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Abstract

The singular set of any Lipschitzian minimizer of a general quasiconvex func-
tional is uniformly porous and hence its Hausdorff dimension is strictly smaller
than the space dimension.

1. Introduction and main result

The present paper is about partial regularity of minimizers of integral functionals
of the general type

F[v] :=
∫

�

F(x, v(x), Dv(x)) dx (1.1)

defined for maps v : � ⊂ R
n → R

N of the appropriate Sobolev class. We are
concerned with the multi-dimensional case n, N � 2 and throughout the discus-
sion the set � is a fixed bounded open domain in R

n . The integrand F : � × R
N ×

R
N×n → R will be subjected to a set of conditions (listed below) that by now are

standard in the calculus of variations. Among these conditions we single out the
condition of quasiconvexity as introduced by Morrey in [31]. We recall that the
integrand is said to be quasiconvex provided

∫
(0,1)n

[F(x0, y0, z0 + Dϕ(x)) − F(x0, y0, z0)] dx � 0 , (1.2)

for every ϕ ∈ C∞
c ((0, 1)n, R

N ) i.e. for every smooth and compactly supported
map, and for all x0 ∈ �, y0 ∈ R

N , z0 ∈ R
N×n . This condition replaces the

usual convexity condition in the multi-dimensional calculus of variations, and is
essentially equivalent to sequential lower semicontinuity in the weak topology of
appropriate Sobolev spaces [31, 1]. As such it is intimately linked to the existence
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of minimizers for F on Dirichlet classes of Sobolev maps and, as we recall below
and which forms the main theme here, quasiconvexity in a strict form allows us
to prove partial regularity of minimizers too. Hence quasiconvexity plays a role at
many levels, and moreover we note that certain aspects of the mathematical foun-
dations of non-linear elasticity and materials science [3, 9, 32] lead to models with
quasiconvex, non-convex integrands.

We next turn to the precise statements and a description of our results, and start
with the hypotheses for the integrand, listed below in (1.3), (1.4), (1.5), (1.6), (1.8)
and (1.10). As we confine attention to the case where the integrand exhibits qua-
dratic/super-quadratic growth (i.e. p � 2), our hypotheses are identical to those of
[20] Chapter 9 (cf. (9.31)–(9.34) and (9.66) there). These conditions are standard
in the calculus of variations.

Our first assumption is that for each fixed x ∈ � and y ∈ R
N the partial function

F(x, y, ·) is twice continuously differentiable:

z �→ F(x, y, z) is C2. (1.3)

The second assumption is a growth and coercivity condition:

f (z) � F(x, y, z) � L(1 + |z|p) (1.4)

for all x ∈ �, y ∈ R
N and z ∈ R

N×n , where L > 0 and p � 2 are constants and
f : R

N×n → R is a continuous function with p-growth, i.e.

| f (z)| � L(1 + |z|p)

and, for some positive constant ν ∈ (0, L],∫
(0,1)n

f (Dϕ(x)) dx � ν

∫
(0,1)n

|Dϕ(x)|p dx,

for all z ∈ R
N×n and all ϕ ∈ C∞

c ((0, 1)n, R
N ). The third condition is a reinforced

version of the quasiconvexity condition in (1.2). We assume that F is uniformly
strictly quasiconvex in the sense that

ν

∫
(0,1)n

(1 + |Dϕ(x)|2) p−2
2 |Dϕ(x)|2 dx

�
∫

(0,1)n
[F(x0, y0, z0 + Dϕ(x)) − F(x0, y0, z0)] dx (1.5)

for all x0 ∈ �, y0 ∈ R
N , z0 ∈ R

N×n , and every ϕ ∈ C∞
c ((0, 1)n, R

N ). Condition
(1.5) was first considered in the context of regularity theory by Evans in [14].

Regarding the dependence upon “the coefficients” (x, y) we shall assume the
following (non-uniform) continuity condition

|F(x1, y1, z) − F(x2, y2, z)| � L̃θ(|y1|, |x1 − x2|2 + |y1 − y2|2)(1 + |z|p)(1.6)

for all x1, x2 ∈ �, y, y1, y2 ∈ R
N and z ∈ R

N×n . Here L̃ � 1 is a constant and the
function θ : R

+ × R
+ → R

+ is assumed to be of the form

θ(s, t) = min{1, �0(s)ω(t)} , (1.7)
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where �0 : R
+ → R

+ is non-decreasing and ω : R
+ → R

+ is a modulus of
continuity, by which we mean a non-decreasing concave function such that ω(0) =
0. Finally, following [2], we shall assume a no growth condition on the second
derivatives of F with respect to the gradient variable z, Fzz , but only the existence
of a (non-uniform) modulus of continuity, that is, a separately increasing function
γ : R

+ × R
+ → R

+, such that γ (·, 0) = 0 and

|Fzz(x, y, z1) − Fzz(x, y, z2)| � γ (|y| + |z1| + |z2|, |z1 − z2|) (1.8)

for every x ∈ �, y ∈ R
N and z1, z2 ∈ R

N×n . For later convenience, we define the
“growth function" of Fzz as

G(M) := sup
|y|+|z|�M,x∈�

|Fzz(x, y, z)|
1 + |z|p−2 , M � 0 . (1.9)

Let us briefly comment on the last three assumptions. The condition (1.6) quantifies
the continuity of the integrand F(x, y, z) with respect to (x, y). In particular, when
we assume that

ω(r) � rα/2 , α ∈ (0, 1] (1.10)

then (x, y) �→ F(x, y, z)/(1 + |z|p) is Hölder continuous with exponent α uni-
formly in z. Assumption (1.8) is mild; for example, it is automatically satisfied by
product type functionals of the form

v �→
∫

�

c(x, v)g(Dv) dx , (1.11)

where c = c(x, y) is a Hölder continuous function with values in the interval [ν, L]
and g = g(z) satisfies the quasiconvexity condition (1.5) and has p-growth.

The crucial point, mentioned briefly above, is that the quasiconvexity condition
(1.5), together with the other conditions, allows us to prove the so-called partial
regularity of minimizers, as first shown in [14]. To be more precise, define

�u : = {x ∈ � : u ∈ C1,σ (A, R
N ),

for some σ > 0 and some neighborhood A of x} (1.12)

as the set of regular points of u. Then it can be shown that the open set �u has full
measure

|� \ �u | = 0 (1.13)

and that, assuming (1.10), u ∈ C1,α/2
loc (�u, R

N ) (see [14, 2, 13]). The closed set


u := � \ �u (1.14)

is called the singular set of the minimizer u. It is in general non-empty, already
in the classical case where F ≡ F(z) is strongly convex, as shown by celebrated
examples [7, 34, 38]. The above results motivate the quest for better size bounds
of the singular set 
u of a minimizer u. A natural and well-established way of
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measuring the size of a set is by its Hausdorff dimension. In the following we
denote the Hausdorff dimension of a set A ⊂ R

n by dimH(A). The first step is to
exclude that 
u could be n-dimensional. In the special case where F ≡ F(z) is
a strongly convex function, the estimate dimH(
u) � n − 2 is a classical result
dating back to the 1970s. We recall that it is obtained by using the difference-
quotient method to the Euler–Lagrange system of the functional, whereby it is
shown that u ∈ W 2,2

loc . General results about W 2,2
loc maps then imply the desired

singular set estimate (see [20] Chapter 2 for details). The problem for the general
case when z �→ F(x, y, z) is strongly convex was raised later (see for instance the
open problems in 3 page 269 from [16] and (a) page 117 from [19]) and, essentially
under the assumptions considered above, it was settled in [24], where we proved
that

dimH(
u) � n − min{α, p(s − 1)} . (1.15)

Here α > 0 is the Hölder continuity exponent of (x, y) �→ F(x, y, z) appearing in
(1.10), and s is the higher-integrability exponent of the gradient whose existence
is guaranteed by Gehring’s lemma,

|Du|p ∈ Ls
loc(�) s ≡ s(n, N , p, L/ν) > 1 (1.16)

(see again [24] for details). Similar results hold for weak solutions to elliptic sys-
tems [28, 29]; for an account of results on partial regularity and singular sets of
minima we refer to [30]. The proof in [24] relies on a localization technique that
makes once again essential use of the Euler–Lagrange systems of certain convex
comparison functionals, and finally leads to us establish a higher (fractional) differ-
entiability of Du, which again by general results entails (1.15). An approach based
on the Euler–Lagrange system and some kind of difference-quotient method seems
to require convexity. In fact, for the quasiconvex case, the Euler–Lagrange system
in itself cannot yield regularity results. This was recently shown by Müller &
Šverák in [33], where they demonstrated even the absence of partial regularity for
critical non-minimizing points of uniformly strictly quasiconvex integrals

v �→
∫

�

F(Dv(x)) dx . (1.17)

That the situation is equally hopeless when the above quasiconvexity condition on
the integrand F is strengthened to polyconvexity was demonstrated more recently
by Székelyhidi in [39]. Therefore the task of estimating the size of the singu-
lar set of minimizers in the quasiconvex (and polyconvex) case appears to require
different methods. Hence, despite attracting some attention (see [17] Section 4.2),
it has remained an open problem since [14] as to whether the singular set of a min-
imizer of a uniformly strictly quasiconvex (or polyconvex) integral (1.17) could be
n-dimensional.

