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Abstract

Using a nonstandard version of the principle of virtual power, we develop
general balance equations and boundary conditions for second-grade materials.
Our results apply to both solids and fluids as they are independent of constitutive
equations. As an application of our results, we discuss flows of incompressible
fluids at small-length scales. In addition to giving a generalization of the Navier–
Stokes equations involving higher-order spatial derivatives, our theory provides
conditions on free and fixed boundaries. The free boundary conditions involve the
curvature of the free surface; among the conditions for a fixed boundary are gen-
eralized adherence and slip conditions, each of which involves a material length
scale. We reconsider the classical problem of plane Poiseuille flow for generalized
adherence and slip conditions.
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1. Introduction

1.1. Toupin’s results for a second-grade elastic material

In two monumental works, Toupin [40, 41] derived general balance equations
and associated traction boundary conditions for an elastic body whose strain energy
depends on first and second gradients of the deformation. Toupin’s derivation is
based on a virtual work principle1 asserting that the variation of the total elastic
energy be equal to the virtual work exerted on the body by tractions and body
forces.2 A central consequence of Toupin’s work is the observation that Cauchy’s
hypothesis — that the surface traction at a point x on a surface S depend on S
through its normal field at x — is not valid in a theory involving second gradients
of the deformation, because in Toupin’s theory the traction depends also on the
curvature of S at x.

1 We use the term virtual work when the principle describes equilibrium, and virtual power
when the principle describes an evolving body, allowing for inertia.

2 Toupin’s results were applied by Mindlin [23] and Mindlin & Eshel [24] to lin-
ear elastostatics and were partially generalized by Podio-Guidugli [32] to include third
deformation gradients. Precursors to Toupin’s work trace back to the introduction of couple
stresses by Voigt [45] (cf. Section 1) and E. & F. Cosserat [5] (cf. Section 53).
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Unfortunately, because it assumes that the material is elastic and the body is
in equilibrium, Toupin’s derivation of the balance equations and associated trac-
tion boundary conditions cannot be applied to a general dynamical framework that
includes dissipation.3

1.2. The general virtual power principle for a second-grade material

Our goal here is to derive Toupin’s results within a framework that is indepen-
dent of constitutive equations. To do so we use a nonstandard form of the principle
of virtual power (Gurtin [12]).4 Conventional versions of this principle are for-
mulated for the body B as a whole rather than for control volumes and as such
generally involve particular boundary conditions applied to the boundary ∂B of B.
Such formulations allow for a weak statement of the basic force balances and when
combined with constitutive equations result in weak statements of the resulting
boundary-value problems. Here the principle of virtual power is used instead as a
basic tool to determine the structure of the tractions and of the local force balances.
As such, conditions on ∂B play a role no different from those on the boundary of
any control volume. Basic to this view is the premise, central to all of continuum
mechanics, that any basic law for the body should hold also for all subregions of
the body.

Classically, the power expended within an arbitrary control volume R in the
region of space occupied by the deformed body has the simple form

Wint(R) =
∫

R

T :gradv dv =
∫

R

Ti jvi, j dv (1)

with T the Cauchy stress and T :gradv the stress power. We generalize the classical
theory by including an analogous G...grad 2v linear in the second gradient grad 2v,
with G a third-order hyperstress, and therefore rewrite the power expended within
R in the form

Wint(R) =
∫

R

(
T :gradv + G...grad 2v

)
dv =

∫

R

(
Ti jvi, j + Gi jkvi, jk

)
dv. (2)

Within our framework the grade of the material is defined to be the order (here 2)
of the highest velocity gradient in the internal power.

In conjunction with the internal power expenditure (2), we introduce a corre-
sponding external power expenditure

Wext(R) =
∫

S

(
tS ·v + mS · ∂v

∂n

)
da +

∫

R

b·v dv, (3)

3 In this regard, Toupin [40] gave an alternative derivation of the basic balance that allows
for inertia, again for an elastic material, using an argument based on balance of energy.

4 Cf. Antman & Osborn [1] for a rigorous treatment of the classical virtual-work prin-
ciple for forces and a similar treatment of a corresponding principle for torques. The central
result of Antman and Osborn — the equivalence of these principles to the classical balances
for linear and angular momentum — is independent of constitutive equations.
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in which tS and mS represent tractions on the bounding surface S = ∂R of R, while
b represents the net inertial and noninertial body force acting within the body.5

Here the term

mS · ∂v
∂n
,

which is not present in classical theories, is needed to balance the effects of the
second-grade term G...grad 2v in the internal power.

The principle of virtual power we use is based on the requirement that

Wext(R) = Wint(R)

for all control volumes R and any choice of the velocity field v, here considered as
virtual. Consequences of the virtual power principle and the requirement that the
internal power expenditure be frame indifferent are that:

(i) the classical macroscopic balance divT + bni = ρv̇, with ρ the density and bni

the noninertial body force, need to be replaced by the balance

div(T − divG)+ bni = ρv̇
(
Ti j, j − Gi jk, jk + bni

i = ρv̇i
)

(4)

with T symmetric as in the classical theory;

(ii) Cauchy’s classical condition t(n) = Tn for the traction across a surface S with
unit normal n need to be replaced by the conditions

tS = Tn − (divG)n − divS(Gn)− 2K (Gn)n, mS = (Gn)n, (5)

in which K is the mean curvature of S; equivalently, in components, for K the
curvature tensor of S,

(tS)i = Ti j n j − 2Gi jk,kn j + Gi jk,ln j nknl + Gi jk(K jk − 2K n j nk),

(mS)i = Gi jkn j nk .

}

(6)

The results (4) and (5) (applied to the boundary of the body) are the same as those
given in equations (7.8) and (7.9) of Toupin [40], but our derivation is independent
of constitutive relations and hence valid for both solids and fluids.

1.3. Application of the theory to liquid flow at small-length scales

We discuss in some detail applications of the general field theory defined by
(4) and (5), a discussion which we now summarize.

We consider a purely mechanical theory with an underlying “second
law” – a free-energy imbalance asserting that the free energy of an arbitrary region

5 Specifically, b accounts not only for the usual body forces like that due to gavitation but
also for accelerations terms treated, in the manner of D’Alembert [6], as reversed forces.
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that convects with the body increases at a rate not greater than the rate at which
work is performed.6

Consistent with the goal of developing a theory for liquids at small-length
scales, we restrict attention to incompressible materials, so that: (i) the density and
specific free energy are constant; (ii) the stress has the form

T = T0 − P1,

with T0 the traceless extra stress and P an indeterminate pressure; and (iii) the
hyperstress has the form

G = G0 − 1 ⊗ π
(
Gi jk = G0i jk − δi jπk

)
,

with extra hyperstress G0 traceless in its first two indices and π an indeterminate
vectorial hyperpressure. More importantly, the free energy imbalance reduces to a
dissipation inequality

T0 :D + G0 ...grad 2v � 0. (7)

We restrict attention to linear isotropic constitutive relations which, in compo-
nents, have the form7

T0i j = 2μDi j = μ(vi, j + v j,i ),

G0i jk = η1vi, jk + η2(vk,i j + v j,ik − vi,rrδ jk),

}
(8)

where isotropy rules out coupling between T0i j and G0i jk . Most importantly, (8)
involves only two constitutive moduli η1 and η2 in addition to the classical viscosity
μ.

With the constitutive relations (8) and noninertial body forces neglected, the
force balance (4) yields the flow equation

ρv̇ = −grad p + μ�v − ζ��v
(
ρv̇i = −p,i + μvi, j j − ζvi, j jkk

)
, (9)

where � represents the Laplace operator, while

p = P − divπ and ζ = η1 − η2. (10)

The flow equation (9) differs from the conventional Navier–Stokes equation only
by the term with coefficient ζ .

As a consequence of the dissipation inequality (7), we find that μ � 0 and
ζ � 0. Granted that μ > 0 or ζ > 0 our flow equation (9) is — like the Navier–
Stokes equation — parabolic. Further, a dimensional argument yields a material
length

L =
√
ζ

μ
(11)

relevant to the description of liquid flows at small scales.

6 If the theory was based on continuum formulations of balance of energy and growth of
entropy (the Clausius–Duhem inequality), then this free-energy imbalance would be satisfied
in isothermal processes.

7 A future paper — based on constitutive equations more general than (8) — will discuss
turbulence.
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In addition to the flow equation, the theory also provides boundary conditions.
The classical no-slip boundary condition is replaced by what we refer to as the
generalized adherence conditions

v = 0 and mS = −μl
∂v
∂n
, (12)

in which the constitutive modulus l � 0, a material length, measures the strength
of the fluid’s adherence to the boundary. Alternatively, the theory allows also for
slip and for a free surface, each of which involves the introduction of an additional
constitutive parameter.

To exhibit some features of the theory, we revisit the classical problem of plane
Poiseuille flow for generalized adherence and slip conditions. For the generalized
adherence conditions (12), the theory predicts a flow rate lower than that obtained
classically. When slip is allowed, the flow rate exceeds that obtained under weak
adherence but also lies below that obtained for the Navier–Stokes equations subject
to the Navier slip condition. These lower flow rates trace directly to the additional
sources of dissipation associated with the hyperstress and the boundary conditions.
As would be expected, these effects are important only for channels with sufficiently
small gaps.

