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Abstract

We prove a local existence and uniqueness result of crystalline mean curvature
flow starting from a compact convex admissible set in IRN . This theorem can handle
the facet breaking/bending phenomena, and can be generalized to any anisotropic
mean curvature flow. The method provides also a generalized geometric evolution
starting from any compact convex set, existing up to the extinction time, satisfying
a comparison principle, and defining a continuous semigroup in time. We prove
that, when the initial set is convex, our evolution coincides with the flat φ-curva-
ture flow in the sense of Almgren-Taylor-Wang. As a by-product, it turns out that
the flat φ-curvature flow starting from a compact convex set is unique.

1. Introduction

In this paper we deal with the anisotropic mean curvature motion, which is
defined as the gradient flow of the surface energy functional Pφ defined as

Pφ(E) :=
∫
∂E

φ◦(νE) dHN−1, E ⊂ IRN,

where νE is the outward unit normal to the boundary ∂E of E and φ◦ (the surface
tension) is a positively one-homogeneous and even function such that {φ◦ � 1}
is a compact convex set with nonempty interior. We are particularly interested in
the case when N � 3 and {φ◦ � 1} is not smooth; in this respect, we say that the
anisotropy φ◦ is crystalline if {φ◦ � 1} is a polyhedron.

Anisotropic mean curvature flow and its generalizations are used to describe
several phenomena in material science and crystal growth, see for instance [18, 38,
32]. From the mathematical point of view, the analysis was initiated by J. Taylor

[38, 39] and developed further in [2, 17, 1, 31, 41]. In comparison with more famil-
iar geometric evolutions such as mean curvature flow (corresponding to the choice
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φ◦(x) = |x|), it presents additional difficulties, since both the involved differential
operators and the flowing interfaces may be nonsmooth. We recall that, for mean
curvature flow, a short time existence theorem of a smooth solution is known [28,
26] as well as long time existence starting from special initial data [33, 23]. In
addition, singularities may appear during the evolution, and have been partially
classified (see for instance [34, 35, 40, 3] and the references therein). A compari-
son theorem is valid, but uniqueness cannot be expected in general [8], due to the
so-called fattening phenomenon.

Concerning anisotropic mean curvature flow, if no further assumptions on φ◦
are required (such as the regularity and strict convexity of {φ◦ � 1}) even the
notions of “smooth surface” and “regular evolution” are not immediate in N � 3
dimensions; for instance C1 regularity for small times cannot be expected in the
crystalline case. The notions of a φ-regular set and a Lipschitz φ-regular set, intro-
duced in [12, 11] (see Section 2.3), are two candidates for substituting the notion
of a smooth surface; φ-regular sets admit, by definition, a (selection of the) Cahn-
Hoffman vector field with bounded divergence in a neighbourhood of the surface,
while Lipschitz φ-regular sets have such a selection which is Lipschitz.

We are interested in proving an existence theorem for anisotropic mean curva-
ture flow with no restriction on the anisotropy; we will discuss a result for small
times in the class of φ-regular sets starting from special initial data, and some qual-
itative results for long times. We shall always restrict our discussion to compact
and convex initial data.

In the effort of proving (even local-in-time) existence theorems, we looked for
weak solutions. As far as we know, the viscosity theory has not yet been adapted to
this type of evolution (see however [29] for recent developments in this direction),
at least for nonsmooth (such as crystalline) surface tensions in three dimensions.
The only notion of a global solution that we know to be available at the present
moment is the one given by the method of Almgren-Taylor-Wang [2], referred
to here as the flat φ-curvature flow (see also [36] for a similar notion). We point
out that in this paper we choose the mobility function accordingly to [19], which
is different from the choice in [2]; however, the results of this paper (as well as
the results of [2]) can be easily adapted to the case of a different mobility (see [19,
Appendix D]). Such a solution is constructed via a time-step minimization method,
and provides a global solution in the class of Ahlfors regular finite perimeter sets
(and no more regularity is known for this evolution). We remark that no uniqueness
and semigroup in time are known for flat φ-curvature flow in dimensions higher
than two. In the two-dimensional case, at least for purely crystalline evolutions,
the authors in [1] proved that the flat φ-curvature flow coincides with the solution
given by the ODE method [31], hence it is unique.

To state the main result of the present paper let us introduce some notation. Given
a compact convex set C ⊂ IRN we denote by dCφ the φ-signed distance function
from ∂C negative inside C, see (5). Let� be a sufficiently large ball containing C.

Let G : (0, 1)× (L2(�) ∩ BV (�))× (L2(�) ∩ BV (�)) → [0,+∞] be the
functional defined as

G(h, v,w) :=
∫
�

φ◦(Du) + 1

2h

∫
�

(u− w)2 dx.
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Let us define recursively the functions dih and sets Cih as follows: for any h ∈ (0, 1)
and any i ∈ N ∪ {0},

C0
h := C, d0

h := dCφ ,

G
(
h, u, dih

)
= min

{
G
(
h, v, dih

)
: v ∈ L2(�) ∩ BV (�)

}
(1)

and

Ci+1
h := {u � 0

}
, di+1

h = d
Ci+1
h

φ . (2)

Given a real number a, we indicate by [a] the integer part of a. Our results can be
summarized in the following two statements.

Theorem 1. Assume that {φ◦ � 1} ⊂ IRN (N � 2) is a compact convex set with
nonempty interior and symmetric with respect to the origin. Let C ⊂ IRN be a
compact convex set satisfying the rWφ-condition for some r > 0. Then there exists
T > 0 such that

there exists lim
h→0

C
[t/h]
h =: C(t) for any t ∈ [0, T ]

in the Hausdorff distance, and C(0) = C. Each set C(t) is compact, convex and
φ-regular, and the map t ∈ [0, T ] → C(t) is the unique local-in-time φ-regular
flow starting from C.

Theorem 2. Assume that {φ◦ � 1} ⊂ IRN (N � 2) is a compact convex set with
nonempty interior and symmetric with respect to the origin. Let C ⊂ IRN be a
compact convex set satisfying the rWφ-condition for some r > 0. Then there exists
a finite time tC > T , bounded by cN,φ◦ |C|, where cN,φ◦ is an explicit (and optimal)
constant depending only on φ◦ and N , such that the following properties hold:

(i) there is a subsequence {hk} such that

there exists lim
h→0

C
[t/hk]
hk

=: C(t) for a.e. t ∈ [0, tC]

in the Hausdorff distance, C(0) = C and tC is the extinction time of C(t);
(ii) each set C(t) is compact and convex, and the map t ∈ [0, tC] → C(t) satisfies

the comparison principle and defines a continuous semigroup in time.

Of course, the two evolutions given by Theorems 1 and 2 coincide on [0, T ].
Concerning Theorems 1 and 2, proved respectively in Section 6 and Section 8,

some comments are in order. First of all, Theorem 1 is a local in time existence (and
uniqueness) result, and shows the central role played byφ-regular sets in our theory.
The main obstacle in the proof of such a kind of result is perhaps represented by the
fact that, in general, even a polyhedral (convex) initial datum may develop, under
anisotropic curvature flow, the facet breaking phenomenon; similarly, a facet can
bend during the evolution, see [12]. Therefore, unlike the two-dimensional case, in
general, crystalline mean curvature flow (even for short times and for convex initial
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data) is not easy to describe in terms of systems of differential equations governing
the evolution of each facet. The examples of [12] (which turn out to be related to the
calibrability of facets and their classification, see [11]) were also useful to devise
reasonable classes of sets in order to look for existence and uniqueness results,
namely φ-regular sets and Lipschitz φ-regular sets. We do not know whether these
two classes coincide. This does not seem to be immediate even in the first explicit
example in [12], and is related to the regularity properties of minimizers to the var-
iational problem considered in [11]. A definition of φ-regular flow (for short times)
where a uniqueness result is available was given in [14], using a reaction-diffusion
inclusion to approximate the evolution problem. In any case, we point out that in
both of these two classes of flows the evolving hypersurfaces are Lipschitz, hence
they are far more regular than the flat φ-curvature flow. Theorem 1 is based on the
time-step minimization procedure (1)–(2), which was introduced in [20], and can
handle the facet breaking/bending phenomena. Such a method can be viewed as a
combination of the ideas in [2] and the restarting heat-equation method considered
in [15, 24]. The advantage of the method of [20] is that it provides uniqueness
of each minimizer at each discrete step, which in general is not the case in the
flat φ-curvature flow procedure; this is essentially the reason for which the cor-
responding flow is, in general, also a flat φ-curvature flow. In addition, it reduces
the geometric problem to the study of a nonlinear partial differential inclusion, and
we can consider functions in place of boundaries. For this latter PDE problem a
comparison principle is available, which directly implies an inclusion principle for
the corresponding geometric evolution.

From the technical point of view, we mention that the proof is based on: (i) the
properties of those convex sets satisying the rWφ-ball condition (see Definition
5), namely those sets which contain a tangent unit ball (in the intrinsic norm) of
fixed radius r; (ii) a smoothing argument (Lemma 3), which allows us to regularize
{φ◦ � 1} with strictly convex bodies of class C∞ and, at the same time, the initial
convex set C with smoother convex sets.

Theorem 2 is, instead, a result for long times, up to the extinction. We remark
that two of the authors in [19] showed that the flow C(t) starting from a compact
convex set C is convex for all times (and contained in C). Here, we improve the
result by proving that such a flow is unique for all times, satisfies a comparison prin-
ciple and defines a continuous semigroup in time. As a by-product of our analysis,
we deduce that the flat φ-curvature flow starting from C is unique (and coincides
with C(t)).

The evolution of convex sets by mean curvature has been considered from a
classical viewpoint by Huisken [33], who proved the existence of a smooth evolu-
tion of an initial uniformly convex set until its extinction as a point. The extinction
time was identified as the time at which the second fundamental form explodes. The
asymptotic profile of extinction was identified as a sphere. The smooth evolution
of a convex set was also recovered by Evans-Spruck in [25, 27] using different
methods. The convexity preserving properties of viscosity geometric evolutions
were studied in [30]. Theorems 1 and 2 can be interpreted as a partial extension
of Huisken’s results, since we obtain the existence of a φ-regular solution in some
time interval [0, T ), and the existence of a flow before the extinction. We do not
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know, however, if this flow remains φ-regular up to the extinction time, as in the
case of mean curvature flow. In addition, we miss the identification of the extinction
profile.

The structure of the paper is described below. In Section 2 we give some nota-
tion. In particular, anisotropies, φ-distances and φ-normal vectors are defined in
Section 2.1; φ-regularity and the rWφ-condition are defined in Section 2.3; and
φ-regular flows are defined in Section 2.4. In Section 3 we prove that for a convex
set C and a strictly convex anisotropy of class C1,1, the maximal neighbourhood
where we have smoothness of the φ-signed distance is controlled by the sup-norm
of divergence of the Cahn-Hoffman vector field nCφ on the boundary of C, and

we prove a bound on div nCφ in such a neighobourhood similar to the classical
one for mean curvature. Moreover we give a characterization of convex φ-regu-
lar sets for general anisotropies in terms of the rWφ-condition which is stable by
approximations of the convex sets and anisotropies. In Section 3.2 we recall how
these approximations can be performed using some results in [37]. In Section 4 we
study the elliptic problem corresponding to (1), whose limit solution (as h → 0)
embeds the solution C(t) inside the flat φ-curvature flows (this connection is pre-
cisely recalled in Section 4.2). We also recall some results for this elliptic problem
proved in [19]. In Section 5 we prove that the iterates of the Almgren-Taylor-Wang
algorithm satisfy a uniform rWφ-estimate for a certain number of iterations which
amounts to a positive time of evolution and this time is related to the explosion
of our estimate on the anisotropic mean curvature. To this end, we have to prove
a basic estimate for the anisotropic mean curvature of the flat φ-curvature flow of
a compact convex set C (satisfying the rWφ-condition) in neighborhoods of ∂C.
This curvature estimate has to be iterated and may become worse during itera-
tion but holds for a positive time. The results of Section 5 are proved for smooth
anisotropies. In Section 6 we pass to the limit in the above iterations and in the
anisotropies to obtain a local-in-time existence theorem for φ-regular evolutions
of initial compact convex sets for general anisotropies φ. We also give a lower
bound for the existence time T and show that as t → T , the rWφ-condition is lost,
which can be interpreted as the explosion of the φ-mean curvature. In Section 7 we
prove an estimate for the rate of decrease of the volume of the evolving convex set.
In Section 8 we prove a comparison principle (hence uniqueness) for our flow of
convex sets. We also prove the stability of the extinction times of the flows under
convex approximations of the initial convex set in the Hausdorff distance.

2. Notation

Given an open set A ⊆ IRN and a function f : A → IR, we write f ∈ C1,1(A)

(or f ∈ C1,1
loc (A)) if f ∈ C1(A) and ∇f ∈ Lip(A; IRN) (respectively f ∈ C1

loc(A)

and ∇f ∈ Liploc(A; IRN)). Let B ⊂ IRN be a set. We say that B (or ∂B) is of
class C1,1 (respectively Lipschitz) if ∂B can be written, locally around each point,
as the graph (with respect to a suitable orthogonal coordinate system) of a function
f of (N − 1) variables, of class C1,1 (respectively Lipschitz), and B can be written
(locally) as the epigraph of f .
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Given two nonempty sets A,B we denote by dH(A,B) the Hausdorff distance
between A and B. The symbol 1A stands for the characteristic function of A, and
A (or int(A)) is the closure (respectively the interior part) of A.

We let SN−1 := {ξ ∈ IRN : |ξ | = 1} and for ρ > 0 we let Bρ := {x ∈ IRN :
|x| < ρ}.

