if f has a polynomial growth. This result
is strengthened in [14], where a splitting method is used to prove global-in-time
existence and uniqueness of a regular solution if λ > 1.

To the best of our knowledge, Hamilton–Jacobi equations of type (2) first ap-
peared in the context of mathematical finance as Bellman equations of optimal con-
trol of jump diffusion processes [23], (see also [24, 22, 1] and more recently [5–7]).
A general theory for non-linear integro-partial differential equations is developed
by Jakobsen and Karlsen [18, 19]. Some of the ideas of [14] are adapted in [17]
to prove that (2) has regular solutions if λ > 1. It adapts previous viscosity solution
theories to the equation (2) (existence via Perron’s method, comparison results,
stability) and uses the techniques of [14] to obtain further regularity.

The preceding methods to handle (2) and (3) are somewhat incompatible: the
splitting method for Hamilton–Jacobi equation (2) is less direct than Perron’s one
and it is well known that the notion of viscosity solutions is inadequate to conser-
vation laws such as (3). However, a scalar conservation law can always be formally
written as a Hamilton–Jacobi equation (write div (f (u)) = f ′(u) · ∇u). In this
paper, we present a way to simultaneously solve (2) and (3) by using this simple
fact, and construction of regular solutions to the Hamilton–Jacobi equations under
weak assumptions (that are satisfied by both (2) and (3)). The key estimate is given
by Proposition 2. As we note in the course of the proofs, the method we use is also
valid for more general operators than gλ.

The starting point of this work is the use of an equivalent definition of the
fractal operator, namely an integral formula for gλ similar to the ones appearing
in [10] and [17]. This formula allows the extension of the operator from Schwartz
functions to C2

b ones, and moreover is used to establish what we call a “reverse
maximum principle” which says, freely speaking, that gλ[φ] (x) is non-negative
if x is a maximum point of φ. This principle is the key point when proving the
estimates for the regular solutions of (2). Thanks to the Fourier definition of gλ, we
are also able to give properties of the kernel associated with gλ, and thus to write
a Duhamel formula for the solutions of the partial differential equations.
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The main novelty of this paper is to combine the reverse maximum princi-
ple (coming from the integral formula for gλ) and the Duhamel formula in order to
prove existence and uniqueness of global smooth solutions to our partial differential
equations.

As far as Hamilton–Jacobi equations are concerned, the study of (2) in [17] is
made for λ > 1 and using Perron’s method. We generalize here the results of this
paper to the case λ ∈] 0, 2[ and we weaken the hypotheses on the Hamiltonian.
We first prove that the fractal operator has a smoothing effect for λ ∈] 1, 2[ under
very general (and natural) hypotheses on F . The idea to obtain a global solution
is, roughly speaking, to study how supRN |u(t, ·)| evolves. We next treat the case
λ ∈] 0, 2[ (recall that, contrary to the formula in [17], ours is valid for such λ) by
solving (2) in the sense of viscosity solutions; as expected in this context (see (1)),
these solutions are no more regular but only bounded and uniformly continuous. We
use a non-local vanishing viscosity method (though we could have used Perron’s
method, see Remark 8). Precisely speaking, we add a vanishing fractal operator
εgµ with µ > 1 and we pass to the limit ε → 0. We also provide, for all µ ∈] 0, 2[,
a rate of convergence that is in some respect surprising, compared with the case
µ > 1 treated in [17]. Let us also mention that the reverse maximum principle
and its main consequence, namely the key estimate given by Proposition 2, can be
generalized to the framework of viscosity solutions — non-smooth versions of both
results are stated and proved in the Appendix. We have chosen not to use these ver-
sions because, anywhere we can, we search for regular solutions and we turn to the
notion of viscosity solution only if mandatory (that is if λ � 1, see Subsection 3.2).

The case of scalar hyperbolic equations (3) with λ > 1 is treated next. The
a priori estimates on the solution follow from Proposition 2, the same proposition
that gives the a priori estimates for (2), and the existence of a regular solution is as
straightforward. The splitting method of [14] can be adapted to some cases where
f and h depend on (t, x) (see [13]), but this is awfully technical, and therefore
the technique we use here presents a noticeable simplification in the study of (3)
in the general case. The question of non-local vanishing viscosity regularization
(multiplying gλ[ u] by ε and letting ε → 0) is treated in [12], still using the split-
ting method (and for h = 0, f (t, x, u) = f (u)). At the end of the present paper,
we quickly indicate how the formula for gλ allows to significantly simplify the
corresponding proofs for general f and h, in particular the proof of the entropy
inequalities for (3).

The paper is organised as follows. Section 2 is devoted to an analytical proof
of the integral formula for gλ (Theorem 1). It also contains the reverse maximum
principle (Theorem 2) we presented above. In Section 3, we study Hamilton–Jacobi
equations. We first present the smoothing effect of the fractal operator on (2) for
λ ∈] 1, 2[ (Theorem 3). Next, we construct viscosity solutions for λ ∈] 0, 2[ by a
non-local vanishing viscosity method (Theorem 5) and we prove a rate of conver-
gence (Theorem 6). Section 4 contains the resolution of (3) and the (short) proof
of the entropy inequalities associated with the perturbed conservation law (Subsec-
tion 4.2). The Appendix in Section 5 concludes the paper. In particular, the reader
can find in the Appendix a generalization of the reverse maximum principle and of
the key estimate to the viscosity framework.
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Notation. Throughout the paper, Br (resp. Br(x)) denotes the ball of R
N centered

at the origin (resp. at x) and of radius r . Euler’s function is denoted by �.

2. Integral representation of gλ

The main result of this section is the integral representation of gλ, which gener-
alizes Lemma 1 in [17]. As a consequence of this formula, we extend the definition
of gλ from Schwartz functions to C2

b functions and we prove what we call a reverse
maximum principle. Roughly speaking, the reverse maximum principle states that
at a maximum point of a C2

b function ϕ, we have gλ[ϕ] � 0. This result is the
crucial argument when proving the key estimate stated in Proposition 2.

Theorem 1. If λ ∈] 0, 2[, then for all ϕ ∈ S(RN), all x ∈ R
N and all r > 0,

gλ[ϕ] (x) = −cN(λ)
(∫

Br

ϕ(x + z)− ϕ(x)− ∇ϕ(x) · z
|z|N+λ dz

+
∫

RN\Br
ϕ(x + z)− ϕ(x)

|z|N+λ dz

)
(4)

where cN(λ) = λ�(N+λ
2 )

2π
N
2 +λ

�(1− λ
2 )
. This formula can be generalised in two cases:

(i) If λ ∈] 0, 1[, r = 0 can be taken:

gλ[ϕ] (x) = −cN(λ)
∫

RN

ϕ(x + z)− ϕ(x)

|z|N+λ dz.

(ii) If λ ∈] 1, 2[, r = +∞ can be taken:

gλ[ϕ] (x) = −cN(λ)
∫

RN

ϕ(x + z)− ϕ(x)− ∇ϕ(x) · z
|z|N+λ dz.

Before proving these formulae, let us state some of their consequences. We first
note that (4) allows to define gλ[ϕ] ∈ Cb(RN) for ϕ ∈ C2

b (R
N). In fact, this gives

a continuous extension of gλ in the following sense.

Proposition 1. Let λ ∈] 0, 2[ and ϕ ∈ C2
b (R

N). If (ϕn)n�1 ∈ C2
b (R

N) is bounded

in L∞(RN) and D2ϕn → D2ϕ locally uniformly on R
N , then gλ[ϕn] → gλ[ϕ]

locally uniformly on R
N .

Remark 1. We could also define gλ on Hölder spaces of functions (depending on
λ), and state an equivalent of Proposition 1 in this framework.

Proof of Proposition 1. The operator gλ being linear, we can assume that ϕ = 0.
Since (ϕn)n�1 is bounded in L∞(RN), the second integral term of (4) applied to

ϕ = ϕn is small, uniformly for n � 1 and x ∈ R
N , if r is large. By Taylor’s

formula, for |z| � r and |x| � R we have |ϕn(x + z) − ϕn(x) − ∇ϕn(x) · z| �
||D2ϕn||L∞(Br+R)|z|2. Hence, with r fixed, the first integral term of (4) applied to
ϕ = ϕn is small, uniformly for x ∈ BR , if n is large. ��
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From (4) it is obvious that, if x is a global maximum of ϕ, then gλ[ϕ] (x) � 0,
with equality if and only if ϕ is constant (notice that cN(λ) > 0 for λ ∈] 0, 2[).
We have a generalization of this property, which will be the key argument to study
first-order perturbations of ∂t + gλ.

Theorem 2. Let λ ∈] 0, 2[ and ϕ ∈ C2
b (R

N). If (xn)n�1 is a sequence of R
N such

that ϕ(xn) → supRN ϕ as n → ∞, then limn→∞ ∇ϕ(xn) = 0 and lim infn→∞
gλ[ϕ] (xn) � 0.

Proof of Theorem 2. Since the second derivative of ϕ is bounded, there exists C
such that, for all n � 1 and all z ∈ R

N ,

supRN ϕ � ϕ(xn + z) � ϕ(xn)+ ∇ϕ(xn) · z− C|z|2. (5)

Up to a subsequence, we can assume that ∇ϕ(xn) → p (this sequence is bounded).
Passing to the limit n → ∞ in (5) gives 0 � p · z − C|z|2. Choosing z = tp and
letting t → 0+ shows that p = 0, which proves that limn→∞ ∇ϕ(xn) = 0 (the
only adherence value of the bounded sequence (∇ϕ(xn))n�1 is 0).

Since ϕ(xn + z) − ϕ(xn) � supRN ϕ − ϕ(xn) → 0, we deduce that for all
z ∈ R

N

lim sup
n→∞

(ϕ(xn + z)− ϕ(xn)) � 0
(6)

lim sup
n→∞

(ϕ(xn + z)− ϕ(xn)− ∇ϕ(xn) · z) � 0.

We also have

|ϕ(xn + z)− ϕ(xn)|
|z|N+λ �

2||ϕ||L∞(RN)
|z|N+λ ∈ L1(RN\Br)

and

|ϕ(xn + z)− ϕ(xn)− ∇ϕ(xn) · z|
|z|N+λ �

||D2ϕ||L∞(RN)|z|2
|z|N+λ ∈ L1(Br).

Hence, by (6) and Fatou’s Lemma,

0 �
∫

RN\Br
lim sup
n→∞

ϕ(xn + z)− ϕ(xn)

|z|N+λ dz

� lim sup
n→∞

∫

RN\Br
ϕ(xn + z)− ϕ(xn)

|z|N+λ dz

and

0 �
∫

Br

lim sup
n→∞

ϕ(xn + z)− ϕ(xn)− ∇ϕ(xn) · z
|z|N+λ dz

� lim sup
n→∞

∫

Br

ϕ(xn + z)− ϕ(xn)− ∇ϕ(xn) · z
|z|N+λ dz.

Combining these inequalities and (4) permits to achieve the proof of the
theorem. ��
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Remark 2. This theorem is also true for λ = 2, that is to say g2 = −4π2�,
provided that ϕ ∈ C3

b(R
N).

We now conclude this section by proving the formula given for gλ.