1.4. Kinetic energy dependent upon the velocity gradient

The theory discussed thus far is based on a generalization of the classical vir-
tual-power principle (for a continuum) to include higher-order velocity gradients
and concomitant higher-order stresses and tractions. In accordance with this, we
conclude the paper by modifying the kinetic energy to account for dependence on
the velocity gradient. Specifically, assuming that the kinetic energy per unit volume
is of the form

1
2ρ|v|2 + 1

2β |gradv|2,
where β = (constant)ρ, we seek to determine appropriate inertial and noninertial
components bin and bni of the body force b, and tin

S and tni
S of the traction tS . To

achieve this, we adapt the virtual power analysis used previously to the inertial
power balance∫

R

(p·v + M :gradv) dv = −
∫

R

bin ·v dv −
∫

S

tin
S ·v da, (13)

where p and M are (vectorial and tensorial) momentum-rate forces defined via

p = ρv̇ and M = β ˙gradv. (14)

We find that for an incompressible material,

b = −gradκ − (ρ − β�)v̇ − β[(gradv)�v + (grad 2v)gradv] + bni,

tS = [κ1 − β(grad v̇ − (gradv)gradv)]n + tni
S

}

(15)
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and when noninertial body forces are neglected, the force balance (4) and the con-
stitutive equations (8) yield the flow equation

ρv̇ − β
[
�v̇ − (gradv)�v − (grad 2v)gradv

]
= −grad p + μ�v − ζ��v,

(16)

where p = P + κ − divπ . In components, (16) reads

ρv̇i − β
(
v̇i, j j − vi, jv j,kk − vi, jkv j,k

) = −p,i + μvi, j j − ζvi, j jkk .

The generalized adherence conditions (12) are unaffected by the inclusion of
gradient inertia, but, interestingly, the conditions at a fixed surface that allows for
slip and at a free surface contain inertial terms.

2. Preliminaries

To simplify our calculations, we use direct notation. However, for clarity, we
also present key definitions and results in component form.

2.1. Notation

We find it most convenient to work spatially i.e. to use what is commonly
called an Eulerian description. We write ρ(x, t) for the mass density, v(x, t) for the
velocity, and

D = 1
2

(
gradv + (gradv)�

)
and W = 1

2

(
gradv − (gradv)�

)
(17)

for the stretching and spin. As is usual, we use a superposed dot for the material
time-derivative e.g. for ϕ(x, t) a scalar field

ϕ̇ = ∂ϕ

∂t
+ v·gradϕ.

Balance of mass is then the requirement that

ρ̇ + ρ divv = 0. (18)

2.2. Control volume R. Differential geometry on ∂R

We denote by R an arbitrary region, fixed in time, that is contained in the region
of space occupied by the body over some time interval. We refer to R as a control
volume and write

S = ∂R

for the boundary of R and n for the outward unit normal on S. Unless stated to the
contrary, we assume that S is smooth, cf. Section 4.4. We let P = P(n) denote the
projection onto the plane normal to n:

P = 1 − n⊗n
(
Pi j = δi j − ni n j

)
.
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The operator gradS defined on any vector field g by

gradSg = (gradg)P
(
(gradSg)i j = gi, j − gi,knkn j

)
is the surface gradient;8

divSg = tr(gradSg) = P :gradg = divg − n·(gradg)n = gi,i − gi,kni nk

defines the surface divergence; ∂/∂n defined by

∂g
∂n

= (gradg)n

is the normal derivative. Then

gradg = gradSg + ∂g
∂n

⊗n, divg = divSg + ∂g
∂n

·n. (19)

The surface divergence of a tensor field A is the vector field defined by

(divSA)i = Ai j,k Pk j . (20)

Using a smooth extension of the unit normal n to a neighborhood of S, gradn
is defined and the field

K = −gradSn = −(gradn)P,

which is independent of the particular extension used, is the curvature tensor of S;
as is well known, K is symmetric and satisfies

Kn = 0.

The scalar field

K = 1
2 trK = − 1

2 divSn

is the mean curvature of S.
Let A be a (second-order) tensor field and let g be a vector field. We make

considerable use of the identities

divS(AP) = divSA + 2K An,

divS(A�g) = g·divSA + A :gradSg

}
(21)

and, in particular, their specializations

divSP = 2K n, divS
(
A�n

) = n·divSA − A :K, (22)

which arise, respectively, on choosing A = 1 in (21)1 and g = n in (21)2.
Given a third-order tensor field B and a vector field g, the product Bg is a

(second-order) tensor field defined by

(Bg)i j = Bi jk gk . (23)

In view of the definition (20) of the surface divergence, it then follows that divS(Bn)
is the vector field with components

[divS(Bn)]i = Bi jk, j nk − Bi jk,lnln j nk − Bi jk K jk . (24)

8 The domain of gradSg is then restricted to the surface S, and similarly for divSg, ∂g/∂n,
and divSA.
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3. Power expenditures

Throughout this section R — with boundary S and outward unit normal n —
is an arbitrary control volume.

3.1. Internal power

In discussing the manner in which power is expended internally, bear in mind
that our goal is a theory that accounts explicitly for first and second velocity gra-
dients. To accomplish this we generalize the classical theory — which has internal
power of the form (1) with T the stress and T :gradv the stress power — by intro-
ducing a third-order hyperstress G with associated hyperstress power G...grad 2v,
and therefore write the internal power in the form

Wint(R) =
∫

R

(T :gradv + G...grad 2v) dv =
∫

R

(Ti jvi, j + Gi jkvi, jk) dv. (25)

The fields T and G are defined over the deformed body for all time. Since grad 2v
is symmetric in its last two subscripts, we may, without loss in generality, require
that G be symmetric in its last two subscripts:

Gi jk = Gik j . (26)

3.2. External power

Conventionally, power is expended on a control volume R by surface tractions
acting on S = ∂R and body forces acting over R, and each of these force fields
expends power (pointwise) over the velocity v. Conventional continuum mechanics
is based on a classical hypothesis of Cauchy asserting that the surface traction at
a point x on S and time t be a function tn(x, t) of the normal n(x, t). Here, as we
shall see, it is necessary to abandon this hypothesis and assume instead that for
each control volume R and each time t there is a surface-traction field tS defined
over S = ∂R such that tS gives the surface force, per unit area, on S.

As is classical, we assume that the body force is given by a field b, and that
both tS and b are power conjugate to the velocity v. Further, we stipulate that b
accounts for inertia.

The external power expended on the boundary of the body sets the stage for
the formulation of boundary conditions; this power should therefore be based on
kinematical fields that — when restricted to the boundary — may be specified
independently. Further, since the internal power depends on grad 2v, the external
power should include a boundary expenditure involving gradv. However, the fields
v and gradv are kinematically coupled on S, since a knowledge of v on S implies a
knowledge of the tangential derivatives of v on S; thus the tangential part of gradv
cannot be specified independently of v. Bearing this in mind, we consider a (vecto-
rial) hypertraction mS(x, t) that expends power over the normal part ∂v/∂n of the
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velocity gradient. Based on this discussion, we assume that the power expended
externally on an arbitrary control volume R has the form

Wext(R) =
∫

S

(
tS ·v + mS · ∂v

∂n

)
da +

∫

R

b·v dv. (27)

Since ∂v/∂n = (gradv)n, we may write

mS · ∂v
∂n

= (mS ⊗n) :gradv; (28)

we refer to mS ⊗n as the true hypertraction, because its conjugate, gradv, carries
no information associated with the surface S.

4. Principle of virtual power

Most commonly, the principle of virtual power is used to generate weak for-
mulations of boundary-value problems. In this form, the principle is stated for the
body B as a whole and is contingent upon the provision of particular conditions on
the boundary ∂B of B. Here, we use the principle of virtual power to determine the
structure of the tractions and of the local force balances. This involves a nonstan-
dard formulation in which the principle is stated for an arbitrary control volume
R as opposed to the body as a whole. As such, conditions on ∂B play a role no
different from those on the boundary ∂R of any control volume R. Basic to this
view is the premise, central to all continuum mechanics, that any basic law for the
body should hold also for all subregions of the body.

4.1. Statement of the principle of virtual power

To state this principal, assume that at some arbitrarily chosen but fixed time,
the region occupied by the body is known, as are the tractions tS and mS , the body
force b, and the stresses T and G, and consider the velocity field v as a virtual field
ṽ that may be specified independently of the actual evolution of the body. Then,
writing

Wext(R, ṽ) =
∫

S

(
tS ·ṽ + mS · ∂ ṽ

∂n

)
da +

∫

R

b·ṽ dv,

Wint(R, ṽ) =
∫

R

(T :grad ṽ + G...gradgrad ṽ) dv,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(29)

respectively, for the external and internal expenditures of virtual power, the prin-
ciple of virtual power is the requirement that the external and internal powers be
balanced: given any control volume R,

Wext(R, ṽ) = Wint(R, ṽ) for all virtual velocities ṽ. (30)
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4.2. Consequences of the principle of virtual power

To determine the consequence of this principle, we first consider the individual
terms in the internal power. Using the divergence theorem, we obtain

∫

R

T :grad ṽ dv = −
∫

R

divT·ṽ dv +
∫

S

Tn·ṽ da. (31)

Similarly, the divergence theorem applied twice yields
∫

R

G...gradgrad ṽ dv = −
∫

R

divG :grad ṽ dv +
∫

S

Gn :grad ṽ da

=
∫

R

(divdivG)·ṽ dv +
∫

S

(Gn :grad ṽ − [(divG) n]·ṽ) da.