We denote by HN−1 the (N − 1)-dimensional Hausdorff measure in IRN , and
by | · | the Lebesgue measure. Given a function f defined on the boundary ∂C of
a convex set C, we set ‖f ‖L∞

HN−1 (∂C)
to be the HN−1-essential supremum of f on

∂C.
If a, b ∈ IR, we let a ∧ b := min(a, b) and a ∨ b := max(a, b). If ξ, η ∈ IRN ,

by ξ ⊗ η we indicate the (N × N)-matrix whose ij -entry is ξiηj , and by ξ · η
we denote the canonical scalar product between ξ and η. If M1 and M2 are two
symmetric (N ×N)matrices, byM1 � M2 we mean thatM1 −M2 is nonpositive
definite. If M is a (N ×N)-matrix, M = (mij ), we set |M|2 :=∑i,j (mij )

2.

Remark 1. Observe that if M1, M2 are two nonnegative definite symmetric (N ×
N)-matrices and M1 � M2, then |M1| � |M2|. Indeed,

√
M2 is still a nonneg-

ative definite symmetric matrix, and we can check that
√
M2M1

√
M2 � M2M2.

Taking the trace we deduce tr(M1M2) = tr(
√
M2M1

√
M2) � |M2|2. Similarly

tr(M1M2) = tr(
√
M1M2

√
M1) � |M1|2. Hence |M1| � |M2|. Furthermore, ifM3

is another (N ×N)-matrix, then |M1M3| � |M2M3|.
In the following div (or ∇) will always indicate the divergence (respectively the

gradient, which is understood as a row vector) with respect to the space variables.
Finally, we will always identify a set with its Lebesgue equivalence class.

2.1. Anisotropies and distance functions

Let φ : IRN → [0, ∞) be a positively one-homogeneous convex function on
IRN satisfying

m|ξ | � φ(ξ) ∀ ξ ∈ IRN, (3)

for some m > 0. Observe that there exists M ∈ [m,+∞) such that φ(ξ) � M|ξ |
for all ξ ∈ IRN . We let Wφ := {φ � 1}. The dual function φ◦ of φ (called surface
tension) is defined as φ◦(ξ) := sup{η · ξ : φ(η) � 1} for any ξ ∈ IRN , and turns
out to be a positively one-homogeneous function satisfying (3) and (φ◦)◦ = φ.

By a convex body we mean a compact convex set whose interior contains the
origin. If K is a convex body, the function hK(ξ) := supη∈K η · ξ is called the
support function of K; notice that

{
(hK)

◦ � 1
} = K .

In the remainder of this paper, the function φ will always denote an anisotropy,
i.e., a function φ satisfying (3) and

φ(tξ) = |t |φ(ξ) ∀ ξ ∈ IRN, ∀ t ∈ IR. (4)

In particular φ(ξ) = φ(−ξ) for any ξ ∈ IRN . If φ is an anisotropy, then φo is an
anisotropy. A convex body is said to be centrally symmetric if it is symmetric with
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respect to the origin. If φ is an anisotropy, then Wφ (sometimes called Wulff shape)
is a centrally symmetric convex body.

As usual, we shall denote by ∂φ(ξ) the subdifferential of φ at ξ ∈ IRN . If φ
is differentiable at ξ , we write ∇φ(ξ) in place of ∂φ(ξ). If � is a convex function
defined on a Hilbert space, we still denote by ∂� the subdifferential of �.

Given a nonempty set E ⊆ IRN , we let

dφ(x,E) := inf
y∈E φ(x − y), x ∈ IRN .

We denote by dEφ the signed φ–distance function to ∂E negative inside E, that is,

dEφ (x) := dφ(x,E)− dφ(x, IR
N \ E), x ∈ IRN . (5)

Observe that |dEφ (x)| = dφ(x, ∂E).

The function dEφ is Lipschitz and at each point x where it is differentiable we

have φ◦(∇dEφ (x)) = 1. We set

νEφ := ∇dEφ on ∂E, (6)

at those points where ∇dEφ exists. When φ is the euclidean norm, i.e., φ(ξ) = |ξ |,
we set νE = νE|·| and B1 = W|·|. Vector fields which are selections in ∂φ◦(∇dEφ )
are sometimes called Cahn-Hoffman vector fields.

Observe that the signed φ-distance dCφ from a compact set C is convex if and
only if C is convex.

For A,B ⊆ IRN we let dφ(A,B) = inf{φ(x − y) : x ∈ A, y ∈ B} the
φ-distance between A and B.

Definition 1. We say that φ ∈ C1,1
+ (or C∞+ ) if φ2 is of class C1,1(RN) (respectively

C∞(RN \ {0})) and there exists a constant c > 0 such that ∇2(φ2) � c Id almost
everywhere (respectively in IRN \ {0}). We say that a centrally symmetric convex
body is of class C1,1

+ (or C∞+ ) if it is the unit ball of an anisotropy of class C1,1
+

(respectively C∞+ ).

Definition 2. We say that φ is crystalline if the unit ball Wφ of φ is a polytope.

Remark 2. Observe that

(a) φ ∈ C1,1
+ (or C∞+ ) if and only if φ◦ ∈ C1,1

+ (respectively C∞+ ) [37, p. 111];
(b) φ is cystalline if and only if φ◦ is crystalline;
(c) if φ ∈ C1,1

+ , then there exist 0 < λ � 
 < +∞ such that

λId � φ◦(ξ)∇2φ◦(ξ)+ ∇φ◦(ξ)⊗ ∇φ◦(ξ) � 
Id, a.e. ξ ∈ IRN . (7)

Finally, we recall that a convex function on IRN is locally Lipschitz.
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2.2. BV functions, φ-total variation and generalized Green formula

Let � be an open subset of IRN . A function u ∈ L1(�) whose gradient Du
in the sense of distributions is a (vector-valued) Radon measure with finite total
variation |Du|(�) in� is called a function of bounded variation. The class of such
functions will be denoted byBV (�). We denote byBVloc(�) the space of functions
w ∈ L1

loc(�) such thatwϕ ∈ BV (�) for all ϕ ∈ C∞
c (�). Concerning all properties

and notation relative to functions of bounded variation we will follow [7].
A measurable set E ⊆ IRN is said to be of finite perimeter in� if |D1E |(�) <

∞. The perimeter of E in � is defined as P(E,�) := |D1E |(�), and P(E,�) =
P(IRN \ E,�). We shall use the notation P(E) := P(E, IRN).

Let u ∈ BV (�). We define the anisotropic total variation of u with respect to
φ in � [5] as

∫
�

φ◦(Du) = sup

{∫
�

u div σ dx : σ ∈ C1
c (�; IRN), φ(σ ) � 1

}
. (8)

If E ⊆ IRN has finite perimeter in �, we set

Pφ(E,�) :=
∫
�

φ◦(D1E)

and we have from [5]

Pφ(E,�) =
∫
�∩∂∗E

φ◦(νE) dHN−1, (9)

where ∂∗E is the reduced boundary ofE and νE the (generalized) outer unit normal
to E at points of ∂∗E. We sometimes use the notation dPφ to indicate the density
of the measure in (9), i.e., if B ⊆ IRN is a Borel set, we let

dPφ(B) :=
∫
B∩∂∗E

φo(νE) dHN−1.

Recall that, since φ◦ is homogeneous, φ◦(Du) coincides with the nonnegative
Radon measure in IRN given by

φ◦(Du) = φ◦(∇u(x)) dx + φ◦
(
Dsu

|Dsu|
)

|Dsu|,

where ∇u(x) dx is the absolutely continuous part ofDu, andDsu its singular part.

2.3. φ-regularity, Lipschitz φ-regularity and the rWφ-condition

Following [11–14] we define the class of φ-regular sets and Lipschitz φ-regular
sets (these latter are a generalization of sets of class C1,1).

Definition 3. Let E ⊂ IRN be a set. We say that E is φ-regular if ∂E is a com-
pact Lipschitz hypersurface and there exist an open set U ⊃ ∂E and a vector field
n ∈ L∞(U ; IRN) such that div n ∈ L∞(U), andn ∈ ∂φ◦(∇dEφ ) almost everywhere

in U . We say that E is Lipschitz φ-regular if E is φ-regular and n ∈ Lip(U ; IRN).
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It is clear that a Lipschitz φ-regular set is φ-regular. With a little abuse of notation,
sometimes we will denote by (E, n), or by (E,U) or by (E,U, n), a φ-regular set.

Observe that, in general, vector fields n are not unique, unless φ ∈ C1,1
+ . When

φ ∈ C1,1
+ the inclusion n ∈ ∂φ◦(∇dEφ ) becomes an equality; in this respect we give

the following definition.

Definition 4. Let φ ∈ C1,1
+ and (E,U) be a Lipschitz φ-regular set. Let x ∈ U be

a point where there exists ∇dEφ (x). We set

nEφ (x) := ∇φ◦(∇dEφ (x)). (10)

Remark 3. Observe that (Wφ, n), with n(x) := x/φ(x), is Lipschitz φ-regular,
and div n(x) = N − 1 for HN−1 almost every x ∈ ∂Wφ .

The next definition will play an important role in the sequel.

Definition 5. Let E ⊂ IRN be a set with nonempty interior and r > 0. We say that
E satisfies the rWφ-condition if, for any x ∈ ∂E, there exists y ∈ IRd such that

rWφ + y ⊆ E and x ∈ ∂ (rWφ + y
)
.

The following result is proved in [11, Lemmata 3.4 and 3.5].

Lemma 1. Let E be a Lipschitz φ-regular set. Then E and R
N \ E satisfy the

rWφ-condition for some r > 0.

In Proposition 2 below we will prove that a convex set satisfying the rWφ-
condition is φ-regular when φ is an arbitrary anisotropy. On the other hand, if
φ ∈ C1,1

+ , the relations between φ-regularity and Definition 5 are listed in the next
observation.

Remark 4. Assume that φ ∈ C1,1
+ . The following assertions hold.

(a) E is Lipschitz φ-regular if and only if E is of class C1,1.
(b) Let C be a compact convex which satisfies the rWφ-condition for some r >

0. Then C is Lipschitz φ-regular (hence C is of class C1,1 by (a)). Let us
briefly comment on the proof. Observe that there exists C′ ⊂ C such that

C = C′ + rWφ . Then Ct :=
{
dCφ � t

}
= C′ + (r + t)Wφ for t ∈ (−r, r).

Thus Ct satisfies the (r + t)Wφ-condition. Since φ ∈ C1,1
+ , Ct also satisfies

the r ′(r + t)B1-condition for some r ′ > 0, hence the mean curvature of Ct
is bounded. Thus dC|·| ∈ L∞

loc

(
|dCφ | < r

)
. Since dC|·| is a convex function, we

obtain that dC|·| ∈ W 2,∞
loc

(
|dCφ | < r

)
. Then the result follows since we may take

n = ∇φ◦
(

∇dCφ
φ◦
(
∇dCφ

)
)

in
{
|dCφ | < r

}
(in particular, ∂C is C1,1 [21, Theorem

5.5]).
(c) E is Lipschitz φ-regular if and only ifE and IRN \E satisfy the rWφ-condition

for some r > 0 (in this case, E and IRN \E satisfy also the r ′B1-condition for
some r ′ > 0, hence E is of class C1,1 by standard regularity results [22]).
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(d) Let E be Lipschitz φ-regular. Then from [11, Lemmata 3.4, 3.5 and 4.5]

(d1) there exists a neighbourhood V of ∂E, depending on the Lipschitz norm of
nEφ , such that dEφ ∈ C1,1(V );

(d2) there exists a uniquely defined projection map πEφ : V → ∂E, πEφ (x) :=
x−dEφ (x)nEφ (x), which satisfies nEφ = nEφ

(
πEφ

)
inV . Moreover ∇nEφ nEφ =

0 and ∇2dEφ n
E
φ = 0 almost everywhere in V ;

(d3) the trace of div nEφ (still denoted by div nEφ ) is defined HN−1-almost every-

where on ∂E and coincides on ∂E with the tangential divergence of nEφ .

As already observed in the Introduction, our existence and uniqueness theorem
will be, roughly speaking, in the class of flows t → E(t) such that each E(t) is
φ-regular. In general we do not know under which assumptions a φ-regular set is
also Lipschitz φ-regular. Proving an existence and uniqueness result for crystalline
mean curvature flow in the class of Lipschitz φ-regular sets is an open problem.

Definition 6. Let φ ∈ C1,1
+ and E be a Lipschitz φ-regular set. We define

κEφ := div nEφ HN−1 − a.e. on ∂E. (11)

2.4. φ-regular flows

The following definition is essentially the one given in [14, Definition 2.2].

Definition 7. Let T > 0. A φ-regular flow in [0, T ) is a map t ∈ [0, T ) → E(t)

satisfying the following properties:

(i) ∂E(t) is a compact Lipschitz hypersurface;
(ii) there exists an open setA ⊆ IRN × [0, T ) such that

⋃
t∈[0, T ) ∂E(t)×{t} ⊆ A,

and the function d(x, t) := d
E(t)
φ (x) is locally Lipschitz in A;

(iii) there exists a vector field n ∈ L∞ (A; IRN ) such that div n ∈ L∞(A) and
n ∈ ∂φ◦(∇d) almost everywhere in A;

(iv) for any t < T , there exists c = c
(
t
)
> 0 with |∂td(x, t) − div n(x, t)| �

c|d(x, t)| for almost any (t, x) ∈ A with t � t .

With a little abuse of notation, sometimes we will denote by (E(t), n), or by
(E(t), A, n), a φ-regular flow.

The following result, proved in [14], provides uniqueness of a φ-regular flow.

Theorem 3. Let E1(t), E2(t) be two φ-regular flows in [0, T ). Then

E1(0) ⊆ E2(0) ⇒ E1(t) ⊆ E2(t), t ∈ [0, T ). (12)

In particular if E1(0) = E2(0) then E1(t) = E2(t) for any t ∈ [0, T ), i.e., the
φ-regular flow starting from a compact set E is unique.

Remark 5. The self-similar evolution of the Wulff shape is a φ-regular flow.
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3. Convex φ-regular sets

In this section we want to analyze the relations between φ-regularity and the
rWφ-condition for a convex set, with no restrictions on the anisotropy (see Propo-
sition 2 below). We will first consider the case of a smooth anisotropy, the general
case will be studied by means of a suitable approximation argument.