Proof of Theorem 1

Step 1 (A preliminary formula). We first assume that λ ∈] 1, 2[. We have gλ[ϕ] =
F−1(| · |λF(ϕ)); but F(�ϕ) = −4π2| · |2F(ϕ) and therefore, for ϕ ∈ S(RN),

gλ[ϕ] = 1

−4π2 F−1(| · |λ−2F(�ϕ)). (7)

Since λ ∈] 1, 2[, we have λ− 2 ∈] −N, 0[. Hence | · |λ−2 is locally integrable
and is in S ′(RN). The inverse Fourier transform of | · |λ−2 is a distribution with
radial symmetry and homogeneity of order −N − (λ − 2). We deduce that there
exists CN(λ) such that

F−1(| · |λ−2) = CN(λ)| · |−N−(λ−2) (8)

in D′(RN\{0}). Since | · |−N−(λ−2) is locally integrable, it is quite easy to see
that (8) also holds in S ′(RN). We compute CN(λ) by taking the test function
γ (x) = e−π |x|2 , which is its own inverse Fourier transform:

∫

RN
|x|λ−2e−π |x|2 dx = 〈F−1(| · |λ−2), γ 〉S ′(RN),S(RN)

= CN(λ)

∫

RN
|x|−N−(λ−2)e−π |x|2 dx.

Using polar coordinates, we deduce that

∫ ∞

0
rN+λ−4e−πr2

rdr = CN(λ)

∫ ∞

0
r−λe−πr2

rdr

and the change of variable τ = πr2 implies

π−(N+λ−4)/2
∫ ∞

0
τ (N+λ−4)/2e−τ dτ

2π
= CN(λ)π

λ/2
∫ ∞

0
τ−λ/2e−τ dτ

2π
,

that is to sayCN(λ) = �(N+λ
2 −1)/[π

N
2 +λ−2�(1− λ

2 )]. With this value ofCN(λ),
(7) and (8) give, for all ϕ ∈ S(RN),

gλ[ϕ] = − �
(
N+λ

2 − 1
)

4π
N
2 +λ�

(
1 − λ

2

) | · |−N−(λ−2) ∗�ϕ. (9)

Step 2 (Proof of (4) for λ ∈] 1, 2 [ ). Let r > 0, ϕ ∈ S(RN), x ∈ R
N and define

φx(z) = ϕ(x + z)− ϕ(x)− ∇ϕ(x) · z θ(z), where θ ∈ C∞
c (R

N) is even and equal
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to 1 on Br . We have �φx(z) = �ϕ(x + z) − ∇ϕ(x) · �(z θ(z)), and thus with
β = −N − (λ− 2) ∈] −N, 0[,

| · |−N−(λ−2) ∗�ϕ(x) =
∫

RN
|z|β�ϕ(x + z) dz

=
∫

RN
|z|β�φx(z) dz+ ∇ϕ(x) ·

∫

RN
|z|β�(z θ(z)) dz

(all these functions are integrable since�ϕ(x+z) and�(z θ(z)) are both Schwartz
functions). However, z �→ z θ(z) is odd, and so z �→ |z|β�(z θ(z)) is also odd and
its integral on R

N vanishes. Hence,

| · |−N−(λ−2) ∗�ϕ(x) =
∫

RN
|z|β�φx(z) dz = lim

ε→0

∫

Cε

|z|β�φx(z) dz (10)

where Cε = {ε � |z| � 1/ε}. By Green’s formula,
∫

Cε

|z|β�φx(z) dz =
∫

Cε

�(|z|β)φx(z) dz

+
∫

∂Cε

[
|z|β∇φx(z) · n(z)− φx(z)∇(|z|β) · n(z)

]
dσε(z)

(11)

where σε is the (N − 1)-dimensional measure on ∂Cε = Sε ∪ S1/ε (with Sa =
{|z| = a}) and n is the outer unit normal to Cε. On a neighbourhood of 0, we have
φx(z) = ϕ(x+z)−ϕ(x)−∇ϕ(x) ·z, and thus φx(z) = O(|z|2), ∇φx(z) = O(|z|).
Using |∇(|z|β)| = |β| |z|β−1, we deduce that since N + β = 2 − λ > 0,
∣∣∣∣

∫

Sε

(|z|β∇φx(z) · n(z) −φx(z)∇(|z|β) · n(z)
)
dσε(z)

∣∣∣∣ � CεN−1εβ+1 → 0

as ε → 0. (12)

Since −(N − 1) − (β − 1) = 2 − (N + β) = λ > 0 and, at infinity, φx(z) =
ϕ(x + z) − ϕ(x) is bounded and ∇φx(z) = ∇ϕ(x + z) is rapidly decreasing, we
obtain

∣∣∣∣∣

∫

S1/ε

(|z|β∇φx(z) · n(z)− φx(z)∇(|z|β) · n(z)
)
dσε(z)

∣∣∣∣∣

� C

(
1

ε

)N−1+β
sup
S1/ε

|∇ϕ(x + ·)| + Cε−(N−1)ε−(β−1) → 0 as ε → 0.

(13)

An easy computation gives

�(|z|β) = div(β|z|β−2z)

= β

(
N |z|β−2 + (β − 2)|z|β−3 z

|z| · z
)

= β(N + β − 2)|z|β−2,
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and therefore
∫

Cε

�(|z|β)φx(z) dz = (N + λ− 2)λ
∫

Cε

|z|−N−λφx(z) dz. (14)

Since φx(z) = O(|z|2) on a neighbourhood of 0 and φx is bounded on R
N , the

function | · |−N−λφx is integrable on R
N and we can pass to the limit as ε → 0 in

the right-hand side of (14).
Combining (10), (11), (12), (13) and (14) yields

| · |−N−(λ−2) ∗�ϕ(x) = λ(N + λ− 2)

×
∫

RN

ϕ(x + z)− ϕ(x)− ∇ϕ(x) · z θ(z)
|z|N+λ dz.

Since θ = 1 on Br , this gives

| · |−N−(λ−2) ∗�ϕ(x)
= λ(N + λ− 2)

∫

Br

ϕ(x + z)− ϕ(x)− ∇ϕ(x) · z
|z|N+λ dz

+λ(N + λ− 2)
∫

RN\Br
ϕ(x + z)− ϕ(x)− ∇ϕ(x) · z θ(z)

|z|N+λ dz.

However, |z|−N−λ(ϕ(x + z)− ϕ(x)) and |z|−N−λz θ(z) are integrable on R
N\Br ,

and thus
∫

RN\Br
ϕ(x + z)− ϕ(x)− ∇ϕ(x) · z θ(z)

|z|N+λ dz

=
∫

RN\Br
ϕ(x + z)− ϕ(x)

|z|N+λ dz− ∇ϕ(x) ·
∫

RN\Br
z θ(z)

|z|N+λ dz.

Since z �→ |z|−N−λz θ(z) is odd, this last integral vanishes and we deduce that

| · |−N−(λ−2) ∗�ϕ(x) = λ(N + λ− 2)
∫

Br

ϕ(x + z)− ϕ(x)− ∇ϕ(x) · z
|z|N+λ dz

+λ(N + λ− 2)
∫

RN\Br
ϕ(x + z)− ϕ(x)

|z|N+λ dz.

Using this formula in (9) and taking into account (N + λ − 2)�(N+λ
2 − 1) =

2(N+λ
2 − 1)�(N+λ

2 − 1) = 2�(N+λ
2 ), we obtain (4) if λ ∈] 1, 2[.

Note that, up to now, the reasoning is also valid for any λ ∈] 0, 2[ if N � 2. To
prove (4) in the general case, we must use a holomorphy argument.

Step 3 (Conclusion). We now obtain (4) in the case λ ∈] 0, 1]. Let ϕ ∈ S(RN) and
x ∈ R

N . Since F(ϕ) ∈ S(RN), we have for all λ in the strip E = {λ ∈ C | 0 <
Re(λ) < 2},

| | · |λF(ϕ) | = | · |Re(λ)|F(ϕ)| � (1 + | · |2)|F(ϕ)| ∈ L1(RN).
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Hence, by holomorphy under the integral sign, the function

λ �→ gλ[ϕ] (x) =
∫

RN
e2iπx·ξ |ξ |λF(ϕ)(ξ) dξ

is holomorphic on E. For all 0 < a � Re(λ) � b < 2, the integrands in (4)
are bounded by integrable functions which only depend on a and b. Indeed, if
z ∈ Br , we have | |z|λ | = |z|Re(λ) � rRe(λ)−b|z|b � cr,b|z|b and, if z 
∈ Br , then
| |z|λ| � rRe(λ)−a|z|a � c′r,a|z|a . Hence, the two integral terms in this formula are
also holomorphic with respect to λ ∈ E. Since λ �→ cN(λ) is holomorphic on E
(� is holomorphic in the half-plane {Re > 0} and has no zero), all the functions of
λ in (4) are holomorphic onE; given this equality is satisfied for all real λ in ] 1, 2[,
it holds in fact for any λ ∈ E. In particular, this proves (4) if λ ∈] 0, 2[.

The special cases (i) and (ii) of the theorem are easy consequences of (4).
Indeed, ϕ(x + z) − ϕ(x) = O(|z|) on a neighbourhood of 0. Thus, if λ < 1,
|z|−N−λ(ϕ(x + z)− ϕ(x)) is integrable on R

N and we can pass to the limit r → 0
in (4). The function z �→ ϕ(x+z)−ϕ(x)−∇ϕ(x) ·z has a linear growth at infinity.
Therefore, if λ > 1, |z|−N−λ(ϕ(x + z) − ϕ(x) − ∇ϕ(x) · z) is integrable on R

N

and we conclude by letting r → ∞ in (4). ��

3. Fractal Hamilton–Jacobi equations

3.1. A smoothing effect for λ ∈] 1, 2[

We assume here that λ ∈] 1, 2[ and we consider the Cauchy problem





∂tu(t, x)+ gλ[ u(t, ·)] (x)
= F(t, x, u(t, x),∇u(t, x)) t > 0 , x ∈ R

N ,

u(0, x) = u0(x) x ∈ R
N ,

(15)

where u0 ∈ W 1,∞(RN) and F ∈ C∞([ 0,∞[ ×R
N × R × R

N) satisfies

∀T > 0 , ∀R > 0 , ∀k ∈ N , ∃CT,R,k such that,

for all (t, x, s, ξ) ∈[ 0, T ] ×R
N×[ −R,R] ×BR (16)

and all α ∈ N
2N+2 satisfying |α| � k, |∂αF (t, x, s, ξ)| � CT,R,k.

We also assume that

∀T > 0, there exists �T :[ 0,+∞[ �→] 0,+∞[ continuous
non-decreasing such that

∫∞
0

1
�T (a)

da = +∞ and,
for all (t, x, s) ∈[ 0, T ] ×R

N × R, sgn(s)F (t, x, s, 0) � �T (|s|) ,
(17)

∀T > 0, ∀R > 0, there exists �T,R :[ 0,+∞[ �→] 0,+∞[ continuous
non-decreasing such that

∫∞
0

1
�T,R(a)

da = +∞ and,

for all (t, x, s, ξ) ∈[ 0, T ] ×R
N×[ −R,R] ×R

N ,
|ξ |∂sF (t, x, s, ξ) � �T,R(|ξ |) , |∇xF (t, x, s, ξ)| � �T,R(|ξ |)

(18)
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and we define

LT (a) =
∫ a

0

1

�T (b)
db and GT ,R(a) =

∫ a

0

1

2N�T,R(b)
db. (19)

By the assumptions on�T and�T,R , the functions LT and GT ,R are non-decreasing
C1-diffeomorphisms from [ 0,∞[ to [ 0,∞[. Our main result concerning (15) is
the following.

