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Abstract

We prove that there is an unique convex noncollinear central configuration of
the planar Newtonian four-body problem when two equal masses are located at
opposite vertices of a quadrilateral and, at most, only one of the remaining masses
is larger than the equal masses. Such a central configuration possesses a symmetry
line and it is a kite-shaped quadrilateral. We also show that there is exactly one con-
vex noncollinear central configuration when the opposite masses are equal. Such a
central configuration also possesses a symmetry line and it is a rhombus.

1. Introduction

The Newtonian planar n-body problem is the study of the dynamics of n point
particles with masses mi ∈ R

+ and positions qi ∈ R
2 (i = 1, . . . , n), moving

according to Newton’s laws of motion

mi q̈i = ∂U

∂qi
, (1)

where U (q) is the Newtonian potential

U (q) =
∑

i< j

mi m j

ri j
, (2)

where ri j = ‖qi − q j‖. Let q = (q1, . . . , qn) ∈ R
2n and let M be the matrix

diag[m1,m1,m2,m2 . . . ,mn,mn], then the equations of motion can be written as
follows

q̈ = M−1 ∂U

∂q
. (3)
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To study this problem, without any loss of generality, we can assume the center
of mass is fixed at the origin and consider the space

�n =
{

q = (q1, q2, . . . , qn) ∈ R
2n|

n∑

i=i

mi qi = 0

}
.

Because the potential is singular when two particles have the same position it is
natural to assume that the configuration avoids the set � = ⋃

i≤ j �i j , where

�i j =
{
(q1, q2, . . . , qn) ∈ R

2n|qi = q j

}
.

The set �n \� is called the configuration space.

Definition 1. A configuration q ∈ �n \� is called a central configuration if there
is some constant λ such that

M−1 ∂U

∂q
= λq. (4)

Equation (4) is invariant under rotation, dilatation and reflection on the plane. Two
central configurations are considered equivalent if they are related by these sym-
metry operations.

The question of the existence and classification of central configuration is a
fascinating problem that dates back to the eighteenth century. In 1767, Euler dis-
covered the collinear central configurations. In 1772 Lagrange proved that, for any
three arbitrary masses, the equilateral triangle is a central configuration.

For the collinear n-body problem, an exact count of the central configurations
of n bodies was found by Moulton [11] (see also [12] for a modern proof). There
is an unique collinear relative equilibrium for any ordering of the masses so there
are n/2 collinear equivalence classes.

The number of planar central configurations of the n–body problem for an arbi-
trary given set of positive masses has been estabilished only for n = 3: there are
always five relative equilibria. Two of these are Lagrange’s equilateral triangles and
the other three are collinear central configurations discovered by Euler. Already in
the four-body problem there is sufficient complexity to prevent a complete classifi-
cation of the noncollinear relative equilibria. In fact, an exact count is known only
for the equal masses case [1, 2] and for certain cases where some of the masses are
assumed sufficiently small [14, 17].

Even the finiteness of the central configurations is a very difficult question. This
conjecture was proposed by Chazy [7] and Wintner [16] and was listed by Smale
as problem number 6 on his list of problems for this century [13]. The finiteness
problem was settled by A. Albouy [1, 2] for the case of four equal masses and by
Hampton and Moeckel [8] for the general four-body problem.

Aside from these fundamental results very little else is known in terms of
the classification of central configurations for n ≥ 4. One interesting open prob-
lem concerning the classification of central configuration, recently emphasized by
A. Albouy and Y. Fu [6], is the following: Prove that, in the planar four-body prob-
lem, there is exactly one convex central configuration such that two given masses
are not adjacent (i.e. they are on the same diagonal).
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It is the purpose of this paper to solve this conjecture in two particular cases.
A first step in this direction was done by Y. Long and S. Sun [10]. They proved
that any convex noncollinear convex central configuration with masses δ > α > 0,
such that the diagonal corresponding to the mass α is not shorter than the one cor-
responding to the mass δ, must possess a symmetry and therefore must be a kite.
However in their paper they ask whether there are asymmetric central configura-
tions when the diagonal corresponding to the mass α is shorter than the other one.
We show that this is not possible.