3.1. The case φ ∈ C∞+

In this subsection we will assume that φ ∈ C∞+ (equivalently, φ◦ ∈ C∞+ , cf. (a)

of Remark 2), however, all results will still be true if φ ∈ C1,1
+ , see Remark 6 below.

The following theorem shows that, for a convex set C of class C1,1, the max-
imal neighbourhood where we have smoothness of the φ-signed distance dCφ is

controlled by the sup-norm of the divergence of the Cahn-Hoffman vector field nCφ
(defined in (10)) on the boundary of C (see (d3) of Remark 4). In addition, on such
a neighbourhood we have an expansion of div nCφ .

Theorem 4. Let φ ∈ C∞+ , and let C be a compact convex set which satisfies the
rWφ-condition for some r > 0. Then, setting

K := ‖κCφ ‖L∞
HN−1 (∂C)

,

we have

dCφ ∈ C1,1
loc

({
|dCφ | < K−1

})
. (13)

Moreover, πCφ is well defined on {|dCφ | < K−1}, and

0 � div nCφ �
κCφ (π

C
φ )

1 − |dCφ |κCφ (πCφ )
a.e. in

{
|dCφ | < K−1

}
. (14)

Proof. Given t ∈ IR let

Ut := {|dCφ | < t}.
By (b) and (d) of Remark 4 it follows that C is of class C1,1, hence it is Lipschitz
φ-regular, and there exist ε0 > 0 such that dCφ ∈ C1,1(Uε0) and a projection map

πCφ : Uε0 → ∂C, πCφ (x) := x − dCφ (x)n
C
φ (x), which satisfy nCφ = nCφ (π

C
φ ) in Uε0 .

In addition κCφ is well defined by (d3) of Remark 4. Possibly reducing ε0, we can
assume that ∣∣∣dCφ ∇nCφ (πCφ )

∣∣∣ < 1 a.e. in Uε0 . (15)

Moreover, let us observe that ε0 only depends onλ,
 (cf.(7)) and
∥∥∥κCφ

∥∥∥
L∞

HN−1 (∂C)
,

see [11].
We divide the proof into five steps.
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Step 1. We have
∣∣∣∇nCφ

∣∣∣ � 


λ
div nCφ a.e. in Uε0 . (16)

Indeed, from nCφ = ∇φ◦
(
∇dCφ

)
, we get

∇nCφ = ∇2φ◦ (∇dCφ
)

∇2dCφ a.e. in Uε0 . (17)

Therefore, from the convexity of dCφ it follows that for almost every x ∈ Uε0 the

matrix ∇nCφ (x) is a product of two symmetric nonnegative definite matrices.

Hence, recalling that φ◦
(
∇dCφ

)
= 1, using (7), the fact that 0 � ∇φ◦(ξ) ⊗

∇φ◦(ξ), and Remark 1 (applied withM1 = ∇2φ◦
(
∇dCφ

)
(x) andM3 = ∇2dCφ (x))

we get ∣∣∣∇nCφ
∣∣∣ =

∣∣∣∇2φ◦(∇dCφ )∇2dCφ

∣∣∣ � 


∣∣∣∇2dCφ

∣∣∣ a.e. in Uε0 . (18)

Letting {e1, . . . , eN } be the canonical basis of IRN , and using (7) and the relation
∇2dCφ n

C
φ = 0 valid almost everywhere in Uε0 , it follows that

div nCφ = tr
(
∇2φ◦(∇dCφ )∇2dCφ

)
= tr

(√
∇2dCφ ∇2φ◦(∇dCφ )

√
∇2dCφ

)

=
N∑
i=1

∇2φ◦(∇dCφ )
√

∇2dCφ ei ·
√

∇2dCφ ei � λ

N∑
i=1

∇2dCφ ei · ei (19)

= λtr(∇2dCφ ) a.e. in Uε0 .

Since the convexity of the function dCφ implies tr
(
∇2dCφ

)
�
∣∣∣∇2dCφ

∣∣∣, from

(18) and (19) we then obtain

div nCφ � λtr
(
∇2dCφ

)
� λ

∣∣∣∇2dCφ

∣∣∣ � λ




∣∣∣∇nCφ
∣∣∣ a.e. in Uε0 ,

which is (16).

Step 2. We have

∇nCφ = ∇nCφ
(
πCφ

) (
Id + dCφ ∇nCφ (πCφ )

)−1
a.e. in Uε0 . (20)

Differentiating the equality πCφ (x) = x − dCφ (x)n
C
φ

(
πCφ (x)

)
we get

∇πCφ =
(

Id+dCφ ∇nCφ
(
πCφ

))−1 [
Id−nCφ

(
πCφ

)
⊗ ∇dCφ

]
a.e. in Uε0 . (21)

At almost every point x ∈ Uε0 assumption (15) ensures

(
Id + dCφ (x)∇nCφ

(
πCφ (x)

))−1 =
∞∑
k=0

(
−dCφ (x)

)k (∇nCφ
(
πCφ (x)

))k
. (22)
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Therefore, from (21) and ∇nCφ (πCφ )nCφ (πCφ ) = 0 we deduce

∇πCφ =
(

Id + dCφ ∇nCφ
(
πCφ

))−1 − nCφ

(
πCφ

)
⊗ ∇dCφ a.e. in Uε0 . (23)

Assertion (20) then follows from (23) by differentiating the relation nCφ (x) =
nCφ

(
πCφ (x)

)
, and using once more ∇nCφ

(
πCφ

)
nCφ

(
πCφ

)
= 0.

Step 3. For any k ∈ N we have

0 � tr

((
∇nCφ

)k)
�
(

div nCφ
)k

a.e. in Uε0 . (24)

Write A :=∇2φ◦(∇dCφ ) and B :=∇2dCφ ; in view of (17) we have to prove that

0 � tr
(
(AB)k

)
� (tr(AB))k , k ∈ N. (25)

If D := √
BA

√
B, then D is symmetric and nonnegative definite. Hence

0 � tr(Dk) � (tr(D))k .

On the other hand tr
(
(AB)k

) = tr(Dk) for any k ∈ N, and (25) follows.

Step 4. We have

0 � div nCφ �
κCφ

(
πCφ

)

1 −
∣∣∣dCφ
∣∣∣ κCφ

(
πCφ

) a.e. in Uε0∧K−1 . (26)

Using (20) and (22) we get

∇nCφ = ∇nCφ
(
πCφ

) (
Id + dCφ ∇nCφ

(
πCφ

))−1 =
∞∑
k=0

(
−dCφ

)k (∇nCφ
(
πCφ

))k+1
,

(27)

a.e. in Uε0∧K−1 . Then (26) follows by taking the trace of both sides in (27), passing
to the absolute values and using the definition of K.

Observe that if ε0 � K−1 the proof is concluded. Therefore we can assume
ε0 < K−1. From (26) it follows that

sup
Uε0

div nCφ � K
1 − ε0K

. (28)

Step 5. We have

dCφ ∈ C1,1 (Ut ) and 0 � div nCφ (29)

�
κCφ

(
πCφ

)

1 −
∣∣∣dCφ
∣∣∣ κCφ

(
πCφ

) in Ut, t ∈
(

0,K−1
)
.
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Let us fix t ∈ (0,K−1) for which (29) holds in Ut (for instance, for t = ε0).
Observe that, in this case, (28) holds in Ut , with t in place of ε0. Given s ∈ IR let
Cs := {dCφ < s}. We will assume 0 < s < t . If ∂Cs ⊂ Ut , we have dCsφ = dCφ −s ∈
C1,1(Ut ), and nCsφ = nCφ in Ut . Observe that

‖div nCsφ ‖L∞
HN−1 (∂Cs)

� K/(1 − tK).

Applying (d) of Remark 4, using Step 1, and (28) with Cs in place of C, we obtain
that there exists a constant ε > 0 depending on λ,
 and K/(1 − tK) such that

d
Cs
φ ∈ C1,1

({∣∣∣dCsφ
∣∣∣ < ε

})
and 0 � κ

Cs
φ �

κ
Cs
φ

(
πsφ

)

1 −
∣∣∣dCsφ

∣∣∣ div nCsφ

(
πsφ

) (30)

a.e. in
{∣∣∣dCsφ

∣∣∣ < ε
}

. We want to prove that (29) holds inUt ∪
{∣∣∣dCsφ

∣∣∣ < ε
}

. Thanks

to (30), it is enough to prove (14) in
{∣∣∣dCsφ

∣∣∣ < ε
}

\ Ut . Observe that if ξ, η ∈ IR,

ξ � η, and if α ∈ IR, then ξ
1+αξ � η

1+αη . Choosing ξ = div nCφ (π
Cs
φ ), η =

div nCφ

(
πCφ

)

1−
∣∣∣dCφ
(
π
Cs
φ

)∣∣∣div nCφ

(
πCφ

) and α = −
∣∣∣dCφ − s

∣∣∣, and then using nCφ = n
Cs
φ , dCφ

(
π
Cs
φ

)
=

s, (30) and (29) on ∂Cs , we obtain

0 � div nCφ �
div nCφ

(
π
Cs
φ

)

1 −
∣∣∣dCφ − s

∣∣∣ div nCφ

(
π
Cs
φ

)

�
div nCφ

(
πCφ

)

1 −
∣∣∣dCφ

(
π
Cs
φ

)∣∣∣ div nCφ

(
πCφ

)

×
1 −

∣∣∣dCφ
(
π
Cs
φ

)∣∣∣ div nCφ

(
πCφ

)

1 −
∣∣∣dCφ − s

∣∣∣ div nCφ

(
πCφ

)
−
∣∣∣dCφ

(
π
Cs
φ

)∣∣∣ div nCφ

(
πCφ

)

=
div nCφ

(
πCφ

)

1 −
∣∣∣dCφ
∣∣∣ div nCφ

(
πCφ

) .

Arguing in the same way for the case −t < s < 0, we deduce that (29) holds in{
|dCφ | < |t | + ε

}
.

Let now

t∗ := sup
{
t ∈
(

0,K−1
)

: (29) holds in Ut
}
.

Since (14) holds in Ut∗ and, by the previous proof, it also holds in Ut∗+ε for some
ε > 0 as soon as t∗ < K−1, we deduce that t∗ = K−1. ��
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Proposition 1. Let φ ∈ C∞+ . Assume that C satisfies the rWφ-condition for some

r > 0. Then dCφ ∈ C1,1
loc ({|dCφ | < r}) and

0 � div nCφ � N − 1

dCφ + r
a.e. in

{∣∣∣dCφ
∣∣∣ < r

}
. (31)

Proof. From Theorem 4 we have that dCφ ∈ C1,1
loc

({∣∣∣dCφ
∣∣∣ < K−1

})
. For any x ∈

∂C, let Wr(y) := rWφ + y ⊆ C be such that x ∈ ∂Wr(y). Notice that

dCφ (z) � d
Wr(y)
φ (z) = φ(z− y)− r, z ∈ IRN,

and

dCφ

(
x + tnCφ (x)

)
= d

Wr(y)
φ

(
x + tnCφ (x)

)
, x ∈ ∂C, |t | < r ∧ K−1.

Therefore, observing that nCφ (x) = n
Wr(y)
φ (x), using Remark 3 we deduce that

div nCφ
(
x + tnCφ (x)

)
� div nWr(y)φ

(
x + tnCφ (x)

)
= N − 1

r + t
(32)

for HN−1-almost every x ∈ ∂C and for |t | < r ∧ K−1. Therefore the inequalities

in (31) hold in the set
{∣∣∣dCφ

∣∣∣ < r ∧ K−1
}

. Iterating this argument similarly as in

Step 5 of the proof of Theorem 4, assertion (31) follows. ��
The following result specifies for which r > 0 a compact convex φ-regular set

satisfies the rWφ-condition (compare with Lemma 1).

Corollary 1. Let φ ∈ C∞+ , and let C be a compact convex set of class C1,1. Let

r > 0 be such that n ∈ L∞
({∣∣∣dCφ

∣∣∣ < r
}

; IRN
)

and div n ∈ L∞
({∣∣∣dCφ

∣∣∣ < r
})

,

where n := ∂φ◦
(
∇dEφ

)
(see (a) of Remark 4). ThenC satisfies the rWφ-condition.

Proof. Reasoning as in Step 5 of the proof of Theorem 4, we have dCφ ∈ C1,1
loc({∣∣∣dCφ

∣∣∣ < r
})

. Therefore for any x ∈
{∣∣∣dCφ

∣∣∣ < r
}

there exists a unique point in

∂C minimizing the φ-distance from ∂C, which gives the assertion. ��
Corollary 2. Let φ ∈ C∞+ , and let C be a compact convex set satisfying the rWφ-

condition for some r > 0. Let K :=
∥∥∥div nCφ

∥∥∥
L∞

HN−1 (∂C)
. Then

K−1 � sup{ρ > 0 : C satisfies the ρWφ − condition} � (N − 1)K−1.

Proof. This follows from Theorem 4 and Proposition 1. ��
Remark 6. Theorem 4, Corollary 1, and Proposition 1 still hold if φ belongs to
C1,1

+ . This can be shown either by using the appropriate chain rule when comput-
ing the derivative of the composition of two Lipschitz maps ∇φ◦(∇dCφ ) (see [7,
p. 193]), or by smoothing in an appropriate way φ, φ◦ and C, using the method of
Section 3.2 below.
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The following lemma will be useful in the proof of Theorem 9.

Lemma 2. Let {φε} be a sequence of anisotropies uniformly converging to an
anisotropy φ. Let {Cε} be a sequence of compact convex sets satisfying the rWφε -
condition for some r > 0 independent of ε. If C is a compact convex set and
limε→0 dH(∂Cε, ∂C) = 0, then C satisfies the rWφ-condition.

