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Abstract

We consider single-crystal plasticity in the limiting case of infinite latent hard-
ening, which signifies that the crystal must deform in single slip at all material
points. This requirement introduces a nonconvex constraint, and thereby induces
the formation of fine-scale structures. We restrict attention throughout to linearized
kinematics and deformation theory of plasticity, which is appropriate for mono-
tonic proportional loading and confers the boundary value problem of plasticity a
well-defined variational structure analogous to elasticity.

We first study a scale-invariant (local) problem. We show that, by developing
microstructures in the form of sequential laminates of finite depth, crystals can
beat the single-slip constraint, i.e., the macroscopic (relaxed) constitutive behavior
is indistinguishable from multislip ideal plasticity. In a second step, we include dis-
location line energies, and hence a length scale, into the model. Different regimes
lead to several possible types of microstructure patterns. We present constructions
which achieve the various optimal scaling laws, and discuss the relation with exper-
imentally known scalings, such as the Hall-Petch law.

1. Introduction

The effective behavior of ductile single crystals is the macroscopic manifes-
tation of processes of crystallographic slip occurring on the scale of the crystal
lattice, and is known to be mediated by the formation of dislocation structures.
Such effective behavior includes yielding, work hardening rates and scaling laws
such as the Hall-Petch relation [20, 44], i.e., the inverse square-root dependence
of the yield stress on grain size in polycrystalline metals. In most crystals, slip
occurs on well-characterized crystallographic planes and directions, known as slip
systems. The observed microstructures often consist of ostensibly dislocation-free
cells or lamellae in which a small number of slip systems is activated [46, 50, 37,
19, 48, 28, 26].
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This segregation of slip activity, or patchy slip, is closely connected with a
fundamental property of ductile single crystals known as latent hardening, namely,
that single crystals exhibit much higher rates of hardening in multiple slip than
in single slip. Indeed, the phenomenon of latent hardening was inferred from the
patchy slip patterns by PIERCY et al. who argued that “these results prove the real-
ity of latent-hardening, in the sense that the slip lines of the one system experience
difficulty in breaking through the active slip lines of the other one” [46, p. 337]. This
conjectured connection between strong latent hardening and patchy slip was born
out by the finite-element calculations of PIERCE et al. [45], where single-crystal
specimens endowed with strong latent hardening and subjected to uniaxial tension
exhibit non-uniform slip patterns consisting of alternating regions of single slip.

The strong latent-hardening property of ductile single crystals has been quanti-
fied by means of specially designed experiments [31, 16, 17, 54, 5]. The presence
of strong latent hardening implies that crystals have an incentive, in work of defor-
mation terms, to deform in single slip and avoid multiple slip. More precisely, the
work of deformation expended in deforming a crystal into a deformation field com-
posed of regions of single slip may be less than the work or deformation required
to attain the same average or macroscopic deformation by multiple slip [42, 43].
ORTIZ & REPETTO [42] showed that strong latent hardening renders the incremental
variational problem of single-crystal plasticity nonconvex, and on this basis they
argued that microstructural formation in ductile single crystals is a manifestation
of non-attainment.

An additional fundamental property of single crystals is the dependence of their
behavior on the size of the sample, be it the grain size, wire diameter, film thickness,
or some other limiting feature size. This dependence is sometimes referred to as size
effect. A classical manifestation of this size effect is the aforementioned Hall-Petch
effect. Material models which are sensitive to the size of the sample are necessarily
nonlocal and contain intrinsic length-scale parameters. The intrinsic length scale
which renders the behavior of crystals nonlocal is the length scale of the atomic
lattice. Indeed, the core energy of the dislocations depends sensitively on the Burg-
ers vector, whose length is in turn commensurate with the lattice parameter. ORTIZ
et al. [42, 43, 4] have shown that consideration of core energies results in scaling
behavior consistent with the Hall-Petch relation and with experimental observa-
tions of the dependence of the microstructural size on macroscopic deformation
[55, 6, 27, 26, 25, 21].

In this paper we address two main problems concerning:

(P1) The effective constitutive behavior of single crystals in the local approxima-
tion.
(P2) The dependence of the behavior of crystals on the sample geometry.

The chief analysis tool which we bring to bear on problem (P1) is relaxation,
whereas the main objective in connection with problem (P2) is the determination
of optimal scaling laws. In related, but different, problems this kind of scaling
result has been studied in the physics literature [34, 35, 24, 47] and more recently
mathematically in [32, 33, 10, 11, 13, 29, 7, 12]. In order to facilitate the anal-
ysis we make a number of simplifying assumptions. Firstly, we restrict attention
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throughout to linearized kinematics and deformation theory of plasticity. This lat-
ter theory of plasticity is obtained when all material points are assumed to follow
certain optimal deformation paths (see, e.g., [36] and references therein) and con-
fers to the boundary value problem of plasticity a well-defined variational structure
analogous to elasticity. Deformation theory of plasticity provides an appropriate
description of plastic solids deforming under the action of monotonic proportional
loading. Secondly, we shall assume that the crystals exhibit no hardening, or ideal
plasticity, in single slip. This assumption is justified as most crystals exhibit easy
glide, i.e., low or vanishing rates of hardening, in single slip. Finally, following
[42, 4] for simplicity we study the limiting case of crystals exhibiting infinitely
strong latent hardening. We take this property to signify that the crystal must nec-
essarily deform in single slip at all material points. This requirement introduces a
nonconvex constraint which renders the variational problem nonconvex.

The main results of the paper are as follows. We show that, by developing micro-
structures in the form of sequential laminates of finite depth, crystals can beat the
single-slip constraint, i.e., their relaxed constitutive behavior is indistinguishable
from multislip ideal plasticity. We find, however, that for some average deforma-
tions relaxation of the single-slip constraint requires the formation of concentrated
slip in the microstructure, such as occurs in slip lines, i.e., lines of concentrated slip
and discontinuous displacement. Including dislocation line energies in the model,
we find that the results become scale-dependent, and different patterns are formed
in different regimes. We present constructions which lead to various optimal scaling
laws, and discuss the relation with experimentally known scalings.