The main result of the paper is an extension of the above result, where we con-
sider that only two of the masses are equal and at most, only one of the remaining
masses is larger than the equal masses. We have the following

Theorem 1. Let q = (q1, q2, q3, q4) ∈ �4 be a convex noncollinear central con-
figuration with masses (δ, δ, α, β) ∈ (R+)4. Suppose that the equal masses are
opposite vertices and that α � δ or β � δ. Then the configuration q must possess
a symmetry, which is unique and forms a kite.

The uniqueness of the kite central configuration in the hypothesis of the above
theorem was proved by E. Leandro in [9]. We therefore have the following

Corollary 1. Under the hypothesis of Theorem 1 there is exactly one central con-
figuration.

In particular, in the case α = β we prove the following

Theorem 2. Let q = (q1, q2, q3, q4) ∈ �4 be a convex noncollinear central con-
figuration with masses (δ, δ, α, α) ∈ (R+)4. Suppose that the equal masses are
opposite vertices then the configuration q must possess a symmetry and forms a
rhombus.

This theorem completely answers the question of Y. Long and S. Sun [10].
The uniqueness of the rhombus central configuration in the hypothesis of the above
theorem, is easy to prove (see for example [10] for a simple proof). We therefore
have the following

Corollary 2. Under the hypothesis of Theorem 2 there is exactly one central con-
figuration.

In the next section we give some basic results and settings. In Section 3 we
prove Theorem 1. In Section 4 we prove Theorem 2. In the Appendix we list differ-
ent ways to write the equations of the balanced configurations of A. Albouy and
A. Chenciner [5].

2. Preliminaries

Firstly observe that if (q1, q2, q3, q4) ∈ �4 is a central configuration with
parameter λ and positive masses (m1,m2,m3,m4) then, for every n−1/3(q1, q2,

q3, q4) ∈ �4 is the same central configuration with masses n−1(m1,m2,m3,m4)
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Fig. 1. A convex configuration of four masses

and the same value of λ. So, without loss of generality we suppose δ = 1, and we
consider the planar four-body problem with masses

m1 = m2 = 1, m3 = α, m4 = β.

In this paper we use Dziobeck coordinates, that are described below (see [1]
and [10] for more details). Let

a = r2
12, b = r2

13, c = r2
14, d = r2

23, e = r2
24, f = r2

34.

For 1 � i � 4 let |�i | be the area of the sub-triangle formed by the remaining
three vertices of the configuration q when deleting the point qi . As in [10], we define
the oriented areas of these sub-triangles of the convex noncollinear configuration
q by

�1 = −|�1|, �2 = −|�2|, �3 = |�3|, �4 = |�4|
when the masses are opposite vertices of a quadrilateral. The �i above satisfy the
equation

�1 +�2 +�3 +�4 = 0. (5)

The Cayley determinant

S =

∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 a b c
1 a 0 d e
1 b d 0 f
1 c d f 0

∣∣∣∣∣∣∣∣∣∣

(6)

satisfies S = 0. In 1900, Dziobek proved that

∂S

∂r2
i j

= 32�i� j ∀i �= j. (7)

Let ψ(s) = s−1/2 for s > 0. Then the potential function and the moment of inertia
are given by

U =
∑

1≤i< j≤4

mi m jψr2
i j (8)



Central Configurations of the Four Body Problem 485

and

I = 1

m′
∑

1�i< j�4

mi m jr
2
i j (9)

respectively, where m′ = ∑4
i=1 mi . Using Lagrange multipliers, Dziobek charac-

terized the central configurations of four bodies as the extrema of

U − λS − µ(I − I0)

as a function of λ,µ, r12, . . . , r34, where λ and µ are Lagrange multipliers and I0
is a fixed moment of inertia. Thus, for any i, j with 1 � i < j � 4, the central
configurations satisfy

∂U

∂r2
i j

= λ
∂S

∂r2
i j

+ µ
∂ I

∂r2
i j

, (10)

and from (8), we also have

∂U

∂r2
i j

= mi m jψ
′ (r2

i j

)
,

where ψ ′(s) denotes the derivative of the function ψ(s) with respect to s and

∂ I

∂r2
i j

= mi m j

m′ .