Theorem 3. Let λ ∈] 1, 2[, u0 ∈ W 1,∞(RN) and F satisfy (16), (17) and (18).
There exists a unique solution u to (15) in the following sense: for all T > 0,

u ∈ Cb(] 0, T [ ×R
N) , ∇u ∈ Cb(] 0, T [ ×R

N)N and,
for all a ∈] 0, T [ , u ∈ C∞

b (] a, T [ ×R
N) ,

(20)

u satisfies the partial differential equation of (15) on ] 0, T [ ×R
N , (21)

u(t, ·) → u0 uniformly on R
N , as t → 0. (22)

There are also the following estimates on the solution: for all 0 < t < T < ∞,

||u(t, ·)||L∞(RN) � (LT )−1 (t + LT (||u0||L∞(RN))
)
, (23)

||Du(t, ·)||L∞(RN) � (GT ,R)−1 (t + GT ,R(||Du0||L∞(RN))
)
, (24)

where LT and GT ,R are defined by (19),

||Du(t, ·)||L∞(RN) =
N∑

i=1

||∂iu(t, ·)||L∞(RN)

and R is any upper bound of ||u||L∞(]0,T [×RN).

Remark 3. The uniqueness holds under weaker assumptions (see Corollary 1) and,
with the technique used in Section 4, it can also be proved if the uniform convergence
in (22) is replaced by a L∞ weak-∗ convergence.

3.1.1. Discussion of the assumptions. We assume that F is regular because we
look here for regular solutions to (15) (we relax this in Subsection 3.2). In this
framework, (16) is restricting only in the sense that it imposes bounds that are
uniform with respect to x ∈ R

N , but this is natural since we want solutions that
also satisfy such global bounds.

Assumption (17) is used to bound the solution, and (18) to bound its gradient.
As a simple particular case of these assumptions, we can take�T (a) = KT (1 + a)
and �T,R(a) = MT,R(1 + a) with KT and MT,R constants (see (34), (35) and
Remark 6). With these choices, (23) and (24) read

||u(t, ·)||L∞(RN) � (1 + ||u0||L∞(RN))e
KT t − 1

||Du(t, ·)||L∞(RN) � (1 + ||Du0||L∞(RN))e
2NMT,Rt − 1 ,

which are quite classical estimates. Note that if this choice of �T,R in (18) is usual
(see [11] for λ = 2, [17] for λ ∈] 1, 2[ and [2] for the pure Hamilton–Jacobi
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equation — i.e. without gλ), Assumption (17) is, even with the preceding choice of
�T , less usual in the framework of Hamilton–Jacobi equations. To ensure global
existence, this hypothesis is in general replaced by a bound on F(t, x, 0, 0) and
by the assumption that F is non-increasing with respect to s (see the preceding
references). Assumption (17) with �T (a) = KT (1 + a), however, appears in [15]
in the case of parabolic equations (i.e. λ = 2).

In their general form, Assumptions (17) and (18) do not seem common in the
literature. However, they are completely natural with respect to the technique we use
here. They allow us to consider, for example, F(t, x, u,∇u) = u2 ln(1 + |∇u|2).

We now turn to the proof of Theorem 3.

3.1.2. L∞ estimates and uniqueness. The following proposition gives the key
estimate, both for Hamilton–Jacobi equations and for scalar conservation laws, and
it relies on Theorem 2 in an essential way. This estimate still holds true in a more
general case (precisely, in the framework of viscosity solution, with less regular
solutions; see Subsection 3.2 for a definition), see Proposition 4 in Appendix. We
choose to present below the estimate in the smooth case because we look here for
regular solutions.

Proposition 2. Let λ ∈] 0, 2[, T > 0 andG ∈ C(] 0, T [ ×R
N × R × R

N) be such
that for all R > 0, ∇ξG is bounded on ] 0, T [ ×R

N×[ −R,R] ×BR . Also assume
that

there exists h :[ 0,∞[ �→] 0,∞[ continuous non-decreasing
such that

∫∞
0

1
h(a)

da = +∞ and, for all (t, x, s) ∈] 0, T [ ×R
N × R,

sgn(s)G(t, x, s, 0) � h(|s|).
(25)

If u ∈ C2
b (] a, T [ ×R

N) for all a ∈] 0, T [ and satisfies

∂tu(t, x)+ gλ[ u(t, ·)] (x) = G(t, x, u(t, x),∇u(t, x)) on ] 0, T [ ×R
N, (26)

then, defining H(a) = ∫ a
0

1
h(b)

db, we have, for all 0 < t ′ < t < T ,

||u(t, ·)||L∞(RN) � H−1 (t − t ′ + H(||u(t ′, ·)||L∞(RN))
)
. (27)

Proof of Proposition 2. Let a ∈] 0, T [. Since ∂2
t u is bounded on ] a/2, T [ ×R

N

(say by Ca), we have, for all t ∈] a, T [, all 0 < τ < a/2 and all x ∈ R
N ,

u(t, x) � u(t − τ, x)+ τ∂tu(t, x)+ Caτ
2

� supRN u(t − τ, ·)+ τG(t, x, u(t, x),∇u(t, x))
−τgλ[ u(t, ·)] (x)+ Caτ

2. (28)

Fix t > a and assume that supRN u(t, ·) > 0. Let (xn)n�1 ∈ R
N be a sequence

such that u(t, xn) → supRN u(t, ·). We have

G(t, xn, u(t, xn),∇u(t, xn)) � G(t, xn, u(t, xn), 0)+Mt |∇u(t, xn)|,



310 Jérôme Droniou & Cyril Imbert

whereMt = sup{|∇ξG(t, x, s, ξ)| , (x, s, ξ) ∈ R
N×[ −Rt , Rt ] ×BRt } with Rt an

upper bound of u(t, ·) and ∇u(t, ·). For n large enough, u(t, xn) > 0 and thus, by
(25),

G(t, xn, u(t, xn),∇u(t, xn)) � h(u(t, xn))+Mt |∇u(t, xn)|
� h

(
supRN u(t, ·)

)+Mt |∇u(t, xn)|.

Injected in (28), this gives, for all t ∈] a, T [ and all 0 < τ < a/2,

u(t, xn) � supRN u(t − τ, ·)+ τh
(
supRN u(t, ·)

)+ τMt |∇u(t, xn)|
−τgλ[ u(t, ·)] (xn)+ Caτ

2.

By Theorem 2, we have lim infn→∞ gλ[ u(t, ·)] (xn) � 0 and ∇u(t, xn) → 0 as
n → ∞. Hence, taking the lim supn→∞ of the preceding inequality leads to

supRN u(t, ·) � supRN u(t − τ, ·)+ τh
(
supRN u(t, ·)

)+ Caτ
2.

This has been obtained under the condition that supRN u(t, ·) > 0. Defining�(t) =
max(supRN u(t, ·), 0), we deduce whatever the sign of supRN u(t, ·) is that�(t) �
�(t − τ)+ τh(�(t))+ Caτ

2, that is to say, for t ∈] a, T [ and 0 < τ < a/2,

�(t)−�(t − τ)

τ
� h(�(t))+ Caτ.

As ∂tu is bounded on ] a, T [ ×R
N , it is easy to see that � is Lipschitz contin-

uous on ] a, T [ and therefore this inequality implies �′ � h(�) almost every-
where on ] 0, T [. Hence, the derivative of the locally Lipschitz continuous function
t ∈] 0, T [ �→ H(�(t)) (notice that H is C1 on [ 0,∞[) is bounded from above
by 1 and, for all 0 < t ′ < t < T , H(�(t)) � t − t ′ + H(�(t ′)). Since H is a
non-decreasing bijection [ 0,∞[ �→[ 0,∞[, we deduce that

supRN u(t, ·) � �(t)

� H−1 (t − t ′ + H(�(t ′)))

� H−1 (t − t ′ + H(||u(t ′, ·)||L∞(RN))
)
.

The same reasoning applied to −u (solution to (26) with (t, x, s, ξ) �→ −G(t, x,
−s,−ξ), which also satisfies (25), instead of G) gives an upper bound on
supRN (−u(t, ·)) = − infRN u(t, ·) and concludes the proof. ��

We deduce from this proposition the following corollary, which implies the
uniqueness stated in Theorem 3.

Corollary 1. Let λ ∈] 0, 2[, T > 0 and u0 ∈ W 1,∞(RN). If F satisfies (16), then
there exists at most one function defined on ] 0, T [ ×R

N which satisfies (20), (21)
and (22).
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Proof of Corollary 1. Assume that u and v are two such functions. The difference
w = u− v is in C2

b (] a, T [ ×R
N) for all a ∈] 0, T [ and satisfies

∂tw(t, x)+ gλ[w(t, ·)] (x) = G(t, x,w(t, x),∇w(t, x)) on ] 0, T [ ×R
N

with

G(t, x, s, ξ) =
(∫ 1

0
∂sF (t, x, τu(t, x)+ (1 − τ)v(t, x),∇u(t, x)) dτ

)
s

+
(∫ 1

0
∇ξF (t, x, v(t, x), τ∇u(t, x)+ (1 − τ)∇v(t, x)) dτ

)
· ξ.

By (16) and the hypotheses onu andv,G is continuous on ] 0, T [ ×R
N×R×R

N and
∇ξG is bounded on ] 0, T [ ×R

N×[ −R,R] ×BR for allR > 0. Moreover,G satis-
fies (25) with h(a) = C(κ+a)where κ is any positive number (added so that h > 0
on R

+) and C only depends on u, v and the constants in (16). For this h, we have
H(a) = 1

C
(ln(κ+a)−ln(κ)) and H−1(a) = κeCa−κ . Hence, by Proposition 2 we

find, for 0 < t ′ < t < T , ||w(t, ·)||L∞(RN) � eC(t−t ′)(κ + ||w(t ′, ·)||L∞(RN))− κ .
Since u(t ′, ·) → u0 and v(t ′, ·) → u0 uniformly on R

N as t ′ → 0, we have
||w(t ′, ·)||L∞(RN) → 0 as t ′ → 0 and we conclude, letting t ′ → 0 and κ → 0 in
the preceding inequality, that w(t, ·) = 0 for all t ∈] 0, T [. ��
3.1.3. W 1,∞ estimates and existence. To prove the existence of a solution to
(15), we first introduce another definition of solution, in the spirit of that in [25]
(Chapter, 15) or [14].

Definition 1. Let λ ∈] 1, 2[, u0 ∈ W 1,∞(RN), T > 0 and F satisfy (16). A weak
solution to (15) on [ 0, T ] is a function u ∈ L∞(] 0, T [ ×R

N) such that ∇u ∈
L∞(] 0, T [ ×R

N)N and, for a.e. (t, x) ∈] 0, T [ ×R
N ,

u(t, x) = Kλ(t, ·) ∗ u0(x)

+
∫ t

0
Kλ(t − s, ·) ∗ F(s, ·, u(s, ·),∇u(s, ·))(x) ds , (29)

where Kλ is the kernel associated with gλ.