In the present paper we take the first step, by considering the case of Lipschitzian
minimizers of the general quasiconvex functional F in (1.1), and proving
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Theorem 1.1. Let u ∈ W 1,∞(�, R
N ) be a minimizer of the functional F under the

assumptions (1.3)–(1.10). Then there exists a positive number δ > 0, depending
only on n, N , p, ν, L , L̃, ‖u‖W 1,∞ , the modulus of continuity γ (·) in (1.8), and the
functions �0(·), G(·) in (1.7)–(1.9), but otherwise independent of u, of the exponent
α in (1.10), and of the integrand F, such that

dimH(
u) � n − δ. (1.18)

In fact we obtain the stronger result that the singular set is uniformly porous,
see Theorem 5.1 and Section 2 for terminology. Using porosity properties to get
dimension bounds is a strategy followed also in other contexts, and our approach
undoubtedly has similarities to some of the methods developed in the parametric
setting [4, 6, 36]. An important point, cf. Remark 3 below, is that the number δ

can be bounded explicitly in terms of the data, and, on the contrary to the bound
in (1.15), it is independent of the Hölder continuity exponent α. For Lipschitzian
solutions this improves the results in [23, 24] for minimizers of convex integrands
when the Hölder exponent α is small. Finally, by the method employed here, the best
result we can hope for is getting δ = 1, cf. Remark 1 below. This is in accordance
with the results for functionals with convex dependence on the gradient variable,
see in particular Theorem 1.2 in [24]. Further results and extensions are proposed
throughout the paper; in particular, the result of Theorem 1.1 also holds for the so-
called ω-minima, see Section 3, and for solutions to quasimonotone systems, see
Section 6. Moreover, in Section 4 we shall prove regularity properties of the gra-
dient of minima stated in terms of certain Carleson-type estimates. The derivation
of these estimates relies crucially on the Caccioppoli inequalities.

Finally, let us comment on the a priori Lipschitz continuity condition on the
minimizer in Theorem 1.1. This is a restrictive hypothesis, which is not always
satisfied, even in the classical basic case (1.17) when the integrand F is strongly
convex (see [38]). However, it nevertheless happens to be automatically satisfied
for large classes of quasiconvex functionals of the type (1.17). More precisely, start-
ing from the work of Chipot & Evans [5], it is known that in order to prove the
Lipschitz continuity of minimizers only the behavior of F(z) for large |z| matters;
more precisely, assuming that F(z) is suitably close in a C2 sense to the model
integrand z �→ |z|p, for large values of |z|, we can prove that any local minimizer
of the functional in (1.17) is locally Lipschitz continuous. Then an estimate of
the type (1.18) holds in the interior of �, that is, for any subset 
u ∩ �′, where
�′ ⊂⊂ �, and with δ depending also on dist(�′, ∂�). We refer to Section 6 for a
brief discussion and further references on these matters.

A brief outline of the organization of the paper is as follows. In Section 2 we
have collected some preliminary material, notably the connection between porosity
and Hausdorff dimension, and a special case of a square-function characterization
of Sobolev maps. Section 3 is devoted to an integral characterization of regular
points. Section 4 combines the square-function characterization of Sobolev maps
with a Caccioppoli inequality to obtain a Carleson condition for the excess. This
condition is used together with the integral characterization of regular points in Sec-
tion 5 to prove that the singular set is uniformly porous. Theorem 1.1 follows then
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by the discussion in Section 2. Finally, in Section 6 we discuss various extensions
and, as mentioned above, the Lipschitz condition imposed on the minimizer.

2. Preliminaries

In this paper we shall adopt the usual convention of denoting by c a general,
positive and finite constant, that may vary from line to line. Special occurences will
be denoted by c1, c̃ and so on. The most relevant dependencies will be indicated.
With x0 ∈ R

n and R > 0, we denote by BR ≡ B(x0, R) := {x ∈ R
n : |x − x0| <

R} the open (Euclidean) ball with radius R and center x0. Often it is clear from
the context that the balls under consideration all have the same center and in such
cases we merely write BR etc.

The space of real N × n matrices, denoted by R
N×n , is considered with the

usual Frobenius (i.e. Euclidean) norm and its elements are often denoted by z, z0
etc.

We use standard notation for maps and function spaces (e.g. as in [20]). In par-
ticular, for an integrable map g : B(x0, R) → H, where H is a finite dimensional
inner-product space, we denote its average by one of the following symbols

(g)B ≡ (g)x0,R := −
∫

B(x0,R)

g(x) dx := 1

|B(x0, R)|
∫

B(x0,R)

g(x) dx ,

where |B(x0, R)| denotes the Lebesgue measure of B(x0, R).

Set porosity and Hausdorff dimension. For a subset A of R
n , a point x in R

n and
a positive number r > 0 we define

p(A, x, r) := sup{� : B(y, �) ⊂ B(x, r) \ A for some y ∈ R
n}. (2.1)

Note that 0 � p(A, x, r) � r for all x and that 0 � p(A, x, r) � r/2 for x ∈ A.

Definition 1. For numbers κ > 0, λ ∈ [0, 1/2] we say that the subset A ⊂ R
n is

(λ, κ)-porous provided p(A, x, r) � λr holds for all x ∈ R
n and all r ∈ (0, κ).

This terminology is taken from [37]. We refer the reader to [27], page 156, for fur-
ther background and references on this subject. Besides the above notion of uniform
porosity we also consider another aimed at describing “non-uniform porosity” of
sets, where the “size of the holes” in a ball with radius r is allowed to depend on r
itself.

Definition 2. Let κ > 0 and m : (0, κ) → (0, 1/2] be a function. We say that the
subset A ⊂ R

n is (m(·), κ)-porous provided p(A, x, r) � m(r)r holds for all
x ∈ R

n and all r ∈ (0, κ).

For our purposes it is important that (λ, κ)-porous sets have dimensions strictly
below n. The main point of interest for us is that porosity allows us to reduce the
Hausdorff dimension. The following is an elementary result whose proof can be
found for instance in the Introduction of [37].
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Lemma 2.1. There exists a strictly decreasing and continuous function dn : R
+ →

R
+ with dn(0) = n, such that whenever A is a non-empty bounded (λ, κ)-porous

subset of R
n, where κ > 0 and λ ∈ (0, 1/2), then

dimH(A) � dn(λ) < n . (2.2)

Note that in the previous proposition the dimensional bound is actually independent
of the number κ , a fact that we shall use later. The following upper bound is an
immediate consequence of the proof in [37]:

dn(λ) �
log

((
4
√

n/λ
)n + 1

)

log
(

4
√

n/λ + 2
) .

Note that the right-hand side is strictly less than n and that it increases to n when
λ ↘ 0.

Remark 1. The notion of porosity as considered here cannot bound the dimension
beyond n − 1. Indeed a theorem of Mattila [27] states that

lim
λ↗ 1

2

dn(λ) = n − 1 ,

and actually a more precise result is due to Salli [37]:

dimH(A) � n − 1 + c

ln(1/(1 − 2λ))
, (2.3)

where the constant c ≡ c(n) only depends on n. As observed in [37] this bound
exhibits the correct asymptotic behavior of dimH(A) as λ ↗ 1/2. As our bounds on
the dimension of the singular sets are derived from porosity, the number δ appearing
in (1.18) cannot exceed 1, cf. Section 5. We finally note that not only the Haus-
dorff dimension but also the (potentially larger) upper Minkowski dimension can be
bounded using uniform porosity (see [27, 37]). We have chosen not to highlight this
in a theorem for the reason that uniform porosity is an even stronger property (which
does not follow from dimensional bounds, Hausdorff, Minkowski or otherwise).
The result about uniform porosity of the singular set is stated as Theorem 5.1.

