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Abstract

It is well known that, when the vertex angle of a straight wedge is less than the
critical angle, there exists a shock-front emanating from the wedge vertex so that
the constant states on both sides of the shock-front are supersonic. Since the shock-
front at the vertex is usually strong, especially when the vertex angle of the wedge
is large, then a global flow is physically required to be governed by the isentropic or
adiabatic Euler equations. In this paper, we systematically study two-dimensional
steady supersonic Euler (i.e. nonpotential) flows past Lipschitz wedges and estab-
lish the existence and stability of supersonic Euler flows when the total variation
of the tangent angle functions along the wedge boundaries is suitably small. We
develop a modified Glimm difference scheme and identify a Glimm-type functional,
by naturally incorporating the Lipschitz wedge boundary and the strong shock-front
and by tracing the interaction not only between the boundary and weak waves, but
also between the strong shock-front and weak waves, to obtain the required BV

estimates. These estimates are then employed to establish the convergence of both
approximate solutions to a global entropy solution and corresponding approximate
strong shock-fronts emanating from the vertex to the strong shock-front of the
entropy solution. The regularity of strong shock-fronts emanating from the wedge
vertex and the asymptotic stability of entropy solutions in the flow direction are
also established.

1. Introduction

We are concerned with the existence and behavior of two-dimensional steady
supersonic Euler flows past Lipschitz wedges with arbitrary vertex angles that are
less than the critical angle so that there is a supersonic shock-front emanating from
the wedge vertex. The two-dimensional steady supersonic Euler flows are generally
governed by
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(ρu)x + (ρv)y = 0,

(ρu2 + p)x + (ρuv)y = 0,

(ρuv)x + (ρv2 + p)y = 0,

(u(E + p))x + (v(E + p))y = 0,

(1.1)

where (u, v) is the velocity, ρ the density, p the scalar pressure, and

E = 1

2
ρ(u2 + v2) + ρe(ρ, p)

is the total energy with e the internal energy (a given function of (ρ, p) defined
through thermodynamic relationships). The other two thermodynamic variables
are the temperature T and the entropy S. If ρ and S are chosen as the independent
variables, then we have the constitutive relations:

(e, p, T ) = (e(ρ, S), p(ρ, S), T (ρ, S)), (1.2)

governed by

T dS = de − p

ρ2 dρ. (1.3)

For an ideal gas,

p = RρT, e = cvT , γ = 1 + R

cv

> 1, (1.4)

and

p = p(ρ, S) = κργ eS/cv , e = κ

γ − 1
ργ−1eS/cv = RT

γ − 1
, (1.5)

where R, κ, and cv are all positive constants.
If the flow is isentropic, i.e. S is constant, then p is a function of ρ, p = p(ρ),

and the flow is governed by the following, simpler, isentropic Euler equations:

(ρu)x + (ρv)y = 0,

(ρu2 + p)x + (ρuv)y = 0, (1.6)

(ρuv)x + (ρv2 + p)y = 0.

For polytropic isentropic gases, by scaling, the pressure–density relationship can
be expressed as

p(ρ) = ργ /γ, γ > 1. (1.7)

For the isothermal flow, γ = 1. The quantity

c = √
pρ(ρ, S)

is defined as the sonic speed and, for polytropic gases, c = √
γp/ρ.
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System (1.1), or (1.6), governing a supersonic flow (i.e. u2 + v2 > c2) has all
real eigenvalues and is hyperbolic, whilst system (1.1), or (1.6), governing a sub-
sonic flow (i.e. u2 + v2 < c2) has complex eigenvalues and is elliptic-hyperbolic
mixed and composite.

The study of two-dimensional steady supersonic flows past wedges can date
back to the 1940s (cf. Courant & Friedrichs [8]). Local solutions around the
wedge vertex were first constructed by Gu [12], Li [16], Schaeffer [20] (and ref-
erences cited therein). Global potential solutions are constructed in [4–8, 25, 26]
when the wedge has certain convexity or the wedge is a small perturbation of the
straight wedge with fast decay in the flow direction, with a vertex angle less than
the critical angle. In particular, in Zhang [26], the existence of two-dimensional
steady supersonic potential flows past piecewise smooth curved wedges, which are
a small perturbation of the straight wedge, was established.

As is well known, the potential flow equation is an excellent model for flow con-
taining only weak shocks, since it approximates to the isentropic Euler equations
up to third-order in shock strength. For a flow containing shocks of large strength,
the isentropic or adiabatic Euler equations are required to govern the physical flow.
For the wedge problem, when the vertex angle is large, the flow contains a strong
shock-front emanating from the wedge vertex and, for this case, the Euler equations
should be used to describe the physical flow. Hence, it is important to study the
two-dimensional steady supersonic flows governed by the Euler equations, rather
than the potential flow equation, for the wedge problem with a large vertex angle.
When a wedge is straight, and the wedge vertex angle is less than the critical angle,
there exists a supersonic shock-front emanating from the wedge vertex such that
the constant states on both sides of the shock are supersonic; the critical-angle con-
dition is necessary, and sufficient, for the existence of the supersonic shock. These
facts can be seen through the shock polar in Fig. 3, Section 2 (cf. Courant &
Friedrichs [8]; see also Chang & Hsiao [1] and Chen [2]).

In this paper, we analyze the two-dimensional steady supersonic Euler flows
past two-dimensional Lipschitz wedges, with vertex angles less than the critical
angle (along which the total variation of the tangent angle function is suitably
small); and we establish the existence and behavior of such global supersonic Euler
flows, especially the nonlinear stability of the strong shock-front emanating from
the wedge vertex under the BV perturbation.

For clarity, we will analyze the problem in the region below the lower side �

of the wedge for the Euler flows for U = (u, v, p, ρ) governed by system (1.1)
and U = (u, v, ρ) by (1.6); the case above the wedge can be handled in the same
fashion. We then have

(i) there exists a Lipschitz function g ∈ Lip(R+) with g′ ∈ BV (R+), g′(0+) =
0, and g(0) = 0 such that

� := {(x, y) : y < g(x), x � 0}, � := {(x, y) : y = g(x), x � 0},

and n(x±) = (−g′(x±),1)√
(g′(x±))2+1

is the outer normal vector to � at the point x±
(see Fig. 1);
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U-

Fig. 1. Supersonic flow past a curved wedge.

(ii) the upstream flow is a constant state U− satisfying

u− > 0, v− > 0, u2− + v2− > c2− := γp−
ρ−

,

and

0 < arctan(v−/u−) < ωcrit ,

so that there is a supersonic shock-front emanating from the wedge vertex,
where ωcrit is the critical vertex angle (cf. Fig. 3).

With this setup, the wedge problem can be formulated into the following prob-
lem of initial-boundary value type for system (1.1) or (1.6):

Cauchy Condition:

U |x=0 = U−; (1.8)

Boundary Condition:

(u, v) · n = 0 on �. (1.9)

The main theorem of this paper is the following:

Main theorem (Existence and stability). There exist ε > 0 and C > 0 such that,
if

T V (g′(·)) < ε, (1.10)

then there exists a pair of functions

U ∈ BVloc(R
2+), σ ∈ BV (R+),

with χ = ∫ x

0 σ(t)dt ∈ Lip(R+) such that

(i) U is a global entropy solution of problem (1.1), or (1.6), and (1.8)–(1.9) in �

with

T V {U(x, ·) : (−∞, g(x)] } � C T V (g′(·)) for every x ∈ R+, (1.11)

(u, v) · n|y=g(x) = 0 in the trace sense; (1.12)
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(ii) the curve y = χ(x) is a strong shock-front with χ(x) < g(x) for any x > 0
and

U |{y<χ(x)} = U−,
√

u2 + v2|{χ(x)<y<g(x)} < u−, (1.13)

that is, y = χ(x) is the strong shock next to the constant state U−;
(iii) there exist constants p∞ and σ∞ such that

lim
x→∞ sup{|p(x, y) − p∞| : χ(x) < y < g(x)} = 0,

lim
x→∞ |σ(x) − σ∞| = 0,

and

lim
x→∞ sup{| arctan (v(x, y)/u(x, y)) − ω∞| : χ(x) < y < g(x)} = 0,

where ω∞ = lim
x→∞ arctan(g′(x+)).

This theorem indicates that the strong shock-front emanating from the wedge
vertex is nonlinearly stable in structure, although there may be many weak waves
and vortex sheets between the wedge boundary and the strong shock-front, under
the BV perturbation of the wedge boundary so long as the wedge vertex angle is
less than the critical angle. This asserts that any supersonic shock for the wedge
problem is nonlinearly stable.

In order to establish this theorem, we develop a modified Glimm scheme and
identify a Glimm-type functional by naturally incorporating the curved wedge
boundary and the strong shock-front and by tracing the interactions not only between
the wedge boundary and weak waves but also the interaction between the strong
shock-front and weak waves. Some detailed interaction estimates are carefully
made to ensure that the Glimm-type functional monotonically decreases in the
flow direction. In particular, one of the essential estimates is on the strengths of
the reflected 4-waves for (1.1), or 3-waves for (1.6), in the interaction between the
strong shock-front and weak waves. The second essential estimate is the interac-
tion estimate between the wedge boundary and the weak waves. Another essential
estimate is made by tracing the approximate strong shocks, in order to establish the
nonlinear stability and asymptotic behavior of the strong shock-front emanating
from the wedge vertex under the wedge perturbation.

We remark that, in Lien & Liu [17], the nonlinear stability of a self-simi-
lar three-dimensional gas flow past an infinite cone (with small vertex angle) was
established upon the perturbation of the obstacle. It would be interesting to combine
the analysis in this paper with the argument in [17] to study the nonlinear stabil-
ity of a self-similar three-dimensional gas flow past an infinite cone with arbitrary
vertex angle. We also remark, in passing, that condition (1.10) can be relaxed by
combining the analysis in this paper with the argument in [22, 23].

In this paper, we first focus on the isentropic Euler flows in Sections 2–5 and
then extend to the adiabatic (full) Euler flows in Section 6.

In Section 2, we study the lateral Riemann problem and the classical Riemann
problem, and analyze the properties of the Riemann solutions of the isentropic
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Euler equations (1.6), which are essential for the interaction estimates among the
nonlinear waves and the wedge boundary in Section 3, and for the existence and
behavior of entropy solutions of the wedge problem in Sections 4–5. In Section
3, we make estimates on the wave interactions and reflections on the wedge and
the strong shock. In Section 4, we develop a modified Glimm scheme to construct
approximate solutions and establish necessary estimates for them in the approxi-
mate domains. In Section 5, we establish the convergence of approximate solutions
to a global entropy solution and prove the nonlinear stability and asymptotic behav-
ior of the strong shock-front emanating from the wedge vertex under the wedge
perturbation. We extend the analysis in Section 6 to establish the existence and
behavior of two-dimensional steady supersonic flows past the Lipschitz wedges for
the adiabatic Euler equations.

2. Riemann problems and Riemann solutions

In this section, we study the lateral Riemann problem and the classical Riemann
problem, and analyze the properties of the Riemann solutions to the isentropic Euler
equations (1.6), which are essential not only for the interaction estimates among the
nonlinear waves and the wedge boundary but also for the existence and behavior
of solutions for the wedge problem in Sections 3–5.

2.1. Euler equations

The Euler system can be written in the following conservation form:

W(U)x + H(U)y = 0, (2.1)

where

U = (u, v, ρ), W(U) = (ρu, ρu2 + p, ρuv), H(U) = (ρv, ρuv, ρv2 + p).

For a smooth solution U(x, y), (2.1) is equivalent to

∇UW(U)Ux + ∇UH(U)Uy = 0. (2.2)

Then the eigenvalues of (2.1) are the roots of the third-order polynomial:

det (λ∇UW(U) − ∇UH(U)) (2.3)

and are thus the solutions of the cubic equation:

(v − λ)
(
(v − λu)2 − c2(1 + λ2)

)
= 0,

where c = √
p′(ρ) is the sonic speed. If the flow is supersonic (i.e., u2 + v2 > c2),

then we have three eigenvalues λj , j = 1, 2, 3:

λ2 = v/u, λj = uv + (−1)
j+1

2 c
√

u2 + v2 − c2

u2 − c2 , j = 1, 3, (2.4)
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which implies that the flow in the system is always hyperbolic. When u �= 0, the
corresponding eigenvectors are

r2 = (1, v/u, 0)�, rj = κj (−λj , 1, ρ(λju − v)/c2)�, j = 1, 3, (2.5)

where κj are chosen so that rj · ∇λj = 1 because of genuine nonlinearity of the
j th-characteristic fields, j = 1, 3. Note that the second characteristic field is always
linearly degenerate: r2 · ∇λ2 = 0.

Definition 2.1. (Entropy Solutions).A function U = U(x, y) ∈ BVloc(�) is called
an entropy solution of problem (1.6) and (1.8)–(1.9) provided that

(i) U is a weak solution of (1.6) and satisfies

(u, v) · n|y=g(x) = 0 in the trace sense;
(ii) U satisfies the following entropy inequality:

(u(E + p(ρ)))x + (v(E + p(ρ)))y � 0 (2.6)

in the sense of distributions in � including the boundary.

2.2. Basic properties of nonlinear waves

In this subsection, we analyze some basic properties of nonlinear waves, espe-
cially the global behavior of shock curves and rarefaction wave curves in the phase
space.