The kernel associated with gλ isKλ(t, x) = F−1(ξ �→ e−t |ξ |λ)(x). It is defined
so that the solution to ∂tv + gλ[ v] = 0 is given by v(t, x) = Kλ(t, ·) ∗ v(0, ·)(x)
and (29) is simply Duhamel’s formula on (15). Let us recall the main properties of
Kλ (valid for λ ∈] 0, 2[) which in particular allow us to see that each term in (29)
is well defined.

Kλ ∈ C∞(] 0,∞[ ×R
N) and (Kλ(t, ·))t→0 is an approximate unit

(in particular, Kλ � 0 and, for all t > 0, ||Kλ(t, ·)||L1(RN) = 1),
∀t > 0 , ∀t ′ > 0 , Kλ(t + t ′, ·) = Kλ(t, ·) ∗Kλ(t ′, ·) ,
∃K > 0 , ∀t > 0 , ||∇Kλ(t, ·)||L1(RN) � Kt−1/λ

(30)

(notice that the non-negativity of Kλ can be proved from Theorem 2 by using the
same technique as in the proof of Proposition 2). Using the Banach fixed point
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theorem, it is quite simple to prove the local existence (and uniqueness) of a weak
solution to (15); its regularity is obtained by the same means. We give in the Appen-
dix ideas for the proof of the following theorem and let the reader check the details
(see, for example, [14] and [17]).

Theorem 4. Let λ ∈] 1, 2[, u0 ∈ W 1,∞(RN) and F satisfy (16).

(i) For all T > 0, there exists at most one weak solution to (15) on [ 0, T ].
(ii) A weak solution to (15) on [ 0, T ] satisfies (20), (21) and (22).

(iii) Let M � ||u0||W 1,∞(RN). There exists T > 0, only depending on M and the
constants in hypothesis (16), such that (15) has a weak solution on [ 0, T ].

We now obtain estimates on the gradient of the weak solution, and conclude
the proof of Theorem 3.

Proposition 3. Let λ ∈] 1, 2[ and u0 ∈ W 1,∞(RN). Assume that F satisfies (16)
and (18). If u is a weak solution to (15) on [ 0, T ] and R � ||u||L∞(]0,T [×RN) then
(24) holds for all t ∈] 0, T [.

Proof of Proposition 3. The proof is very similar to the proof of Proposition 2. If
ϕ ∈ C3

b(R
N), then a derivation under the integral sign on (4) shows that ∂igλ[ϕ] =

gλ[ ∂iϕ]. Since u satisfies (20) and (21) (Theorem 4), we deduce that

∂t (∂iu)(t, x)+ gλ[ ∂iu(t, ·)] (x)
= ∂xiF (t, x, u(t, x),∇u(t, x))+ ∂sF (t, x, u(t, x),∇u(t, x))∂iu(t, x)

+∇ξF (t, x, u(t, x),∇u(t, x)) · ∇(∂iu)(t, x).
Let a ∈] 0, T [. The function ∂2

t ∂iu is bounded on ] a/2, T [ ×R
N (say by Ca,i)

and thus, for t ∈] a, T [, 0 < τ < a/2 and x ∈ R
N ,

∂iu(t, x) � ∂iu(t − τ, x)+ τ∂t ∂iu(t, x)+ Ca,iτ
2

� supRN ∂iu(t − τ, ·)+ τ∂xiF (t, x, u(t, x),∇u(t, x))
+τ∂sF (t, x, u(t, x),∇u(t, x))∂iu(t, x)
+τ∇ξF (t, x, u(t, x),∇u(t, x)) · ∇(∂iu)(t, x)
−τgλ[ ∂iu(t, ·)] (x)+ Ca,iτ

2. (31)

Assume that supRN ∂iu(t, ·) > 0 and take a sequence (xn)n�1 ∈ R
N such that

∂iu(t, xn) → supRN ∂iu(t, ·). Since ∂iu(t, ·) ∈ C2
b (R

N), Theorem 2 gives
lim infn→∞ gλ[ ∂iu(t, ·)] (xn) � 0 and limn→∞ ∇(∂iu)(t, xn) = 0. For n large
enough, ∂iu(t, xn) > 0 and we can apply (31) to x = xn, use (18) and (16) to bound
the terms involving F and then take the lim supn→∞ of the resulting inequality, we
find

supRN ∂iu(t, ·) � supRN ∂iu(t − τ, ·)+ 2τ�T,R
(
supRN |∇u(t, ·)|)+ Ca,iτ

2

(recall thatR is an upper bound of ||u||L∞(]0,T [×RN)).As in the proof of Proposition
2, to obtain an inequality which holds whatever the sign of supRN ∂iu(t, ·) is, we
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define wi,+(t) = max(supRN ∂iu(t, ·), 0) and we have, for all t ∈] a, T [ and all
0 < τ < a/2,

wi,+(t) � wi,+(t − τ)+ 2τ�T,R
(||Du(t, ·)||L∞(RN)

)+ Ca,iτ
2.

This reasoning applied to −u (the function −F(·, ·,−·,−·) satisfies (16) and
(18)) leads to the same inequality for wi,−(t) = max(supRN (−∂iu(t, ·)), 0) =
max(− infRN ∂iu(t, ·), 0). Therefore this inequality is also satisfied by

max(wi,+(t), wi,−(t)) = ||∂iu(t, ·)||L∞(RN)

and, summing on i = 1, . . . , N , we deduce that, for all t ∈] a, T [ and all 0 < τ <

a/2,

||Du(t, ·)||L∞(RN) � ||Du(t − τ, ·)||L∞(RN) + 2Nτ�T,R
(||Du(t, ·)||L∞(RN)

)

+
∑N

i=1
Ca,iτ

2.

Since t �→ ||Du(t, ·)||L∞(RN) is locally Lipschitz continuous (because ∂t∂iu is
bounded on ] a, T [ ×R

N for all a ∈] 0, T [), we infer from the proof of Proposition
2 that, for 0 < t ′ < t < T ,

||Du(t, ·)||L∞(RN) � (GT ,R)−1 (t − t ′ + GT ,R(||Du(t ′, ·)||L∞(RN))
)
. (32)

As the function u0 is Lipschitz continuous, the definition of the derivative
and the dominated convergence theorem show that ∂i(K(t ′, ·) ∗ u0) = K(t ′, ·) ∗
∂iu0. Thanks to Lemma 2 in the Appendix and (30), we have ∂i[Kλ(t ′ − s, ·) ∗
F(s, ·, u(s, ·),∇u(s, ·))] = ∂iKλ(t

′ − s, ·) ∗ F(s, ·, u(s, ·),∇u(s, ·)), which is
bounded independently ofx ∈ R

N by an integrable function of s ∈] 0, t ′[. Therefore
we can derive (29) under the integral sign to find

∂iu(t
′, x) = Kλ(t

′, ·) ∗ ∂iu0(x)

+
∫ t ′

0
∂iKλ(t

′ − s, ·) ∗ F(s, ·, u(s, ·),∇u(s, ·))(x) ds (33)

and, still using (30), we obtain

||∂iu(t ′, ·)||L∞(RN) � ||∂iu0||L∞(RN) + ||F(·, ·, u,∇u)||∞ Kt ′1− 1
λ

1 − 1
λ

.

This shows that lim supt ′→0 ||Du(t ′, ·)||L∞(RN) � ||Du0||L∞(RN) and we conclude
the proof by letting t ′ → 0 in (32). ��

The proof of the existence and estimates in Theorem 3 is then straightforward.
Indeed, take u a weak solution to (15) on [ 0, T ] given by Theorem 4. By (17), F
satisfies (25) with h = �T . Since u satisfies (20) and (21), Proposition 2 shows that
for 0 < t ′ < t < T , ||u(t, ·)||L∞(RN) � (LT )−1(t − t ′ + LT (||u(t ′, ·)||L∞(RN))).
However, (22) holds for u, and therefore we can let t ′ → 0 to deduce that (23) is
valid. We have (24) by Proposition 3. These estimates (23) and (24) show that the
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W 1,∞ norm of u(t, ·) does not explode in finite time. Item (iii) in Theorem 4 then
allows to indefinitely extend u 1, which gives a global weak solution to (15), and
thus a global solution in the sense of Theorem 3.

Remark 4. As a by-product of this proof of existence, we see that the solution to
(15) given by Theorem 3 also satisfies (29), which was not obvious from (20)–(22).

Remark 5. The preceding technique also works if gλ is replaced by a more general
operator, provided that it satisfies Theorem 2 (in fact, this theorem is only needed
for ϕ ∈ C∞

b (R
N)) and that its kernel satisfies (30) (for small t and some λ > 1

in the estimate of the gradient) and (59) in Appendix. As interesting and simple
examples of such operators, we can mention:

(1) The laplace operator −� (which corresponds, up to a multiplicative constant,
to g2). Or course, the preceding results are known for semi-linear parabolic
equations (at least for classical choices of �T and �T,R).

(2) Multifractal operators such as in [4], that is to say
∑l
j=1 αjgλj with αj > 0,

λj ∈] 0, 2] and λ1 ∈] 1, 2]. The kernel of this operator is Kλ1(α1t, ·) ∗ · · · ∗
Kλl (αlt, ·), and it satisfies (30) with λ = λ1.

(3) Anisotropic operators of the kindA[ϕ] = F−1(
∑N
j=1 |ξj |γjF(ϕ)(ξ))withγj ∈

] 1, 2] (it comes to take a “γj -th derivative” in the j -th direction). This operator
is the sum of one-dimensional operators gγj acting on each variable, and thus
a formula of the kind of (4) can be established, which proves that Theorem 2
holds. The kernel of A is

∏N
j=1 kγj (t, xj ), where kγj is the kernel of gγj in

dimension N = 1, and it thus satisfies (30) with λ = infj (γj ).

We refer the reader to [16] for the kernel properties of other pseudo-differential
operators.

3.2. Existence and uniqueness results for λ ∈] 0, 2[

We show here that under weaker regularity (but stronger behaviour) assump-
tions on F and for λ ∈] 0, 2[, we can still solve (15), albeit in the viscosity sense.
We assume in the following that the Hamiltonian F is continuous with respect to
(t, x, s, ξ), locally Lipschitz continuous with respect to (x, s, ξ), and satisfies (17).
We replace (18) by

∀T > 0 , ∀R > 0 , ∃�T,R > 0 such that,
for all (t, x, s, ξ) ∈[ 0, T ] ×R

N×[ −R,R] ×R
N ,

∂sF (t, x, s, ξ) � �T,R

(34)

∀T > 0 , ∀R > 0 , ∃�T,R > 0 such that,
for all (t, x, s, ξ) ∈[ 0, T ] ×R

N×[ −R,R] ×R
N ,

|∇xF (t, x, s, ξ)| � �T,R(1 + |ξ |),
(35)

1 It is the semi-group property of Kλ in (30) which tells that if we glue to u| [0,t0] a weak
solution with initial time t0 and initial data u(t0, ·), then we construct another weak solution.
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and (16) is relaxed to

∀T > 0,∀R > 0, ∃CT,R > 0 such that,
for all (t, x, s, ξ) ∈[ 0, T ] ×R

N×[ −R,R] ×BR,
|F(t, x, s, ξ)| � CT,R , |∂sF (t, x, s, ξ)| � CT,R ,

|∇ξF (t, x, s, ξ)| � CT,R.