A result of Dorronsoro, revisited. The following result about general Sobolev
maps is instrumental to our proof of Theorem 1.1. We state it in a slightly elabo-
rate form which is the one required in Section 4. The result can be inferred from
[10] when performing a certain localization argument. For the convenience of the
reader we present an elementary proof that avoids the more sophisticated machinery
required for the general results presented in [10].

Lemma 2.2. There exists a constant c ≡ c(n) depending only on n such that for
any ball B(x0, 2R) ⊂ R

n and any w ∈ W 1,2(B(x0, 2R), R
N ) the inequality∫

B(x0,R)

∫ R

0
−
∫

B(x,r)

∣∣∣∣w(y) − (w)x,r − (Dw)x,r (y − x)

r

∣∣∣∣
2

dy
dr

r
dx

� c
∫

B(x0,2R)

|Dw|2 dx (2.4)

holds.
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Proof. We start the proof with some simplifications. First, by considering the map

w̃(y) := 1

R
w(x0 + Ry), y ∈ B(0, 2),

instead of w and making appropriate substitutions in (2.4) we see that it suffices
to consider the case where x0 = 0 and R = 1. Next, as (2.4) remains unchanged
under translations w �→ w + k we may also assume that

(w)0,2 = 0. (2.5)

For notational convenience we write B for B(0, 1) and r B for B(0, r) in the fol-
lowing. Let ρ : R

n → [0, 1] be a C1 cut-off function verifying

ρ ≡ 1 on 2B, ρ ≡ 0 on R
n \ (3B) and |Dρ| � 2.

Define

v(x) :=

⎧⎪⎨
⎪⎩

w(x) if x ∈ 2B

w
(

2x
|x |2

)
ρ(x) if x ∈ R

n \ (2B).

Then w ∈ W 1,2(Rn, R
N ) is supported in 3B and since for |x | > 2,

Dv(x) = Dw

(
2x

|x |2
)

2
Id|x |2 − 2x ⊗ x

|x |4 ρ(x) + w

(
2x

|x |2
)

⊗ Dρ(x),

where Id denotes the n ×n identity matrix and ⊗ denotes the vector tensor product,
we find after a routine estimation

∫
Rn\(2B)

|Dv|2 dx � c
∫

2B

(
|w|2 + |Dw|2

)
dx .

In view of (2.5) Poincaré’s inequality yields
∫

2B |w|2dx � c
∫

2B |Dw|2dx so we
arrive at

∫
Rn

|Dv|2 dx � c
∫

2B
|Dw|2 dx , (2.6)

where c ≡ c(n). Now

∫
B

∫ 1

0
−
∫

B(x,r)

|w(y) − (w)x,r − (Dw)x,r (y − x)|2 dy
dr

r3 dx

�
∫

Rn

∫ ∞

0
−
∫

B(x,r)

|v(y) − (v)x,r − (Dv)x,r (y − x)|2 dy
dr

r3 dx

=
∫ ∞

0
−
∫

r B

∫
Rn

|v(x + y) − (v)x,r − (Dv)x,r y|2 dx dy
dr

r3 ,
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where in the last equality we changed the variables and integration orders. For each
fixed r > 0 and y ∈ r B the map x ∈ R

n �→ v(x + y)− (v)x,r − (Dv)x,r y is square
integrable. Recall that the Fourier transformation on L2 is defined as

ĥ(ξ) := lim
k→∞

1

(2π)
n
2

∫
|x |�k

h(x)e−i x ·ξ dx,

where the convergence is in the L2 sense. Hence by Plancherel’s theorem and
further elementary properties of the Fourier transform we have

∫ ∞

0
−
∫

r B

∫
Rn

|v(x + y) − (v)x,r − (Dv)x,r y|2 dx dy
dr

r3

=
∫ ∞

0
−
∫

r B

∫
Rn

∣∣∣v̂(ξ)eiy·ξ − −
∫

r B
v̂(ξ)eiz·ξ dz

− −
∫

r B
v̂(ξ) ⊗ (iξ)eiz·ξ dz · y

∣∣∣2
dξ dy

dr

r3

=
∫

Rn
m(ξ)|ξ |2|v̂(ξ)|2 dξ,

where

m(ξ) := 1

|ξ |2
∫ ∞

0
−
∫

B

∣∣∣∣eiy·rξ − −
∫

B
eiz·rξ dz − iy · rξ −

∫
B

eiz·rξ dz

∣∣∣∣
2

dy
dr

r3 .

We assert that this multiplier is in fact a (finite) constant: m(ξ) ≡ m0 for all ξ �= 0.
This will be obvious once we have shown that m(ξ) is finite and well defined for
all ξ �= 0. To this end we start with the observation

−
∫

B
eiz·rξ dz = c

(r |ξ |) n
2

Jn
2
(r |ξ |)

where Jn
2

denotes the Bessel function of the first kind of order n/2 and c ≡ c(n) is
a constant that only depends on n. Hence by standard properties of Bessel functions
we get for some (new) constant c ≡ c(n) that

∣∣∣∣−
∫

B
eiz·rξ dz − 1

∣∣∣∣ � cr2|ξ |2 for r |ξ | � 1 (2.7)

and
∣∣∣∣ −
∫

B
eiz·rξ dz

∣∣∣∣ � c

(r |ξ |) n+1
2

for r |ξ | � 1. (2.8)

Consequently, by splitting the r -integral in the expression for m(ξ) as

|ξ |2m(ξ) =
∫ ∞

0

(
· · ·

)dr

r3 =
∫ 1

|ξ |

0

(
· · ·

)dr

r3 +
∫ ∞

1
|ξ |

(
· · ·

)dr

r3 , (2.9)
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using the inequalities

∣∣∣∣eiy·rξ − −
∫

B
eiz·rξ dz − iy · rξ −

∫
B

eiz·rξ dz

∣∣∣∣
2

� 2
∣∣eiy·rξ − 1 − iy · rξ

∣∣∣2

+2|1 + iy · rξ |2
∣∣∣∣−
∫

B
eiz·rξ dz − 1

∣∣∣∣
2

,

|eiy·rξ − 1 − iy · rξ | � cr2|ξ |2 (|y| � 1 and r |ξ | � 1),

and (2.7) on the first integral in (2.9), and the inequality

∣∣∣∣eiy·rξ − −
∫

B
eiz·rξ dz − iy · rξ −

∫
B

eiz·rξ dz

∣∣∣∣
2

� 2 + 2

∣∣∣∣−
∫

B
eiz·rξ dz

∣∣∣∣
2

(r |ξ |)2

and (2.8) on the second integral in (2.9), we get

sup
ξ

|m(ξ)| � c(n) < ∞.

Now we can check that m(Oξ) = m(ξ) and m(tξ) = m(ξ) for all orthogonal
matrices O ∈ O(n), numbers t > 0 and ξ �= 0 by making the appropriate substitu-
tions in the integral defining m. The multiplier m is therefore constant as asserted.
The proof is concluded by use of Plancherel’s theorem and (2.6).

3. An ε-regularity result

In the remainder of the paper, unless mentioned otherwise, instead of merely
considering minimizers, we shall consider the more general ω-minimizers. These
intervene in many contexts when dealing with regularity problems in the calculus
of variations [8, 13, 20, 23].

Definition 3. A map u ∈ W 1,p(�, R
N ) is an ω-minimizer of the functional F

if and only if
∫

BR

F(x, u(x), Du(x)) dx �
[
1 + ω(R2)

] ∫
BR

F(x, v(x), Dv(x)) dx (3.1)

for any v ∈ W 1,p(BR, R
N ) such that u−v ∈ W 1,p

0 (BR, R
N ), where ω : R

+ → R
+

is a non-decreasing concave function satisfying ω(0) = 0, and BR ⊂⊂ � is an
arbitrary ball with radius R.

