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Abstract

We consider a two-dimensional model for a rotating Bose-Einstein condensate
(BEC) in an anharmonic trap. The special shape of the trapping potential, negative
in a central hole and positive in an annulus, favors an annular shape for the support
of the wave function u. We study the minimizers of the energy in the Thomas-
Fermi limit, where a small parameter ε tends to 0, for two different regimes of the
rotational speed �. When � is independent of ε, we observe that the energy mini-
mizers acquire vorticity beyond a critical �, but the vortices are strongly pinned in
the central hole where the potential is negative. In this regime, minimizers exhibit
no vortices in the annular bulk of the condensate. There is a critical rotational speed
� = O(| ln ε|) for which this strong pinning effect breaks down and vortices begin
to appear in the annular bulk. We derive an asymptotic formula for the critical �, and
determine precisely the location of nucleation of the vortices at the critical value.
These results are related to very recent experimental and numerical observations
on BEC.

1. Introduction

Since the first achievement of Bose-Einstein condensates (BEC) in alkali gases
in 1995, many properties of these systems have been studied experimentally and
theoretically, in particular issues related to vortices. A special feature of BEC is
that they are trapped systems, hence their geometry depends on the type of trapping
potential. There are several ways to experimentally nucleate vortices. One of them
consists of rotating the trap holding the atoms. If the angular velocity � is large
enough, a vortex lattice is observed [ARVK, MCBD, RBD].

In a BEC, all the atoms occupy the lowest energy state so that they can be
described by the same complex valued wave function, which is at the same time the
macroscopic quantum wave function of the condensate and minimizes the Gross-
Pitaevskii energy. Vortices are the zeros of the wave function, around which the
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phase circulates. We consider here a two-dimensional setting and define the energy
for the complex-valued wave function u as

∫
D

{
1

2
|∇u|2 + 1

4ε2

(
|u|2 − ā + V (x)

)2 − �x⊥ · (iu, ∇u)

}
dx,

where � is the angular velocity, x = (x1, x2), x⊥ = (−x2, x1), ε > 0 is a small
parameter, V (x) is the trapping potential, and the integration takes place over the
region D = {x ∈ R2 : ā − V (x) > 0} occupied by the condensate. The constant
a is chosen such that ∫

(a − V (x))+ = 1.

We refer to [ADu] for more details on how this is derived from the physical exper-
iments. In most current experiments, this trapping potential is harmonic, that is
V (x) = x2

1 + α2x2
2 . In this case, the critical angular velocity for nucleation of

vortices is of order | ln ε| (see [ADu]). Experiments are limited to angular speeds of
the order � < 1/ε when the confinement breaks down. The inhomogeneity of the
potential is at the origin of various patterns. For instance, in the 3-D setting it has
been observed that vortices bend, and generally do not lie along the axis of rotation
(see [RBD]). This observation was at the origin of the first mathematical works on
BEC, [AR, AJ].

In this paper, we focus on very recent experiments in which a laser beam is
superimposed upon the magnetic trap holding the atoms. This results in a potential
V (x) of a different type [BSSD, SBCD]:

Vtrap � (1 − b)r2 + k

4
r4. (1)

Above a critical value of rotation, the dense vortex lattice turns into a lattice with
hole. Numerical simulations ([KTU] in 2-D and [AD] in 3-D) illustrate the existence
of a multiply quantized “giant vortex.”

In the experiments by [BSSD], b is small, so the cross-section is a disc for small
values of �. Indeed, if b < 1 + (3k2/4)1/3, the region determined by A = {a −
Vtrap(r) > 0} is a disc, while if b > 1+(3k2/4)1/3, it is an annulus.When � reaches

the order of 1/ε the rotation modifies the potential into V
eff
trap = Vtrap − ε2�2r2,

to effectively increase the value of b. The region determined by (a − V
eff
trap)+ will

then become an annulus, creating the “giant vortex”. This has been addressed in
[ABD].

The aim of this paper is to show how the annular topology of the condensate
affects the presence and location of vortices as a function of the angular speed �.
Therefore, we concentrate on the effect of the giant vortex on the nucleation of
vortices in the condensate domain, rather than on the creation of the hole itself. To
do this, we choose a trapping potential which ensures the presence of the hole even
at low rotational speeds, when individual vortices may be discerned by variational
methods. In the sample potential (1), this means taking b > 1 + (3k2/4)1/3, so that
the region A = {a − Vtrap(r) > 0} is an annulus when � � O(| ln ε|).
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Our results concern both fixed rotation � and rotations which grow with ε.
When � is fixed, minimizers converge to a nonzero radially equivariant solution
away from the hole, which indeed plays the role of a giant vortex, carrying a degree
increasing with �. We also consider rotations of speed � = O(| ln ε|) and prove
the existence of a critical rotation, above which the strong pinning effect of the
giant vortex breaks down. Indeed, above this critical value we observe not only
the giant vortex (with vorticity of order | ln ε|) but also free vortices in the annular
bulk. Near the critical �, these vortices concentrate along a precisely defined set C
consisting of finitely many concentric circles in A.

Our energy bears a formal resemblance to the well-studied Ginzburg-Landau
functional, used to model superconductivity. Superconducting vortices are created
by submitting the sample to an applied magnetic field, which plays the same role as
the angular speed � in the BEC model. It is well known that, in a simply-connected
superconductor, vortices first appear at a critical applied field of order O(| ln ε|)
(see for example, [Se1], [SSe1]). In fact, the similarity of the models provides us
with many analytical tools, derived in the context of the Ginzburg-Landau model,
which we will use in this paper for studying vortices in the BEC model. However,
the vanishing of the coefficient a near the edges of the annulus, coupled with the
interaction between the Giant Vortex and point vortices in the bulk, will require
some delicate analysis to adapt these techniques to our setting.

Mathematical Formulation. We seek minimizers u = uε ∈ H 1
0 (D; C) of the

energy functional

Eε(u) =
∫
D

{
1

2
|∇u|2 − �x⊥ · (iu, ∇u)

+ 1

4ε2

[
(|u|2 − a(x))2 − (a−(x))2

]}
dx, (2)

where a(x) = a(r) is a smooth radial function in D, a disc of radius R0, and
a−(x) = min{a(x), 0}. We assume that a satisfies:

(H0) a = a(r) ∈ C∞(D) is radial, with a = 0 on ∂D;
(H1) there exists 0 < r0 < R0 such that A = {x ∈ R2 : a > 0} = BR0(0)\Br0(0),

T = {a < 0} = Br0(0);
(H2) there exist constants α0, β0 > 0 such that

a(r) ∼
{

α0(r − r0) as r ∼ r0,

β0(R0 − r) as r ∼ R0;

(H3)
∫

R2 a+ = 1.

We recall that the “anharmonic” potentials given by (1) satisfy these hypotheses
for b > 1 + (3k2/4)1/3. In the limit ε → 0, energy minimization forces |u| → 0
in the hole T where a < 0, and we expect that the resulting density profile is
asymptotically localized in the annular region A.

We now describe our results in greater detail, beginning with rotations � =
O(1).
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The Giant Vortex. The energy minimizers with � = 0 provide real solutions of
the Euler-Lagrange equations. When � = 0, Eε(η) = Jε(η), where

Jε(η) =
∫
D

{
1

2
|∇η|2 + 1

4ε2

[
(|η|2 − a(x))2 − (a−(x))2

]}
dx. (3)

The minimizer ηε of Jε is (up to a complex multiplier of modulus one) the unique
positive solution of

�ηε + 1

ε2 ηε(a(x) − η2
ε ) = 0 in D, ηε = 0 on ∂D. (4)

Moreover η2
ε converges to a+ in L2(D) and uniformly on any compact set of A

or T . (See Proposition 1). These estimates follow from sub- and super-solution
arguments based on [AnSh2].

By a remarkable identity (see Lassoued & Mironescu [LM]), the energy
Eε splits into two parts, the energy Jε(ηε) of the density profile and a reduced
energy of the complex phase v = u/ηε, which allows us to compute the limiting
energy and identify the size of the giant vortex in T .

Theorem 1. Let � be fixed, and let D0 ∈ Z be the minimizer of

g0(d) = 1

2
�1d

2 − �d, d ∈ Z, where �1 =
∫
A

a

|x|2 . (5)

Let uε be a sequence of minimizers of Eε, then

(i) Eε(uε) − Eε(ηε) → g0(D0), as ε tends to 0,
(ii) there exists a subsequence ε → 0 and α ∈ C with |α| = 1 so that

uε

ηε

→ αeiD0θ in H 1
loc(A), and |uε

ηε

| → 1 locally uniformly in A,

(iii) for every fixed r such that ∂Br(0) ⊂ A, deg(uε

ηε
, ∂Br) = D0 for ε sufficiently

small,
(iv) |u(x)| → 0 locally uniformly in T and

|u(x)| � Cε1/6 exp
[
−dist (x, ∂T )/20ε2/3

]
(6)

for all x ∈ T with dist (x, ∂T ) � ε1/3.

Thus, we observe a sequence of phase transitions as � increases, at which the
minimizer of g0(d) jumps from one degree to another, and the giant vortex takes
on larger and larger vorticity, while there are no vortices in the annulus.

We also consider another way to model the presence of the hole. In previous
works on BEC (see [AJ,ADu,AR], for example) the assumption has been made that
the potential completely determines the shape of the condensate. The corresponding
analysis leads here to a zero Dirichlet boundary condition on ∂A, and the energy

Êε(u) :=
∫
A

{
1

2
|∇u|2 − �x⊥ · (iu, ∇u) + 1

4ε2 (|u|2 − a(x))2
}

dx,

u ∈ H 1
0 (A; C). (7)
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We will see that this model and (2) give very similar results, which is to be expected
as minimizers of (2) vanish exponentially to zero in the hole T (see Lemma 2).

Vortices in the annulus. In the second part of the paper, we consider the case when
� = O(| ln ε|), and thus vortices are nucleated in the bulk A of the condensate.
For simplicity, we restrict our study to the model in the annulus A, that is (7)
with u ∈ H 1

0 (A; C) having a zero Dirichlet condition on ∂A. As in the previous
part, we decouple the modulus and phase of uε = η̂εvε, where now η̂ε ∈ H 1

0 (A, R)

minimizes the energy Ĵε restricted to real-valued functions with Dirichlet conditions
on ∂A. We assume a specific asymptotic form for the rotation �,

� = ω0| ln ε| + ω1 ln | ln ε|. (8)

It is well known in the Ginzburg-Landau model that vortices become energet-
ically favorable at a critical value of the rotation �∗ = O(| ln ε|) (see [Se2], for
example). We show that the same general principle holds in the annular case, but
with an interesting difference. The hole acts genuinely as a giant vortex, and exerts
a repulsive force on “free” vortices in the interior of A which effectively balances
the force of the rotation. Hence the vortices are going to lie on a specific circle.