We first seek the self-similar solution of (1.6):

(u, v, ρ)(x, y) = (u(ξ), v(ξ), ρ(ξ)), ξ = y/x,

which connects to a state U0 = (u0, v0, ρ0). We then have

det (ξ∇UW(U) − ∇UH(U)) = 0. (2.7)

Hence,

ξ = λ2 = v/u, or ξ = λj = uv + (−1)
j+1

2 c
√

u2 + v2 − c2

u2 − c2 , j = 1, 3.

(2.8)

Substituting ξ = λ2 into (2.7), we obtain

dρ = 0, vdu − udv = 0.

Then, the contact discontinuity curve C2(U0) in the phase space is:

C2(U0) : ρ = ρ0, w = v/u = v0/u0, (2.9)

which describes compressible vortex sheets.
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Substituting ξ = λj into (2.7), we get the j th-rarefaction wave curve Rj (U0)

in the phase space through U0:

Rj (U0) : du = −λjdv, ρ(λju − v)dv = dp, j = 1, 3. (2.10)

We now compute
dλj

dρ
along Rj (U0), j = 1, 3. Since (v − ξu)2 = c2(1 + ξ2)

along Rj (U0), we differentiate the equation to obtain

(
c2λj + u(v − λju)

) dλj

dρ
= −(1 + λ2

j )

(
1

ρ

dp

dρ
+ c

dc

dρ

)
< 0.

Noting that c2λj + u(v − λju) = (−1)
j−1

2 c
√

u2 + v2 − c2, we conclude that

dλ1

dρ
|R1(U0) < 0,

dλ3

dρ
|R3(U0) > 0. (2.11)

Now we consider discontinuous solutions, so that (1.6) is satisfied in the distri-
butional sense, which implies that the following Rankine-Hugoniot conditions hold
along the discontinuity with speed σ , which connects to a state U0 = (u0, v0, ρ0):

σ [ ρu] = [ ρv] , (2.12)

σ [ ρu2 + p] = [ ρuv] , (2.13)

σ [ ρuv] = [ ρv2 + p] , (2.14)

where the jump symbol [ ·] stands for the value of the quantity of the front state
minus that of the back state, which can be rewritten as




−σρ ρ v0 − σu0

ρ(v0 − σu0) 0 −σ c̄2
0

0 ρ(v0 − σu0) c̄2
0








[ u]
[ v]
[ ρ]



 = 0 (2.15)

with c̄2
0 = ρ

ρ0

[p]
[ρ] . We then have

σ = σ2 := v0/u0, σ = σj :=
u0v0 + (−1)

j+1
2 c̄0

√
u2

0 + v2
0 − c̄2

0

u2
0 − c̄2

0

, j = 1, 3.

(2.16)

Substituting σ2 into (2.15), we get the same C2(U0) as defined in (2.9). Substi-
tuting σj into (2.15), we obtain the j th-shock curve Sj (U0) in the phase space
through U0:

Sj (U0) : [ u] = −σ [ v] , ρ0(σju0 − v0)[ v] =[ p] , j = 1, 3. (2.17)

It is straightforward to see that the shock curve Sj (U0) contacts with Rj (U0)

at U0 up to second-order and, along Sj (U0), j = 1, 3,

dσ1

dρ
|S1(U0) < 0,

dσ3

dρ
|S3(U0) > 0. (2.18)
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Lemma 2.1. If U is a piecewise smooth solution, then, on the shock wave, the
entropy inequality (2.6) in Definition 2.1 is equivalent to any of the following:

(i) the physical entropy condition – the density increases across the shock in the
flow direction:

ρf ront < ρback; (2.19)

(ii) the Lax entropy condition – on the j th-shock with the shock speed σj :

λj (back) < σj < λj (f ront), j = 1, 3, (2.20)

σ1 < λ2(back), λ2(f ront) < σ3. (2.21)

Proof. Since the system is Galilean invariant, we may assume that the back state
of the shock is U+ = (u+, 0, ρ+) with u+ > 0.

We first show the equivalence between (2.6) and (2.19). Along the discontinuity
with speed σ and back state U+, (2.6) is equivalent to

σ [ u(E + p)] �[ v(E + p)] . (2.22)

Substituting (2.12) into (2.22) and using v+ = 0, we have

ργ−1

(γ − 1)
+ (u2 + v2)

2
� ρ

γ−1
+

(γ − 1)
+ u2+

2
. (2.23)

Using (2.12) and (2.13), we have

u = u+ − p − p+
ρ+u+

. (2.24)

Using (2.12) and (2.14), we obtain

p − p+ = σρ+u+v. (2.25)

Combining (2.12) with (2.25) yields

v2 = (ρu − ρ+u+)(p − p+)

ρρ+u+
. (2.26)

Then substituting (2.24) and (2.26) into (2.23) yields that (2.6) is equivalent to

H(ρ) := 2γ (pρ+ − p+ρ) − (γ − 1)(p − p+)(ρ + ρ+) � 0,

with H(ρ+) = 0, which implies ρ < ρ+, that is (2.19).
Now we show the equivalence between (2.19) and (2.20)–(2.21).
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Case (2.19)⇒ (2.20)–(2.21). We now prove that the 1-shock (the shock-front cor-
responding to the first characteristic field) with the physical entropy condition sat-
isfies the Lax entropy condition; the 3-shock (the shock-front corresponding to the
third characteristic field) can be proved in the same way.

First, since λ1(U+) = −c+√
u2+−c2+

and σ1 = −c̄+√
u2+−c̄2+

, then σ1 < λ2(U+) is direct,

and λ1(U+) < σ1 is equivalent to the inequality:

c+/

√
u2+ − c2+ > c̄+/

√
u2+ − c̄2+. (2.27)

Since the function f (x) = x√
u2+−x2

is strictly increasing in x ∈[ 0, u+), inequality

(2.27) holds if and only if c+ > c̄+, which is equivalent to

p′(ρ+) >
ρ−
ρ+

p− − p+
ρ− − ρ+

= ρ−
ρ+

p′(θρ+ + (1 − θ)ρ−) (2.28)

for some θ ∈ (0, 1), where U− = (u−, v−, ρ−) is the front state of the 1-shock.
By the entropy condition, ρ− < ρ+, so that θρ+ + (1 − θ)ρ− < ρ+. Then the

convexity of p(ρ) implies p′(θρ+ + (1 − θ)ρ−) � p′(ρ+). Then (2.28) follows.
Secondly, we set ω− = arctan(v−/u−) and

ωma = arctan



 c−√
u2− + v2− − c2−



 , ω̄ma = arctan



 c̄−√
u2− + v2− − c̄2−



 .

A direct calculation shows that σ1 < λ1(U−) ⇔ ωma < ω̄ma ⇔ c− < c̄−,

while c− < c̄− is equivalent to

p′(ρ−) <
ρ+
ρ−

p+ − p−
ρ+ − ρ−

= ρ+
ρ−

p′(θρ+ + (1 − θ)ρ−)

for some θ ∈ (0, 1), which is a corollary of the convexity of p(ρ) and ρ+ > ρ−.

Case (2.20)–(2.21)⇒ (2.19). We prove this case by contradiction. Instead, if ρ+ <

ρ−, similarly to the previous case, we find that λ1(U+) < σ1 is equivalent to
c+ > c̄+, i.e.,

p′(ρ+) >
ρ−
ρ+

p− − p+
ρ− − ρ+

= ρ−
ρ+

p′(θρ+ + (1 − θ)ρ−)

for some θ ∈ (0, 1), which is impossible since p′′(ρ) > 0 and ρ+ < ρ−. ��
In view of (2.16) and (2.19), for a shock wave, u2

0 + v2
0 � c̄2

0 > c2
0, which

indicates that the front state of a shock must be supersonic. Choosing a coordinate

system so that u0 > 0 and v0 = 0, we then have y
x

= σj = (−1)
j+1

2 c̄0/

√
u2

0 − c̄2
0.

Thus, 1-shocks and 3-shocks must be as shown in Fig. 2.
We define the angle of the flow direction as

ω = arctan(v/u).
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U0 U0

Fig. 2. Shock waves in the physical plane.

 

sonic line

Fig. 3. Shock polar and critical angle.

Then the shock curves Sj (U0), j = 1, 3, in the (ω, ρ)-plane and (u, v)-plane form
shock polars, as shown in Fig. 3. In general,

ωcrit = sup{|ω(u, v) − ω(u0, v0)| : (u, v, ρ) ∈ S(U0), c2∗ < u2 + v2 < u2
0 + v2

0},

where S(U0) = S1(U0) ∪ S3(U0) is the shock polar associated with U0, similar to
that shown above, and c∗ > 0 is a constant such that u2 + v2 � c2(ρ) is equivalent
to u2 + v2 > c2∗ on S(U0).

2.3. Lateral Riemann problem

The simplest case of problem (1.6) and (1.8)–(1.9) is g ≡ 0. It has been shown
in [8] that if g ≡ 0, then problem (1.6) yields an entropy solution that consists of
the constant states U− and U+, with U+ = (u+, 0, ρ+) and u+ > c+ > 0 in the
subdomain of �, separated by a straight shock-front emanating from the vertex.
That is to say that the state ahead of the shock-front is U−, whilst the state behind
the shock-front is U+ (see Fig. 4). When the angle between the flow direction of
the front state and the wedge boundary at a boundary vertex is larger than π , the
entropy solution contains a rarefaction wave that separates the front state from the
back state (see Fig. 5).
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U

U

_

+

Fig. 4. Unperturbed case when g ≡ 0.

shock
Rarefaction wave

Fig. 5. Lateral Riemann solutions.

2.4. Riemann problem involving only weak waves

Consider the Riemann problem for (2.1):

U |x=x0 = U =
{

Ua, y > y0,
Ub, y < y0,

(2.29)

where Ua and Ub are constant states which are regarded as the above state and
below state with respect to the line y = y0.

Following Lax [14], we can parametrize any physically admissible wave curve
in a neighborhood of a constant state U+, Oε(U+), by αj �→ �j(αj ; Ub), with

� ∈ C2, �j |αj =0 = Ub, and
∂�j

∂αj
|αj =0 = rj (Ub). Set

�(α3, α2, α1; Ub) := �3(α3; �2(α2; �1(α1; Ub))).

From this point forward, we denote by Oε(W) a universal ball with radius
Mε > 0 and center W , where M > 0 is a universal constant depending only on the
parameters in the system and possibly on the boundary function g(x) (see Section
4.2), which may be different for each occurrence. Then we have

Lemma 2.2. There exits ε > 0 such that, for any states Ua, Ub ∈ Oε(U+), the
Riemann problem (2.29) yields a unique admissible solution consisting of three
elementary waves. In addition, state Ua can be represented by

Ua = �(α3, α2, α1; Ub),

with �|α1=α2=α3=0 = Ub and ∂�
∂αi

|α1=α2=α3=0 = ri (Ub), i = 1, 2, 3.
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Furthermore, we find that the renormalization factors κj (U), j = 1, 3, in (2.5)
are positive in a neighborhood Oε(U0) of any state U0 = (u0, 0, ρ0) with u0 > 0.

Lemma 2.3. At any state U0 = (u0, 0, ρ0) with u0 > 0,

κ1(U0) = κ3(U0) > 0,

which implies κj (U) > 0 for any U ∈ Oε(U0), since κj (U) are continuous for
j = 1, 3.

At state U0 = (u0, 0, ρ0), it is straightforward to see that

∇Uλ10 · (−λ10, 1, ρ0u0λ10/c
2
0) = ∇Uλ30 · (−λ30, 1, ρ0u0λ30/c

2
0) > 0,

where λj0 = λj (U0), j = 1, 3. Therefore, we have κ1(U0) = κ3(U0) > 0.

2.5. Riemann problem involving a strong 1-shock

For simplicity, we use the notation {Ub, Ua} = (α1, α2, α3) to denote that
Ua = �(α3, α2, α1; Ub) throughout the paper. For any U ∈ S1(U−), we also use
{U−, U} = (σ, 0, 0) to denote the 1-shock that connects U− and U with speed σ .
We then have

Lemma 2.4. Let {U−, U+} = (σ0, 0, 0) with U+ = (u+, 0, ρ+), ρ+ > ρ−, and
γ � 1. Then

σ0 < 0, u+ < u− < (1 + 1/γ )u+.

Proof. From the Rankine-Hugoniot conditions (2.12)–(2.14), we have

σ0(ρ−u− − ρ+u+) = ρ−v−, (2.30)

σ0(ρ−u2− − ρ+u2+ + p− − p+) = ρ−v−u−, (2.31)

which implies σ0 = −c̄0/

√
u2+ − c̄2

0 < 0. Substituting (2.30) into (2.31), we
have p+ − p− = ρ+u+(u− − u+). By the entropy condition: ρ+ > ρ−, which
implies p+ > p−. Thus u− > u+. Furthermore, since p− > 0, we have p+ >

ρ+u+(u− − u+), which implies

ρ+c2+/γ > ρ+u+(u− − u+).

Using u+ > c+, we have u+/γ > u− − u+ and thus u− < (1 + 1/γ )u+. ��
Moreover, it is direct to conclude

Lemma 2.5. There exists a neighborhood Oε(U+) of U+ such that the shock polar
S1(U−) ∩ Oε(U+) can be parametrized by the shock speed σ as

σ → G(σ)

with G ∈ C2 near σ0 and G(σ0) = U+.
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The following lemma is essential to estimate the strengths of reflected weak
waves in the interaction between the strong 1-shock and weak waves (see the proofs
for Propositions 3.1–3.4).