For notational convenience we used the function ω from (1.6) also in (3.1). It
will however be clear from the proof that different choices are possible as well.
Of course, a minimizer is also an ω-minimizer (with ω ≡ 0), while ω-minima
enjoy the same partial regularity properties of minima described in Section 1 when
assuming (1.10) for some α > 0, see [13, 20, 23].
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In the sequel we refer to points in �u (defined at (1.12)) as regular points of
the fixed ω-minimizer u of the functional F . The main result of this section is an
integral characterization of such points, stated as Proposition 3.2 below. As the
specialist will realize, the result is not really new; rather it is a careful re-reading/
re-adjustment of the proof of Proposition 9.3 in [20] under the additional assump-
tion that the ω-minimizer is Lipschitz continuous. We follow the proof given in
[20] (which in turn is taken from [18]) mainly for two reasons. First, we want a
good estimate of the constant δ in Theorem 1.1, so we have to keep control of all
the constants appearing in the estimates, that is, we have to refer to a direct proof
of partial regularity of ω-minimizers (not involving indirect arguments such as the
blow-up technique [2, 14] and the A-harmonic approximation [13] etc.). Second,
the direct proof of [20] provides a decay estimate that allows us to use in an optimal
and direct way our Lipschitz regularity assumption. However, the proof in [20, 18]
is unfortunately affected by a few inaccuracies, detectable in Theorem 9.1 and The-
orem 9.5 from [20]. We shall briefly sketch how to amend these and simultaneously
take the opportunity to put certain estimates in a particular form that we need later
(in particular, the Caccioppoli inequality in Proposition 3.1 below).

Following the exposition in [20] the computations are conveniently carried out
in terms of the auxiliary map

V (z) := (1 + |z|2) p−2
4 z, z ∈ R

N×n . (3.2)

The corresponding excess functional is then

E(x0, R) := −
∫

B(x0,R)

|V (Du(x)) − V ((Du)x0,R)|2 dx . (3.3)

However, in view of the inequalities

c−1
(

1 + |z1|2 + |z2|2
) p−2

2 � |V (z2) − V (z1)|2
|z2 − z1|2 � c

(
1 + |z1|2 + |z2|2

) p−2
2

(3.4)

that are valid for all matrices z1, z2 ∈ R
N×n , where c = c(n, N , p) is a constant,

see Chapter 9 of [20] (or [21]), it is easily seen that for Lipschitzian maps u the
excess in (3.3) is equivalent to

H(x0, R) := −
∫

B(x0,R)

|Du(x) − (Du)x0,R |2 dx . (3.5)

More precisely, for each u ∈ W 1,∞(�, R
N ) we have for all balls B(x0, R) ⊂ �

that

c−1 E(x0, R) � H(x0, R) � cE(x0, R), (3.6)

for some constant c = c(n, N , p, ‖u‖W 1,∞). We start with the following
Caccioppoli-type inequality (following the terminology of [20] a “Caccioppol-
i inequality of the second kind”):
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Proposition 3.1. Let u ∈ W 1,p(�, R
N ) be an ω-minimizer of the functional F

under the assumptions (1.3)–(1.10). For every polynomial map a(x) := u0 +
〈z0, x − x0〉, with u0 ∈ R

N , z0 ∈ R
N×n such that |u0| + |z0| � M/2 for some

M > 0, and every ball B(x0, 2R) ⊂ �, we have

∫
B(x0,R)

(
|Du − Da|2 + |Du − Da|p

)
dx (3.7)

� c

R2

∫
B(x0,2R)

|u − a|2 dx + c

R p

∫
B(x0,2R)

|u − a|p dx

+c
∫

B(x0,2R)

[
ω(4R2) + θ

(
|u0|, 4R2 + |u − u0|2

)](
1 + |Du|p) dx,

where the constant c only depends on n, N , p, ν, L, L̃, G(M) and M.

Proof. Let us set, for any z ∈ R
N×n

g(z) := F(x0, u0, z0 + z) − F(x0, u0, z0) − 〈Fz(x0, u0, z0), z〉,

and w(x) := u(x)−a(x). Then, with B(x0, s) ≡ Bs, and using mean value theorem
as in [2], we find a constant c ≡ c(n, N , p, L , G(M)) > 0 such that

g(z) � cM p−2|V (z)|2 (3.8)

and, using quasiconvexity of F ,

ν

∫
Bs

|V (Dϕ)|2 dx �
∫

Bs

g(Dϕ) dx (3.9)

for any ϕ ∈ C∞
c (Bs, R

N ) . Moreover we have

∫
Bs

g(Dw) dx �
∫

Bs

g(Dw + Dϕ) dx (3.10)

+c
∫

Bs

[
ω(4R2) + θ

(
|u0|, 4R2 + |u − u0|2

)](
1 + |Du|p + |Dϕ|p) dx,

for every s � 2R, and ϕ ∈ C∞
c (Bs, R

N ), while c depends here on n, N , p, L , L̃ .
In order to prove the previous inequality we use (3.1) and the very definition of w

to compute
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∫
Bs

g(Dw) dx

=
∫

Bs

[
F(x, u, Du) − F(x0, u0, z0) − 〈Fz(x0, u0, z0), Dw〉] dx

+
∫

Bs

[
F(x0, u0, Du) − F(x, u, Du)

]
dx

�
∫

Bs

[
F(x, u, Du + Dϕ) − F(x0, u0, z0) − 〈Fz(x0, u0, z0), Dw + Dϕ〉] dx

+ω(4s2)

∫
Bs

F(x, u, Du + Dϕ) dx

+
∫

Bs

[
F(x0, u0, Du) − F(x, u, Du)

]
dx

�
∫

Bs

g(Dw + Dϕ) dx + cω(4R2)

∫
Bs

(
1 + |Du|p + |Dϕ|p) dx

+
∫

Bs

[
F(x0, u0, Du) − F(x, u, Du)

]
dx

+
∫

Bs

[
F(x, u, Du + Dϕ) − F(x0, u0, Du + Dϕ)

]
dx

and then (3.10) follows by estimating the last two integrals by means of (1.6) and
using the properties of θ . Now let us take R < t < s < 2R, and let η ∈ C∞

c (Bs) be
a cut-off function such that η ≡ 1 on Bt , and |Dη| � 4/(s − t). Let us set φ1 := ηw

and φ2 := (1 − η)w, so that Dφ1 + Dφ2 = Dw. Then using first (3.9), and then
(3.10), we have

ν

∫
Bs

|V (Dφ1)|2 dx �
∫

Bs

g(Dφ1) dx =
∫

Bs

g(Dw − Dφ2) dx

=
∫

Bs

g(Dw) dx +
∫

Bs

[
g(Dw − Dφ2) − g(Dw)

]
dx

�
∫

Bs\Bt

g(Dφ2) dx +
∫

Bs\Bt

[
g(Dw − Dφ2) − g(Dw)

]
dx

+c(M)

∫
Bs

[
ω(4R2) + θ

(
|u0|, 4R2 + |u − u0|2

)](
1 + |Du|p) dx,

where we used (3.10), and, at the end, the fact that |Dφ1|p � c(|Du|p + |z0|p) �
c(M)

(
1 + |Du|p

)
. Using (3.8) and the fact that |V (z)|2 ≈ |z|2 + |z|p, we easily

get
∫

Bt

|V (Dw)|2 dx � c
∫

Bs\Bt

|V (Dw)|2 dx + c
∫

Bs

∣∣∣∣ w

s − t

∣∣∣∣
2

+
∣∣∣∣ w

s − t

∣∣∣∣
p

dx

+c
∫

Bs

[
ω(4R2) + θ

(
|u0|, 4R2 + |u − u0|2

)](
1 + |Du|p) dx .

The assertion now easily follows by “filling the hole”, that is adding the quantity
c
∫

Bt
|V (Dw)|2 dx to both sides of the previous inequality, and then applying a
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standard iteration lemma, i.e. Lemma 6.1 from [20]. See [2] for further details. In
such a proof, all the constants can be estimated explicitly in terms of the data.