Consequently, equation (10) becomes

mi m jψ
′(r2

i j ) = 32λ�i� j + mi m jµ

m′ . (11)

Therefore, using our mass convention, the equations for the central configurations
are:

ψ ′(r2
12) = ν�1�2 + ξ (12a)

ψ ′(r2
13) = ν

α
�1�3 + ξ (12b)

ψ ′(r2
14) = ν

β
�1�4 + ξ (12c)

ψ ′(r2
23) = ν

α
�2�3 + ξ (12d)

ψ ′(r2
24) = ν

β
�2�4 + ξ (12e)

ψ ′(r2
34) = ν

αβ
�3�4 + ξ, (12f)

where ν = 32λ and ξ = µ
m′ . Moreover, there are implicit relations between the r2

i j
and the �i :

tk =
4∑

i=1

�i r
2
ik, t1 = t2 = t3 = t4. (13)

Using the implicit relations above we can prove the following two lemmas due to
A. Albouy [4].
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Lemma 1. For a central configuration, the corresponding ν in the equations (12a)–
(12f) is positive.

Lemma 2. The following inequality holds:
(
�i

mi
− � j

m j

)
(�i −� j ) � 0. (14)

Consequently �i > � j if and only if �i
mi
>

� j
m j

.

We now prove Lemma 1 and Lemma 2. From (13) we deduce

0 = ti − t j = r2
i j (� j −�i )+

∑

k

�k

(
r2

ik − r2
jk

)

and

0 =
(
�i

mi
− � j

m j

)
(� j −�i )r

2
i j + mk

∑

k

(
�i�k

mi mk
− � j�k

m j mk

) (
r2

ik − r2
jk

)
.

Using equation (11) we get

0 =
(
�i

mi
− � j

m j

) (
� j −�i

)
r2

i j + mk

32λ

∑

k

(
ψ ′ (r2

ik

)
− ψ ′ (r2

jk

)) (
r2

ik − r2
jk

)
.

Since ψ ′(s) is a monotone increasing function of s
(
ψ ′ (r2

ik

) − ψ ′
(

r2
jk

))

(
r2

ik − r2
jk

)
� 0. Thus

λ

(
�i

mi
− � j

m j

)
(�i −� j ) � 0.

Let us choose the index i corresponding to the smallest �i , and j corresponding
to the greatest� j . We have�i < 0 < � j , because

∑
�k = 0. Moreover if λ = 0

all the edges are equal but this is geometrically impossible, thus λ > 0, ν > 0. This
concludes Lemma 1. Moreover for any i, j

(
�i

mi
− � j

m j

)
(�i −� j ) ≥ 0.

This concludes the proof of Lemma 2.

Let
A = ψ ′(a), B = ψ ′(b), . . . , F = ψ ′( f ). (15)

From (13) one can extract some weaker identities

Qi jk =

∣∣∣∣∣∣∣

1 1 1
ti t j tk
�i
mi

� j
m j

�k
mk

∣∣∣∣∣∣∣
= 0. (16)

Of course Qi jk = 0 if ti = t j = tk . But if all the Qi jk are zero one can only deduce
that ti = η�i/mi +δ for some (η, δ) ∈ R

2 and for all i . For the four-body problem
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equations (16), using the fact that �1 + �2 + �3 + �4 = 0, after some tedious
computations we obtain

∣∣∣∣∣∣

1 1 1
f − e − d α(e − d − f ) β(d − f − e)

F E D

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 1 1
a + f b + e c + d

A B C

∣∣∣∣∣∣
(17)