2. The variational problems of single-crystal plasticity

In this section we define the variational problems which govern deformations
of a ductile single crystal occupying a domain € C R3. We shall assume through-
out linearized kinematics and we let u : @ — R3 be the displacement field,
Bw) = Vu : Q — R3*3 the displacement-gradient field, and €(u) : Q — Rfyxn;
the strain field corresponding to u, which is defined by

e(u) = pY™ = VyuHm,

Here and below, %™ = (84 B7) /2 denotes the symmetric part of a matrix 3. Plas-
tic deformation in single crystals is crystallographic in nature, and, for monotonic
deformations, the plastic distortion tensor admits the representation

N
B(y) =) visi®@mi,

i=1

where y; € R is the slip strain on system i, s; and m; are the slip direction and
plane normal corresponding to slip system i, respectively, N is the number of slip
systems and ® denotes the dyadic product of two vectors, (a ® b);; = a;b;. We
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System B2 B4 BS A3 A2 A6
Direction || £[011] | £[101] | £[110] | £[101] | £[011] | %[110]
Plane (111) (111) (111) (111) (111) (111)
System Cl C3 C5 D4 Dl D6
Direction || £[011] | £[101] | £[110] | £[101] | £[011] | %[110]
Plane (111) (111) (111) (111) (111) (111)

Table 2.1. The set S of slip systems for fcc crystals relative to the cubic axes, and Schmid
and Boas’ nomenclature. For each slip system, the slip direction s and the slip-plane normal
m are given.

[System|[Direction [Plane[[System|Direction|Plane|
A2 [ |oIn[A2 TTNRED)

D1 [111] |©1D)|D1” [111] |211D)
D4 [111] |(101) D4 [111] |(121)
D6 [111] [(110)|| D6” [111] |(112)
Table 2.2. The set S of slip systems for bce crystals relative to the cubic axes, and Schmid

and Boas’ nomenclature. For each slip system, the slip direction s and the slip-plane normal
m are given.

A3 [111] [(10D)| A3 [111] |(12D)
A6 [111] [(110)|| A6’ [1111 |(112)
B2 [111] [(OID|B2” [111] [@1D)
B4 [111] [(101)| B4’ [111] |(12D)
B5 [111] [(110)||B5 [111] |(112)
Cl [111] [(OID]|cYl [111] |@ID)
C3 [111] [(0D|c3” [111] |(12D)
C5 [111] [(110)|C5” [111] |(112)

]

]

shall denote the set of slip systems {s; @ m;};—1..x by S. The corresponding plastic
strain is

1
€)= BN = S [B ) + B ()]

Plastic deformations resulting from conservative glide of dislocations are charac-
terized by slip directions contained within the slip plane, and correspondingly do
not change the specific volume of the material, i.e.,

Si'ml‘=0.

The slip systems of the various crystal classes have been determined experimen-
tally (e.g., [23]). Face-centered cubic (fcc) crystals typically show activity on the
twelve slip systems belonging to the class of {111} planes and [110] directions,
listed in Table 2.1, whereas body-centered cubic (bcc) crystals show activity in the
twenty-four systems consisting of planes in the classes {211} and {110} and slip
directions of type [111], listed in Table 2.2.

In order to further streamline the analysis we shall idealize crystals as possess-
ing no self-hardening and infinite latent hardening. These assumptions lead to the
consideration of a stored plastic-work function of the form
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Tlyilify; =0,  Vj#i,
oo else,

WP(V)={

where t; is the critical resolved shear stress of the crystal. All symmetry-related
systems have the same value of t;, so that for example in fcc crystals there is only
one value of 7. We note that, owing to the infinite latent-hardening assumption, W7”
is infinity for plastic deformations other than single-slip deformations of the form

BY(v) = visi @ m;

for some i € {1,..., N} and slip strain y; € R. The free-energy density of the
crystal is

AB,y) =3 (C(e —€”(y)), (e =€’ (¥))) + Wi (y),

where C is the matrix of the elastic moduli of the crystal, which is assumed constant
and positive definite, and as above € = BY™. Finally, the strain-energy density of
a uniformly deformed crystal at displacement gradient Vu = 8 = constant is

W(B) = min A(B,y). (2.1)
Y

eRN

We note that W () vanishes for linearized rotations, i.e, W(w) = 0 for all w €
s0(3) = {w € R¥3 . w = —w’}. Further, W(B) has linear growth along the
single-slip orbits

B=visi®m; +w

(forsome i € {1,..., N} and w € so(3)), and quadratic growth in all other direc-
tions.
In Section 3 we study the relaxation of the local energy functional

1(u) = / W (Vu)dx . (2.2)
Q

By local we mean that the energy density only depends on the strain Vu and does not
contain, for example, strain-gradient terms. This makes the problems scale-invari-
ant. It is worth mentioning that standard theory shows that the relaxation J(u) of
I (1) extends in the obvious way in the presence of continuous perturbations such
as body forces (e.g., [15, 8], we use here the strong L' topology, see Section 3). The
results obtained below are thus applicable to the general boundary value problem
which governs the quasistatic deformations of single crystals subjected to body
forces and displacement boundary conditions on part of 9€2. Standard theory also
provides a compelling connection between the minimizers of J («) and I (#). Thus,
for instance, if I (1) is coercive, it follows that J(u) is also coercive and lower
semicontinuous and, hence, has a minimum point in an appropriate larger space X.
Furthermore, inf,cx I (1) = inf,cx J(«) and every cluster point of a minimizing
sequence of I («) is a minimum point of J(«) in X. Finally, every minimum point
of J(u) is the limit of a minimizing sequence of I (u) in X. These properties of
relaxation show that, if one is interested in the macroscopic behavior, the functional
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I (1) can be replaced without loss of information by the better-behaved functional
J (u). Indeed, minimizing sequences of / (u) correspond to microstructures, and
minimizers of J(u) characterize their average properties.

