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Abstract

For elliptic equations ε2�u − V (x)u + f (u) = 0, x ∈ RN , N � 3, we develop
a new variational approach to construct localized positive solutions which concen-
trate at an isolated component of positive local minimum points of V , as ε → 0,
under conditions on f which we believe to be almost optimal.

1. Introduction

We are concerned with standing waves for the nonlinear Schrödinger equation

i�
∂ψ

∂t
+ �

2

2
�ψ − V (x)ψ + f (ψ) = 0, (t, x) ∈ R × RN , (1)

where � denotes the Plank constant, and i the imaginary unit. For the physical
background for this equation, we refer to the introduction in [6]. We assume
that f (exp(iθ)v) = exp(iθ) f (v) for v ∈ R. A solution of the form ψ(x, t) =
exp(−i Et/�)v(x) is called a standing wave. Then, ψ(x, t) is a solution of (1) if
and only if the function v satisfies

�
2

2
�v − (V (x)− E)v + f (v) = 0 in RN . (2)

In this paper we are interested in positive solutions in H1(RN ) for small � > 0.
For small � > 0, these standing waves are referred to as semi-classical states. For
simplicity and without loss of generality, we write V − E as V i.e. we shift E to 0.
Thus, we consider the following equation

ε2�v − V (x)v + f (v) = 0, v > 0, v ∈ H1(RN ) (3)

when ε > 0 is sufficiently small. We assume that the potential function V satisfies
the following condition:
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(V1) V ∈ C(RN ,R) and infx∈RN V (x) = V0 > 0.

For future reference we observe that when defining u(x) = v(εx) and Vε(x) =
V (εx), equation (3) is equivalent to

�u − Vεu + f (u) = 0, u > 0, u ∈ H1(RN ). (4)

An interesting class of solutions of (3) are families of solutions which concen-
trate and develop spike layers, peaks, around certain points in RN while vanishing
elsewhere as ε → 0. The existence of single-peak solutions was first studied by
Floer and Weinstein [18]. For N = 1 and f (u) = u3, they construct a single-
peak solution which concentrates around any given non-degenerate critical point
of the potential V . Oh [27] extended this result in a higher dimension and for
f (u) = |u|p−1u, 1 < p < N+2

N−2 . Furthermore, Oh [28] proved the existence
of multi-peak solutions which concentrate around any finite subsets of the non-
degenerate critical points of V .

The arguments in [18, 27, 28] are based on a Lyapunov–Schmidt reduction and
rely on the uniqueness and non-degeneracy of the ground state solutions, namely of
the positive least energy solutions, for the autonomous problems: for fixed x0 ∈ RN ,

�v − V (x0)v + f (v) = 0 in RN and v ∈ H1(RN ). (5)

Subsequently reduction methods were also found to be suitable to find solutions
of (3) which concentrate around possibly degenerate critical points of V , when the
ground state solutions of the limit problems (5) are unique and non-degenerate.
More precisely, Ambrosetti, Badiale and Cingolani [1] consider concentration
phenomena at isolated local minima and maxima with polynomial degeneracy, and
in [25] Li deals with C1-stable critical points of V . See also [2, 12, 13, 24] for
further related results.

However, the uniqueness and non-degeneracy of the ground state solutions of
(5) are, in general, rather difficult to check. They are known so far only for a rather
restricted class of nonlinearities f . To attack the existence of positive solutions of
(3) without these assumptions, the variational approach, initiated by Rabinowitz
[29], proved to be successful. In [29] he proves, by a mountain pass argument, the
existence of positive solutions of (3) for small ε > 0 whenever

lim inf|x |→∞ V (x) > inf
x∈RN

V (x).

These solutions concentrate around the global minimum points of V when ε → 0,
as was shown by Wang [31]. Later, del Pino and Felmer [14] by introducing a
penalization approach proved a localized version of the result by Rabinowitz and
Wang (see also [15–17, 21] for related results). In [14], assuming (V1) and the
following condition:

(V2) there is a bounded domain O such that

m ≡ inf
x∈O

V (x) < min
x∈∂O

V (x),
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they show the existence of a single-peak solution which concentrates around the
minimum points of V in O . They assume that the nonlinearity f satisfies the
assumptions (F1), (F2) below and the so-called global Ambrosetti–Rabinowitz con-
dition: for some µ > 2, 0 < µ

∫ t
0 f (s)ds < f (t)t, t > 0. Also the monotonicity

of the function ξ → f (ξ)/ξ is required (see [14]). Recently, it has been shown in
[7] and [23] that the monotonicity condition is not necessary.

The motivation of this paper is to explore what are the essential features which
guarantee the existence of localized ground state solutions. In particular, we are
concerned with single-peak solutions which concentrate around local minimum
points, as ε → 0, since the corresponding standing waves of (1) are possible can-
didates to be orbitally stable (see [8, 9] for results in that direction). To state our
main result we need the following. Let

M ≡ {x ∈ O | V (x) = m}
and assume that f : R → R is continuous and satisfies:

(F1) limt→0+ f (t)/t = 0;
(F2) there exists some p ∈ (1, (N + 2)/(N − 2)), N � 3 such that

lim supt→∞ f (t)/t p < ∞;
(F3) there exists T > 0 such that 1

2 mT 2 < F(T ), where F(t) = ∫ t
0 f (s)ds.