∣∣∣∣∣∣

1 1 1
f − c − b β(b − f − c) α(c − b − f )

F B C

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 1 1
a + f b + e c + d

A E D

∣∣∣∣∣∣
(18)

∣∣∣∣∣∣

1 1 1
β(a − e − e) e − c − a c − a − e

A E C

∣∣∣∣∣∣
= α

∣∣∣∣∣∣

1 1 1
a + f b + e c + d

F B D

∣∣∣∣∣∣
(19)

∣∣∣∣∣∣

1 1 1
α(a − d − b) b − a − d d − b − a

A B D

∣∣∣∣∣∣
= β

∣∣∣∣∣∣

1 1 1
a + f b + e c + d

F E C

∣∣∣∣∣∣
(20)

These are the equations of the balanced configurations (configuration équi-
librée) due to A. Albouy and A. Chenciner [5]. In the Appendix we present other
ways to write the above identities.

Observe that the determinant

d(u, v, w; U, V,W ) =
∣∣∣∣∣∣

1 1 1
u v w

U V W

∣∣∣∣∣∣
(21)

has a beautiful geometrical interpretation. In fact d(u, v, w; U, V,W ) is the ori-
ented area of the triangle of vertices (u,U ), (v, V ), (w,W ) (see [15]) where the
sign is determined by the following Lemma.

Lemma 3. Let

V ′ = v − w

u − w
U + u − v

u − w
W.

i. The following holds:

d(u, v, w; U, V,W ) = (u − w)(V − V ′).

ii. The determinant d(u, v, w; U, V,W ) > 0 provided u > v > w and V > V ′,
i.e. the point (v, V ) is located strictly above the line passing through (w,W )

and (u,U ).
iii. The determinant d(u, v, w; U, V,W ) < 0 provided u > v > w and V < V ′,

i.e. the point (v, V ) is located strictly below the line passing through (w,W )

and (u,U ).
iv. Let g : (0,+∞) → (0,∞) be a strictly concave function. Suppose u > v > w.

Then d(u, v, w, g(u), g(v), g(w)) > 0.

Lemma 3 will be useful in proving the main results of this paper. A proof can be
found in [10].
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3. Proof of Theorem 1

Observe that, in order to have symmetry, under the hypothesis of Theorem 1
the following inequality must hold

�1 = �2. (22)

Note that�3/α = �4/β or�3 = �4 only if one is in symmetric configuration
with α = β (see [3, 4] for more details). In this section we assume β �= α. To show
that a configuration is symmetric, i.e. that (22) holds, we can assume that

�1 �= �2 and �3 �= �4.

We then derive a contradiction, which is the strategy of the proof. If we assume
�1 �= �2 and �3 �= �4 we have four cases

(a) �1 < �2 < 0 < �3 < �4

(b) �2 < �1 < 0 < �3 < �4

(c) �1 < �2 < 0 < �4 < �3

(d) �2 < �1 < 0 < �4 < �3.

(23)

Moreover the mutual distances satisfy some geometrical inequalities. We have
then

Lemma 4. The following inequalities hold

c < min{b, e} � max{b, e} < d < min{a, f } � max{a, f } (24a)

e < min{c, d} � max{c, d} < b < min{a, f } � max{a, f } (24b)

b < min{c, d} � max{c, d} < e < min{a, f } � max{a, f } (24c)

d < min{b, e} � max{b, e} < c < min{a, f } � max{a, f } (24d)

in the cases a,b,c and d respectively.

Proof. We prove (24a) and the other cases are similar. Case (a) has 3 possible
subcases.

Subcase 1. �1 +�4 = 0. In this case, by equation (5) we obtain

�1 = −�4, �2 = −�3.

Thus we have

�1�4 < �1�3 = �2�4 < �2�3 < 0 < �1�2 = �3�4.