Thus,

Wint(R, ṽ) =
∫

R

(divdivG − divT)·ṽ dv

+
∫

S

(Gn :grad ṽ + (Tn − (divG)n)·ṽ) da. (32)

Further, by (19)1,

grad ṽ = gradS ṽ + ∂ ṽ
∂n

⊗n;

therefore

Gn :grad ṽ = Gn :gradS ṽ + [(Gn) n]· ∂ ṽ
∂n

and (32) becomes

Wint(R, ṽ) =
∫

R

(divdivG − divT)·ṽ dv

+
∫

S

(
Gn :gradS ṽ + [(Gn) n]· ∂ ṽ

∂n
+ (Tn − (divG)n)·ṽ

)
da.

(33)

Our next step is to establish an important identity for the underlined term in
(33); specifically, letting A = Gn, we now show that

∫

S

A :gradS ṽ da = −
∫

S

(divSA + 2K An)·ṽ da. (34)
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The verification of (34) is based on the surface divergence-theorem: let τ be a
tangential vector field on S and let T be a subsurface of S with ν the outward unit
normal to the boundary curve ∂T ;9 then∫

∂T

τ ·ν ds =
∫

T

divSτ da. (35)

To establish (34), note that

τ
def= PA�ṽ

represents a tangential vector field, so that, by (35),∫

∂T

τ ·ν ds =
∫

T

divS
(
PA�ṽ

)
da. (36)

Further, by (21)2 — with A replaced by AP — and (21)1,

divS
(
PA�ṽ

) = ṽ·divS (AP)+ (AP) :gradS ṽ

= ṽ·(divSA + 2K An)+ A :gradS ṽ;
hence (36) takes the form∫

∂T

τ ·ν ds =
∫

T

((divSA + 2K An)·ṽ + A :gradS ṽ) da. (37)

Finally, if we take T = S, then T is empty and the left side of (37) vanishes; thus
(34) is satisfied.

Combining (33) and (34), we obtain

Wint(R, ṽ) =
∫

R

(divdivG − divT)·ṽ dv

+
∫

S

(
(Tn−(divG)n−divS(Gn)−2K (Gn)n)·ṽ+[(Gn)n]· ∂ ṽ

∂n

)
da.

(38)

We are now in a position to apply the virtual-power balance (30): by (29)1 and
(38),∫

S

(
tS ·ṽ + mS · ∂ ṽ

∂n

)
da +

∫

R

b·ṽ dv =
∫

R

(divdivG − divT)·ṽ dv

+
∫

S

(
(Tn − (divG)n − divS(Gn)− 2K (Gn)n)·ṽ + [(Gn)n]· ∂ ṽ

∂n

)
da,

(39)

and rearranging (39), we have the “only if" implication in the next result.

9 So that ν is tangent to S, normal to ∂T , and directed outward from T .
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(#) Given any virtual velocity ṽ and any control volume R, the virtual balance

∫

S

(
tS ·ṽ + mS · ∂ ṽ

∂n

)
da +

∫

R

b·ṽ dv

︸ ︷︷ ︸
Wext(R,ṽ)

=
∫

R

(T :grad ṽ + G...gradgrad ṽ) dv

︸ ︷︷ ︸
Wint(R,ṽ)

.

(40)

is satisfied if and only if
∫

S

(tS − (Tn − (divG)n − divS(Gn)− 2K (Gn)n))·ṽ da

+
∫

S

(mS −(Gn)n)· ∂ ṽ
∂n

da =
∫

R

(divdivG−divT − b)·ṽ dv. (41)

The reverse implication, that (41) implies (40), follows upon reversing the argument
leading to (40).

4.3. Local force balance and traction conditions

Since the control volume R and the virtual field ṽ in (41) may be arbitrarily
chosen, we may appeal to the the fundamental lemma of the calculus of variations
and arrive at the local force balance

div(T − divG)+ b = 0
(
Ti j, j − Gi jk, jk + bi = 0

)
(42)

and the traction conditions10

tS = Tn − (divG)n − divS(Gn)− 2K (Gn)n, mS = (Gn)n, (43)

which, in components, have the form

(tS)i = Ti j n j − 2Gi jk,kn j + Gi jk,ln j nknl + Gi jk(K jk − 2K n j nk),

(mS)i = Gi jkn j nk .

}
(44)

Next, recall our agreement that b includes inertial body forces. Thus, if the
underlying frame is inertial, then

b = −ρv̇ + bni (45)

with bni the noninertial body force and the local force balance becomes

ρv̇ = divT − divdivG + bni (
ρv̇i = Ti j, j − Gi jk, jk + bni

i

)
. (46)

10 Since ṽ is arbitrary, ṽ and ∂ ṽ/∂n may be arbitrarily chosen independent of one another
on S (cf. the paragraph containing (27)).
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4.4. Traction conditions when the boundary of the control volume is not smooth

Thus far the control volumes R under consideration were assumed to have
smooth boundaries. We now consider a control volume whose boundary S is piece-
wise smooth: specifically, S is the union of a finite number of smooth surfaces,
smooth curves, and points, with the smooth curves referred to as edges. When this
is the case — writing C for the union of the edges — we allow for the possibility
of an edge traction fC measured per unit length along C and add the terms

∫

C

fC ·v ds and
∫

C

fC ·ṽ ds, (47)

respectively, to the right sides of the external power (27) and its virtual counterpart
(29)2. The corresponding internal power expenditure remains (25), but the analysis
used in finding the consequences of the virtual-power principle must be altered.
Specifically, the identity (34) — which followed from the surface divergence the-
orem (35) with T = S — is no longer valid: we must now apply (35) on each of
the smooth surfaces Sk comprising S and then sum over all k. If we do this we find
that the term ∫

C

{{(Gn)ν}}·ṽ ds (48)

must be added to the right side of (38), where {{. . . }}, at each point x on C, denotes
the sum of the values of the enclosed quantity as x is approached from the surfaces
on either side of C. (If S is smooth, then the values of ν on the two sides of each
edge are equal and opposite, while the values of n are equal; thus, granted that G is
smooth, (48) vanishes.) Continuing the analysis with the extra term (48), we find
that the edge condition

fC = {{(Gn)ν}} (49)

on C must be added to the traction conditions (43) (cf. equation (7.10) Toupin)
[40].

4.5. Consequences of frame indifference

Frame indifference requires that the theory be invariant under all changes in
frame. In accordance with this principle we require that the internal power be
invariant under transformations of the form

ṽ(x, t) �→ ṽ(x, t)+ α(t)+ Ω(t)x︸ ︷︷ ︸
w(x,t)

, (50)

where α(t) is an arbitrary scalar and Ω(t) is an arbitrary skew tensor, at each t . It
then follows, as a consequence of the virtual balance (30), that the external power
is automatically consistent with frame indifference.
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Consider the internal power. By (50), the velocity gradient transforms accord-
ing to gradv(x, t) �→ gradv(x, t)+ Ω. We may therefore conclude from (25) that
for the internal power to be frame indifferent we must have

∫

R

T :Ω dv = 0

for all skew tensors Ω and all control volumes R; hence the stress T is symmetric:

T = T�. (51)

A consequence of (51) is that the stress power T :gradv in the internal power (25)
may equally well be written in the form T :D, with D the stretching defined in (17)1.

We now turn to the external power (27), which is automatically frame indiffer-
ent: invariance under (50) implies that11

∫

S

tS da +
∫

R

b dv = 0,

∫

S

(x×tS + n×mS) da +
∫

R

x×b dv = 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(52)

which bears similarity to its classical conterparts in which tS = Tn and mS = 0.
Thus, bearing in mind the paragraph containing (28), the skew part of the true
hypertraction mS ⊗n represents a distribution of moments on S.

Our formulation of the virtual-power principle ensures that the classical bal-
ances (52) are satisfied automatically.

4.6. Locality of the tractions. Action-reaction principle

A consequence of (44) is that the tractions are local: at any point x on S, tS(x)
depends on S through a dependence on the normal n(x) and curvature K(x) at x,
while mS(x)depends onS through n(x) (where for convenience we have suppressed
the argument t). Thus, writing t(K,n) and mn for the corresponding functions, we
obtain

tS = t(K,n), mS = mn (53)

i.e. tS(x) = t(K(x),n(x))(x). Then, letting −S denote for the surface S oriented by
−n (which has curvature −K), we see that by (44), mS = m−S and

tS = −t−S, mS ⊗n = −m−S ⊗(−n), (54)

or equivalently, mn = m−n and

t(K,n) = −t(−K,−n), mn⊗n = −m−n⊗(−n); (55)

11 When combined with (45), (52) represent balances for linear and angular momentum.
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(55) represents an action-reaction principle for oppositely oriented surfaces that
touch and are tangent at a point.

Consider an arbitrary surface S with orientation n and define the plus side of S
as the side into which n points and the minus side as the other side. In the definition
(27) of the external power the quantity Wsurf (S) defined by

Wsurf (S) =
∫

S

(
tS ·v + mS · ∂v

∂n

)
da

=
∫

S

(t(K,n) ·v + (mn⊗n) :gradv) da

(56)

represents the power expended on the boundary of a control volume. However,
because the tractions are local, this definition is also meaningful for an arbitrary sur-
face S with orientation n. In this instance, Wsurf(S) represents the power expended
by the material on the plus side of S on the material on the minus side of S, so that,
by (55), we have the power balance

Wsurf(S) = −Wsurf(−S). (57)

The balance (57) written in the form Wsurf(S) + Wsurf(−S) = 0 constitutes a
balance for the “pillbox” represented by the infinitesimally thin region bounded by
the oriented surfaces S and −S, a notion discussed in Section 8.2.

