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Abstract

Periodic and quasi-periodic solutions of the n-body problem can be found as
minimizers of the Lagrangian action functional restricted to suitable spaces of sym-
metric paths. The main purpose of this paper is to develop a systematic approach
to the equivariant minimization for the three-body problem in three-dimensional
space. First we give a finite complete list of symmetry groups fitting to the minimi-
zation of the action, with the property that any other symmetry group can be reduced
to be isomorphic to one of these representatives. A second step is to prove that the
resulting (local and global) symmetric action-minimizers are always collisionless
(when they are not already bound to collisions). Furthermore, we prove some results
which address the question of whether minimizers are planar or non-planar; as a
consequence of our theory we will give general criteria for a symmetry group to
yield planar or homographic minimizers (either homographic or not, as in the Chen-
ciner-Montgomery eight solution). On the other hand we will provide a rigorous
proof of the existence of some interesting one-parameter families of periodic and
quasi-periodic non-planar orbits. These include the choreographic Marchal’s P12
family with equal masses – together with a less-symmetric choreographic family
(which anyway probably coincides with the P12 family).

1. Introduction

In some recent papers, classical variational methods have been successfully
applied in the proof of the existence of periodic or quasi-periodic solutions for the
n-body problem. Suitable symmetry groups of the Lagrangian action functional
have been introduced and exploited in order to apply the aforementioned techniques
to the class of all symmetric loops, to name a few, in the articles [2–4, 10–12, 15,
18, 19]. Surveys and further details on this approach can be found for example in
[1, 5, 7, 12, 17]. The major problem in the search for equivariant minimizers is
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that of collisions: a (local or global) minimizer might consist a priori of a colliding
trajectory. The latest significant breakthrough in this direction has been allowed
by Marchal’s averaging technique [5, 12]. In the paper [12], the authors develop
a general theory for G-equivariant minimizers and present a class of groups that
yield always, as a consequence of Marchal’s averaging technique, collision-free
minimizers. In [1], this result was extended to all possible symmetry groups for
the planar three-body problem. A naturally related problem is to find and classify
all possible symmetry groups and to understand whether the resulting minima are
rotating central configurations or if they are new solutions (and, at the same time,
to provide rigorous proofs of the existence and of the properties of some solutions
whose existence was accepted as a fact after numerical evidence). This has been
done for the planar problem by V. Barutello, S. Terracini & D. Ferrario in
[1]. The purpose of the paper is to give a complete answer to the classification
problem for the three-body problem in space, and at the same time to determine
and describe properties of the resulting minimizers. In particular, we focus on non-
planar orbits, since planar orbits have been already included in the list of [1]. In
order to state the main results, we anticipatively sketch some basic definitions: A
symmetry group G of the Lagrangian functional A (see Definition 2.5 below) is
termed bound to collisions if all G-equivariant loops actually have collisions (see
Definition 2.6 below), fully uncoercive if for every possible rotation vector ω the
action functional AG

ω in the frame rotating around ω with angular speed |ω| is not
coercive in the space of G-equivariant loops (that is, its global minimum escapes to
infinity – see Definition 2.17); moreover, G is termed homographic if all G-equi-
variant loops are constant up to orthogonal motions and rescaling. Note that if there
is a rotation axis ω then the group G is implicitly assumed to be a symmetry group
of the action functional Aω in the rotating frame (that is, the functional including
the centrifugal force and Coriolis terms); such a group is termed of type R (see
Definition 2.14 below); finally, the core of the group G is the subgroup of all the
elements which do not move the time t ∈ T (see Definition 2.8 below). In the first
theorem we classify symmetry groups, up to a change in rotating frame. For the
symbols used, refer to Sections 2 and 3 below.

Theorem A. Symmetry groups not bound to collisions, not fully uncoercive and not
homographic are, up to a change of rotating frame, either the three-dimensional
extensions of planar groups (if trivial core) listed in Table 1 or the vertical isosceles
triangle (if non-trivial core) of Definition 6.2.

The next theorem is the answer to the natural questions about collisions and
description of some main features of minimizers.

Theorem B. Let G be a symmetry group not bound to collisions and not fully
uncoercive. Then,

(i) Local minima of AG
ω do not have collisions.

(ii) In the following cases minimizers are planar trajectories:

(a) G is not of type R: D
+,−
6 , D−,+

6 and D
−,+
12 (then G-equivariant minimizers

are Chenciner–Montgomery eights);
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Table 1. Space extensions of planar symmetry groups with trivial core

Name Extensions
Trivial C−

1
Line L

+,−
2 , L

−,+
2

Isosceles H
+,−
2 , H

−,+
2

Hill H
+,−
4 , H

−,+
4

3-choreography C+
3 , C−

3
Lagrange L

+,+
6 , L

+,−
6 , L

−,+
6

D6 D
+,−
6 , D

−,+
6

D12 D
−,+
12

(b) there is a G-equivariant minimal Lagrange rotating solution: C−
1 , H

+,−
2 ,

C+
3 , L

+,+
6 and L

+,−
6 (then the Lagrange solution is of course the mini-

mizer);
(c) the core is non-trivial and it is not the vertical isosceles, see Definition 6.2

(then the minimizers are homographic).

(iii) In the following cases minimizers are always non-planar:

(a) the groups L
−,+
6 and C−

3 for all ω ∈ (−1, 1)+ 6Z, ω �= 0 (the minimizers
for L

−,+
6 are the elements of Marchal family P12, and the minimizers of

C−
3 are a less-symmetric family P ′

12
1);

(b) the extensions of line and Hill-Euler type groups, for on open subset of
mass distributions and angular speeds ω (explicitly given in (5.8)): L

+,−
2 ,

L
−,+
2 , H

+,−
4 and H

−,+
4 (for L

−,+
2 this happens also with equal masses).

(c) the vertical isosceles, (see Definition 6.2), for suitable choices of masses
and ω.

In this paper, we develop the needed tools and prove these statements, after the
necessary explanations about preliminary results and notation. In Section 2, we
introduce all the definitions needed and prove some preliminary results. In Section
3, we introduce the concept of a three-dimensional extension of a planar symme-
try group, so that we can use the classification of [1]. In Section 4, the angular
momentum J must be taken into account, and we show how the existence of rota-
tion axes is related to the possibility of J being non-zero. Afterwards, in Section 5,
we prove some interesting estimates on second variations, which are remarkably
simple (incidentally, they work not only for 3 bodies, but for n arbitrary). It is by an
application of these simple estimates that we can prove the fact that the non-planar
quasi-periodic orbits listed in Theorem B exist. In Section 6, we come to the clas-
sification of three-dimensional space symmetries, which is a proof of Theorem A.
The proof of the various items of Theorem B is completed in Section 7. Finally, in
Section 8, some concluding remarks are collected.

1 Highly likely they are not distinct families: this is the recurring phenomenon of “more
symmetries than expected” in n-body problems.
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Before we start with the next section, a few words have to be spent on the exis-
tence of the P12 family. A different – and very elementary – proof of the existence
of the P12-family with D12-symmetries was presented by A. Chenciner in [5, 7],
which does not require local results on collisions, since collisions are excluded
by action level estimates. The advantage of our approach is that it can be plainly
extended to the case of any odd number n � 3 of bodies in space (see Remark 8.5
below). All other results are, to our knowledge, new: whenever similar methods or
results were published elsewhere, it has been remarked in-place.