Remark 2. Let us assume p = 2, and let us deal with genuine minimizers. By a
careful examination of the previous proof, and especially the derivation of (3.8), it
follows that in the case F ≡ F(z), and assuming a growth condition of the type

|Fzz(z)| � L (3.11)

we can replace (3.7) by∫
B(x0,R)

|Du − Da|2 dx � c

R2

∫
B(x0,2R)

|u − a|2 dx , (3.12)

where the constant c only depends on n, N , ν, L .

Under the assumptions of the previous proposition, using inequality (3.7), and argu-
ing as in the proof of Theorem 9.5 from [20] with minor technical modifications,
we arrive at the following reverse Hölder inequality, valid for any ball B2R ⊂⊂ �,
and for any z0 ∈ R

N×n :
(

−
∫

BR

|V (Du) − V (z0)|2q dx

) 1
q

� c −
∫

B2R

|V (Du) − V (z0)|2 dx (3.13)

+cRµ

(
−
∫

B2R

(
1 + |Du|p) dx

)s+ µ
p

.

Here the constants c and q > 1 depend on n, N , ν, L , L̃, G(M) and M , with
|z0| � M , and

µ = α

2

(
1 − 1

q

)
> 0 . (3.14)

The number s > 1 is the higher-integrability exponent appearing in (1.16). Con-
cerning the dependence of q we have

lim
M↗∞ q(M) = 1 q ∈ (1, s) . (3.15)

With (3.13) in our hands the proof of Proposition 9.3 from [20] can be carried out;
there the exponent r must be substituted by q defined in (3.13), while µ is the
number defined at (3.14). Proposition 9.3 from [20] is all that we need to go on in
the following:

Proposition 3.2. Let u ∈ W 1,∞(�, R
N ) be an ω-minimizer of the functional F ,

under the assumptions (1.3)–(1.10). Then there exists a positive universal constant
ε > 0, depending only on n, N , p, ν, L , L̃, ‖u‖W 1,∞ , the modulus of continuity
γ (·) in (1.8), and the function G(·) in (1.9), but otherwise independent of u, of the
exponent α, and of the integrand F, such that a point x0 ∈ � is regular if and only
if there exists a radius R > 0 such that B(x0, 2R) ⊂⊂ � and

−
∫

B(x0,2R)

|Du(x) − (Du)x0,2R |2 dx < ε . (3.16)

The constant ε is in particular independent of x0.
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Proof. We start by recalling the result of Proposition 9.3 from [20] and describing
it in some detail. Given R > 0 such that B(x0, 2R) ⊂⊂ �, we have the following
inequality, valid for any 0 < � < R, β > 1, and any σ > 0:

E(x0, �) � A

{ ( �

R

)2 +
(

R

�

)n

×
[
σ + c(σ )

β2 + c(σ )χ(E(x0, 2R))

] }

E(x0, 2R) + H

(
R

�

)n

Rµ. (3.17)

Such result holds for W 1,p ω-minimizers, without requiring their Lipschitz regu-
larity. In the previous inequality we have that

A ≡ A
(

n, N , p, ν, L , L̃, |(u)x0,R | + |(Du)x0,R |
)
,

is a computable non-decreasing function of any of its arguments. The expression
c(σ ) is such that

lim
σ↘0

c(σ ) = ∞ ,

and it is bounded on the intervals [a,∞) for each fixed a > 0. The function χ also
depends on β, and is defined as follows:

χ(E(x0, 2R)) ≡ χ
(
|(u)x0,R | + |(Du)x0,R | + β, E(x0, 2R)

)

≡ γ
(
|(u)x0,R | + 2|(Du)x0,R | + β, E(x0, 2R)

)1− 1
q

+E(x0, 2R)
1− 1

q . (3.18)

The number µ is defined in (3.14), while the exponent q > 1 is the one appearing in
(3.13), when applied with z0 := (Du)x0,R . Recall that the function γ (·) is the local
modulus of continuity defined at (1.8). Therefore, χ is also an increasing function
of each of its arguments. The function H is

H ≡ H
(

n, N , p, ν, L , L̃, |(u)x0,R | + |(Du)x0,R | + E(x0, 2R)
)
,

and it is also an increasing function. Note that the functions A, H and χ depend on
the quantity |(u)x0,R |+ |(Du)x0,R | also via G(|(u)x0,R |+ |(Du)x0,R |), and without
loss of generality we may suppose that G(·) is a non-decreasing function. We can
now start with the proof, which relies on (3.17), and is a variant of the standard
iteration argument used in partial regularity proofs. We make essential use of the
Lipschitz continuity of u, and start by setting

M := ‖u‖L∞(�) + 3
(

1 + ‖Du‖2
L∞(�)

) p
2
. (3.19)

As a first consequence we have that the number q in (3.13) is uniformly bounded
away from 1 when x0 and R vary, see (3.15); according to (3.14) µ stays uniformly
bounded away from 0. Therefore, we can consider the values of q > 1 and µ > 0
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fixed for the rest of the proof, independently of the point x0 ∈ �, and the radius
R > 0; their dependence is exactly as the one explained in the statement for the
number ε. Now, E(x0, 2R) � M , and hence for any possible point x0, and radius
R, we have that

A + H � A(n, N , p, ν, L , L̃, M) + H(n, N , p, ν, L , L̃, M) =: A0 + H0.

Similarly, we have

χ(E(x0, 2R)) �
[
γ
(

M + β, E(x0, 2R)
)]1− 1

q + [E(x0, 2R)]1− 1
q

=: χ0(β, E(x0, 2R)). (3.20)

Merging the last two inequalities with (3.17) yields

E(x0, �) � A0

{ ( �

R

)2 +
(

R

�

)n

×
[
σ + c(σ )

β2 + c(σ )χ0(β, E(x0, 2R))

] }
E(x0, 2R)

+H0

(
R

�

)n

Rµ. (3.21)

Now, we observe that

E(x0, 2R) � c(n, p) −
∫

B(x0,2R)

(
1 + |Du(x)|2 + |(Du)x0,2R |2

) p−2
2

×|Du − (Du)x0,2R |2 dx

� c(n, p)M −
∫

B(x0,2R)

|Du − (Du)x0,2R |2 dx . (3.22)

At this point we can conclude in a standard way. We start taking a number τ ≡
τ(n, N , p, ν, L , L̃, M, G(M)) ∈ (0, 1) small enough in order to have

τ 1/2 A0 � 1

4
. (3.23)

Next, insert � := τ R in (3.21), to get, after an elementary estimation,

E(x0, τ R) �
{

1

4
τ 3/2 + 1

4
τ−n−1/2

×
[
σ + c(σ )

β2 + c(σ )χ0(β, E(x0, 2R))

] }
E(x0, 2R)

+H0τ
−n Rµ. (3.24)

Taking into account the dependence upon the various quantities in τ , we take
σ ≡ σ(n, N , p, ν, L , L̃, M, G(M)) = τ n+2/3 > 0. In turn this determines c(σ ) ≡
c(n, N , p, ν, L , L̃, M, G(M)) < ∞; then we choose

β ≡ β(n, N , p, ν, L , L̃, M, G(M)) :=
√

3c(σ )

τ n+2 < ∞ .
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Finally we are ready to choose ε appearing in the statement of the proposition;
it is at this point that the dependence on the continuity modulus γ (·) from (1.8)
appears. Using (3.16), keeping in mind (3.22), the dependence upon the various
constants in c(σ ) and τ , and the definition of χ0 given in (3.20), we take ε ≡
ε(n, N , p, ν, L , L̃, M, G(M), γ (·)) > 0 such that

χ0(β, c(n, p)Mε) <
τ n+2

3c(σ )
, (3.25)

where c(n, p) is the constant appearing in (3.22). With these choices (3.24) can be
recast as

E(x0, τ R) � τ 3/2

2
E(x0, R) + B Rµ,

and B ≡ B(τ ) ≡ B(n, N , p, ν, L , L̃, M, G(M)) is an absolute constant. Observe
that E(x0, t) � τ−n E(x0, τ

k R), whenever t ∈ (τ k+1 R, τ k R), for every k ∈ N.
Therefore, assuming with no loss of generality that µ � 3/2, we may apply Lemma
7.3 from [20] with the choice ϕ(t) := E(x0, t), whereby

E(x0, �) � C
( �

R

)µ

E(x0, R) + C B�µ, (3.26)

for a constant C that only depends on n, N , p, ν, L , L̃, ‖u‖W 1,∞ , the modulus of
continuity γ (·) and the growth function G(·); in particular, it is independent of the
point x0. It is clear from the above proof that (3.26) holds as soon as (3.16) does,
for the choice of ε made in (3.25). In turn, by continuity, if (3.16) holds at x0, then
it holds for all points in a small ball B(x0, r), and therefore so does (3.26). At this
stage we may refer to a well-known integral characterization of Hölder continuity
due to Campanato and Meyers (see Theorem 2.9 and Chapter 9 of [20]) to deduce
that Du is Hölder continuous with exponent µ/2 in B(x0, r/2); x0 is therefore a
regular point and the proof is concluded.