The local functional (2.2) lacks an intrinsic length scale and, consequently, can-
not predict microstructural sizes. In particular, the relaxed functional J (u) is itself
local and independent of the choice of domain 2. The local character of the theory
is lost as soon as the core energy of the dislocations is taken into account, since
consideration of core energies brings an intrinsic length into the theory, namely,
the lattice parameter. The connection between deformation fields and dislocation
structures may be established readily by recourse to the theory of continuously
distributed dislocations (e.g., [39]). While the displacement-gradient field B(x) is
subject to compatibility requirements, the plastic-distortion field 87 (x) need not be
compatible in general. Following NYE [40], the dislocation density tensor is defined
as

a = curl B (y) (2.3)

or, in components, oy = ,Bl'; :€jik, With € ;; denoting the components of the per-
mutation tensor. It is evident from (2.3) that « is a measure of the incompatibility
of B7. Following [42, 43], the dislocation core energy may be taken into account
by means of a simple line-tension model. This extension results in the functional

E(u,y) = /Q [A(vu, y)—i—% Icurlﬁp(y)|:| dx, (2.4)

where T is the dislocation line tension and b is the Burgers vector length, which is
of the order of the lattice parameter. It is readily verified that, when « represents
a collection of discrete dislocation lines, the second term in the energy (2.4) is T
times the total dislocation length in €2, as required. The nonlocal functional (2.4)
is discussed in Section 4, under some additional simplifying assumptions on the
active set of slip systems.

3. Relaxation of the local energy

Let © C R3 be a bounded Lischitz domain, and I' C 92 an open subset of its
boundary on which we impose Dirichlet boundary conditions. For a given ug, we
consider the functional

JoW(Vwdx ifue W'(Q, R, u=ugonT,
00 else,

Ir(u) = 3.1
where the energy density W was defined in (2.1). Here and in the following, the
values on I" are understood in the sense of traces, and u( is assumed to have enough
regularity for the functional to make sense. This means ug € H 172(1) for I (u), the
relaxed functional will allow for ug in the larger space LY(I"). An additional term
containing body tractions of the form

T(u):/u-fdx
Q
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for some fixed f € L°°(2) is a continuous perturbation of 7, and can be included
without any change in all statements, since the topology used here is stronger than
L' (see below). Precisely, if J () is the relaxation of 7 (u), then J () + T (u) will
be the relaxation of 7 (u) + T (u). A similar continuity result holds, in general, for
the case of surface tractions, and such a term is well defined since all finite-energy
u have a trace in L' (9Q). However, since the functional has linear growth, strong
surface tractions can disrupt coercivity, and even positivity, of the functional. Hence
only weak surface tractions can be seen as a continuous perturbation, see e.g. [3]
(this corresponds to the so-called safe-load condition).

The functional (1) is not lower semicontinuous, and minimizing sequences
form fine-scale oscillations. Indeed, the energy density W only allows for single-
slip plastic deformation, whereas a variety of multiple-slip deformations can be
obtained by mixing on a fine scale different single-slip deformations. The aim of
this section is to obtain the relaxation of (3.1), which describes the macroscopic
material behavior, averaged over such fine-scale structures. We recall that it is char-
acterized by the two properties:

(i) Lower bound. For each sequence uj, converging to u#, we have

Jw) < liminf I (uy,) .
h—o00

(i) Recovery sequence. For each u, there is a sequence uj converging to u such
that

J(u) = hli)rr;o I(up).

We now specify the topology for the mentioned convergences and the space on
which J is defined. Both are determined by the coerciveness of the original func-
tional I (u). In particular, since

W(B) = cl Y™ + | Tr BI2, (3.2)

we know that, on any low-energy sequence uy,, div uy, is uniformly bounded in L2,
and Vuzym in L'. However, W(Vu) is independent of the antisymmetric part of
Vu, and control of Vuzym in L' does not imply an analogous control of Viuy, in L!
(recall that Korn’s inequality does not hold in L!, see [41, 14]). The appropriate
space, whose norm corresponds directly to the one entering (3.2), is

UQ) = {u € BD(Q,R%) :divu e LZ(Q)}

(see [51, 53]). We recall that the space BD is defined as the set of L! functions
whose symmetrized distributional gradient Eu = Du + Du! is a finite measure.
The spaces BD(S2) and U (2) have been introduced and studied in the context of
Hencky plasticity [51, 2, 53, 3, 22, 52, 9, 1], where the energy density has the same
coercivity properties stated in (3.2), but is convex. The theory of the functions of
bounded deformation proceeds in many ways analogously to the one of functions
of bounded variation (i.e., those for which the full gradient Du is a finite measure),
but B D is a strictly larger space, and several fine properties are still open [1].



110 SERGIO CONTI & MICHAEL ORTIZ

All low-energy sequences for I (1) are uniformly bounded in U (§2), with the
seminorm

lullu@ = IIdivullp2q) + |Eul(€2),

and by a standard compactness result [53, 2] they have a subsequence that con-
verges strongly in L' (up to global translations). Therefore in the definition of the
relaxation we can use the topology given by the L' norm. The two properties char-
acterizing J (1) show then that J is lower semicontinuous with respect to the strong
L' convergence. By the above argument, the very same topology makes minimizing
sequences of I (and hence of J) compact, hence we immediately obtain existence
of minimizers for J.

The determination of the relaxation of 7 (1) is based on the determination of the
appropriate envelope for the energy density W. Since W does not have a uniform
growth at infinity, standard results do not apply. We present here an explicit deriva-
tion of the relaxation, where this difficulty is circumvented by resorting to convexity.
We start by a definition of the quasiconvex envelope W9¢,

W9 (B) = inf {/ W(Vu)dx :u e WH® | u(x) = Bx on 9(0, 1)3} (3.3)
.13

(see, e.g., [38]). This definition shows that replacing W by W9° amounts to opti-
mizing over all possible gradient fields with given boundary values. The concept of
quasiconvexity was introduced by Morrey in 1952 to study existence for variational
problems depending on a gradient field, and has proved very useful in the analysis
of solid-solid phase transitions (see, e.g., [38, 30] and references therein). In gen-
eral, the quasiconvex envelope is different from the convex one, and much more
difficult to compute. Indeed, only for very few realistic energies W has the analytic
expression for W9°¢ been found. In the present case, we shall show that (under some
assumptions on the set of slip systems) the quasiconvex envelope coincides with
the convex envelope W**. This will be the key ingredient for the explicit evaluation
of the relaxation J (u).