Theorem 1. Let N � 3 and suppose that (V1)–(V2) and (F1)–(F3) hold. Then for
sufficiently small ε > 0, there exists a positive solution vε of (3) which satisfies

(i) there exists a maximum point xε of vε such that limε→0 dist(xε,M) = 0, and,
for any such xε, wε(x) ≡ vε(ε(x − xε)) converges (up to a subsequence)
uniformly to a least energy solution of

�u − mu + f (u) = 0, u > 0, u ∈ H1(RN ), (6)

(ii) vε(x) � C exp(− c
ε
|x − xε|) for some c,C > 0.

In [4] Berestycki and Lions proved that there exists a least energy solution
of (6) if (F1), (F2) and (F3) are satisfied, and also, using Pohozaev’s identity, they
showed that conditions (F2) and (F3) are necessary for existence of a non-trivial
solution of the associated problem (6). Thus, basically, the concentration phenom-
ena occurs as soon as (6) has a least energy solution and our result answers positively
a conjecture in Dancer [11]. We should also mention [3], where it is proved that
if (V1), (V2) and (F1), (F2) and (F3) are satisfied, there exists a sequence {εn}n

with limn→∞ εn = 0 such that the conclusion of Theorem 1 holds for ε = εn .

Actually, it seems hopeless that the techniques of [3] could be used to get the result
for any small ε > 0. Finally, we point out that contrary to the works [3, 14, 23], we
do not assume f in C0,1(R) but only that it is continuous. Without this additional
regularity we do not know if the positive solutions of (6) are radially symmetric (see
[19]). Thus, it is more involved to prove the compactness, modulo translations, of
the set of least energy solutions of (6) (see Proposition 1). In turn this compactness
is necessary to show the exponential decay of Theorem 1 (ii).



188 Jaeyoung Byeon & Louis Jeanjean

The approaches of [3, 6, 7, 14, 23] all look for solutions of (4), for ε > 0 small,
independently of their suspected shape (the location itself is somehow prescribed by
the penalization). Then, a posteriori, it is shown that they converge, up to a subse-
quence, to a ground state of the limiting problem (6). Here, we propose a completely
different approach. We search directly for solutions of (4) in a neighborhood of the
set of the least energy solution of (6) whose mass stays close to M. Namely in our
approach we take into account the shape and location of the solutions we expect
to find. This is reminiscent of the perturbation-type approaches developed in [1,
18, 25, 27, 28] but we point out that no uniqueness or non-degeneracy of the least
energy solutions of (6) are required. Our approach is indeed purely variational.

2. Proof of Theorem 1

The variational framework is the following. Let Hε be the completion of C∞
0 (R

N )

with respect to the norm

‖u‖ε =
( ∫

RN
|∇u|2 + Vεu

2dx

)1/2

.

We define a norm ‖ · ‖ on H1(RN ) by

‖u‖2 =
∫

RN
|∇u|2 + V0u2dx .

Since infRN V (x) = V0 > 0, we clearly have Hε ⊂ H1(RN ). From now on, for
any set B ⊂ RN and ε > 0, we define Bε ≡ {x ∈ RN | εx ∈ B}. For u ∈ Hε, let

Pε(u) = 1

2

∫

RN
|∇u|2 + Vεu

2dx −
∫

RN
F(u)dx (7)

(since we seek positive solutions, we assume without loss of generality that f (t) =
0 for all t � 0).

Fixing an arbitrary µ > 0, we define

χε(x) =
{

0 if x ∈ Oε
ε−µ if x /∈ Oε,

and

Qε(u) =
( ∫

RN
χεu

2dx − 1

) p+1
2

+
. (8)

The functional Qε will act as a penalization to force the concentration phenom-
ena to occur inside O. This type of penalization was first introduced in [7]. Finally
let �ε : Hε → R be given by

�ε(u) = Pε(u)+ Qε(u). (9)
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It is standard to see that �ε ∈ C1(Hε). Clearly a critical point of Pε corresponds to
a solution of (4). To find solutions of (4) which concentrate in O as ε → 0,we shall
search critical points of �ε for which Qε is zero. As we shall see the functional
�ε enjoys a mountain pass geometry for any ε > 0 small. First we study some
properties of the solutions of (6).

Without loss of generality, we may assume that 0 ∈ M. For any set B ⊂ RN

and δ > 0, we define Bδ ≡ {x ∈ RN |dist(x,B) � δ}. As we already mentioned,
the following equations for a > 0 are limiting equations of (4)

�u − au + f (u) = 0, u > 0, u ∈ H1(RN ). (10)

We define an energy functional for the limiting problems (10) by

La(u) = 1

2

∫

RN
|∇u|2 + au2dx −

∫

RN
F(u)dx, u ∈ H1(RN ). (11)

In [4] Berestycki and Lions proved that, for any a > 0, there exists a least energy
solution of (10) if (F1), (F2) and (F3) with m = a are satisfied. They also showed
that each solution U of (10) satisfies Pohozaev’s identity

N − 2

2

∫

RN
|∇U |2dx + N

∫

RN
a

u2

2
− F(u)dx = 0. (12)

Let Sa be the set of least energy solutions U of (10) satisfying U (0) = maxx∈RN

U (x). Then, we obtain the following compactness of Sa .