Proof. Since Cε satisfy the rWφε -condition, there exist convex sets C′
ε ⊂ Cε such

that

Cε = C′
ε + rWφε , ε > 0. (33)

By compactness, and possibly passing to a subsequence, there exists a convex set
C′ ⊂ C such that limε→0 dH

(
C′
ε, C

′) = 0. Passing to the limit in (33) and using
the continuity of the sum in the Hausdorff metric (see [37, p. 51]), we deduce
C = C′ + rWφ . ��

3.2. The case of a generic anisotropy φ

The following result is proved in [37, Theorem 3.3.1 and pp. 111, 160].

Theorem 5. Let ε > 0 and let η : [0, ∞) → [0, ∞) be a function of class C∞
with support in [ ε2 , ε] and with

∫
IRN

η(|x|) dx = 1. If φ◦ : IRN → [0, + ∞) is an
anisotropy, then the function φ̃◦ defined by

φ̃◦(ξ) :=
∫
IRN

φ◦(ξ + |ξ |z)η(|z|) dz, ξ ∈ IRN (34)

is an anisotropy of class C∞ (IRN \ {0}).
Similarly, given a convex bodyK , define the mapK �→ T (K) as follows: take

h̃K(ξ) := ∫
IRN

hK(ξ + |ξ |z)η(|z|) dz for any ξ ∈ IRN . Then h̃K is the support
function hT (K) of T (K). The map T has the following properties: if K1 and K2
are two convex bodies, then

(a) T (K1 +K2) = T (K1)+ T (K2) and T (αK1) = αT (K1) for any α > 0;
(b) if K1 is contained in BR , then dH(K1, T (K1)) � Rε;
(c) dH(T (K1), T (K2)) � (1 + ε)dH(K1,K2);
(d) T (K1)+ Bε is of class C∞+ .

Theorem 5 provides a way to regularize a generic anisotropy with C∞+ anisotropies
and, at the same time, regularize a convex set with convex sets which are more
regular (with respect to the regularized metrics). Indeed, the following result holds.

Lemma 3. Let φ be an anisotropy, and letC be a compact convex set satisfying the
rWφ-condition for some r > 0. Then there exist a sequence {φε} of anisotropies
and a sequence {Cε} of compact convex sets satisfying the following properties:

(i) {φε} converges to φ uniformly on R
N as ε → 0;

(ii) {Cε} converges to C in the Hausdorff distance as ε → 0;
(iii) φε, φ◦

ε ∈ C∞+ and Cε is of class C∞+ for any ε > 0;
(iv) Cε satisfies the rWφε -condition for any ε > 0.
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Proof. Let T be the map defined in Theorem 5. Let φε be the anisotropy such that
Wφε = T (Wφ) + Bε; then φε ∈ C∞+ by (d) of Theorem 5, hence also φ◦

ε ∈ C∞+
by (a) of Remark 2. Then (b) of Theorem 5 yields (i). Let Cε := T (C)+ Brε. It is
clear that (ii) is satisfied. Since C satisfies the rWφ-condition, there exists C′ ⊂ C

such that C = C′ + rWφ . By (a) in Theorem 5 we have

Cε = T (C)+ Brε = T (C′)+ rT (Wφ)+ Brε

= T (C′)+ r
(
T (Wφ)+ Bε

) = T (C′)+ rWφε ,

hence (iv) follows. ��

Observe that

φ◦
ε (ξ) = sup

x∈T (Wφ)+Bε
x · ξ = sup

y∈T (Wφ)

sup
z∈Bε

(y + z) · ξ = φ̃◦(ξ)+ ε|ξ | .

Proposition 2. Let φ be an anisotropy and letC be a compact convex set satisfying
the rWφ-condition for some r > 0. Then C is φ-regular.

Proof. For each ε > 0 let φε and Cε be the regularizations of φ and C constructed

in Lemma 3. Let Vε :=
{∣∣∣dCεφε

∣∣∣ < r/2
}

. Recalling that φε ∈ C∞+ , Cε ∈ C∞ and (iv)

of Lemma 3, by Corollary 2 it follows that

0 � div nCεφε � 2(N − 1)

r
a.e. in Vε,

where we recall that nCεφε = ∇φ◦
ε

(
∇dCεφε

)
. Letting ε → 0+ and possibly passing to

a suitable subsequence, we can assume that nCεφε ⇀ n weakly in L2(U ; IRN) and

div nCεφε ⇀ div n weakly in L2(U), where U :=
{∣∣∣dCφ

∣∣∣ < r/2
}

, n ∈ L∞(U ; IRN)
and

0 � div n � 2(N − 1)

r
a.e. in U.

To conclude the proof that (C,U, n) is φ-regular, it remains to show that n ∈
∂φ◦

(
∇dCφ

)
almost everywhere in U . We observe that, since

∣∣∣dCεφε − dCφ

∣∣∣
�
∣∣∣dCεφε − d

Cε
φ

∣∣∣+
∣∣∣dCεφ − dCφ

∣∣∣, by (i) and (ii) of Lemma 3 we have dCεφε → dCφ uni-

formly in IRN . Hence, by convexity, dCεφε → dCφ in H 1
loc

(
IRN
)
, and ∇dCεφε → ∇dCφ

almost everywhere in IRN . It follows that dist
(
n
Cε
φε
, ∂φ◦

(
∇dCφ

))
→ 0 as ε → 0+

almost everywhere in IRN , and the assertion follows from the convexity and clo-

sedness of ∂φ◦
(
∇dCφ (x)

)
. ��
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4. The approximating elliptic problem

Let g ∈ L2
loc(R

N). In this section we will consider the following partial differ-
ential inclusion

u− div ∂φ◦(∇u) � g in IRN . (35)

We remark that, if φ ∈ C1,1
+ and ∇u �= 0 in an open set, then (35) becomes an

equality (in that open set).
We will then turn our attention to a particular case of (35), namely to the partial

differential inclusion

u− h div ∂φ◦(∇u) � dCφ in IRN, (36)

where h > 0 and C is a compact convex set. We begin with some preliminary
notation.

Following [9], let

X2(�) :=
{
z ∈ L∞ (�; IRN

)
: div z ∈ L2(�)

}
.

If z ∈ X2(�) and w ∈ L2(�) ∩ BV (�) we define the functional (z,Dw) :
C∞
c (�) → IR by the formula

< (z,Dw), ϕ >:= −
∫
�

w ϕ div z dx −
∫
�

w z · ∇ϕ dx.

Then (z,Dw) is a Radon measure in �,
∫
�

(z,Dw) =
∫
�

z · ∇w dx ∀ w ∈ L2(�) ∩W 1,1(�),

and∣∣∣∣
∫
B

(z,Dw)

∣∣∣∣ �
∫
B

|(z,Dw)| � ‖z‖∞
∫
B

|Dw| ∀ B Borel set ⊆ �.

We recall the following result proved in [9].

Theorem 6. Let� ⊂ IRN be a bounded open set with Lipschitz boundary. Let u ∈
BV (�)∩L2(�) and z ∈ X2(�). Then there exists a function [z·ν�] ∈ L∞

HN−1(∂�)

such that ‖[z · ν�]‖L∞
HN−1 (∂�)

� ‖z‖L∞(�;IRN ), and

∫
�

u div z dx +
∫
�

(z,Du) =
∫
∂�

[
z · ν�] u dHN−1.

When � = IRN we have the following integration by parts formula [9], for z ∈
X2(IR

N) and w ∈ L2(IRN) ∩ BV (IRN):
∫
IRN

w div z dx +
∫
IRN
(z,Dw) = 0. (37)
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4.1. Existence and uniqueness of solutions of the elliptic problem

We are now in the position to define solutions of (35) and to study existence
and comparison properties.

Definition 8. We say that u ∈ BVloc(IR
N)∩L2

loc(IR
N) is a solution of (35) if there

exists a vector field z ∈ L∞(IRN ; IRN) such that

(a) z ∈ ∂φ◦(∇u) almost everywhere;
(b) div z ∈ L2

loc(IR
N) and u− div z = g in D′(IRN);

(c) (z,Du)(ψ) = φ◦(Du)(ψ) for any ψ ∈ Cc(IRN).

With a little abuse of notation, sometimes we will denote by (u, z) a solution
of (35). Even if u is unique, observe that, for a generic nonsmooth anisotropy φ,
vector fields z are not unique.

Definition 9. We say that u ∈ BVloc(IR
N)∩L2

loc(IR
N) is a minimizing solution of

(35) if for any v ∈ C1
c (IR

N), and any compact set K ⊇ spt(v),
∫
K

φ◦(Du) + 1

2

∫
K

(u− g)2 dx �
∫
K

φ◦(D(u+ v))

+ 1

2

∫
K

(u+ v − g)2 dx. (38)

Proposition 3. The following assertions are equivalent:

(i) u is a solution of (35);
(ii) u is a minimizing solution of (35);

(iii) for any R > 0 the function u ∈ BVloc(IR
N) ∩ L2

loc(IR
N) is a solution of

min

{∫
BR

φ◦(Dw)

+ 1

2

∫
BR

(w − g)2 dx : w ∈ BV (BR),w|∂BR = u|∂BR
}

; (39)

(iv) for any R > 0 the function u ∈ BVloc(IR
N) ∩ L2

loc(IR
N) is a solution of

min

{∫
BR

φ◦(Dw)+ 1

2

∫
BR

(w − g)2 dx

+
∫
∂BR

|w − u|φ◦(νBR ) dHN−1
}
, (40)

where the minimum is taken over all functions w ∈ BV (BR).
Proof. See [19, Proposition 3.1]. ��
Proposition 4. Let u, u be two solutions of (35) corresponding to the right-hand
sides g, g ∈ Lαloc(IR

N) respectively, where α > max(N, 2). Then,

g � g �⇒ u � u. (41)
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Proof. See [19, Appendix C]. ��
Lemma 4. If (u, z) is a solution of (35), then

−
(
z,D1{u�s}

)
(ψ) = φ◦ (D1{u�s}

)
(ψ) ∀ ψ ∈ Cc(IRN),

for almost any s ∈ IR.

Proof. See [19, proof of Lemma 5.1]. ��
The following theorem applies to inclusion (36).

Theorem 7. Assume thatg : IRN →IR is a convex function with lim sup|x|→∞ g(x)/

|x| = L < +∞ (in particular, g isL–Lipschitz). Then there exists a unique solution
u of (35). Moreover,

(i) u is convex and L–Lipschitz;
(ii) u � g.

Proof. See [4] or [19, Theorem 3]. ��
Remark 7. For any g ∈ L2

loc(IR
N), problem (35) admits a unique solution u.

Since this result is not used in the present paper, we just sketch the proof. Let
�(v) := ∫

IRN
φ◦(Dv) if v ∈ BV (IRN) ∩ L2(IRN), and �(v) := +∞ if v ∈

L2(IRN)\BV (IRN). Then from [16] there exists a unique solutionu ofu−∂�(u) �
g for any g ∈ L2(IRN). By Proposition 3 u is a solution of (35). If g ∈ L2

loc(IR
N)

we approximate it in L2
loc(IR

N) with functions gn ∈ L2(IRN), find un the solution
of u− ∂�(u) � gn, and observe that un converges in L2

loc(IR
N) to a solution u of

(35). The (full) convergence of un is a consequence of an estimate related to the
comparison principle [19, Theorem 6]. As in [10] we may prove that u is a solution
of (35).

Definition 10. Let C ⊂ IRN be a compact convex set and h > 0. Let u be the
solution of (36). We define

Tφ,h(C) := {u � 0}. (42)

Remark 8. Thanks to Theorem 7, the set Tφ,h(C) is compact and convex. More-
over u � dCφ , hence Tφ,h(C) ⊆ C. By the convexity of u, if min u < 0 (which will
be true as soon as h is small enough), then {u < 0} is a bounded open convex set
with closure equal to {u � 0}.
Definition 11. Given i ∈ N, we recursively define ui+1 to be the solution of

u− h div ∂φ◦(∇u) � dCiφ , (43)

where Ci := {ui � 0} = Tφ,h(Ci−1), u0 := u and C0 := C.

Recall that ui � ui−1, hence Ci ⊆ Ci−1.
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Lemma 5. For any r > 0 let vr be the solution of (36) with C replaced by rWφ .
Then

vr(ξ) =




φ(ξ)+ N − 1

φ(ξ)
h− r if φ(ξ) �

√
(N + 1)h,

2N√
N + 1

√
h− r otherwise.

Proof. See [19, Section 6]. ��
Corollary 3. For any r ′ ∈ (0, r) and any h ∈

(
0, (r

′)2
N+1

)
,

vr(ξ) �
(
φ(ξ) ∨ r ′)+ N − 1

r ′
h− r, ξ ∈ IRN . (44)

Proof. Our choice of h implies that r ′ >
√
(N + 1)h. If φ(ξ) � r ′ inequality (44)

is immediate. Since the right-hand side of (44) is constant on {φ < r ′} and vr is
convex, the assertion follows. ��

4.2. Comparison with the flat φ-curvature flow minimizers at each step

The following result, proved in [20, 19], shows that the sublevels of a solution
of (36) solve a variational problem of the type considered in [2].

Proposition 5. Let u be a solution of (36). Then

(a) for any s ∈ IR, the set {u � s} is a solution of the variational problem

min

{
Pφ(F ) + 1

h

∫
F

(dCφ − s) dx : χF ∈ BV (IRN)
}

; (45)

(b) for any s > min u, the set {u � s} is the unique minimizer of (45);
(c) if {u < 0} �= ∅, then {u � 0} is the unique solution of

min

{
Pφ(F ) + 1

h

∫
F�C

dφ(x, ∂C) dx : χF ∈ BV (IRN)
}
. (46)

Proof. Let λ be a constant such that g := dCφ + λ � 0. Then the corresponding

solution of (36) is v := u+ λ � dCφ + λ � 0. By the coarea formula we have, for
any R > 0,

∫
BR

φ◦(Dv) =
∫ +∞

0

∫
BR∩∂{v�s}

φ◦ (ν{v�s}) dHN−1ds.