We start from a characterization of W**, which corresponds to averaging over
all possible local strain distributions, neglecting the gradient constraint. The same
energy W** is obtained if latent hardening is neglected (Section 3.1). Then we dis-
cuss some simple mixtures which satisfy the gradient constraint, called laminates,
and present our kinematic assumption on the set of slip systems S (Section 3.2). In
Section 3.3 we turn to the full problem 7 (1), and give its relaxation first without
boundary conditions (i.e., assuming that I' = ¢J), which is simpler to obtain. The
equality of the quasiconvex and convex envelopes is proved in Section 3.4, and the
applicability of our result to fcc and bec crystals in Section 3.5. Finally, in Section
3.6 we discuss the minimal complexity of the microstructure patterns for some
specific average shears, and, in Section 3.7, we generalize the relaxation of J (u) to
the case where Dirichlet boundary conditions are imposed.
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3.1. The convex envelope

The convex envelope of W is defined as usual by
W**(p) = inf {ZMW(&) A 20, ) k=1 eRV L
i i

Replacing W with W** in the energy density I (1) corresponds to neglecting latent
hardening, i.e., to permitting each material point to deform at the same time along
several slip systems (multislip plasticity). In particular, W** corresponds to optimiz-
ing locally over all mixtures between the different slip systems, without considering
the gradient constraint.

Lemma 3.1. With the above definitions, a positive-definite elasticity matrix C, and
a set of slip systems S such that (s; @ m;)*¥™ span the set of traceless symmetric
matrices, the following holds:

(i) The envelope W** satisfies

W*(B) = min A™ (B, ) (3.4)
yeRN

where A™* is the convex envelope of A, and satisfies

N =

A%, y) =5 (C(e—e’(), (e —e’W)) + D _wlnl.  (35)

Here e = BY™ and €P(y) =Y yi (si @ m;)™™.
(ii) The envelope W** has linear growth on traceless symmetric matrices and qua-
dratic on the trace; precisely, there are constants c, ¢’ such that

c(IBY™ +1Te P = 1) S WB < (1418 +1Te B12) . (3.6)
Proof. Equation (3.4) is a direct consequence of the following general fact. For

x € R", y e R", let f(x) = inf, g(x, y). Then, the convex envelopes satisfy
f**(x) = infy g™ (x, y). To see this, observe that by definition

f**(x) = inf {inf(x,-) DY ki =x}
= inf {ingm Y)Y hixi=x, yi € Rm} :

where the A;’s are implicitly assumed to be nonnegative weights with sum one. On
the other hand,

g**(x,y) = inf {Zkig(x,-,y,-) : Z)»,-xi =X, Zkiyi = y} .
i i i
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By taking f = W, g = A, we obtain (3.4). Attainment follows from continuity of
A** and the growth A**(8, y) = c|y|.

We now show that the convex envelope of A is given by (3.5). Indeed, let A be
the function defined in the right-hand side of (3.5). Since A is convex and less than
or equal to A, we get A < A™*. To show equality, fix some (8, ), and consider
the convex combination given by

vl - Vi - -
=g Y= e B =Bl
J j !

A straightforward computation shows that

Dom=1, YouyP =y, Y xup? =8,

D nABY YD) =A@, y),

hence A > A** and (3.5) is proved.

The growth condition (3.6) follows from the fact that the slip systems (s; ®
m;)™™ span the set of symmetric traceless matrices, and that c|e|> < (Ce, €) <
c’|€|?. This concludes the proof. O

3.2. Laminates and completeness of the set of slip systems S

Evenif Vu islocally a single-slip deformation, the formation of fine-scale struc-
tures permits us to obtain macroscopic (average) plastic deformations which are not
single-slip. However, those structures must obey the gradient constraint, i.e., only
those mixtures which are curl-free can be realized by 8 = Vu. The prototype is a
laminate, which is a mixture between two gradients, whose difference is a rank-one
matrix. Given two strains 81 and B, with 8, — 81 = a ®n, two nonnegative weights
A1, Ao, with Ay + A = 1, and a small ¢ > 0, we write

ug(x) = Bix +aey (%) ,

where x : R — R is defined by x(0) = 0, x'(t) = 0if ¢t € (k, k + A1) and
x'(t) = 1ifr € (k+ A1,k + 1), for k € Z. For small &, Vu oscillates on a fine
scale between the values 81 and f,, with average B = A181 + A282. Ase¢ — 0,
the sequence u, (x) converges weakly-s in W1 to an affine function with gradi-
ent B. This shows that mixtures are always possible between rank-one connected
matrices. This construction is called a first-order laminate; iterating the procedure
we can construct laminates of higher order (see below).

Due to the linearized rotational invariance, only the symmetric part of the gra-
dient is relevant for the energy. In particular, we can replace 8, with ) = 2 + o,
for any w € so(3), and generalize the condition above to the existence of w, a and n
such that 8> — 81 = a ® n 4+ w. The latter condition depends only on the symmetric
part of 81 and B, which we denote by ¢; = ﬂf’ Y™ We say that two symmetric
matrices € and €; are symmetrically rank-one connected if there are vectors a and
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nsuchthate; —ex =a @ n + n ® a. A straightforward calculation shows that €;
and e, are symmetrically rank-one connected if and only if det(e; — €3) = 0.