Proposition 1. For each a > 0 and N � 3, Sa is compact in H1(RN ). Moreover,
there exist C, c > 0, independent of U ∈ Sa such that

U (x) � C exp(−c|x |).
Proof. From (12), we see that for any U ∈ Sa,

1

N

∫

RN
|∇U |2dx = La(U ). (13)

Thus, {∫RN |∇U |2dx | U ∈ Sa} is bounded. Note that for any U ∈ Sa,

∫

RN
|∇U |2 + aU 2dx =

∫

RN
f (U )Udx . (14)

By (F1) and (F2), we see that there exists C > 0 satisfying
∫

RN
f (U )Udx � a

2

∫

RN
U 2dx + C

∫

RN
U

2N
N−2 dx . (15)

Thus, it follows from (14) and (15) that

a

2

∫

RN
U 2dx � C

∫

RN
U

2N
N−2 dx . (16)

Then, by the Sobolev inequality, we see that {∫RN U 2dx | U ∈ Sa} is bounded.
Thus, Sa is bounded in H1(RN ). Then, we see from elliptic estimates (see [20])
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that Sa is bounded in L∞(RN ). Moreover, from the maximum principle, we see
that Sa is bounded away from 0 in L∞(RN ). We claim that lim|x |→∞ U (x) = 0
uniformly for U ∈ Sa . To the contrary, we assume that for some {Uk}∞k=1 ⊂ Sa

and {xk}∞k=1 ⊂ RN with limk→∞ |xk | = ∞, it holds lim infk→∞ Uk(xk) > 0.
Define Vk(x) = Uk(x + xk). We see from elliptic estimates that for some β >

0, {Uk, Vk}∞k=1 is bounded in C1,β(RN ). Then, taking a subsequence if it is neces-
sary, we can assume that for some U, V ∈ H1(RN ),Uk and Vk converge to U and
V in C1

loc(R
N ) and weakly in H1(RN ), respectively. This implies that U and V

are solutions of (10) and we have

La(U ), La(V ) � La(W ) for any W ∈ Sa .

Note that

La(U1) = La(U2) = · · · = 1

N

∫

RN
|∇U1|2dx = 1

N

∫

RN
|∇U2|2dx = · · · .

Thus, for each 2R � |xk |,
La(Uk)

= 1
N

∫
RN |∇Uk |2dx � 1

N

∫
B(0,R) |∇Uk |2dx + 1

N

∫
B(xk ,R)

|∇Uk |2dx

= 1
N

∫
B(0,R) |∇Uk |2 + |∇Vk |2dx .

Taking R > 0 large enough we reach a contradiction. Thus, lim|x |→∞ U (x) = 0
uniformly for U ∈ Sa . Then, by the comparison principle and the elliptic estimates,
we see that there exists C, c > 0 satisfying

U (x)+ |∇U (x)| � C exp(−c|x |), x ∈ RN ,U ∈ Sa .

Thus, for any δ > 0, there exists R > 0 such that
∫

|x |�R
|∇U |2 + aU 2dx � δ for U ∈ Sa . (17)

Let {Uk}∞k=1 be a sequence in Sa . Taking a subsequence if it is necessary, we
can assume that Uk converges weakly to some U in H1(RN ). Note, then, that U is
a solution of (10). From (F2), it is standard to see that as k → ∞,

∫

|x |�R
f (Uk)Ukdx →

∫

|x |�R
f (U )Udx .

Since
∫

RN
|∇Uk |2 + a(Uk)

2 − f (Uk)Ukdx =
∫

RN
|∇U |2 + a(U )2 − f (U )Udx = 0,

it follows from (17) that

lim
k→∞

∫

RN
|∇Uk |2 + a(Uk)

2dx =
∫

RN
|∇U |2 + a(U )2dx .

This implies that Uk → U ∈ Sa in H1(RN ). This completes the proof that Sa is
compact for N � 3, a > 0. �	
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Let Em = Lm(U ) for U ∈ Sm and 10δ = dist(M,RN \ O).We fix a β ∈ (0, δ)
and a cut-off ϕ ∈ C∞

0 (R
N ) such that 0 � ϕ � 1, ϕ(x) = 1 for |x | � β and

ϕ(x) = 0 for |x | � 2β. Also, setting ϕε(y) = ϕ(εy), y ∈ RN , for each x ∈ Mβ

and U ∈ Sm, we define

U x
ε (y) ≡ ϕε

(

y − x

ε

)

U

(

y − x

ε

)

.

We will find a solution near the set

Xε = {U x
ε (y) | x ∈ Mβ,U ∈ Sm}

for sufficiently small ε > 0. We note that 0 ∈ M, and define

Wε(y) = ϕε(y)U (y)

where U ∈ Sm is arbitrary but fixed. Setting Wε,t (y) = ϕε(y)U (
y
t ), we see that

�ε(Wε,t ) = Pε(Wε,t ) for t � 0. Also, from (12), we see that for Ut (x) = U ( x
t )we

have
Lm(Ut ) = ∫

RN
t N−2

2 |∇U |2 + m t N

2 U 2 − t N F(U )dx

=
(

t N−2

2 − (N−2)t N

2N

) ∫
RN |∇U |2dx .