Lemma 2.6. Set A = ∇UH(U+) − σ0∇UW(U+). Then

det A < 0, det(Ar3, Ar2, Ar1)|U=U+ < 0,

det(Ar3, Ar2, AGσ (σ0))|U=U+ < 0.

Proof. A direct calculation shows that

A =



−σ0ρ+ ρ+ −σ0u+

−2σ0ρ+u+ ρ+u+ −σ0(u
2+ + c2+)

0 −σ0ρ+u+ c2+



 ,

and

r2(U+) = (1, 0, 0)�,

rj (U+) = κj (U+)(−λj+, 1, ρ+u+λj+/c2+)�, j = 1, 3.

We then have

Ar2(U+) = −σ0ρ+(1, 2u+, 0)�,

Arj (U+) = κj (U+)ρ+(λj+ − σ0)

λj+
(1, u+, u+λj+)�, j = 1, 3,

and

AGσ (σ0) = W(U+) − W(U−) = −ρ−v−
σ0

(1, u−, σ0u−)�.

Using Lemma 2.4, we can directly identify the signs of the following determi-
nants:

det A = σ0ρ
2+u+(λ2

1+ − σ 2
0 )(u2+ − c2+) < 0,

det(Ar3, Ar2, Ar1)|U=U+

= (κ3(U+))2σ0ρ
3+u2+

λ1+λ3+
(λ3+ − σ0)(σ0 − λ1+)(λ1+ − λ3+) < 0,

and

det(Ar3, Ar2, AGσ (σ0))|U=U+

= κ3(U+)ρ−v−ρ2+u+
λ3+

(λ3+ − σ0) ((2u+ − u−)λ3+ − σ0u−) < 0. ��

3. Estimates on wave interactions and reflections

We now make estimates on wave interactions and reflections on the wedge and
the strong 1-shock.
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Fig. 6. Weak wave interactions.

3.1. Estimates on weak wave interactions

We first estimate the interactions among weak waves. We will use the following
elementary identities, the proofs of which are straightforward.

Lemma 3.1.

(i) If f ∈ C1(R), then for any x ∈ R,

f (x) − f (0) = x

∫ 1

0
fx(rx)dr. (3.1)

(ii) If f ∈ C2(R2), then, for any (x, y) ∈ R
2,

f (x, y) − f (x, 0) − f (0, y) + f (0, 0)

= xy

∫ 1

0

∫ 1

0
fxy(rx, sy)drds. (3.2)

Proposition 3.1. Suppose that Ub, Um, and Ua are three states in a small neigh-
borhood Oε(U+) with

{Ub, Um} = (α1, α2, α3), {Um, Ua} = (β1, β2, β3), {Ub, Ua} = (γ1, γ2, γ3),

then

γi = αi + βi + O(1)�(α, β), (3.3)

where �(α, β) = |α3||β1| + |α2||β1| + |α3||β2| +∑
j=1,3 �j (α, β) with

�j (α, β) =
{

0, αj � 0 and βj � 0,
|αj ||βj |, otherwise.
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Proof. First, Lemma 2.6 yields

det

(
∂�(γ3, γ2, γ1; Ub)

∂(γ3, γ2, γ1)

)
|γ1=γ2=γ3=0 = 1

det A
det(Ar3, Ar2, Ar1)|U=U+ > 0.

Then, by the implicit function theorem, there exists (γ3, γ2, γ1) as a C2 function of
(β1, β2, β3, α3, α2, α1; Ub) so that

�(β3, β2, β1; �(α3, α2, α1; Ub)) = �(γ3, γ2, γ1; Ub).

We omit Ub now, for simplicity, and will only compute γ3 since the estimates for
γ1 and γ2 can be carried out in the same way. We can rewrite

γ3 = I1 + I2 + I3 + I4,

where

I1 = γ3(β3, β2, β1, α3, α2, α1) − γ a
3 (β3, β2, β1, 0, α2, α1)

−γ b
3 (β3, β2, 0, α3, α2, α1) + γ3(β3, β2, 0, 0, α2, α1),

I2 = γ a
3 (β3, β2, β1, 0, α2, α3) − γ c

3 (β3, β2, β1, 0, 0, α1)

−γ3(β3, β2, 0, 0, α2, α1) + γ3(β3, β2, 0, 0, 0, α1),

I3 = γ b
3 (β3, β2, 0, α3, α2, α1) − γ3(β3, β2, 0, 0, α2, α1)

−γ d
3 (β3, 0, 0, α3, α2, α1) + γ3(β3, 0, 0, 0, α2, α1),

I4 = γ c
3 (β3, β2, β1, 0, 0, α1) + γ d

3 (β3, 0, 0, α3, α2, α1)

+γ3(β3, β2, 0, 0, α2, α1) − γ3(β3, β2, 0, 0, 0, α1)

−γ3(β3, 0, 0, 0, α2, α1).

Note that we add the superscripts a, b, c, and d only to trace the terms.
From (3.2), we have

I1 = O(1)|β1||α3|, I2 = O(1)|β1||α2|, I3 = O(1)|β2||α3|.
Now we estimate I4. First we have to rely on the implicit function theorem

to obtain the uniqueness of the solution in a small neighborhood of U+, Oε(U+).
Then we obtain the following facts, which make the above decomposition possible:

γ3(β3, β2, β1, 0, 0, 0) = γ3(β3, β2, 0, 0, 0, 0) = β3,

γ3(0, 0, 0, α3, α2, α1) = α3, γ3(0, 0, 0, 0, α2, α1) = 0,

γ3(β3, β2, 0, 0, 0, α1) = γ3(β3, 0, 0, 0, α2, α1) = β3.

The implicit function theorem also implies γ3(β3, β2, 0, 0, α2, α1) = β3. There-
fore,

I4 = β3 + α3 + O(1)(|α1||β1| + |α3||β3|).
Summing up I1, I2, I3, and I4, we obtain (3.3). ��
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Fig. 7. Weak wave reflections on the boundary.

3.2. Estimates of the weak wave reflections on the boundary (see Fig. 7)

Denote {Ck(ak, bk)}∞k=0 by the points {(ak, bk)}∞k=0 in the xy-plane with ak+1 >

ak > 0. Set

ωk,k+1 = arctan

(
bk+1 − bk

ak+1 − ak

)
, ωk = ωk,k+1 − ωk−1,k, ω−1,0 = 0,

�k+1 = {(x, y) : x ∈[ ak, ak+1), y < bk + (x − ak) tan(ωk,k+1)}, (3.4)

�k+1 = {(x, y) : x ∈[ ak, ak+1), y = bk + (x − ak) tan(ωk,k+1)},
and the outer normal vector to �k:

nk+1 = −(bk+1 − bk, ak+1 − ak)√
(bk+1 − bk)2 + (ak+1 − ak)2

= (− sin(ωk,k+1), cos(ωk,k+1)). (3.5)

We then consider the initial-boundary value problem:





(2.1) in �k+1,

U |x=ak
= U,

(u, v) · nk+1 = 0 on �k+1,

where U is a constant state.

Proposition 3.2. Let {Ub, Um} = (α3, α2, 0) and {Um, Uk} = (0, 0, β1) with

(uk, vk) · nk = 0.

Then there exists Uk+1 such that

{Ub, Uk+1} = (0, 0, δ1) with (uk+1, vk+1) · nk+1 = 0.
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Furthermore,

δ1 = β1 + Kb3α3 + Kb2α2 + Kb0ωk,

where Kb3, Kb2, and Kb0 are C2 functions of (α3, α2, β1, ωk; Ub) satisfying

Kb3|{ωk=α3=α2=β1=0,Ub=U+} = 1, Kb2|{ωk=α3=α2=β1=0,Ub=U+} = 0,

and Kb0 is bounded.

Proof. Since

∂

∂δ1
(�(0, 0, δ1; Ub) · (nk+1, 0))|{δ1=0,Ub=U+,ωk,k+1=0}

= κ1(U+)(−λ1+, 1, ρ+u+λ1+/c2+) · (0, 1, 0)

> 0, (3.6)

we know from the implicit function theorem that δ1 can be solved as a C2 function
of (α3, α2, β1, ωk−1,k, ωk; Ub) such that

�(0, 0, β1; �(α3, α2, 0; Ub)) · (nk, 0) = �(0, 0, δ1; Ub) · (nk+1, 0). (3.7)

Since ωk−1,k and Ub are constant, we can also omit Ub and ωk−1,k and for simplicity
can write δ1 = δ1(ωk, α2, α3, β1). Again, from (3.1), we can obtain

δ1(ωk, α2, α3, β1) = δ1(ωk, α2, α3, β1) − δ1(0, α2, α3, β1)

+δ1(0, α2, α3, β1) − δ1(0, 0, α3, β1)

+δ1(0, 0, α3, β1) − δ1(0, 0, 0, β1) + δ1(0, 0, 0, β1)

= Kb0ωk + Kb2α2 + Kb3α3 + β1.

Differentiating (3.7) with respect to α3 and α2, and letting ωk = α3 = α2 =
β1 = 0 and Ub = U+, yields

r3(U+) · (0, 1, 0) = ∂δ1

∂α3
r1(U+) · (0, 1, 0),

r2(U+) · (0, 1, 0) = ∂δ1

∂α2
r1(U+) · (0, 1, 0).

Hence, Kb3|{ωk=α3=α2=β1=0,Ub=U+} = 1 and Kb2|{ωk=α3=α2=β1=0,Ub=U+} = 0. It
is clear that Kb0 = ∂δ1

∂ωk
is bounded. This completes the proof. ��
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3.3. Estimate on the boundary perturbation of the strong shock

Proposition 3.3. For ε > 0, there exists ε̂ = ε̂(ε) < ε so that G(Oε̂(σ0)) ⊂
Oε(U+) and, when |ωk| < ε, the following equation

G(σ) · (nk, 0) = 0 (3.8)

yields a unique solution σk ∈ Oε̂(σ0). Moreover, we have

σk+1 = σk + Kbsωk + O(1)|ωk|2, (3.9)

where Kbs is bounded.

Proof. We first show that there exists a solution σ = σ(h) to the following equa-
tion:

G(σ) · (− sin h, cos h, 0) = 0. (3.10)

This solution may be proved as follows. By differentiating the quantity G(σ) ·
(− sin h, cos h, 0) with respect to σ (following the calculations of Lemma 2.6) and
denoting by (A∗

ij ) the cofactor matrix of (aij ), we obtain

∂

∂σ
(G(σ) · (− sin h, cos h, 0))|{σ=σ0,h=0}

= (A−1 · AGσ (σ0)) · (0, 1, 0)

= 1

det A
(A∗

12, A
∗
22, A

∗
32) · AGσ (σ0)

= ρ−v−ρ+
det A

(
(u− − 2u+)c2+ + σ 2

0 u−(c2+ − u2+)
)

> 0.

Hence, by the implicit function theorem, there exists a unique C2 function σ = σ(h)

with σ(0) = σ0, which solves (3.10) in some neighborhood of (σ, h) = (σ0, 0).
Then

σ(ωj ) = σj , j = k, k + 1,

and, by the Taylor expansion formula, we have the desired estimates (3.9). ��

3.4. Estimates on the interactions between the strong shock and weak waves

Proposition 3.4. Let Um, Ua ∈ Oε(U+) with

{G(σ), Um} = (0, α2, α3), {Um, Ua} = (β1, β2, 0).

Then there exists a unique (σ ′, δ2, δ3) such that the Riemann problem (2.29) with
Ub = U− yields an admissible solution that consists of a strong 1-shock of strength
σ ′, a contact discontinuity of strength δ2, and a weak 3-wave of strength δ3:

{U−, Ua} = (σ ′, δ2, δ3).
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Fig. 8. Interactions between the strong shock and weak waves.

Moreover,

δ3 = α3 + Ks3β1 + O(1)�,

δ2 = α2 + β2 + Ks2β1 + O(1)�, (3.11)

σ ′ = σ + Ks1β1 + O(1)�,

where

|Ks3| < 1, (3.12)

|Ks2| and |Ks3| are bounded, and � = |α3||β1|+|α2||β1|+|α3||β2|. Furthermore,
we can write the estimates in a more precise fashion:

σ ′ = σ + K̃s1β1 + O(1)|α3||β2|,
δ2 = α2 + β2 + K̃s2β1 + O(1)|α3||β2|,
δ3 = α3 + K̃s3β1 + O(1)|α3||β2|, (3.13)

where

|K̃s3| < 1, |K̃s1| + |K̃s2| � M for some constant M > 0. (3.14)

Proof. We first show that there exists a unique solution

(σ ′, δ2, δ3) = (σ ′(σ, α2, α3, β1, β2), δ2(σ, α2, α3, β1, β2), δ3(σ, α2, α3, β1, β2))

to

�(0, β2, β1; �(α3, α2, 0; G(σ))) = �(δ3, δ2, 0; G(σ ′)). (3.15)

By Proposition 3.1, there exists (γ3, γ2, γ1) such that

�(0, β2, β1; �(α3, α2, 0; G(σ))) = �(γ3, γ2, γ1; G(σ)), (3.16)
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with γ1 = β1 + O(1)�, γ2 = β2 + α2 + O(1)�, and γ3 = α3 + O(1)�. Thus,
(3.15) can be reduced to

�(γ3, γ2, γ1; G(σ)) = �(δ3, δ2, 0; G(σ ′)). (3.17)

Furthermore, Lemma 2.6 implies

det

(
∂�(δ3, δ2, 0; G(σ ′))

∂(δ3, δ2, σ ′)

)
|{δ3=δ2=0,σ ′=σ0}

= 1

det A
det(Ar3(U+), Ar2(U+), AGσ (σ0))

> 0.