Iteration of this construction leads to the determination of the lamination con-
vex hull of a set. More precisely, given a set K of symmetric matrices, we define
K®1¢0 = K and iteratively K11 as the set of symmetrized averages of laminates
between matrices in K17, precisely,

Koot — {e © ecle, el €1, e2€ KM det(e] — e) = O},

where [€1, €2] denotes the segment whose endpoints are €] and €. The union of
all K817 constitutes the symmetric lamination convex hull of K, which we call
K¢ (with this definition, only finitely many iterations are permitted). All strains
in K*° can be obtained as average gradients of maps whose strains lie in K (up to
negligible boundary terms).

We now state our main assumption on the set of slip systems S, which is of
purely kinematic nature.

Definition 3.2. A set of slip systems S = {s; ® m;} is complete if the symmetric
lamination convex hull of the finite set

{:I:(S,‘ @m)™: 5i @m; € S}
contains a neighborhood of the origin in the space of symmetric traceless matrices.

This corresponds to the attainability of all (infinitesimally) volume-preserving
deformations by suitable combinations of the slip systems. This condition can be
replaced by a more general but less explicit one replacing the lamination hull with
the quasiconvex one, leading to essentially the same conclusions, at the expense of
a more technical discussion. For simplicity we focus here on the simpler condition
involving lamination convexity. We show in Section 3.5 that the slip systems of fcc
and bce metals do satisfy this definition, and that complenetess is not equivalent to
(s; ® m;)Y™ spanning the set of traceless symmetric matrices.

3.3. The relaxation of I (u) without boundary conditions

We now present the relaxation result without boundary conditions. The gener-
alization to the case of Dirichlet boundary conditions will be presented in Section
3.7 below. The relaxed functional is finite on functions u € U (£2), whose symme-
trized distributional gradient Eu = Du 4+ Du” can be decomposed as usual by
Eu = fudx + Esu, where Eu is the density of the continuous part of Eu with
respect to the Lebesgue measure, and Esu the part of Eu orthogonal to it (called
the singular part). Since functions in U (2) have a divergence in L2, it follows that
the singular part Ej is traceless. The continuous part £ enters then the relaxed func-
tional through the convex envelope W** of W, and the singular part E; through its
regression function, defined by

1
W=(p) = lim ;W** (tB) .

The limit exists since W** is convex, and is finite for all traceless 8 by the growth
condition (3.6).
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Theorem 3.3. Let W be as in (2.1), with a positive definite elasticity matrix C, and
the set of slip systems S be complete. Then, the relaxation of

/ W(Vu)dx if u e Wh2(Q, R?)
L) = 1{Ja

o0 else
with respect to the strong L' topology is given by

Esu
w**(gu)dx+/ W°°( u >d|ESu| if ueU(Q),
J(u) = /Q Q |Esul

00 else.

The proof is based on matching upper and lower bounds. The lower bound is
obtained by proving that J () is a convex functional of the measure Eu, and that it
is less than or equal to / (#). Convexity of functionals depending on convex func-
tions with linear growth is a classical result. Precisely, if f : R”" — R is a convex
function and 0 £ f(§) < ¢(1 + |&|), and wy, is a sequence of R™-valued Radon
measures on 2 converging weakly in M to u, such that fQ d|up| is bounded, then

. dup / du, ‘

1 f — )d o d|u;

i /Qf(dx) 7 (dmm il
> — ) dx + © d|u’|. 3.7
_fo<dx [ () e (3.7)

Further, if fQ | = lim fQ |in|, then equality holds (see, e.g., Theorem 1.3 in
[9]; the result was first proved in [18, 49]). In applying this result to our problem,
care needs only to be taken to separate the volumetric part (which gives quadratic
growth for the energy) from the deviatoric part (which gives linear growth). Here
and below we say that a sequence of measures ©y converges to u weakly in M if

f v dun — / ¥ du forevery ¥ € CO(R) .
Q Q

To obtain the upper bound, we need to construct recovery sequences u,. Due to
a density argument, it is sufficient to do it for smooth limits u#, which in particular
have bounded gradients. We can therefore use the standard tools of quasiconvexity,
which are typically applied for the relaxation of functionals depending on a gradient
field, but which require higher regularity than BD (typically, W!? with p > 1).
The quasiconvex envelope is actually identical to the convex one, as will be shown
in Proposition 3.4 below.

Proof. We start from the lower bound. Let u, be a sequence of functions in wh(Q)
converging to u € U (£2). Without loss of generality we can assume that lim 7 (u;,)
exists and is finite. Since W** < W, we can use the coercivity part of (3.6), and by
compactness choose a subsequence such that

up — u strongly in L', divu, —divu weakly in L?,

Eujp — Eu weakly in M.
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We now decompose all strains in deviatoric and volumetric parts, according to
the metric induced by the elasticity matrix C. To do this, let p denote a symmetric
matrix such that

Trp=1 and (Cp,e)=0 forall € suchthat Tre = 0.
Any symmetric matrix € can be written as
D—i—evp where Tre? =0ande” =Tre e R. (3.8)
The C-orthogonality guarantees that the energy is additive, in the sense that
WP + €V p) = W (P) + W (V p). (3.9)

To see this, observe that for any y we have A**(e? + €V p,y) = A (P, y) +
A**(e" p, 0). Taking the minimum over y we get W**(e? + €V p) = W**(eP) +
A**(€" p, 0). The last term equals W**(e" p), since

1
A py) = A .0 + D wily |+ S (CeP ). P () 2 AV p, 0).

This concludes the proof of (3.9).

We now perform an analogous decomposition on the strains Euj and Eu, and
denote as above by & the corresponding densities with respect to the Lebesgue mea-
sure, so that for example Euy, = EPuj, + EVup = EPupdx + £V updx. Since the
decomposition is linear, the strains Euj; have no singular part, and the volumetric
parts are controlled in L2, we get

EPupdx —~ EPu weakly in M, and EVup =&V weakly in L2,

The energy W** < W has linear growth in the deviatoric part £Puj, hence the
lower semicontinuity result of (3.7) gives

/ W**(EPu)dx +/ < Esu >d|E u| < hmlnf/ W (EPup)dx .
Q Q |Esul

On the other hand, on volumetric strains W**(e" p) = |V |?W**(p) is equiva-
lent to the L2 norm, hence is lower semicontinuous under weak-L?2 convergence.
Recalling the additivity (3.9), we get

J(u) < lim inf/ W**(Eup)dx < liminf I (up) .
h—oco Jo h—o0

This concludes the proof of the lower bound.