We identify vortices using energy concentration, via the construction of “vortex
balls” and the consequent lower bounds derived by Sandier & Serfaty [SSe3].
For technical reasons we must excise a thin neighborhood of a certain width ρ = ρε

with

(ln | ln ε|)−1/2 << ρ << 1 (9)

from the two edges of the annulus and restrict our analysis to vortices lying in the
interior region

Aρ = {x ∈ A, dist (x, ∂A) > ρε}. (10)

There may well exist vortices near the edges of A, but the value of a being very
small near ∂A, we have no way of controlling these outlying vortices. We find that
there exists a finite number of balls Bi ⊂ Aρ with vanishingly small total radii
so that |vε| is very close to 1 in Aρ \ ∪Bi . Each vortex ball carries an associated
integer winding number di = deg( v

|v| , ∂Bi). We say that uε has an essential vortex
at pi ∈ Aρ if there is a vortex ball Bi centered at pi with degree di �= 0.

We prove the following result:

Theorem 2. Assume a(x) satisfies hypotheses (H0)–(H3) in A, and

(H4) a(x) is a real-analytic function of r = |x|.
Let ρ, Aρ satisfy (9)-(10). Then, there exist constants ω∗

0, ω∗
1 such that if uε is

a sequence of minimizers of Êε in H 1
0 (A), there exists a finite collection of disjoint

balls Bi = Bsi (pi) of total radii
∑

si � | ln ε|−8, such that deg(uε/|uε|; ∂Bi) = di

and the following holds:

(i) if either ω0 < ω∗
0 or both ω0 = ω∗

0 and ω1 < −ω∗
1 , then for all ε sufficiently

small uε has no essential vortices in Aρ:
∑

Aρ
|di | = 0;
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(ii) if ω0 = ω∗
0 and ω1 > −ω∗

1 , then for all ε sufficiently small, any essential vor-
tex in Aρ has positive degree and is localized on a set C of concentric circles
in the following sense: there exists an M ∈ N such that if pi are the centers
of Bi , ∑

pi∈Aρ
di<0

|di | +
∑

pi∈Aρ

dist (pi ,C)>[ln ε]−1/2M

|di | = 0

for all ε sufficiently small. Moreover, the total degree in Aρ ,

Dε :=
∑

pi∈Aρ

|di | =
∑

dist (pi ,C)<[ln ε]−1/2M

di � C ln | ln ε|

for C independent of ε. If ω1 > 0, then Dε � 1;
(iii) there exists ω#

1 > 0 so that whenever ω1 � ω#
1 and ω0 = ω∗

0 , Dε � c ln | ln ε|
for c independent of ε.

We emphasize that the sum of degrees is taken over the vortex balls in Aρ .
This theorem relies on an asymptotic development of the energy. We use the

resulting “vortexless” configuration ηεe
iDεθ as a background configuration in much

the same way as the Meissner solution is used to study the critical fields of a super-
conductor in [Se2, SSe1, SSe4]. (A related problem of vortices in rotating superfluid
is solved in [Se2], where the parallel between rotations and magnetic fields also
appears). Indeed, our asymptotic expansion of the energy leads to the appearance
of a new potential function,

F(r) :=
∫ R0

r

a(s)

(
s − 1

�1 s

)
ds, r ∈ [r0, R0].

We have F(r) � 0, F(r0) = 0 = F(R0), and

max
r∈[r0,R0]

F(r)

a(r)
=: K0 > 0 (11)

attained on a finite set of radii� ⊂ (r0, R0). (See Lemma 3).We show thatω∗
0 = 1

2K0
gives the desired critical value of rotation, in the sense that when ω0 < ω∗

0 the min-
imizers will have no essential vortices inside A. On the other hand, if ω0 = ω∗

0 and
ω1 > 0, the vortices converge to the set C of concentric circles of radii r∗ ∈ � as
ε → 0.

The lower bound on the energy leads to the upper bound on the number of
essential vortices, the positivity of the degrees, and their location in Aρ . The lower
bound on the number of vortices comes from a better upper bound construction
with vortices distributed along the optimal set C when ω1 is large.

We conjecture that the vortices are evenly distributed on the circles C, and as
ε → 0 their normalized density measure converges to a constant times the arclength
measure on C. (See for instance Sandier & Soret [SSo] for a related result.) We
are not able to show this, as it requires sharper information on the coefficients of
ln | ln ε| in the lower bound expansion.
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Mathematical perspective. Variational problems of a similar type to (7) with spa-
tially varying coefficients have also been introduced to model vortex pinning due
to material inhomogeneities in a superconductor. Most analytical results have con-
centrated on the case where a(x) > 0 in � (see [AnSh1],[L], [ASSe].) A recent
paper of André, Bauman, & Phillips [AnBaPh] treats the case where a(x) is
allowed to vanish. In contrast to our setting, in [AnBaPh], the pinning potential
a(x) is nonnegative and vanishes at a finite number of points. They show that when
the applied field (which plays the role of our angular speed �) is large but fixed
(independent of ε), minimizers may have nonzero degree yet do not experience
loss of superconductivity in the interior of the region where a > 0, i.e., in the limit
ε → 0 the superconducting density |u|2 → a(x) locally in H 1. The vortices are
pinned to the zeros of a, and none appear in the region where a > 0. In their result,
it is important that

√
a is in H 1, which is not the case here. Note that our hypoth-

eses on the potential imply that a(r) vanishes linearly near ∂A, and hence (unlike
[AnBaPh])

√
a+ is not in H 1

0 (A). In particular, the profile of the condensate is
singular near the boundary, and contributes to a divergent term in the expansion of
energy. We overcome this difficulty by a splitting of the energy, inspired by [LM],
to separate the contribution of the vortices from that of the singular boundary layer.

Ginzburg-Landau models in domains with holes have also been studied by other
authors ([RuSt], [JiMo]) but in the context of “permanent currents”, locally min-
imizing solutions with zero applied field (rotation). Like our giant vortex states,
these represent a particular homotopy class of the bulk domain, and introduce vor-
ticity without vortices. An important difference though is that their solutions are
only locally minimizing, while our solutions are global minimizers, with vorticity
selected by the external rotation �.

The paper is organized as follows: in Section 2, we prove general results about
the minimizers of Jε and behaviour of uε in T . Then Section 3 is devoted to the
proof of Theorem 1 and Section 4 to Theorem 2. Finally, at the end of Section 4,
we explain the case where a = 1.

2. Preliminaries

In this section, we present some preliminary results which we will require
throughout the paper. First, we study the real solutions ηε, since they give, in some
sense, the density profile of vortexless configurations and define the underlying
shape of the condensate. Their energy diverges with ε, and we decompose the
energy in order to decouple the profile from the contribution of vortices. Finally,
we compare two different models for the hole (or Giant Vortex).

2.1. Determining the density profile

We first study real-valued minimizers, which determine the approximate mod-
ulus of the order parameter.

Proposition 1. Problem (4) admits a unique positive solution ηε, which is the
unique minimizer of Jε in H 1

0 (D) up to a complex multiplier of modulus one.
In addition,



254 Amandine Aftalion, Stan Alama & Lia Bronsard

(i) ηε ∈ C∞(D) is radial;
(ii) 0 < ηε(x) � maxD

√
a+, and |∇ηε| � C/ε;

(iii) Jε(ηε) � C| ln ε| and Jε(ηε) is bounded in L∞
loc(A) and L∞

loc(T );
(iv) there exists a constant C independent of ε so that

|ηε(x) −
√

a+(x)| � Cε1/3
√

a+(x) for every x ∈ A with dist (x, ∂A) � ε1/3;
(v) 0 < ηε(x) � Cε1/6 exp

[−dist (x, ∂T )/20ε2/3
]

for every x ∈ T with
dist (x, ∂T ) � ε1/3,

where C > 0 is a constant independent of ε.

In particular, (v) implies that ηε → 0 locally uniformly in the hole T . Assertion
(iv) implies that |η2

ε (x) − a+(x)| is small with respect to a+(x) itself provided we
remain at a small distance (ε1/3) from the boundary of A; this will be essential
in our analysis of the nucleation of vortices into the annulus A with increasing
rotation.

Remark 1. We note that the problem in the annulus A has its own real minimizer,
η̂ε ∈ H 1

0 (A; R), which satisfies conclusions (i)–(iv) of Proposition 1.

Remark 2. We also have η2
ε → a+ in C

1,α
loc (T ) and C

1,α
loc (A), ‖ηε − √

a‖C1(K) �
CKε2, for any compact subset K of T or A.

Proof. of Proposition 1. The existence of a positive minimizer of Jε in H 1
0 (D)

is standard. Since Jε(|η|) � Jε(η), with equality if and only if η = |η|eiα , it
implies that the minimizer is a real positive function, which satisfies the Euler Lag-
range equation, up to multiplication by a number of modulus 1. The uniqueness
comes from [BrO]. Let us recall the proof briefly. If ξ and η are two solutions, then
w = ξ/η satisfies an equation, that we multiply by w − 1 and integrate in D to
obtain w ≡ 1.

(i) By the uniqueness, η must be radial.
(ii) The Maximum Principle yields that η > 0 in D and η2 < maxA a+. The

estimate on the gradient follows from the equation and Gagliardo-Nirenberg
inequality as in [BBH].

(iii) Since ηε is the minimizer of Jε, we just need to construct a test function for
which we have a bound on the energy. We define ξ(r) = γ (a+(r)), where

γ (s) =
{√

s if s > ε2/3,
s

ε1/3 if s < ε2/3.

Using the co-area formula, we find
∫
D

|∇ξ |2 =
∫ R0

r0

γ ′(a+(r))2|∇a+|2 dr � C

∫ ā

0
γ ′(s)2 ds � C| ln ε|.

For the other term,
∫
D

(a+ − γ (a+)2)2 dr �
∫ ε2/3

0
(s − γ (s)2)2 ds � Cε2.
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Hence, the energy of this test function is bounded by | ln ε|.
In order to bound the energy on compact sets, we follow [LM] and fix δ such
that Kδ = {x ∈ A, dist (x, ∂K) < δ} is included in A. This implies in partic-
ular Jε(ηε, Kδ \ K) � C| ln ε|. Hence there exists a compact K ′ containing
K such that Jε(ηε, ∂K ′) � C′| ln ε|. We can assume that K ′ = (r0, r1) and
let K ′

ε = (r0 + ε, r1 − ε). We consider the following test function

vε =




ηε in D \ K
′
,√

a in K ′
ε,√

tη2
ε (r0) + (1 − t)a(r0 + ε) if r ∈ (r0, r0 + ε) and

a(r) = (1 − t)a(r0 + ε) + ta(r0),√
tη2

ε (r1) + (1 − t)a(r1 − ε) if r ∈ (r1 − ε, r1) and

a(r) = (1 − t)a(r1 − ε) + ta(r1),

Using the fact that Jε(ηε) � Jε(vε) and that vε and ηε are equal in D \K
′
, we

obtain Jε(ηε, K
′) � Jε(vε, K

′). A computation of Jε(vε, K
′) together with

the hypothesis Jε(ηε, ∂K ′) � C′| ln ε| gives the result.
A similar proof holds in T and yields in fact a bound in ε| ln ε| for the energy
in every compact subset of T .