Remark 3. As also observed at the beginning of the section, in the previous proof
all the constants can be bounded explicitly in terms of the data by carefully keeping
track of the various estimates involved; therefore also the constant ε can be bounded
explicitly in the terms of the data, and this will finally reflect in the possibility of
an explicit bound for the number δ in Theorem 1.1 in terms of the data.

Remark 4. The result of Proposition 3.2 remains true without assuming any a
priori Lipschitz regularity, in the situation considered in Remark 2, and provided
condition (1.8) is strengthened to

|Fzz(z1) − Fzz(z2)| � γ (|z1 − z2|) . (3.27)

Here γ : R
+ → R

+ is a bounded concave and increasing function such that γ (0) =
0. Under these assumptions the number ε appearing in (3.16) depends only on
n, N , ν, L and γ (·). The partial regularity proof of minimizers in this case is sim-
pler, and it can be found in Paragraph 9.4 from [20], where this model case is
considered. Other conditions on F(z) are discussed briefly in Section 6.
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4. A Carleson condition for the excess

In this section a regularity property for the gradient of an ω-minimizer is estab-
lished. It can be viewed as a quantitative version of Lebesgue’s differentiation
theorem expressed in terms of a Carleson condition. We believe the result could be
of interest in itself and have therefore highlighted its statement in a theorem. We
formulate it in terms of the excess H(x, r) defined in (3.5).

Theorem 4.1. Let u ∈ W 1,∞(�, R
N ) be an ω-minimizer of the functional F , under

the assumptions (1.3)–(1.10). There exist two constants

C0 = C0(n, N , p, ν, L , L̃, G(·), ‖u‖W 1,∞), R0 = R0(C0, α), (4.1)

such that for all balls B(x0, 4R) ⊂ � with radii R � R0, the inequality

−
∫

B(x0,R)

∫ R

0
−
∫

B(x,r)

|Du(y) − (Du)x,r |2 dy
dr

r
dx � C0 (4.2)

holds. In particular, C0 is independent of the Hölder continuity exponent α in (1.10),
and both C0 and R0 are independent of x0 ∈ �.

The proof of Theorem 4.1 has two ingredients. The first is Lemma 2.2, which
expresses a general property of Sobolev maps. The second ingredient is a
Caccioppoli inequality of the second kind, which is specific to minimizers. In
fact, we stress that the proof of this Caccioppoli inequality makes essential use of
minimality and uniform strict quasiconvexity.

Proof of Theorem 4.1. For a ball B(x, 2r) ⊂ �, define the affine map a(y) :=
(u)x,2r + (Du)x,2r (y − x) and note that

sup
B(x,2r)

|u − (u)x,2r | � 2mr, m := ‖u‖W 1,∞ . (4.3)

By the very definition of H in (3.5) we get

H(x, r) � −
∫

B(x,r)

|Du − Da|2 dy,

so that, by Proposition 3.1

H(x, r) � −
∫

B(x,r)

(
|Du − Da|2 + |Du − Da|p

)
dy

� c(m)

r2 −
∫

B(x,2r)

|u − a|2 dy + c(m)

r p
−
∫

B(x,2r)

|u − a|p dy

+c(m) −
∫

B(x,2r)

[
ω(4r2) + θ

(
|(u)x,2r |, 4r2 + |u − (u)x,2r |2

)]

×(1 + |Du|p) dy. (4.4)
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The constant c, here as in the following, also depends on n, N , ν, L , L̃ . Here we
may estimate

c(m)

r2 −
∫

B(x,2r)

|u − a|2 dy + c(m)

r p
−
∫

B(x,2r)

|u − a|p dy

� c(m)

r2

(
1 + (2m)p−2

)
−
∫

B(x,2r)

|u − a|2 dy

= c(m)

r2 −
∫

B(x,2r)

|u − a|2 dy

and, recalling that θ(s, t) = min{1, �0(s)ω(t)}, it follows that

c(m) −
∫

B(x,2r)

[
ω(4r2) + θ

(
|(u)x,2r |, 4r2 + |u − (u)x,2r |2

)]
(1 + |Du|p) dy

� c(m)
(
1 + �0(m)

) −
∫

B(x,2r)

ω
(

4r2 + |u − (u)x,2r |2
)
(1 + |Du|p) dy.

Since ω(·) is concave we have, by Jensen’s inequality and (4.3),

−
∫

B(x,2r)

ω
(

4r2 + |u − (u)x,2r |2
)

dy

� ω

(
−
∫

B(x,2r)

(
4r2 + |u − (u)x,2r |2

)
dy

)

� ω(4(1 + m2)r2) � ω(c(m)r2) .

Collecting the above estimates we arrive at

H(x, r) � c

r2 −
∫

B(x,2r)

|u − a|2 dy + cω(cr2) (4.5)

for some constant c = c(n, N , p, ν, L , L̃, �0, m, G(m)). We remark that the con-
stant c in particular is independent of the modulus of continuity ω(·). At this stage
we invoke Lemma 2.2. Fix a ball B(x0, R) with B(x0, 4R) ⊂ �. Integrating (4.5)
we get

∫
B(x0,R)

∫ R

0
H(x, r)

dr

r
dx � c

∫ R

0
ω(cr2)

dr

r
|B(x0, R)|

+c
∫

B(x0,R)

∫ R

0
−
∫

B(x,2r)

∣∣∣u(y) − (u)x,2r − (Du)x,2r (y − x)

∣∣∣2
dy

dr

r3 dx .

Since
∫ R

0
−
∫

B(x,2r)

|u(y) − (u)x,2r − (Du)x,2r (y − x)|2 dy
dr

r3

= 4
∫ 2R

0
−
∫

B(x,r)

|u(y) − (u)x,2r − (Du)x,2r (y − x)|2 dy
dr

r3
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we get by use of Lemma 2.2

∫
B(x0,R)

∫ R

0
H(x, r)

dr

r
dx � c

∫ R

0
ω(cr2)

dr

r
|B(x0, R)|

+c
∫

B(x0,4R)

|Du|2 dx

�
(

c
∫ R0

0
ω(cr2)

dr

r
+ 4ncm2

)
|B(x0, R)|.

Under the assumption (1.10) we have

∫ R0

0
ω(cr2)

dr

r
� c

α
2

α

(
R0

)α

� 1, (4.6)

where the last inequality follows taking R0 ≡ R0(c, α) > 0 small enough. The
proof is complete.

Remark 5. We do not need the condition (1.10) on ω(·) to conclude with inequality
(4.6). It suffices to have the following Dini condition:

∫
0

ω(r2)

r
dr < ∞ . (4.7)

Indeed, under this condition we can still take R0 ≡ R0(c, ω(·)) > 0 such that

∫ R0

0
ω(r2)

dr

r
= 1√

c

∫ √
cR0

0
ω(r2)

dr

r
dr � 1.

This observation opens the way for an extension of our results to elliptic sys-
tems and quasiconvex functionals with appropriately Dini-continuous coefficients.
Indeed, in such cases it is still possible to prove partial regularity of weak solutions/
minimizers [11–13].

