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Abstract

I develop a variational principle introduced in [2] for electromagnetic elastic
bodies and discuss its consequences. Formulae for stress tensors and configurational
stresses are derived by energy minimization.

1. Introduction

As an alternative to Toupin’s [1] theory of elastic dielectrics, I [2] sketched one
based on a different proposal for the energy function. Mine is more complicated and
less conventional, inducing me to express doubts about whether others would find
it useful. However, after thinking more about it, I concluded that it has an important
advantage. I was swayed by a remark made by Brown [3, p. 78] in discussing a
similar theory for magnetism, viz.

“Toupin [1] and Tiersten [2] were interested only in equilibrium conditions
(or equations of motion), not in stability tests; they therefore paid no attention to
whether their stationarity conditions represent a minimum, a maximum, or some-
thing else.”

From other remarks he made, I infer that he thought “something else” is the cor-
rect interpretation and I agree. Certainly, for nonlinear theory, stability tests based
on energy minimization can be very useful. I think that the theory I [2] sketched
is more appropriate in this respect, so I will develop it here. Of course, we cannot
expect ideas of minimum energy to apply to all loading devices, etc. I will limit the
discussion to one kind of situation to which I expect it to apply. Alone in the uni-
verse are two entities, an elastic dielectric occupying a bounded region �B that can
be varied a little and some device producing an electric field to act on the dielectric.
Generally, an electric field in a dielectric extends as a self-field throughout space,
so we should be interested in minimizing energy in E3 all of Euclidean 3-space.
The usual view is that it is the exterior self-field of something else that is effective
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in interacting with the dielectric. It will become clear that familiar conditions for
minima in the calculus of variations almost determine the form of stress tensors,
configurational stresses, magnetic body forces etc., something that some workers
seem not to fully appreciate.

2. Preliminary considerations

First, we have the basic equations of electromagnetism. I use the conventions
presented by Truesdell and Toupin [4, Ch. F], including Lorentz’ assumption
that the aether relations

B = μ0H, D = ε0E (2.1)

hold in matter as well as vacuum, when both free and bound charges and currents
are properly accounted for. Here, ε0 and μ0 are positive constants that depend on
the system of units used. Along with this, we have Maxwell’s equations

∇ ∧ H − ∂D
∂t

= J, (2.2)

∇ · D = Q, (2.3)
∂B
∂t

+ ∇ ∧ E = 0, (2.4)

∇ · B = 0, (2.5)

where Q is the charge per unit volume, J the current, basic things that we make
assumptions about. As an implication of these, we get the well-known energy equa-
tion as

H · ∂B
∂t

+ E · ∂D
∂t

= −∇ · (E ∧ H) − J · E (2.6)

and, with (2.1), this motivates the introduction of a field energy eF per unit volume as

eF = |B|2
2μ0

+ |D|2
2ε0

, H = ∂eF

∂B
, E = ∂eF

∂D
. (2.7)

Obviously, this is bounded below, being nonnegative. For a static theory of dielec-
trics, J = 0 and Q = −∇ · p, where p is the polarization vector. The usual
assumptions are that

B = H = 0, D = ε0E = d − p, ∇ · d = 0, E = −∇ϕ, (2.8)

where ϕ is the electrostatic potential. This excludes the possibility that free charges
might get into the dielectric, a possibility that is sometimes considered. For fields
associated with the dielectric, these equations apply throughout space, with p = 0
in the region �E = E3\�B exterior to the material body, where these fields are
devoid of singularities. Henceforth, quantities associated with the dielectric will be
denoted by an overbar. So, for this part of the energy,

ēF = |D̄|2
2ε0

= |d̄ − p̄|2
2ε0

. (2.9)
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Since we are concerned with fields throughout E3, we require that all fields con-
sidered satisfy

Edef
F =

∫

E3

eF dv < ∞. (2.10)

Also in the picture is some device, producing a static electric field to act on the
dielectric. Quantities associated with this will be distinguished by carets. I accept the
common assumption that the presence of the dielectric does not alter this, although
I think that this deserves careful scrutiny. For simplicity, I assume that the device
is not in physical contact with the dielectric. Exceptions such as capacitors deserve
special consideration. Then, what is important for interaction with the dielectric is
the electric field in �B and, apart from this, I wish to say as little as possible about
the device. Evaluating the quadratic field energy for the combined field gives