2. Preliminaries

Consider the linear space of configurations with center of mass in 0:

X = {x = (x1, x2, x3) ∈ E3 | m1x1 + m2x2 + m3x3 = 0}.
Let T = S1 ∼= R/2πZ be the unit circle of length 2π . We are dealing with periodic
orbits of the Newtonian n-body problem, which will be seen as critical points of a
suitable functional on the Sobolev space � = H 1(T, X ) consisting of all L2 loops
T → X with L2 derivative. It is an Hilbert space with the scalar product

x · y =
∫

T

(x(t)y(t) + ẋ(t)ẏ(t))dt.

The α-homogeneous Newtonian potential can be written as

U(x) = m1m2

|x1 − x2|α + m1m3

|x1 − x3|α + m2m3

|x2 − x3|α . (2.1)

Let ω ∈ E ∼= R
3 be a vector. The kinetic form in a frame uniformly rotating around

ω with angular speed ω = |ω| is defined by

2K(x, ẋ) =
3∑

i=1

mi |ẋi + �xi |2, (2.2)

where � is the matrix 
 0 ω3 −ω2

−ω3 0 ω1
ω2 −ω1 0




obtained by the coefficients (ω1, ω2, ω3) of ω ∈ R
3. Thus, for every ω the Lagrang-

ian can be written as

Lω(x, ẋ) = Lω = Kω + U, (2.3)

and, finally, the action functional as

Aω(x) =
∫

T

Lω(x(t), ẋ(t))dt. (2.4)



Symmetry Groups and Non-Planar Collisionless Solutions 393

Definition 2.5. We define the symmetry group as every subgroup of O(T)×O(3)×
�3, where O(T) = O(2) is the orthogonal group of dimension 2 acting on the time
circle, O(3) is the orthogonal group of dimension 3 acting on the space E and �3
is the symmetric group on the three elements {1, 2, 3}.

Given a subgroup G ⊂ O(T)×O(3)×�3, it is possible to define three homo-
morphisms τ : G → O(T), ρ : G → O(3) and σ : G → �3 by projections onto the
first, second and third factors of the direct product. Given τ , ρ and σ we can define
in an obvious way a G-action on T, E and {1, 2, 3}, and hence an action on the cen-
tered configuration space X , provided that for every g ∈ G, mi = mgi (that is, the
masses are constant in G-orbits in the index set {1, 2, 3}). Thus, there is an induced
action of G on the Sobolev space � of loops, defined by g(x(t)) = (gx)(g−1t).
The action is orthogonal on � so that the Palais theorem says that, for a given group
G, if the functional Aω : � → R is G-invariant and a G-equivariant loop x(t) is
collisionless and critical for the restriction AG

ω = Aω|�G, then x(t) is critical for
Aω.

Definition 2.6. A group is termed bound to collisions if for every equivariant loop
x(t) ∈ �G collisions occur, that is, for each G-equivariant x(t) there exist tc ∈ T

and i �= j ∈ n = {1, 2, 3} such that xi(tc) = xj (tc).

Definition 2.7. A group G is termed homographic if every equivariant loop x(t) ∈
�G is constant up to rescaling and orthogonal motions.

Definition 2.8. The kernel ker τ is termed the core of the symmetry group G.

Definition 2.9. A group G is said to be of cyclic, brake or dihedral type respec-
tively, if G/ ker τ acts orientation-preserving on the time circle T, if G/ ker τ has
order 2 and acts orientation-reversing on T or if G/ ker τ is a dihedral group of
order � 4.

Consider the following elements in O(2): 1 is the trivial motion, −1 is the rota-
tion of angle π and l is a reflection along a line. Elements of the symmetric group
�3 will be denoted in the cyclic permutation notion. Let ker det(τ ) ⊂ G denote
the subgroup of G of the elements acting orientation-preserving on T. A symmetry
group with trivial core will be fully determined once the images ρ(r) and σ(r)

of a generator r of ker det(τ ) rotating a minimal angle are given, together, if it is
not of cyclic type, with the images ρ(h) and σ(h) of one of the elements not in
ker det(τ ) (which have order 2). The full list of representatives of the planar clas-
sification exposed in [1] can be therefore found in Table 2, with the corresponding
generators.

Definition 2.10. A planar symmetry group G is said to be of type R if the deter-
minant homomorphisms det(ρ), det(τ ) : G → {+1, −1} coincide, that is, if they
coincide as G-representations.

Definition 2.11. A vector v ∈ E ∼= R
3 is defined as a rotation axis with respect to

a symmetry group G if the line spanned by v in E is G-invariant and the following
equality of one-dimensional G-representations holds:

det(τ ) det(ρ) = det(v),
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Table 2. Planar symmetry groups with trivial core

Name Symbol ρ(r),σ(r) ρ(h),σ(h)

Trivial C1 1,()
Line L2 1,() l,()
2-1-choreography C2 1, (1,2)
Isosceles H2 1,() l,(1,2)
Hill H4 1,(1,2) l,(1,2)
3-choreography C3 1,(1,2,3)
Lagrange L6 1,(1,2,3) l,(1,2)
C6 C6 l,(1,2,3)
D6 D6 1,(1,2,3) −1,(1,2)
D12 D12 l,(1,2,3) −1,(1,2)

where det(v) denotes the real representation of G induced by restricting ρ to the
invariant subspace generated by v ∈ E.

Lemma 2.12. The restriction of a three-dimensional symmetry group G to the
orthogonal complement of a rotation axis v ∈ E is a planar symmetry group
of type R. Conversely, if the restriction of G to an invariant plane is of type R, then
the orthogonal complement of the invariant plane is a rotation axis for G.

Proof. Let τ , ρ and σ be the defining homomorphisms of G, where ρ : G → O(3)

can be written as ρ = ρ2 × ρ1, with ρ2 : G → O(2) induced by restriction to the
(invariant) orthogonal complement of v and ρ1 : G → O(1) by restriction to v.
Since

det(ρ) = det(ρ2) det(ρ1) = det(ρ2) det(v), (2.13)

the planar symmetry group defined by τ, ρ2, σ (see Definition 2.10) is of type R
if and only if det(ρ2) = det(τ ), and hence if and only if det(ρ) det(v) = det(τ ) as
claimed. ��

The previous lemma yields the following natural definition.

Definition 2.14. A space symmetry group G is said to be of type R if it has at least
one rotation axis, that is, if it is the extension of a planar group of type R.

Lemma 2.15. Let ω ∈ E ∼= R
3 be a rotation axis for a symmetry group G. Then

the Lagrangian action functional Aω (defined in (2.4)) in a frame rotating around
ω with angular speed ω = |ω| is G-invariant.

Proof. Let g ∈ G and x(t) ∈ �G. Since for every i ∈ {1, 2, 3} ,

xgi(τ (g)t) = ρ(g)xi(t),

the derivative fulfills the equality

det(τ (g))ẋgi(τ (g)t) = ρ(g)ẋi(t).
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Thus for every g ∈ G and t ∈ T,

ẋgi(τ (g)t) + �xgi(τ (g)(t)) = det(τ (g))ρ(g)ẋi + �ρ(g)xi(τ (t)),

and hence

∣∣ẋgi(τ (g)t) + �xgi(τ (g)(t))
∣∣2 =

∣∣∣ẋi + det(τ (g))ρ(g−1)�ρ(g)xi(τ (t))

∣∣∣2
.