Moreover by Lemma 1 and Lemma 2 we have

ν

β
�1�4 < min

{
ν

α
�1�3,

ν

β
�2�4

}
� max

{
ν

α
�1�3,

ν

β
�2�4

}

<
ν

α
�2�3 < 0 < ν�1�2 <

ν

αβ
�3�4.

Therefore by equations (12a)–(12f) and the monotonicity of ψ ′(s) we have

c < min{b, e} � max{b, e} < d < a < f. (25)
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Subcase 2. �1 +�4 < 0.
In this case, by equation (5) we have �2 +�3 > 0. Using equation (5) yields

�2�4 −�1�3 = �2�4 +�1(�1 +�2 +�4)

= (�2 +�1)(�4 +�1) > 0.

Similarly

�3�4 −�1�2 = �3�4 +�1(�2 +�3 +�4)

= (�1 +�3)(�1 +�4) > 0 (26)

since�1 +�4 < 0 together with�1 < �2 < 0 < �3 < �4 implies�1 +�3 < 0.
Consequently we have

�1�4 < �1�3 < �2�4 < �2�3 < 0 < �1�2 < �3�4

and using Lemma 1 and Lemma 2 we obtain

ν

β
�1�4 < min

{
ν

α
�1�3,

ν

β
�2�4

}
� max

{
ν

α
�1�3,

ν

β
�2�4

}

<
ν

α
�2�3 < 0 < ν�1�2 <

ν

αβ
�3�4.

Thus, as in Subcase 1, we get

c < min{b, e} � max{b, e} < d < a < f. (27)

Subcase 3. �1 +�4 > 0.
In this case equation (5) implies that �2 +�3 < 0. Hence

�2�4 −�1�3 = (�2 +�1)(�4 +�1) < 0

and

�1�4 < �2�4 < �1�3 < �2�3.

Using Lemma 1 and Lemma 2 we find

ν

β
�1�4 < min

{
ν

α
�1�3,

ν

β
�2�4

}
� max

{
ν

α
�1�3,

ν

β
�2�4

}′

<
ν

α
�2�3 < 0 < ν�1�2

and thus

c < min{b, e} � max{b, e} < d < min{a, f } � max{a, f }.
Therefore, in all three subcases inequality (24a) holds. This concludes the proof of
the Lemma. 
�
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We can now continue the proof of Theorem 1. From (20), using the fundamental
properties of the determinants, we deduce

(α+1)

∣∣∣∣∣∣

1 1 1
a b d
A B D

∣∣∣∣∣∣
−(α−1)[A(d−b)+bB−d D] = β

∣∣∣∣∣∣

1 1 1
f e c
F E C

∣∣∣∣∣∣
+β

∣∣∣∣∣∣

1 1 1
a b d
F E C

∣∣∣∣∣∣
. (28)

Now consider the cases (a) and (c). Then, by equation (24a) and (24c), Lemma
3 (2) and the concavity of the function ψ ′(s), we obtain

∣∣∣∣∣∣

1 1 1
a b d
A B D

∣∣∣∣∣∣
< 0,

∣∣∣∣∣∣

1 1 1
f e c
F E C

∣∣∣∣∣∣
> 0,

∣∣∣∣∣∣

1 1 1
a b d
F E C

∣∣∣∣∣∣
> 0. (29)

We also have that d − b > 0, A < 0 and bB − d D < 0 since

bB − d D = 1

2

(√
b − √

d√
bd

)
< 0.

Consequently −(α − 1)[A(d − b)+ bB − d D] < 0 when 0 < α � 1 and the
left-hand side of (28) is negative. This produces a contradiction since the right-hand
side of (28) is positive for any value of β > 0.

In the cases (b) and (d) we have
∣∣∣∣∣∣

1 1 1
a b d
A B D

∣∣∣∣∣∣
> 0,

∣∣∣∣∣∣

1 1 1
f e c
F E C

∣∣∣∣∣∣
< 0,

∣∣∣∣∣∣

1 1 1
a b d
F E C

∣∣∣∣∣∣
< 0. (30)

We also have that d − b < 0, A < 0 and bB − d D > 0.
Consequently −(α − 1)[A(d − b) + bB − d D] > 0 when 0 < α � 1 and

the left-hand side of (28) is positive for any value of β > 0. This produces a
contradiction since the right-hand side of (28) is negative.