Thus, there exists t0 > 0 such that Lm(Ut ) < −2 for t � t0.
Finally we define

Cε = inf
γ∈ε

max
s∈[0,1]�ε(γ (s)),

where ε = {γ ∈ C([0, 1], Hε) |γ (0) = 0, γ (1) = Wε,t0}. We easily check that
�ε(γ (1)) < −2 for any ε > 0 sufficiently small.

Proposition 2.

lim sup
ε→0

Cε � Em .

Proof. Defining Wε,0 = limt→0 Wε,t , we see that Wε,0 = 0. Thus setting
γ (s) = Wε,st0 we have γ ∈ ε. Now,

Cε � max
s∈[0,1]�ε(γ (s)) = max

t∈[0,t0]�ε(Wε,t ) = max
t∈[0,t0] Pε(Wε,t )

and it is standard to show that

lim
ε→0

max
t∈[0,t0]

Pε(Wε,t ) � Em

(see for example Proposition 6.1 of [23]). �	
Proposition 3.

lim inf
ε→0

Cε � Em .
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Proof. To the contrary, we assume that lim infε→0 Cε < Em . Then, there exists
α > 0, εn → 0 and γn ∈ εn satisfying �εn (γn(s)) < Em − α for s ∈ [0, 1]. We
fix an εn such that

m

2
εµn

(
1 + (1 + Em)

2
p+1

)
< min{α, 1}

and Pεn (γn(1)) < −2 and denote εn by ε and γn by γ .
Since Pε(γ (0)) = 0 we can find s0 ∈ (0, 1) such that Pε(γ (s)) � −1 for

s ∈ [0, s0] and Pε(γ (s0)) = −1. Then, for any s ∈ [0, s0],
Qε(γ (s)) � �ε(γ (s))+ 1 � Em − α + 1.

This implies that
∫

RN \Oε
(γ (s))2dx � εµ

(
1 + (1 + Em)

2
p+1

)
for s ∈ [0, s0].

Then, for s ∈ [0, s0],
Pε(γ (s)) = 1

2

∫
RN |∇γ (s)|2 + m(γ (s))2dx − ∫

RN F(γ (s))dx

+ 1
2

∫
RN (Vε(x)− m)(γ (s))2dx

� 1
2

∫
RN |∇γ (s)|2 + m(γ (s))2dx − ∫

RN F(γ (s))dx

+ 1
2

∫
RN \Oε

(Vε(x)− m)(γ (s))2dx

� 1
2

∫
RN |∇γ (s)|2 + m(γ (s))2dx − ∫

RN F(γ (s))dx

−m
2

∫
RN \Oε

(γ (s))2dx

� Lm(γ (s))− m
2 ε

µ
(

1 + (1 + Em)
2

p+1

)
.

Thus, Lm(γ (s0)) < 0 and recalling that for equation (6) the mountain pass level
corresponds to the least energy level (see [22]) we have that

max
s∈[0,1] Lm(γ (s)) � Em .

Then we deduce that

Em − α � maxs∈[0,1] �ε(γ (s))
� maxs∈[0,1] Pε(γ (s))
� maxs∈[0,s0] Pε(γ (s))

� maxs∈[0,1] Lm(γ (s))− m
2 ε

µ
(

1 + (1 + Em)
2

p+1

)

� Em − m
2 ε

µ
(

1 + (1 + Em)
2

p+1

)

and this contradiction completes the proof. �	
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Propositions 2 and 3 imply that limε→0(maxs∈[0,1] �ε(γε(s))−Cε) = 0,where
γε(s) = Wε,st0 for s ∈ (0, 1] and γε(0) = 0. For future reference we denote

Dε ≡ max
s∈[0,1]�ε(γε(s)).

Then, we see that

Cε � Dε and lim
ε→0

Cε = lim
ε→0

Dε = Em .

Now define

�αε = {u ∈ Hε | �ε(u) � α}
and for a set A ⊂ Hε and α > 0, let Aα ≡ {u ∈ Hε | infv∈A ‖u − v‖ε � α}.
Proposition 4. Let {εi }∞i=1 be such that limi→∞ εi = 0 and {uεi } ∈ Xd

εi
such that

lim
i→∞�εi (uεi ) � Em and lim

i→∞�
′
εi
(uεi ) = 0.

Then, for sufficiently small d > 0, there exists, up to a subsequence, {yi }∞i=1 ⊂ RN ,
x ∈ M, U ∈ Sm such that

lim
i→∞ |εi yi − x | = 0 and lim

i→∞ ‖uεi − ϕεi (· − yi )U (· − yi )‖εi = 0.