We can deduce that the action functional Aω is G-invariant if (and only if) for
every g,

det(τ (g))ρ(g−1)�ρ(g) = �. (2.16)

If � �= 0, equation (2.16) holds if and only if det(ρ2) = det(τ ), where as above
ρ2 denotes the restriction of ρ to the plane orthogonal to ω. But by (2.13) this is
equivalent to the identity det(ρ) det(ω) = det(τ ), that is, ω is a rotation axis as in
Definition 2.11. ��
Definition 2.17. A symmetry group G is fully uncoercive if for every possible rota-
tion vector ω, the action functional AG

ω is not coercive.

The following proposition is an easy consequence of this definition and (4.1)
of [12].

Lemma 2.18. Let G be a symmetry group.

(i) If there are no rotation axes and X G �= 0, (or, equivalently, AG is not coercive),
then G is fully uncoercive.

(ii) If every rotating axis is uncoercive as a one-dimensional G-module and the
action on the index set is not transitive, then G is fully uncoercive.

Definition 2.19. If G and G′ are two groups conjugated in O(T) × O(3) × �3,
we will write G ∼= G′. If there exists a change of rotating frame for which a
group G can be written as G′, which is conjugate to a third group G′′, we will
write G ∼ G′′. It is easy to see that ∼= and ∼ are equivalence relations, and that
G ∼= G′ 	⇒ |G| = |G′|, while the same does not hold for ∼ (see [1], Section 3
for further details on changing the coordinates in a rotating frame).

Proposition 2.20. Let G be a symmetry group such that a Lagrange rotating solu-
tion x(t) = {xj (t)} = {eikt ζ

j
3 } is G-equivariant and |k+ω| is minimal (as k varies

in Z) and non-zero. Then x(t) is the absolute minimum of the action functional.

Proof. This is, for the three-dimensional plane, proposition (4.1) of [1] (see also
[8]). Actually, for the three body problem the proof is straightforward: assume
that

∑
i mi = 1; since the center of mass is in zero,

∑
i mixi = 0, and hence∑

i mi ẋi = 0. The kinetic energy can be written in terms of the differences

1

2

∑
i

mi |ẋi + �xi |2 = 1

2

∑
i<j

mimj |ẋi − ẋj + �(xi − xj )|2. (2.21)
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Thence the action functional is written as the sum of three terms of the type

1

2
mimj |ẋi − ẋj + �xi − �xj |2 + mimj |xi − xj |−α,

which is a Kepler (one-center) problem for the variable y = xi − xj in the rotating
frame. Since a rotating solution x(t) with |k + ω| minimal exists by assumption,
it yields three (identical, up to a time-shift) rotating solutions in y, with |k + ω|
minimal. It is easy to conclude the proof and to show that every trajectory has an
action which is at least three times the action of a minimal one-center y. ��

3. Three-dimensional extensions of planar symmetry groups

In this section we will take planar groups, listed in Table 2, and define some
extensions acting on the three-dimensional space. Of all the resulting groups, we
will take into account only the extensions with trivial core, not bound to collisions
and not fully uncoercive. The outcome is the list of Table 1. We proceed as fol-
lows. Consider one of the planar groups in Table 2. It can be extended to a group
acting on the three-dimensional space simply by adding a one-dimensional real
representation. Now, since the groups have trivial core as in Table 2 we can assume
that the symmetry group is generated by two elements r and h with the following
properties: τ(r) is a time-shift in T of minimal angle and τ(h) is a time-reflection
(which exists only if the group is not of cyclic type). Up to conjugacy or change of
orientation in T, the choice of r and h yields uniquely back the symmetry group G.

Consider first the case of cyclic type, and let r denote the cyclic generator
above (in the notation of Table 2, groups of cyclic type are C1, C2, C3 and C6). Now,
ρ2(r) ∈ O(2) can be extended in two ways to a matrix inO(3): adding either a trivial
one-dimensional representation or a non-trivial one. Thus, for each cyclic group Ci

listed above, there exist two corresponding groups, denoted by C+
i and C−

i , which
are generated by the element (τ (r), ρ2(r), ε, σ (r)) in O(T) × O(2) × O(1) × �3,
for ε = ρ1(r) ∈ {±1}. The other cases can be dealt with in an analogous way;
the choices are 22: a sign for ρ1(r) and a sign for ρ1(h). So, if G is a symmetry
group not of cyclic type, its three-dimensional extensions groups will be denoted
by the symbol Gε1,ε2 , where ε1 is the sign of ρ1(r) and ε2 the sign of ρ1(h).
By 2.12 the third axis will be a rotation axis if and only if the planar symmetry
group is of type R. Furthermore, it is easy to see that if the action of the group
on the index set is not transitive, extensions of type +, +, + are fully uncoer-
cive. The list of remaining symmetry groups is therefore: C−

1 , C
+,−
1 , C

−,+
1 , C

−,−
1 ,

L
+,−
2 , L

−,+
2 , L

−,−
2 C−

2 H
+,−
2 , H

−,+
2 , H

−,−
2 H

+,−
4 , H

−,+
4 , H

−,−
4 C+

3 , C−
3 L

+,+
6 ,

L
+,−
6 , L

−,+
6 , L

−,−
6 , C+

6 , C−
6 D

+,+
6 , D

+,−
6 , D

−,+
6 , D

−,−
6 , D

+,+
12 , D

+,−
12 , D

−,+
12

and D
−,−
12 . Now, some of them are the the same after a change in coordinates:

C
−,−
1

∼= C
−,+
1 , L

−,+
2

∼= L
−,−
2 , H

−,+
2

∼= H
−,−
2 , H

−,+
4

∼= H
−,−
4 , C+

6
∼= C−

3 ,
C−

6 ∼ C3, D
+,+
6

∼= L
+,−
6 , D

−,+
6

∼= D
−,−
6

∼= D
+,−
12 , L

−,+
6

∼= L
−,−
6

∼= D
+,+
12 and

D
−,−
12 ∼ L

+,−
6 . Furthermore, C

+,−
1 , C

−,+
1 and C−

2 are clearly fully uncoercive.
Hence the following lemma holds.



Symmetry Groups and Non-Planar Collisionless Solutions 397

Lemma 3.1. Of all the three-dimensional extensions of planar symmetry groups,
those with trivial core, not bound to collisions and not fully uncoercive are listed
in Table 1.

Remark 3.2. The order of the space group now does not necessarily coincide with
the order of the planar group: for example, the order of C−

3 is 6 and not 3.

The following lemma will be used as a key-step for the classification below.

Lemma 3.3. Let G a symmetry group for the three-body problem with trivial core.
Then, up to a change of rotating frame, ρ is the sum of one-dimensional real rep-
resentations.

Proof. Since ker τ = 1, G is isomorphic to a subgroup of a finite dihedral group,
and hence its orthogonal irreducible representations have dimension at most 2. So,
ρ can be written as ρ2 × ρ1, where ρ2 : G → O(2) and ρ1 : G → O(1). Now, by
(5.1) of [1] up to a change in rotating frame we can assume that ρ2(g)2 = 1 for every
g ∈ G, so that ρ2 is reducible as a sum of two one-dimensional G-representations.
��

4. Groups without rotation axes

As we have seen in Lemma 3.1, the list of candidates for space symmetry groups
is given in Table 1. Now we consider the 10 groups yielded by extending the three
planar groups not of type R.