5. Free-energy imbalance. Dissipation inequality

Let R(t) be an arbitrary region that convects with the body. We restrict attention
to a purely mechanical theory based on the requirement that the temporal increase
in free energy of R(t) be less than or equal to the power expended on R(t). Pre-
cisely, letting ψ denote the specific free energy, this requirement takes the form of
a free-energy imbalance

d

dt

∫

R(t)

ρψ dv � Wext(R(t)) = Wint(R(t)). (58)

Balance of mass implies that (d/dt)
∫
R(t)ρψ dv = ∫

R(t)ρψ̇ dv. Therefore, using
the expression (25) for the internal power Wint(R(t)) in conjunction with the sym-
metry of T, we may localize (58) to yield the local free-energy imbalance

ρψ̇ − T :D − G...grad 2v � 0
(
ρψ̇ − Ti j Di j − Gi jkvi, jk � 0

)
, (59)

where D is the stretching defined in (17)1. The difference

�
def= T :D + G...grad 2v − ρψ̇ � 0 (60)

represents the dissipation and allows us to rewrite (58) in the form

d

dt

∫

R(t)

ρψ dv − Wext(R(t)) = −
∫

R(t)

� dv � 0. (61)
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6. Explicit form of the inertial body force. Kinetic energy

6.1. Inertia and kinetic energy

We assume that the underlying frame is inertial and, for convenience, neglect
noninertial body forces, so that

b = −ρv̇. (62)

Granted this, the local force balance (42) reduces to a local momentum balance:

div(T − divG) = ρv̇. (63)

The power expended by the body force has the form

b·v = − 1
2ρ

˙|v|2,

and we may rewrite the external power expenditure as the sum of a noninertial
expenditure minus a kinetic-energy rate:

Wext(R(t)) =
∫

∂R(t)

(
tS ·v + mS · ∂v

∂n

)
da

︸ ︷︷ ︸
noninertial power expenditure

− d

dt

∫

R(t)

1
2ρ|v|2 dv

︸ ︷︷ ︸
kinetic energy

. (64)

6.2. Imbalance of free and kinetic energy

By (64), the free-energy imbalance (61) — for a control volume R(t) that
convects with the fluid — takes the form of an imbalance of free and kinetic energy

d

dt

∫

R(t)

ρ(ψ+ 1
2 |v|2) dv

︸ ︷︷ ︸
net energy rate

−
∫

∂R(t)

(
tS ·v+mS · ∂v

∂n

)
da =−

∫

R(t)

� dv

︸ ︷︷ ︸
net dissipation

� 0. (65)

Further, appealing to (#) on page 525, we may rewrite (65) as an imbalance for a
control volume R:

d

dt

∫

R

ρ
(
ψ + 1

2 |v|2) dv +
∫

S

ρ
(
ψ + 1

2 |v|2)v·n da

−
∫

S

(
tS ·v + mS · ∂v

∂n

)
da = −

∫

R

� dv � 0. (66)
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7. Application of the theory to the flow of an incompressible fluid
at small-length scales

7.1. Constitutive equations for an incompressible fluid

We assume that the fluid is incompressible, so that

divv = trD = 0, ρ = constant, ψ = constant. (67)

Without loss in generality, we may then suppose that

Ti j = T0i j − Pδi j , T0kk = 0 (68)

and

Gi jk = G0i jk − δi jπk, G0i ik = 0, (69)

where the pressure P and the hyperpressure π are constitutively indeterminate
fields that do not affect the internal power (25)12 and where the fields T0 and G0,
respectively, represent the extra stress and the extra hyperstress. Then

T :D = T0 :D, G...grad 2v = G0 ...grad 2v, (70)

and the local free-energy imbalance (59) reduces to the dissipation inequality

�
def= T0 :D + G0 ...grad 2v � 0. (71)

The field � represents the bulk dissipation, measured per unit volume.
We consider constitutive equations giving T0 and G0 as linear isotropic func-

tions of D and grad 2v. Specifically, since coupling between T0 and G0 is ruled out
by isotropy, we consider constitutive relations of the form

T0i j = 2μDi j = μ(vi, j + v j,i ),

G0i jk = η1vi, jk + η2(vk,i j + v j,ik − vi,rrδ jk).

}
(72)

The relation (72)1 for T0 is of the form T0 = 2μD, familiar from the theory of
incompressible, linearly viscous fluids.13

Using (17), we can rewrite the constitutive relation (72)2 for G0 in terms of the
gradients of the stretching and the spin and the Laplacian of the velocity field:

G0i jk = (η1 + η2) Di j,k + (η1 − η2)Wi j,k

+η2
(
Dki, j + Wki, j

) − η2vi,rrδ jk . (73)

12 As we shall see, the pressure relevant to the local balance of linear momentum is the
effective pressure p = P − divπ .
13 We conjecture that (72)2 is the most general linear, isotropic relation possible between

G0 and grad2v (cf. (2.4) and (2.18) of Mindlin & Eshel [24]).



Tractions, Balances, and Boundary Conditions for Nonsimple Materials 531

Thus the dissipation (71) has the form

� = 2μDi j Di j + (η1 + 2η2) Di j,k Di j,k

+ (η1 − 2η2)Wi j,k Wi j,k − η2vi, j jvi,kk � 0. (74)

Further, by expanding Di j,k and Wi j,k into deviatoric and spherical parts with
respect to the indices i and k ( j fixed), it can be shown that the following condi-
tions are both necessary and sufficient for the dissipation to be nonnegative:

μ � 0, η1 + 2η2 � 0, η1 − 6η2 � 0. (75)

Important consequences of (75) are the inequalities

η1 � 0, η1 − η2 � 0, η1 − 2η2 � 0. (76)

Conversely, by (71) and (72), the dissipation has the form

� = 2μ|D|2 + η1|gradv|2 + η2(2|gradD|2 − 2|gradW|2 − |�v|2) (77)

and is nonnegative as long as (75) are satisfied.
Finally, using (68) and (69), we may rewrite the constitutive relations (72)

taking into account the pressure P and hyperpressure π :

Ti j = 2μDi j − Pδi j ,

Gi jk = η1vi, jk + η2(vk,i j + v j,ik − vi,rrδ jk)− πkδi j .

}
(78)

7.2. The flow equation

Bearing in mind (67)1, we may use (78) to yield

Ti j, j = μvi, j j − P,i ,

Gi jk,k = η1vi, jkk + η2(v j,ikk − vi, jkk)− δi jπk,k,

Gi jk,k j = (η1 − η2)vi, j jkk − π j, j i .

⎫⎪⎬
⎪⎭ (79)

Thus, letting

ζ = η1 − η2 � 0, (80)

we may conclude from (79) that

div(T − divG) = −grad (P − divπ)+ μ�v − ζ��v, (81)

and — neglecting noninertial body forces as in Section 6 — the local momentum
balance (63) takes the form

ρv̇ = −grad p + μ�v − ζ��v (82)

or, in components,

ρv̇i = −p,i + μvi, j j − ζvi, j jkk, (83)
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where

p = P − divπ (84)

is the effective pressure. We refer to (82) as the flow equation. Provided that ζ > 0,
the flow equation is parabolic. Moreover, for the choice η = 0, the flow equation
reduces to the conventional Navier–Stokes equation ρv̇ = −grad p + μ�v for an
incompressible fluid.

Consistent with the expectation that gradient effects should be important only
at small-length scales, we introduce the gradient length

L =
√
ζ

μ
. (85)

7.3. Spin and vorticity equations

Assume that the noninertial body force bni vanishes. Then the flow equation
leads to an interesting equation for the spin W. A well-known kinematical relation
for the spin has the form (for example cf. Gurtin [11] pp. 80)

Ẇ + DW + WD = skw(grad v̇), (86)

where skwA = 1
2

(
A − A�) for any tensor A. Next, since the operators grad and �

commute, (67) and (82) imply that

ρ grad v̇ = −gradgrad p + μ�gradv − ζ��gradv.

Taking the skew part of this relation we find that since gradgrad p is symmetric,

ρ skw(grad v̇) = μ�W − ζ��W;
thus, by (86), we have the spin equation

ρ(Ẇ + DW + WD) = μ�W − ζ��W, (87)

or, in components,

ρẆi j + Dik Wkj + Wik Dkj = μWi j,kk − ζWi j,kkll , (88)

which, when ζ = 0, reduces to the classical spin equation (for example cf. Gurtin
[11] pp. 152).

Equivalently, writing ω = curlv for the vorticity and making use of the relations
divv = 0, divω = div(curlv) = 0, Lv = grad

( 1
2 |v|2) + ω×v, and Wω = 0, we

have the vorticity equation

ρω̇ − Dω = μ�ω − ζ��ω. (89)
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7.4. Free-energy imbalance

Next, provided that the noninertial body force bni vanishes, we may use (60) to
write the free-energy imbalance (66) (for a control volume R) in the form

d

dt

∫

R

1
2ρ|v|2 dv +

∫

S

1
2ρ|v2|v·n da −

∫

S

(
tS ·v + mS · ∂v

∂n

)
da

= −
∫

R

(
2μ|D|2 + η1|gradv|2

+η2
(
2|gradD|2 − 2|gradW|2 − |�v|2)) dv � 0. (90)

8. Formulation of boundary conditions

This section is independent of constitutive equations and is valid for both com-
pressible and incompressible materials. Even so, the boundary conditions we con-
sider are most relevant to liquids and, for that reason, we find it convenient to refer
to the body as a liquid.