Proof. For convenience, we write ε for εi . By compactness of Sm and Mβ , there
exist Z ∈ Sm and x ∈ Mβ such that

‖uε − ϕε(· − x/ε)Z(· − x/ε)‖ε � 2d (18)

for small ε > 0. We denote u1
ε = ϕε(· − x/ε)uε and u2

ε = uε − u1
ε . As a first step

in the proof of the Proposition we shall prove that

�ε(uε) � �ε(u
1
ε)+ �ε(u

2
ε)+ o(1). (19)

Suppose there exist xε ∈ B(x/ε, 2β/ε)\B(x/ε, β/ε) and R > 0 satisfying
lim infε→0

∫
B(xε,R)

(uε)2dy > 0.Taking a subsequence, we can assume that εxε →
x0 with x0 in the closure of B(x, 2β)\B(x, β) and that uε(· + xε) → W̃ weakly in
H1(RN ) for some W̃ ∈ H1(RN ). Moreover, W̃ satisfies

�W̃ (y)− V (x0)W̃ (y)+ f (W̃ (y)) = 0 for y ∈ RN .

By definition, LV (x0)(W̃ ) � EV (x0). Also, for large R > 0

lim inf
ε→0

∫

B(xε,R)
|∇uε|2dy � 1

2

∫

RN
|∇W̃ |2dy. (20)

Now, recalling from [22] that Ea > Eb if a > b, we see that EV (x0) � Em , since
V (x0) � m. Thus, from (13) and (20) we get that

lim inf
ε→0

∫

B(xε,R)
|∇uε|2dy � N

2
LV (x0)(W̃ ) � N

2
Em > 0.
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Then, taking d > 0 sufficiently small, we get a contradiction with (18). Since there
does not exist such a sequence {xε}ε we deduce from a result of Lions (see [26]
Lemma 1.1) that

lim inf
ε→0

∫

B(x/ε,2β/ε)\B(x/ε,β/ε)
|uε|p+1dy = 0. (21)

As a consequence, we can derive using (F1), (F2) and the boundedness of {‖uε‖L2}ε
that

lim
ε→0

∫

RN
F(uε)− F(u1

ε)− F(u2
ε)dy = 0.

At this point, writing

�ε(uε) = �ε(u1
ε)+ �ε(u2

ε)

+ ∫
RN ϕε(1 − ϕε)|∇uε|2 + Vεϕε(1 − ϕε)u2

εdy
− ∫

RN F(uε)− F(u1
ε)− F(u2

ε)dy + o(1),

the inequality (19) follows.
We now estimate�ε(u2

ε). Since {uε}ε is bounded, we see from (18) that ‖u2
ε‖ε �

4d for small ε > 0. Then, it follows from Sobolev’s inequality, that for some
C, c > 0,

�ε(u
2
ε) � Pε(u

2
ε) � 1

2
‖u2
ε‖2
ε − V0

4

∫

RN
(u2
ε)

2dy − C
∫

RN
(u2
ε)

2N/(N−2)dy

� 1

4
‖u2
ε‖2
ε − Cc‖u2

ε‖2N/(N−2)
ε

� ‖u2
ε‖2
ε

(1

4
− Cc(4d)4/(N−2)

)
. (22)

In particular, taking d > 0 small enough, we can assume that �ε(u2
ε) � 0.

Now let Wε(y) = u1
ε(y + x/ε). Taking a subsequence we can assume that

Wε → W weakly in H1(RN ) for some W ∈ H1(RN ). Moreover, W satisfies

�W (y)− V (x)W (y)+ f (W (y)) = 0 for y ∈ RN .

From the maximum principle we see that W is positive. Let us prove that Wε → W
strongly in H1(RN ). Suppose there exist R > 0 and a sequence {zε}ε with zε ∈
B(x/ε, 2β/ε) satisfying

lim inf
ε→0

|zε − x/ε| = ∞ and lim inf
ε→0

∫

B(zε,R)
(u1
ε)

2dy > 0.

We may assume that εzε → z0 ∈ O as ε → 0. Then, W̃ε(y) = u1
ε(y + zε)

converges weakly to W̃ in H1(RN ) satisfying

�W̃ − V (z0)W̃ + f (W̃ ) = 0, for y ∈ RN .
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At this point as before we get a contradiction and then using (F1), (F2) and [26]
(Lemma 1.1) that

lim
ε→0

∫

RN
F(Wε)dx →

∫

RN
F(W )dx . (23)

Then it follows from the weak convergence of Wε to W in H1(RN ) that

lim
ε→0

�ε(u
1
ε) � lim inf

ε→0
Pε(u

1
ε)

= lim inf
ε→0

1

2

∫

RN
|∇Wε(y)|2 + V (εy + x)W 2

ε (y)dy −
∫

RN
F(Wε(y))dy

� 1

2

∫

RN
|∇W |2 + V (x)W 2dy −

∫

RN
F(W )dy � Em . (24)

Since limε→0 �ε(uε) � Em, �ε(u2
ε) � 0 and because of (19), we see that

lim sup
ε→0

�ε(u
1
ε) � Em . (25)

Then (24) implies that LV (x)(W ) = Em . Also, from [22], we see that x ∈ M. At
this point it is clear that W (y) = U (y − z) with U ∈ Sm and z ∈ RN . Finally,
using (23), (25) and the fact that V � V (x) on O , we get from (24) that

∫
RN |∇W |2 + V (x)W 2dy � lim supε→0

∫
RN |∇u1

ε(y)|2 + V (εy)(u1
ε)

2(y)dy
� lim supε→0

∫
RN |∇u1

ε(y)|2 + V (x)(u1
ε)

2(y)dy
� lim supε→0

∫
RN |∇Wε(y)|2 + V (x)W 2

ε (y)dy.