(iv) Let x0 ∈ A with dist (x0, A) > ρ, and δ < ρ. We will construct a subsolution
w and a supersolution W of (4) in Bδ(x0) with w|∂Bδ(x0) � ηε|∂Bδ(x0) �
W |∂Bδ(x0). By uniqueness of solutions of (4), we conclude that w � ηε � W

in Bδ(x0).
Let

A = max
Bδ(x0)

a, α = min
Bδ(x0)

a, M = max
D

a.

By hypothesis (H2) on a, we have α � cρ for ρ sufficiently small. For our
supersolution, we take

W(x) := √
A coth

(
coth−1

(√
M

A

)
+ δ2 − |x − x0|2

3δε

√
A

)
.

As in [AnSh2], W is such that �W + 1
ε2 (A−W 2)W � 0. Since W = √

M �
ηε on ∂Bδ(x0), we have ηε(x) � W(x) in Bδ(x0). In particular,

0 � W(x0) − √
A �

√
A

[
coth

(
δ
√

A

3ε

)
− 1

]
�

√
A exp

(
−2δ

√
A

3ε

)
.

(12)

Since a is smooth in A, we may approximate a(x0) by A making a small
error: |√a(x0) − √

A| � Cδ/
√

A � Cδ/ρ1/2 with constant C depending
only on the C1 norm of a in A. Hence,

W(x0) − √
a(x0)√

a(x0)
�

√
A − √

a(x0)√
a(x0)

+
√

A√
a(x0)

e

(
− 2δ

√
A

3ε

)

� C

(
δ

ρ1/2 + e

(
− 2δ

√
A

3ε

))
. (13)
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We now choose δ = ε1/2 and ρ = ε1/3. Then the second term of (13) is
exponentially small compared to the first, and we obtain

ηε(x0) − √
a(x0)√

a(x0)
� W(x0) − √

a(x0)√
a(x0)

� Cε1/3

for all x0 ∈ A with dist (x0, ∂A) � ε2/3.
To construct a subsolution in Bδ(x0), we first let w̃(x) be the solution of

−�w̃ + 1

ε̃2 w̃(w̃2 − 1) = 0, in B1(0) w̃ = 0, on ∂B1(0),

and ε̃ = ε/δ
√

α. This problem has been studied in [Se2], where the exponen-

tial decay estimate is derived: 0 � 1 − w̃(x̃) � C exp
(
− 1−|x|2

2ε̃

)
. Then we

map this function to Bδ(x0) via x̃ = x−x0
δ

,

w(x) = √
α w̃

(
x − x0

δ

)
. (14)

We have

−�w + 1
ε2 (w2 − a(x))w � −�w + 1

ε2 (w2 − α)w = 0 in Bδ(x0),

w = 0 < ηε on ∂Bδ(x0).

By the decay estimate (14) we obtain 0 � √
α−w(x0) � C

√
α exp

(
− δ

√
α

2ε

)
.

Arguing as in (13), we approximate
√

α by
√

a(x0) in the estimate, and choose
δ = ε2/3, ρ = ε1/3. We obtain:

√
a(x0) − ηε(x0)√

a(x0)
�

√
a(x0) − w(x0)√

a(x0)
� C

δ

ρ1/2 = Cε1/3

for all x0 ∈ A with dist (x0, ∂A) � ε2/3. This proves the desired estimate for
ηε.

(v) This is a special case of Proposition 2 below. ��
Remark 3. Except for (i), Proposition 1 holds even if a is not radial.

2.2. Comparing two models for the Giant Vortex

In the hole T = Br0(0), a < 0 and the potential energy of u is coercive, so we
expect that, in the singular limit ε → 0, u → 0 in T . Therefore it is natural to try
to model the apparent hole by a domain wall on ∂T , and impose a zero Dirichlet
condition on u: let

Êε(u) := Eε(u; A) =
∫
A

{
1

2
|∇u|2 − �x⊥ · (iu, ∇u) + 1

4ε2

(
|u|2 − a

)2
}

,
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defined for u ∈ H 1
0 (A). The following proposition demonstrates that minimizers

for these two energies should be qualitatively similar; in fact, all of the results
proven in the remainder of the paper for Eε may be modified in a transparent way
to hold in the same form for Êε, and hence the two minimization problems describe
essentially the same phenomena.

Proposition 2. Assume � � C0| ln ε| for some constant C0 > 0. Then, for any
minimizer u of Eε in H 1

0 (D),
∫
A

(|u|2 − a)2 +
∫

T

|u|4 � C1ε
2| ln ε|2, (15)

with constant C1 depending on C0. Moreover, |u(x)| → 0 locally uniformly in T

and

|u(x)| � Cε1/6 exp
[
−dist (x, ∂T )/20ε2/3

]
(16)

for all x ∈ T with dist (x, ∂T ) � ε1/3.

Proof. We obtain a simple upper bound on the energy Eε by substituting the test
function ηε, minH 1

0 (D) Eε � C| ln ε|. Note that in T ,

(|u|2 − a)2 − (a−)2 = |u|4 + 2a−|u|2 � |u|4.
We estimate the rotation term by

∣∣∣∣
∫
D

�x⊥ · (iu, ∇u)

∣∣∣∣
� 1

2

∫
D

|∇u|2 + �2

2

∫
T

|x|2|u|2 + �2

2

∫
A

|x|2
[
(|u|2 − a) + a

]

� 1

2

∫
D

|∇u|2 + �2

4

∫
T

|u|4 + �2

4

∫
A

(|u|2 − a)2 + C�2.

For ε sufficiently small, �2 << 1
ε2 , and hence these terms may be absorbed into

the coercive terms in the energy to obtain

C| ln ε| � Eε(u) � 1

4

(
1

ε2 − �2
)(∫

T

|u|4 +
∫
A

(|u|2 − a)2
)

− C�2.

The estimate (15) then follows from the hypothesis � � C| ln ε|.
We now turn to the proof of the pointwise convergence in the hole T . Any

minimizer solves the equation

−�u − 2i� x⊥ · ∇u = 1

ε2 (a(x) − |u|2)u (17)

pointwise in D. Let T ′
ε := {x ∈ T : a(x) � − 1

2ε1/3 < 0}, so in T ′
ε we have

a(x) + ε2�2|x|2 � 1

2
a(x) < 0. (18)
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Set

U(x) := |u(x)|2.

We then calculate:

1

2
�U = |∇u|2 + (u, �u)

= |∇u|2 + 2� x⊥ · (iu, ∇u) − 1

ε2 (a(x) − U)U

� −�2|x|2 U + 1

ε2 (U − a)U

= 1

ε2 U
(
U − (a(x) + ε2�2|x|2)

)

� 1

2ε2 (a−) U � 0, (19)

where a−(x) = max{0, −a(x)} � 0, using (18).
By the bound (15) and Cauchy-Schwartz,

∫
T

U =
∫

T

|u|2 � Cε| ln ε|.

From the computation (19) we see that U is subharmonic in T ′
ε , and therefore for

all x such that Bρ(x) ⊂ T ′
ε , we have

U(x) � 1

πρ2

∫
Bρ(x)

U � 1

πρ2

∫
T

U � C
ε| ln ε|

ρ2 .

Taking x ∈ Tε := {x ∈ T : dist (x, ∂T ) > 1
2ε1/3} and ρ = 1

2ε1/3 we conclude

U(x) � Cε1/3| ln ε|, (20)

in particular U(x) → 0 locally uniformly in T .
To complete the proof, we note that (19) also implies that U is a subsolution of

the equation −�w + a−
ε2 w = 0 in Tε. Since (for ε sufficiently small) a− � ε2/3 in

Tε we then use the comparison principle (see Lemma 2 of [BBH], for example) to
conclude that for x ∈ T with dist (x, ∂T ) > ε1/3,

|u(x)|2 = U(x) � Cε1/3| ln ε| exp
[
−dist (x, ∂Tε)/4ε2/3

]

� Cε1/3| ln ε| exp
[
−dist (x, ∂T )/8ε2/3

]
,

(since dist (x, ∂T ) � 2 dist (x, ∂Tε) for such x) and the conclusion follows. ��
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2.3. Splitting the energy

We apply the remarkable observation (see [LM]) that the energy of the profile
ηε and the remaining complex order parameter v = u/ηε decouple exactly into two
independent pieces.

Lemma 1. Let u ∈ H 1
0 (D). Then, v = u/ηε is well defined, belongs to H 1

η2
ε

and

Eε(u) = Jε(ηε) + Gε(v) where Gε(v) = Fε(v) −
∫
D

η2
ε�x⊥ · (iv, ∇v) dx (21)

and Fε(v) =
∫
D

{
η2

ε

2
|∇v|2 + η4

ε

4ε2 (|v|2 − 1)2
}

dx. (22)

Proof. Note that v is well defined in D, since ηε > 0. The decomposition and the
fact that v ∈ H 1

ηε
(D) follow exactly as in [Se2]: since ηε satisfies (4), we multiply

it by ηε(1 − |v|2). This gives an identity that we use to compute Eε(v). ��

3. The giant vortex: velocity of order 1

This is a case similar to the pinning case studied by [AnBaPh]. When � is fixed
(independent of ε) but sufficiently large, minimizers acquire nonzero degree. The
solution u does not vanish in the annular bulk of the condensate, since the vortices
are pinned to the giant hole where |u| is very small. The essential difference with
[AnBaPh] is the fact that the hole here is large and a is linear near the boundary; in
[AnBaPh] the pinning sites are isolated zeros of the pinning potential a and

√
a is

sufficiently regular to be used as a test function for the upper bound.
Before beginning the proof of Theorem 1, we need the following results.

Lemma 2. For v ∈ H 1(A, S1), let

G0(v) =
∫
A

a

2
|∇v|2 − a�x⊥ · (iv, ∇v). (23)

Then for any r such that ∂Br ⊂ A,

G0(v) � g0(d), where d = deg(v, ∂Br)

and g0 is given in (5). In particular, the minimum of G0 is achieved, and any min-
imizer has the form v0 = αeiD0θ , where D0 minimizes g0 in Z and α ∈ C is a
constant with |α| = 1.