From (19), using the fundamental properties of the determinants we deduce

(β+1)

∣∣∣∣∣∣

1 1 1
a e c
A E C

∣∣∣∣∣∣
−(β−1)[A(c−e)+eE −cC] = α

∣∣∣∣∣∣

1 1 1
a e c
F B D

∣∣∣∣∣∣
+α

∣∣∣∣∣∣

1 1 1
f b d
F B D

∣∣∣∣∣∣
. (31)

Now consider the cases (a) and (c). Then we find
∣∣∣∣∣∣

1 1 1
a e c
A E C

∣∣∣∣∣∣
> 0,

∣∣∣∣∣∣

1 1 1
a e c
F B D

∣∣∣∣∣∣
< 0,

∣∣∣∣∣∣

1 1 1
f b d
F B D

∣∣∣∣∣∣
< 0. (32)

We also have that c − e < 0, A < 0 and eE − cC > 0 since

eE − cC = 1

2

(√
e − √

c√
ec

)
> 0.
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Consequently −(β−1)[A(c−e)+eE −cC] > 0 when 0 < β � 1 and the left-
hand side of (28) is negative for any value of α > 0. This produces a contradiction
since the right-hand side of (28) is positive.

In the cases (b) and (d) we have
∣∣∣∣∣∣

1 1 1
a e c
A E C

∣∣∣∣∣∣
< 0,

∣∣∣∣∣∣

1 1 1
a e c
F B D

∣∣∣∣∣∣
> 0,

∣∣∣∣∣∣

1 1 1
f b d
F B D

∣∣∣∣∣∣
> 0. (33)

We also have that c − e > 0, A < 0 and eE − cC < 0.
Consequently −(β−1)[A(c−e)+eE −cC] > 0 when 0 < β � 1 and the left-

hand side of (31) is negative for any value of α > 0. This produces a contradiction
since the right-hand side of (31) is positive.

This proves that�1 = �2 and thus it shows the existence of a line of symmetry.
We now show that the configuration must be a kite.

Lemma 5. If �1 = �2 the quadrilateral q is a kite.

Proof. By equations (12a)–(12f) of the central configurations we have

ψ ′(r2
13) = ν

α
�1�3 + ξ = ν

α
�2�3 + ξ = ψ ′(r2

23). (34)

Since ψ ′(s) is a monotone increasing function of s we obtain

r13 = r23. (35)

Similarly

ψ ′(r2
14) = ν

β
�1�4 + ξ = ν

β
�2�4 + ξ = ψ ′(r2

24) (36)

and thus
r14 = r24. (37)

Therefore the quadrilateral is a kite.

This concludes the proof of Theorem 1. 
�

4. Proof of Theorem 2

In this case β = α. Observe that, in order to prove Theorem 2 it is enough to
study the case 0 < α � δ = 1 (in fact the case α � δ = 1 can be obtained from
the previous one just by renaming the masses).

In order to prove the existence of a line of symmetry in the configuration under
consideration in this paper, we need to have either �1 = �2 or �3 = �4. As in
Theorem 1 we can assume that�1 �= �2 and�3 �= �4 and prove the existence of
the line of symmetry by contradiction. Even in this case one may obtain the four
cases in equation (23) and Lemma 4 holds.

The reminder of the proof follows directly from the one of Theorem 1 with
β = α, since as observed above one needs only to consider the case α � 1.
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The main reason to include this result as a theorem is firstly, that it completely
answers the question formulated by Y. Long and S. Sun in [10], and secondly,
that it is not obvious from the equations of the balanced configurations, or from
Dziobek equations that the kite central configuration obtained using Theorem 1 is
a rhombus, but it follows from the uniqueness of the rhombus central configuration
and a result by E. Leandro [9] that can be summarized as follows.