In addition, we recall that, if µ is a measure on IRN and p � 0 and q � 0
are two µ-integrable functions, then the Cavalieri formula yields

∫
IRN

pq dµ =∫ +∞
0

∫
{q�s} p dµds. Hence

∫
BR

gv dx =
∫ +∞

0

∫
BR∩{v�s}

g dxds.
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Similary, making the change of variable
√
s = τ ,

∫
BR

v2 dx =
∫ +∞

0
|BR ∩ {v2 � s}| ds = 2

∫ +∞

0
s|BR ∩ {v � s}|ds.

Hence,∫
BR

φ◦(Dv) + 1

2h

∫
BR

(v − g)2 dx = ∫ +∞
0

∫
BR∩∂{v�s} φ

◦
(
ν{v�s}

)
dHN−1ds

+ 1
h

∫
IR

∫
BR∩{v>s}(s − g) dx ds + c,

where c := 1
2h

∫
BR
g2 dx. Subtracting λ and using standard arguments [6, 7] it

follows that {u � s} is a minimizer of
∫
BR∩∂F φ

◦(νF ) + 1
h

∫
BR\F (s − d

φ
C) dx for

almost every s ∈ IR. The same statement holds for any s ∈ IR, as it follows by
approximation. Therefore, being C bounded, letting R → ∞ implies that {u � s}
is a minimizer of Pφ(F )+ 1

h

∫
F
(d
φ
C − s) dx. Uniqueness follows from [19, Lemma

5.3]. Assertion (c) follows by letting s = 0 and recalling that Tφ,h(C) ⊆ C. ��
Notice that, when {u < 0} = ∅, the sets {u < 0} and {u � 0} could provide

two different solutions of (46).

5. Iteration procedure for φ ∈ C∞+

If C = C0 satisfies the rWφ-condition, then in general it is not true that C1
satisfies the rWφ-condition. The aim of this section is to prove the following result,
which specifies for which r ′ > 0 the setC1 (and allCi) satisfies the r ′Wφ-condition,
and estimates, roughly speaking, the existence time of the discretized evolutions.

Theorem 8. Let φ ∈ C∞+ and let C be a compact convex set satisfying the rWφ-
condition for some r > 0. Let h > 0 be small enough in such a way that

2
√
Nh <

r

N − 1
.

Fix r ′ ∈
(

2
√
Nh, r

N−1

)
. Then

Ci satisfies the r ′Wφ − condition for any i �
ln
(
(N−1)r ′

r

)

ln
(

1 − Nh

r ′2
) . (47)

To prove Theorem 8 we need some preliminaries. We begin with the following
lemma.

Lemma 6. Assume that φ ∈ C1,1
+ and let h > 0. Let (u, z) be the solution of (36).

Let C be a compact convex set with nonempty interior. Then u � dCφ . Moreover, if

RC := sup
{
ρ > 0 : ∃y ∈ IRN : ρWφ + y ⊆ C

}
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is the radius of a maximal Wulff shape contained in C and

h <
N + 1

4N2 R2
C, (48)

then

∇u �= 0 and φ(z) = 1 a.e. in

{
|dCφ | < RC − 2N√

N + 1

√
h

}
.

Proof. The inequality u � dCφ follows from Proposition 4. Therefore, to prove the

assertion it is sufficient to check that ∇u �= 0 almost everywhere in
{∣∣∣dCφ

∣∣∣ < σ
}

,

where σ := RC − 2N√
N+1

√
h, since, by (a) of Definition 8, at almost all points x

where ∇u(x) �= 0 we have φ(z(x)) = 1. Let p be the center of a maximal Wulff
shape contained in C. From Proposition 4 we have

u(x) � vRC (x − p) ∀ x ∈ IRN,

where vRC is explicitly given in Lemma 5. Hence u(p) � 2N√
N+1

√
h − RC and

u � dCφ > −σ on
{∣∣∣dCφ

∣∣∣ < σ
}

. Since u is convex, it follows that ∇u �= 0 almost

everywhere in
{∣∣∣dCφ

∣∣∣ < σ
}

. ��

Lemma 7. Assume that φ ∈ C∞+ and let h > 0. Let C be a compact convex set
satisfying the δWφ-condition for some δ > 0. Let (u, z) be the solution of (36).

Then for any δ′ ∈ (0, δ) and for any h ∈
(

0, (
δ−δ′)2

N+1

)
,

u � dCφ + (N − 1)h

δ − δ′
in {|dCφ | � δ′}. (49)

Proof. Let δ′ and h be as in the statement, and let C′ be such that C = C′ + δWφ .

We define α := δ−δ′
δ

∈ (0, 1), and r(y) := dφ(y, ∂C) for any y ∈ C. Observe

that the assumption h ∈
(

0, (δ−δ
′)2

N+1

)
implies

√
(N + 1)h � αr(y) for any y ∈

C′ = {y ∈ C : r(y) > δ}. Hence, from Corollary 3 (applied with r = r(y),
r ′ = αr(y) ∈ (0, r(y)), y ∈ C′), comparing the solution u with a Wulff shape
centered at y ∈ C′ of radius r(y), we have

u(x) � min
y∈C′

{
φ(x − y)+ N − 1

αr(y)
h− r(y)

}
∀ x ∈

{∣∣∣dCφ
∣∣∣ � δ′

}
. (50)

Let x ∈ {0 � dCφ � δ′}. We have

min
y∈C′

{
φ(x − y)− r(y)+ N − 1

αr(y)
h

}
� dCφ (x)+ (N − 1)hmin

y∈C′
1

αr(y)
,
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where the last inequality follows from φ(x−y) � dCφ (x)+r(y)which, in turn, is a
consequence of the triangular property of dφ . From (50) and αr(y) � αδ = δ− δ′,
we deduce

u(x) � dCφ (x)+ (N − 1)h

δ − δ′
.

Let now x ∈
{
−δ′ � dCφ < 0

}
. If we set y := x −

(
dCφ (x)+ δ

)
nCφ (x) ∈ C′,

then we have r(y) = δ, dCφ (x) = φ(x − y) − δ � 0, and dr(y)(x − y) = dCφ (x).
Therefore from (50) we deduce

u(x) � φ(x − y)+ N − 1

αr(y)
h− r(y) � dCφ (x)+ N − 1

δ − δ′
h.

This concludes the proof. ��
Lemma 8. Assume that φ ∈ C∞+ and let h > 0. Let C be a compact convex set
satisfying the δWφ-condition for some δ > 0. Let (u, z) be the solution of (36).
Let a < b be such that Xa,b := {u � a} ∩ {dCφ � b} ⊆ {|dCφ | < δ}. Then
div z ∈ L∞(Xa,b) and

‖div z‖L∞(Xa,b) �
∥∥∥div nCφ

∥∥∥
L∞(Xa,b)

. (51)

Proof. Let p : IR → [0,+∞) be a smooth increasing function. Since (u, z) solves
(36), we find that

h−1
∫
Xa,b

(
u− dCφ

)
p
(
u− dCφ

)
dx

=
∫
Xa,b

div z p
(
u− dCφ

)
dx

=
∫
Xa,b

(
div z−div nCφ

)
p
(
u− dCφ

)
dx+

∫
Xa,b

div nCφ p
(
u− dCφ

)
dx =: I + II.

We have, observing that Xa,b has Lipschitz boundary,

I = −
∫
Xa,b

(
z− nCφ

)
· ∇
(
p
(
u− dCφ

))
dx

+
∫
∂Xa,b

(
z · νXa,b − nCφ · νXa,b

)
p
(
u− dCφ

)
dHN−1 =: I1 + I2.

First, observe that from Definition 8

I1 = −
∫
Xa,b

p′ (u− dCφ

) (
z− nCφ

)
· ∇
(
u− dCφ

)
dx

= −
∫
Xa,b

p′ (u− dCφ

) (
φ◦(∇u)− nCφ · ∇u+ φ◦ (∇dCφ

)
− z · ∇dCφ

)
dx � 0.
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We claim also that I2 � 0. Observe that since νXa,b = ν

{
dCφ �b

}
= ∇dCφ /

∣∣∣∇dCφ
∣∣∣

HN−1-almost everywhere on {dCφ = b} and νXa,b = ν{u�a} = −∇u/|∇u| HN−1-
almost everywhere on {u = a}, we have

nCφ · ν
{
dCφ �b

}
= φ◦

(
ν

{
dCφ �b

})
HN−1 − a.e. on

{
dCφ = b

}

because nCφ ∈ ∂φ◦
(
ν

{
dCφ �b

})
. On the other hand,

z · νXa,b � φ◦
(
ν

{
dCφ �b

})
HN−1 − a.e. on {dCφ = b},

z · ν{u�a} = −φ◦ (ν{u�a}) HN−1 − a.e. on {u = a},
nCφ · ν{u�a} � −φ◦ (ν{u�a}) HN−1 − a.e. on {u = a}.

Hence

I2 =
∫

{u=a}

(
z · ν{u�a} − nCφ · ν{u�a}

)
p
(
u− dCφ

)
dHN−1

+
∫
{
dCφ =b

}
(
z · ν

{
dCφ �b

}
− nCφ · ν

{
dCφ �b

})
p
(
u− dCφ

)
dHN−1 � 0.

We conclude that I � 0, hence
∫
Xa,b

(
u− dCφ

)
p
(
u− dCφ

)
dx � h

∫
Xa,b

div nCφ p
(
u− dCφ

)
dx. (52)

Let q > 2 and let r+ := r ∨ 0. Let {pn} be a sequence of smooth increasing
nonnegative functions such that pn(r) → r+(q−1) uniformly as n → ∞. From
(52) we obtain

∫
Xa,b

((
u− dCφ

)+)q
dx � h

∫
Xa,b

div nCφ

((
u− dCφ

)+)q−1

dx.

Applying Young’s inequality we obtain
∥∥∥∥
(
u− dCφ

)+∥∥∥∥
Lq(Xa,b)

� h

∥∥∥div nCφ

∥∥∥
Lq(Xa,b)

.

Dividing by h > 0 and using u � dCφ and (36) we get

‖div z‖Lq(Xa,b) �
∥∥∥div nCφ

∥∥∥
Lq(Xa,b)

.

Letting q → ∞ we obtain (51). ��
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The following lemma proves some regularity properties of solutions of (36); the
statement does not imply the (true) assertion that a convex φ-regular set is Lipschitz
φ-regular, since in general z ∈ ∂φ◦(∇u) (instead of z ∈ ∂φ◦(∇dCφ )).
Lemma 9. Assume φ ∈ C∞+ and letC be a compact convex set with nonempty inte-
rior. Let RC and h be as in Lemma 6. Let (u, z) be the solution of (36), and let U

be an open set with ∂C ⊂ U ⊆
{∣∣∣dCφ

∣∣∣ < RC − 2N√
N+1

√
h
}

. Then z ∈ Lip(U ; IRN)
and

|∇z| � 


λ
div z a.e. in U, (53)

where λ and 
 are as in (7).

Proof. Set ψε := √ε2 + (φ◦)2, so that differentiating ψε = √ε2 + (φ◦)2 we get

∇2ψε − ε2 ∇φ◦ ⊗ ∇φ◦

(ε2 + (φ◦)2)3/2
= φ◦√

ε2 + (φ◦)2
∇2φ◦.

From (7) we obtain

1√
ε2 + (φ◦)2

(
λId − ∇φ◦ ⊗ ∇φ◦) � ∇2ψε − ε2 ∇φ◦ ⊗ ∇φ◦

(ε2 + (φ◦)2)3/2
(54)

� 1√
ε2 + (φ◦)2

(

Id−∇φ◦ ⊗ ∇φ◦) .

(55)

Let uε ∈ C1,1(RN) be the solution of

uε − h div ∇ψε(∇uε)− εuε = dCφ ,

and set zε := ∇ψε(∇uε). By the convexity of uε (see [30, 4, 19]) and (54) it follows
that

|∇zε| =
∣∣∣√∇2uε∇2ψε (∇uε)

√
∇2uε

∣∣∣ � tr
(√

∇2uε∇2ψε (∇uε)
√

∇2uε

)

� 1√
ε2 + φ◦ (∇uε)2

(

uε − ∇2uε∇φ◦ (∇uε) · ∇φ◦ (∇uε)

)

+ ε2

(
ε2 + φ◦ (∇uε)2

)3/2 ∇2uε∇φ◦ (∇uε) · ∇φ◦ (∇uε) .

On the other hand, using again (54),

div zε =
N∑
i=1

(
∇2ψε (∇uε)∇2uεei

)
· ei

� 1√
ε2 + φ◦ (∇uε)2

(
λuε −

(
∇2uε∇φ◦ (∇uε)

)
· ∇φ◦ (∇uε)

)

+ ε2

(
ε2 + φ◦(∇uε)2

)3/2
(
∇2uε∇φ◦ (∇uε)

)
· ∇φ◦ (∇uε) .
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We deduce

div zε � λ



|∇zε| a.e. in IRN . (56)

As proved in [19] the sequence {uε} converges to u uniformly on compact sub-
sets of IRN , and ∇uε → ∇u in L2

loc(IR
N) as ε → 0+. Moreover, there exists

z̃ ∈ L∞(IRN ; IRN) such that, possibly extracting a subsequence, zε ⇀ z̃ weakly∗
in L∞(IRN ; IRN). From [19, Theorem 5], we have u−hdiv z̃ = dCφ , hence div z̃ =
div z and z̃ ∈ ∇φ◦(∇u) almost everywhere in IRN . Since φ ∈ C∞+ , and {∇u �= 0}
almost everywhere in U by Lemma 6, we deduce that z̃ = z in U . Recalling that
div z ∈ L∞

loc(R
N), and letting ε → 0+ in (56), we obtain (53). ��

We are now in position to prove Theorem 8.

Proof of Theorem 8. Let (ui, zi) be the solution of (43). Recall from Proposition
2 that C0 = C is φ-regular, hence by (d) of Remark 4, C is Lipschitz φ-regular,
and therefore, by (d3) of Remark 4, div nCφ is HN−1-almost everywhere defined on
∂C. We divide the proof into four steps.