Therefore, the implicit function theorem implies that (δ3, δ2, σ
′) can be solved

uniquely as a C2 function of (γ1, γ2, γ3, σ ):

δ3 = δ3(γ3, γ2, γ1, σ ), δ2 = δ2(γ3, γ2, γ1, σ ), σ ′ = σ ′(γ3, γ2, γ1, σ ).

Using (3.1), we find that, for i = 2, 3,

δi = δi(γ3, γ2, γ1, σ ) − δi(γi, γ2, 0, σ ) + δi(γ3, γ2, 0, σ ) = Ksiγ1 + γi,

σ ′ = σ ′(γ3, γ2, γ1, σ ) − σ ′(γ3, γ2, 0, σ ) + σ ′(γ3, γ2, 0, σ ) = Ks1γ1 + σ,

where Ks1 = ∫ 1
0 ∂γ1σ

′(γ3, γ2, λγ1, σ )dλ and Ksi = ∫ 1
0 ∂γ1δi(γ3, γ2, λγ1, σ )dλ.

When γ3 = γ2 = γ1 = 0, it is clear that | ∂δ3
∂γ1

|, | ∂δ2
∂γ1

|, and | ∂σ ′
∂γ1

| are bounded. We
can further claim the important feature that

| ∂δ3

∂γ1
| < 1 when γ3 = γ2 = γ1 = 0.

This can be achieved as follows: differentiating (3.17) with respect to γ1 and letting
γ3 = γ2 = γ1 = 0 yields

r1(U+) = r3(U+)
∂δ3

∂γ1
+ r2(U+)

∂δ2

∂γ1
+ Gσ (σ0)

∂σ ′

∂γ1
. (3.18)

Multiplying both sides by A as defined in Lemma 2.6, we have

| ∂δ3

∂γ1
| = |det(Ar1(U+), Ar2(U+), AGσ (σ0))

det(Ar3(U+), Ar2(U+), AGσ (σ0))
|

= |λ3+ + σ0

λ3+ − σ0
|| (2u+ − u−)λ3+ + σ0u−

(2u+ − u−)λ3+ − σ0u−
| < 1.

Combining these with the estimates we had for γ1, γ2, and γ3, we conclude the
proof. ��

4. Approximate solutions

In this section, we develop a modified Glimm difference scheme to construct a
family of approximate solutions and establish their necessary estimates for the ini-
tial-boundary value problem (1.1) and (1.8)–(1.9) in the corresponding approximate
domains ��x .
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4.1. A modified Glimm scheme

To define the scheme more clearly, we first use the fact that the boundary is a
perturbation of the straight wedge:

sup
x�0

|g′(x)| < ε for sufficiently small ε > 0.

For any �x � 0, set ak := k�x and bk := yk = g(k�x) in (3.4) and (3.5), and
follow the notations in Section 3.2 (also see Fig. 7). Then

m := sup
k>0

{yk − yk−1

�x
} < ε. (4.1)

Define

��x =
⋃

k�0

��x,k,

where ��x,k = {(x, y) : (k − 1)�x � x < k�x, y � yk−1 + (x − (k −
1)�x) tan(ωk−1,k)}. We also need the Courant–Friedrichs–Lewy type condition:

�y − m�x

�x
< |σ0| + max

j=1,3

(

sup
U∈Oε(U+)

|λj (U)|
)

.

Define

ak,n = (2n + 1 + θk)�y + yk,

where θk is randomly chosen in (−1, 1). Then we choose

pk,n = (k�x, ak,n), k � 0, n = 0, −1, −2, ...,

to be the mesh points and define the approximate solutions U�x,θ in ��x for any
θ = (θ0, θ1, θ2, ...) in an inductive way:

For k = 0, we define U�x,θ in {0 � x < �x} ∩ ��x to be the strong 1-shock
solution starting from U�x,θ |{x=0,y<0} = U−.

We assume that U�x,θ has been constructed for {0 � x < k�x}. Denoting, for
n � −1,

U0
k := U�x,θ (k�x−, ak,n) if y ∈ (yk + 2n�y, yk + (2n + 2)�y),

then we define U�x,θ in {k�x � x < (k + 1)�x} as follows: First we solve
the following lateral Riemann problem in diamond Tk,0, whose vertices are ((k +
1)�x, yk+1), ((k + 1)�x, −�y + yk+1), (k�x, yk), and (k�x, −�y + yk):

W(Uk)x + H(Uk)y = 0 in Tk,0,

Uk|x=k�x = U0
k ,

(uk, vk) · nk = 0 on �k,
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to obtain the lateral Riemann solution Uk in Tk,0 as constructed in Section 2.3 and
define

U�x,θ = Uk in Tk,0.

Then we solve the following Riemann problem in each diamond Tk,n for n � −1,
whose vertices are ((k + 1)�x, (2n − 1)�y + yk+1), ((k + 1)�x, (2n + 1)�y +
yk+1), (k�x, (2n − 1)�x + yk), and (k�x, (2n + 1)�y + yk):

W(Uk)x + H(Uk)y = 0 in Tk,n,

Uk|x=k�x = U0
k ,

to obtain the Riemann solution Uk(x, y) in Tk,n as constructed in Sections 2.4–2.5,
and define

U�x,θ = Uk in Tk,n, n � −1.

In this way, we have constructed the approximate solutions U�x,θ (x, y) glob-
ally, provided that we can obtain a uniform bound of the approximate solutions.

4.2. Glimm-type functional and its bounds

In this section, we prove that the approximate solutions can indeed be well
defined in ��x via the steps in Section 4.1 by providing a uniform bound for them.
First, we introduce the following lemma.

Lemma 4.1.

(i) If {Ub, Ua} = (α1, α2, α3) with Ub, Ua ∈ Oε(U+), then

|Ub − Ua| � s1(|α1| + |α2| + |α3|),
with s1 = max1�i�3

(
supU∈Oε(U+) |∂αi

�(α3, α2, α1; U)|
)

;
(ii) for any σ ∈ Oε̂(σ0) ⊂ Oε(U+),

|G(σ) − G(σ0)| � s2|σ − σ0|
with s2 = maxσ∈Oε̂(σ0){G′

σ (σ )}.
Next, we show that U�x,θ can be globally defined. Assume that U�x,θ has been

defined in {x < k�x} ∩ ��x by the steps in Section 4.1 and assume that the
following conditions are satisfied:

C1(k − 1): in each ��x,j for 0 � j � k − 1, there is a strong 1-shock S∗(σ(j)) in
U�x,θ with speed σ(j) ∈ Oε̂(σ0), which divides ��x,j into two parts:
�+

�x,j and �−
�x,j , where �+

�x,j is the part bounded by S∗(σ(j)) and
�j = {y = g(x, j, �x)};

C2(k − 1): U�x,θ |�+
�x,j

∈ Oε(U+) and U�x,θ |�−
�x,j

= U− for 0 � j � k − 1;

C3(k − 1): {S∗(σ(j))}k−1
j=0 form an approximate 1-characteristic χ�x,θ :y =

χ�x,θ (x), emanating from the origin.
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Here and from this point forth, we use S∗(σ(j)) to denote the strong 1-shock
with speed σ(j). Then we prove that U�x,θ can be defined in ��x,k and satisfies
C1(k), C2(k), and C3(k).

From the construction steps in Section 4.1, we first define U�x,θ and the strong
1-shock S∗(σ(k)) in ��x,k . Then there exists a diamond �k,n(k) such that S∗(σ(k−1))

enters �k,n(k) and S∗(σ(k)) emanates from the center of �k,n(k). We extend χ�x,θ

to ��x,k such that χ�x,θ = S∗(σ(k)) in ��x,k and define �−
�x,j and �+

�x,j in
the same way as in C1(k − 1). It then suffices to impose some conditions so that
C2(k − 1) holds and σ(k) ∈ Oε̂(σ0).

To achieve this, we establish the bound on the total variation of U�x,θ on a class
of space-like curves. Denote by

N(θk+1, n) =
{

Pk+1,n if θk+1 � 0,

Pk+1,n−1 if θk+1 > 0,
S(θk, n) =

{
Pk−1,n−1 if θk � 0,

Pk−1,n if θk > 0.

Then we introduce

Definition 4.1. A j -mesh curve J is defined to be an unbounded space-like curve
lying in the strip {(j − 1)�x � x � (j + 1)�x} and consisting of the segments of
the form Pk,n−1N(θk+1, n), Pk,n−1S(θk, n), S(θk, n)Pk,n, and N(θk+1, n)Pk,n.

This definition means that we can connect the mesh point Pk,n by two line seg-
ments to the two mesh points Pk−1,n−1 and Pk−1,n if θk � 0, or we can connect the
mesh point Pk,n by two line segments to the two mesh points Pk−1,n and Pk−1,n+1
if θk > 0 (see Fig. 9).

Clearly, for any k > 0, each k-mesh curve I divides the plane R
2 into an I+

part and an I− part, where I− is the part containing the set {x < 0}. As in Glimm

[10], we also partially order these mesh curves by saying J > I if every point of
the mesh curve J is either on I or contained in I+. Thus we call J an immediate
successor to I if J > I and every mesh point of J , except one, is on I .

With these mesh curves J , we associate the Glimm-type functional Fs(J ):

Definition 4.2. We define

Fs(J ) = C∗|σJ − σ0| + F(J ),

Fig. 9. Interaction diamond �k,n and orientation of the segments.
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with

F(J ) = L(J ) + KQ(J ),

L(J ) = K∗
0 L0(J ) + L1(J ) + K∗

2 L2(J ) + K∗
3 L3(J ),

Q(J ) =
∑

{|αi ||βj | : both αi and βj cross J and approach},
and

L0(J ) =
∑

{|ω(Ck)| : Ck ∈ �J },
Lj (J ) =

∑
{|αj | : αj crosses J }, j = 1, 2, 3,

where K and C∗ will be defined later; �J is the set of the corner points Ck lying
in J+:

�J = {Ck ∈ J+ ∩ ∂��x : k � 0};
σJ stands for the speed of the strong shock crossing J ; K∗

0 , K∗
2 and K∗

3 are the
constants that satisfy the following conditions:

K∗
0 > |Kb0|, |Kb2| < K∗

2 <
1 − |Ks3|K∗

3

|Ks2| , |Kb3| < K∗
3 <

1

Ks3
,

which can be achieved from our discussions of the properties of Kbi and Ksi ,
i = 1, 2, 3, as in Propositions 3.1–3.3 in Section 3.

As indicated in Section 2.4, from now on, we denote M > 0 a universal con-
stant, depending only the parameters in the system and the boundary function g(x),
which may be different at each occurrence. We now prove the decreasing property
of our functional Fs . We first have

Proposition 4.1. Suppose that the wedge function g(x) satisfies (4.1), and I and J

are two k-mesh curves such that J is an immediate successor of I . Suppose that

|U�x,θ |
I ∩ ( �

+
�x,k−1∪ �

+
�x,k

)
− U+| < ε, |σ I − σ0| < ε̂(ε),

where ε̂(ε) is determined in Proposition 3.3 and Lemma 4.1. Then there exist con-
stants ε̃ > 0, K > 0, and C∗ > 1, depending only on the system in (1.6) and states
U− and U+, such that, if Fs(I ) � ε̃, then

Fs(J ) � Fs(I ),

and hence

|U�x,θ |
J ∩ ( �

+
�x,k−1∪ �

+
�x,k

)
− U+| < ε, |σJ − σ0| < ε̂(ε).

Proof. Let � be the diamond that is formed by I and J . We can always assume
that I = I0 ∪ I ′ and J = J0 ∪ J ′ such that ∂� = I ′ ∪ J ′. We divide our proof into
four cases depending on the location of the diamond.
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Case 1 (interior weak-weak interaction). � lies in the interior of ��x and does not
touch χ�x,θ . Then only weak waves enter �. Denote Q(�) = �(α, β) as defined
as in Proposition 3.1. Then, for some constant M > 0,

L(J ) − L(I) � (1 + K∗
2 + K∗

3 )MQ(�).

Since L(I0) < ε̃ from Fs(I ) < ε̃, we have

Q(J) − Q(I) = Q(I0) + Q(γ1, I0) + Q(γ2, I0) + Q(γ3, I0)

−(Q(I0) + Q(�) + Q(α1, I0) + Q(α2, I0) + Q(α3, I0)

+Q(β1, I0) + Q(β2, I0) + Q(β3, I0))

� Q(MQ(�), I0) − Q(�) = (ML(I0) − 1)Q(�) � −1

2
Q(�).

Hence, by choosing suitably large K , we obtain

F(J ) − F(I) �
(
(1 + K∗

2 + K∗
3 )M − K/2

)
Q(�) � −1

4
Q(�).

Case 2 (near the boundary). � touches the approximate boundary ∂��x and is
away from the strong shock χ�x,θ . Then �J = �I\{Ck} for certain k and σ I = σJ .