Proof. Let v be a smooth function in A with values in S1. The degree of v is con-
stant on any concentric circle Sr ⊂ A; let us call it d. Define the energy of v on the
circle Sr by

e(r; v) =
∫

Sr

a

2
|∇v|2 − a�x⊥ · (iv, ∇v).
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First, we note that ∫
Sr

a�x⊥ · (iv, ∇v) = 2πra(r)�d,

depends only on the homotopy class of v. For the other term, the Cauchy-Schwartz
inequality implies

∫
Sr

|∇v|2 �
∫

Sr

(iv, ∇v)2 � 1

2πr

(∫
Sr

(iv, ∇v) · τ

)2

= 2πd2

r
. (24)

Therefore, we have the lower bound,

e(r; v) � 2πa(r)

(
1

2

d2

r
− �d r

)
= e

(
r; eidθ

)
(25)

for any v ∈ H 1(A, S1) and for almost every r ∈ (r0, R0).
Now let v be chosen to minimize G0. Integrating (25) over r (and recalling that

we assume
∫
A a(r) dx = 1), we obtain

g0(d) = G0(e
idθ ) � G0(v) � G0(e

iD0θ ) = g0(D0).

Since D0 minimizes g0 over Z, we conclude d = D0, and each of the inequal-
ities above is actually equality. Since G0(v) = ∫ R0

r0
e(r; v) dr = G0(e

iD0θ ) and
the integrands are pointwise bounded by (25), we conclude that equality must
hold (almost everywhere) in (25), and therefore also in (24). The case of equality in
Cauchy-Schwarz inequality in the integrals over Sr implies that (iv, ∇v) ·τ = α(r)

(independent of θ ). Since the degree is independent of Sr , we have

2πα(r)r =
∫ 2π

0
(iv, ∇v) · τ r dθ = 2πD0.

By the equality |(iv, ∇v) · τ | = |∇v| (and recalling |v| = 1), we conclude that the
normal derivative (iv, ∇v) · n = 0 and integrating the relation (iv, ∇v) · τ = D0

r

gives v = eiD(θ−θ0) with θ0 ∈ R constant. ��
We now present the

Proof of Theorem 1. We first derive an upper bound on the energy of the mini-
mizers. Let χ = χ(r) be a smooth function in D, 0 � χ(r) � 1, with χ(r) = 0
for 0 � r � r0

4 and χ(r) = 1 for r0
2 � r � R0. We use the test function u = ηεv,

v = χeiD0θ , where D0 ∈ Z minimizes g0(d). Then splitting the energy of Lemma
1 yields

Eε(u) = Jε(ηε) + Gε(e
iD0θ ; A) + Gε(χeiD0θ ; T ). (26)

Let us prove that the last term tends to 0, using the exponential decay of ηε in Br0/2
Proposition 1 (v):∫

T

η2
ε |∇(χeiD0θ )|2 � 2

∫
T

[
η2

εχ
2|∇eiD0θ |2 + η2

ε |∇χ |2
]

� C

∫ r0
2

r0
4

η2
ε

[
D2

0

r
+ 1

]
dr = o(1),
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and

1

ε2

∫
T

η4
ε (1 − χ2)2 � 1

ε2

∫ r0
2

r0
4

η4
ε � C

ε2 exp

(−r0

ε2/3

)
= o(1).

Note that limε→0 Gε(e
iD0θ ; A) = g0(D0), because of the convergence of η2

ε to a.
This implies

Eε(u) � Jε(ηε) + g0(D0) + o(1). (27)

For the minimizer uε, let vε = uε/ηε. We have Eε(uε) = Jε(ηε) + Gε(vε). We get
from (27),

lim sup
ε→0

Gε(vε) � g0(D0). (28)

Now we want to prove that lim infε→0 Gε(vε) � g0(D0). We claim that for any
v ∈ H 1

η2
ε
(D),

lim inf
ε→0

Gε(v; T ) � 0. (29)

Indeed, by the same basic steps as above,

∣∣∣∣
∫

T

�η2
εx

⊥ · (iv, ∇v)

∣∣∣∣ � 1

2

∫
T

η2
ε |∇v|2 + �2

2

∫
T

η2
ε |x|2|v|2

� 1

2

∫
T

η2
ε |∇v|2 + �2

2

∫
T

[
|x|2η2

ε (|v|2 − 1) + η2
ε |x|2

]

� 1

2

∫
T

η2
ε |∇v|2 + 1

4ε2

∫
T

η4
ε (|v|2 − 1)2

+�4ε2

4

∫
T

|x|4 + �2

2

∫
T

η2
ε |x|2

= Fε(v) + o(1),

and we therefore conclude, Gε(v; T ) � o(1) as claimed.
Next we show some weak compactness of vε in the annulus to get the lower

bound. We again use the same ideas to estimate the rotation term:

∣∣∣∣
∫
A

η2
εx

⊥ · (iv, ∇v)

∣∣∣∣ � 1

4

∫
A

η2
ε |∇v|2 + �2

2

∫
A

η2
ε |x|2|v|2

� 1

4

∫
A

η2
ε |∇v|2 + C�2

[∫
A

η2
ε (|v|2 − 1) +

∫
A

η2
ε

]

� 1

4

∫
A

η2
ε |∇v|2 + 1

8ε2

∫
A

η4
ε (|v|2 − 1)2

+C�2
[∫

A
|x|4 +

∫
A

a + 1

]
.
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Therefore,

g0(D0) + o(1) � Gε(vε) � Gε(vε; A) + o(1)

� 1

4

∫
A

η2
ε |∇vε|2 + 1

8ε2

∫
A

η4
ε (|vε|2 − 12) + O(�2).

As a consequence, there exists a constant C (depending on � but independent of
ε) so that

∫
A

(
η2

ε |∇v|2 + 1

ε2 η4
ε (|v|2 − 1)2

)
� C. (30)

In particular, along some subsequence we have ηε∇vε ⇀ w0 weakly and |vε| → 1
strongly in L2(A). Fix any δ > 0 and let Aδ := {x ∈ A : dist (x, ∂A) > δ}. Then

C �
∫
Aδ

η2
ε |∇vε|2 � 1

2

∫
Aδ

a|∇vε|2,

uniformly in ε, using (iv) of Proposition 1. Hence, (vε) is bounded in H 1(Aδ) for
each δ > 0, and a further subsequence converges weakly in H 1

loc(Aδ), strongly
in L2(Aδ) and pointwise almost everywhere. By a diagonal argument we obtain
a limit function v0, with |v0| = 1 and vε ⇀ v0 in Aδ for each δ > 0. By lower
semicontinuity, for each δ > 0,

lim inf
ε→0

∫
A

η2
ε |∇vε|2 � lim inf

ε→0

∫
Aδ

η2
ε |∇vε|2 �

∫
Aδ

a|∇v0|2.

Letting δ → 0 we obtain v0 ∈ H 1
a (A). By the pointwise convergence we may also

identify the weak limit w0 above: we have ηε∇vε ⇀
√

a∇v0 weakly in L2(A).
We want to show that this convergence is in fact strong.

The rotation term also converges away from the boundary: by weak conver-
gence of ∇vε, strong convergence of vε, and uniform convergence of η2

ε in Aδ , we
have for each δ > 0,

�

∫
Aδ

η2
εx

⊥ · (ivε, ∇vε) → �

∫
Aδ

ax⊥ · (iv0, ∇v0). (31)

In particular, lim infε→0 Gε(vε; Aδ) � G0(v0; Aδ). Let Nδ := {x ∈ A :
dist (x, ∂A) � δ}. By Lemma 2, (29), and the above, we have that for any γ > 0
we may choose ε sufficiently small (in our subsequence) so that

γ + G0(v0) � γ + G0(e
iD0θ )

� Gε(vε)

= Gε(vε; Aδ) + Gε(vε; Nδ) + Gε(vε; T )

� G0(v0; Aδ) + Gε(vε; Nδ) − γ,

and hence we may choose ε > 0 small enough so that

Gε(vε; Nδ) � 2γ + G0(v0; Nδ) � 3γ. (32)
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This allows us to estimate the rotation term in Nδ , for δ > 0 sufficiently small:

∣∣∣∣�
∫
Nδ

ηεx⊥ · (ivε, ∇vε)

∣∣∣∣ � 1

4

∫
Nδ

η2
ε |∇vε|2 + C�2

∫
Nδ

(η2
ε (|vε|2 − 1) + η2

ε )

� 1

4

∫
Nδ

η2
ε |∇vε|2

+C�2

[(∫
A

η4
ε (|vε|2 − 1)2

) 1
2 + (max a+)|Nδ|

]

� 1

4

∫
Nδ

η2
ε |∇vε|2 + γ

� Gε(vε; Nδ) + γ

� 4γ,

for ε, δ sufficiently small. Together with (31) we conclude that

lim
ε→0

∫
A

ηεx⊥ · (ivε, ∇vε) =
∫
A

ax⊥ · (iv0, ∇v0),

and from above

lim inf
ε→0

Gε(vε) � G0(v0).

Therefore limε→0 Gε(vε) = G0(v0) so that lim
∫
A ηε|∇vε|2 = ∫

A a|∇v0|2, and
hence ηε∇vε → √

a∇v0 strongly in L2(A), i.e., vε → v0 strongly in H 1
loc(A),

with v0 a minimizer of G0 in H 1
a (A), that is v0 = αeiD0θ with |α| = 1.

The uniform convergence of |vε| → 1 in Aδ for any δ > 0, as well as the
conclusion that u → 0 in H 1(T ), follows from the same arguments as Step A.2
of the proof of Theorem 1 of [BBH], since the matching of the upper and lower
bounds on Gε(vε; A) implies that

1

ε2

∫
A

η4
ε (|v|2 − 1)2 = o(1).

This completes the proof of Theorem 1. ��

4. Vortices in the annulus and the critical velocity

In this section, we consider larger rotation values of the type (8) and we expect
to see the appearance of vortices in the annular bulk A = {x : r0 < |x| < R0}
of the condensate. We treat the model of the condensate restricted to the annu-
lus A, with Dirichlet condition u ∈ H 1

0 (A; C) on ∂A for simplicity, and denote
Eε(u) = Êε(u; A) in the remainder of the paper. Similarly, we remove the hats
for η.
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4.1. Splitting the energy; vortex balls

We refine our decomposition of Lemma 1 to incorporate the effect of the giant
vortex. We define vε via

uε = ηεe
iDεθ vε,

with

Dε =
[

�

�1

]
,

where [x] denotes the closest integer to x, and �1 is given by (5). Recall that
� = O(| ln ε|). Since eiDεθ is smooth and of modulus one in the annulus A, by
Lemma 1 v ∈ H 1

η2
ε
(A) is well defined, and (21) and a direct calculation yields:

Eε(uε) = Eε(ηε) + Gε(e
iDεθvε)

= Eε(ηε) + 1

2
�εD

2
ε − � MεDε + Eε(vε) (33)

with

�ε =
∫
A

η2
ε

|x|2 and Mε =
∫
A

η2
ε |vε|2, (34)

Eε(v) =
∫
A

{
η2

ε

2
|∇v|2 − η2

ε�X · (iv, ∇v) + η4
ε

4ε2 (|v|2 − 1)2
}

(35)

and X = x⊥ − Dε

�
∇θ .

Using ηεe
iDεθ as a test function for an upper bound, we find that if uε is a

minimizer, then Eε(vε) � 0. Our aim is to compute a lower bound and thus locate
the vortices.