We now come to the upper bound. We remark that the construction presented
here does not change the boundary values, and can therefore be reused later in the
proof of Theorem 3.13 below.
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First, by a general density argument, we reduce to smooth functions. Indeed,
forany u € U(2), there is a sequence u;, € C°°(2) N U (£2) such that the following
holds:

up — u strongly in L', divu, — divu strongly in L?,

Eup — Eu weakly in M , /IEuh|—>/ |Eu|, up = uondS as traces
Q Q

(see, e.g., Theorem A.2 in [22] or Theorem I1.3.4 in [52]).

As in the lower bound, we decompose all strains into volumetric and deviatoric
parts, according to (3.8). The strong convergence of div u, gives f W**(p div up)dx
— [ W**(pdivu)dx and by difference

/|5Duh|dx—>/|EDu|.
Q Q

The energy density W** has linear growth in the deviatoric part £2uy, and by the
continuity statement quoted after (3.7) it follows that

/ W (EPuy)dx —>/ W**(eDu)dx+/ W°°( Esu )d|Esu|.
Q Q Q |Egul

Combining the two results, we get J (up) — J(u).
Finally, we show that for any v € C, it is possible to find a sequence vy
converging to v weakly in W12 such that

/ W(Vup)dx — / WI(Vv)dx, wvgx=vond<, (3.10)
Q Q

where W9 is the quasiconvex envelope of W, as defined in (3.3). This follows from
the general theory, since the function W is continuous and v is uniformly Lipschitz,
see e.g. [38]; for the convenience of the reader we sketch here the argument. By
density we can find a sequence of uniformly Lipschitz, piecewise affine functions
wy, which converge to v in W2 and are such that the integral of W9¢(Vwy) con-
verges to the integral of W4°(Vv). Fix a sequence gx — 0, & > 0, and consider
one k. Let w be one of the parts of the domain where w; is affine, say w; = Bx +c¢
on w. By (3.3) there is u such that u(x) = Bx on the boundary of the unit cube,
and f(0’1)3 W (Vu)dx < WI(B) + &;. The set w can be covered by finitely many

small cubes (0, ;)3 + p;, up to a remainder whose measure is less than ¢|w|. In
each such cube we set vy (I;x + p;) = lju(x) + ¢, outside the cubes vy = wg. This
gives

/ W (Vug)dx = Z/ W(Vup)dx + ex|o|W(B)
w i (

0,;)3+p;

<Y R WEB) + & + exlol W)

1

< ol WI(B) + eklol [1+ W(B)] .
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Summing over all sets w; covering €2, and using the fact that by continuity W is
uniformly bounded on the support of the uniformly bounded functions Vwy, we
get

/QW(Wk)dx < 3 | IWEB)) + exlwj| [1+ W(B))]

J

g/ W (Vo )dx + |1 + M] .
Q

Taking the k — oo limit, we find that the sequence ¢; converges to zero, and the
integral of W9°(Vuy) converges to the integral of W9¢(Vv). This concludes the
proof of (3.10).

We show in Proposition 3.4 below that the quasiconvex envelope coincides
with the convex one, W9¢ = W** Taking a diagonal subsequence, the proof is
concluded. O

3.4. The quasiconvex envelope

We now compute the quasiconvex envelope of W, defined in (3.3), under the
assumption that the set of slip systems is complete, in the sense of Definition 3.2.
Our main result is the following

Proposition 3.4. Let S be a complete family of slip systems. Then, the quasiconvex
envelope of W coincides with the convex one, W9I¢ = W**,

Before proving the proposition we give some partial results concerning the lami-
nation convex envelope of W. This corresponds to including the energy W in the
kinematic considerations of Section 3.2. Precisely, we not only keep track of which
average strains can be generated using the available slips, but also of which slips
are used, and how much energy they cost.

We recall that a probability measure on 3 x 3 matrices v = A18g, + A28g, is a
first-order laminate with average g if 181 + A2f2 = B and rank(B8; — B2) = 1.
Here §g denotes a Dirac mass supported on the matrix 8. Laminates of order k with
average S are then defined as the set of probability measures obtained from lami-
nates of order k — 1 replacing any g; with a first-order laminate with average ;.
Laminates offer a natural way to reduce the energy by using deformation patterns
admissible for gradient fields (see, e.g., [38]). We call the union of all laminates of
order k for k € N laminates of finite order, or briefly, laminates. Note that we do
not take the closure, hence all laminates here have finite order. This permits us to
avoid subtleties arising from the linear growth.

The assumption of completeness implies that the lamination envelope W'® has
linear growth on traceless matrices.

Lemma 3.5. Let S be a complete set of slip systems. Then there is a constant ¢ such
that for any B there is a laminate v (of finite order) such that

B =(v1d), and W, W) <¢ (|ﬂsym| + |Tr,8|2> .
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Proof. Since W only depends on the symmetric part of 8, we only need to prove
the result for symmetric 8. We decompose 8 as in (3.8), 8 = BP + p Tr 8, and first
consider the plastic part of the potential alone, as a function of the deviatoric part
BP. Since S is complete, there is n > 0 such that all traceless matrices of norm
less than or equal to n are averages of laminates supported on +£&. For all such
laminates

(v, W) < maxt; ,
1

and the bound is obtained without any elastic energy, hence has linear scaling. In
particular, the matrix A = (/|8 ])B™ has such a representation. Call it 7°. The
laminate v? is obtained from v by scaling the support by |2 |/5. Since the plastic
part of the energy is positively homogeneous of degree one, we get

18"

(VP W) £ == maxy =clp”] < |,

The laminate v is obtained from v by translating its support by the volumetric
part p Tr 8. Since W(p Tr B+ L) < ¢| Tr B? + W(BP) we obtain the thesis. O

Lemma 3.6. Let S be a complete set of slip systems. For any B € R>*3 and any
& > 0 there is a laminate v (of finite order) such that

(v,Id) = B and (v, W) S W**(B) +¢.