First, we prove a three-dimensional analogue of Proposition 3.9 of [1]. Given
a path x(t) ∈ �, its angular momentum J is the function of t ∈ T given by

J (t) =
∑
i∈n

mixi × ẋi , (4.1)

where × is the vector product in E ∼= R
3. If x is a (generalized) solution, then the

angular momentum is constant.

Lemma 4.2. For every equivariant x(t) ∈ �G and every t ∈ T,

J (gt) = det(ρ(g)) det(τ (g))ρ(g)J (t).

Proof. The lemma follows from the chain of equalities below:

J (τ(g)t) =
3∑

i=1

mixi(τ (g)t) × ẋi (τ (g)t)

=
3∑

i=1

mi

[
(ρ(g)xg−1i (t)) × (det(τ (g))ρ(g)ẋg−1i (t))

]

= det(τ (g))

3∑
i=1

mg−1i

[
(ρ(g)xg−1i (t)) × (ρ(g)ẋg−1i (t))

]
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= det(τ (g))

3∑
i=1

mg−1i det(ρ(g))ρ(g)
[
xg−1i (t) × ẋg−1i (t)

]

= det(τ (g)) det(ρ(g))ρ(g)J (t). ��
Lemma 4.3. Let x ∈ �G be a G-equivariant periodic orbit with angular momen-
tum J . Then J belongs to the subspace E∗ ⊂ E fixed by the G-representation
det(ρ) det(τ )ρ.

Proof. By Lemma 4.2, for every g ∈ G J = det(τ (g)) det(ρ(g))ρ(g)J , and hence
J ∈ E∗. ��
Lemma 4.4. Let G be an extension of a planar symmetry group not of type R and
let V ⊂ E denote the invariant plane. Then E∗ ⊂ V .

Proof. Let V ∗ denote the orthogonal complement of the invariant plane. Since
det(ρ) = det(ρ2) det(ρ1) with det(ρ2) det(τ ) �= 1, the projection of E∗ on V ∗ is
fixed by the action of G under the non-trivial homomorphism det(τ ) det(ρ) det(ρ1)

= det(τ ) det(ρ2). Hence E∗ ⊂ V . ��
By Lemma 4.4, we need to consider the vectors in the plane V ⊂ E fixed by

det(ρ2(r))ε1ρ2(r) and − det(ρ2(h))ε2ρ2(h)

(the latter only if the action type is not cyclic), where ε1 and ε2 are as above the
elements ρ1(r) and ρ1(h).

For C+
6 , for example, E∗ is the subspace fixed by −ρ2(r), which is a reflection

along a line. Hence C+
6 , even if there is an extension of a planar symmetry group

not of type R, might have minimizers with non-zero angular momentum. In fact,
it is not difficult to see that up to a change in coordinates C+

6 = C−
3 . On the other

hand, for C−
6 it happens that E∗ is the subspace fixed by ρ2(r), which is again a

line. Again, as above, C−
6 can be written as C−

3 with a suitable choice of ω for C−
3

(which is of type R).
Now we can consider the extensions of D6 and D12. For D6, we have that

det(ρ2(r))ε1ρ2(r) and − det(ρ2(h))ε2ρ2(h) are respectively equal to ε1 and ε2
(seen as 2×2 matrices), and hence equivariant minimizers ofD+,−

6 ,D−,+
6 andD

−,−
6

have zero angular momentum. On the other hand it is easy to see that after a change of
coordinates D

+,+
6 = L

+,−
6 . For D12, det(ρ2(r))ε1ρ2(r) and − det(ρ2(h))ε2ρ2(h)

are respectively equal to −ε1ρ2(r) (which is a reflection along a line) and ε2 (seen
as a matrix). Thus, if ε2 = −1, orbits have zero angular momentum. Otherwise,
for ε2 = 1, this is not necessary. Furthermore, it is true that D

+,+
12 = L

−,−
6 and

D
−,+
12 = L

+,−
6 for a suitable ω.

The following definition is the natural extension of the corresponding property
for planar groups.

Definition 4.5. A symmetry group G is said to be of type R if there is a rotation
axis for G (and the restriction of the action of G on the invariant plane orthogonal
to the axis is a planar symmetry group of type R). A symmetry group G is said to
be not of type R if there are no rotation axes for G in E.
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The following lemma follows immediately from the previous arguments.

Lemma 4.6. If G does not have rotation axes, i.e., it is not of type R, then all
G-equivariant trajectories have zero angular momentum and hence they are pla-
nar.

Lemma 4.7. Let G be any space symmetry group not of type R. Then every G-equi-
variant non-collinear orbit is contained in a (unique) G-invariant plane.

Proof. By Lemma 4.6, the angular momentum is zero and hence the orbit is planar.
It is only left to show that the plane containing the orbit is G-invariant. But since
for every g ∈ G and every t ∈ T

±g [(x1(t) − x2(t)) × (x1(t) − x3(t))]

= (gx1(t) − gx2(t)) × (gx1(t) − gx3(t))

= (xg1(gt) − xg2(gt)) × (xg1(gt) − xg3(gt),

it follows that the plane containing the configuration x1(t), x2(t) and x3(t) is
G-invariant. ��

5. The vertical variation

Let (z, w) be a system of coordinates for the Euclidean space E ∼= R
3 ∼= C⊕R,

with z ∈ C and w ∈ R. For a planar central configuration x̄, consider the planar
rotating periodic path x(t) = eikt x̄, with k ∈ Z. In space the orbit can be written
for i = 1, 2, 3 as (xi(t), wi(t)) ∈ R

2 × R with wi = 0. Now consider three peri-
odic H 1-functions ϕi : T → R. There is a corresponding path in �, which will
be denoted by (x(t), εϕ(t)), obtained by adding the vertical variation εϕ to the
rotation configuration x̄.

Lemma 5.1. Let A(ε) denote the action of the path (x(t), εϕ(t)) in [0, 2π ]. Then
the second derivative of A(ε) evaluated with ε = 0 is

d2A
dε2

∣∣∣∣
ε=0

=
∫ 2π

0


∑

i∈n

miϕ̇
2
i − α

∑
i<j

mimj

|xi − xj |α+2

(
ϕi − ϕj

)2


 dt.

Proof. The second derivative of the kinetic part is

d2

dε2

∑
i∈n

1

2
mi(|ẋi + �xi |2 + ε2ϕ̇2

i ) =
∑
i∈n

miϕ̇
2
i .

Now, it is easy to see that

d2

dε2

∣∣∣∣
ε=0

[
(a + ε2b)c

]
= 2ac−1bc;
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moreover, the terms in the potential part contain expressions of the type

mimi

[
(xi − xj )

2 + ε2(ϕi − ϕj )
2
]−α/2

,

with a = (xi − xj )
2, b = (ϕi − ϕj )

2 and c = −α/2. Hence ,

d2

dε2

∣∣∣∣
ε=0

∑
i<j

mimj |(xi, ϕi) − (xj , ϕj )|−α

=
∑
i<j

mimj 2
[
(xi − xj )

2
]−α/2−1

(ϕi − ϕj )
2
(
−α

2

)

= −α
∑
i<j

mimj

|xi − xj |α+2 (ϕi − ϕj )
2.