This proves the strong convergence of u1
ε to W in H1(RN ). In particular setting

yε = x/ε + z we have u1
ε → ϕε(· − yε)U (· − yε) strongly in H1(RN ). This

means that u1
ε → ϕε(· − yε)U (· − yε) strongly in Hε. To conclude the proof of

the proposition, it suffices to show that u2
ε → 0 in Hε. Now, using (19), (22) and

limε→0 �ε(u1
ε) = Em, we deduce that for some C > 0,

Em � lim
ε→0

�ε(uε) � Em + C‖u2
ε‖2
ε(1 − d4/N−2)+ o(1).

This proves that u2
ε → 0 in Hε, and completes the proof. �	

Proposition 5. For sufficiently small d1 > d2 > 0, there exist constants ω > 0 and
ε0 > 0 such that |�′

ε(u)| � ω for u ∈ �Dε
ε ∩ (Xd1

ε \ Xd2
ε ) and ε ∈ (0, ε0).

Proof. To the contrary, we suppose that for small d1 > d2 > 0, there exist {εi }∞i=1

with limi→∞ εi = 0 and uεi ∈ Xd1
εi \ Xd2

εi satisfying limi→∞ �εi (uεi ) � Em and
limi→∞ |�′

εi
(uεi )| = 0. For convenience we write ε for εi . By Proposition 4, there

exists {yε}ε ⊂ RN such that for some U ∈ Sm and x ∈ M,

lim
ε→0

|εyε − x | = 0 and lim
ε→0

‖uε − ϕε(· −yε)U (· −yε)‖ε = 0.

By the definition of Xε, we see that limε→0 dist(uε, Xε) = 0. This contradicts that
uε /∈ Xd2

ε , and completes the proof. �	
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Following Proposition 5, we fix a d > 0 and corresponding ω > 0 and ε0 > 0
such that |�′

ε(u)| � ω for u ∈ �Dε
ε ∩ (Xd

ε \ Xd/2
ε ) and ε ∈ (0, ε0). Then, we obtain

the following proposition.

Proposition 6. There exist α > 0 such that for sufficiently small ε > 0,

�ε(γε(s)) � Cε − α implies that γε(s) ∈ Xd/2
ε ,

where γε(s) = Wε,st0(s).

Proof. Since supp(γε(s)) ⊂ M2β
ε for each s ∈ [0, 1], it follows that �ε(γε(s)) =

Pε(γε(s)).Moreover, we see from the decay property of U and a change of variables
that

Pε(γε(s)) = 1
2

∫
RN |∇γε(s)|2 + Vε(x)(γε(s))2dx − ∫

RN F(γε(s))dx

= 1
2

∫
RN |∇γε(s)|2 + m(γε(s))2dx − ∫

RN F(γε(s))dx

+ 1
2

∫
RN (Vε(x)− m)(γε(s))2dx

= (st0)N−2

2

∫
RN |∇U |2dx + (st0)N

2

∫
RN mU 2dx

−(st0)N
∫

RN F(U )dx + O(ε).

Then, from Pohozaev’s identity (12), we see that

�ε(γε(s)) = Pε(γε(s)) =
(
(st0)N−2

2
− N − 2

2N
(st0)

N
)∫

RN
|∇U |2dx + O(ε).

Note that

max
t∈(0,∞)

(
t N−2

2
− N − 2

2N
t N

) ∫

RN
|∇U |2dx = Em

and limε→0 Cε = Em . Then, since, denoting g(t) = t N−2

2 − N−2
2N t N ,

g′(t)

⎧
⎨

⎩

> 0 for t ∈ (0, 1),
= 0 for t = 1,
< 0 for t > 1

and g′′(1) = 2 − N < 0, the conclusion follows. �	

Proposition 7. For sufficiently fixed small ε > 0, there exists a sequence {un}∞n=1 ⊂
Xd
ε ∩ �Dε

ε such that �′
ε(un) → 0 as n → ∞.
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Proof. By Proposition 6, there exists α > 0 such that for sufficiently small ε > 0,

�ε(γε(s)) � Cε − α implies that γε(s) ∈ Xd/2
ε .