EF = ÊF + E F +
∫

E3

D · D̂
ε0

dv. (2.11)

With the external fields considered as fixed, the first term on the right just contrib-
utes an unimportant constant, so I discard it. Using (2.1), (2.8) and bearing in mind
(2.4), the last term takes the form∫

�B

(d − p) · Ê dv +
∫

�E

d · Ê dv, ∇ ∧ Ê = 0, (2.12)

wherein the first integral is useful, but we would like to dispose of the second. In
[2], I did not deal with fields in �E . At least in the union of the variable regions
�B and on ∂�B , we make the usual assumption that Ê is given as a smooth field,
satisfying the vacuum equations

Ê = −∇ϕ̂, ∇2ϕ̂ = 0, d̂ = ε0Ê. (2.13)

Elsewhere, it should be at least a weak solution of (2.12)2 typically suffering jump
discontinuities on one or more surfaces. When I call fields smooth, I mean that they
are at least smooth enough to qualify as classical solutions of the related equations.
For example, B, d̄ and p̄ are smooth if they are at least continuously differentiable.
To proceed, we need to present some theory.

3. Energetics

At least as weak solutions, fields d̄ to be considered are to satisfy

∇ · d̄ = 0. (3.1)

To this end, I introduce the vector potentials

d̄ = ∇ ∧ A, A → 0 at ∞. (3.2)
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This is subject to the usual gauge transformations

A → A + ∇χ. (3.3)

I will be using the calculus of variations, so the set of these fields will be broader
than those occurring as equilibrium fields, but they will be taken as smooth in �E .
Instead of using the last equation in (2.8), I will use

∇ ∧ (d − p) = 0∇ ∧ (∇ ∧ A) = ∇2A − ∇∇ · A = ∇ ∧ p. (3.4)

With this, we can use a gauge condition, a convenient one being

∇ · A = 0. (3.5)

Here, I will not consider using (3.5) until I cover matters of gauge invariance. First,
consider the unwanted integral in (2.12), now written as

∫

�E

Ê · ∇ ∧ A dv. (3.6)

Suppose that Ê is smooth except on some surface
∑

, with unit normal n, where
it suffers a jump discontinuity. Workers analyzing this would impose the standard
jump condition

[
Ê

]
= αn, (3.7)

where the square brackets denote the jump and α is some scalar, as well as assuming
that

∇ ∧ Ê = 0 (3.8)

except on
∑

. By an elementary calculation,

Ê · ∇ ∧ A = ∇ · (A ∧ Ê) + A · ∇ ∧ Ê. (3.9)

Integrate this over �E , use (3.7), (3.8), the divergence theorem and assume that
A ∧ Ê → 0 sufficiently fast at ∞, to get

∫

�E

Ê · ∇ ∧ A dv = −
∫

∂�B

A ∧ Ê · dS, (3.10)

where dS denotes the vector element of area, taken outward with respect to �B , not
�E . Obviously, we would get the same result if we replaced

∑
by a finite number

of such discontinuity surfaces. This is my plausibility argument for replacing the
left side of (3.10) by the right. So, if we keep this in mind, we can take the field
energy as

EF =
∫

�E

|d|2
2ε0

dv +
∫

�B

(d − p) · Ê dv. (3.11)
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Then, in �B , we need a contribution covering elastic deformation. Introduce the
usual reference configuration occupying a fixed region �R , referred to material
coordinates Xα . When I use coordinates, interpret them as rectangular Cartesian.
Instead of describing deformations as mappings of �R onto �B, I use the inverse
mappings, given by functions of the form

Xα = Xα(xi ), (3.12)

where the xi are spatial coordinates. This is because forms of the electromagnetic
equations are referred to these. As a general rule, the theory of material symmetry
can be borrowed from elasticity theory, in the common cases where, in equilibrium,
p̄ = 0 in the absence of external fields. Dealing with exceptions such as those that
occur in ferroelectric materials can be tricky to deal with properly. Later, I will
relate this format to the more conventional one used by Toupin. So, the range of
this is fixed, but the domain is not given. I will only deal with homogeneous mate-
rials, referred to homogeneous reference configurations. For the remaining energy
function eM I use the equivalent of that employed by Toupin,

eM = eM (p̄,∇X) in �B,= 0 in �E , (3.13)

to be invariant under rotations,

eM (Rp, R∇X) = eM (p,∇X), R ∈ SO(3). (3.14)