(36)

In all the preceding inequalities, the derivatives of F are to be understood as the
a.e. derivatives of a Lipschitz continuous function. Therefore these hypotheses state
bounds on F and its Lipschitz constants.

Remark 6. Assumptions (34) and (35) are stronger than (18). They imply this last
assumption with, for example, �T,R(a) = (�T,R +�T,R)(1 + a).

Let us first briefly recall the definition of a viscosity solution to (15) (an imme-
diate generalization of the definition given in [17] in the case λ > 1).

Definition 2. Let λ ∈] 0, 2[, u0 ∈ Cb(RN) and F : [ 0, T [ ×R
N ×R×R

N �→ R be
continuous.A function u : [ 0, T [ ×R

N �→ R is a viscosity subsolution to (15) if it is
bounded upper semi continuous, if u(0, ·) � u0 and if, for all (t, x) ∈] 0, T [ ×R

N

and all (α, p) ∈ R × R
N such that there exists σ > 0 and r0 > 0 satisfying

u(s, y) � u(t, x)+ α(s − t)+ p · (y − x)+ σ |y − x|2 + o(s − t)

for y ∈ Br0(x) and s ∈[ 0, T [, (37)

we have, for all r > 0,

α − cN(λ)

∫

Br

u(t, x + z)− u(t, x)− p · z
|z|N+λ dz

−cN(λ)
∫

RN\Br
u(t, x + z)− u(t, x)

|z|N+λ dz

� F(t, x, u(t, x), p). (38)

We similarly define the notion of supersolution for bounded lower semi-continuous
functions by reversing the inequalities (and the sign of σ ). A function is a viscosity
solution of (15) if it is both a sub- and a supersolution of (15).

Remark 7.

(1) Since u(t, x + z) − u(t, x) − p · z � σ |z|2 on a neighbourhood of 0, the first
integral term of (38) is defined in [ −∞,+∞[ (the inequality in fact forbids
the case where this term is −∞), and the second integral term is defined in R,
because u is bounded. Moreover, since

∫
Ba\Bb

p·z
|z|N+λ dz = 0 for all a > b > 0,

the quantities in (38) in fact do not depend on r > 0; in particular, if λ < 1 or
λ > 1, we can take r = 0 or r = +∞.

(2) In [17], a couple (α, p) ∈ R × R
N satisfying (37) is called a supergradient.

The set of all such couples is denoted ∂P u(t, x) and is referred to as the super-
differential of u at (t, x). It is the projection on R × R

N of the upper jet of u at
(t, x) (see [11] for a definition of semi-jets).
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We can now state our existence and uniqueness result for Lipschitz continuous
Hamiltonians and λ ∈] 0, 2[.

Theorem 5. Let λ ∈] 0, 2[ and F be continuous and such that (17), (34), (35) and
(36) hold true. If u0 ∈ W 1,∞(RN), then there exists a unique viscosity solution of
(15). Moreover, this solution is Lipschitz continuous with respect to x and satisfies,
for 0 < t < T < ∞, (23) and

||Du(t, ·)||L∞(RN) � (1 + ||Du0||L∞(RN))e
2N(�T,R+�T,R)t − 1 (39)

for any R � ||u||L∞(]0,T [×RN).

Remark 8.

(1) This result can be extended to initial conditions that are merely bounded and
uniformly continuous. It suffices to adapt the classical method used for instance
in [11]. Note that in this case, the Lipschitz continuity of the solution is no longer
true.

(2) As in Remark 5, this theorem also holds for more general operators gλ.
(3) Estimate (39) is exactly (24) when we take, as in Remark 6,�T,R(a) = (�T,R+

�T,R)(1 + a).
(4) The conclusions of this theorem are the same as the ones of Theorem 3 and

Lemma 2 in [17], but the assumptions are more general (see the discussion
following Theorem 3). Moreover, theW 1,∞ estimate (39) involves a norm that
is slightly different from the one used in [17].

(5) Perron’s method. As mentioned in the introduction, Theorem 5 can be proved
by using Perron’s method. In this case, “natural” barriers are to be considered
for large time, namely t �→ ±(LT )−1(t + LT (‖u0‖L∞(RN))). For small time,
in order to ensure that the initial condition is fulfilled, classical barriers of the
form t �→ u0(x)± Ct can be used for C large enough.

Proof of Theorem 5. We prove the existence result by regularizing F and using a
vanishing viscosity method based on the solution given by Theorem 3.

Step 1 (Regularization of F ). Let hε : R
d → R

d be defined by hε(z) = max(1 −
ε
|z| , 0)z. hε is at distance ε of the identity function, null on Bε and |hε| � | · | − ε

on R
d\Bε; in particular,

for all z ∈ R
d and |z′| � ε, |hε(z− z′)| � |z|. (40)

We define Fε : R
2N+2 → R by Fε(t, x, s, ξ) = F(hε(t)

+, x, h2ε(s), hε(ξ)).
Let (t, x, s, ξ) �→ ρε(t, x, s, ξ) be a classical regularizing kernel such that
supp(ρε) ⊂ Bε and define F̃ε = Fε ∗ ρε. In dimension d = 1, h′

2ε takes its
values in [ 0, 1], and thus F̃ε satisfies (34) and (35) with the same constants as F
(thanks to (40)). Therefore it satisfies (18) with �T,R(a) = (�T,R +�T,R)(1 + a)
(see Remark 6). We also have (16) for F̃ε with C̃T ,R,k = sup|α|�k ||∂αρε||L1

sup[0,T ]×RN×[−R,R]×BR |F | (this quantity, which depends on ε, is finite thanks
to (36)).
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Property (17) for F̃ε is slightly less obvious. Let (t, x, s) ∈[ 0, T ] ×R
N × R

and |t ′| � ε, |x′| � ε, |s′| � ε, |ξ ′| � ε. In the case |s| � ε, we have sgn(s) =
sgn(s − s′) = sgn(h2ε(s − s′)) since |s′| � ε, and thus, by (17) and (40),

sgn(s)Fε(t − t ′, x − x′, s − s′, 0 − ξ ′)
= sgn(h2ε(s − s′))F (hε(t − t ′)+, x − x′, h2ε(s − s′), 0)

� �T (|h2ε(s − s′)|)
� �T (|s|).

In the case |s| � ε, (36) gives

|Fε(t − t ′, x − x′, s − s′, 0 − ξ ′)− F(hε(t − t ′)+, x − x′, s, 0)|
= |F(hε(t − t ′)+, x − x′, 0, 0)− F(hε(t − t ′)+, x − x′, s, 0)|
� εCT,1

and therefore,

sgn(s)Fε(t − t ′, x − x′, s − s′, 0 − ξ ′)
� sgn(s)F (hε(t − t ′)+, x − x′, s, 0)+ εCT,1

� �T (|s|)+ εCT,1.

In any case, we have sgn(s)Fε(t−t ′, x−x′, s−s′, 0−ξ ′) � �T (|s|)+εCT,1. Mul-
tiplying this inequality by ρε(t ′, x′, s′, ξ ′) and integrating on (t ′, x′, s′, ξ ′) shows
that (17) holds for F̃ε with �T (a)+ εCT,1 instead of �T (a).

To summarise, we have found a regularization F̃ε of F which converges locally
uniformly to F and satisfies (16), (18) with �T,R(a) = (�T,R + �T,R)(1 + a)

(independent of ε) and (17) with a function �εT = �T + εCT,1 which uniformly
converges, as ε → 0, to �T .

Step 2 (Passing to the limit). We takeλ ∈] 0, 2[ andµ ∈] 1, 2[.Applying Theorem 3
and Remark 5, we find a smooth solution uε of






∂tu
ε(t, x)+ gλ[ uε(t, ·)] (x)+ εgµ[ uε(t, ·)] (x)

= F̃ε(t, x, u
ε(t, x),∇uε(t, x)) t > 0 , x ∈ R

N ,

uε(0, x) = u0(x) x ∈ R
N

(41)

in the sense of (20), (21) and (22) (note that if λ > 1, there is no need to intro-
duce the term εgµ in this equation). Since, for 0 < ε � 1, F̃ε satisfies (17) with
�T (a)+CT,1 instead of�T (a), the theorem gives estimates on uε and ∇uε which
do not depend on ε.

These estimates and (36) show that the function F̃ε(·, ·, uε,∇uε) is bounded on
] 0, T [ ×R

N independently of ε. The integral representation (29) reads here (see
Remark 5)

uε(t, x) = Kλ(t, ·) ∗Kµ(εt, ·) ∗ u0(x)+
∫ t

0
Kλ(t − s, ·)

∗Kµ(ε(t − s), ·) ∗ F̃ε(s, ·, uε(s, ·),∇uε(s, ·))(x) ds ,
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and thus (30) gives ||uε(t, ·) − Kλ(t, ·) ∗ Kµ(εt, ·) ∗ u0||L∞(RN) � Ct with C
not depending on ε. Since (Kλ(t, ·))t→0 and (Kµ(t, ·))t→0 are approximate units
and u0 ∈ W 1,∞(RN), we easily see that Kλ(t, ·) ∗ Kµ(εt, ·) ∗ u0(x) → u0(x) as
t → 0, uniformly with respect to x ∈ R

N and ε ∈] 0, 1]. Hence, uε(t, x) → u0(x)

as t → 0, uniformly with respect to (x, ε) ∈ R
N×] 0, 1], and the relaxed upper

limit lim sup∗ uε(t, x) = lim supε→0,(s,y)→(t,x) u
ε(s, y) coincides with u0 at t = 0,

and so does the relaxed lower limit lim inf∗ uε = − lim sup∗(−uε).
Remark that uε is a viscosity solution of (41). Since F̃ε → F locally uniformly,

an easy adaptation of the stability theorem of [17] shows that lim sup∗ uε is a viscos-
ity subsolution of (15) and that lim inf∗ uε is a viscosity supersolution of (15). The
assumptions ensure that the comparison principle holds true for (15) (still a straight-
forward generalization of [17] to the case λ ∈] 0, 2[). Thus, lim sup∗ uε(0, x) =
u0(x) = lim inf∗ uε(0, x) implies lim sup∗ uε � lim inf∗ uε and we conclude that
uε locally uniformly converges to u = lim sup∗ uε = lim inf∗ uε, a viscosity solu-
tion to (15). The estimates on u stated in the theorem are obtained by passing to the
limit in the estimates on uε. To finish with, we recall that the comparison principle
ensures that the solution we have just constructed is unique in the class of viscosity
solutions which satisfy u(0, ·) = u0. ��

Since we have proved in Step 2 that a vanishing regularization gives a solution
to (15), we can now wonder if it is possible to obtain a rate of convergence. The
next theorem answers this question.

Theorem 6. Let (λ, µ) ∈] 0, 2[ and F be continuous and such that (17), (34), (35)
and (36) hold true. Let u0 ∈ W 1,∞(RN), u be the viscosity solution of (15) and,
for ε > 0, uε be the viscosity solution of






∂tu
ε(t, x)+ gλ[ uε(t, ·)] (x)+ εgµ[ uε(t, ·)] (x)

= F(t, x, uε(t, x),∇uε(t, x)) t > 0 , x ∈ R
N ,

uε(0, x) = u0(x) x ∈ R
N.