Thus, the claim is proved. ��
Lemma 5.2. Consider the path x(t) = eikt x̄ as above. For a unit vector e ∈ C ⊂ E

define ϕ = (ϕ1, ϕ2, ϕ3) by the scalar product ϕi(t) = xi(t/k) · e for i = 1, 2, 3.
Then, the second variation of Lemma 5.1 is

d2A
dε2

∣∣∣∣
ε=0

= π (I (x̄) − αU(x̄)) ,

where I (x̄) = ∑
i mi x̄

2 is the momentum of inertia of x̄ and U(x̄) is the value of
the potential function.

Proof. Define β = 1/k. Then, ϕi(t) = xi(βt) · e = (eit x̄i ) · e and therefore∫ 2π

0
miϕ̇

2
i dt =

∫ 2π

0
mix̄

2 sin2(t + δi) dt = πmix̄
2

for some suitable δi , which implies that
∫ 2π

0

3∑
i=1

miϕ̇
2
i = π

3∑
i=1

mix̄
2 = πI (x̄).

As for the second part of the expression in Lemma 5.1, since the norms |xi − xj |
are constant we obtain∫ 2π

0

mimj

|xi(t) − xj (t)|α+2 (ϕi − ϕj )
2 dt

=
∫ 2π

0

mimj

|xi(t) − xj (t)|α
(

ϕi − ϕj

|xi(t) − xj (t)|
)2

dt

= mimj

|x̄i − x̄j |α
∫ 2π

0

(
xi(βt) − xj (βt)

|xi(βt) − xj (βt)| · e
)2

dt

= mimj

|x̄i − x̄j |α
∫ 2π

0
cos2(t + δij ) dt

= π
mimj

|x̄i − x̄j |α .
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with a suitable choice for the shift constant δij . Thus, by summing up we obtain
∫ 2π

0

∑
i<j

mimj

|xi − xj |α+2

(
ϕi − ϕj

)2
dt = π

∑
i<j

mimj

|x̄i − x̄j |α = πU(x̄).

Hence conclusion follows. ��
Until now we did not assume anything else on x(t) other than it rotating k times

during the interval [0, 2π ]. Now we assume that it is a minimizer in a suitable linear
class of paths (such as �G for a suitable G acting on the plane or the space). Then
the following equation holds:

Lemma 5.3. If x(t) = eikt x̄ is a minimizer of Aω, then (Kepler’s law)

(k + ω)2I (x̄) = αU(x̄).

Proof. It is easy to see that the action is

1

2π
Aω = 1

2
(k + ω)2I (x̄) + U(x̄).

By deriving the expression in R = √
I we find that the minimum, as R > 0 varies,

is achieved when (k + ω)2R2 = αU(x̄). Otherwise, we can also use homogeneity
and directly Newton’s equations. ��
Proposition 5.4. Assume that for a symmetry group G every rotating G-equivari-
ant central configuration x(t) = eikt x̄ is such that (k + ω)2 > 1. Then rotating
central configurations cannot be minimizers of AG.

Proof. By Lemma 5.2 the second variation is
d2A
dε2

∣∣∣∣
ε=0

= π(I (x̄) − αU(x̄)). But

by Lemma 5.3

αU(x̄) = (k + ω)2I (x̄),

so that

d2A
dε2

∣∣∣∣
ε=0

= πI (x̄)(1 − (k + ω)2) < 0,

which shows that x(t) cannot be a minimizer. ��
Now we consider a different vertical variation, which can be readily used for

a vertical isosceles triangle. Consider now the variation ϕ (of Lemma 5.1) defined
as follows: ϕ = v sin t , where v ∈ R

n is a one-dimensional configuration with∑
i∈n mivi = 0. Without loss of generality we assume that

∑
i∈n mi = 1.

Lemma 5.5. Let G be a symmetry group and x(t) = eikt x̄ be a planar G-equivari-
ant rotating central configuration. If (x, ϕ) is G-equivariant and

∑
i<j

mimj (vi − vj )
2
(

1 − α|x̄i − x̄j |α+2
)

< 0, (5.6)

then x(t) is not a minimizer.
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Proof. Since
∑

i∈n miϕi = 0 and
∑

i∈n mi = 1 by assumption, we can write as
in (2.21) the kinetic energy in terms of differences, and therefore the equation of
Lemma 5.1 can be read as

d2A
dε2

∣∣∣∣
ε=0

= π


∑

i∈n

mimj (vi − vj )
2 − α

∑
i<j

mimj

|xi − xj |α+2

(
vi − vj

)2


 ,

since
∫ 2π

0 sin2 t = ∫ 2π

0 cos2 t = π . This implies the claim. ��
Proposition 5.7. In the hypotheses of Lemma 5.5, consider the following case:

n = 3, m1 = m2, x1 = −x2 (and hence x3 = 0) and v1 = v2. Then
d2A
dε2

∣∣∣∣
ε=0

< 0

if and only if

(k + ω)2 >
m1

2α+1 + 1 − 2m1. (5.8)

Proof. If x(t) = eikt x̄ is a minimum, then x̄ = (R, −R, 0), with

Rα+2 = α

2β
, (5.9)

where β = (k + ω)2

m12−α + 2m3
. Since v1 = v2, the left term of (5.6) is equal to

2m1m3(v1 − v3)
2
(

1 − α|x̄1 − x̄3|α+2
)

,

and therefore
d2A
dε2

∣∣∣∣
ε=0

< 0 if and only if Rα+2 < α. But by (5.9) this is true if

and only if

(k + ω)2 >
m1

2α+1 + 1 − 2m1,

as claimed. ��
Remark 5.10. The right-hand side of (5.8) is a linear function of m1, which is
defined for m1 ∈ (0, 1/2) and goes from a limit value of 1 (for m1 = 0) to a
limit value of 2−(2+α) (for m1 = 1/2). Hence it is always possible to find mass
distributions (m1, m2, m3) for which minimizers are not rotating Euler solutions,
provided that for the minimal k we have (k+ω)2 > 2−(2+α). For example, if α = 1
then we find that there is a non-trivial interval of values of ω for which minimizers

are non-trivial for all m ∈
(

3

7
,

1

2

)
(in the case that k can be any integer) while the

same happens for all m ∈
(

0,
1

2

)
if the symmetry group implies a constraint on k

such that k = 0 mod 2. For equal masses we have m = 1

3
�∈

(
3

7
,

1

2

)
and so we

must assume that k = 0 mod 2, inequality (5.8) becomes

(k + ω)2 >
5

12
,
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and thus non-planar orbits exist for ω ∈
(√

5
12 , 2 −

√
5

12

)
. We will apply this

simple argument below in Lemma 7.7 to prove the existence of non-planar (quasi)-
periodic orbits for when two masses are approximately equal.

6. Space symmetries

In this section we will describe space symmetries and prove Theorem A.
Consider the case of groups with trivial core. Let r ⊂ G denote the T-cyclic

generator, and, if it exists, let h ∈ G denote one of the time reflections. Consider
r� = σ(r), h� = σ(h), rV = ρ(r) and hV = ρ(h). By Lemma 3.3, the G-rep-
resentation ρ is the sum of one-dimensional components, hence rV and hV can be
written as matrices with ±1 diagonal elements. Thus a choice of the generators r and

h yields a 3×2 matrix


 rV

1 hV
1

rV
2 hV

2

rV
3 hV

3


 where the entries rV

i and hV
i are the diagonal

entries of the matrices rV and hV respectively. Conversely, if such a matrix is given,
the elements r and h can be obtained by the permutations r� and h� in �3 (analo-
gously for cyclic and brake action types). The number of such matrices is the number
of unordered 3-tuples of elements chosen in the set {[++], [+−], [−+], [−−]},
which is

(4+3−1
3

) = 20. Under the identification 0 = [++], 1 = [+−], 2 = [−+]
and 3 = [−−], it is possible to represent such matrices by 3 digit numbers as in
Table 3.