Let B(t) denote the region of space occupied by the liquid at an arbitrarily
chosen time and let n(x, t) denote the outward unit normal to ∂B(t). Further, let
V (x, t) denote the scalar normal velocity of ∂B(t), so that

V = v·n. (91)

Unless mentioned to the contrary, we assume that ∂B(t) is smooth. In Section 8.2.5
we discuss boundary conditions for situations in which ∂B(t) is not smooth.

8.1. Free energy imbalance for a boundary pillbox

Consider an arbitrary evolving subsurface S(t)of ∂B(t) and let V∂S(x, t)denote
the normal velocity of the boundary curve ∂S(t) in the direction of its outward unit
normal ν(x, t) (cf. Footnote 9, pp. 524). We view S as a boundary pillbox of infin-
itesimal thickness containing a portion of the boundary — a view that allows us to
isolate the physical processes in the material on the two sides of the boundary. The
geometric boundary of S consists of its boundary curve ∂S. However, S viewed as
pillbox has a pillbox boundary consisting of 14:

(i) a surface S with unit normal n; S is viewed as lying in the environment;
(ii) a surface −S with unit normal −n; −S is viewed as lying in the fluid adjacent

to the boundary;
(iii) a “lateral face” represented by ∂S (see Figure 1).

14 In a forthcoming paper on turbulence, we find it more convenient to use a pillbox with
surface S lying at the interface between the fluid and the environment.
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Fig. 1. Pillbox corresponding to a subsurface S of the boundary ∂B of the region B of space
occupied by the body. Only a portion of ∂B is depicted. Whereas n is oriented into the
environment, −n is oriented into the fluid. The outward unit normal on the lateral face ∂S
of the pillbox is denoted by ν.

We base our discussion on a free-energy imbalance for the pillbox S(t) requir-
ing that the temporal increase in free energy of S(t) be less than or equal to the
power expended on S(t) (cf. (58)). We let ψx denote the excess free energy and σ
the surface tension of the fluid at the boundary, so that

∫
S ψ

x da represents the net
free energy of the pillbox, while

∫
∂SσV∂S ds represents the power expended by the

fluid on the lateral face of the pillbox by surface tension. Further, in view of the
paragraph containing (56), Wsurf (−S) represents the power expended by the fluid
on the pillbox surface −S. Finally, denoting by Wenv(S) the power expended by
the environment on the pillbox surface S, we express the free-energy imbalance
for the pillbox as

d

dt

∫

S(t)

ψx da � Wsurf(−S(t))+ Wenv(S(t))+
∫

∂S(t)

σV∂S ds. (92)

Assuming that ψx is constant, we use a standard transport theorem to yield

d

dt

∫

S(t)

ψx da = −
∫

S(t)

2ψx K V da +
∫

∂S(t)

ψxV∂S ds

(e.g. Cermelli, Fried & Gurtin [4] equation (3.10)), so that (92) becomes

Wsurf (−S)+
∫

S

2ψx K V da + Wenv(S)+
∫

∂S

(σ − ψx)V∂S ds � 0. (93)

Thus, since V∂S may be arbitrarily specified at any time without affecting the other
quantities in (93) at that time, we must have the classical result

σ = ψx

and, using (56), (57), and (91), we find that the inequality (93) reduces to

−
∫

S

(
(tS − 2σK n)·v + mS · ∂v

∂n

)
da + Wenv(S) � 0. (94)
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8.2. Boundary conditions for a passive environment

We restrict attention to situations in which the environment expends no power
on the body. Such an environment, termed passive, is defined by the requirement
that, for any motion of the fluid and any evolving subsurface S(t) of ∂B(t)15,

Wenv(S) = 0.

Granted this, the free-energy imbalance (94) becomes

∫

S

(
(tS − 2σK n)·v + mS · ∂v

∂n

)
da � 0, (95)

and, since the choice of S is arbitrary, (95) is equivalent to the boundary dissipation
inequality

γ
def= −(tS − 2σK n)·v − mS · ∂v

∂n
� 0, (96)

a condition basic to the formulation of passive boundary conditions for the fluid.
The field γ represents the boundary dissipation, measured per unit area.

We consider three classes of passive boundary conditions.

8.2.1. Boundary subsurfaces that are free. A simple set of boundary conditions,
trivially consistent with (96), are the free surface conditions

tS = 2σK n and mS = 0 on S. (97)

These conditions place no constraint on the velocity or its normal derivative. In the
terminology of the calculus of variations, (97) represent natural boundary condi-
tions.

By (44), at a free surface

Ti j n j − 2Gi jk,kn j + Gi jk,ln j nknl + Gi jk K jk = 2σK ni ,

Gi jkn j nk = 0,
(98)

where we have used (98)2 to simplify (98)1. Thus the conventional traction Tn
generally does not vanish; in fact,

Ti j n j = 2Gi jk,kn j − Gi jk,ln j nknl − Gi jk K jk + 2σK ni ,

so that, interestingly, surface tension is not the sole source of curvature dependence.

15 An example of a nonpassive environment is that associated with Couette flow.
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8.2.2. Boundary subsurfaces that are fixed and that do not allow for slip. A
boundary subsurface S(t) is fixed if the normal velocity of the fluid vanishes on
S(t)16. Classically, a fixed boundary without slip is characterized by the require-
ment that v = 0. Here such a boundary condition is not sufficient to ensure sat-
isfaction of the boundary dissipation inequality, which may be satisfied by taking
∂v/∂n = 0, or by taking mS = 0, or by allowing for an appropriately signed
relation between ∂v/∂n and mS . Since the third of these includes the first two, we
consider the generalized adherence conditions

v = 0 and mS = −μl
∂v
∂n

on S, (99)

in which the constitutive modulus l � 0 represents a material length scale charac-
terizing the strength of the adherency. We refer to l as the adherence length. We
consider two potentially important special cases of (99): weak adherence (l = 0),
for which

v = 0 and mS = 0 on S; (100)

and strong adherence (l = ∞), for which

v = 0 and
∂v
∂n

= 0 on S. (101)

Thus — in contrast with the classical no-slip condition — our more general theory
allows for a one-parameter family of no-slip conditions.

8.2.3. Boundary subsurfaces that are fixed and that allow for slip. The clas-
sical condition of Navier for such a boundary has the form

PTn = −μ
λ

v (102)

in which the constant constitutive modulus λ > 0 represents the slip length; since
PTn is the tangential traction, this condition implies that

v·n = 0.

Since K Pn = 0, within our theory the natural counterpart of (102) is λPtS = −μv,
a condition we combine with mS = 0, which places no constraint on the normal
derivative of the velocity. We therefore consider the slip conditions

PtS = −μ
λ

v and mS = 0 on S, (103)

with λ > 0.

16 This condition does not require that S(t) be independent of t , only that S(t) depend on
t at most through a dependence of its boundary curve ∂S(t) on t . Note that, since v·n = 0,
it follows that (gradv)�n = Kv and hence that (gradv)n = 2Wn = 2Dn. In particular,
∂v/∂n = 2ω × n and hence mS ·(∂v/∂n) = (2n × mS)·ω represents a torque 2n × mS that
expends power over the vorticity ω.
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8.2.4. A more general condition for a boundary subsurface that is fixed. The
adherence and slip conditions may be generalized by the condition17

PtS = −μ
λ

v − μα
∂v
∂n
, v·n = 0,

mS = −μβv − μl
∂v
∂n
,

⎫⎪⎬
⎪⎭ (104)

with

λ > 0 and l � 1
4 (α + β)2λ. (105)

For β = λ = 0, (104) reduces to the generalized adherence conditions (99); for
α = β = l = 0, (104) reduces to the slip conditions (103).

8.2.5. Conditions when ∂B is not smooth. In this case, the discussion in Sec-
tion 4.4 and, in particular, (47) lead us to conclude that

∫

S

(
(tS − 2σK n)·v + mS · ∂v

∂n

)
da +

∫

C∩S

fC ·v ds � 0 (106)

for every subsurface S of ∂B, and hence that the edge dissipation inequality

fC ·v � 0 (107)

should join the boundary dissipation inequality (96) as a condition basic to the
formulation of passive boundary conditions.

For S a free surface we would supplement (97) with the boundary condition

fC = 0

on C ∩ S, so that, by (49),

{{(Gn)ν}} = 0.

For S a fixed surface the adherence conditions (99)–(101) are appropriate on S
away from C, and continuity would require that v = 0 on C ∩ S, so an additional
condition would not be needed.

A discussion of slip conditions in the presence of an edge is delicate and beyond
the scope of this study.

17 Choosing α = β in (104) gives conditions consistent with the reciprocity relations of
Onsager [27].
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9. Weak formulation of the flow equation and boundary conditions
at a prescribed time

Because we work within a framework based on the principle of virtual power,
it is fairly straightforward to derive a weak (variational) formulation of the flow
equation and the boundary conditions (113). Here rather than work with an arbitrary
control volume R, we work with the region B occupied by the body at a fixed time
t .