Step 1. Let i ∈ N. Assume that Ci is Lipschitz φ-regular and define

Ki :=
∥∥∥κCiφ

∥∥∥
L∞

HN−1 (∂Ci)
. (57)

Then Ci satisfies the K−1
i Wφ-condition.

This is a consequence of Corollary 1.

Step 2. Let i ∈ N. Assume that Ci is Lipschitz φ-regular. Then

h <
1

4N2K2
i

�⇒ dφ(∂Ci, ∂Ci+1) � NKih. (58)

Indeed, (58) follows from our assumptions on h, using Lemma 7 (applied with

δ = K−1
i and δ′ = δ

N
), observing that h < 1

4N2K2
i

implies h <
(δ−δ′)2
N+1 and

(N−1)h
δ−δ′ < δ′.

Step 3. Let i ∈ N. Assume that Ci is Lipschitz φ-regular. If h < 1
4N2K2

i

, then Ci+1

is Lipschitz φ-regular and

Ki+1 � Ki

1 −NK2
i h
, (59)

where Ki+1 := ‖κCi+1
φ ‖L∞

HN−1 (∂Ci+1).

The requirement h < 1
4N2K2

i

implies that 4NKih < K−1
i ; in particular, using

(58),

∂Ci+1 ⊂
{∣∣∣dCiφ

∣∣∣ < K−1
i −NKih

}
.
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Using Lemma 8 with b = −a = K−1
i −NKih and δ = K−1

i , we have div zi ∈
L∞(Xa,b). Since K−1

i /4 � K−1
i − 2N√

N+1

√
h and RC � K−1

i , by Lemma 6, we

deduce that ∇ui �= 0 a.e. on
({∣∣∣dCiφ

∣∣∣ < K−1
i /4

}
⊆ Xa,b

)
. Now, by Lemma 9, we

have that zi ∈ Lip

({∣∣∣dCiφ
∣∣∣ < K−1

i

4

})
. Observing that ∂Ci+1 ⊂

{∣∣∣dCiφ
∣∣∣ < K−1

i

4

}
,

we deduce that nCi+1
φ = zi on ∂Ci+1, and therefore Ci+1 is Lipschitz φ-regular.

It remains to prove (59). Recalling that Ki+1 = ‖div zi‖L∞
HN−1 (∂Ci+1), from

Lemma 8, applied with a = 0 < b = NKih < δ = K−1
i , we get

Ki+1 � ‖div zi‖
L∞
({ui�0}∩{dCiφ �NKih

})

�
∥∥∥div nCiφ

∥∥∥
L∞
(
{ui�0}∩

{
d
Ci
φ �NKih

}) �
∥∥∥div nCiφ

∥∥∥
L∞
({∣∣∣dCiφ

∣∣∣�NKih
}) ,

where the last inequality follows from (58). Applying now (14) of Theorem 4 we
obtain

‖div nCiφ ‖
L∞({|dCiφ |�NKih}) � Ki

1 −NK2
i h
, (60)

which inserted in (60) concludes the proof of Step 3.

Step 4. For any M such that K0 < M < 1
2
√
Nh

, we have

Ki � M for any i �
ln
(

K0
M

)

ln(1 −NM2h)
. (61)

Let us prove (61) by induction. Assume that Ci is Lipschitz φ-regular and

Ki � M for any i � ī, for some ī �
ln
(K0
M

)
ln(1−NM2h)

− 1. Then, by Step 3, we have
that Cī+1 is also Lipschitz φ-regular and

Ki+1 � Ki

1 −NK2
i h

� Ki

1 −NM2h
� K0

(1 −NM2h)i+1 , i � ī.

Since ī + 1 �
ln
(K0
M

)
ln(1−NM2h)

, we have (1 −NM2h)ī+1 � K0
M

, which implies

Kī+1 � K0

(1 −NM2h)ī+1
� M,

and this concludes the proof of Step 4.
To conclude the proof of the theorem, it is enough to apply (61) withM = 1/r ′,

observing that, from Corollary 1, we have K0 � N−1
r

. ��
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Remark 9. Observe that (58) can be refined into

dφ(∂Ci, ∂Ci+1) � 2(N − 1)h

δ +√δ2 − 4(N − 1)h
= (N − 1)h

δ
+O(h2), (62)

which is obtained with the choice of δ′ so that δ − δ′ = (N−1)h
δ′ .

6. Existence of φ-regular flows of convex sets for a generic φ

In this section we prove the following result (Theorem 1).

Theorem 9. Let φ be an anisotropy and let C be a compact convex set satisfying
the rWφ-condition for some r > 0. Then there exist T > 0 and a φ-regular flow
C(t) for t ∈ [0, T ], such that C(0) = C.

Proof. Define

r ′ := r

2(N − 1)
, U := {|dφC | < r ′/2}, T := r ′2

8N
. (63)

Let Cε and φε be as in Lemma 3 and recall that Cε satisfies the rWφε -condition for
any ε > 0. For ε > 0 small enough, we have by Lemma 3,

{∣∣∣dCεφε
∣∣∣ < 3r ′/8

}
⊆ U ⊆

{∣∣∣dCεφε
∣∣∣ < 5r ′/8

}
. (64)

For any i ∈ N, letCε,i be defined as in Definition 11, withCε,0 = Cε. For simplicity

of notation, set dεi := d
Cε,i
φε

, nεi := n
Cε,i
φε

, πεi := π
Cε,i
φε

, Kε
i := ‖div nεi ‖L∞

HN−1 (∂Cε,i )
.

Denote by (uεi , z
ε
i ) the solution of (36) with dCφ replaced by dεi .

By Theorem 8 we have that Cε,i satisfies the r ′Wφε -condition, provided h <
(r ′)2
4N and

i � − ln 2

ln
(

1 − Nh
(r ′)2
) . (65)

As h < (r ′)2
4N , we can check that, if T is as in (63), i � T/h implies (65). Therefore,

from now on we shall assume i � T/h.
Since Cε satisfies the rWφε -condition, from (b) of Corollary 1 it follows that

Kε
0 � N−1

r
. Therefore, from (61) applied with M = 2(N−1)

r
= 1

r ′ , we get

Kε
i � 1

r ′
, i � T/h. (66)

From (58) it follows that
∣∣∣dCε,iφε

− d
Cε
φε

∣∣∣ � Nih
r ′ < r ′

8 , hence using (64) we get

{∣∣∣dCε,iφε

∣∣∣ < r ′/4
}

⊆ U ⊆
{∣∣∣dCε,iφε

∣∣∣ < 3r ′/4
}
, i � T/h. (67)
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Step 1. Let v be a convex function such that
∣∣v − dεi+1

∣∣ � c in U, (68)

for some constant c > 0. Then

∣∣v − dεi+1 − (v (πεi+1

)− dεi+1

(
πεi+1

))∣∣ � 16c

r ′
∣∣dεi+1

∣∣ in U. (69)

Fix x ∈ ∂Cε,i+1. Then, the restriction of the function v − dεi+1 to the segment{
x + snεi+1(x) : |s| < r ′/4

}
(which is contained in U by (67)) is convex. Hence,

using (68), such a restriction is Lipschitz continuous with constant 16c
r ′
∣∣nεi+1(x)

∣∣ on

the segment
{
x + snεi+1(x) : |s| � r ′/8

}
. Thus, for any y ∈ {x + snεi+1(x) : |s|

� r ′/8
}
, we get

∣∣v(y)− dεi+1(y)− (v(x)− dεi+1(x)
)∣∣ � 16c

r ′
∣∣nεi+1(x)

∣∣ |y − x| = 16c

r ′
∣∣dεi+1(y)

∣∣ .

Hence (69) holds in {|dεi+1| � r ′
8 }.

If y ∈ U and |dεi+1(y)| > r ′/8, using (68) we obtain

∣∣v(y)− dεi+1(y)− (v(x)− dεi+1(x)
)∣∣ � 2c � 16c

r ′
∣∣dεi+1(y)

∣∣ ,
which gives (69) and concludes the proof of Step 1.

Step 2. For any i � T/h we have

∣∣div nεi
∣∣ � 4

r ′
in U, (70)

and
∣∣∣∣
dεi+1 − dεi

h
− div nεi+1

∣∣∣∣ � c |dεi+1| in U, (71)

where c = 16N+4
(r ′)2 .

Inequality (70) follows from (14), (67) and (66). Let us prove (71). Recall that

uεi − dεi

h
− div zεi = 0 in IRN . (72)

Moreover, zεi and nεi+1 are Lipschitz continuous, and coincide on ∂Cε,i+1; hence
by Lemma 6 their divergences (which equal their tangential divergences) coincide
on ∂Cε,i+1, i.e. div zεi = div nεi+1 HN−1-almost everywhere on ∂Cε,i+1. Hence,
recalling that ∂Cε,i+1 = {uεi = 0}, we have

dεi+1 − dεi

h
− div nεi+1 = 0 HN−1-a.e. on ∂Cε,i+1. (73)
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Recalling (66), from (58) we have

∣∣dεi+1 − dεi

∣∣ � N

r ′
h in IRN . (74)

By Step 1 applied with v = dεi and c = N
r ′ h, we have

∣∣dεi+1 − dεi − (dεi+1

(
πεi+1

)− dεi
(
πεi+1

))∣∣ � 16N

(r ′)2
h
∣∣dεi+1

∣∣ in U. (75)

On the other hand, by (14) and (66) we have

∣∣div nεi+1 − div nεi+1

(
πεi+1

)∣∣ �
∣∣div nεi+1(π

ε
i+1)

∣∣2
1−∣∣dεi+1div nεi+1

(
πεi+1

)∣∣
∣∣dεi+1

∣∣

� 4
(r ′)2

∣∣dεi+1

∣∣ in U,

(76)

where the last inequality follows using (67). Therefore, from (73), (75), and (76),
we deduce (71). This concludes the proof of Step 2.

Step 3. Passing to the limit as ε → 0 for fixed h.

Letting ε → 0 and possibly passing to a suitable subsequence, we can as-
sume that nεi ⇀ ni weakly in L2(U ; IRN) and div nεi ⇀ div ni weakly in L2(U).
By compactness, for any i � T/h there exist compact convex sets Ci such that
limε→0 dH(Cε,i , Ci) = 0. Hence dεi → d

Ci
φ uniformly in IRN as ε → 0. As in the

proof of Proposition 2, this implies that

ni ∈ ∂φ◦ (∇dCiφ
)

a.e. in U, i � T/h. (77)

Taking the limits in (70) and (71) as ε → 0, we obtain

|div ni | � 4

r ′
in U, i � T/h, (78)

∣∣∣∣∣∣
d
Ci+1
φ − d

Ci
φ

h
− div ni+1

∣∣∣∣∣∣ � c

∣∣∣dCi+1
φ

∣∣∣ in U, i � T/h. (79)

Moreover, from Lemma 2 we have that

Ci satisfies the r ′Wφ-condition (80)

and from (74),
∣∣∣dCi+1
φ − d

Ci
φ

∣∣∣ � Nh

r ′
in U. (81)

Let us define

Ch(t) := C[t/h], nh(x, t) := n[t/h](x), t ∈ [0, T ] , x ∈ U, (82)

where [t/h] denotes the integer part of t/h. We also define

dh(x, t) := d
Ch(t)
φ (x), x ∈ IRN, t ∈ [0, T ] .
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Step 4. Passing to the limit as h → 0.

Using [19, Lemmata 7.1, 7.2], letting h → 0, there exists a map t ∈ [0, T ] →
C(t)which is Hausdorff continuous, andC(t) are compact convex sets, withC(0) =
C, such that (up to a subsequence) limh→0 supt∈[0,T ] dH(Ch(t), C(t)) = 0. Hence

dh → d uniformly in IRN × [0, T ] as h → 0, where d(x, t) = d
C(t)
φ (x) for any

x ∈ IRN and t ∈ [0, T ].
Observe that, as a consequence of (81), we have d ∈ Lip(IRN × [0, T ]), and

∂d
∂t

� N
r ′ almost everywhere in U × (0, T ). Therefore, we may also assume that

dh ⇀ d weakly in H 1(U × (0, T )) as h → 0.
Possibly passing to a further subsequence, using (77) and (78), we may assume

that nh ⇀ nweakly inL2(U×(0, T ); IRN) and div nh ⇀ div nweakly inL2(U×
(0, T )) as h → 0. Recalling (79) we conclude that∣∣∣∣∂d∂t − div n

∣∣∣∣ � c|d| in U × (0, T ), (83)

|div n| � 4
r ′ in U × (0, T ). (84)

Moreover, by Lemma 2C(t) satisfies the r ′Wφ-condition for any t ∈ [0, T ], hence,
by Proposition 2,C(t) is Lipschitz φ-regular for any t ∈ [0, T ]. The map t → C(t)

is therefore a φ-regular flow on [0, T ] starting fromC, and this concludes the proof
of the theorem. ��
Remark 10. (i) Since φ-regular flows are unique by Theorem 3, we get that

lim
h→0

dH(Ch(t), C(t)) = 0

(without extracting a subsequence).
(ii) From (14) we obtain div n � 0 almost everywhere in U × [0, T ].

Remark 11. (i) Arguing as in [19, Theorem 3] and using the uniqueness of solu-
tions of (36), it follows that the convex sets Ci constructed in the proof of
Theorem 9 can be written as Ci+1 = Tφ,h(Ci), for any i � T/h, where the
corresponding functions ui are the uniform limits in IRN as ε → 0, of the
functions uε,i .