Our first step is to excise a thin neighborhood of the two edges where a(r)

vanishes. We do this since our energy method is not sensitive enough to discern
vortices which are very close to the edges of the condensate, where the density
|u|2 ∼ a is already very small. Let

δ = δε = (ln | ln ε|)1/4

| ln ε| , (36)

and

Aδε := {x ∈ A : dist (x, ∂A) > δε}, Nε := A \ Aδε .

Then, by familiar arguments we have:

�

∫
Nε

η2
εX · (iv, ∇v) � 1

2

∫
Nε

η2
ε |∇v|2 + C�2

∫
Nε

|v|2η2
ε

= 1

2

∫
Nε

η2
ε |∇v|2 + �2C

∫
Nε

[
η2

ε (|v|2 − 1) + (η2
ε − a(r)) + a(r)

]
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� 1

2

∫
Nε

η2
ε |∇v|2 +

∫
Nε

η4
ε

8ε2 (|v|2 − 1)2

+C�2
(
|Nε|ε2 + ε

√
Jε(ηε)|Nε| + Cδε|Nε|

)

� 1

2

∫
Nε

η2
ε |∇v|2 +

∫
Nε

η4
ε

8ε2 (|v|2 − 1)2 + C
√

ln | ln ε|. (37)

In particular,

Eε(v; Nε) � −C
√

ln | ln ε|,

and consequently,

Eε(v; Aδε ) � C
√

ln | ln ε| (38)

for any minimizer.
Note that by the same steps as in (37) above,

�

∫
Aδε

η2
εX · (iv, ∇v) � 1

4

∫
Aδε

η2
ε |∇v|2+ 1

8ε2

∫
Aδε

η4
ε (|v|2 − 1)2 + C�2, (39)

and hence from (38) we obtain the useful estimate

∫
Aδε

{
η2

ε |∇v|2 + η4
ε

ε2 (|v|2 − 1)2
}

� C�2 = O(| ln ε|2), (40)

with C independent of ε.
We now define

Ẽε(v) :=
∫
Aδε

{
a

2
|∇v|2 − �aX · (iv, ∇v) + a2

4ε2 (|v|2 − 1)2
}

, (41)

and using the estimates on (η2
ε − a) in Aε from Proposition 1 (iv), (39) and (40),

we conclude:

Ẽε(v) � Eε(v; Aδε )
(

1 + o(ε1/3| ln ε|)
)

� c
√

ln | ln ε|. (42)

Moreover, the bounds (39), (40) also hold with a replacing η2
ε ,

∫
Aδε

{
a|∇v|2 + a2

ε2 (|v|2 − 1)2
} ∣∣∣∣∣�

∫
Aδε

aX · (iv, ∇v)

∣∣∣∣∣ � C�2 = O(| ln ε|2).
(43)

Now in Aδε , we may isolate the vortices using the method of Sandier [Sa] and
Sandier & Serfaty [SSe3]. We have the following result:
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Proposition 3. For any C > 0 there exist positive constants ε0, C0 so that for any
ε < ε0, � � C| ln ε| and any v with Ẽε(v) � C[ln | ln ε|]1/2, there exists a finite
collection {Bi = B(pi, si)}i=1,...,m of disjoint balls such that:

{
x ∈ Aδε : |v| < 1 − | ln ε|−4

}
⊂

m⋃
i=1

Bi ; (44)

m∑
i=1

si < | ln ε|−8; (45)

deg∂Bi

(
v

|v|
)

:= di for all i; (46)

∫
Bi

a

2
|(∇ − i�X)v|2 � πa(pi)|di | (| ln ε| − C0 ln | ln ε|) for all i. (47)

We sketch the proof, as the details are minor modifications of the analogous
results in [SSe1, SSe3]. First, we complete the square in the gradient term and,
using (43) obtain:
∫
Aδε

(
a

2
|(∇ − i�X)v|2 + a2

4ε2 (|v|2 − 1)2
)

� Ẽε(v) + 4�2
∫
Aδε

η2
ε |X|2|v|2 + o(1)

� C| ln ε|2.
Since a(x) � Cδε for x ∈ Aδε , setting ρ := |v| we have

δε
2
∫
Aδε

(
1

2
|∇ρ|2 + 1

4ε2 (ρ2 − 1)2
)

� C| ln ε|2,

and hence ∫
Aδε

(
1

2
|∇ρ|2 + 1

4ε2 (ρ2 − 1)2
)

� C| ln ε|4.

Let Aδε,t := {x ∈ Aδε : ρ < 1 − t} and γt = ∂Aδε,t . Using the co-area formula
as in [SSe3], there exists t0 ∈ (0, | ln ε|−4) and a finite set of balls B1, . . . , Bk with
radii s1, . . . , sk which cover γt0 , satisfying

∑
i si � Cε| ln ε|8. In Aδε \ Aδε,t0 we

may write v = ρeiφ for a (possibly multi-valued) H 1
loc function φ(x).

We then let the balls grow continuously, using the process described in [Sa,
SSe3], to obtain a lower bound in the expanding balls,

∫
Bi\Aδε,t0

a

2
|∇φ − �X|2 � π

(
min
Bi

a

)
|di |

(
ln ε − C0 ln | ln ε|) ,

with constant C0 independent of ε. Note that the minimum of a(x) over Bi is non-
increasing as the radii increase and as balls are merged (when they touch in the
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expansion process). We terminate the process when the sum of the radii of the balls
equals | ln ε|−8. By the continuity of a(x) we may then replace the minimum of a

on each ball by the value at its center pi , making an error which is small compared
to a(pi) itself. This error can then be absorbed into the coefficient of ln | ln ε|.

Finally,

∫
Bi

a

2
|(∇ − i�X)v|2 �

∫
Bj \Aδε,t0

a

2
(1 + ρ2 − 1)|∇φ − �X|2

� (1 − C| ln ε|−4)

∫
Bj \Aε,t0

a

2
|∇φ − �X|2

� (1 − C| ln ε|−4)
(
πa(pi)|di |(| ln ε| − C0 ln | ln ε|))

� πa(pi)|di |(| ln ε| − C0 ln | ln ε|)
for constant C0 independent of ε, which completes the proof of the proposition.

4.2. The potential function

In this section, we define a potential function which will enter into our expansion
of the energy and in the end completely determine the location of the vortices. For
δ > 0 and θ ∈ R, let us define

Fθ,δ(r) :=
∫ R0−δ

r

a(s)

(
s −

(
�−1

1 − θ
) 1

s

)
ds. (48)

Here we take δ = δε as in the previous section in (36), and

θ = θε = 1

�1
− Dε

�
=

(
�

�1
−

[
�

�1

])
1

�
,

so that

|θε| � 1

�
= O(| ln ε|−1). (49)

Fθε,δε enters into our problem because it is the primative of the vector field a(r)X

which vanishes at the outer edge of Aδε ,

∇⊥ (
Fθε,δε (r)

) = a(r) X, Fθ,δ(R0 − δ) = 0 (50)

for any δε, θε. It will be important later on to notice that

F ′
θ,δ(r0) = 0 = F ′

θ,δ(R0), (51)

and when θ = 0 = δ,

F0,0(r0) = 0 = F0,0(R0), F0,0(r) > 0 for all r ∈ (r0, R0). (52)
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Lemma 3. Suppose a(r) is real analytic, a(r) > 0 for r ∈ (r0, R0). Then there
exists a finite collection � = {r∗

1 , . . . , r∗
m} ⊂ (r0, R0) such that

max
r∈[r0,R0]

F0,0(r)

a(r)
=: K0 (53)

is attained for each r∗ ∈ �. Moreover, there exist constants K1 > 0 and M � 1
such that

F0,0(r)

a(r)
� K0 − K1√| ln ε| (54)

whenever dist (r, �) � | ln ε|−1/2M .

Proof. We set

k0,0(r) := F0,0(r)

a(r)
.

Then k0,0 extends to a real analytic function on [r0, R0] with k0,0(r0) = 0 =
k0,0(R0) and k0,0(r) > 0 in (r0, R0). The maximum is therefore attained in the
interior, and on a finite collection of points, which we call �. At each maximum
point the degree of degeneracy is finite, and hence

k0,0(r) ∼ K0 − cj (r − r∗
j )2Nj (55)

in some neighborhood Ij of each r∗
j ∈ �, with Nj ∈ N. In the complement

r ∈ [r0, R0]\∪Ij , k0,0(r) < K0, so by compactness we can findβ > 0 (independent
of ε) such that

k0,0(r) < K0 − β for all r ∈ [r0, R0] \ ∪Ij .

Together with (55) in each Ij we obtain (54). ��
Lemma 4. There exist constants K2, K3 > 0 such that

|Fθε,δε (r)|
a(r)

� K0 + K2

| ln ε| (56)

whenever r ∈ (r0 + δε, R0 − δε), and

|Fθε,δε (r)|
a(r)

� K0 − K3√| ln ε| (57)

when dist (r, �) � | ln ε|−1/2M , where K0, M are as in Lemma 3.

Proof. We have

|Fθε,δε (r) − F0,0(r)| � C(|θε| + δε
2), (58)
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with constant C independent of ε. Let α < 1
2 min{α0, β0}. Then for any γ > 0

sufficiently small, there exists a constant a0 > 0 so that

a(r) �




α(r − r0) if r0 < r < r0 + γ ,

a0 if r0 + γ � r � R0 − γ ,

α(R0 − r) if R0 − γ < r < R0.

When r0 + δε < r < r0 + γ , we calculate:

|Fθε,δε (r)| � |F0,0(r)| + C(|θε| + δε
2)

� C(r − r0)
2 + C(|θε| + δε

2),

using (50), (51), and (52). Therefore,

|Fθε,δε (r)|
a(r)

� C

α
γ + C

α

( |θε| + δε
2

δε

)

� Cγ + O([ln | ln ε|]−1/4)

<
1

2
K0, (59)

by fixing a value of γ sufficiently small.An analogous estimate holds on the interval
[R0 − γ, R0 − δε].

It remains to consider the larger interval, r0 + γ � r � R0 − γ . By choosing
γ smaller if necessary we may be sure that � lies completely in this interval. Since∣∣∣∣Fθε,δε (r)

a(r)
− F0,0(r)

a(r)

∣∣∣∣ � C

a0
(|θε| + δε

2) � C| ln ε|−1,

the conclusion follows from Lemma 3. ��

4.3. A lower bound expansion

We define C to be the set of concentric circles of radii r∗ ∈ �, with � as in
Lemma 3.