Proof. By Lemma 3.1(i) we can find y € R", a symmetric €¢, and a skew-sym-
metric w such that
k 1 k
poc+Lymomto and WU =3+ Y
1=

i=1

for some k £ N. We now prove the thesis by induction on k. The cases k = 0 and
k = 1 are trivial. Assume now that the thesis holds for £ — 1, and let

k—1
. 1
B =€’ +Z%Si ®mi+w and By =P+ g)’ksk@)mk-
i=1
They are clearly rank-one connected. The matrix g is the average of a laminate
supported on 81 and B, with weights 1 — ¢ and ¢ respectively. At the same time,
B> is the average of a laminate supported on

k—1

1 1
ﬂ3=€e+ZVi5i®mi+ngsk®mk+w, and - fy=p3+ —nisi@mi,
i=2

again with weights 1 — ¢ and ¢ (here the lamination direction s; ® m1 has been
used). Note that the sum in the definition on 83 starts from i = 2, hence S3 is the
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€/ ¢
/ ﬁl §,@n,

Fig. 3.1. Construction used in proving Lemma 3.6, in the case k = 2 of two slip systems.
The arrows indicate the rank-one directions s; ® m and sp ® m>.

sum of k — 1 single slips (the summation is understood to be empty if k = 2).
Combining the two, we obtain a laminate

v=(1—¢)8p +e(l —&)8p, + &85,

with average 8. By the inductive assumption, B and 83 can be generated as lami-
nates with energies controlled by W9°(81) + ¢ and W9°(83) + ¢ respectively, and
by Lemma 3.5 there is a laminate v4 such that

ym 2 < B :
i dd) = s, (s W) S (1871 + I Tr i) S ei— + el TrpP.

We conclude that there is a laminate with average § and energy controlled by

(v, W) £ (1 — )W (B1) +eW(B3) + cel Y™ + ce?| Tr BI* + ¢

A

k
Lo,
S(Ce )+ ) iy + c(B¥Me,
i=1

where the last constant depends on 8%Y™ but not on ¢. This concludes the proof.
O

Proposition 3.4 is then an easy consequence.

Proof of Proposition 3.4. The quasiconvex envelope is larger than or equal to the
convex one, hence the result is established if we can show that for any g € R3*3
and ¢ > 0, there is a function u € W1((0, 1)3, R3) such that

/ \ W(Vu)dx < W*(B) + ¢, u(x) = px ifx € (0, 1)3.
(0,1)°
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Consider the laminate v obtained in Lemma 3.6. It is a laminate of finite order,
supported on a bounded subset of R3*3. Then, we can find a sequence u;, of uni-
formly Lipschitz functions which coincide with Bx on the boundary and are such
that Vu, — v, in the sense of Young measures [38]. In particular, since W is
continuous for large enough &, we get

/ W(Vup)dx < (v, W) + ¢ < W*(B) + 2¢.
0,1)3

This concludes the proof. O

3.5. Completeness of the fcc and bcc slip systems

We now show that the slip systems appearing in fcc and bec crystals are com-
plete, in the sense of Definition 3.2. To do this, for any traceless  we construct a
laminate with average 8 supported on a multiple of +S. These constructions need
not be, and are not, optimal from the point of view of the energy, since they are only
used in the error term (the part called B4 in the proof of Lemma 3.6). The optimal
energy scaling is then recovered with the argument discussed above and illustrated
in Fig. 3.1.

Lemma 3.7. The set of fcc slip systems Sgec, containing all symmetry-related copies
of the pair s = (1, 1,0), m = (1, —1, 1) as given in Table 2.1, is complete.

Proof. We need to show that all small enough symmetric traceless matrices are
averages of laminates supported on +Sg.c, modulo rotations. The set £S¢ is invari-
ant under the following symmetry operations (which stem from the cubic group of
the fcc crystal): (i) changing the global sign; (ii) interchanging the i-th and j-th
row and at the same time the i-th and j-th column; (iii) changing sign to the i-th
row and at the same time to the i-th column. Therefore all results are invariant
under those symmetry operations. Further, we can identify matrices which have the
same symmetric part, since rotations are irrelevant, and multiply each matrix by a
positive number, by scaling.

Step 1. All matrices of the form

a b 0
,Ba,b: b—a0
000

and equivalent can be generated. Since all matrices of this form have zero determi-
nant, all linear combinations in this class are permissible. Therefore it is sufficient
to prove the result assuming that only one between a and b is nonzero. We do this
separately in the two cases.

Case b = 0: Consider the two slip systems with s = 51 = (1, 1, 0), which have
m? = (1, —1, 1)and mll’ = (1, —1, —1). Since s is the same, any linear combination
between them can be obtained by a laminate, in particular [s1 ® (m{ + m}f) J219m =
e1 ® e] —e2 ® ex = P10 can be obtained as a laminate, and by scaling all B, .
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Case a = 0: Start from the two slip systems with s = s, = (1,0, 1), which
have mg = (1,1,—-1) and m’Q’ = (1, —1, —1). They generate the matrix ,3 =
sy ® (m‘z‘ — mlz’)/Z = 572 ® e3. The same argument starting from sé =(1,0,-1)
leads to the matrix 8’ = s} ® e2. The two matrices B and B’ are rank-one connected,
and therefore their average (8 + B')/2 = e; ® e, can be generated as a laminate.
Taking the symmetric part and scaling we then obtain all B¢ 5. This concludes the
proof of Step 1.

Step 2. All matrices of the form

a b 0
Bi=1|b —a—c d
0 d c

with a 2 ¢ > 0 and equivalent can be generated as laminates. We start from the
two matrices

a b 0 000
/322 b—-a0 s ,332 0—cd
000 0dc

which can be generated by Step 1, and observe that
det(B2 — MB3) = c(@® + bH)h — a(c +dH)’

vanishes for A = 0 and A = A > 0. Therefore all linear combinations with coeffi-
cents of the same sign, including 81 = B2 + B3, can be generated.