Fix an open subset �′ ⊂⊂ �, and denote d := dist(�′, ∂�) > 0. We recall that
a measure µ on �′ × [0, d) is called a Carleson measure provided there exist
constants c ≡ c(µ(·)) < ∞ and R0 ∈ (0, d/4) such that

µ(B(x, R) × [0, R)) � cRn ∀ R ∈ (0, R0) ∀ x ∈ �′. (4.8)

The result of Theorem 4.1 can be restated in this terminology as

Proposition 4.2. Let u ∈ W 1,∞(�, R
N ) be an ω-minimizer of the functional F

under the assumptions (1.3)–(1.10). There exist two constants c and R0 (as in
(4.1)) such that

H(x, r)
dr

r
dx

is a Carleson measure in the sense of (4.8).
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Something can still be said when minimizers are not Lipschitz. Indeed, a certain
integral measure of the convergence rate of Du − (Du)x,r in the sense of (4.2)
can be obtained in terms of powers of radii, essentially as a consequence of higher
integrability. We shall restrict ourselves now to the situation considered in Remark
2. Starting with (4.4) in the quadratic case p = 2, and using (3.12) instead of (3.7)
we get

H(x, r) � c

r2 −
∫

B(x,2r)

|u − a|2 dy,

and proceeding as after (4.5) we arrive at

∫
B(x0,R)

∫ R

0
H(x, r)

dr

r
dx � c

∫
B(x0,4R)

|Du|2 dx . (4.9)

Now fix t �1; regardless of whether the right-hand side is infinite, Hölder’s inequal-
ity gives

∫
B(x0,4R)

|Du|2 dx � c

(∫
B(x0,4R)

|Du|2t dx

) 1
t

R
n
(

1− 1
t

)
.

Therefore, combining the last inequality with (4.9) we obtain the following weaker
Carleson-type decay estimate:

Proposition 4.3. Let u ∈ W 1,2(�, R
N ) be a minimizer of the functional F , with

F ≡ F(z), under the assumptions (1.3)–(1.5) with p = 2 and (3.11). There exists a
constant C1 = C1(n, N , ν, L) such that for all balls B(x0, 4R) ⊂ �, the following
inequality holds:

∫
B(x0,R)

∫ R

0
−
∫

B(x,r)

|Du(y) − (Du)x,r |2 dy
dr

r
dx

� C1

(∫
B(x0,4R)

|Du|2t dx

) 1
t

R
n
(

1− 1
t

)
, (4.10)

where t � 1. In particular, (4.10) is non-trivial taking t = s, where s > 1 is the
higher-integrability exponent of Du defined in (1.16).

Though not sufficient to establish an estimate like (1.18), the previous result still
implies a certain degree of porosity of the singular set. The precise statement is in
Proposition 5.2 below.

5. Porosity of the singular set and proof of Theorem 1.1

Theorem 1.1, and its more general version concerning ω-minima, is an imme-
diate consequence of Lemma 2.1 and the following result.
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Theorem 5.1. Let u ∈ W 1,∞(�, R
N ) be an ω-minimizer of the functional F under

the assumptions (1.3)–(1.10). Then there exists a number

λ = λ(n, N , p, ν, L , L̃, γ (·), G(·), �0(·), ‖u‖W 1,∞) ∈ (0, 1/2) (5.1)

such that for each �′ ⊂⊂ � there is a κ > 0 for which �′ ∩ 
u is (λ, κ)-porous.

Proof. The proof is based on Proposition 3.2 and Theorem 4.1. Fix �′ ⊂⊂ � and
let A := �′ ∩ 
u . Define

κ := 1

8
min{dist(�′, ∂�), R0}, (5.2)

where R0 > 0 is defined in Theorem 4.1. Let x0 ∈ R
n and note that

dist(x0,�
′) � dist(�′, ∂�)

8
=⇒ p(A, x0, R) � R/2 if R ∈ (0, κ],

since, trivially, B(x0, R/2) ∩ �′ = ∅. Hence for the rest of the proof we may
assume without loss of generality that dist(x0,�

′) < dist(�′, ∂�)/8. In this situ-
ation B(x0, 4R) ⊂ � when R � κ , so by virtue of Theorem 4.1,

∫
B(x0,R)

∫ R

0
H(x, r)

dr

r
dx � C0|B(x0, R)|, (5.3)

where H(x, r) is the excess defined in (3.5). For each � ∈ (0, 1) we consider the
set

E := {x ∈ B(x0, R/2) : inf
�R<r<R

H(x, r) � 2−nε},

where the number ε > 0 is defined in Proposition 3.2. By routine estimations

|E | ε

2n
ln

1

�
�

∫
E

∫ R

�R
H(x, r)

dr

r
dx � C0|B(x0, R)| (5.4)

and thus

|E |
|B(x0, R/2)| � 22nC0

ε ln 1
�

.

If therefore we take

� := exp

(
−22n+1C0

ε

)
, (5.5)

then |E |/|B(x0, R/2)| � 1/2 and it follows that we can find x ∈ B(x0, R/2) \ E ,
that is, x ∈ B(x0, R/2) and H(x, r) < 2−nε for some r ∈ (�R, R). Now if
x ′ ∈ B(x, r/2) ⊂ B(x0, R), then B(x ′, r/2) ⊂ B(x, r) and

H(x ′, r/2) � −
∫

B(x ′, r
2 )

|Du − (Du)x,r |2 dy � 2n H(x, r) < ε,
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and therefore any such x ′ is a regular point by virtue of Proposition 3.2; as a conse-
quence we have B(x, r/2)∩
u = ∅. To conclude the proof we take λ := �/2, and
note that then B(x, λR) ⊂ B(x, r/2) ⊂ B(x0, R)\A, that is p(A, x0, R) � λR for
R ∈ (0, κ], and the (λ, κ)-porosity follows. Note that by (5.5) the dependence on
the various parameters of � is inherited by the ones of ε and C0; this implies the
dependence stated in (5.1).

In the general case where minimizers are not assumed to be Lipschitz continuous
the singular set turns out to be non-uniformly porous in the sense of Definition 2;
we shall see this under the assumptions of Remarks 2 and 4.

Proposition 5.2. Let u ∈ W 1,2(�, R
N ) be a minimizer of the functional F , with

F ≡ F(z), under the assumptions (1.3)–(1.5) with p = 2, (3.11), and (3.27). For
every �′ ⊂⊂ � there is a κ > 0 for which �′ ∩ 
u is (m(·), κ)-porous, where

m(r) := 1

2
exp

(
−C2

r
n
s

)
, (5.6)

the number C2 is a constant depending only on n, N , ν, L , γ (·), and where s is the
one from (1.16). Moreover, in (5.6) the exponent s can be replaced by any t > 1
such that Du ∈ L2t

loc(�, R
N×n).

The significance of the previous result is clarified by the following observation:
whenever B(x0, R) ⊂⊂ � is a ball, by Lebesgue’s differentiation theorem it is
always possible to find a smaller ball B(x ′, λR) ⊂ B(x0, R) such that H(x ′, λR)

is small enough and, consequently, B(x ′, λR/2) ⊂ �\
u . On the other hand, there
is no a priori lower bound on the size of λ. Proposition 5.2 provides such a bound
in terms of the function m(·), and on the structural data n, N , ν, L , γ (·). This is
another weaker and geometric way to say that the singular set is small. Also note
that the integrability properties of the gradient play a relevant role in this situation,
exactly as in the convex case (see [24]).

Proof of Proposition 5.2. We follow the proof and the notation of Theorem 5.1.
Instead of using Theorem 4.1, we use Proposition 4.3, and instead of (5.3) we find

∫
B(x0,R)

∫ R

0
H(x, r)

dr

r
dx � C1

ωn
|B(x0, R)|1− 1

s , (5.7)

where s appears in (1.16), and C1 in Proposition 4.3. Estimating as in (5.4), and
denoting ωn := |B(0, 1)|, we get

|E |
|B(x0, R/2)| � 22nC1

ωnε ln 1
�

|B(x0, R)| 1
s

.

We can conclude again that |E |/|B(x0, R/2)| � 1/2 provided this time we take

�(R) := exp

(
−22n+1C1

ω2
nεR

n
s

)
. (5.8)
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The rest of the proof follows exactly as for Theorem 5.1, just taking

C2 := 22n+1C1

ω2
nε

and keeping into account of the dependence on the parameters of C1 stated in Prop-
osition 4.3, and of the number ε, stated in Remark 4. Also observe that the number
κ can be just defined as κ := 1/8dist(�′, ∂�).