The proof of the Theorem 2 is based on a detailed lower bound expansion of
the energy in terms of the location and degrees of the vortex balls (Bi) constructed
in Proposition 3. First, we consider the energy in the balls themselves. We have∫

Bi

a

2

(
|∇v|2 − 2�X · (iv, ∇v)

)
=

∫
Bi

a

2

(
|(∇ − i�X)v|2 − �2|X|2|v|2

)

� πa(pi)|di |(| ln ε| − C0 ln | ln ε|) − o(1),

(60)

from Proposition 3, where we have estimated the extra term using (45). We may also
evaluate the cross-term in the region Aε \ ∪Bi in terms of the potential functions
Fθε,δε introduced in the previous paragraph. First note that by slightly modifying
our choice of δε we may be sure that no vortex ball intersects the inner or outer
boundaries ∂Br0+δε (0), ∂BR0−δε (0) of the annulus Aδε . Indeed, if this is not the
case by (45) we may find a constant kε ∈ [1, 2) so that replacing δε

′ = kεδε we
may avoid vortex balls intersecting the boundary.
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Lemma 5. Let d0 = deg(v/|v|; ∂Br0+δε ). Then,

�

∫
Aδε \∪Bi

a(x) X · (iv, ∇v) = −2πd0 Fθε,δε (r0 + δε) �

+
∑

i

2πdi Fθε,δε (|pi |) � + o(1). (61)

Proof. In Aδε \ ∪Bi we may define w = v
|v| . Then (iv, ∇v) = |v|2(iw, ∇w), and

∣∣∣∣∣�
∫
Aδε \∪Bi

aX · (iv, ∇v) − �

∫
Aδε \∪Bi

aX · (iw, ∇w)

∣∣∣∣∣
=

∣∣∣∣∣�
∫
Aδε \∪Bi

a(|v|2 − 1)X · (iw, ∇w)

∣∣∣∣∣

� C�

(∫
Aδε

a2(|v|2 − 1)2

)1/2

‖∇w‖2

� Cε| ln ε|2
(

1

minAδε
a

∫
Aδε

a|∇v|2
)1/2

� C
ε| ln ε|3√

δε

, (62)

where we have used the basic energy estimates (43), hypothesis (H2) (on the vanish-
ing of a near ∂A) and the observation that |∇v| � |v||∇w| � (1−| ln ε|−5)|∇w| �
1
2 |∇w| in Aδε \ ∪Bi . Since |w| = 1, (iw, ∇w) is locally a gradient and is irrota-
tional. Introducing the potential Fθε,δε from the previous section,

a(x)X = ∇⊥Fθε,δε (|x|),

and applying Stokes’ Theorem we obtain:

∫
Aδε \∪Bi

aX · (iw, ∇w) =
∫
Aδε \∪Bi

∇(Fθε,δε (|x|)) · (iw, ∇⊥w)

= −
∫

∂BR0−δε

Fθε,δε (R0 − δε)(iw, ∂τw)

+
∫

∂Br0+δε

Fθε,δε (r0 + δε)(iw, ∂τw)

+
∑

i

∫
∂Bi

Fθε,δε (|x|) (iw, ∂τw)

= −2πd0 Fθε,δε (r0 + δε)

+
∑

i

∫
∂Bi

Fθε,δε (|x|) (iw, ∂τw).
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Note that we have used (50) to eliminate one boundary term, andd0 = deg(w, ∂Aδε )

to evaluate the other. The summation is over vortex balls in Aδε , as defined in Prop-
osition 3.

To conclude we claim that for each vortex ball,
∣∣∣∣�

∫
∂Bi

(
Fθε,δε (|x|) − Fθε,δε (|pi |)

)
(iw, ∂τw)

∣∣∣∣ � | ln ε|3
δε

2 si ,

where we recall that si is the radius of Bi . This conclusion follows step-by-step
from Lemma II.3 of [SSe1], where we replace their hexξ0 by our �Fθε,δε . Note that
|∇Fθε,δε | is uniformly bounded independent of ε, and ‖∇w‖2 is bounded in terms
of the energy using the same trick as in (62) above. ��

Putting (60) and (61) together we obtain the lower bound,

O(
√

ln | ln ε|) � Ẽε(v)

� π
∑

a(pi)|di | (| ln ε| − C0 ln | ln ε|) − 2π
∑

diFθε,δε (|pi |) �

−2πd0Fθε,δε (r0 + δε) � + 1

2

∫
Aδε \∪Bi

a |∇v|2 + o(1). (63)

The behavior of a(r) and F0,0(r) allow us to choose γ > 0 (independent of ε)
such that

r0 + γ < inf � � sup � < R0 − γ,

a(r) � a0 := min{a(r0 + γ ), a(R0 − γ )} for all r ∈ [r0 + γ, R0 − γ ],
and

F0,0(r)

a(r)
<

K0

3
for all r ∈ (r0, r0 + γ ) ∪ (R0 − γ, R0). (64)

Let

Zγ := {i : δε < dist (pi, ∂A) � γ },
Z∗ := {i : dist (pi, �) < | ln ε|−1/2M and di � 0},
Z− := {i : dist (pi, �) < | ln ε|−1/2M and di � 0},
Z0 := (Z∗ ∪ Z− ∪ Zγ )C,

and set

Nx :=
∑
Zx

a(pi)|di |, x = γ, ∗, −, 0,

N̂ =
∑

a(pi)|di | = Nγ + N∗ + N− + N0.

For vortices pi with i ∈ Zγ , we use (59) and (64) to derive

|Fθε,δε (|pi |)|
a(pi)

<
K0

2
. (65)
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Lemma 4 and (63) then yield

C
√

ln | ln ε| � πN̂ (| ln ε| − C0 ln | ln ε|)
−2πK0N∗

[
1 + O(| ln ε|−1)

]
(ω0| ln ε| + ω1 ln | ln ε|)

+2πK0N−
[
1 + O(| ln ε|−1)

]
(ω0| ln ε| + ω1 ln | ln ε|)

−2πK0Nγ

[
1

2
+ O(| ln ε|−1)

]
(ω0| ln ε| + ω1 ln | ln ε|)

−2πK0N0

[
1 − K4√| ln ε|

]
(ω0| ln ε| + ω1 ln | ln ε|)

−2πd0Fθε,δε (r0 + δε)� +
∫
Aδε \∪Bi

a

2
|∇v|2 + o(1). (66)

One difficulty in dealing with this lower bound expansion is the boundary term
at r0 + δε, since we have no a priori bound on the degree d0 of the inner edge of
the annulus. We must consider two cases separately.
Case I: |d0| � 2

∑ |di |.
Recalling (51), (52) and the behavior of a(r) near r = r0, we have

0 <
F0,0(r0 + δε)

a(r0 + δε)
� Cδε.

With (58) we obtain

|Fθε,δε (r0 + δε)| � Cδεa(r0 + δε) + C(|θε| + δε
2)

� C

(
δε + |θε|

a(r0 + δε)

)
a(r0 + δε)

� C

[ln | ln ε|]1/4 a(r0 + δε).

Hence,

∣∣d0 � Fθε,δε (r0 + δε)
∣∣ � C

[ln | ln ε|]1/4 a(r0 + δε)| ln ε|
∑

|di |. (67)

Hence

2π |d0 � Fθε,δε (r0 + δε)| � C

[ln | ln ε|]1/4 a(r0 + δε)| ln ε|

∑

Zγ

|di | +
∑
ZC

γ

|di |



� C| ln ε|
[ln | ln ε|]1/4

∑
Zγ

a(pi)|di | + Cδε

[ln | ln ε|]1/4

∑
ZC

γ

a(pi)

a0
|di |

� π

8
| ln ε|

∑
Zγ

a(pi)|di | + C

| ln ε|
∑
ZC

γ

a(pi)|di |.
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We now substitute back into the lower bound for the energy (66):

C
√

ln | ln ε| � π(N∗ + N0)| ln ε|(1 − 2K0ω0)

+πN−| ln ε|(1 + 2K0ω0)(1 + o(1))

+πNγ | ln ε|(7

8
− K0ω0)(1 + o(1))

−πN∗(C0 + 2K0ω1) ln | ln ε| + CN0
√| ln ε|

+
∫
Aδε \∪Bi

a

2
|∇v|2 + o(1). (68)

In this step we have used Lemma 4, (65), and the choice of the angular speed (8).
Our first step is to conclude that the minimizers exhibit no vortices in the bulk

when the speed is too small. Let ω∗
0 = 1/2K0. From (68), we derive

ω0 < ω∗
0, then N̂ =

∑
a(pi)|di | � C

√
ln | ln ε|
| ln ε| .

Suppose ω0 = ω∗
0, and

ω1 < − C0

2K0
.

Then each term on the right-hand side of (68) is nonnegative, and we conclude

N̂ =
∑

a(pi)|di | � C[ln | ln ε|]−1/2.

Because of the weight a(x) we cannot conclude that the total degree of vortices in
Aδε is zero, but we can make that conclusion if we restrict our attention to a smaller
domain. Let ρ = ρε >> (ln | ln ε|)−1/2; for example, ρε = [ln | ln ε|]−1/q with
q < 1

2 will do. Then

ρε

∑
dist (pi ,∂A)>ρε

|di | � N̂ � C[ln | ln ε|]−1/2,

which implies
∑

dist (pi ,∂A)>ρε

|di | = o(1),

that is we expect not to see any vortices at any distance larger than [ln | ln ε|]−1/2

from ∂A when the rotation is slower than this critical value.
When the angular speed is larger,

ω1 > − C0

2K0
, (69)

we rearrange the terms in (68) to arrive at

(N0 + N− + Nγ )
√| ln ε| � CN∗ ln | ln ε| + C

√
ln | ln ε|, (70)
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with C independent of ε. We are going to bound N∗ and therefore infer that the
essential contribution to the weighted sum of vortices in the bulk is due to positive
degree vortices concentrating at the minimal set �. To complete the argument we
must use the remaining term in the energy. Denote Iε := (r0 + δε, R0 − δε). By
Proposition 3 the set

Jε :=
{
r ∈ Iε : ∂Br(0) ∩

⋃
Bsi (pi) = ∅

}

is a finite union of intervals whose complement |Iε \Jε| < | ln ε|−12 has very small
measure. For each r ∈ Jε, |v| � 1 − | ln ε|−4 and hence we may define

D(r) := deg

(
v

|v| , ∂Br(0)

)
.

Let r1 := r0 + γ , r2 := R0 − γ , and fix any t1, t2 with

r1 < t1 < inf � � sup � < t2 < r2.

Note that r1, r2, t1, t2 are all independent of ε. In (r1, r2), we recall that a(r) �
a0 > 0.

On the one hand,

|D(t1) − D(r1)| =
∣∣∣∣∣∣

∑
t1<|pi |<r1

di

∣∣∣∣∣∣ �
∑

t1<|pi |<r1

a(pi)

a0
|di | � N0

a0
� o(1)N∗.