Copying the argument used by Toupin gives an identity

∂eM

∂ pi
p j + ∂eM

∂ Xα
,i

Xα
, j = ∂eM

∂ p j
pi + ∂eM

∂ Xα
, j

Xα
,i , (3.15)

equivalent to one he deduces. The total energy can then be put in the form

E =
∫

�E

eF dv +
∫

�B

(eF + eM ) dv, (3.16)

where

eF = eF (∇A, p, Ê) = |d − p|2
2ε0

+ (d − p) · Ê with d = ∇ ∧ A in �B . (3.17)

In �E , recalling (3.10), use this with p̄ = 0, d̄ · Ê = 0. For this, a calculation gives
the analogue of (3.15) as

ri j = ∂eF

∂ pi
p j + ∂eF

∂ Êi
Ê j + ∂eF

∂ Ak,i
(Ak, j − A j,k) = r ji . (3.18)

Bear in mind that I am not considering possible mechanical loading devices,
although I will cover the possibility of restraining all or part of �B from moving
freely. Under these conditions, it seems to me reasonable to use minimization of E
as a way of defining stable equilibria, acknowledging that, for minimizers to exist, it
will at least be necessary to impose some restrictions on the function eM . I will not
rehash results in the calculus of variations that are of some help in assessing this.
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4. A variational treatment

Here, we use the calculus of variations to get various equations and jump con-
ditions that, at least naively, should be satisfied by energy minimizers. Largely, this
is a matter of showing how familiar results are obtained by less familiar reasoning.
Prescription of forces and couples in material bodies subject to electromagnetic
effects has long been a controversial matter, so I will not even mention them again
until I have in hand the relevant equations. Let us consider special kinds of varia-
tions of E , as described in (3.13), (3.16) and (3.17). In crystals, interior surfaces of
discontinuity are rather common, for example those associated with twins.

First, as generally interpreted, ∇ · d̄ = 0 includes the condition that, at a surface
of jump discontinuity, d̄ · n be continuous. To cover this, assume that A is contin-
uous, with jumps in its first derivatives. With square brackets denoting jumps, the
usual conditions of compatibility give

[
Ai, j

] = ai n j ⇒ [
d̄
] = [∇ ∧ A] = n ∧ a (4.1)

for some vector a. With this, we can evaluate the right side of (3.10) on either side
of ∂�B and I will use it on the interior side.

Varying only p̄, with δp̄ taken as an arbitrary smooth function of position and
setting the variation equal to zero gives the equation

− (d − p)

ε0
− Ê + ∂eM

∂p
= 0,

∂e

∂p
= 0 in �B, (4.2)

which, with (2.7)3 is equivalent to an equation deduced by Toupin,

E = Ē + Ê = ∂eM

∂p̄
. (4.3)

Here is where effective interaction between Ê and the dielectric occurs. Next, vary-
ing only A with δA any smooth function gives
∫

�E

∇ ∧ A
ε0

· ∇ ∧ δA dv+
∫

�B

(∇ ∧ A−p
ε0

+Ê
)

· ∇ ∧ δA dv −
∫

∂�B

δA · (Ê ∧ dS)= 0,

(4.4)

the last term coming from (3.10). We could take this as a definition of weak solutions
of an equation for A but, later, I will give a simpler proposal for this. To make equa-
tions to be deduced better match familiar equations in the calculus of variations, I
will use ∫

E3

∂eF

∂Ai, j
δAi, j dv −

∫

∂�B

δA ·
(

Ê ∧ dS
)

= 0. (4.5)

I note that

∂eF

∂ Ai, j
= ∂eF

∂dk
εk ji =

(∇ ∧ A − p
ε0

+ Ê
)

k
εk ji in �B, (4.6)
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this with p̄ = 0 and, because of (3.10), with Ê replaced by 0 in �E. From this and
(2.13), it follows that

∇ ·
(

∂eF

∂A

)
= 0 (3.4). (4.7)

By the traditional manipulations (4.5) gives this except at singularities. If
∑

is a
surface of jump discontinuity in �B dividing it into two parts, we get the usual
jump condition [

∂eF

∂∇A

]
dS = 0. (4.8)