If Proposition 7 does not hold for sufficiently small ε > 0, there exists a(ε) > 0
such that |�′

ε(u)| � a(ε) on Xd
ε ∩ �Dε

ε . Also we know from Proposition 5 that
there exists ω > 0, independent ε > 0 small, such that |�′

ε(u)| � ω for u ∈
�

Dε
ε ∩ (Xd

ε \ Xd/2
ε ).Now there exists a pseudo-gradient vector field Qε on a neigh-

borhood Zε of Xd
ε ∩�Dε

ε for�ε (see [30]). Let ηε be a Lipschitz continuous function
on Hε such that 0 � ηε � 1, ηε ≡ 1 on Xd

ε ∩ �Dε
ε and ηε ≡ 0 on Hε \ Zε. Also,

let ξε be a Lipschitz continuous function on R such that 0 � ξε � 1, ξε(a) ≡ 0 if
|a −Cε| � α, and ξε(a) ≡ 1 if |a −Cε| � α/2. Then, there exists a global solution
�ε : Hε × R → Hε of the initial value problem

∂

∂τ
�ε(u, τ ) = −ηε(�ε(u, τ ))ξε(�ε(�ε(u, τ ))) (26)

�ε(u, 0) = u. (27)

We recall that limε→0(Cε− Dε) = 0. Then, it is standard to see that for some large
τε > 0,

�ε(�ε(γε(s), τε)) � Cε − α/4, s ∈ [0, 1].
Note that γ̃ε ≡ �ε(γε(·), τε) ∈ ε.On the other hand, we see that for small ε > 0,

�ε(γ̃ε(s)) < Cε, s ∈ [0, 1].
This contradiction proves the Proposition. �	
Proposition 8. For sufficiently small fixed ε > 0, �ε has a critical point u ∈
Xd
ε ∩ �Dε

ε .

Proof. Let {un}∞n=1 be a Palais–Smale sequence as given by Proposition 7 corre-
sponding to a fixed small ε > 0. Since {un}∞n=1 is bounded in Hε, un → u weakly
in Hε, for some u ∈ Hε. Then, it follows in a standard way that u is a critical point
of �ε. Now we write un = vn + wn with vn ∈ Xε and ‖wn‖ε � d. Since Xε is
compact, there exists v ∈ Xε such vn → v in Xε, up to a subsequence, as n → ∞.

Moreover, for some w ∈ Hε, wn → w weakly, up to a subsequence, in Hε, as
n → ∞. Thus, u = v + w and

‖u − v‖ε = ‖w‖ε � lim infn→∞ ‖wn‖ε � d.

This proves that u ∈ Xd
ε .

To show that�ε(u) � Dε, it suffices to show that lim supn→∞ �ε(un) � �ε(u).
In fact, writing un = u + on, we deduce that

‖on‖ε = ‖un − v − w‖ε � ‖vn − v‖ε + ‖wn − w‖ε
� ‖vn − v‖ε + ‖wn‖ε + ‖w‖ε
� 2d + o(1)
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and

‖un‖2
ε = ‖u‖2

ε + ‖on‖2
ε.

It is standard (see the proof of Proposition 2.31 in [10] for example) to show that
∫

RN
F(un)dx =

∫

RN
F(u)dx +

∫

RN
F(on)dx + o(1).

Thus we see that

Pε(un) = 1

2
‖u‖2

ε −
∫

RN
F(u)dx + 1

2
‖on‖2

ε −
∫

RN
F(on)dx + o(1).

For sufficiently large n > 0 and small d > 0, we deduce, as in the proof of
Proposition 4, that

1

2
‖on‖2

ε −
∫

RN
F(on)dx � 0.

It follows that lim supn→∞ �ε(un) � �ε(u). This completes the proof. �	
Completion of the proof for Theorem 1. We see from Proposition 8 that there exist
d > 0 and ε0 > 0 such that, for ε ∈ (0, ε0), �ε has a critical point uε ∈ Xd

ε ∩�Dε
ε .

Since uε satisfies

�uε − Vεuε + f (uε) = (p + 1)
( ∫

χεu
2
εdx − 1

) p−1
2

+ χεuε in RN (28)

and f (t) = 0 for t � 0, we deduce that uε > 0 in RN . Moreover, by elliptic esti-
mates through the Moser iteration scheme, we deduce that {‖uε‖L∞}ε is bounded
(see for example [5] (Proposition 3.5) for such techniques). Now by Proposition 4,
we see that

lim
ε→0

∫

RN \M2δ
ε

|∇uε|2 + Vε(uε)
2dx = 0,

and thus, by elliptic estimates (see [20]), we see that

lim
ε→0

‖uε‖L∞(RN \M2δ
ε )

= 0.

Using a comparison principle, it follows that, for some C, c > 0,

uε(x) � C exp(−cdist(x,M2δ
ε )).

This implies that Qε(uε) = 0 and thus uε satisfies (4). Finally let xε be a maximum
point of uε. By Propositions 1 and 4, we readily deduce that εxε → x for some
x ∈ M as ε → 0, and that for some C, c > 0,

uε(x) � C exp(−c|x − xε|).
This completes the proof. �	



Standing Waves for Nonlinear Schrödinger Equations 199

Acknowledgments. The work of J. Byeon was supported by grant No. R01-2004-000-
10055-0 from the Basic Research Program of the Korea Science & Engineering Foundation.
This work was completed during a visit by L. Jeanjean to the Mathematical Department
of POSTECH in April 2005. He would like to express his gratitude for this invitation and
support.