In the same way we show that |D(r2) − D(t2)| � o(1)N∗. Finally,

|D(t2) − D(t1)| =
∣∣∣∣∣∣

∑
t1<|pi |<t2

di

∣∣∣∣∣∣
�

∑
t1<|pi |<t2

di�0

di −
∑

t1<|pi |<t2
di<0

di

� 1

ā
N∗ − C(N− + N0)

� 1

ā
N∗(1 − o(1))

In particular, it follows that

min{|D(t1)|, |D(t2)|} � 1

2ā
N∗. (71)

Suppose that |D(t1)| � 1
2ā

N∗. Then we have |D(r)| � 1
4ā

N∗ for every r ∈ [r1, t1].
Writing v = |v|eiφ (for |x| = r ∈ Jε) we estimate the remaining term in the energy
as follows, using that in Jε, |v| � 1 − | ln ε|−4:
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∫
Aδε \∪Bi

1

2
|∇v|2 �

∫
Jε

∫ 2π

0

a(r)

2
|v|2|∇φ|2 r dθ dr

�
∫

Jε

∫ 2π

0

a(r)

2
|∇φ|2 r dθ dr(1 + o(1))

� π

∫
Jε

a(r)

r
(D(r))2 (1 + o(1))

� C N2∗ (1 + o(1)).

Returning to the estimate (68) we see

C
√

ln | ln ε| � C1N
2∗ − C2N∗ ln | ln ε| + o(1),

with constants C1, C2 independent of ε. We conclude that

N∗ � C ln | ln ε|. (72)

With (70) and (72) we have

max{N−, N0, Nγ } � C
(ln | ln ε|)3/2

| ln ε|1/2 .

As before, we need to further restrict the domain in order to come to a conclusion
as to the total degree in the annulus. Take any ρε with

ρε >>
(ln | ln ε|)3/2

| ln ε|1/2 ,

and then

∑
dist (pi ,�)>| ln ε|−1/2M

dist (pi ,∂A)>ρε

|di | +
∑
di<0

dist (pi ,∂A)>ρε

|di | � C
(ln | ln ε|)3/2

| ln ε|1/2a(ρε)
→ 0.

Since the left-hand side is now an integer, it must be exactly zero for ε sufficiently
small.

Finally, we consider the degree of the neighborhood of the edge of the annulus.
From the previous paragraph we observe that D(r) ≡ D1 is constant in the interval
r ∈ [r0 + ρε, t1]. We return to the lower bound (68) to obtain

C
√

ln | ln ε| + CN∗ ln | ln ε| �
∫
Aδε \∪Bi

a

2
|∇v|2

� π

∣∣∣∣
∫ s1

r1

a

r
(D(r))2 dr

∣∣∣∣ + o(1)

� CD2
1 .

In particular, given the bound (72) we have
∣∣∣∣deg

(
v

|v| , ∂Br0+ρε (0)

)∣∣∣∣ = |D1| � C ln | ln ε|.
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Note that this confirms that we have made a good choice of the degree Dε of the
giant vortex, since for the original wave function u we have

deg

(
u

|u| , ∂Br0+ρε (0)

)
= Dε + O (ln | ln ε|) .

This concludes the analysis for Case I.
Case II: |d0| > 2

∑ |di |.
Let D(r), Jε be as in the previous part, so

|D(r)| =
∣∣∣∣∣∣d0 +

∑
|pi |�r

di

∣∣∣∣∣∣ � 1

2
|d0| for all r ∈ Jε.

We then estimate as before,
∫
Aδε \∪Bi

a

2
|∇v|2 �

∫
Jε

∫ 2π

0

a

2
|v|2|∇φ|2

� π

∫
Jε

a

r
(D(r))2 dr + o(1)

� π

2
d2

0

∫
Jε

a

r
dr = C1d

2
0 . (73)

On the other hand, in Case II, using the estimate for Fθε,δε ,

∣∣2πd0 � Fθε,δε (r0 + δε)
∣∣ � C

(ln | ln ε|)1/4 d0δε| ln ε| � C2|d0|,

so from (63) we get:

C
√

ln | ln ε| � Ẽε(v)

� C1d
2
0 − C2d0 + π

∑
a(pi)|di | (| ln ε| − C0 ln | ln ε|)

−2π
∑

diFθε,δε (|pi |) � + o(1).

We may now repeat the same steps as in Case I (although we no longer need to
distinguish Zγ , Nγ ) to derive:

C
√

ln | ln ε| � C1d
2
0 − C2|d0| + C3(N0 + N−)

√| ln ε| − CN∗ ln | ln ε|,
hence

(N− + N0) � C

√
ln | ln ε|
| ln ε| + C|d0| ln | ln ε|√| ln ε| .

This leads again to

C1d
2
0 − C|d0| ln | ln ε| � C

√
ln | ln ε|,

and thus the same conclusions as in Case I. This completes the proof of parts (i)
and (ii) of Theorem 2.
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4.4. Upper bounds on the energy

In order to prove the lower bounds on the number of vortices claimed in The-
orem 2 we need to refine our upper bound on the energy for the case ω0 = ω∗

0
and ω1 > −ω∗

1. We do this in two ways, the first which will guarantee that there is
at least one essential vortex provided ω1 > 0, and the second which will give the
lower bound claimed in part (iii) of Theorem 2, Dε � c ln | ln ε|.

First, assume ω1 > 0. We will construct a test function of the form u =
ηεe

iDεθ vp0 , where vp0 has a vortex on C: vp0(x) = fε(|x − p0|) x−p0
|x−p0| , where

|p0| ∈ �, fε(0) = 0 and fε(R̂) = 1. If we fix R̂ > 0 so that D ⊃ B
R̂
(p0) we then

have:

Ẽε(vp) �
∫

B
R̂
(p0)

(
a

2
|∇fε|2 + a2

4ε2 (f 2
ε − 1)2 + a

r2 f 2
ε

)
− 2π� Fθε,δε (p0) + o(1)

� πa(p0)| ln ε| − 2π

(
1

2K0
| ln ε| + ω1 ln | ln ε|

)(
K0a(p0) + O(| ln ε|−1)

)

+C

� −2πK0a(p0)ω1 ln | ln ε| + C.

We now return to our lower bound from (68), or the analogous inequality in Case
II. We now know that N0, N−, Nγ = o(1), and therefore with this improved upper
bound we obtain

−πN∗(C0 + 2K0ω1) � −2πK0a(p0)ω1 + o(1).

This can be rewritten in the form of a lower bound for N∗,

N∗ � 2K0a(�)ω1

C0 + 2K0ω1
+ o(1),

and hence for ω1 > 0 sufficiently large we must have at least one essential vortex.
Finally, we derive an upper bound with nε = [ln | ln ε|] vortices regularly

placed on a circle C = ∂Br∗(0) in C. Indeed, we believe that the minimizers should
strongly resemble this configuration when the rotation is near the critical value.
The construction uses the following modified Green’s functions which give a kind
of harmonic conjugate function for solutions with vortices in A.

To avoid some technical difficulties associated with the vanishing of a at ∂A
we fix γ with 0 < γ < a(r∗) and consider the truncation

aγ (r) := max{a(r), γ }.

In particular, aγ (r) = a(r) in a neighborhood of the curve C. Following [SSe3,
Se2, ASSe] we use a Green’s function to construct our trial function.
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Lemma 6. For every fixed y ∈ A there exists G(x, y) in W 1,q for any q < 2 and
constant α > 0 such that

−div x

(
1

aγ

∇xG(x, y)

)
= δy(x) in D′(A), (74)

G(x, y)|x∈∂BR0
= 0, (75)

G(x, y)|x∈∂Br0
= α, (76)∫

∂Br0

1

aγ

∂G

∂νx

= 0. (77)

Moreover,

(i) G(x, y) � 0 in x ∈ A \ {y} for each y ∈ A,
(ii) for any compact set K ⊂⊂ A, there exists a constant CK such that

∣∣∣∣G(x, y) + aγ (x)

2π
ln |x − y|

∣∣∣∣ � C(K) (78)

for all y ∈ K and x ∈ A,
(iii) for any y ∈ A, G(x, y) is continuous for x ∈ A \ {y}.
Proof. Let G̃(x, y) denote the usual Dirichlet Green’s function (satisfying (74),
(75), and (76) with constant zero). The existence of such a Green’s function is stan-
dard, since the linear operator is uniformly elliptic in A. The desired function is
then a simple modification of G̃. First, if the pole y is not contained in Bt(0)\Bs(0),
the divergence theorem insures that

∫
∂Bt (0)

1

aγ

∂G̃

∂r
−

∫
∂Bs(0)

1

aγ

∂G̃

∂r
= 0.

In particular,
∫
∂Bt (0)

1
aγ

∂G̃
∂r

is constant for all t near r0 and therefore
∫
∂Br0 (0)

1
aγ

∂G̃
∂νx

is well defined provided y remains away from ∂A. Let ξ be the unique solution of

div (
1

aγ

∇ξ) = 0 in A, ξ = 0 on ∂BR0 , ξ = 1 on ∂Br0 . (79)

This solution is obtained explicitly as

ξ(r) = λ

∫ R0

r

aγ (s)

s
ds, λ =

(∫ R0

r0

aγ (s)

s
ds

)−1

,

and satisfies ∫
∂Br0

1

aγ

∂ξ

∂ν
= −

∫
∂Br0

1

aγ

∂ξ

∂r
= 2πλ

r0
> 0,

a positive constant. Since ∂G̃
∂νx

= − ∂G̃
∂r

� 0 on ∂Br0(0) we may choose a constant
α > 0 so that G(x, y) + α ξ(|x|) satisfies (77). ��
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To construct the upper bound, we adapt a construction from [SSe3]. (See also
[Se2], [ASSe]). The difference is that instead of taking a lattice of vortices, we put
them on a circle. Choose a radius r∗ ∈ � (defined as the set of minimizing radii in
Lemma 3,) and let C be the circle of radius r∗ centered at the origin. Then choose
nε = [ln | ln ε|] points {pi}i=1,...,nε which are equidistributed on C. In particular,
we have |pi − pj | � C/nε for some C > 0. Define

f i
ε (x) = 2

ε2 χ
Bε(pi )

,

the characteristic function of the ball Bε(pi), normalized to have total integral 2π .
Let

fε(x) = 1

nε

nε∑
i=1

f i
ε (x).

The fε converges in the sense of measures, fε ⇀ µ∗ = 1
r∗ δC , the arclength measure

on C normalized to have mass 2π .
We define a “conjugate function” hε(x) as

hε(x) = nε

∫
A

G(x, y) fε(y) dy. (80)

As fε ∈ L∞(A) we have hε is a weak solution of

−div (
1

aγ

∇hε) = nε fε,

h|∂BR0
= 0,

h|∂Br0
= constant,∫

∂Br0

1

aγ

∂hε

∂ν
= 0.

Moreover, integration by parts and a straight-forward estimate using (78) shows
that for any fixed ε > 0,

∫
A

1

aγ

|∇h|2 dx = n2
ε

∫
A

∫
A

G(x, y) fε(x)fε(y) dx dy < ∞, (81)

and the quantization of the fε implies that
∫

∂BR0

1

a

∂hε

∂ν
= 2πnε.