In (4.7) and (4.8), the contribution from Ê drops out, since this is continuous and
(2.13) holds. It also drops out in the analogue for ∂�B because of the last term in
(4.5). Conditions of this kind are also called corner conditions. In either case, (4.8)
reduces to [∇ ∧ A − p

ε0

]
∧ n = [E] ∧ n = 0, (4.9)

where n is the unit normal, the usual jump condition for electric fields. Also, with
(4.1), we get the other standard condition for Ē as

[
ε0Ē + p̄

] · n = 0. (4.10)

I note that, with our assumption that A is continuous at jump discontinuities, d̄ · Ê
contributes nothing to equilibrium equations or jump conditions, leading me to

replace eF by ẽF = |∇ ∧ A − p|2
2ε0

− p · Ê (4.11)

and

e by ẽ = ẽF + eM . (4.12)

With this, (4.4) reduces to my proposal for a definition of weak solutions of (3.4) as
∫

�E

∇ ∧ A
ε0

· ∇ ∧ δA dv +
∫

�B

(
(∇ ∧ A − p)

ε0

)
· ∇ ∧ δA dv = 0 (4.13)

for smooth fields δA. A useful result can be obtained as follows. Using the fact that
∇ ∧ Ē = 0 except at singularities, we have

d̄ · Ē = (∇ ∧ A) · Ē = ∇ · (
A ∧ Ē

)
. (4.14)

Integrate this over E3 and use the divergence theorem. At a surface of jump discon-
tinuity, with A continuous and (4.9), A∧ Ē ·n is continuous. Assuming A∧ Ē → 0
fast enough at ∞ this gives∫

E3

d · E dv =
∫

E3

(
ε0E + p

) · Edv = 0 (4.15)
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or

ε0

∫

E3

|E|2dv = −
∫

�B

p · E dv. (4.16)

Note that, in this, we did not enforce (4.3). In fact, there seems to be no easy way of
enforcing it. My theory is set up so that we could minimize energy without assuming
it holds. There is another interesting result. It is common to introduce self-fields for
dielectrics, by thinking of p̄ as some definite function of position. With likely pre-
scriptions of constitutive equations, the expectation is that we can use the equations
and jump conditions now determined to calculate self-fields Ē = ES and d̄ = d̄S =
∇ ∧ AS . Add to the latter a field ∇ ∧ δA where this need not be regarded as a vari-
ation, but is, like the δA in (4.3), smooth everywhere. Now calculate the total field
energy for the sum of these fields, denoted by E . Expand this, use (4.13) and you get

Ẽ = ES(AS) +
∫

E3

|∇ ∧ δA|2
2ε0

dv � ES(AS), (4.17)

where ES(AS) is the self-field energy, the equality holding only if ∇ ∧ δA = 0.
Then there are equations involving eM , obtained by varying X. Here, we must

account for the fact that X is restricted to the fixed region �R and that points on ∂�B

correspond to points on its boundary. As before, I will allow jump discontinuities
on an interior surface

∑
and on ∂�B . Formally, such variations give

∫

�B

∂eM

∂ Xα
,i

δXα
,i dv = −

∫

�B

(
∂eM

∂ Xα
,i

)

,i

δXαdv

+
∫

	

[
∂eM

∂ Xα
,i

]
δXαd Si +

∫

�B

∂eM

∂ Xα
δXαd Si (4.18)

where δXα is subject to some restrictions. This can be thought of as varying the
deformation, so a material particle at x gets replaced by a different one. Generally,
the surface

∑
need not be a material surface, so we can let matter on one side

move to the other, as long as mass is conserved. With the usual assumptions of
elasticity theory, the present mass density ρ and the fixed reference mass density
ρR are related by

ρ = ρR J, J = |det∇X|, (4.19)

so ∫

�B

ρ

ρR
dv =

∫

�B

Jdv =
∫

�R

dv, (4.20)

a fixed number. We have Nanson’s identity,

∇ ·
(

∂ J

∂∇X

)
= 0 (4.21)
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so

δ

∫

�B

J dv =
∫

	

[
∂ J

∂ Xα
,i

]
δXαd Si +

∫

δ�B

∂ J

∂ Xα
,i

δXαd Si . (4.22)

First, set δX = 0 on ∂�B and equate the variational integrals to zero. This gives