References

1. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear
Schrödinger equations. Arch. Ration. Mech. Anal. 140, 285–300 (1997)

2. Ambrosetti, A., Malchiodi, A., Secchi, S.: Multiplicity results for some nonlinear
Schrödinger equations with potentials. Arch. Ration. Mech. Anal. 159, 253–271 (2001)

3. Avila, A., Jeanjean, L.: A result on singularly perturbed elliptic problems. Commun.
Pure. App. Anal. 4, 343-358 (2005)

4. Berestycki, H., Lions, P-L.: Nonlinear scalar field equations I. Arch. Ration. Mech.
Anal. 82, 313–346 (1983)

5. Byeon, J.: Existence of large positive solutions of some nonlinear elliptic equations
on singularly perturbed domains. Comm. Partial Differential Equations 22, 1731–1769
(1997)

6. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear
Schrödinger equations. Arch. Ration. Mech. Anal. 165, 295–316 (2002)

7. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear
Schrödinger equations II. Calc. Var. Partial Differential Equations 18, 207–219 (2003)

8. Cazenave, T., Lions, P-L.: Orbital stability of standing waves for some nonlinear
Schrödinger equations. Comm. Math. Phys. 85, 549–561 (1982)

9. Cid, C., Felmer, P.L.: Orbital stability and standing waves for the nonlinear Schrödinger
equation with potential. Rev. Math. Phys. 13, 1529–1546 (2001)

10. Coti-Zelati, V., Rabinowitz, P.H.: Homoclinic type solutions for a semilinear elliptic
PDE on RN . Comm. Pure Appl. Math. 45, 1217–1269 (1992)

11. Dancer, E.N.: Personal communication, Milan, 2002
12. Dancer, E.N., Lam, K.Y., Yan, S.: The effect of the graph topology on the existence of

multipeak solutions for nonlinear Schrödinger equations. Abstr. Appl. Anal. 3, 293–318
(1998),

13. Dancer, E.N. Yan, S.: On the existence of multipeak solutions for nonlinear field
equations on RN . Discrete Contin. Dyn. Syst. 6, 39–50 (2000)

14. Del Pino, M., Felmer, P.L.: Local mountain passes for semilinear elliptic problems in
unbounded domains. Calc. Var. Partial Differential Equations 4, 121–137 (1996)

15. Del Pino, M. Felmer, P.L.: Semi-classical states for nonlinear Schrödinger equations.
J. Funct. Anal. 149, 245–265 (1997)

16. Del Pino, M., Felmer, P.L.: Multi-peak bound states for nonlinear Schrödinger equa-
tions. Ann. Inst. H. Poincaré Anal. non Linéaire 15, 127–149 (1998)

17. Del Pino, M., Felmer, P.L.: Semi-classical states for nonlinear Schrödinger equations:
a variational reduction method. Math. Ann. 324, 1, 1–32. (2002)

18. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equa-
tions with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

19. Gidas, B., Ni, W.N., Nirenberg, L.: Symmetry and related properties via the maximum
principle. Comm. Math. Phys. 68, 209–243 (1979)

20. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order.
Second edition. Grundlehren 224, Springer, Berlin, 1983

21. Gui, C.: Existence of multi-bump solutions for nonlinear Schrödinger equations via
variational method. Comm. Partial Differential Equations 21, 787–820 (1996)

22. Jeanjean, L., Tanaka, K.: A remark on least energy solutions in RN . Proc. Amer.
Math. Soc. 131, 2399–2408 (2003)



200 Jaeyoung Byeon & Louis Jeanjean

23. Jeanjean, L., Tanaka, K.: Singularly perturbed elliptic problems with superlinear or
asymptotically linear nonlinearities. Calc. Var. Partial Differential Equations 21, 287-
318 (2004)

24. Kang, X., Wei, J.: On interacting bumps of semi-classical states of nonlinear Schröding-
er equations. Adv. Differential Equations 5, 899–928 (2000)

25. Li, Y.Y.: On a singularly perturbed elliptic equation. Adv. Differential Equations 2,
955–980 (1997)

26. Lions, P-.L.: The concentration-compactness principle in the calculus of variations.
The locally compact case, Part II. Ann. Inst. Henri Poincaré 1, 223–283 (1984)

27. Oh, Y.G.: Existence of semiclassical bound states of nonlinear Schrödinger equations
with potentials of the class (V )a . Comm. Partial Differential Equation. 13, 1499–1519
(1988)

28. Oh, Y.G.: On positive multi-lump bound states of nonlinear Schrödinger equations
under multiple well potential. Comm. Math. Phys. 131, 223–253 (1990)

29. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math.
Phys. 43, 270–291. (1992),

30. Struwe, M.: Variational Methods: Application to Nonlinear Partial Differential Equa-
tions and Hamiltonian Systems. Springer-Verlag, 1990

31. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equa-
tions. Comm. Math. Phys. 153, 229–244 (1993)

Department of Mathematics,
Pohang University of Science and Technology,

Pohang,
Kyungbuk 790-784,
Republic of Korea.

e-mail: jbyeon@postech.ac.kr

and

Equipe de Mathématiques (UMR CNRS 6623),
Université de Franche-Comté,

16 Route de Gray,
25030 Besançon,

France.
e-mail: jeanjean@math.univ-fcomte.fr

(Received May 16, 2005 / Accepted January 18, 2006)
Published online July 13, 2006 – © Springer-Verlag (2006)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