We next use hε to define a test function V for Eε. First, define the phase φ(x)

in A \ ∪Bε(pi) by

∇φ(x) = 1

aγ

∇⊥hε(x).
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Note that φ is well defined locally, as 1
aγ

∇⊥hε is irrotational in A\∪Bε(pi) by the

equation solved by hε. Moreover, the quantization of the source terms f i
ε ensures

that φ defines a single-valued function modulo 2π , since for any closed curve σ in
A \ ∪Bε(pi) we have

∫
σ

∇φ · τ ds =
∫

σ

1

aγ

∇hε · ν ds = 2πNσ

for some Nσ ∈ Z, whether σ winds around any of the holes or not. Take a smooth
function ρ0(x) such that 0 � ρ0(x) � 1, ρ0(x) ≡ 1 in |x| � 2, and ρ0(x) ≡ 0
when |x| � 1. Define

ρ(x) = ρε(x) =
{

ρ0
( x−pi

ε

)
, when x ∈ B2ε(pi), i = 1, . . . , nε,

1, when x ∈ A \ ∪B2ε(pi).

Note that

∫
A

(
a|∇ρ|2 + a2

2ε2 (ρ2 − 1)2
)

� Cnε,

with constant C independent of ε. Then define

V (x) := ρ(x)eiφ(x),

where we interpret this to mean that V (x) ≡ 0 in ∪Bε(pi).
We now calculate the energy Eε(V ). First,

∫
A

(
a|∇V |2 + a2

2ε2 (|V |2 − 1)2
)

=
∫
A\∪Bε(pi)

(
a|∇ρ|2 + a2

2ε2 (ρ2 − 1)2 + aρ2|∇φ|2
)

�
∫
A\∪Bε(pi)

aγ |∇φ|2 + O(nε)

�
∫
A

1

aγ

|∇hε|2 + O(nε)

= n2
ε

∫
A

∫
A

G(x, y) fε(x) fε(y) dx dy + O(nε)

=
nε∑

i,j=1

∫
A

∫
A

G(x, y) f i
ε (x) f j

ε (y) dx dy + O(nε), (82)

which is finite by the remark (81) above. To estimate this term we separate the
domain A into two pieces. Let α > 0 be given, and set �α := {x, y : |x −y| < α}.
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Since G(x, y) is continuous on A × A \ �α , and fε(x) dx ⇀ dµ∗(x) weakly in
meaures on A we have:

lim
ε→0

∫∫
(A×A)\�α

G(x, y) fε(x) fε(y) dx dy

=
∫∫

A×A
G(x, y) dµ∗(x) dµ∗(y)

=
∫∫

C×C

G(x, y) dµ∗(x) dµ∗(y) =: A∗. (83)

Notice that the last term in (83) is finite, since by the estimate (78) we haveG(x, y) ∈
L1(C × C, dµ∗ ⊗ dµ∗).

Near the diagonal �α we divide the sum in (82) in two: first, using the estimate
(78),

∑
i �=j

|pi−pj |<α

∫∫
�α

G(x, y) f i
ε (x) f j

ε (y) �
∑
i �=j

|pi−pj |<α

C
∣∣ln |pi − pj |

∣∣ |f i
ε |L1 |f j

ε |L1

� Cnε ln nε. (84)

Finally, using the estimate (78) again,

nε∑
i=1

∫∫
�α

G(x, y) f i
ε (x) f i

ε (y)

=
nε∑
i=1

∫
Bε(0)

∫
Bε(0)

G (pi + z, pi + w)
4

ε4 dz dw

�
nε∑
i=1

4
∫

B1(0)

∫
B1(0)

(
(a(r∗)

2π
ln

[
1

ε|z′ − w′|
]

+ C

)
dz′ dw′

= 2π a(r∗)nε | ln ε| + O(nε), (85)

recalling that aγ = a in the balls B2ε(pi). Together, the three previous estimates
give

∫
A

a|∇V |2 + a2

2ε2 (|V |2 − 1)2 �
∫
A

1

aγ

|∇hε|2 + O(nε)

� 2πa(r∗)nε| ln ε| + n2
εA∗ + o(n2

ε).
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Now let Fθε,0 be as in the previous part. We calculate:
∫
A

∇⊥( Fθε,0(|x|)) · (iV , ∇V )

=
∫
A\∪B2ε(pi )

∇(Fθε,0(|x|)) · 1

aγ

∇hε + o(1)

=
∫

∂A
Fθε,0

1

aγ

∂hε

∂ν
−

∫
∪∂B2ε(pi )

Fθε,0
1

aγ

∂hε

∂ν
+ o(1)

= −
nε∑
i=1

Fθε,0(|pi |)
∫

∂B2ε(pi )

1

a

∂hε

∂ν
+ o(1)

= −2π

nε∑
i=1

F0,0(|pi |) + O (nε/| ln ε|)

= −2πnε a(r∗)K0 + O (nε/| ln ε|) , (86)

where K0 is as in Lemma 3, and we use (49) and (58) to replace Fθε,0 by F0,0. Note
also that to pass from the second to the third line we estimate

∣∣∣∣
∫

∂B2ε(pi )

[F(|x| − F(|pi |)] 1

a
∇h · ν dx

∣∣∣∣
=

∣∣∣∣
∫

B2ε(pi )

[F(|x|) − F(|pi |)] div

(
1

aγ

∇h

)
dx

+
∫

B2ε(pi )

∇F · 1

a
∇h dx

∣∣∣∣
� 2

ε2

∫
Bε(pi)

|F(|x|) − F(|pi |)| dx

+
(∫

B2ε(pi )

1

a
|∇F |2

)1/2 (∫
B2ε(pi )

1

a
|∇hε|2

)1/2

� Cε
√

nε| ln ε|.
Together, these estimates give the upper bound,

Eε(V ) � πa(r∗)nε | ln ε| + 1

2
n2

εA∗ − 2πnε a(r∗)K0� + O(nε ln nε)

= 1

2
n2

εA∗ − 2πa(r∗)K0 ω1 nε ln | ln ε| + O(nε ln nε).

We recall nε = [ln | ln ε|], and hence

Eε(V ) � [Ā(ω1) + o(1)] (ln | ln ε|)2 ,

with Ā(ω1) = 1
2A∗ − 2πa(r∗)K0ω1.

Applying (70) and (72) to the lower bound (63), we have, with Nε = �a(pi)di ,

inf Eε � Nε (A(ω1) − o(1)) ln | ln ε|,
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with A(ω1) = πC0 − 2πK0ω1. When ω1 is large enough both A, Ā < 0, and so
we have

(−A + o(1))Nε � (−Ā − o(1)) ln | ln ε|,
and hence we have Nε � C ln | ln ε|. Since a is bounded above we obtain the
lower bound for �di claimed in (iii) of Theorem 2. This completes the proof of
Theorem 2.

5. When a(x) ≡ 1A

We consider the case of a “square well” potential, that is when a(x) = 1A with
a Dirichlet condition imposed on ∂A, u ∈ H 1

0 (A). This case has been studied in
[Se2] in the case of a disc. In this setting, there is a critical velocity of order | ln ε|
where vortices start to appear. They are first nucleated near the center of the disc.
The geometry of the annulus provides, as in the case of the BEC that we have
studied, a different structure, and we are able to obtain similar results as before:
namely, there is a giant vortex in the hole when � is of order one, the degree of
the giant vortex depending on �, while when � is of order | ln ε|, there is a giant
vortex of order | ln ε| in the hole, and a circle of isolated vortices. The location of
the circle is determined by the maximum of F . In this case, let M = ∫ R0

r0
sa(s) ds

and

F(r) =
∫ R0

r

a(s)(s − M

�1s
) ds, with �1 =

∫ R0

r0

a(s)

s
ds.

Since F(r0) = F(R0) = 0, F always attains a maximum in the interval (r0, R0)

occuring at the point s2
0 = M/�1.

In this case we only need a much narrower barrier around the edges of the
annulus. Let δε = ε1/3, and Aδε = {x ∈ A : dist (x, ∂A) > δε}, Nε = A \ Aε as
before. Now

�

∫
Nε

η2
εX · (iv, ∇v) � 1

2

∫
Nε

η2
ε |∇v|2 + O(ε1/3| ln ε|2),

and we have the improved estimate on the omitted energy,

Ẽε(v) :=
∫
Aδε

{
1

2
|∇v|2 − �X · (iv, ∇v) + 1

4ε2 (|v|2 − 1)2
}

= Eε(v) + o(1).

The potential function F0,0(r) is defines as before, except now we have

F0,0(r0) = 0 = F0,0(R0), F ′
0,0(r0) > 0, F ′

0,0(R0) < 0.

The situation near the edges is less delicate, since a and F0,0 differ at order one at
r = r0, R0, and the conclusions of Lemmas 3 and 4 hold as before.
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Returning to the lower estimate (63) on the energy, we calculate

o(1) � Ẽε(v) (87)

� π
∑

|di | (| ln ε| − C0 ln | ln ε|)
−2π�

∑
di Fθε,δε (|pi |) − 2πd0 �Fθε,δε (r0 + δε) + 1

2

∫
Aδε \∪Bi

|∇v|2,

where d0, θε and the vortex balls {Bi} are as before, and we again sum over vortex
balls in Aε. In this case the treatment of the edges is simplified, as

∣∣2πd0 � Fθε,δε (r0 + δε)
∣∣ � |d0| � (Cδε + |θε|) � C |d0|. (88)

In Case I, |d0| � 2
∑ |di |, we may absorb the term (88) into the ln | ln ε| term

coming from the lower bound of the square gradient inside the balls (modifying
the constant C0, for example). In Case II, |d0| > 2

∑ |di |, we estimate

1

2

∫
Aδε \∪Bi

|∇v|2 � C d2
0

as in (73) and the proof follows the same lines. In both cases we use the (unweight-
ed) degree counting functions N∗, N−, N0 (Nγ is unneccessary in this setting) to
obtain:

Theorem 3. Assume a(x) ≡ 1 in A, � = ω0| ln ε|+ω1 ln | ln ε|, and uε is a family
of energy minimizers as ε → 0. Then there exist constants ω∗

0, ω∗
1 such that:

(i) if either ω0 < ω∗
0 or ω0 = ω∗

0 and ω1 < ω∗
1 , then uε has no essential vortices

in Aδε ,
∑ |di | = 0;

(ii) if ω0 = ω∗
0 then any vortex in Aδε is localized at the set C in the following

sense: there exists an M ∈ N such that
∑
di<0

|di | +
∑

dist (pi ,C)>[ln ε]−1/2M

|di | = 0

for all ε sufficiently small. Moreover, the sum of the degrees Nε = ∑ |di | of
vortices in Aδε satisfies Nε � C ln | ln ε| for C independent of ε;

(iii) for ω0 = ω∗
0 there exists ω∗

1 > 0 and C (independent of ε) such that for all
ω1 > ω∗

1 , Nε � C ln | ln ε|.
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