∇ ·
(

∂eM

∂∇X

)
= 0 in �B (4.23)

and [
∂eM

∂∇X
− λ

∂ J

∂∇X

]
· n = 0 on 	, (4.24)

where λ is a Lagrange multiplier. This can be simplified by making an assumption
that I accept, namely that X is continuous, so

[X] = 0,
[∇ Xα

] = Fαn, (4.25)

for some vector F. By an elementary calculation,

(4.25) ⇒
[

∂ J

∂ Xα
,i

]
ni = 0 ⇒

[
∂eM

∂ Xα
,i

]
ni = 0. (4.26)

In elasticity theory, the tensor inside the parentheses in (4.23) is the configurational
stress, referred to spatial coordinates. Actually, it is better to regard this as an equiv-
alence class: adding a linear function of J to the energy just adds a constant to the
total energy, changing this tensor without affecting (4.23) or (4.26) . I will call it the
elastic configurational stress, to distinguish it from other configurational stresses
sometimes used in electromagnetic theory. Here, (4.23) is the conservation law
associated with invariance of eM under the translations X → X + const . On ∂�B ,
a material surface, we cannot move matter across it, but material particles on it can
be moved to different positions. So, consider an infinitesimal point transformation
x → x + εδx, where ε is the parameter associated with variations. The condition
that this map the boundary to itself requires that

δx · n = 0. (4.27)

Requiring that the value of X be the same at a point and its image gives a variation
satisfying

δXα = −Xα
,iδxi (4.28)

and requiring the last term in (4.18) to vanish for all such variations gives

∂eM

∂ Xα
,i

Xα
, j ni = μn j on ∂�B, (4.29)

where μ is an undetermined function of position. If clamping devices make such
variations impossible, we should not use (4.29). For dielectrics, I have not seen
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(4.23), (4.26) or (4.29) deduced elsewhere. Other conditions that have been derived
are known to at least some experts. What are generally called Weierstrass–Erdmann
corner conditions include not only the jump conditions that have been derived, but
others which allow the discontinuity surfaces to move to different positions. For
these, the standard reasoning gives

[
ẽδi j − Xα

,i
∂eM

∂ Xα
, j

− Ak,i
∂ ẽF

∂ Ak, j

]
n j = 0 on 	. (4.30)

Commonly, this is applied to interior surfaces but, since the fields extend outside the
body, it makes sense to treat ∂�B as an interior surface. Then, granted that clamp-
ing devices do not prevent parts of ∂�B from moving freely, (4.30) also applies to
these parts, with eM = 0 and p̄ = 0 in �E .

Often, workers introduce principles of virtual work to get conditions compa-
rable to (4.28), at least for ∂�B . and it might be useful to do so when we allow
mechanical loading devices, for example. For the present theory, a proposal of this
kind should be consistent with (4.30).

In Toupin’s [1] theory of dielectrics, the energy function associated with fields
is equivalent to

tF = −ε0|∇ϕS|2
2

+
(
∇ϕs − Ê

)
· p, (4.31)

where ϕS is the electrostatic potential associated with a self-field. Like others, he
interprets the self-fields as solutions of the Poisson equation −ε0∇ · Ē = ε0∇2ϕ̄ =
∇ · p̄ in E3, with p̄ considered as some definite function of position. With the neg-
ative quadratic term, it is clear that we cannot minimize his energy, and I do not
see another good possibility for adding a stability test to his theory. In his theory,
equilibria are represented as something more like saddle points. In my analyses,
I have only used first variations, so minimizers are not distinguished from other
extremals. Toupin also used first variations in dealing with (4.29).

5. Forces and torques

While I have deduced relevant equations without introducing assumptions about
forces or torques, they are of physical interest. To avoid getting inconsistent theory,
any equations satisfied by these should be implied by equations now in hand. First,
I will calculate and rearrange terms in ∇ ẽ in �B . First, by (4.2), the term involving
∂ ẽ/∂p̄ drops out. Using (4.23), another term is

∂eM

∂ Xα
, j

Xα
, j i =

(
Xα

,i
∂eM

∂ Xα
, j

)

, j

. (5.1)

Then, using (4.11),

∂ ẽF

∂ Ê j
Ê j,i = −p j Ê j,i . (5.2)
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Finally,

∂ ẽF

∂ Ak, j
Ak, j i =

(
Ak,i

∂ ẽF

∂ Ak, j

)
, j

. (5.3)