6. Additional results

6.1. Asymptotically regular integrands

For certain classes of quasiconvex integrals, where the integrand F(x, y, z) ≡
F(z) has a sufficiently regular behavior for large values of |z|, ω-minimizers are
automatically locally Lipschitz. In the case of minima, this has been first pointed
out by Chipot & Evans in [5] when p = 2, and subsequently extended by Ray-
mond in [35] to the cases p > 2 and more general integrands of the form F =
F0(z) + a(x, y). More precisely, letting

H(z) := (1 + |z|2)p/2 , (6.1)

the integrand F(z) is assumed to satisfy

lim|z|→∞
|Fzz(z) − Hzz(z)|

|z|p−2 = 0 . (6.2)

A typical model case consists of the functionals

v �→
∫

�

(1 + |Dv|2) p
2 + g(Dv) dx , (6.3)

where g : R
N×n → R

+ is a C2 and quasiconvex function (not necessarily strictly),
such that gzz(z)/|z|p−2 → 0 when |z| → ∞. For such functionals we have local
Lipschitz continuity of W 1,p ω-minimizers, and therefore it follows from Theorem
1.1 that for every �′ ⊂⊂ �, there exists a positive number

δ′ ≡ δ′(n, N , p, ν, L , G(·), dist(�′, ∂�)) > 0,

such that

dimH(
u ∩ �′) � n − δ′. (6.4)

Finally, when assuming (6.2), and ∂� sufficiently smooth, e.g. C2, minimizing F
in a prescribed Dirichlet class u0 + W 1,p

0 (�, R
N ), with u0 ∈ C1,β(�, R

N ) for
some β ∈ (0, 1], that is, solving⎧⎪⎪⎨

⎪⎪⎩
min
w

∫
�

F(Dw(x)) dx

w ∈ u0 + W 1,p
0 (�, R

N×n) ,



The Singular Set of Lipschitzian Minima of Multiple Integrals 365

we obtain a globally Lipschitz continuous minimizer u ∈ W 1,∞(�, R
N ). In this

case estimate (1.18) remains valid with a δ depending only on the “data”, that
is n, N , p, ν, L , L̃, γ (·), G(·), ∂�, ‖u0‖C1,β . For such global regularity results, as
well as for their validity in the case of ω-minima we refer to a recent paper by Foss
[15]. Observe also that the proofs in [5] are indirect, i.e. they rely on a blow-up
argument. Nevertheless, using the direct proofs developed [35] and [15], it is pos-
sible to quantify the constants in the Lipschitz estimates, and therefore once again
the constant δ in (1.18).

We end this brief discussion of Lipschitz estimates with the remark that other
choices, different from (6.1), are possible too. More precisely, what is required for
the comparison integrand H is that minimizers of

v �→
∫

�

H(Dv) dx

are fully regular. This is the case, for instance, when H(z) has the so-called
“Uhlenbeck structure", i.e. H(z) := g(|z|), where the function g : R → R is
of class C0(R) ∩ C2(R \ {0}) and satisfies suitable growth and monotonicity con-
ditions; see [30] Section 4.7. Another possibility is to use H(z) := |z|p−2〈Az, z〉,
where A is a constant tensor, satisfying 〈Az, z〉 � ν|z|2. When p = 2, this is the
original example considered in [5]. Another source of examples with this kind of
behavior for large |z| is [22].

6.2. Quasimonotone systems

The result of Theorem 1.1 also extends to weak solutions of so-called quasi-
monotone systems (see [26, 40])

div a(x, Du) = 0, (6.5)

where the vector field a : � × R
N×n → R

N×n is C1 in the last (gradient) variable,
and satisfies for some constants 0 < ν < L the growth condition

|a(x, z)| � L(1 + |z|2) p−1
2 , (6.6)

for all x ∈ �, z ∈ R
N×n , and the uniform strict quasimonotonicity condition:

ν

∫
(0,1)n

(1 + |Dϕ(x)|2) p−2
2 |Dϕ(x)|2 dx

�
∫

(0,1)n
〈a(x0, z0 + Dϕ) − a(x0, z0), Dϕ〉 dx, (6.7)

for every x0 ∈ �, z0 ∈ R
N×n and ϕ ∈ C∞

c ((0, 1)n, R
N ). The last condition is

clearly analogous to (1.5). Finally we assume a Hölder continuous dependence on
the coefficient x , that is

|a(x1, z) − a(x2, z)| � L̃|x1 − x2|α(1 + |z|2) p−1
2 , (6.8)
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for all x1, x2 ∈ � and z ∈ R
N×n , where L̃ � 1 and α ∈ (0, 1], and as for (1.8) and

the existence of the modulus of continuity γ : R
+ × R

+ → R
+ as in (1.8), such

that

|az(x, z1) − az(x, z2)| � γ (|z1| + |z2|, |z1 − z2|), (6.9)

for every x ∈ � and z1, z2 ∈ R
N×n . According to (1.9), we define

G(M) := sup
|z|�M,x∈�

|az(x, z)|
1 + |z|p−2 , M � 0 . (6.10)

A weak solution to (6.5), under the assumption (6.6), is of course a map u ∈
W 1,p(�, R

N×n) such that
∫

�

〈a(x, Du), Dϕ〉 dx = 0

for every ϕ ∈ W 1,p
0 (�, R

N ). Under the assumptions (6.6)–(1.8) the partial C1,α-
regularity in the sense of (1.12)–(1.13) of weak solutions to (6.5) has been estab-
lished by Hamburger, see Theorem 1.1 from [21], and this time it turns out that
u ∈ C1,α

loc (�u, R
N ). On the other hand, condition (6.7) is too weak to allow for the

application of any type of difference-quotient method, and therefore no dimension
estimate for the singular sets of weak solutions is available. Nevertheless we have

Theorem 6.1. Let u ∈ W 1,∞(�, R
N ) be a weak solution to (6.5) under the assump-

tions (6.6)–(6.9), and let 
u := � \ �u denote its singular set. Then there exists a
positive number δ > 0, depending only on n, N , p, ν, L , L̃, ‖u‖W 1,∞ , the modulus
of continuity γ (·) in (6.9), and the growth function G(·) in (6.10), but otherwise
independent of u, of the exponent α, and of the vector field a, such that dimH(
u) �
n − δ.

The proof of the previous theorem can be obtained by the procedure in Section
3, once the analogues of Propositions 3.1 and 3.2 have been established. In turn
this can be done having as a starting point a suitable analogue of estimate (3.17),
that is estimate (5.1) from [21]. Some remarks; the number δ here is once again
explicitly computable, since the methods in [21] are not indirect. The result of
Theorem 6.1 obviously applies to elliptic systems, that are a particular case of
strictly quasimonotone systems as considered above, and in some cases improves
the results in [29], where Mingione proved the estimate dimH(
u) � n − 2α.

Here, in the case of Lipschitzian solutions the dimension estimate does not get lost
when α → 0. Moreover, the result of Theorem 6.1 also extends to more general
systems of the type div a(x, u, Du) = 0, under the natural assumptions considered
in [21]. Finally, restricting to the autonomous case a(x, z) ≡ a(z), the assump-
tion u ∈ W 1,∞(�, R

N ) considered in the last theorem is automatically satisfied
assuming the following condition, similar to the one in (6.11):

lim|z|→∞
|az(z) − Kz(z)|

|z|p−2 = 0 , (6.11)
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where this time K (z) = (1 + |z|2)p−2/2z similarly to Subsection 6.1. A typ-
ical model example is given by a(z) := (1 + |z|2)(p−2)/2z + b(z), where the
C1-vector field b : R

N×n → R
N×n is quasimonotone and satisfies the condition

bz(z)/|z|p−2 → 0 when |z| → ∞. This follows by use of arguments similar
to those applied in the case of functionals. Also for quasimonotone systems we
have a singular set estimate in the interior: we have that given a weak solution to
(6.5) u ∈ W 1,p(�, R

N ), then for every �′ ⊂⊂ �, there exists a positive number
δ′ > 0 depending on the objects n, N , p, ν, L , L̃, γ (·), G(·), dist(�′, ∂�), such
that dimH(
u ∩ �′) � n − δ′. Again, as for the case of functionals we can have
different choices for K (z) in (6.11). For instance we can take any vector field
K (z) := h(|z|)z, where h satisfies suitable growth and monotonicity conditions;
see again [30] Section 4.7.

Another possible extension of our results concerns the so-called W 1,q -local
minima (see [25]). As the Caccioppoli inequality in such cases only has been
established in a very weak form, the necessary modifications are somewhat more
involved and we plan to report on it elsewhere.
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