(ii) Let ui be as in (i), and let us define uh(x, t) := u[t/h](x) for any x ∈ IRN and
t ∈ [0, T ] and zh(x, t) := z[t/h](x) for almost every (x, t) ∈ IRN × (0, T ).
Using Lemma 6 it follows∣∣∣∣∣∣

d
Ci+1
φ − d

Ci
φ

h
− div zi

∣∣∣∣∣∣ � c

∣∣∣dCi+1
φ

∣∣∣ in U, i � T/h. (85)

Indeed, using Lemma 7 with δ′ = δ
N

and δ = r ′, we have dCiφ � ui � d
Ci
φ + ch

and dCiφ � d
Ci+1
φ � d

Ci
φ + ch in U , where c = N

r ′ . Hence |ui − d
Ci+1
φ | � ch in

U . Then, by (69) with v = ui , we have∣∣∣ui − d
Ci+1
φ

∣∣∣ � c

∣∣∣dCi+1
φ h

∣∣∣ in U. (86)

Hence (85) follows from (72).
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(iii) Reasoning as in the proof of Theorem 9 and letting h → 0, from (85) and (86)
we obtain that uh → d uniformly, zh ⇀ z (up to a subsequence) weakly in
L2(U × (0, T ); IRN) and div zh ⇀ div z weakly in L2(U × (0, T )), with z
satisfying the same properties as n, in particular

∣∣∣∣∂d∂t − div z

∣∣∣∣ � c |d| in U × (0, T ), (87)

|div z| � 4
r ′ in U × (0, T ). (88)

Moreover, from div zh � 0 almost everywhere in IRN × [0, T ], we obtain
div z � 0 almost everywhere in U × [0, T ]. It follows that, even if in general n
and z may not coincide, we have

|div z− div n| � c|d| in U × (0, T ).

Remark 12. If we define Cε,h(t) := Cε,[t/h] for t ∈ [0, T ], for fixed ε > 0 we can
pass to the limit as h → 0 and get the (unique)φε-regular flow t → [0, T ] → Cε(t)

on [0, T ] starting from C0,ε. Then, since our estimates are independent of ε, we
deduce limε→0 dH(Cε(t), C(t)) = 0 for any t ∈ [0, T ], i.e., we can approximate
the φ-regular flow starting from C with φε-regular flows.

Iterating the construction in the proof of Theorem 9, we can extend the flow starting
from C to a maximal time interval [0, Tmax), with limt↑Tmax r(t) = 0, where

r(t) := sup{r > 0 : C(t) satisfies the rWφ − condition}.

Corollary 4. We have

√
Tmax − t � r(t)

4
√

2N(N − 1)
, t ∈ [0, Tmax).

Proof. This result follows by iterating the proof of Theorem 9 and recalling that
T = r2

32(N−1)2N
, see (63). ��

The following proposition shows that n and z are in some sense canonical.

Proposition 6. For almost every t ∈ (0, T ) the vector fields n(·, t) and z(·, t) solve
the following minimum problem:

lim inf
δ→0+ min

{
1

2δ

∫
{|d(·,t)|<δ}

(divZ)2 dx : Z ∈ Xδ(t)
}
, (89)

where

Xδ(t) :=
{
Z : {|d(·, t)| < δ} → IRN, Z ∈ ∂φ◦(∇d(·, t)) a.e. in {|d(·, t)| < δ}

}
.
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Proof. Let d(t) := d(·, t) and let δ > 0 be such thatUδ(t) := {|d(t)| < δ} ⊂⊂ U .
Let f ∈ L∞(U × (0, T )) be such that

∂d

∂t
− div n = f d in U × (0, T ). (90)

Let us prove that for almost every t ∈ (0, T ) we have
∫
Uδ(t)

(div n+ f d)2 dx = min

{∫
Uδ(t)

(divZ + f d)2 dx : Z ∈ Xδ(t)
}
. (91)

We proceed along the lines of the proof of [16, Theorem 3.5]. We take t0 ∈ (0, T )
such that ∂d

∂t
and div n both exist at t0 as functions of L2(Uδ(t0)), and such that t0

is a Lebesgue point of f (·, t)1Uδ(t) as a function of t with values in L2(IRN). Let
us denote by f (t0) the Lebesgue value of f (·, t) at t = t0. Let us denote by ñ a
solution of

min

{∫
Uδ(t0)

(divZ + f (t0)d(t0))
2 dx : Z ∈ Xδ(t0)

}
.

Observe that there exists h > 0 such that

∂

∂t
(d(t)− d(t0))− (div n(t)− div ñ) = f (t)d(t)+ div ñ (92)

in {(x, t) : t ∈ ]t0, t0 +h[, x ∈ Uδ(t)}. Possibly reducing h, we can find δ′ ∈ (0, δ)
such that Uδ′(t0) ⊆ Uδ(t) for any t ∈ ]t0, t0 + h[. Let ε, α > 0, and let

0 � η(r) :=




0 if r � −δ ,
(r+δ)2
ε2 if − δ � r � −δ + ε ,

1 if r � −δ + ε.

Define Aδ′(t0) := {d(t) > −δ} ∩ {d(t0) < δ′}. Let us multiply (92) by (d(t) −
d(t0))η(d(t)), for t ∈ ]t0, t0 + h[, and integrate in Aδ′(t0). We have

1
2
d

dt

∫
Aδ′ (t0)

(d(t)− d(t0))
2η(d(t)) dx

=
∫
Aδ′ (t0)

∂

∂t
(d(t)− d(t0))(d(t)− d(t0))η(d(t)) dx

+
∫
Aδ′ (t0)

(d(t)− d(t0))
2η′(d(t))∂d

∂t
(t) dx

=
∫
Aδ′ (t0)

(div n− div ñ)(d(t)− d(t0))η(d(t)) dx

+
∫
Aδ′ (t0)

(f (t)d(t)+ div ñ)(d(t)− d(t0))η(d(t)) dx

+
∫
Aδ′ (t0)

(d(t)− d(t0))
2η′(d(t))∂d

∂t
(t) dx =: I + II + III.
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Let us prove that I � 0. We have

I = −
∫
Aδ′ (t0)

(n− ñ) · ∇(d(t)− d(t0)) η(d(t)) dx

−
∫
Aδ′ (t0)

(n− ñ) · ∇d(t) (d(t)− d(t0))η
′(d(t)) dx

+
∫
∂Aδ′ (t0)

(n− ñ) · νAδ′ (t0)(d(t)− d(t0))η(d(t)) dHN−1 � 0,

since the three expressions on the right-hand side are negative, recalling that d(t) �
d(t0) for t � t0, η′ � 0, n · ∇d(t) = φ◦(∇d(t)) � ñ · ∇d(t), ñ · ∇d(t0) =
φ◦(∇d(t0)). The third expression is negative since η(d(t)) = 0 on {d(t) = −δ}
and we may use the same argument as in Lemma 8 when dealing with {d(t0) = δ′}.
Thus, we have

1

2

d

dt

∫
Aδ′ (t0)

(d(t)− d(t0))
2η(d(t)) dx � II + III.

Integrating on ]t0, t0 + h[, we obtain

1

2

∫
Aδ′ (t0)

(d(t0 + h)− d(t0))
2η(d(t0 + h))dx �

∫ t0+h

t0

(II + III) dt.

By [16, Lemma A.5] we obtain that

(∫
Aδ′ (t0)

(d(t0 + h)− d(t0))
2η(d(t0 + h)) dx

)1/2

�
∫ t0+h

t0

(∫
Aδ′ (t0)

(f (t)d(t)+ div ñ)2η(d(t)) dx

)1/2

dt

+
∫ t0+h

t0

(∫
Aδ′ (t0)

(f (t)d(t)+ div n)2
(η′(d(t)))2

η(d(t))
(d(t)− d(t0))

2 dx

)1/2

dt.

Since (η′(d(t)))2
η(d(t))

� 4
ε2 in Aδ′(t0), dividing by h > 0 and letting h → 0+, we obtain

∫
Aδ′ (t0)

(
∂d

∂t
(t0)

)2

η(d(t0)) dx �
∫
Aδ′ (t0)

(f (t0)d(t0)+ div ñ)2η(d(t0)) dx.

Now, we let ε → 0, and δ′ → δ, to obtain

∫
Uδ(t0)

(
∂d

∂t
(t0)

)2

dx �
∫
Uδ(t0)

(f (t0)d(t0)+ div ñ)2 dx.

Using (90), this gives (91).
To prove (89), fix Z ∈ Xδ(t). Using Hölder’s inequality and 2ab � δa2 + b2

δ
,

it follows that
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∫
Uδ(t)

(div n)2 dx �
∫
Uδ(t)

(divZ + f d)2 dx + c(r ′)δ2

�
∫
Uδ(t)

(divZ)2 dx + 2
∫
Uδ(t)

f d divZ dx + c(r ′)δ2

� (1 + δ)

∫
Uδ(t)

(divZ)2 dx + c(r ′)δ2,

for a constant c = c(r ′) independent of δ (which may vary from line to line). The
assertion on the minimality of n follows by dividing by 2δ and letting δ → 0+.
Finally, since the vector field z satisfies (87), its minimality follows as above.

We expect that, if E is a Lipschitz φ-regular set, the constant defined by the
minimum problem in (89) (with d(·, t) replaced by dEφ ) coincides with the square

of the L2-norm of the φ-mean curvature of ∂E as defined in [11].

7. A volume estimate in time

In this section we prove estimate (94) which involves the transformation Tφ,h
introduced in (42), and deduce an estimate for the decay of the volume of a con-
vex φ-regular flow. Before proving Lemma 11, let us show the following result on
which it is based. For nonsmooth anisotropies φ (such as in the crystalline case),
given a Lipschitz φ-regular set (E, n) the quantity

∫
∂E

div n dPφ does not depend
on the choice of the vector field n [11, Lemma 4.4].

Lemma 10. Let λ > 0 and set ρ := (λ/|Wφ |)1/N . Then ρWφ is a minimizer of

min
∫
∂E

div n dPφ, (93)

where the minimum is taken on the family of compact convex setsE such that (E, n)
is Lipschitz φ-regular and |E| = λ.

Proof. For any family of convex bodiesK1, . . . , KN ⊆ IRN , let V (K1, . . . , KN)

denote the Minkowski mixed volume. If K1,K2 are two convex bodies, let
Vj (K1,K2) = V (K1, . . . , K1,K2, . . . , K2) where K1 appears j times and K2
appears (N − j) times.

Let E be a compact convex Lipschitz φ-regular set such that |E| = λ. Observe
that using [37, (6.8.8)] we have

VN−2(E,Wφ) � |Wφ |2/N |E|(N−2)/N .

Hence, setting W := ρWφ and using [11, Theorem 5.1], we have∫
∂E

div n dPφ = N(N − 1)VN−2(E,Wφ)

� N(N − 1)|Wφ |2/N |E|(N−2)/N

= N(N − 1)|Wφ |2/N |W |(N−2)/N

= N(N − 1)|Wφ |ρN−2

=
∫
∂W

div n̂ dPφ,

where n̂(x) := x/φ(x). ��
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Lemma 11. Let φ be an anisotropy. Let C be a compact convex set with nonempty
interior, and let h < (N + 1)r2/(4N2), where r is the radius of a Wulff shape
contained in C. Then

|C| − |Tφ,h(C)| � hN(N − 1)|Wφ |2/N |Tφ,h(C)|(N−2)/N . (94)

Proof. Assume first φ ∈ C∞+ . If h < (N + 1)r2/(4N2), then by Lemma 9, the
convex set Ĉ := Tφ,h(C) has C1,1 boundary. As in Lemma 9 we denote by (u, z)
the solution of (36). We first estimate |C| − |Ĉ| with an integral on the boundary
∂Ĉ. The field z = ∇φ◦(∇u) is Lipschitz near ∂Ĉ and coincides with nĈφ on ∂Ĉ.

Let us define the one-to-one map F : ∂Ĉ × [0,∞) → IRN \ int(Ĉ) by F(y, s) =
y + snĈφ (y). Then the inverse map of F is given byG(x) =

(
πĈφ (x), dφ

(
x, ∂Ĉ

))
.

We observe that ∂C can be written, in the (y, s) coordinates, as the graph of the

map f : ∂Ĉ → [0,+∞) such that πĈφ

(
y + f (y)nĈφ (y)

)
= y. In particular, we

have f (y) � dφ(y, ∂C) = −dCφ (y). We also have

|C| − |Ĉ| =
∫
∂Ĉ

∫ f (y)

0
J (y, s) ds dHN−1(y), (95)

where J (y, s) is the Jacobian of the mapF . Notice that, letting I be the (n×(n−1))-
matrix with elements Iij = δij , we have

J (y, s) = det
(

I + s∇nĈφ (y)
∣∣ nĈφ (y)

)
,

where
(

I + s∇nĈφ (y)
∣∣ nĈφ (y)

)
is the (n×n)-matrix composed by the (n×(n−1))-

matrix I + s∇nĈφ (y), with nĈφ (y) as the last column. Recalling (20), a direct com-
putation gives

d

ds
J (y, s) = J (y, s) div nĈφ

(
y + snĈφ (y)

)

for any s and for almost every y ∈ ∂Ĉ. Since div nĈφ � 0 on IRN \int
(
Ĉ
)
, we obtain

that J (y, s) is increasing in s, which implies J (y, s) � J (y, 0) = φ◦
(
νĈ(y)

)
.

From (95), we deduce that

|C| − ∣∣Ĉ∣∣ � −
∫
∂Ĉ

dCφ φ
◦ (νĈ) dHN−1.

Since −dCφ (y) = div z(y) = div nĈφ (y) at any y ∈ ∂Ĉ, we obtain

|C| − ∣∣Ĉ∣∣ �
∫
∂Ĉ

div nĈφ φ
◦ (νĈ) dHN−1 � N(N − 1)|Wφ |2/N

∣∣Ĉ∣∣(N−2)/N
,

where the last inequality follows from Lemma 10. This shows (94) when φ ∈ C∞+ .
In the general case, we can approximate φ as in Lemma 3 by smooth anisotropies
φε (it is not necessary here to smoothen as well C). We then observe that (94) is
stable under the limit ε → 0, as well as the condition h < (N + 1)r2/(4N2). ��



146 Giovanni Bellettini et al.

We deduce the following result.