If the group G is of cyclic type, then there are 12 possible cases for rV and r�
(4 for rV times 3 for r�): r� ∈ {(), (1, 2), (1, 2, 3)} and rV ∈ {[+ + +], [+ + −],
[+ − −], [− − −]}. Is not difficult to see that the resulting groups are

Table 3. The list of all dihedral symmetries

000:
 + +

+ +
+ +


 =̄

001:
 + +

+ +
+ −


 =̄

002:
 + +

+ +
− +


 =̄

003:
 + +

+ +
− −


 =̄

011:
 + +

+ −
+ −




012:
 + +

+ −
− +


 =̄

013:
 + +

+ −
− −


 =̄

022:
 + +

− +
− +


 =̄

023:
 + +

− +
− −


 =̄

033:
 + +

− −
− −




111:
 + −

+ −
+ −


 =̄

112:
 + −

+ −
− +


 =̄

113:
 + −

+ −
− −


 =̄

122:
 + −

− +
− +


 =̄

123:
 + −

− +
− −




133:
 + −

− −
− −


 =̄

222:
 − +

− +
− +


 =̄

223:
 − +

− +
− −


 =̄

233:
 − +

− −
− −


 =̄

333:
 − −

− −
− −



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three-dimensional extensions as listed in Table 4 (where, as in Definition 2.19,
from now on the symbol ‘∼’ means that the symmetry group is equivalent to the
group in question after a change in rotating coordinates).

Given a symmetry group G, consider the elements rV , r� , hV and h� defined

above. The matrix


 rV

1 hV
1

rV
2 hV

2

rV
3 hV

3


 associated with rV and hV is one of the 20 matrices

of Table 3. Furthermore, it is easy to prove that up to permutations the pair [r�, h�]
can be chosen from the set

{[(1, 2, 3), (1, 2)], [(), (1, 2)], [(1, 2), ()], [(1, 2), (1, 2)], [(), ()]}.
Consider first the case [r�, h�] = [(1, 2, 3), (1, 2)]. Since the matrices


 rV

1 hV
1

rV
2 hV

2

rV
3 hV

3


 and


 rV

1 hV
1rV

1

rV
2 hV

2rV
2

rV
3 hV

3rV
3


 (6.1)

yield the same symmetry group as the matrix up to a change of coordinates, it is
possible to assume that [rV , hV ] belongs to one of the 13 items: 000, 001, 002
(∼= 003), 011, 012 (∼= 013), 022 (∼= 033), 023, 111, 112 (∼= 113), 122 (∼= 133),
123, 222 (∼= 333), 223 (∼= 233).

Now, since we are excluding the case of groups which are bound to collisions,
we have to rule out the cases in which hV or the product rV hV is trivial, which
means we have to exclude the four cases 000, 002 ∼= 003, 022 ∼= 033, 222 ∼= 333;
thus we are left with a list of 9 matrices.

We can now take the rotation axes into account. Let e1, e2 and e3 denote the
canonical elements of the base of the vector space E. Table 5 shows the list of
elements of {e1, e2, e3} which are rotation axes for the corresponding group. Using
the rotating frame change of coordinates, it is therefore possible to show that 023 ∼
001, 123 ∼ 011 and 223 ∼ 012, and hence we are left with a choice among the 6
items: 001 = L

+,−
6 , 011 = D

+,+
6

∼= L
+,−
6 , 111 = D

+,−
6 , 012 = D

+,+
12

∼= L
−,+
6 ,

112 = D
−,+
6 and 122 = D

−,+
12 . Consider now the case [r�, h�] = [(), (1, 2)]. We

shall proceed in a similar way, analyzing case by case until we are left with a small

Table 4. Symmetry groups of cyclic type

() (1, 2) (1, 2, 3)

[+ + +] C+
1 (fully uncoercive) C+

2 (fully uncoercive) C+
3

[+ + −] C−
1 C−

2 (fully uncoercive) C−
3

[+ − −] L−
2 (fully uncoercive) H−

2 (fully uncoercive) C−
6 ∼ C+

3
[− − −] ∼ C−

1 ∼ C−
2 ∼ C−

3

Table 5. Rotation axes

001 011 111 012 112 023 122 123 223
e1, e2 e2, e3 e3 e1 e1 e2, e3
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number of significative choices. As above, 000, 002, 022 and 222 yield a group
which is bound to collisions, and up to a change of coordinates we can choose
among the same following 9 items: 001, 011, 012 (∼= 013), 023, 111, 112 (∼= 113),
122 (∼= 133), 123, 223 (∼= 233).

The rotation axes are the same as those of Table 5 above, and again in a suitable
rotating frame 023 ∼ 001, 123 ∼ 011 and 223 ∼ 012, so that we can choose just
among the 6 items: 001, 011, 111, 012, 112 and 122. First an easy computation
shows that 111, 112 and 122 yield symmetry groups without rotation axes which
are at the same time not coercive (thus fully uncoercive by Lemma 2.18). Further-
more, the choice of 001, 011 or 012 yields groups G conjugate to the three-dimen-
sional extensions H

+,+
2 , H

+,−
2 and H

−,+
2 of the planar Isosceles symmetry group

H2. As a third possibility, now consider the cases [r�, h�] = [(1, 2), (1, 2)] and
[r�, h�] = [(1, 2), ()]. We can consider just the case [r�, h�] = [(1, 2), (1, 2)],
up to a change of coordinates (but we will not be able to use the argument of (6.1) to
reduce the number of matrices). As above, we start with the list of all possibilities,
refer to Table 3. Since h� = (1, 2), if hV is trivial then the resulting group is bound
to collisions, and therefore we cancel the four matrices 000, 002, 022 and 222.
From the 16 matrices left the following 8 do not have a rotation axis: 003, 033,
111, 112, 113, 122, 133 and 333. Since the action on {1, 2, 3} is not transitive, by
Lemma 2.18 all those with a row equal to [++] are fully uncoercive (that is, 003 and
033). Furthermore, for the matrices 111, 112 and 122, the resulting symmetry group
is bound to collisions (since rV hV is the antipodal map, while r�h� is the trivial
permutation). The three remaining items 113, 133 and 333 are fully uncoercive
simply because they contain a row equal to [−−] (which yields a one-dimensional
non-coercive symmetry group).

So, we are left with 8 choices, all with rotation axes: 001, 011, 012, 013, 023,
123, 223, 233. After a change in rotating coordinates we can see that 023 ∼ 001,
123 ∼ 011, 223 ∼ 012 and 233 ∼ 013; furthermore, it is easy to see that 001
and 013 yield fully uncoercive symmetry group. As a consequence, the remaining
matrices are 011 and 012. In the notation of Table 1, they are respectively the sym-
metry groups H

+,−
4 and H

−,+
4 . At last, we can consider the case [r�, h�] = [(), ()]

where the resulting group acts trivially on the index set. The matrices 111, 113,
133 and 333 yield groups which are bound to collisions. By the same argument as
(6.1), we do not consider the duplicates 003, 013, 033, 112, 122, 222, 233. Of the
remaining 9 matrices, three do not have rotation axes (000, 002 and 022) and yield
groups which are not coercive, while by a change in rotating frames the other six
can be reduced to the following three: 001(∼ 023), 011(∼ 011) and 012(∼ 012).
The group induced by 001 is fully uncoercive. So, we can as before reduce the list
of 20 matrices to the two cases 011 and 012 which yield respectively the groups
L

+,−
2 and L

−,+
2 of Table 1.