(42)

Then, for all T > 0,

||uε − u||Cb([0,T ]×RN) =






O(ε) if µ < 1 ,

O(ε| ln(ε)|) if µ = 1 ,

O(ε1/µ) if µ > 1.

Remark 9.

(1) Like the preceding results, this theorem is valid for more general operators gλ,
and also for µ = 2. Moreover, the conclusion still holds if we remove gλ from
both equations (in this case, (15) is a pure Hamilton–Jacobi equation).

(2) These rates of convergence are optimal for any µ ∈] 0, 2[ (take F = 0, remove
gλ, chooseu0(x) = max(1−|x|, 0) and compareuε(1, 0)−u(1, 0) = Kµ(ε, ·)∗
u0(0) − 1 thanks to the formula Kµ(ε, x) = ε−N/µKµ(1, ε−1/µx) and to the
property Kµ(1, x) ∼ C|x|−N−µ as |x| → ∞).
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Proof of Theorem 6. The proof relies on the same technique as in [17], with mod-
ifications due to the presence of gλ and due to the fact that µ can be equal to or less
than 1.

By a classical change of unknown function, (34) allows to reduce to the case
where F is non-increasing with respect to s. Let

M = sup
[0,T [×(RN)2

{u(t, x)− uε(t, y)− |x − y|2/2α − β|x|2/2 − ηt − γ /(T − t)},

where α, β, η are positive and γ ∈] 0, 1]. We want to prove that, for appropriate
choices of η and γ , M is attained at t = 0.

Let ν > 0 and Mν = sup[0,T [2×(RN)2{u(t, x) − uε(s, y) − |x − y|2/2α −
|t − s|2/2ν − β|x|2/2 − ηt − γ /(T − t)}. It is classical that Mν is attained at
some (tν, sν, xν, yν) such that, up to a subsequence, (tν, sν, xν, yν) → (t, t, x, y)

as ν → 0, where (t, x, y) realizes M . We now assume that t > 0 and, with good
choices of η and γ , we show that this leads to a contradiction. If t > 0 then, for
ν small enough, tν > 0 and sν > 0. Let pν = (xν − yν)/α. By definition of Mν ,
(γ /(T − tν)2 + (tν − sν)/ν+η, pν +βxν) is a supergradient of u at (tν, xν). Since
u is a subsolution of (15), we obtain

γ

(T − tν)2
+ tν − sν

ν
+ η

−cN(λ)
∫

Br

u(tν, xν + z)− u(tν, xν)− (pν + βxν) · z
|z|N+λ dz

−cN(λ)
∫

RN\Br
u(tν, xν + z)− u(tν, xν)

|z|N+λ dz

� F(tν, xν, u(tν, xν), pν + βxν). (43)

Similarly, by definition of Mν we can use ((tν − sν)/ν, pν) in the equation at
(t, x) = (sν, yν) which states that uε is a supersolution of (42) and we obtain

tν − sν

ν
− cN(λ)

∫

Br

uε(sν, yν + z)− uε(sν, yν)− pν · z
|z|N+λ dz

−cN(λ)
∫

RN\Br
uε(sν, yν + z)− uε(sν, yν)

|z|N+λ dz

−εcN(µ)
∫

BR

uε(sν, yν + z)− uε(sν, yν)− pν · z
|z|N+µ dz

−εcN(µ)
∫

RN\BR
uε(sν, yν + z)− uε(sν, yν)

|z|N+µ dz

� F(sν, yν, u
ε(sν, yν), pν). (44)

We also have, still using the definition of Mν ,

uε(sν, yν + z)− uε(sν, yν)+ u(tν, xν)− u(tν, xν + z)

� β|xν |2
2

− β|xν + z|2
2

= −βxν · z− β|z|2
2
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and, by the estimate on ∇uε, |uε(sν, yν + z)− uε(sν, yν)| � C|z| (hereinafter, C
stands for a positive real number which can change from one line to another but
does not depend on ε, r , R, ν, α, β, η or γ ). Hence, subtracting (43) from (44) and
using the bounds we have on u and uε, we find (for R � 1)

− γ

(T − tν)2
− η + cN(λ)

β

2

∫

Br

|z|2
|z|N+λ dz+ C

∫

RN\Br
1

|z|N+λ dz

−εcN(µ)
∫

BR

uε(sν, yν + z)− uε(sν, yν)− pν · z
|z|N+µ dz

+Cε
∫

B1\BR
|z|

|z|N+µ dz+ Cε

∫

RN\B1

1

|z|N+µ dz

� F(sν, yν, u
ε(sν, yν), pν)− F(tν, xν, u(tν, xν), pν + βxν). (45)

Using once again the definition of Mν , we write

uε(sν, yν + z)− uε(sν, yν)− pν · z � |xν − yν |2 − |xν − yν − z|2
2α

−2(xν − yν) · z
2α

= −|z|2
2α

.

We can therefore bound the integral term containing uε in (45) and pass to the limit
ν → 0 to obtain

− γ

(T − t)2
− η + Cβ

∫

Br

|z|2
|z|N+λ dz+ C

∫

RN\Br
1

|z|N+λ dz

+C ε
α

∫

BR

|z|2
|z|N+µ dz+ Cε

∫

B1\BR
|z|

|z|N+µ dz+ Cε

� F(t, y, uε(t, y), p)− F(t, x, u(t, x), p + βx),

where p = (x − y)/α. Putting t = 0 and x = y = 0 in the definition of M , which
is attained at (t, x, y), we have u(t, x) − uε(t, y) − γ /(T − t) � M � −γ /T ,
and thus u(t, x) � uε(t, y)+ γ /(T − t)− γ /T � uε(t, y). The function F being
non-increasing with respect to its third variable, we deduce that

− γ

T 2 − η + Cβr2−λ + Cr−λ + C
ε

α
R2−µ + Cε

∫

B1\BR
|z|

|z|N+µ dz+ Cε

� F(t, y, u(t, x), p)− F(t, x, u(t, x), p + βx). (46)

Using once again the definition of Mν , we have β|xν |2 � C (because Mν �
M � −γ /T � −1/T ), so that β|x| � C

√
β. Moreover, since pν satisfies the

reverse inequality of (37) with uε instead of u, and since we have a bound on
the spatial Lipschitz constant of uε, we find |pν | � C and thus |p| � C and
|x − y| � Cα. Therefore Assumptions (35) and (36) give

− γ

T 2 − η + Cβr2−λ + Cr−λ + Cε

α
R2−µ + Cε

∫

B1\BR
|z|

|z|N+µ dz+ Cε

� −Cα − C
√
β
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(we take β � 1). Choosing γ = (C
√
β + Cβr2−λ + Cr−λ + β)T 2 (which is in

] 0, 1] if r is large and β is small) and

η = Cα + Cε

α
R2−µ + Cε

∫

B1\BR
|z|

|z|N+µ dz+ Cε

leads to −β � 0, which is the contradiction we sought. With these choices of γ
and η, M is attained at (0, x, y) and, for all (t, x) ∈[ 0, T [ ×R

N ,

u(t, x)− uε(t, x)− β
|x|2

2
− ηt − γ

T − t
� u0(x)− u0(y)− |x − y|2

2α
� Cα

(we use the fact that u0 is Lipschitz continuous). Thus,

u(t, x) � uε(t, x)+ β
|x|2

2

+
(
Cα + Cε

α
R2−µ + Cε

∫

B1\BR
|z|

|z|N+µ dz+ Cε

)
T

+ (C
√
β + Cβr2−λ + Cr−λ + β)T 2

T − t
+ Cα.

We now let β → 0 and then r → +∞:

u(t, x) � uε(t, x)+ Cα + Cε

α
R2−µ + Cε

∫

B1\BR
|z|

|z|N+µ dz+ Cε.

If µ < 1 (respectively µ = 1, respectively µ > 1), then
∫
B1\BR

|z|
|z|N+µ dz is

bounded by C (respectively C| ln(R)|, respectively CR1−µ). A simple optimiza-
tion with respect to R and then α, leads to

u(t, x) � uε(t, x)+ C






ε if µ < 1

ε| ln(ε)| if µ = 1

ε1/µ if µ > 1

and we obtain the reverse inequality by exchanging, from the beginning, the roles
of u and uε. ��

4. Fractal scalar hyperbolic equations

4.1. Existence and uniqueness of a smooth solution

In this section, we come back to the case λ ∈] 1, 2[ and we handle





∂tu(t, x)+ div(f (t, x, u(t, x)))+ gλ[ u(t, ·)] (x)
= h(t, x, u(t, x))

t > 0 , x ∈ R
N ,

u(0, x) = u0(x) x ∈ R
N ,

(47)
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where u0 ∈ L∞(RN), f ∈ C∞([ 0,∞[ ×R
N × R)N , h ∈ C∞([ 0,∞[ ×R

N × R)

and

∀T > 0 , ∀R > 0 , ∀k ∈ N , ∃CT,R,k such that,
for all (t, x, s) ∈[ 0, T ] ×R

N×[ −R,R]
and all α ∈ N

N+2 satisfying |α| � k,
|∂αf (t, x, s)| + |∂αh(t, x, s)| � CT,R,k ,

(48)

∀T > 0, there exists �T : [ 0,+∞[ →] 0,+∞[ continuous
non-decreasing such that

∫∞
0

1
�T (a)

da = +∞ and,
for all (t, x, s) ∈[ 0, T ] ×R

N × R,

sgn(s)
(
h(t, x, s)−∑N

i=1 ∂xi fi(t, x, s)
)

� �T (|s|).
(49)

The term h − ∑N
i=1 ∂xi fi represents a source for (47), and an assumption on

this source is not unexpected if we want global solutions. This hypothesis with
�T (a) = KT (1 + a) (and KT constant), as well as uniform spatial bounds such
as in (48), also appears in [20] when dealing with the pure scalar conservation law
(i.e. without gλ). Here, we prove the following.

Theorem 7. Let λ ∈] 1, 2[ and u0 ∈ L∞(RN). Assume that f and h satisfy (48)
and (49). Then there exists a unique solution u to (47) in the sense: for all T > 0,

u ∈ Cb(] 0, T [ ×R
N) and, for all a ∈] 0, T [ , u ∈ C∞

b (] a, T [ ×R
N) , (50)

u satisfies the partial differential equation of (47) on ] 0, T [ ×R
N , (51)

u(t, ·) → u0 in L∞(RN) weak-∗, as t → 0. (52)

We also have estimate (23) on the solution, that is to say: for all 0 < t < T < ∞,

||u(t, ·)||L∞(RN) � (LT )−1 (t + LT (||u0||L∞(RN))
)

with LT (a) = ∫ a
0

1
�T (b)

db.

Remark 10. The proof of uniqueness shows that the solution to (47) also satisfies
(53) below. As a consequence, the convergence in (52) also holds in Lploc(R

N) for
all p < ∞.

As for (15), the existence of a solution to (47) is obtained via a weak formulation
based on Duhamel’s formula.