Fig. 10. Case 2: near the boundary.
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Let δ1 be the weak 1-wave going out of � through J ′, and let β1, α2, and α3 be
the weak waves entering � through I ′, as shown in Fig. 10. Then

L0(J ) − L0(I ) = −|ωk|,
L2(J ) − L2(I ) =

∑

γ2 crosses I0

|γ2| − (|α2| +
∑

γ2 crosses I0

|γ2|) = −|α2|,

L3(J ) − L3(I ) =
∑

γ3 crosses I0

|γ3| − (|α3| +
∑

γ3 crosses I0

|γ3|) = −|α3|,

L1(J ) − L1(I ) = (|δ1| +
∑

γ1 crosses I0

|γ1|) − (|β1| +
∑

γ1 crosses I0

|γ1|)

= |δ1| − |β1| � |Kb3||α3| + |Kb2||α2| + |Kb0||ωk|,

where the last step is from Proposition 3.2. Thus,

L(J ) − L(I) � (|Kb0| − K∗
0 )|ωk| + (|Kb2| − K∗

2 )|α2| + (|Kb3| − K∗
3 )|α3|.

From our requirement in Definition 4.2, we find L(J ) − L(I) � 0. Since
Fs(I ) � ε̃ implies L(I) � ε̃, the higher order term Q(I) can always be bounded
by the linear term L(I). We can then easily conclude that F(J ) � F(I).

Case 3 (near the wedge vertex). � covers a part of ∂��x , and S∗(σ(k−1)) emanates
from {Ck−1} and enters �. Then, from our construction, we find �J = �I\{Ck},
S∗(σ(k)) emanates from {Ck} and crosses J , σ I = σ(k−1), and σJ = σ(k). Moreover,
there is no weak wave crossing I ′ or J ′. Then we have

F(J ) − F(I) � −K∗
0 |ωk|.

Since

|σJ − σ0| − |σ I − σ0| � |σJ − σ I | � |Kbs ||ωk| + M|ωk|2,

we can further choose C∗ suitably small and τ > 0 such that

Fs(J ) − Fs(I ) � C∗|σJ − σ I | + F(J ) − F(I) � −τ |ωk|.

Case 4 (near the strong 1-shock). � lies in the interior of ��x , and the strong
1-shock S∗(σ(k−1)) enters �. Then S∗(σ(k)) is generated from the inside of �,
σ I = σ(k−1), and σJ = σ(k).
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Fig. 11. Case 4: near the strong 1-shock.

Let δ3 and δ2 be the weak waves going out of � through J ′, and let α3, α2, β1,
and β2 be the weak waves entering � through I ′, as shown in Fig. 11. Then

L1(J ) − L1(I ) =
∑

γ1 crosses I0

|γ1| − (|β1| +
∑

γ1 crosses I0

|γ1|) = −|β1|,

L2(J ) − L2(I ) = (|δ2| +
∑

γ2 crosses I0

|γ2|) − (|α2| + |β2| +
∑

γ2 crosses I0

|γ2|)

� |Ks2||β1| + M|α3||β2|,

L3(J ) − L3(I ) = (|δ3| +
∑

γ3 crosses I0

|γ3|) − (|α3| +
∑

γ3 crosses I0

|γ3|)

� |Ks3||β1| + M|α3||β2|,

where we have used the estimates in Proposition 3.4.
This case is more complicated, which requires a careful calculation of Q(J) −

Q(I). For simplicity, for any weak wave γ , we denote

Q(γ, I0) = |γ |
∑

{|γj | : γj and γ approach}.
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Then

Q(J) − Q(I) = Q(I0) + Q(δ3, I0) + Q(δ2, I0) − (Q(I0) + |β1||α2| + |α3||β1|
+|α3||β2| + Q(α2, I0) + Q(α3, I0) + Q(β1, I0) + Q(β2, I0))

� − (|β1||α2| + |α3||β1| + |α3||β2|)
+ (|K̃s3| + |K̃s2| − 1

)
Q(β1, I0) + Q(M|α3||β2|, I0)

� (−1 + ML(I0)) |α3||β2| + (−|α2| − |α3| + ML(I0)) |β1|.
Again, since L(I0) � ε̃ sufficiently small, then

Q(J) − Q(I) � −1

2
|α3||β2| + ML(I0)|β1|.

Therefore, we have

F(J ) − F(I) �
(−1 + K∗

2 |Ks2| + K∗
3 |Ks3|

) |β1| + M|α3||β2|
+K

(
−1

2
|α3||β2| + ML(I0)|β1|

)

� −1

4
|β1| + ML(I0)|β1| − 1

8
|α3||β2|

� −1

8
(|β1| + |α3||β2|),

where we have chosen suitably large K and used the fact that L(I0) � ε̃. Further-
more, since |σJ −σ I | � |Ks1||β1|+M|α3||β2|, we can further choose C∗ suitably
small such that

Fs(J ) − Fs(I ) � C∗|σJ − σ I | + F(J ) − F(I) � − 1

16
|β1| − 1

16
|α3||β2|.

Again, we have F(J ) � F(I).
Then, from Lemma 4.1, there exists ε̃ > 0 such that, when F(I) < ε̃, we have

|U − U+| < ε. ��
Let Ik be the k-mesh curve lying in {(j −1)�x � x � j�x}. From Proposition

4.1, we obtain the following theorem for any k � 1.

Theorem 4.1. Suppose that the function g(x) satisfies (4.1). Let ε, ε̃, ε̂(ε), K , and
C∗ be the constants specified in Proposition 4.3. If the induction hypotheses C1(k−
1), C2(k − 1), and C3(k − 1) hold and if Fs(Ik−1) � ε̃, then

|U�x,θ |
�

+
�x,k

− U+| < ε, U�x,θ |
�

−
�x,k

= U−, |σk − σ0| < ε̂(ε),

and

Fs(Ik) � Fs(Ik−1). (4.2)

Moreover, we obtain
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Theorem 4.2. There exists ε > 0 such that, if T V (g′(·)) < ε, then, for any θ ∈∏∞
k=0(−1, 1) and every �x > 0, the modified Glimm scheme defines a family of

global approximate solutions U�x,θ and the corresponding family of approximate
strong 1-shocks χ�x,θ in ��x,θ which satisfy C1(k −1), C2(k −1), C3(k −1), and
(4.2) for any k � 1. In addition,

T V {U�x,θ (k�x−, ·) : (−∞, yk] } � C T V (g′(·))
for any k � 0 and

|χ�x,θ (x + h) − χ�x,θ (x)| � (|σ0| + M)|h| + 2�x

for any x � 0 and h > 0, where the constant C depends only on the bound M ,
K, C∗, and K∗

i , i = 0, 2, 3.

4.3. Estimates on the approximate shock-fronts

We use the notations and estimates in the previous section and define

σ�x,θ (x) = σ(k) if x ∈ (k�x, (k + 1)�x] .

From Proposition 3.4, we have

Proposition 4.2. There exists a constant M , independent of �x, θ , and U�x,θ , such
that

T V {σ�x,θ : [ 0, ∞)} =
∞∑

k=0

|σ(k+1) − σ(k)| � M.

Proof. For any k � 1, and any interaction diamond � ⊂ {(k − 1)�x � x �
(k + 1)�x}, define

E�x,θ (�) =






0 for Case 1,
|ωk| + |α2| + |α3| for Case 2,
|ωk| for Case 3,
|β1| for Case 4;

and

Q�x,θ (�) =






Q(�) for Case 1,
0 for Case 2,
|ω|2 for Case 3,
|α3||β2| for Case 4.

Then

∑

�

E�x,θ (�) �
∑

�

1

ε′ (F (I ) − F(J )) � 1

ε′ F(0) := M̃,
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and
∑

�

Q�x,θ (�) � M̃,

where ε′ = sup� max{K∗
0 − |Kb0|, K∗

2 − |Kb2|, K∗
3 − |Kb3|, K∗

0 , Ks2, Ks3}.
From Proposition 3.4, we know that, for some M > 0,

∞∑

k=0

|σ(k+1) − σ(k)| �
∑

�

(K̃s1E�x,θ (�) + MQ�x,θ ) � (K̃s1 + 1)M � M,

where K̃s1 is the constant in (3.13). ��

5. Global entropy solutions

In this section we establish the convergence of approximate solutions to a global
entropy solution. We also show the nonlinear stability and asymptotic behavior of
the strong shock emanating from the wedge vertex under the BV wedge perturba-
tion.

5.1. Convergence of approximate solutions

Following the discussions in Section 4, we can extend U�x,θ by the constant
Uk,0 continuously across the approximate shock-front to the whole strip {k�x <

x < (k + 1)�x} for each k � 0.
Let the line x = a > 0 intersect ∂��x = ∪{Ck−1Ck, k � 1} at the point

(a, p�x
a ). Similar to [26], by Theorem 4.2, we can prove

Lemma 5.1. For any h > 0 and x � 0, there exists a constant M > 0 independent
of �x, θ , and h such that

∫ 0

−∞
|U�x,θ (x + h, y + p�x

x+h) − U�x,θ (x, y + p�x
x )|dy � M|h|.

Denote

J (θ, �x, φ) =
∞∑

k=1

∫ 0

−∞
φ(k�x, y + yk) · (Uk�x+,θ − Uk�x−,θ )dy

for φ ∈ C∞
0 (R2; R

3). Following the steps in [10] (see also [3, 9, 17, 20]), we have

Lemma 5.2. There exists a null set N ⊂ �∞
k=0(−1, 1) and a subsequence

{�xj }∞j=1 ⊂ {�x}, which tends to 0, such that

J (θ, �xj , φ) −→ 0 when �xj → 0

for any θ ∈ �∞
k=0(−1, 1)\N and φ ∈ C∞

0 (R2; R
3).
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To establish the main theorem, we need to estimate the jumps of the approximate
strong shock-fronts. Let

dk = σ(k−1)�x − (yk − yk−1) + �y

�y
.

Then, by the choice of �x and {yk}, we find that dk ∈ (0, 1) and depends only on
{θl}k−1

l=1 . Thus, we define

I (x, �x, θ) =
[x/�x]∑

k=1

Ik(�x, θ),

where Ik(�x, θ) = 1(−1,dk)(θk)(dk − 1)�y + 1(dk,1)(θk)(dk + 1)�y, in which 1A

denotes the characteristic function of the set A, and [ x/�x] denotes the largest
integer less than, or equal to, x/�x. Notice that Ik(�x, θ) is the jump of the func-
tion y = χ�x,θ (x) at x = k�x and is a measurable function of (�x, θ), which
depends only on U�x,θ |{0�x�k�x} and {θl}kl=0.

Lemma 5.3.
(i) For any x � 0, �x > 0, and θ ∈ �∞

k=0(−1, 1),

χ�x,θ (x) = I (x, �x, θ) +
∫ x

0
σ�x,θ (s)ds;

(ii) there exist a null set N1 and a subsequence {�l}∞l=1 ⊂ {�xj }∞j=1 such that
∫ ∞

0
e−x |I (x, �l, θ)|2dx −→ 0 when �l → 0

for any θ ∈ �∞
k=0(−1, 1)\N1.

Proof. Part (i) can be obtained by a direct calculation. We thus focus only on part
(ii). As in [10], let dθ = �∞

k=0(dθk/2). Then, for any l > j , we have
∫

IlIj dθ =
∫

�l−1
i=1dθi

(
Ij

∫
Ildθl

)
= 0.

Therefore, we can deduce

∫
|I (x, �x, θ)|2dθ =

[x/�x]∑

k=1

∫
|Ik(�x, θ)|2dθ � 4|�y

�x
|2x�x.

Then, by choosing a subsequence {�l}∞l=1 ⊂ {�xj }∞j=1 with
∑∞

l=0 �l < ∞ as in
Lemma 5.2, we arrive at (ii). ��

By Theorem 4.2, Proposition 4.2, and Lemmas 5.1–5.2, we have

Theorem 5.1 (Existence and stability). There exist ε > 0 and C > 0 such that,
if (1.10) holds, then, for each θ ∈ (�∞

k=0(−1, 1))\(N ∪ N1), there exist a subse-
quence {�l}∞l=1 of mesh sizes with �l → 0 as l → ∞ and a pair of functions
Uθ ∈ L∞(�; Oε(U+)) and χθ ∈ Lip([ 0, ∞)) with χθ (0) = 0 such that
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(i) U�l,θ (x, ·) converges to Uθ(x, ·) in L1(−∞, g(x)) for every x > 0, and Uθ

is a global entropy solution of problem (1.6) and (1.8)–(1.9) in � and satisfies
(1.11)–(1.12);

(ii) χ�l,θ converges to χθ uniformly in any bounded x-interval;
(iii) σ�l,θ converges to σθ ∈ BV ([ 0, ∞)) a.e. with |σθ − σ0| � ε̂ < ε and

χθ (x) =
∫ x

0
σθ (t)dt.

In addition, if θ is equidistributed, then χθ (x) < g(x) for any x > 0 with (1.13)
and the Rankine-Hugoniot conditions a.e. along the curve {y = χθ (x)}.