Putting these together, we get

Si j, j + fi = 0, fi = p̄ j Ê j,i , (5.4)

where

Si j = ẽδi j − Xα
,i

∂eM

∂ Xα
, j

− Ak,i
∂ ẽF

∂ Ak, j
. (5.5)

Here, s is the tensor occurring in the Weierstrass–Erdmann corner condition (4.30).
We might like s as a description of a stress tensor, since (5.4) looks reasonable as
an equilibrium equation and the corner condition (4.30) agrees with what would
commonly be used as a jump condition for it. However, it has an unpleasant feature,
not being invariant under gauge transformations. This can be fixed by defining the
stress tensor t by

ti j = Si j + Ai,k
∂ ẽF

∂ Ak, j
. (5.6)

With this, I have covered matters of gauge invariance, so I now have no objection
to using the gauge condition (3.5), although I have no need to use it here. It might
help to recall (4.6). It is then easy to show that

(
AI,k

∂ ẽF

∂ Ak, j

)
, j

= 0, (5.7)

so (5.4) is equivalent to

ti j, j + fi = 0. (5.8)

At a jump discontinuity surface with normal n
[

Ai,k
∂ ẽF

∂ Ak, j

]
n j = [

Ai,k
] ∂ ẽF

∂ Ak, j
n j (5.9)

by (4.8) and, by (4.1) and (4.6), the whole quantity is continuous. Thus
[
ti j

]
n j = 0 (4.30). (5.10)

Recall that this also applies to parts of ∂�B that can deform freely. Of course, these
conditions are consistent with the integral version

∫

∂�

tdS +
∫

�

f dv = 0,� ⊂ �B . (5.11)
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Further, by a calculation based on (3.15) and (3.18),

ti j − t j i = p̄i Ê j − p̄ j Êi . (5.12)

For this, it is important that t be invariant under gauge transformations. With these
results, we get the integral formulation

∫

∂�

x ∧ (tdS) +
∫

�

(
x ∧ f + p ∧ Ê

)
dv = 0,� ⊂ �B, (5.13)

which includes the body couple that agrees with the elementary estimate of it.
By a routine calculation, we get

(
Ai,k − Ak,i

) ∂ ẽF

∂ Ak, j
= Ei d j − d · Eδi j . (5.14)

In �E , where d̄ = εĒ, the stress tensor reduces to the familiar symmetric Maxwell
stress tensor tC M , with zero divergence,

tC M = ε0

(
E ⊗ E − |E|2

2
1

)
. (5.15)

Then (5.11) and (5.13) extend to∫

∂�

tdS +
∫

�

f dv = 0,�B ⊂ � (5.16)

and ∫

∂�

x ∧ (tdS) +
∫

�

(
x ∧ f + p ∧ Ê

)
dv = 0,�B ⊂ �. (5.17)

In these, the integrals over � can obviously be replaced by integrals over �B .
This is in line with the common view that the self-field in �E does not affect the
forces or torques acting on the body. Although the prescription for stress is different
in Toupin’s theory, it is consistent with all of these integral versions. For at least
some analyses, it is not really necessary to use (3.4), although it has been important
in establishing some results.

There is an alternative formulation that is more like Toupin’s. If we set

êM = ρR

ρ
eM , (5.18)

a calculation gives

eMδi j − Xα
,i

∂eM

∂ Xα
, j

= − ρ

ρR
Xα

,i
∂ êM

∂ Xα
, j

. (5.19)

Then, we can change the variables and replace ∇X by its inverse, the deformation
gradient commonly used in elasticity theory. This gives the representation of this
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part of the stress used by Toupin. We can also refer this part to material coordinates,
using

∫

�B

ρ

ρR
êdv =

∫

�R

êdv, (5.20)

and copy this for material subregions. I shall not belabor the routine bookkeeping
involved in adapting formulae to this formulation.