Definition 3. Let λ ∈] 1, 2[, u0 ∈ L∞(RN), T > 0 and (f, h) satisfy (48). A weak
solution to (47) on [ 0, T ] is a function u ∈ L∞(] 0, T [ ×R

N) such that, for a.e.
(t, x) ∈] 0, T [ ×R

N ,

u(t, x) = Kλ(t, ·) ∗ u0(x)−
∫ t

0
∇Kλ(t − s, ·) ∗ f (s, ·, u(s, ·))(x) ds

+
∫ t

0
Kλ(t − s, ·) ∗ h(s, ·, u(s, ·))(x) ds. (53)
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Thanks to (30), each term in (53) is well defined. As before, a fixed point tech-
nique (see [14]) allows to prove the theorem stated below (Theorem 8). We leave
the details to the interested reader. (Notice that once it has been proved that weak
solutions to (47) have one continuous spatial derivative — which is a consequence
of a result similar to Proposition 5 — the full regularity of these weak solutions can
be seen as a consequence of Theorem 4).

Theorem 8. Let λ ∈] 1, 2[, u0 ∈ L∞(RN) and (f, h) satisfy (48).

(i) For all T > 0, there exists at most one weak solution to (47) on [ 0, T ].
(ii) A weak solution to (47) on [ 0, T ] satisfies (50), (51) and (52).

(iii) Let M � ||u0||L∞(RN). There exists T > 0, only depending on M and the
constants in (48), such that (47) has a weak solution on [ 0, T ].

We can now prove the existence and uniqueness result for (47).

Proof of Theorem 7. Let u be a weak solution to (47) on [ 0, T ] in the sense of
Definition 3. By Theorem 8, such a solution exists and satisfies (50), (51). Hence,
it satisfies (26) with

G(t, x, s, ξ) = h(t, x, s)−
N∑

i=1

∂xi fi(t, x, s)− ∂sf (t, x, s) · ξ.

Since (25) holds for G with h = �T given by Hypothesis (49), we deduce from
Proposition 2 that, for all 0 < t ′ < t < T ,

||u(t, ·)||L∞(RN) � (LT )−1 (t − t ′ + LT (||u(t ′, ·)||L∞(RN))
)
. (54)

From (53) it is easy to see that lim supt ′→0 ||u(t ′, ·)||L∞(RN) � ||u0||L∞(RN) (the
last two terms of (53) tend to 0 inL∞(RN) as t → 0, thanks to (30)). Hence, letting
t ′ → 0 in (54) shows that u satisfies (23). In particular, theL∞ norm of u(t, ·) does
not explode in finite time and, by (iii) in Theorem 8, we can indefinitely extend u;
this proves the existence part of Theorem 7.

It remains to prove the uniqueness of the solution. Let u satisfy (50), (51) and
(52) for all T > 0, and take t0 > 0. The function u(t0 +·, ·) belongs, for all T > 0,
toC∞

b ([ 0, T [ ×R
N). Hence, it satisfies (20) and (22) with u0 = u(t0, ·). Moreover,

if we define

F(t, x, s, ξ) = h(t0 + t, x, u(t0 + t, x))− div(f (t0 + t, x, u(t0 + t, x)))

(in fact, F does not depend on s or ξ ), the function u(t0 + ·, ·) also satisfies (21). It
is clear that this F satisfies (16), (17) and (18) (with �T and �T,R constants) and,
therefore, u(t0+·, ·) is the unique solution to (15) given by Theorem 3. In particular,
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by Remark 4 we have, for all t > 0,

u(t0 + t, x) = Kλ(t, ·) ∗ u(t0, ·)(x)
+
∫ t

0
Kλ(t − s, ·) ∗ [h(t0 + s, ·, u(t0 + s, ·))

−div(f (t0 + s, ·, u(t0 + s, ·)))](x) ds
= Kλ(t, ·) ∗ u(t0, ·)(x)

−
∫ t

0
∇Kλ(t − s, ·) ∗ f (t0 + s, ·, u(t0 + s, ·))(x) ds

+
∫ t

0
Kλ(t − s, ·) ∗ h(t0 + s, ·, u(t0 + s, ·))(x) ds. (55)

For t > 0 and x ∈ R
N fixed, by (52) we have Kλ(t, ·) ∗ u(t0, ·)(x) → Kλ(t, ·) ∗

u0(x) as t0 → 0. Using (50) and the dominated convergence theorem, we can let
t0 → 0 in the last two terms of (55) to see that u satisfies (53). Hence, u is a weak
solution to (47) and, by i) in Theorem 8, is unique. ��
Remark 11. Equation (47) can also be solved with more general operators gλ, see
Remark 5.

4.2. About the vanishing regularization

Let us say a few things on the behaviour, as ε → 0+, of the solution to






∂tu
ε(t, x)+ div(f (t, x, uε(t, x)))

+εgλ[ uε(t, ·)] (x) = h(t, x, uε(t, x))
t > 0 , x ∈ R

N ,

uε(0, x) = u0(x) x ∈ R
N ,

(56)

where we still take λ ∈] 1, 2[, u0 ∈ L∞(RN) and (f, h) satisfying (48) and (49). It
has been proved in [12] that, if h = 0 and f does not depend on (t, x), the solution
uε to (56) converges, as ε → 0, to the entropy solution u of






∂tu(t, x)+ div(f (t, x, u(t, x)))

= h(t, x, u(t, x))
t > 0 , x ∈ R

N ,

u(0, x) = u0(x) x ∈ R
N.

(57)

The key argument is the obtainment, via a splitting method, of entropy inequalities
for (56). This method can be generalized to some cases where f and h depend on
(t, x) (see [13]) but, in any case, it is quite technical.

Thanks to formula (4), we have a trivial proof of these entropy inequalities, via
the following lemma.

Lemma 1. Let λ ∈] 0, 2[, ϕ ∈ C2
b (R

N) and η ∈ C2(R) be a convex function. Then
gλ[ η(ϕ)] � η′(ϕ)gλ[ϕ].
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Proof of Lemma 1. Since η is convex, we have η(b) − η(a) � η′(a)(b − a).
Hence,

η(ϕ(x + z))− η(ϕ(x)) � η′(ϕ(x))(ϕ(x + z)− ϕ(x))

and

η(ϕ(x + z))− η(ϕ(x))− ∇(η(ϕ))(x) · z
� η′(ϕ(x))(ϕ(x + z)− ϕ(x)− ∇ϕ(x) · z).

The conclusion follows from these inequalities and (4). ��
Thus, if η ∈ C2(R) is a convex function and φ is such that ∂sφ(t, x, s) =

η′(s)∂sf (t, x, s), multiplying the partial differential equation of (56) byη′(uε(t, x))
gives (recall that all the functions, including uε, are regular)

∂t (η(u
ε))(t, x)+ εgλ[ η(uε(t, ·))] (x)

� η′(uε(t, x))
(

h(t, x, uε(t, x))−
N∑

i=1

∂xi fi(t, x, u
ε(t, x))

)

−div(φ(t, x, uε(t, x)))+
N∑

i=1

∂xi φi(t, x, u
ε(t, x)) , (58)

which is exactly the entropy inequality for (56). Once this inequality is established,
the doubling variable technique of [20] (used in [12]) shows that, for all T > 0 and
as ε → 0, uε → u in C([ 0, T ] ;L1

loc(R
N)).

It is also possible, if the initial condition u0 is inL∞(RN)∩L1(RN)∩BV (RN),
to obtain a rate of convergence: O(ε1/λ) inC([ 0, T ] ;L1(RN)). This is well known
for λ = 2 (see [21]) and has been done for λ ∈] 1, 2[, h = 0 and f (t, x, u) = f (u)

in [12]. However, to obtain such a rate of convergence we must first establish L1

and BV estimates on uε, which demands additional hypotheses on f and h (some
integrability properties with respect to x); we refer the reader to [13] for a set of
suitable hypotheses. Once these estimates are established, the proof of the rate of
convergence is made as in [21] or [12] by using (58).

5. Appendix

5.1. A technical lemma

Lemma 2. If f ∈ C1(RN) ∩W 1,1(RN) and g ∈ L∞(RN), then f ∗ g ∈ C1(RN)

and ∇(f ∗ g) = ∇f ∗ g.

Proof of Lemma 2. We have not assumed that ∇f (x− y) is bounded locally uni-
formly in x by some integrable function of y. Hence, we cannot directly use a
theorem of derivation under the integral sign.

Let n � 1 and define gn = g1Bn . For all x ∈ R
N , f ∗ gn(x) = ∫

Bn
f (x −

y)g(y) dy → f ∗ g(x) as n → ∞. Since f ∈ C1(RN), a derivation under the
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integral sign shows that f ∗ gn ∈ C1(RN) with ∇(f ∗ gn) = ∇f ∗ gn. But, for all
|x| � R,

|∇f ∗ gn(x)− ∇f ∗ g(x)| � ||g||L∞(RN)

∫

{|y|�n}
|∇f (x − y)| dy

� ||g||L∞(RN)

∫

{|z|�n−R}
|∇f (z)| dz

(if |x| � R and |y| � n, then |x − y| � |y| − |x| � n − R). Hence, since
∇f ∈ L1(RN), we have ∇(f ∗ gn) = ∇f ∗ gn → ∇f ∗ g locally uniformly on
R
N , which concludes the proof of the lemma. ��

5.2. Generalizations of Theorem 2 and Proposition 2

In this subsection, we state and prove generalizations of Theorem 2 and Prop-
osition 2. Roughly speaking, we show that u needs not to be in C2

b but only in Cb.
In this case, the operator gλ and equation (26) must be understood in the viscosity
sense.

For upper semicontinuous functions φ :] 0, T [ → R, the notion of viscosity
supergradient is used in order to define viscosity subsolutions of φ′ = h(φ). The
notion of an upper semicontinuous envelope of locally bounded functions is also
used in the following. The definitions of viscosity supergradient, viscosity solution
of φ′ = h(φ) and upper semicontinuous envelope can be found in [11].

Theorem 9. Let λ ∈] 0, 2[ and v ∈ Cb(] 0, T [ ×R
N). Let φ denote the upper

semicontinuous envelope of the function supx∈RN v(·, x). Then for any viscosity
supergradient α of φ at t ∈] 0, T [, there exist tn → t , αn → α, and xn, pn ∈ R

N

such that

v(tn, xn) → φ(t) and (αn, pn) ∈ ∂P v(tn, xn)
and pn → 0 and lim infn→∞ gλ[ v(tn, ·)] (xn) � 0.

Proof of Theorem 9. By definition of viscosity supergradient, there exists ψ ∈
C1(] 0, T [ ) such that φ − ψ attains a global maximum at t and α = ψ ′(t). Then
for any (s, x) ∈] 0, T [ ×R

N , we have:

v(s, x)− ψ(s) � φ(s)− ψ(s) � φ(t)− ψ(t).

Next, for any ε > 0, consider (tε, xε) ∈] 0, T [ ×R
N such thatφ(t) < v(tε, xε)+ε/2

and tε → t as ε → 0. We can also ensure that ψ(t) � ψ(tε) − ε/2. Combining
these facts yields:

sup
(s,x)∈]0,T [×RN

(v(s, x)− ψ(s)) < v(tε, xε)− ψ(tε)+ ε.