The proof of (i) and (ii), and the convergence proof of σ�k,θ in (iii), can be
carried out in the same way as in the standard cases (see [3, 10, 11, 25]) by using
the structure of the approximate solutions. In particular, for any ϕ ∈ C∞

0 (R2; R),

∫

��x,θ

(ρ�x,θu�x,θϕx + ρ�x,θ v�x,θϕy)dxdy

=
∫

�

χ��x,θ (ρ
�x,θu�x,θϕx + ρ�x,θ v�x,θϕy)dxdy

weak-star converges, hence the initial condition is satisfied by the trace theorem
for BV functions (cf. [24]). Similarly, the boundary condition can be shown to be
satisfied. The equality in (iii) can be deduced from Lemma 5.3 and the result on
the convergence of {χ�l,θ } and {σ�l,θ }.

5.2. Asymptotic behavior of the strong shock

As in Theorem 5.1, let θ ∈ (�∞
k=0(−1, 1))\(N ∪N1) be equidistributed, and let

Uθ be the solution and χθ its shock-front, respectively. By Theorem 5.1, we con-
clude that the solution Uθ contains, at most, countable shock-fronts and countable
points of wave interactions. Moreover, we can modify the solution Uθ such that
Uθ is continuous except along the shock curves and the points of wave interactions
(see [9, 11, 19]). Then we have

Lemma 5.4. The solution Uθ and its strong shock-front χθ satisfy

lim
x→∞ T V {arctan (vθ (x, ·)/uθ (x, ·)) : (χθ (x), g(x))} = 0

and

lim
x→∞ T V {ρθ (x, ·) : (χθ (x), g(x))} = 0.

Proof. Let {�l} be the sequence given as in Theorem 5.1, and let E�l,θ (�) and
Q�l,θ (�) be the quantities defined in Proposition 4.2. As in [11], we denote by
dE�l,θ and dQ�l,θ the measures assigned to E�l,θ (�) and Q�l,θ (�) to the center
of �.
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The boundedness of E�l,θ (�) and Q�l,θ (�) in Proposition 4.2 implies the
compactness of {dE�l,θ } and {dQ�l,θ }. We can then select their subsequences
(still denoted by themselves) so that �l → 0 and the limits

dE�l,θ → dEθ and dQ�l,θ → dQθ

exist in the weak-star topology in the measure space, and the limits are finite on �.
Therefore, for any δ > 0, we can choose xδ > 0 independent of {U�l,θ } and {�l}
such that, for any l > 0,

∑

k�[xδ/�l ]

Eλ,θ (�k,n) < δ,
∑

k�[xδ/�l ]

Qλ,θ (�k,n) < δ.

Moreover, let X1
δ = (xδ, y

1
δ )( or X3

δ = (xδ, y
3
δ )) be the point lying in χ�l,θ

(or ∂��k
). Let χ3

�l,θ
be the minimum approximate 3-characteristics in U�l,θ ema-

nating from the point X1
δ , and χ1

�l,θ
the maximum approximate 1-characteristic

in U�l,θ emanating from the point X3
δ . From the construction of the approximate

solutions, we have

|χj
�l,θ

(x + h) − χ
j
�l,θ

(x)| � M(|h| + �l), j = 1, 3,

for some constant M > 0 which is independent of �x and θ . Then, for θ ∈
(
∏∞

k=0(−1, 1))\(N ∪ N1), we can select a subsequence (still denoted by {�l}∞l=1)
such that

χ
j
�l,θ

→ χ
j
θ uniformly on every bounded interval as �l → 0

for some χ
j
θ ∈ Lip with (χ

j
θ )′ bounded.

Let the characteristics y = χ3
θ (x) and y = χ1

θ (x) intersect ∂� and y = χθ (x),
respectively, at (t3

δ , χθ (t
3
δ )) and (t1

δ , χθ (t
1
δ )) for some t3

δ and t1
δ . Then, since the flow

angle arctan(v/u) and the density ρ are invariant across the contact discontinuities,
by the approximate conservation laws for the weak j -waves, j = 1, 3, we can
deduce (in the same way as in [11]) that

T V {arctan
(
v�l,θ (x−, ·)/u�l,θ (x−, ·)) : (χ�l,θ (x), gl(x))} � C δ

and

T V {ρ�l,θ (x−, ·) : (χ�l,θ (x), gl(x))} � Cδ

for x > 2(t1
δ + t3

δ ), where C > 0 is independent of δ, x, U�l,θ , and �l .
Thus, taking the limit as �l → 0 and using Theorem 5.1 and the regularity of

Uθ yield, for x > 2(t1
δ + t3

δ ),

T V {arctan(vθ (x−, ·)/uθ (x−, ·)) : (χθ (x), gl(x))} � C δ

and

T V {ρθ (x−, ·) : (χθ (x), gl(x))} � C δ. ��
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Theorem 5.2.

(i) Let ω∞ = lim
x→∞ arctan(g′(x+)). Then

lim
x→∞ sup{| arctan (vθ (x, y)/uθ (x, y)) − ω∞| : χθ (x) < y < g(x)} = 0.

(ii) There exist constants ρ∞ and σ∞ such that

lim
x→∞ sup{|ρθ (x, y) − ρ∞| : χθ (x) < y < g(x)} = 0,

lim
x→∞ sup |σθ (x) − σ∞| = 0.

Proof. Let Ul,θ = U�l,θ , σl,θ = σ�l,θ , and χl,θ = χ�l,θ , where �l is chosen as in
the proof of Lemma 5.4. Following the construction of the approximate solutions,
we conclude that, for every x > 0,

arctan(vl,θ /ul,θ )|�k
= arctan

(
yk+1 − yk

�x

)
= arctan(g′(ηk))

for some ηk ∈[ k�x, (k + 1)�x). Then, choosing xδ so that |g′(x+)−g′(∞)| < δ

for x > xδ , we have

sup{| arctan(vl,θ (x, y)/ul,θ (x, y)) − ω∞| : χθ (x) < y < g(x)}
� T V {arctan

(
vl,θ (x, ·)/ul,θ (x, ·)) : (χθ (x), g(x))} + Mδ for x > 2xδ.

Therefore, taking the limit as �l → 0, by Theorem 5.1 and Lemma 5.4, and by
the regularity of Uθ , we can deduce part (i).

Moreover, from Theorem 5.1, we also have

σθ ∈ BV (R+), |σθ − σ0| � ε̂ < ε, G(σθ ) ∈ BV (R+; Oε(U+)).

Let σ∞ = lim
x→∞ σθ (x+) and U∞ = limx→∞ G(σθ (x)). Then part (ii) follows from

Lemma 5.4. ��

6. Extension to the adiabatic Euler flows past Lipschitz wedges

In this section, we turn to the adiabatic Euler equations (1.1) for steady super-
sonic flows, which can be written in the following conservation form:

W(U)x + H(U)y = 0, U = (u, v, p, ρ) (6.1)

with

W(U) =
(

ρu, ρu2 + p, ρuv, ρu

(
h + u2 + v2

2

))
,

H(U) =
(

ρv, ρuv, ρv2 + p, ρv

(
h + u2 + v2

2

))
,

and h = γp
(γ−1)ρ

. As in Section 1, the problem of supersonic Euler flows governed
by (6.1) past Lipschitz wedges can be formulated as problem (1.8)–(1.9) for system
(6.1) in the region below the lower edge � of the wedge.
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Definition 6.1. (Entropy Solutions). A BV function U = U(x, y) is called an
entropy solution of problem (6.1) and (1.8)–(1.9) provided that

(i) U is a weak solution of (6.1) and satisfies

(u, v) · n|y=g(x) = 0 in the trace sense;
(ii) U satisfies the entropy inequality:

(ρuS)x + (ρvS)y � 0 (6.2)

in the sense of distributions in � including the boundary.

6.1. Riemann problems and Riemann solutions

The eigenvalues of system (6.1) are the solutions of the fourth-order polynomial
equation:

(v − λu)2
(
(v − λu)2 − c2(1 + λ2)

)
= 0,

where c2 = γp/ρ. We then have

λj = uv + (−1)j c
√

u2 + v2 − c2

u2 − c2 , j = 1, 4, λi = v/u, i = 2, 3. (6.3)

When the flow is supersonic (i.e., u2 + v2 > c2), system (6.1) is hyperbolic and
the corresponding eigenvectors for u �= 0 are

rj = κj (−λj , 1, ρ(λju − v), ρ(λju − v)/c2)�, j = 1, 4,

r2 = (1, v/u, 0, 0)�,

r3 = (0, 0, 0, 1)�,

where κj are chosen so that rj · ∇λj = 1, since the j -characteristic fields are
genuinely nonlinear, j = 1, 4. Note that the second and third characteristic fields
are always linearly degenerate: rj · ∇λj = 0, j = 2, 3.

6.1.1. Wave curves in the phase space. Similarly to Section 2, the contact dis-
continuity curves Ci(U0) through U0 are

Ci(U0) : p = p0, w = v/u = v0/u0, i = 2, 3, (6.4)

which describe compressible vortex sheets. Moreover, the rarefaction wave curves
Rj (U0) in the phase space through U0 are

Rj (U0) : dp = c2dρ, du = −λjdv, ρ(λju − v)dv = dp, j = 1, 4.

(6.5)

It is easy to check that
dλj

dρ
along Rj (U0), j = 1, 4, satisfies

dλ1

dρ
|R1(U0) < 0,

dλ4

dρ
|R4(U0) > 0.
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Similarly, the Rankine-Hugoniot conditions for (6.1) are

σ [ ρu] = [ ρv] , (6.6)

σ [ ρu2 + p] = [ ρuv] , (6.7)

σ [ ρuv] = [ ρv2 + p] , (6.8)

σ

[
ρu

(
h + u2 + v2

2

)]
=
[
ρv

(
h + u2 + v2

2

)]
. (6.9)

We then have

(v0 − σu0)
2
(
(v0 − σu0)

2 − c2
0(1 + σ 2)

)
= 0,

where c2
0 = c2

0
b0

ρ
ρ0

and b0 = γ+1
2 − γ−1

2
ρ
ρ0

. This implies

σ =σj :=
u0v0 + (−1)j c0

√
u2

0 + v2
0 − c2

0

u2
0 − c2

0

, j = 1, 4, σ = σi = v0/u0, i = 2, 3.

Substituting σi, i = 2, 3, into (6.6)–(6.9), we get the same Ci(U0), i = 2, 3,

as defined in (6.4); whilest substituting σj , j = 1, 4, into (6.6)–(6.9), we get the
j th-shock wave curve Sj (U0) through U0:

Sj (U0) : [ p] = c2
0

b0
[ ρ] , [ u] = −σj [ v] , ρ0(σju0 − v0)[ v] =[ p] , j = 1, 4.

(6.10)

Notice that Sj (U0) contacts with Rj (U0) at U0 up to second-order and

dσ1

dρ
|S1(U0) < 0,

dσ4

dρ
|S4(U0) > 0. (6.11)

Similarly, Lemma 2.1 still holds for system (6.1), which implies that the entropy
inequality (6.2) is equivalent to (2.19) or

λj (back) < σj < λj (f ront), j = 1, 4,

σ1 < λ2,3(back),

λ2,3(f ront) < σ4.

Here we only show the equivalence between (6.2) and (2.19) when the back state
U+ = (u+, 0, p+, ρ+) with u+ > 0 so that σ < 0. First, the entropy condition
(6.2) is equivalent to

σ [ ρu(ln p − γ ln ρ)] <[ ρv(ln p − γ ln ρ)] . (6.12)

From (6.6), we know that

σρu = σρ+u+ + ρv. (6.13)
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Substituting (6.13) into (6.12), we get ln(p/p+) − γ ln(ρ/ρ+) > 0. That is,

p/p+ > (ρ/ρ+)γ . (6.14)

On the other hand, from (6.6) and (6.9), we have the Bernoulli law:

h + (u2 + v2)

2
= h+ + u2+

2
, (6.15)

which implies that

p

p+
= H(t) := (γ − 1) − (γ + 1)t

(γ − 1)t − (γ + 1)
with t = ρ/ρ+.

Then the function G(t) := H(t)/tγ is strictly decreasing in t , since

G′(t) = γ (1 − γ 2)(t + 1)2

tγ+1((γ − 1)t − (γ + 1))2 < 0.

Because G(1) = 1 and G(t) > G(1) from (6.14), we conclude t < 1, which
implies that ρ < ρ+.

6.1.2. Lateral Riemann problem. Again, the simplest case of problem (6.1) and
(1.8)–(1.9) occurs when g ≡ 0. It can be shown that, if g ≡ 0, then problem (6.1)
yields an entropy solution that consists of a constant state U− and a constant state
U+, with U+ = (u+, 0, p+, ρ+) and u+ > c+ > 0 in the subdomain of � sep-
arated by a straight shock emanating from the vertex. That is to say that the state
ahead of the shock-front is U−, while the state behind the shock-front is U+ (see
Fig. 4). When the angle between the flow direction of the front state and the wedge
boundary at a boundary vertex is larger than π , an entropy solution will contain a
rarefaction wave that separates the front state from the back state (see Fig. 5).