Theorem 10. Let φ be an anisotropy. Let C = C(0) be a compact convex set satis-
fying the rWφ-condition for some r > 0. Let C(t) be the φ-regular flow on [0, T ]
starting from C constructed in Theorem 9. Then,

|C(t2)|2/N � |C(t1)|2/N−2(N − 1)|Wφ |2/N (t2 − t1), 0� t1 � t2 �T . (96)

Proof. Let i, (ui, zi) and Ci be as in the proof of Theorem 9. Let c := 2(N −
1)|Wφ |2/N . If h is small enough, then (94) is valid for Ci and Ci+1 = Th,φ(Ci) as
long as hi < T . By a Taylor expansion and using (81), we obtain for any ε > 0,

|Ci+1|2/N � |Ci |2/N − (1 − ε)ch. (97)

Iterating (97), we may write

|Ch(t2)|2/N � |Ch(t1)|2/N − (1 − ε)c

([
t2

h

]
−
[
t1

h

])
h. (98)

Passing to the limit as h → 0 we show that C(t) satisfies (96). ��

8. Evolution from an arbitrary convex initial datum

In this section we prove Theorem 2; we will use our construction of φ-regular
convex flows to define in a unique way the φ-curvature flow starting from any com-
pact convex initial set.Thanks to Proposition 5, this also proves the uniqueness of the
flat φ-curvature flow of Almgren, Taylor & Wang [2] (with a different mobility).

Let us recall some results proved in [19]. Given a compact convex set C, let
Ch(t) := T

[t/h]
φ,h (C) and Ch := {(x, t) : t � 0, x ∈ Ch(t)} (compare with Defini-

tion 11 and (82)). Up to a subsequence {hk}, Chk converges in the Hausdorff sense
to a set C∗ ⊂ IRN × [0, + ∞), while (IRN × [0, + ∞)) \ Chk converges in the
Hausdorff sense to (IRN × [0, +∞))\C∗, and clearly C∗ ⊆ C∗. For any t � 0 let

C∗(t) := {x : (x, t) ∈ C∗}, C∗(t) := {x : (x, t) ∈ C∗}.
It is shown that C∗ = int(C∗) and C∗(t) and C∗(t) are both convex sets (respec-
tively open and closed) for any t � 0. Define

tC := inf{t � 0 : C∗(t) = ∅}, t̄C := inf{t � 0 : C∗(t) = ∅}.
We clearly have t̄C � tC , moreover, since the set C∗ is closed and C∗ is open, we
have C∗(t̄C) �= ∅ whereas C∗(tC) = ∅.

The following result is proved in [19, Lemma 7.1].

Lemma 12. For any t ∈ [0, tC),
lim

k→+∞ dH(Chk (t), C
∗(t)) = 0,

lim
k→+∞ dH(IR

N \ Chk (t), IRN \ C∗(t)) = 0,

C∗(t) = C∗(t) and C∗(t) = int(C∗(t)).
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In particular,

lim
k→+∞ dH(∂Chk (t), ∂C(t)) = 0.

This means that up to tC , C∗(t) and C∗(t) are essentially the same convex set,
whereas after tC , C∗(t) is empty and C∗(t) could still exist as a convex set of lower
dimension (up to t̄C). In fact, we will show that t̄C = tC , so that both sets vanish
simultaneously. Observe that, if the initial set C satisfies the rWφ-condition for
some r > 0, then the convergence of the subsequence {Chk (t)} implies that the
evolution C(t) of Theorem 9 and the evolution C∗(t) coincide on [0, T ). With a
slight abuse of notation, from now on the evolution C∗(t), for t ∈ [0,+∞), will
be denoted by C(t) (notice that this is consistent with the notation of Theorems 1,
2), and will be addressed as a φ-flow.

The flat φ-curvature flow of Almgren, Taylor & Wang corresponds to the
L∞([0,+∞);L1(IRN)) limit of a subsequence of (χCh(t))h>0. However it is clear
that χChk (t)(x) → 1 in C∗(t) whereas χChk (t)(x) → 0 out of C(t), so that, since
|C(t) \ C∗(t)| = 0 for any t , both C∗ and C∗ are flat φ-curvature flows in the
sense of [2]. Conversely, we can check that given a flat φ-curvature flow of [2],
there exists a corresponding pair (C∗, C∗) of sets which coincides with this flat
φ-curvature flow up to a negligible set.

A first important observation is that estimate (96) in Theorem 10 also holds
for a flow C(t), up to tC : indeed, the proof is the same, based on estimate (94). In
particular, we have tC � |C|2/N/(2(N − 1)|Wφ |2/N ).

Let us now show the following comparison lemma for two φ-flows starting
from two convex sets satisfying a strict inclusion.

Lemma 13. Let C1, C2 be two compact convex sets with C1 ⊂ C2. Assume that

δ := dφ(∂C1, ∂C2) > 0.

LetC1(t) andC2(t) be two flows (as described above) starting respectively fromC1
and C2, and let δ(t) := dφ(∂C1(t), ∂C2(t)), which is well defined for t ∈ [0, t̄C1

]
.

Then δ(t) is nondecreasing on
[
0, t̄C1

]
.

Proof. Since δ > 0, the set C2 has nonempty interior. Let us show that if for some
t � 0 it happens that δ(t) � δ, then for any τ ∈ [0, τδ], with τδ := δ2/(64N(N −
1)2), we have δ(t + τ) � δ(t) if t + τ � t̄C1 . By induction, this gives the thesis of
the lemma.

We letQ := C1(t)+(δ(t)/2)Wφ . By construction,dφ(C1(t), ∂Q) = min{φ(x−
y) : x ∈ C1(t), y ∈ ∂Q} = δ(t)/2, whereas dφ(∂Q, IRN \ C2(t)) � δ(t)/2. If
x ∈ ∂C1(t) and y ∈ ∂C2(t) are such that φ(x − y) = dφ(C1(t), IR

N \ C2(t)) =
δ(t), then (x + y)/2 ∈ Q and φ(y − (x + y)/2) = δ(t)/2, showing that in fact
dφ(∂Q, IR

N \ C2(t)) = δ(t)/2.
The set Q satisfies the (δ/2)Wφ-condition set, hence its φ-regular flow Q(τ)

exists for τ � τδ and coincides, in this time interval, with any φ-flow starting from
Q (hence theφ-flow starting fromQ is uniquely defined for τ � τδ). Let us consider

a sequence {hk} such that the set (C1)hk :=
{
(x, t) : x ∈ T [t/hk]

φ,hk
C1

}
converges to
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C∗
1 in the Hausdorff sense in IRN × [0, + ∞). Choose ξ such that φ(ξ) < δ(t)/2.

Then ξ + C1(t) ⊂⊂ Q, so that for k large enough, ξ + T
[t/hk]
φ,hk

(C1) ⊆ Q. For any
τ ∈ [0, τδ], it follows that

ξ + T
[(t+τ)/hk]
φ,hk

(C1) ⊆ T
[(t+τ)/hk]−[t/hk]
φ,hk

(Q).

Since hk ([(t + τ)/hk] − [t/hk]) = τ + O(hk), we check that (cf. the proof of
Theorem 9) the set {(x, τ ) : 0 � τ � τδ, x ∈ T

[(t+τ)/hk]−[t/hk]
φ,hk

Q} converges in

the Hausdorff sense in IRN × [0, τδ] to {(x, τ ) : x ∈ Q(τ)}. On the other hand, it is
possible to check that the Hausdorff limit of any subsequence of ((ξ, 0)+(C1)hk )∩
(IRN × [t, t + τδ]) coincides with (ξ, 0) + C∗

1 in IRN × (t, t + τδ). One deduces
that as long as τ � τδ ,

ξ + C1(t + τ) ⊆ Q(τ). (99)

Since this is true for any ξ with φ(ξ) < δ(t)/2, we deduce that dφ(∂C1(t +
τ), ∂Q(τ)) � δ(t)/2, as long as ∂C1(t + τ) �= ∅, that is, if t + τ � t̄C1 . A similar
proof will show that for any τ ∈ [0, τδ], dφ(∂Q(τ), ∂C2(t + τ)) � δ(t)/2. Since
∂Q(τ) separatesC1(t+τ) andC2(t+τ), we deduce dφ(∂C1(t+τ), ∂C2(t+τ)) �
δ(t), as long as t + τ � t̄C1 .

It follows that if δ = δ(0) > 0 the function δ(t) is nondecreasing in [0, t̄C1 ]. In
particular, we have C1(t) ⊆ int(C2(t)) for any t � 0. ��
Lemma 14. Let C ⊂ IRN be a compact convex set and let C(t), t � 0, be a φ-
flow starting from C. Let θ > 0. Then t �→ θC(t/θ2) is a φ-flow starting from θC.

Proof. Notice that the signed distance to θC is given by dθCφ (x) = θdCφ (x/θ). Let
h > 0 and u solve

−hdiv ∂φ◦(∇u) + u � dCφ

in IRN . Then uθ (x) := θu(x/θ) solves

−θ2hdiv ∂φ◦(∇uθ ) + uθ � dθCφ .

Hence, θTφ,h(C) = Tφ,θ2h(θC), and the lemma follows. ��
Theorem 11. Let C1, C2 be two compact convex sets, and assume that C1 ⊆ C2.
Let C1(t) and C2(t) be two φ-flows starting from C1 and C2 respectively. Then

C1(t) ⊆ C2(t) ∀ t � 0.

Proof. Let δ := dφ(∂C1, ∂C2) > 0. If δ > 0, then the thesis follows from
Lemma 13, hence we can suppose δ = 0. Let us first consider the case |C2| > 0.
Since C2 has non empty interior, we may assume without loss of generality that 0
is in the interior of C2. Then C1 ⊂⊂ θC2 for any θ > 1. From Lemmata 14 and
13, we deduce that C1(t) ⊆ int(θC2(t/θ

2)) for all t � 0. The left continuity of
∂C2(·) at any t � 0 [19, Lemma 7.2] implies that C1(t) ⊆ C2(t) for any t � 0.

Let t ′ ∈ (tC2 , t̄C2 ] and t > t ′. Observe that C1(t) = ∅. Indeed, since C2(t
′)

has empty interior, then θC2(t/θ
2) has empty interior for θ2 < t/t ′. Therefore

C1(t) ⊆ int(θC2(t/θ
2)) must be empty.
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In particular, takingC := C1 = C2, we find that if t is larger than the extinction
time of the interior of C, then C(t) = ∅, i.e., the extinction time of the interior of
the φ-flow C(t) is the same as the extinction time of the flow itself (i.e., the flow
can not proceed for a while with empty interior). In other words tC = t̄C , provided
|C(0)| > 0.

Now we assume that |C2| = 0. As we observed in Lemma 13, for any com-
pact convex set C′ ⊃⊃ C2, if C′(t) is a φ-flow starting from C′ we have that
C2(t) ⊆ int(C′(t)). Since (96) also holds for aφ-flow up to the extinction time of its
interior, we have that int(C′(t)) = ∅ for any t � |C′|2/N/(2(N−1)|Wφ |2/N ), and,
by the previous statement, alsoC2(t) = ∅ for any t � |C′|2/N/(2(N−1)|Wφ |2/N ).
Since the volume |C′| can be taken arbitrarily small, we deduce t̄C2 = 0 and the
proof is complete. ��
Corollary 5. The φ-flow starting from a compact convex set C is unique.

As a byproduct of the proof of Theorem 11, we also have shown the following
result.

Corollary 6. For any convex φ-flow C(t), if |C(t)| = 0 for some t � 0, then
C(s) = ∅ for any s > t . In other words, tC = t̄C .

Corollary 6 and estimate (96) establish that any φ-flow C(t) starting from a
compact convex set C vanishes beyond the extinction time tC of its interior, which
is estimated with

tC � |C| 2
N

2(N − 1)|Wφ | 2
N

. (100)

Observe that if C = λWφ , then this estimate is optimal.

Remark 13. Observe that, for a generic anisotropy φ /∈ C∞+ , the assumption C1 �

C2 does not necessarily imply ∂C1(t) ∩ ∂C2(t) = ∅ for all t > 0 for which both
∂C1(t) and ∂C2(t) are nonempty.

Theorem 12. Let {Cn} be a sequence of uniformly bounded compact convex sets.
Assume that {Cn} converges in the Hausdorff distance to a set C. Let tCn and tC be
the extinction times of the φ-flows Cn(t) and C(t), starting respectively from Cn
and C. Then limn→∞ tCn = tC and

lim
n→+∞ dH(Cn(t), C(t)) = 0, t < tC.

Proof. If C has an empty interior, then the assertion follows from estimate (100).
Otherwise, we may assume that 0 is in the interior ofC. Let θ < 1. Then, if n is large
enough, θC ⊆ Cn ⊆ (1/θ)C. We deduce that θC(t/θ2) ⊆ Cn(t) ⊆ (1/θ)C(θ2t)

for any t . In particular θ2tC � tCn � tC/θ
2, hence {tCn} must converge to tC . On

the other hand, if t < tC , then both θC(t/θ2) and (1/θ)C(θ2t) converge to C(t)
as θ → 1 in the Hausdorff distance, so that also Cn(t) must converge to C(t). ��

Using Theorems 11 and 12, we deduce the following result.

Corollary 7. Theφ-flow defines a continuous and monotone semigroup on compact
convex sets.
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Remark 14. Theorem 1 allows us to prove rigorously that the initial set C con-
sidered in the second example in [12] develops the bending phenomenon. Indeed,
if by contradiction there exists a φ-regular flow starting from C whose facets do
not bend, then the subsequent evolution must be governed by a system of ODEs,
the velocity of each facet F being the quotient of the (anisotropic) perimeter of
F and its area. However, such an evolution cannot satisfy the comparison prin-
ciple, if the frontal facet of C is sufficiently elongated. This is obtained by com-
paring the evolution with the evolution of a suitable Wulff shape inside C (and
using Remark 5). It follows that the ODE evolution cannot be the φ-regular flow
of C.
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