We consider boundary conditions in which a portion Sfree of ∂B is free and the
remainder Sfxd is fixed:

Tn − (divG)n − divS(Gn) = 2σK n
and (Gn)n = 0

}
on Sfree,

v = 0 and (Gn)n = −μl
∂v
∂n

on Sfxd;

⎫⎪⎬
⎪⎭ (108)

cf. (98) and (99).
We refer to an arbitrary virtual field ṽ as kinematically admissible if

ṽ = 0 on Sfxd. (109)

Given such a field, the virtual-power balance (30) applied with R = B, with b
given by (45), and with the replacements indicated by

tS → 2σK n and mS → 0 on Sfree, mS → −μl
∂v
∂n

on Sfxd (110)

yields the virtual balance:

∫

Sfree

2σK n·ṽ da −
∫

Sfxd

μl
∂v
∂n

· ∂ ṽ
∂n

da −
∫

B

ρv̇·ṽ dv +
∫

R

b0 ·ṽ dv

=
∫

B

(T :grad ṽ + G...gradgrad ṽ) dv. (111)

The result (#) on page 525 then implies that given any kinematically admissible ṽ,
(111) is equivalent to (41), also with the replacements (110):

∫

Sfree

(2σK n − (Tn − (divG)n − divS(Gn)− 2K (Gn)n))·ṽ da

−
∫

Sfree

(Gn)n· ∂ ṽ
∂n

da −
∫

Sfxd

(
μl
∂v
∂n

+ (Gn)n
)

· ∂ ṽ
∂n

da

=
∫

B

(divdivG − divT + ρv̇ − bni)·ṽ dv. (112)
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Thus, arguing as in the steps leading to (42) and (43), we see that the momentum
balance (63) is satisfied in B, while

Tn − (divG)n − divS(Gn)− 2K (Gn)n = 2σK n
and (Gn)n = 0

}
on Sfree,

(Gn)n = −μl
∂v
∂n

on Sfxd.

⎫⎪⎬
⎪⎭ (113)

Conversely, (63) and (113) imply that (112) and (hence) (111) are satisfied for all
kinematically admissible ṽ. Finally, as is clear from the discussion in Section 7.2,
granted the constitutive equations (78), the momentum balance is equivalent to the
flow equation (82). We have therefore established a weak formulation of the flow
equation and traction boundary conditions: granted the constitutive equations (78),
the virtual balance (111) is satisfied for all kinematically admissible virtual fields
ṽ if and only if:

(i) the flow equation (82) is satisfied within the fluid;
(ii) the boundary conditions (113) are satisfied on the boundary of the fluid.

10. Plane Poiseuille flow

We now reconsider the classical problem of steady, laminar flow through an
infinite, rectangular channel formed by two parallel surfaces separated by a gap h.
Specifically, using the notation of Figure 2, we assume that the fluid velocity v has
the form

v(x) = v(y)ex (114)

and is hence consistent with divv = 0 and obeys v̇ = 0. In view of (114), the flow
equation (82) yields

−ζ ∂
4v

∂ y4 + μ
∂2v

∂ y2 = ∂p

∂x
,

∂p

∂y
= ∂p

∂z
= 0. (115)

Since v depends only on y, (115) implies that

grad p = −βex with β = constant; (116)

without loss of generality we assume that the effective pressure decreases with
increasing x , so that

β > 0. (117)

Using a prime to denote differentiation with respect to y, we express the flow
equation (118) as

−L2v′′′′ + v′′ = −β
μ
. (118)

We next discuss the behavior, according to (118), of the fluid subject to the
generalized adherence conditions (99) and slip conditions (103) at the points y = 0
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Fig. 2. Schematic of the channel for the problem of plane Poiseuille flow. The coordinates
in the directions downstream and out of the plane are x and z.

and y = h corresponding to the floor and ceiling of the channel. To facilitate this
discussion, we record here the general solution of (118), which has the form

v(y) = c0 + c1 y − βy2

2μ
+ c2 sinh

y

L
+ c3 cosh

y

L
, (119)

with c0, c1, c2, and c3 constants.

10.1. Generalized adherence conditions

For a channel of the assumed geometry and a velocity field of the form (114),
the generalized adherence conditions (99) become

v(0) = 0, v(h) = 0, lv′(0) = L2v′′(0), lv′(h) = −L2v′′(h). (120)

Applying these conditions to (119), we find that the velocity profile has the form

v(y) = βh2

2μ

{
y

h

(
1 − y

h

)
− bl

h
L sinh h

L

(
sinh

h

L
− sinh

y

L
− sinh

h − y

L

)}
,

(121)

with

bl =
2L
h + l

L

1 + l
L tanh h

2L

(122)

a nonnegative dimensionless measure of the effective adhesion length. As might
be expected in view of the geometry of the problem and the boundary conditions
(120), v as defined by (121)–(122) obeys

v(y) = v(h − y), 0 � y � h, (123)

and, thus, is symmetric about the midplane of the channel.
To facilitate the discussion of (121), we note that

v(y) = vc(y)+ vg(y), (124)
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where

vc(y) = βh2

2μ

y

h

(
1 − y

h

)
(125)

is the classical solution of the analogous problem for a Navier–Stokes fluid and

vg(y) = −βh2

2μ

bl L

h sinh h
L

(
sinh

h

L
− sinh

y

L
− sinh

h − y

L

)
, (126)

arises from higher-order terms characterized by the gradient length L .
Importantly, since

bl → 0 as
L

h
→ 0 and

l

L
→ 0

it follows from (121) and (126) that

v(y) → vc(y) as
L

h
→ 0 and

l

L
→ 0, 0 � y � h. (127)

The theory therefore yields the correct classical limit when gradient length is negli-
gibly small in comparison to the channel gap and the adherence length is negligibly
small in comparison to the gradient length. Although this result is confined to the
problem of plane Poiseuille flow subject to weak adherence conditions, it is not
unexpected and we anticipate that it will carry over to general flows. When the
channel gap h is large compared to the gradient length L , so that L 
 h, vg =
O(L2/h2). Hence, gradient effects are important only for channels with sufficiently
small gaps.

Consistent with (100) and (101), the specialized conditions of weak and strong
adherence arise, respectively, on setting l = 0 and l = ∞ in (120). The correspond-
ing expressions for v follow on taking appropriate limits in (122). In particular, since

bl → 2L

h
as l → 0,

the specialization of (126) to weak adherence conditions is

vw(y) = βh2

2μ

{
y

h

(
1 − y

h

)
− 2L2

h2 sinh h
L

(
sinh

h

L
− sinh

y

L
− sinh

h − y

L

)}
.

(128)

Further, since

bl → coth
h

2L
as

l

L
→ ∞ with 0 < L < ∞,

the identities sinh 2A = (1+cosh 2A) tanh A and (cosh A+cosh B) sinh(A+B) =
(sinh A + sinh B)(1+ cosh(A + B)) allow us to express the specialization of (126)
to the strong adherence conditions as

vs(y)= βh2

2μ

{
y

h

(
1 − y

h

)
− L

h sinh h
L

(
1 + cosh

h

L
− cosh

y

L
− cosh

h − y

L

)}
.

(129)
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For 0 < L < ∞, bl is a monotonically increasing function of l/L and obeys

2L

h
� bl � coth

h

2L
. (130)

Thus, since

sinh
y

L
+ sinh

h − y

L
� sinh

h

L
, 0 � y � h, (131)

a straightforward argument shows that

vw(y) � v(y) � vs(y) 0 � y � h. (132)

Hence, the solution (121) to the generalized adherence problem is bounded above
by the solution (128) to the weak adherence problem and below by the solution
(129) to the strong adherence problem. Furthermore, it can be shown that

vc(y) � vw(y) and vs(y) � 0, 0 � y � h, (133)

and, thus, that the solution (125) to the corresponding problem for the Navier–
Stokes equations provides an upper bound for the weak adherence solution and
that solution (129) to the strong adherence problem is never negative.

For all choices of the characteristic lengths L � 0 and l � 0, it can be shown
that v behaves much like the classical solution vc, increasing monotonically from
its value of zero at the channel floor y = 0 to a maximum at the channel midplane
y = h/2 and then decreases monotonically to its value of zero at the channel ceiling
y = h.

Plots of v, vw, vs , and vc, normalized by 2μ/βh2, as functions of y/h are pro-
vided in Figure 3. For each of these plots, we take L = h/5. Also, for the plot
of v, we take 4l = 3 coth(5/2). These plots display the general features of v as
determined by (121) and discussed above.

To gain further insight concerning the influence of gradient effects, we integrate
v over the channel gap and divide by the flow rate

∫ h
0 vc(y) dy = βh3/12μ for the

classical velocity vc to obtain the dimensionless flow rate

Q = 12μ

βh3

h∫

0

v(y) dy = 1 − 12L2bl

h2

(
h

2L
− tanh

h

2L

)
. (134)

Since bl > 0 and A � tanh A for A � 0, it follows that Q < 1 for all values of
L/h > 0. The flow rates corresponding to the solutions vw and vs of the problems
for strong and weak adherence are given by

Qw = 1 − 12L2

h2

(
1 − 2L

h
tanh

h

2L

)
(135)

and

Qs = 1 + 12L2

h2

(
1 − h

2L
coth

h

2L

)
, (136)

respectively. Thus, in view of (130),
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Fig. 3. Velocity profiles, normalized by βh2/2μ and plotted versus the dimensionless height
y/h, arising from solutions of the flow equation (118) subject to weak (right), generalized
(left), and strong (far left) adherence conditions. For each of these plots, L = h/5. Also,
4l = 3L coth(5/2) for generalized adherence. Shown for comparison is a plot of the classical
solution (far right) normalized by βh2/2μ and plotted versus the dimensionless height y/h.