6.1.3. Riemann problem involving only weak waves. Consider the following
initial value problem:

W(U)x + H(U)y = 0,

U |x=x0 = U =
{

Ua, y > y0,
Ub, y < y0,

(6.16)

where Ub and Ua are constant states. As before, we can parametrize the physi-
cally admissible elementary solution curve in a neighborhood of U+, Oε(U+), by
αj �→ �j(αj ; Ub), with � ∈ C2, �j |αj =0 = Ub, and

∂�j

∂αj
|αj =0 = rj (Ub).

Denote �(α4, α3, α2, α1; Ub) = �4(α4, �3(α3, �2(α2, �1(α1; Ub)))). Then
we have

Lemma 6.1. There exists ε > 0 such that, for any states Ua, Ub ∈ Oε(U+), prob-
lem (6.16) yields a unique admissible solution consisting of four elementary waves.
In addition, state Ua can be represented by Ua = �(α4, α3, α2, α1; Ub) with
�|α1=α2=α3=α4=0 = Ub and ∂�

∂αi
|α1=α2=α3=α4=0 = ri (Ub), i = 1, 2, 3, 4.

Similar to the argument for Lemma 2.3, we have

Lemma 6.2. It can be shown that U+ = (u+, 0, p+, ρ+) with u+ > 0, κ1(U+) =
κ4(U+) > 0, which implies κj (U) > 0, j = 1, 4, for any state U ∈ Oε(U+) since
κj are continuous, j = 1, 4.



Supersonic Euler Flows Past Lipschitz Wedges 299

6.1.4. Riemann problem involving a strong 1-shock. For simplicity, we use the
notation {Ub, Ua} = (α1, α2, α3, α4) to denote that Ua = �(α4, α3, α2, α1; Ub)

throughout this section. For any U ∈ S1(U−), we also use {U−, U} = (σ, 0, 0, 0)

to denote the 1-shock that connects U− and U with speed σ . Then we have

Lemma 6.3. Let {U−, U+} = (σ0, 0, 0, 0), ρ+ > ρ−, and γ > 1. Then

σ0 < 0, u+ < u− < (1 + 1/γ )u+.

The slight difference in the proof of this lemma from that of Lemma 2.4 lies in
the fact that c0 and c− are different in system (6.1). However, we still have c0 > c0
and c− < c−, and hence there is no problem carrying out the same steps.

Lemma 6.4. There exists a neighborhood Oε(U+) of U+ such that the shock polar
S1(U−) ∩ Oε(U+) can be parametrized by the shock speed σ as

σ → G(σ)

with G ∈ C2 near σ0 and G(σ0) = U+.

Lemma 6.5. For states U− and U+ in the unperturbed solution,

P := u+

(

h− + u2− + v2−
2

− u2+
2

)

+
(

c2+
γ − 1

+ u2+

)

(u+ − u−) > 0.

Proof. From the Bernoulli law (6.15), we have

P = c2+
γ − 1

(2u+ − u−) + u2+(u+ − u−). (6.17)

Following the same steps as in Lemma 2.4, we have the following facts from
Lemma 6.3: u+(u− − u+) < c2+/γ , u− < (1 + 1/γ )u+, which implies

P >
γu+(u− − u+)

γ − 1
((1 + 1/γ )u+ − u−) > 0. ��

Lemma 6.6. Let A = ∇UH(U+) − σ0∇UW(U+). Then

det A > 0, det(Ar4, Ar3, Ar2, Ar1)|U=U+ > 0,

det(Ar4, Ar3, Ar2, AGσ (σ0))|U=U+ > 0.

Proof. A direct calculation shows that

A =






−σ0ρ+ ρ+ 0 −σ0u+
−2σ0ρ+u+ ρ+u+ −σ0 −σ0u

2+
0 −σ0ρ+u+ 1 0

−σ0ρ+(
c2+

γ−1 + 3
2u2+) ρ+(

c2+
γ−1 + u2+

2 ) − γ
γ−1σ0u+ − 1

2σ0u
3+






,
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and

rj (U+) = (−1)j−1κj (U+)

c+
√

u2+ − c2+

×
(

c2+, (−1)j−1c+
√

u2+ − c2+, ρ+u+c+, ρ+u+
)�

, j = 1, 4,

r2(U0) = (1, 0, 0, 0)�,

r3(U0) = (0, 0, 0, 1)�.

Hence, we have

Arj (U+) = κj (U+)ρ+(λj+ − σ0)

λj+

×
(

1, u+, u+λj+,

(
c2+

γ − 1
+ u2+

2

))�
for j = 1, 4,

Ar2(U+) = −σ0ρ+

(

1, 2u+, 0,
c2+

γ − 1
+ 3

2
u2+

)�
,

Ar3(U+) = −σ0u+

(

1, u+, 0,
u2+
2

)�
,

and

AGσ (σ0) = W(U+) − W(U−)

= −ρ−v−
σ0

(

1, u−, σ0u−, h− + u2− + v2−
2

)�
,

where λj+ = λj (U+), j = 1, 4.
By Lemmas 6.3 and 6.5, we find

det A = σ 2
0 ρ2+u2+
γ − 1

(λ2
1+ − σ 2

0 )(u2+ − c2+) > 0,

det(Ar4, Ar3, Ar2, Ar1)|U=U+ = (κ4(U+))2σ 2
0 ρ3+u3+c2+

(γ − 1)λ1+λ4+
×(σ0 − λ4+)(σ0 − λ1+)(λ4+ − λ1+) > 0,

and

det(Ar4, Ar3, Ar2, AGσ (σ0))|U=U+

= κ4(U+)σ0ρ−v−ρ2+u+
λ4+

(σ0 − λ4+)(u+λ4+P + σ0u−Q) > 0,

since P > 0 and Q = −c2+/(γ − 1) < 0. ��
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6.2. Estimates on wave interactions and reflections

We now make essential estimates as in Section 3. The interaction estimates are
similar and the corresponding Figs. 5–7 are the same except that 2-contact discon-
tinuities and 3-waves in Section 3 are now replaced by 2, 3-contact discontinuities
and 4-waves, respectively.

6.2.1. Estimates on weak wave interactions. First we have

Proposition 6.1. Suppose that Ub, Um, Ua ∈ Oε(U+) are three states with
{Ub, Um} = (α1, α2, α3, α4), {Um, Ua} = (β1, β2, β3, β4), and {Ub, Ua} =
(γ1, γ2, γ3, γ4) (cf. Fig. 5). Then

γi = αi + βi + O(1)�(α, β),

where �(α, β) = (|α4| + |α3| + |α2|)|β1| + |α4|(|β2| + |β3|) +∑
j=1,4 �j (α, β)

with

�j (α, β) =
{

0, αj � 0, βj � 0,
|αj ||βj |, otherwise.

Since, by Lemma 6.6,

det

(
∂�(γ4, γ3, γ2, γ1; Ul)

∂(γ4, γ3, γ2, γ1)

)
|γ1=γ2=γ3=γ4=0

= det(Ar4, Ar3, Ar2, Ar1)|U=U+ > 0,

then, by the implicit function theorem, there exists (γ4, γ3, γ2, γ1) as a C2 function
of (β4, β3, β2, β1, α4, α3, α2, α1; Ub) so that

�(β4, β3, β2, β1; �(α4, α3, α2, α1; Ub)) = �(γ4, γ3, γ2, γ1; Ub).

Then we follow the proof of Proposition 3.1 to arrive at the result.

6.2.2. Estimates on the weak wave reflections on the boundary. We use the
same notation as in Section 3.2 for Ck(ak, bk) with ak+1 > ak > 0, ωk,k+1, ωk ,
�k , �k , and the outer normal vector nk to �k (cf. Fig. 7). Then we consider the
initial-boundary value problem with U a constant state:






(6.1) in �k+1,

U |x=ak
= U,

(u, v) · nk+1 = 0 on �k+1.

Proposition 6.2. Let {Ub, Um} = (α4, α3, α2, 0) and {Um, Uk} = (0, 0, 0, β1)

with

(uk, vk) · nk = 0.

Then there exists Uk+1 such that

{Ub, Uk+1} = (0, 0, 0, δ1) and (uk+1, vk+1) · nk+1 = 0.
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Furthermore,

δ1 = β1 + Kb4α4 + Kb3α3 + Kb2α2 + Kb0ωk,

where Kb4, Kb3, Kb2, and Kb0 are C2 functions of (α4, α3, α2, β1, ωk; Ub) satis-
fying

Kb4|{ωk=α4=α3=α2=β1=0,Ub=U+} = 1,

Kb2|{ωk=α4=α3=α2=β1=0,Ub=U+} = Kb3|{ωk=α4=α3=α2=β1=0,Ub=U+} = 0,

and Kb0 is bounded.

Since
∂

∂δ1
(�(0, 0, 0, δ1; Ub) · (nk+1, 0, 0))|{δ1=0,Ub=U+,ωk,k+1=0}

= κ1(U+)(−λ1+, 1, ρ+u+λ1+,
ρ+u+λ1+

c2+
) · (0, 1, 0, 0) > 0,

we know from the implicit function theorem that δ1 can be solved as a C2 function
of (α4, α3, α2, β1, ωk−1,k, ωk; Ub) such that

�(0, 0, 0, β1; �(α4, α3, α2, 0; Ub)) · (nk, 0, 0)

= �(0, 0, 0, δ1; Ub) · (nk+1, 0, 0). (6.18)

Then, following the argument in the proof of Proposition 3.2 yields the results.

6.2.3. Estimate on the boundary perturbation of the strong shock. We have

Proposition 6.3. For ε > 0 sufficiently small, there exists ε̂ = ε̂(ε) < ε so that
G(Oε̂(σ0)) ⊂ Oε(U+) and, when |ωk| < ε, the following equation

G(σ) · (nk, 0, 0) = 0 (6.19)

yields a unique solution σk ∈ Oε̂(σ0). Moreover, we have

σk+1 = σk + Kbsωk + O(1)|ωk|2, (6.20)

where |Kbs | is bounded.

Proof. It suffices to find a solution σ = σ(h) to the following equation:

G(σ) · (− sin h, cos h, 0, 0) = 0. (6.21)

Differentiating both sides of (6.21) in σ , following the part of the calculation we
had in Lemma 6.6, and denoting by (A∗

ij ) the co-factor matrix of (aij ), we obtain

∂

∂σ
(G(σ) · (− sin h, cos h, 0, 0))|{σ=σ0,h=0}

= 1

det A
(A∗

12, A
∗
22, A

∗
32, A

∗
42) · AGσ (σ0) > 0.

By the implicit function theorem, we can find a unique C2 function σ = σ(h)

with σ(0) = σ0, which solves (6.21) in some neighborhood of (σ, h) = (σ0, 0).
Then σ(ωj ) = σj , j = k, k + 1, and by Taylor’s expansion formula, we have the
desired estimates (6.20). ��
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6.2.4. Estimates on the interaction between the strong shock and weak waves.

Proposition 6.4. Let Um, Ua ∈ Oε(U+) with

{G(σ), Um} = (0, α2, α3, α4), {Um, Ua} = (β1, β2, β3, 0).

Then there exists a unique (σ ′, δ2, δ3, δ4) such that the Riemann problem (6.16)
with Ub = U− yields an admissible solution consisting of a strong 1-shock, two
contact discontinuities of strengths δ2 and δ3, and a weak 4-wave of strength δ4:

{U−, Ua} = (σ ′, δ2, δ3, δ4).

Moreover,

σ ′ = σ0 + Ks1β1 + O(1)�, δ2 = α2 + β2 + Ks2β1 + O(1)�,

δ3 = α3 + β3 + Ks3β1 + O(1)�, δ4 = α4 + Ks4β1 + O(1)�,

where

|Ks4| < 1 and |Ks3|, |Ks2|, and |Ks1| are bounded,

and � = |α3||β1|+ |α2||β1|+ |α4||β1|+ |α4||β2|+ |α4||β3|. Furthermore, we can
write the estimates in a more precise fashion:

δ4 = α4 + K̃s4β1 + O(1)�̃, δ3 = α3 + K̃s3β1 + O(1)�̃,

δ2 = α2 + K̃s2β1 + O(1)�̃, σ ′ = σ + K̃s1β1 + O(1)�̃,

where

|K̃s4| < 1, |K̃s3| + |K̃s2| + |K̃s1| � M,

for some M > 0 and �̃ = |α4||β3| + |α4||β2|.
Proof. First we show that there exists a unique solution (σ ′, δ2, δ3, δ4), as a func-
tion of (σ, α2, α3, α4, β1, β2, β3), to

�(0, β3, β2, β1; �(α4, α3, α2, 0; G(σ))) = �(δ4, δ3, δ2, 0; G(σ ′)). (6.22)

By Proposition 6.1, there exists (γ4, γ3, γ2, γ1) such that

�(0, β3, β2, β1; �(α4, α3, α2, 0; G(σ))) = �(γ4, γ3, γ2, γ1; G(σ)) (6.23)

with

γ1 = β1 + O(1)�, γ2 = β2 + α2 + O(1)�,

γ3 = α3 + β3 + O(1)�, γ4 = α4 + O(1)�.

Thus, (6.22) can be reduced to

�(γ4, γ3, γ2, γ1; G(σ)) = �(δ4, δ3, δ2, 0; G(σ ′)). (6.24)
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Furthermore, Lemma 6.6 implies

det

(
∂�(δ4, δ3, δ2, 0; G(σ ′))

∂(δ4, δ3, δ2, σ ′)

)
|{δ4=δ3=δ2=0,σ ′=σ0}

= 1

det A
det(Ar4(U+), Ar3(U+), Ar2(U+), AGσ (σ0)) > 0.