Definition 6.2. We say that a symmetry group is of vertical isosceles type if its core
is generated by an element k such that ρ(k) is the rotation of angle π around an
axis and σ(k) is conjugate to the permutation (1, 2).

To conclude the proof it is left to prove the easy fact that if the core is non-trivial,
then the group is homographic, provided that it is not of vertical isosceles type.
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Lemma 6.3. Let G be a symmetry group which is not bound to collisions and not
fully uncoercive. Then either G-equivariant trajectories are always homographic,
or the group is of vertical isosceles type, see Definition 6.2.

Proof. As in the proof of the (similar) Proposition 5.4 for planar groups of [1], ker τ

is isomorphic to a subgroup of �3 and hence its three-dimensional representation
in E is reducible: that is, there is a ker τ -invariant line R in E. Now, since ker τ is
normal in G, either gR ⊂ R for every g ∈ G, or E is the sum of three copies of R,
which are permuted by the elements in G (hence ker τ has order 2 and acts as the
antipodal map −1 on E). After an analysis of a few cases, it is clear that the possible
actions of the core are the following: ker τ = 〈(a3, (1, 2))〉, ker τ = 〈(r2, (1, 2))〉,
ker τ = 〈(r3, (1, 2, 3))〉, ker τ = 〈(r3, (1, 2, 3), (h2, (1, 2))〉 (which, incidentally,
are extensions of planar analogues), where a3 is the antipodal map a3 = −1, r2
the rotation of π around a fixed axis, r3 the rotation of 2π/3 around a fixed axis
R, and h2 the reflection with respect to a plane containing (or with respect to a
line orthogonal to R). In the first case ker τ -invariant configurations are antipo-
dal binaries with a third mass at the origin (this is equivalent to a spatial Kepler
problem), which is a homographic group; the second case of the isosceles triangle
(which is not homographic) is the well known; the third and the fourth cases yield
homographic symmetry groups. Thus the proof is completed. ��

7. Proof of Theorem B

In this section we will complete the proof of Theorem B, proving one-by-one
all its parts.

Lemma 7.1. Let G be a symmetry group of the three-body problem which is not
bound to collisions. Then all G-equivariant minimizers are collisionless.

Proof. Consider first the case of a group with trivial core. Let H be one of its
maximal T-isotropy groups; H is generated by the non-trivial element h ∈ H with
σ(h) ∈ {(), (1, 2)}. The orthogonal motion ρ(h) is of order at most two, and hence
there are at least three invariant orthogonal lines (equivalently, the representation of
H is the sum of one-dimensional H -representations). An immediate consequence
is that if it is not bound to collisions (that is, if (ρ(h), σ (h)) �= (1, (1, 2))), the sub-
group H has the rotating circle property (10.1) of [12]. Thus, by (10.10) of the same
paper, G-equivariant minimizers are collisionless. Now assume that the kernel of
τ is not trivial. As in the proof of Lemma 6.3 it is possible to assume that ker τ

acts as one of the four cases listed, where the first case yields a one-center (Kepler)
problem in space, the third and fourth cases yield a one-center planar problem, and
the second case is the isosceles triangle, see Definition 6.2. We can readily see that
Theorem 10.1 of [12] can be applied in all of the cases, and hence the thesis is
proved. ��
Lemma 7.2. For every ω, minimizers for C−

1 , H+,−
2 , C+

3 , L+,+
6 , L+,−

6 are Lagrange
homographic solutions.
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Proof. It is easy to see that the hypotheses of Proposition 2.20 are fulfilled, hence
the lemma is proved. ��
Lemma 7.3. Minimizers for D

+,−
6 , D

−,+
6 and D

−,+
12 are zero-angular momentum

planar solutions: the Chenciner-Montgomery figure-eight solution.

Proof. Since these groups do not have rotation axes, by Lemma 4.6, their minimiz-
ers are planar orbits with zero angular momentum, contained in a G-invariant plane
by Lemma 4.7. All planes are G-invariant for D

+,−
6 , and the restricted group is D6.

Hence by (4.15) of [1] the minimizer for D
+,−
6 is the D12-symmetric Chenciner-

Montgomery figure eight [10]. Next, if G = D
−,+
12 , a G-orbit (which is collisionless

by 7.1, has to be contained in the G-invariant plane where G acts as D12, since
otherwise it would be bound to collisions. Hence the minimum for D

−,+
12 is again

the Chenciner-Montgomery figure eight. At last, consider D
−,+
6 , which is a group

of order 12. In any one of the infinitely many invariant planes with D12-action as
restriction there is a CM-eight minimum, while in the other invariant plane there is
a redundant D6-action (hence if the minimum were to be contained in this plane, it
would have implied that the action of the D6-eight is less than the action of the D12-
eight, which is not true by [1]). Thus as above the minimum is the D12-symmetric
CM-eight. ��
Lemma 7.4. For ω ∈ (−1, 1) + 6Z, minimizers for L

−,+
6 and its subgroup C−

3 ⊂
L

−,+
6 are the non-planar (if ω �= 0) families of quasi-periodic solutions called P12

and P ′
12, respectively which might be likely to coincide.

Proof. By Lemma 7.1, minima for C−
3 and L

−,+
6 exist and are collisionless. If they

are planar, then in both cases they have to be a Lagrange rotating solution (rotating
at angular speed k, with k = ±2 mod 6, minimizing the number (k + ω)2). The
proof can be concluded by applying Proposition 5.4. Action levels for the resulting
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Fig. 1. Action-levels for the L
−,+
6 -symmetric P12 minimizers.
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(a) Some representatives of the P12
family in the rotating frame

  1

  2

  3

(b) One of representatives of the P12
family on inertial frame

Fig. 2. The P12 family.

minima are depicted in Fig. 1: in the intervals (1/6, 1/2) and (1/2, 5/6) the mini-
mum is a rotating Lagrange solution, while otherwise it is a non-planar orbit (in the
graph the period is rescaled to 12π , so that values of ω need to be multiplied by a
factor of 6). It is remarkable how the estimate of Proposition 5.4 seems to be sharp,
since when its hypothesis is not fulfilled we can find (numerically) that minimizers
are in fact planar rotating Lagrange triangles. ��
Remark 7.5. In [14]2

Marchal actually introduced, under a different notation, the
family corresponding to minimizers (as ω varies) under L

−,+
6 -symmetries, naming

it P12, – see also [13]. The fact that there is also a C−
3 -equivariant family (as well

as the fact that there is a group action of cyclic type yielding a figure-eight orbit)
apparently was not known. As for the planar eights, it seems that (numerically)
these two families coincide, and that for ω = 0 we find the CM-eight and the cyclic
eight (which as well should likely coincide). Some of these were questions raised in
the last section of [14] (see also Section 4.(iv) of [5]), questions which probably still
need to be answered. For example, as said at the end of section 4 of [5], we should
prove that for ω = 0 the minimum is planar and that minimizers are a continuous
family (from Fig. 1 and 2(a) it seems that action levels depend continuously on ω, as
well as the corresponding trajectories). In Fig. 2(a) the minimizers corresponding
to the values ω = j/5 for j = 0 . . . 5 are shown, together with their projections.
The curves with j = 0 and j = 5 have a bigger width. On its side, there is one of
the orbits (actually, corresponding to the non-integer value j = 2.5) in the inertial
frame.