0 � Qs � Q � Qw � 1. (137)

Consistent with our discussion of the velocity field, the flow rate for generalized
adherence is always less than or equal to its classical counterpart, while the flow
rates corresponding to strong and weak adherence provide lower and upper bounds
for all flow rates possible under generalized adherence conditions. Importantly,
since Q = 1 + O(L2/h2), the impact of gradient effects on the flow rate is sig-
nificant only for channels with sufficiently small gaps. This is consistent with our
discussion of the velocity field v. Plots of Q (with 4l = 3L coth(h/2L)), Qw, and
Qs as functions of the ratio L/h of the gradient length L to the channel gap h are
provided in Figure 4.

Under generalized adherence, the net dissipation includes contributions from
both the bulk and the boundary. For v of the assumed form (114), the bulk dissipa-
tion � per unit volume, as defined by (77), simplfies to � = μ

(|v′|2 + L2|v′′|2).
Integrating this expression over the channel gap and dividing by the dissipation
μ

∫ h
0 |v′

c(y)|2 dy = β2h3/12μ per unit channel height for the classical velocity vc,
we obtain a dimensionless measure

�∗ def= 12μ2

β2h3

h∫

0

(
|v′(y)|2 + L2|v′′(y)|2

)
dy,

= 1 + 12L2

h2

(
1 − bl h

L
+ b2

l h

L
tanh

h

2L

)

of the net bulk dissipation. Using the definition (122) of bl , we have
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Fig. 4. Dimensionless flow rates, normalized by βh3/12μ and plotted versus the dimension-
less ratio L/h of the gradient length L to the channel gap h, for weak (right), generalized (mid-
dle), and strong (left) adherence conditions. For generalized adherence, 4l = 3L coth(h/2L).

1 − bl h

L
+ b2

l h

L
tanh

h

2L
= 1 − bl h

2L
− bl h

2L

(
1 − bl tanh

h

2L

)

= −
l
L

( h
2L − tanh h

2L

)
1 + l

L tanh h
2L

− bl
( h

2L − tanh h
2L

)
1 + l

L tanh h
2L

= − bl + l
L

2L
h + l

L

(
h

2L
− tanh

h

2L

)

and, on recalling the expression (134) for the flow rate Q, we find that

�∗ = 1 − bl + l
L

2L
h + l

L

12L2bl

h2

(
h

2L
− tanh

h

2L

)

(138)

= 1 − bl + l
L

2L
h + l

L

(1 − Q).

Simple calculations show that

Qs � �∗ � Qw, (139)

with the upper and lower bounds being attained for the respective cases of weak
and strong adherence. Next, by (99) and (114), for v of the assumed form (114)
the boundary dissipation γ per unit area, as defined by (96), simplifies to γ =
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μl
(|v′(0)|2 + |v′(h)|2) = 2μl|v′(0)|2. Normalizing as in the case of the bulk dis-

sipation, we obtain a dimensionless measure

γ ∗ = 24μ2l

β2h3 |v′(0)|2

= 6L

h

l

L

(
1 − bl tanh

h

2L

)2

= l

3L

(1 − Q)2

2L
h

( 2L
h + l

L

)2 , (140)

of the net boundary dissipation. It can be shown that γ ∗ vanishes for both weak
and strong adherence and achieves a maximum when the adherence length takes
the value l = L coth h

2L .
The net dimensionless dissipation �∗ + γ ∗ can be shown to differ from the

classical amount β2h3/12μ by terms of O(L2/h2). Hence, as with the velocity and
the flow rate, the impact of gradient effects on the net dissipation is significant only
for channels with sufficiently small gaps.

10.2. Slip conditions

For a channel of the assumed geometry and a velocity field of the form (114),
the slip conditions (103) become

μv(0) = λ[μv′(0)− ζv′′′(0)], v′′(0) = 0,

μv(h) = −λ[μv′(h)− ζv′′′(h)], v′′(h) = 0.

}
(141)

Using (141) in (119) and noting from (85) that η2/μL2 = η2/ζ , we find that

v(y) = βhλ

2μ
+ vw(y), (142)

which differs from the expression (128) obtained for weak adherence conditions by
the classical value βλh/2μ of the effective slip-length for the analogous problem
for a Navier–Stokes fluid.

In view of (142), the dimensionless flow rate for slip conditions is simply

Q = 12μ

βh3

h∫

0

v(y) dy = Qw + 6λ

h
, (143)

which exceeds the flow rate (135) obtained for weak adherence by the amount
6λ/h. As in classical theory, an allowance for slip is therefore accompanied by an
increased flow rate.

Finally, the net dimensionless dissipation for slip coincides with the dimension-
less flow rate (143). This is consistent with what occurs for weak adherence and
observations analogous to those made in connection with that problem apply here
as well.
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10.3. Role of the pressure

An interesting nuance of the generalized adherence and slip problems is that a
detailed characterization of the pressure P and hyperpressure π is not necessary
to determine solutions to these problems consistent with the constraint divv = 0.
Rather, it suffices only to determine the effective pressure p = P − divπ . By
(116), the hyperpressure π must satisfy the partial differential equation divπ(x) =
P(x) + βx . In the generalized adherence problem, the condition involving mS
requires in addition to (120)3,4 that π ·n = 0 on the channel walls. Hence, for the
generalized adherence problem, π and P must satisfy divπ(x) = P(x) + βx in
the interior of the channel along with π ·n = 0 on the channel walls. There exists
an infinity of choices of π and P satisfying this boundary-value problem. For the
slip problem, the boundary conditions involve neither P nor π . Hence, these fields
may be chosen as arbitrary solutions of divπ(x) = P(x)+ βx .

10.4. Brief summary of results

For the generalized adherence conditions (12), the theory predicts a flow rate
lower than that obtained classically. When slip is allowed, the flow rate exceeds
that obtained under weak adherence but also lies below that obtained for the Na-
vier–Stokes equations subject to the Navier slip condition. These lower flow rates
trace directly to the additional sources of dissipation associated with the hyperstress
and the boundary conditions. Importantly, the reduced flow rates predicted by the
theory are important only for channels with sufficiently small gaps. Specifically,
for a channel with gap h, the flow rate decreases by terms of O(L2/h2) where L is
the gradient length.

11. Applicability of the theory to liquid flow at small-length scales

An understanding of the flow of liquids at small-length scales is of central
importance in a wide variety of disciplines, including biology [2, 25, 39], chemis-
try [8, 10, 16], and the rapidly expanding fields of micro- and nanotechnology [9,
37, 38, 44]. Recent experiments indicate that the Navier–Stokes equations and their
classical boundary conditions accurately describe the flow of incompressible, New-
tonian liquids through smooth channels with cross-sectional dimensions as small
as 50 μm [14, 35], a conclusion supported by atomistic simulations. What is more
important, such simulations indicate that the classical theory breaks down below 10
molecular diameters [3, 18, 19, 22, 26, 42, 43], and therefore it could be asked: can
a continuum theory such as ours be applicable at such small-length scales? In fact,
materials science is replete with examples where extensions of classical continuum
theories have been exploited to capture effects at nanometer length scales. As a
striking illustration of this, Rastelli, von Känel, Spencer & Tersoff [34] use
a continuum theory to characterize the formation of faceted islands of nanometer
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size during molecular beam epitaxy18; their results show that theory agrees well
with experiments for quantum dots of 2 nm high and 80 nm wide (cf. [34] Figure
2b). A similar approach is used by Siegel, Miksis & Voorhees [36] to study the
formation of wrinkles on the surface bounding a void of radius 10 nm.

Aside from possibly describing flows in nanometer scale devices and to prob-
lems of nanolubrication, our theory might also apply to flows in micron scale devices
with rough walls. For such applications, the gradient length L would be small com-
pared to the characteristic linear dimension of the region of flow. However, to
model wall roughness, the adherence length l would exceed L . With such a choice
of scales, differences between our theory and classical theory should be confined
to regions close to fixed boundaries. In particular, reduced flow rates of the sort
predicted in our analysis of plane Poiseuille flow are consistent with experiments
performed in microchannels with rough walls [15, 17, 20, 21, 28–30, 33].

12. Kinetic energy dependent on the velocity gradient

The theory discussed thus far is based on a generalization of the classical virtual-
power principle to include higher-order velocity gradients and associated higher-
order stresses and tractions. In accordance with this, it would seem reasonable to
modify the kinetic energy to account for dependence on the velocity gradient. We
consider that modification here.

12.1. Gradient kinetic energy. Inertial power balance

We now consider

1
2ρ|v|2 + 1

2β |gradv|2

as the a kinetic energy, per unit volume, so that the kinetic energy of any region
R(t) that convects with the fluid is given by

K(R(t)) =
∫

R(t)

1
2

(
ρ|v|2 + β |gradv|2) dv. (144)

To simplify the analysis, we assume that β = (constant)ρ throughout, so that, given
any field ϕ and any region R(t) that convects with the fluid,

d

dt

∫

R(t)

βϕ dv =
∫

R(t)

βϕ̇ dv,

and the kinetic-energy rate takes the form

18 Rastelli, von Känel, Spencer & Tersoff allow the surface energy of the film to depend on
surface curvature (Herring [13]; DiCarlo, Gurtin & Podio-Guidugli [7]); in all other
respects their theory is conventional.
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d

dt
K(R(t)) =

∫

R(t)

(
ρv̇·v + β ˙gradv :gradv

)
dv. (145)

Our goal is to determine inertial components of the body force b and the traction
tS appropriate to the kinetic-energy rate (145). Bearing in mind that the argument
leading to the virtual balance (40) is independent of what specific form the inertia
might take, we assume that

(i) tS,mS , and b continue to satisfy the virtual balance (40), so that (42) and (43)
are satisfied.
(ii) There are inertial and noninertial tractions tin

S and tni
S as well as inertial and

noninertial body forces bin and bni such that

b = +bni, tS = tin
S + tni

S . (146)

(iii) The kinetic-energy rate (145) is balanced by the negative of the power expended
by bin and tin

S in the sense of the inertial power balance 19:

∫

R

(
ρv̇·v + β ˙gradv :gradv

)
dv = −

∫

R

·v dv −
∫

S

tin
S ·v da, (147)

where in writing (147) we have, without loss in generality, replaced R by an arbi-
trary control volume R and ∂R by ∂R = S.