Therefore, the implicit function theorem implies that (δ4, δ3, δ2, σ
′) can be uniquely

solved as a C2 function of (γ1, γ2, γ3, γ4, σ ):

σ ′ = σ ′(γ4, γ3, γ2, γ1, σ ), δi = δi(γ4, γ3, γ2, γ1, σ ), i = 2, 3, 4.

Using identity (3.1) in Lemma 3.1, we find

σ ′ = Ks1γ1 + σ, δi = Ksiγ1 + γi, i = 2, 3, 4,

whereKs1 = ∫ 1
0 ∂γ1σ

′(γ3, γ2, λγ1, σ )dλ andKsi = ∫ 1
0 ∂γ1δi(γ4, γ3, γ2, λγ1, σ )dλ.

When γ4 = γ3 = γ2 = γ1 = 0, it is clear that | ∂σ ′
∂γ1

| and | ∂δi

∂γ1
|, i = 2, 3, 4, are

bounded. We can further claim the important fact that

| ∂δ4

∂γ1
| < 1 when γ4 = γ3 = γ2 = γ1 = 0.

This can be shown by differentiating (6.24) with respect to γ1 and letting γ4 =
γ3 = γ2 = γ1 = 0. We then have

r1(U+) = r4(U+)
∂δ4

∂γ1
+ r3(U+)

∂δ3

∂γ1
+ r2(U+)

∂δ2

∂γ1
+ Gσ (σ0)

∂σ ′

∂γ1
.

Multiplying both sides by A (defined in Lemma 6.6), we obtain

| ∂δ4

∂γ1
| = |det(Ar1(U+), Ar2(U+), Ar3(U+), AGσ (σ0))

det(Ar4(U+), Ar2(U+), Ar3(U+), AGσ (σ0))
|

= |λ4+ + σ0

λ4+ − σ0
| · |σ0u−Q − u+λ4+P

σ0u−Q + u+λ4+P
| < 1,

since P > 0, Q < 0, σ0 < 0, and λ4+ = λ4(U+) > 0. Combining with the
estimates we had on γ1, γ2, γ3, and γ4, we complete the proof. ��

6.3. Approximate solutions

Similarly to Section 4, we can construct the globally defined, modified Glimm
approximate solutions U�x,θ in the approximate domains (see Fig. 7):

��x =
⋃

k�0

��x,k

with

��x,k = {(x, y) : (k − 1)�x < x � k�x, y = yk−1 + (x − (k − 1)�x) tan(ωk−1,k)}
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under the Courant–Friedrichs–Lewy type condition:

�y − m�x

�x
< |σ0| + max

j=1,4

(

sup
Oε(U+)

|λj (U)|
)

with m as defined in (4.1).

Lemma 6.7.
(i) If {Ub, Ua} = (α1, α2, α3, α4) with Ub, Ua ∈ Oε(U+), then

|Ub − Ua| � s1(|α1| + |α2| + |α3| + |α4|),
where s1 = max1�i�4(supU∈Oε(U+) |∂αi

�(α4, α3, α2, α1; U)|);
(ii) for any σ ∈ Oε̂(σ0) with G(Oε̂(σ0)) ⊂ Oε(U+) for ε̂ = ε̂(ε),

|G(σ) − G(σ0)| � s2|σ − σ0|,
where s2 = supσ∈Oε̂(σ0)

|G′
σ (σ )|.

We need to establish the estimates on U�x,θ on a class of space-like curves, and
j -mesh curves J as introduced in Definition 4.1. To achieve this, we now define
the Glimm-type functional.

Definition 6.2. We define

Fs(J ) = C∗|σJ − σ0| + F(J ),

with

F(J ) = L(J ) + KQ(J ),

L(J ) = K∗
0 L0(J ) + L1(J ) + K∗

2 L2(J ) + K∗
3 L3(J ) + K∗

4 L4(J ),

Q(J ) = ∑{|αi ||βj | : both αi and βj cross J and approach},
and

L0(J ) =
∑

{|ω(Ck)| : Ck ∈ �J },
Lj (J ) =

∑
{|αj | : αj crosses J }, 1 � j � 4,

where K and C∗ will be defined later, while �J = {Ck ∈ J+ ∩ ∂��x : k � 0}
is the set of the corner points Ck lying in J+, σJ stands for the speed of the strong
shock crossing J , and K∗

0 , K∗
2 , K∗

3 , K∗
4 are the constants that satisfy the following

conditions:

K∗
0 > |Kb0|, |Kb4| < K∗

4 <
1

|Ks4| , |Kb3| < K∗
3 <

1 − |Ks4|K∗
4

|Ks3| ,

and

|Kb2| < K∗
2 <

1 − |Ks3|K∗
3 − |Ks4|K∗

4

|Ks2| ,

which can be achieved from our discussions of the properties of Kbi and Ksi ,
0 � i � 4, as in the propositions in Section 6.2.
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Now we prove the decreasing property of our functional Fs . We have

Proposition 6.5. Suppose that the wedge boundary function g(x) satisfies (4.1),
and I and J are two k-mesh curves such that J is an immediate successor of I .
Suppose that

∣∣∣U�x,θ |I ∩ ( �+
�x,k−1∪ �+

�x,k)
− U+

∣∣∣ < ε,
∣∣σ I − σ0

∣∣ < ε̂,

where ε̂ = ε̂(ε) is defined in Proposition 6.3 and Lemma 6.7. Then there exist
constants ε̃ > 0, K > 0, and C∗ > 1, depending only on the system in (1.1) and
states U− and U+, such that, if Fs(I ) < ε̃, then

Fs(J ) � Fs(I ),

and hence
∣∣∣U�x,θ |J ∩ ( �+

�x,k−1∪ �+
�x,k)

− U+
∣∣∣ < ε,

∣∣σJ − σ0
∣∣ < ε̂.

Proof. Let � be the diamond that is formed by I and J . We can always assume that
I = I0 ∪ I ′ and J = J0 ∪J ′ such that ∂� = I ′ ∪J ′. As in the proof of Proposition
4.1, we divide our proof in four cases depending on the location of the diamond.

Case 1 (interior weak-weak interaction). Denote Q(�) = �(α, β) as defined in
Proposition 6.1. Then, for some constant M > 0,

L(J ) − L(I) = (1 + K∗
2 + K∗

3 + K∗
4 )MQ(�),

and, since L(I0) < ε̃ from Fs(I ) < ε̃,

Q(J) − Q(I) = (ML(I0) − 1)Q(�) � −1

2
Q(�).

Hence, we have

F(J ) − F(I) = (
(1 + K∗

2 + K∗
3 + K∗

4 )M − K/2
)
Q(�) � −1

4
Q(�),

by choosing suitably large K .

Case 2 (near the boundary). Then �J = �I\{Ck} for certain k and σ I = σJ . Let
δ1 be the weak 1-wave going out of � through J ′, and β1, α2, and α3 be the weak
waves entering � through I ′, as shown in Fig. 10. Then

L0(J ) − L0(I ) = −|ωk|,
Li(J ) − Li(I ) =

∑

γi crosses I0

|γi | − (|αi | +
∑

γi crosses I0

|γi |) = −|αi |, i = 2, 3, 4,

L1(J ) − L1(I ) = |δ1| − |β1| � |Kb4||α4| + |Kb3||α3| + |Kb2||α2| + |Kb0||ωk|,
where the last step is from Proposition 6.2. Thus,

L(J ) − L(I)

� (|Kb0| − K∗
0 )|ωk| + (|Kb2| − K∗

2 )|α2| + (|Kb3| − K∗
3 )|α3|

+(|Kb4| − K∗
4 )|α4|.
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From our requirement in Definition 6.2, we get L(J )−L(I) � 0. Since Fs(I ) �
ε̃ implies L(I) � ε̃, the higher-order term Q(I) can always be bounded by the linear
term L(I). Then we can easily conclude that F(J ) � F(I).

Case 3 (near the wedge vertex). From our construction, we find that�J = �I\{Ck},
and S∗(σ(k)) emanates from Ck and crosses J , σ I = σ(k−1), and σJ = σ(k). More-
over, there is no weak wave crossing I ′ or J ′. We have

F(J ) − F(I) � −K∗
0 |ωk|.

Since |σJ − σ0| − |σ I − σ0| � |σJ − σ I | � |Kbs ||ωk| + M|ωk|2 and |Kbs | is
bounded, we can further choose suitably small C∗ and τ > 0 such that

Fs(J ) − Fs(I ) � C∗|σJ − σ I | + F(J ) − F(I) � −τ |ωk|.
Case 4 (near the strong 1-shock). The shock S∗(σ(k)) is generated from the inside
of �, σ I = σ(k−1), and σJ = σ(k). Let δ4, δ3, and δ2 be the weak waves going out
of � through J ′, and let α4, α3, α2, β1, β2, and β3 be the weak waves entering �

through I ′, as shown in Fig. 11.

Then

L1(J ) − L1(I ) =
∑

γ1 crosses I0

|γ1| − (|β1| +
∑

γ1 crosses I0

|γ1|) = −|β1|,

Li(J ) − Li(I ) � |Ksi ||β1| + M|α4||β2| + |α4||β3|, i = 2, 3,

L4(J ) − L4(I ) � |Ks4||β1| + M(|α4||β2| + |α4||β3|),
where we have used the estimates from Proposition 6.4.

Again, this case is much more complicated and requires careful calculation of
Q(J) − Q(I). For simplicity, for any weak wave γ , we denote

Q(γ, I0) = |γ |
∑

{|γj | : γj and γ approach, γj crosses I0}.
Then

Q(J) − Q(I) � −(|α4||β1| + |α4||β2| + |α4||β3| + |β1||α2| + |β1||α3|)

+(

4∑

i=2

|K̃si | − 1)Q(β1, I0)

+ Q(M(|α4||β2| + |α4||β3|), I0)

= (−1 + ML(I0))(|α4||β2| + |α4||β3|)

+(ML(I0) −
4∑

i=2

|αi |)|β1|.

Since L(I0) < ε̃ from Fs(I ) < ε̃, then

Q(J) − Q(I) � −1

2
(|α4||β2| + |α4||β3|) + ML(I0)|β1|.
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Therefore, we have

F(J ) − F(I) �
(

−1 +
4∑

i=2

K∗
i |Ksi |

)

|β1| + M(|α4||β2| + |α4||β3|)

+K(−1

2
(|α4||β2| + |α4||β3|) + ML(I0)|β1|)

� −1

8
(|β1| + |α4||β2| + |α4||β3|),

where we have chosen suitably large K and used the fact that L(I0) < ε̃.
Furthermore, since

|σJ − σ I | � |Ks1||β1| + M(|α4||β2| + |α4||β3|),
we can further choose suitably small C∗ such that

Fs(J ) − Fs(I ) � C∗|σJ − σ I | + F(J ) − F(I)

� − 1

16
|β1| − 1

16
(|α4||β2| + |α4||β3|).

Again we have F(J ) � F(I). Then, from Lemma 6.7, there exists ε̃ > 0 such that,
when F(I) < ε̃, we have |U − U+| < ε. ��

Then the same argument as in Section 4 yields the following theorem.

Theorem 6.1 (Existence and stability). There exist ε > 0 and C > 0 such that, if
(1.10) holds, then, for each θ ∈ (�∞

k=0(−1, 1))\(N ∪ N1), there exist a sequence
{�l}∞l=1 of mesh sizes with �l → 0 as l → ∞ and a pair of functions Uθ ∈ Oε(U+)

and χθ ∈ Lip(R+) with χθ (0) = 0 such that

(i) U�l,θ (x, ·) converges to Uθ(x, ·) in L1(−∞, g(x)) for every x > 0, and Uθ

is a global entropy solution of problem (1.1) and (1.8)–(1.9) in � and satisfies
(1.11)–(1.12);

(ii) χ�l,θ converges to χθ uniformly in any bounded x-interval;
(iii) σ�l,θ converges a.e. to σθ ∈ BV (R+) with |σθ − σ0| < ε̂ and χθ (x) =∫ x

0 σθ (t)dt.

In addition, if θ is equidistributed, then χθ (x) < g(x) for any x > 0 with (1.13)
and the Rankine-Hugoniot conditions a.e. along the curve {y = χθ (x)}.

Furthermore, let θ ∈ (�∞
k=0(−1, 1))\(N ∪N1) be equidistributed, and let Uθ be

the solution and χθ its shock-front, respectively. By Theorem 6.1, we find that the
solution Uθ contains at most countable shock fronts and countable points of wave
interactions. Moreover, we can modify the solution Uθ such that Uθ is continuous
except on the shock curves and the points of wave interactions (cf. [9]).Then we have

Theorem 6.2.
(i) Let ω∞ = lim

x→∞ arctan(g′(x+)). Then

lim
x→∞ sup{| arctan (vθ (x, y)/uθ (x, y)) − ω∞| : χθ (x) < y < g(x)} = 0.
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(ii) There exist constants p∞ and σ∞ such that

lim
x→∞ sup{|pθ(x, y) − p∞| : χθ (x) < y < g(x)} = 0

and

lim
x→∞ |σθ (x) − σ∞| = 0.

Theorem 6.1 can be proved in the same way as Theorem 5.2.
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