Remark 7.6. In [9], Chenciner, Féjoz & Montgomery found, under an assump-
tion (at the moment numerically evaluated) of non-degeneracy for the CM-eight,

2 The proof of the existence, claimed in [14] and later in [15], was completed in [7, 5] by
action level estimates on colliding paths, since the main result of [15] cannot be applied to
the P12 family, which has a symmetry group of dihedral type. The action levels graph of [7]
is a qualitative picture of Fig. 1.
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three families of periodic orbits in rotating frames, derived from three different
symmetry-breaks of the planar eight. The family there termed �1 is P12.

Lemma 7.7. For every ω �∈ Z there is a mass distribution such that minimizers
of L

+,−
2 , L

−,+
2 , H

+,−
4 and H

−,+
4 are not planar (where for the first groups two

masses do not need to be equal, while in the remaining groups two masses need
to be equal). Conversely, for every mass distribution with two equal masses, there
is an ω such that minimizers which are symmetric under the groups L

−,+
2 are not

planar.

Proof. This follows directly from Remark 5.10. ��

8. Remarks

We did not prove general and complete results about planarity or non-planarity
of minimizers for the following symmetry groups: L

+,−
2 , L

−,+
2 , H

−,+
2 , H

+,−
4 and

H
−,+
4 . In fact, we have proved that for some choices of masses and angular speed,

minima are non-planar, but we could not prove that minima are planar for other
choices (as apparently they are: all the Hill-type orbits and Euler solutions exposed
in, for example, [1]). We describe now, among other remarks, some properties of
their minimizers with a little bit more details.

Remark 8.1. If the masses are equal, for all ω minimizers under the symmetry
group L

+,−
2 are planar (and they are the Euler and Hill retrograde orbits described

in [1] – note that it is easy to prove by Proposition 5.7 that for all these symme-
try groups there are choices of masses and angular speed ω for which minimizers
are not planar). Also, it turns out that there are other local minimizers (planar and
non-planar).

Remark 8.2. The symmetry group L
−,+
2 imposes that possible rotating configura-

tions (which are Euler collinear) have to rotate an even number of loops, i.e. the
cyclic part of the symmetry group imposes that a rotating central configuration has
to have k = 0 mod 2, and hence by Remark 5.10 there is a continuum of choices
for ω, for every choice of non-zero masses, such that the minimizer is non-planar.
An example is shown in Fig. 3.

Remark 8.3. If the symmetry group is H
−,+
2 , then again it implies that a rotating

central configuration has to rotate k = 0 mod 2 times. The possible rotating con-
figuration is a Lagrange triangle and it is not possible to apply Proposition 5.4 to
show that it is not a minimum since it is always possible to find k with |k +ω| � 1.
On the other hand the constraint k = 0 mod 2 prevents us from applying Prop-
osition 2.20 to show that the minimum is in fact a Lagrange solution. Numerical
experiments show that this is the case.

Remark 8.4. Now consider the symmetry groups H
+,−
4 and H

−,+
4 . As in the pla-

nar case, we find non-homographic minimizers for some interval of values of ω

(and approximately equal masses – see Fig. 4 of [1]). Homographic solutions have
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  1

  2

  3

(a) Rotating frame

  1

  2

  3

(b) Inertial frame

Fig. 3. A non-planar L
−,+
2 -symmetric orbit with equal masses, ω = 0.9.

to be Euler-Moulton rotating collinear configurations, and hence we can literally
repeat the arguments applied above to L

+,−
2 and L

−,+
2 , and obtain the fact that

for two equal masses it is always possible to find intervals of angular speed ω for
which minimizers are not planar. This time rotating central configurations do not
necessarily have k = 0 mod 2 since H4 has already a cyclic part of order 2. Hence
we cannot prove with the vertical variation above that there are non-planar orbits
for equal masses (for equal masses, after numerical experiments it seems that local
minima under H

+,−
4 are planar, while local minima under the action of H

−,+
4 can

be non-planar for some ω).

Remark 8.5. In the proofs of Proposition 5.4 and Proposition 5.5 there is clearly no
need to assume that there are three bodies. In fact, the same vertical variation yields
interesting non-planar orbits for every number of bodies. For example, it is easy to
show by a straightforward extension of Lemma 5.2 that families corresponding to
the P12 and P ′

12 ones exist for any odd number n of bodies. In fact, consider the
cyclic group C of order 2n, acting by a cyclic permutation of the n bodies on the
index set and by a reflection along a plane p in the space E. Then, C-symmetric
loops are choreographies in E consisting of n bodies, and if we choose as rotation
axis ω the line orthogonal to the plane p, we obtain a family of coercive n-body
problems such that for ω ∈ (−1, 1) mod 2n minima are not equilibrium solu-
tions. Since they are collisionless due to [12], they are periodic orbits (non-planar
for ω �= 0). It is likely that they behave like the P12, namely that they connect a
eight solution with a (twice rotating in the rotating frame) homographic solution,
but this is probably hard to prove (already for n = 3 nobody has published a proof
that for ω = 0 the P12 is a planar eight and that the family is a continuous one).

Remark 8.6. With regards to Proposition 5.4, a similar proposition was used by
Chenciner in [6] to show that minimizers for the n � 4 anti-symmetric loops are
non-planar, following Moeckel’s theorem on central configurations [16]. While
the computation is very similar, here we use a different type of vertical variation,
which yields solutions, in particular, also when the rotating central configuration
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  1

  2
  3

Fig. 4. The simplest non-planar solution with three equal masses.

minimizes the reduced potential Ũ , due to the greater number of loops that symme-
try constraints impose on rotating central configurations. Furthermore, in Section 3
of [6] there is an interesting short remark proving the existence of a non-planar peri-
odic solution for 3 bodies in the vertical isosceles problem under the antisymmetry
constraint. Since this constraint coincides with the group C−

1 with angular speed
ω = 1 (a group which implies k = 0 mod 2 for any C−

1 -equivariant equilibrium

solution), we can use Proposition 5.7, to obtain that for all ω ∈
(√

5
12 , 2 −

√
5

12

)

(as in Remark 5.10 above) and all equal masses, a C−
1 -symmetric vertical isosceles

minimizer is not planar. Fig. 4 shows the solution in the inertial frame – probably
this is the simplest non-planar periodic solution of the three-body problem.

Remark 8.7. In this paper we have sometimes rescaled the period to a number
different than 2π . It is worth mentioning that, because of the homogeneity of the
potential, a minimizer in a frame rotating with angular velocity ω and period k2π

corresponds to a minimizer with period 2π in a frame rotating with angular velocity
kω. The reason for rescaling the period is that in our numerical experiments we
have decided to rescale the period in order to have a fundamental domain of length
π . The data for the minimizers used for the figures were obtained by a custom
optimization program running on a Linux cluster. The symmetries are computed
by a package written in GAP and python.

Remark 8.8. In Theorem B nothing is stated about H−,+
2 . Numerically we can find

that H−,+
2 -symmetric minima are rotating Lagrange triangles, but Proposition 2.20

cannot be applied to this case.
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