We then apply Borwein’s and Preiss’ minimization principle (see for instance [9])
and get (sε, yε) and (rε, zε) such that

|(rε, zε)− (tε, xε)| < ε1/4 and |(sε, yε)− (rε, zε)| < ε1/4

and sup
(s,x)∈]0,T [×RN

(v(s, x)− ψ(s)) � v(sε, yε)− ψ(sε)+ ε
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and such that (sε, yε) is the unique point realizing the maximum of the perturbed
function (t, x) �→ v(t, x)− ψ(t)− √

ε(t − rε)
2 − √

ε|x − zε|2. This implies that
(ψ ′(sε) + 2

√
ε(sε − rε), 2

√
ε(yε − zε)) ∈ ∂P v(sε, yε). Define αε = ψ ′(sε) +

2
√
ε(sε − rε) and pε = 2

√
ε(yε − zε). They verify αε → α and pε → 0 as

ε → 0. Moreover, v(sε, yε) → φ(t) and sε → t . It only remains to prove that
lim infε→0 gλ[ v(sε, ·)] (yε) � 0 by using Fatou’s lemma. First, note that

v(sε, yε + z)− v(sε, yε) � φ(sε)− v(sε, yε)

and since φ is upper semicontinuous and v(sε, yε) → φ(t), the upper limit of the
right-hand side is non-positive. Secondly,

v(sε, yε + z)− v(sε, yε)

|z|N+λ � 2‖v‖∞
|z|N+λ ∈ L1(RN \ B1),

v(sε, yε + z)− v(sε, yε)− pε · z
|z|N+λ �

√
ε

|z|N+λ−2 ∈ L1(B1).

Now choose ε = 1/n and (tn, αn, xn, pn) = (sεn, αεn, yεn, pεn) satisfies the desired
properties. ��
Proposition 4. Let λ ∈] 0, 2[, T > 0 andG ∈ C(] 0, T [ ×R

N × R × R
N) be such

that (25) is satisfied andG is locally Lipschitz continuous with respect to ξ , locally
in (t, s) and uniformly in x. Then any viscosity solution of (26) satisfies for any
0 < t ′ < t < T :

||u(t, ·)||∗
L∞(RN) � H−1

(
t − t ′ + H

(
||u(t ′, ·)||∗

L∞(RN)

))

where ||u(s, ·)||∗
L∞(RN) = lim supτ→s ||u(τ, ·)||L∞(RN).

Proof of Proposition 4. Let us denote φ(t) = ||u(t, ·)||∗
L∞(RN). Suppose we have

proved that φ is a viscosity subsolution of w′ = h(w) on ] 0, T [. Then the func-
tion H(φ(t)) − t is a viscosity subsolution of w′ = 0 (recall that H is C1 and
non-decreasing). This implies that H(φ(t))− t is non-increasing and, since H is a
non-decreasing bijection [ 0,+∞[ →[ 0,+∞[, we get the desired a priori estimate
on u.

It remains to prove that φ is a viscosity subsolution of w′ = h(w) on ] 0, T [.
It is a consequence of Theorem 9 applied to v = |u|. Let α be a viscosity su-
pergradient of φ and consider tn → t , αn → α, and xn, pn ∈ R

N given by
Theorem 9. We have to prove that α � h(φ(t)). We distinguish two cases. Suppose
first that there exists a sequence nk → ∞ such that v(tnk , xnk ) = u(tnk , xnk ). Then
(αnk , pnk ) ∈ ∂P u(tnk , xnk ) and, since u is a viscosity subsolution of (26), we get:

αnk + gλ[ u(tnk , ·)] (xnk ) � G(tnk , xnk , u(tnk , xnk ), pnk ).

As k → ∞, we have u(tnk , xnk ) → φ(t) and pnk → 0. We can use the local
Lipschitz continuity of G with respect to ξ and find:

αnk + gλ[ u(tnk , ·)] (xnk ) � h(u(tnk , xnk ))+M|pnk |
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for M independent of k. As k goes to +∞, we conclude in the first case that
α � h(φ(t)) by using the fact thatu(tnk , xnk ) → φ(t) and that gλ[ u(tnk , ·)] (xnk ) �
gλ[ v(tnk , ·)] (xnk ) (because v(tnk , xnk ) = u(tnk , xnk ) and v(tnk , xnk + z) �
u(tnk , xnk + z)), so that lim infk→∞ gλ[ u(tnk , ·)] (xnk ) � 0. In the second case,
for n large enough, v(tn, xn) = −u(tn, xn). Then (−αn,−pn) ∈ ∂P u(tn, xn) and
we can argue similarly, by using the fact that u is a viscosity supersolution of (26),
to conclude that we also have α � h(φ(t)). ��

5.3. Ideas for the proof of Theorem 4

We need the following additional property on Kλ:

t ∈] 0,∞[ �→ Kλ(t, ·) ∈ L1(RN) is continuous. (59)

This continuity is a consequence of the regularity of Kλ and of the homogeneity
property Kλ(t, x) = t−N/λKλ(1, t−1/λx) which shows that if A is a compact sub-
set of ] 0,∞[, then (Kλ(t, ·))t∈A is equi-integrable at infinity (that is to say, for all
ε > 0, there exists R > 0 such that, for all t ∈ A,

∫
RN\BR |Kλ(t, x)| dx � ε).

The most difficult task in the proof of Theorem 4 is the regularity of the weak
solutions. The key result to prove this regularity is the following proposition.

Proposition 5. Let λ ∈] 1, 2[, S > 0 and G : (t, x, ζ ) ∈] 0, S[ ×R
N × R

N →
G(t, x, ζ ) ∈ R be continuous. We suppose that ∂xG, ∂ζG, ∂ζ ∂xG and ∂ζ ∂ζG
exist and are continuous on ] 0, S[ ×R

N × R
N . We also suppose that there exists

ω :] 0,∞[ → R
+ such that, for all L > 0, G and these derivatives are bounded

on ] 0, S[ ×R
N × BL by ω(L).

Let R0 > 0 and R = (2 + K)R0 where K is given by (30). Then there exists
T0 > 0 only depending on (λ, R0, ω) such that, if T = inf(S, T0) and V0 ∈
L∞(RN)N satisfies ||V0||L∞(RN)N � R0, there exists a unique V ∈ Cb(] 0,
T [ ×R

N)N bounded by R and such that

V (t, x) = Kλ(t, ·) ∗ V0(x)+
∫ t

0
∇Kλ(t − s, ·) ∗G(s, ·, V (s, ·))(x) ds. (60)

Moreover, ∂xV ∈ C(] 0, T [ ×R
N)N

2
and ||∂xV ||

Cb(]a,T [×RN)N
2 � Ra−1/λ (for all

a ∈] 0, T [).

Sketch of the proof of Proposition 5. We defineET = {V ∈ Cb(] 0, T [ ×R
N)N |

t1/λ∂xV ∈ Cb(] 0, T [ ×R
N)N

2} and, for V ∈ ET ,�T (V ) as the right-hand side of
(60).

Thanks to (59), the first term Kλ(t, ·) ∗ V0(x) of �T (V ) is continuous in t
uniformly with respect to x. Since for t fixed, it is also continuous in x (it is
the convolution product of an integrable function and a bounded function), it is
continuous in (t, x). The second term of �T (V ) is the convolution product in
R × R

N of the integrable function ∇Kλ(t, x)1]0,T [(t) and the bounded function
G(t, x, V (t, x))1]0,T [(t): it is therefore continuous in (t, x). By Lemma 2 and (30),
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we have ∂x(Kλ(t, ·) ∗ V0)(x) = ∂xKλ(t, ·) ∗ V0(x). Since V ∈ ET , we can differ-
entiate the second term of �T (V ) under the integral sign to obtain

∂x�T (V )(t, x) = ∂xKλ(t, ·) ∗ V0(x)

+
∫ t

0
∇Kλ(t − s, ·) ∗

[
∂xG(s, ·, V (s, ·))

+∂ζG(s, ·, V (s, ·))∂xV (s, ·)
]
(x) ds.

For t0 > 0 and t > 0, we have ∂x(Kλ(t0 + t, ·)∗V0)(x) = Kλ(t, ·)∗ (∂xKλ(t0, ·)∗
V0)(x), which is continuous in (t, x) (same proof as the continuity of Kλ(t, ·) ∗
V0(x)). Hence, the first term of ∂x�T (V ) is continuous on ] 0, T [ ×R

N . The conti-
nuity the second term is proved first by replacing ∂xV (s, ·) with ∂xV (s, ·)1[δ,T [(s)

(since this function is bounded, the continuity is obtained as for the last term of (60)),
and then by letting δ → 0 (the convergence is uniform in (t, x) ∈[ t0, T [ ×R

N for
all t0 > 0).

A simple application of (30) then allows us to prove that for T small enough,
�T is contracting from the ball inET of radiusR into itself, which proves the exis-
tence of a solution to (60) in ET . The uniqueness of the bounded solution comes
from the fact that, if T is small, �T is contracting on the ball in L∞(] 0, T [ ×R

N)

of radius R. ��
The spatial regularity of any weak solution u to (15) is then quite easy. Indeed,

from (29) and the fact that u and ∇u are bounded, we see as in the proof above
that u is continuous on ] 0, T [ ×R

N . Moreover, the gradient of u satisfies (33)
which proves, still using the same technique, that it is continuous. Since (u,∇u) ∈
Cb(] 0, T [ ×R

N), these equations (33) can be written in the form of (60) (with G
taking into account u). Hence, Proposition 5 says that the second spatial derivative
of u is continuous on ] 0, T [ ×R

N and bounded far from t = 0. We can also write
an integral equation satisfied by this second derivative, provided that we begin at
an initial time t0 > 0 instead of 0 — this equation is of the kind (60). An induction
process, using Proposition 5 on the successive equations satisfied by the spatial
derivatives of u, then proves that (20) holds for spatial derivatives (all the regular-
ities and bounds we obtain are local in time, but since the time span on which they
hold is controlled, we also obtain global bounds).

To prove that u is differentiable with respect to t , we first note that if
ϕ ∈ C2

b (R
N), then t �→ Kλ(t, ·) ∗ ϕ(x) is derivable and d

dt
(Kλ(t, ·) ∗ ϕ(x)) =

−gλ[Kλ(t, ·) ∗ ϕ] (x). This is quite obvious on (1) if ϕ ∈ S(RN) and can be
deduced for general ϕ by a density argument (same technique as in the proof of
Proposition 1). With this result, it is possible to derive (29), written at an initial
time t0 > 0 and with initial data u(t0, ·) ∈ C2

b (R
N), with respect to t (to derive the

integral term, we first replace it by
∫ t−δ

0 and then let δ → 0). This proves that u
satisfies (21). The spatial regularity of u and (4) then show that u is also regular in
time.

The proof of (22) is immediate on (29) (the integral term tends to 0 in L∞(RN)
as t → 0, and since u0 is bounded and uniformly continuous and (Kλ(t, ·))t→0 is
an approximate unit, Kλ(t, ·) ∗ u0 → u0 uniformly on R

N as t → 0).
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The uniqueness (i) and existence (iii) in Theorem 4 are straightforward appli-
cations of a contracting fixed point on (29) in the space

{u ∈ L∞(] 0, T [ ×R
N) | ∇u ∈ L∞(] 0, T [ ×R

N)N }
(the uniqueness is first local-in-time, and can then be extented to any time interval
in the same way global uniqueness for ordinary differential equations is proved).
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