Lemma 6. For any α > 0 and β > 0, there exists a unique central configuration
q = (q1, q2, q3, q4) with masses (1, 1, α, β) where q1 and q2 as well as q3 and q4
are located at the opposite vertices of a kite shaped quadrilateral.

This concludes the proof of Theorem 2. 
�

Appendix

From (17)–(20), using the fundamental properties of the determinants we de-
duce the following identities

−(1 − α)( f − e − d)(D − E)

+(β − α)(d − f − e)(F − E)+ 2α

∣∣∣∣∣∣

1 1 1
f e d
F E D

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 1 1
a b c
A B C

∣∣∣∣∣∣
+

∣∣∣∣∣∣

1 1 1
f e d
A B C

∣∣∣∣∣∣
. (38)

−(1 − α)( f − c − b)(C − B)

+(β − α)(b − f − c)(C − F)+ 2α

∣∣∣∣∣∣

1 1 1
f b c
F B C

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 1 1
a e d
A E D

∣∣∣∣∣∣
+

∣∣∣∣∣∣

1 1 1
f b c
A E D

∣∣∣∣∣∣
. (39)

−(β − 1)(a − e − c)(C − E)+ 2

∣∣∣∣∣∣

1 1 1
a e c
A E C

∣∣∣∣∣∣
= α

∣∣∣∣∣∣

1 1 1
a e c
F B D

∣∣∣∣∣∣
+ α

∣∣∣∣∣∣

1 1 1
f b d
F B D

∣∣∣∣∣∣
, (40)

−(α − 1)(a − d − b)(D − B)+ 2

∣∣∣∣∣∣

1 1 1
a b d
A B D

∣∣∣∣∣∣
= β

∣∣∣∣∣∣

1 1 1
f e c
F E C

∣∣∣∣∣∣
+ β

∣∣∣∣∣∣

1 1 1
a b d
F E C

∣∣∣∣∣∣
. (41)

Note that if β = α the identities above reduce to the expression of the balanced
configurations used in [10].

The equation of the balanced configurations can also be written in a different
way that seems to be useful in certain problems (for example to prove the main
result of this paper, Theorem 1). From (17–20) we find

(1 + β)

∣∣∣∣∣∣

1 1 1
f e d
F E D

∣∣∣∣∣∣
− (1 − α)[F(d − e)+ eE − d D]

− (β − α)[D(e − f )+ f F − eE] =
∣∣∣∣∣∣

1 1 1
a b c
A B C

∣∣∣∣∣∣
+

∣∣∣∣∣∣

1 1 1
f e d
A B C

∣∣∣∣∣∣
.

(42)
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(β + 1)

∣∣∣∣∣∣

1 1 1
f b c
F B C

∣∣∣∣∣∣
− (1 − α)[F(c − b)+ bB − cC]

− (β − α)[B( f − c)+ cC − f F] =
∣∣∣∣∣∣

1 1 1
a e d
A E D

∣∣∣∣∣∣
+

∣∣∣∣∣∣

1 1 1
f b c
A E D

∣∣∣∣∣∣
.

(43)

(β+1)

∣∣∣∣∣∣

1 1 1
a e c
A E C

∣∣∣∣∣∣
−(β−1)[A(c−e)+eE−cC] = α

∣∣∣∣∣∣

1 1 1
a e c
F B D

∣∣∣∣∣∣
+α

∣∣∣∣∣∣

1 1 1
f b d
F B D

∣∣∣∣∣∣
, (44)

(α+1)

∣∣∣∣∣∣

1 1 1
a b d
A B D

∣∣∣∣∣∣
−(α−1)[A(d−b)+bB−d D] = β

∣∣∣∣∣∣

1 1 1
f e c
F E C

∣∣∣∣∣∣
+β

∣∣∣∣∣∣

1 1 1
a b d
F E C

∣∣∣∣∣∣
. (45)
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