12.2. Inertial virtual-power balance. Inertial body force and surface traction

With a view toward making use of experience gained in the virtual-power anal-
ysis of Sections 3–4, we define (vectorial and tensorial) momentum-rate forces p
and M through

p = ρv̇ and M = β ˙gradv, (148)

in which case we may rewrite (147) in the form
∫

R

(p·v + M :gradv) dv = −
∫

R

bin ·v dv −
∫

S

tin
S ·v da. (149)

Guided by our discussion of virtual power in Section 4 (in particular, in the para-
graph containing (29)) and comparing (149) to the virtual power relation defined by
(29) and (30), we assume that at some arbitrarily chosen but fixed time, the region
occupied by the body is known, as are the inertial traction tin

S , the inertial body
force bin, and the momentum-rate forces p and M, and consider the velocity field

19 Cf. Podio-Guidugli [31], who bases his discussion of classical kinetic energy on a
balance between the rate of kinetic energy and the power expended by an inertial body force.
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v as a virtual field ṽ that may be specified independently of the actual evolution of
the body20:

∫

R

(p·ṽ + M :grad ṽ) dv = −
∫

R

bin ·ṽ dv −
∫

S

tin
S ·ṽ da. (150)

Writing n for the outward unit normal to S = ∂R, if we integrate the term in
(150) involving M :grad ṽ by parts we find that

∫

R

(
bin + p − divM

)·ṽ dv +
∫

S

(
tin

∂R + Mn
)·ṽ da = 0; (151)

since this relation is to hold for all virtual fields ṽ, we arrive at explicit expressions
for bin and tin

S :

bin = −p + divM,

tin
S = −Mn.

}
(152)

Next, using (146), (148), and (152), we may express the net body force b and the
net surface traction tS in the forms

b = −ρv̇ + βdiv
( ˙gradv

)
+ bni,

tS = −β
( ˙gradv

)
n + tni

S .

⎫⎬
⎭ (153)

Since, by (i), b and tS are given by (42) and (43), the relations (153) may be viewed
as expressions for the the noninertial fields bni and tni

S .

12.3. The flow equation and free-energy imbalance for an incompressible,
linearly viscous fluid

We now return to the topic of incompressible fluids. For an imcompressible
body, it follows from the constraint divv = 0 that the tensorial momentum-rate
force M is determined only up to an additive spherical factor. In analogy to the
decomposition (68) of the Cauchy stress, we may therefore replace (148)1 by

M = −κ1 + β ˙gradv, (154)

where κ is an indeterminate kinetic pressure. Consider the argument leading to the
representations (153) for bin and tin

S . When v satisfies divv = 0, it is not necessary
to require that the ṽ entering the balance (150) be divergence free. Indeed, since
the kinetic pressure κ is indeterminate, we may, without loss in generality, consider

20 This paradigm represents an intrinsic method of decomposing the rate of the kinetic
energy into the negative of a power expenditure by a body force field bin and a traction
field tin

S , with each of these fields uniquely determined. As a bonus, this treatment of inertia
guarantees a variational framework for the resulting partial differential equation.
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κ as a Lagrange multiplier and require that the balance (150) holds for all virtual
fields ṽ on R. It then follows that

b = −gradκ − ρv̇ + βdiv
( ˙gradv

)
+ bni,

tS =
(
κ1 − β ˙gradv

)
n + tni

S .

⎫⎬
⎭ (155)

With a view toward writing (155) in terms of the acceleration v̇, we note that

( ˙gradv
)

i j
= ∂vi, j

∂t
+ vi, jkvk,

=
(
∂vi

∂t

)
, j

+ (vi,kvk), j − vi,kvk, j ,

= (v̇i ), j − vi,kvk, j , (156)

and hence that
[
div

( ˙gradv
)]

i
= �v̇i − vi,k�vk − vi,k jvk, j . (157)

Thus, on defining

[(
grad 2v

)
gradv

]
i

def= vi,k jvk, j ,

we may write the identities (156) and (157) in direct notation as follows:

˙gradv = grad v̇ − (gradv)gradv,

div
( ˙gradv

)
= �v̇ − (gradv)�v −

(
grad 2v

)
gradv. (158)

Thus, by (155),

b = −gradκ − (ρ − β�)v̇ − β[(gradv)�v + (
grad 2v

)
gradv] + bni,

tS = [κ1 − β(grad v̇ + (gradv)gradv )]n + tni
S .

}

(159)

We continue to work within the constitutive framework set out in Section 7.
With this provision and (159)1, the local force balance (42) specializes to yield the
flow equation

ρv̇ − β[�v̇ − (gradv)�v − (
grad 2v

)
gradv]

= −grad p + μ�v − ζ��v + bni, (160)

with effective pressure now given by

p = P + κ − divπ . (161)
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Assume now that bni = 0. Then, arguing as in the steps leading up to (90) we
find, using (147), that

d

dt

∫

R

1
2

(
ρ|v|2 + β |gradv|2) dv

+
∫

S

1
2

(
ρ|v|2 + β |gradv|2)v·n da −

∫

S

(
tni
S ·v + mS · ∂v

∂n

)
da

= −
∫

R

(
2μ|D|2 + η1|gradv|2

+η2
(
2|gradD|2 − 2|gradW|2 − |�v|2)) dv � 0. (162)

12.4. Boundary conditions for a passive environment

We now generalize the boundary conditions derived in Section 8.2 to account for
the gradient kinetic energy. In this more general theory the inequality (94) remains
valid, but the discussion of a passive environment is delicate, as we must account
for the inertial power expended by the environment. With this in mind, we assume
that Wenv(S), the environmental power expended on the pillbox S of Figure 1,
admits a decomposition

Wenv(S) = W in
env(S)+ Wni

env(S) (163)

into inertial and noninertial power expenditures W in
env(S) and Wni

env(S). Granted
this, we refer to the boundary as passive if for any motion of the fluid and any
evolving subsurface S(t) of ∂B(t):

(i) the noninertial power expended by the environment at the boundary vanishes,

Wni
env(S) = 0;

(ii) the inertial power expended by the environment at the boundary is balanced by
the inertial power expended in the body at the boundary,

W in
env(S) =

∫

S

tin
S ·v da,

cf. (94). Then, for a passive environment, (94), (146), and (163) imply that∫

S

((
tni
S − 2σK n

)·v + mS · ∂v
∂n

)
da � 0, (164)

and since the choice of S is arbitrary, (164) is equivalent to the boundary dissipation
inequality

−(
tni
S − 2σK n

)·v − mS · ∂v
∂n

� 0, (165)

where, by (43)1 and (155)2,
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tni
S = Tn − (divG)n − divS(Gn)− 2K (Gn)n −

(
κ1 − β ˙gradv

)
n. (166)

As in Section 8.2 the dissipation inequality (165) may be used to motivate
boundary conditions. The only difference between this dissipation inequality and
the inequality (96) of Section 8.2 is that the relevant traction here is tni

S rather
than tS . Consequently, each of the boundary conditions specified in Section 8.2
has a direct counterpart for the theory discussed here: we simply replace tS by tni

S .
Thus, because they do not involve the surface traction tS , the generalized adherence
conditions (99) as well as its weak and strong counterparts (100) and (101) are
unchanged.

On the other hand, the boundary conditions for a free surface are mS = 0 (as
in Section 8.2) and tni

S = 2σK n, or equivalently, by (44) and (166), Gi jkn j nk = 0
and

Ti j n j − 2Gi jk,kn j +Gi jk,ln j nknl +Gi jk K jk +β ˙
(vi, j )n j = 2σK ni . (167)

Thus, interestingly, in this more general theory the boundary condition at a free
surface involves the inertial term

β
( ˙gradv

)
n.

Similarly, the boundary conditions for a surface that is fixed but allows for slip are
mS = 0 and Ptni

S = −(μ/λ)v, the second of which, by (166), includes a term of
the form

βP
( ˙gradv

)
n.

12.5. Plane Poiseuille flow revisited

Granted that the fluid velocity is of the form (114) assumed for the problem of
plane Poiseuille flow, kinematics alone yields the conclusion that

˙gradv = 0. (168)

Thus, when gradient kinetic energy is accounted for and inertial body forces are
neglected, it follows from (158) that the flow equation (160) reduces to the form (82)
of the theory without gradient kinetic energy. In addition, as noted in the paragraph
following (166), the generalized adherence condition (99) is unaltered. As a fur-
ther consequence of (168), it follows from (166) that the conditions at a surface
that allows for slip reduce to the form (103) in the theory without gradient kinetic
energy. The problem of plane Poiseuille flow for the theory with gradient kinetic
energy therefore reduces to the problem considered in Section 10 and the resulting
solutions for generalized adherence and slip conditions are therefore unchanged.
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