As the remainder of the stress, Toupin [1] first proposed the equivalent of

t T
i j = Ei d j − ε0|E|2

2
δi j ⇒ t T

i j. j = p j Ei, j , (5.21)

at least when the fields satisfy his conditions for self-fields, borrowing this from
Maxwell. Brown [3, pp. 61–62] criticizes this, pointing out that, even in Maxwell’s
time, this was not accepted by some other workers. Toupin also assumes what the
body force and couple should be. Using (5.6) and (5.14), my version can be reduced
to the form

t E
i j = Ei d j −

{
ε0|E|2

2
+ p · E

}
δi, j . (5.22)

For this,

t E
i j, j = − p̄ j,i E j − p̄ j Ê j,i , (5.23)

where the first term gets canceled with a term from eM by (4.3) and the second
gives the body force f . In a later work, Toupin [5] relies more on the calculus of
variations to deduce different formulae for stress tensors, one being of the same
form as (5.22), but with the fields replaced by total fields. For this, he modifies his
older energy function (4.31) by replacing the self-field by the total field, so there is
no separation of the total field into parts. This kind of modification could be useful
if we want to study the possible change in what I call Ê induced by the self-field
of our body. Again, his modified energy is not bounded below, so we cannot use
minimization of it as a test for stability. In this work, he does get the jump condi-
tion [t]n = 0 and the standard conditions on fields for jump discontinuities but not
(4.23), (4.26) or (4.29).

Consider adding the scalar term in tE to ẽ, to get what is essentially equivalent
to (4.31), what Toupin [1] originally used as an energy function, viz,

t = −ε0|E|2
2

− p · (E + Ê) + eM . (5.24)

In terms of this, the formula for my stress tensor takes the form

ti j = tδi j + Ei d j − Xα
,i

∂eM

∂ Xα
, j

. (5.25)
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Taking the Legendre transform of t with respect to Ē gives

t − ∂t

∂E
.E = ε0|E|2

2
− p · Ê + eM = ẽ (5.26)

and, conversely, with ẽ expressed as a function of d̄, p̄ and Ê,

ẽ − ∂ ẽ

∂d̄
· d̄ = t. (5.27)

Now take t , writing Ē = −∇ϕ̄ as in (4.29) and use a formula for stress tensor t̂ that
Toupin [5] presents,

t̂i j = tδi j − ϕ,i
∂t

∂ϕ, j
− Xα

,i
∂t

∂ Xα
, j

, (5.28)

except that in (5.28) as well as the energy, he here replaces the self-field potential
by the potential for the total field. However, for his older theory, (5.28) works out
to be equivalent to my stress tensor. Again, analogues of (4.23), (4.26) and (4.29)
are not mentioned. So, had Toupin done this, as he obviously could have, our the-
ories would agree on the prescription for stress. I do not rule out the possibility of
constructing a theory of stability fitting Toupin’s theory, as modified here, to get a
theory comparable to mine, but this has not been done, as far as I know.

To determine stress boundary conditions on ∂�B , first take the stress vector
tC M n associated with (5.15), using (4.9) and (4.10) to express this in terms of
interior limits of the fields. This gives

tC M n = d · nE +
(

(p · n)2

2ε0
− ε0|E|2

2

)
n. (5.29)

Equate this to the stress vector obtained as a limit from the interior and, after
canceling some terms, we get

[t] n = 0,

(
eM − p · E − (p · n)2

2ε0

)
ni − Xα

,i
∂eM

∂ Xα
, j

n j = 0. (5.30)

Note that this agrees with (4.29) and it gives a formula for the μ occurring there.
So, this covers my proposal for describing stress, in general terms.

Toupin [1] is one of many writers to discuss the analysis of an ellipsoid with con-
stant p̄ but he allows for homogeneous deformation and for rather general forms of
the function eM appropriate for isotropic materials. Of course, homogeneous defor-
mations take ellipsoids to ellipsoids. His formulae for fields refer to the deformed
ellipsoid. Brown [3, Section 10] discusses this a bit more, using a similar theory
of magnetism. He explains why such theory cannot be consistent with (5.30), this
being prevented by the term cubic in the normal, and he discusses attempts to cor-
rect this using linear theory, which is not an easy matter. Neither of these authors
tries to find conditions eM that get other conditions to hold or to make any attempt
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to assess stability. Brown does indicate the possibility of getting simple solutions
satisfying (5.30) for infinite cylinders, assuming certain equations can be satisfied.

Toupin [1] also treats shear of an infinite slab of an isotropic material, simply
illustrating the nonlinear effect of electrostriction. Again, this is for constant p̄ and
∇X. It should be feasible to do more with the analysis of this. It would be good to
find other simple solutions illustrating nonlinear effects, even if they do not satisfy
all of the necessary conditions exactly.
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