Step 3. We finally show that each traceless matrix can be generated. It is sufficient
to consider matrices of the form

a’ b f
B=|b —a - dJ,
f d c

where a’ = ¢’ 2 0 (two of the diagonal entries always have the same sign, indices
can be permuted, and the global sign can be changed). Fix some e and define

e0 f
Bs=100 0 |,
f0—e
which can be generated as a laminate by Step 1, and 81 as in Step 2, witha = a’ —e,

c=c +e,sothat B = B + B4.If a’ > 0, choosing e = a’/2 we can have a > 0,
¢ > 0, hence f; can be generated as a laminate by Step 3. Consider now

det(By = 1Ba) = — [c(a® + b)) + a(c* + &) |
+ [e(c2 +d>—a>—b*) — Zbdf] A+ (a+c)e+ fHr2.

This has two nonvanishing zeroes in A, one positive and the other negative. Choos-
ing the positive one, we obtain a rank-one connection between 81 and a positive
multiple of B4, which, after scaling, can generate 8 = B + Ba.
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It remains to consider the case a’ = ¢’ = 0, where the matrix 8 is purely
off-diagonal. But this is a direct consequence of the case a’ > 0, since

0bf\ (1 b\ {[-1bf
bod|=z|b-ld|+5(b1d
fdo fdo fdo

and the difference of the two matrices has zero determinant. This concludes the
proof. O

Lemma 3.8. Each of the two sets of bcc slip systems, as given in Table 2.2, is
complete.

Proof. The first set of slip systems is obtained from the one of fcc by transposition,
and since only the symmetric part is relevant in computing symmetric lamination
envelopes, its completeness follows from Lemma 3.7. Consider now the second
one. Takes =s1 = (1,1,1),m =m1, = (—2,1,1) and my, = (1, —2, 1). These
two slip systems are rank-one connected, since s is the same. On the other hand,
mig —myp = (=3, 3, 0). Due to the cubic symmetry, this suffices to prove that all
slips in the first set are generated as averages of slips in the second one. Therefore
the latter is also complete. O

It would be tempting to conjecture that all slip systems which span the set of
traceless matrices are complete. This is, however, not true, as we now show with
an explicit example.

Lemma 3.9. Consider the set of slip systems

Sy ={e1®ez, e1 ®ez, (e1 +¢€2) ® (e1 —e2), (e1 +¢€3) ® (e1 — e3),
(e1+e2+e3) ® (e —ex —e3)} .

The symmetric parts of the matrices in Sy span the set of symmetric traceless
matrices, but Sy is not complete.

Proof. We first observe that each pair (s, m) is composed of two orthogonal vec-
tors, each pair (s, m) spans a space which contains ey, and the set of matrices
(s ® m)SY™ are five linearly independent traceless symmetric matrices, hence span
the space of symmetric traceless matrices.

We now show that S is not complete. We reason by contradiction, and assume
that for some small > 0 there is a laminate supported on =S, + so(3) with aver-
age B = n(ex ® e3)™™. Then for any & > 0, there is a function « : (0, 1)3 — R3
such that u(x) = Bx on the boundary, |Vu| < M, and Vu¥™ € £S5 away from
a set w of measure ¢. Here M depends only on the laminate, not on ¢ or u. Since
the cofactor of a gradient is a divergence, its integral depends only on the boundary
values, and in particular

/(0 . cof Vudx =cof B = —n’e1 ®e . (3.11)
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On the other hand, away from the small set w,
Vu==xs m+ w,

for some (x-dependent) w, € so(3) and s ® m € S,. We parametrize here anti-
symmetric matrices by their axial vector a, defined by w,v = v Aa forall v € R3.
A straightforward computation shows that

cof(zs@m+w,)) =a®@ata@® (s Am)x(s-a)wy,,

where the last term contains the antisymmetric matrix with axial vector m. Taking
the 11 component, we get

er-cof (s @m + wy)e; = (a - e1)2

since wy, is antisymmetric, and s A m is orthogonal to e; (here we use the fact that
all pairs (s, m) span a space containing e¢1). Comparing with (3.11) we get

—772=€1~/ cof Vudx - e; Z/ (a-e)’dx — M*e
(0,13 (0,1)

for any & > 0. This implies —n> > 0, a contradiction. O

In closing, we remark that many average deformations can be obtained with spe-
cific constructions that require less surface energy. This is irrelevant for the purpose
of determining the relaxation of the energy, but makes a difference if higher-order
corrections (nonlocal terms) are included. The next section presents a characteriza-
tion of the minimal complexity of the microstructure required to relax the energy
for some simple average strains.

3.6. Slip concentration

In computing the quasiconvex envelope of W in Section 3.5 we made use of
a construction which contains very large strains on parts of the domain, which
converge to slip lines in the limit. We investigate now whether such slip lines are
necessary in order to obtain the optimal energy, or if instead a different construction
with bounded strains is always possible. In particular, we focus on the fcc set of
slip systems and on the case of plastic deformations which are a linear combination
of two slips,

BY =151 @ m + o252 @ ma, (s1,m1) and (s2, m2) € Sgec

for some a1, oy # 0. We shall show that for some such average strains a simple first-
order laminate permits us to realize the optimal energy. For other choices instead no
structure with bounded gradients realizes the optimal energy, and strain necessarily
concentrates, at least in an L? sense. This is an indication that concentrated slip
(slip lines) is necessary to fully relax the energy.
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We start with the positive case. Following ORTIZ & REPETTO [42] we have

Lemma 3.10. Let (s1, m1) and (s2, m2) be two slip systems. Then, there is a simple
laminate such that the strain is supported on

ri(sy @ mp)™ ra(s2 ® mo)™¥™
with ry, ry # 0 if and only if
ra(ty - s1)(t2 - my) = ri(ty - s2) (11 - m2) ,
where t; = s; A m;.

Proof. Lete; = ri(s; @ m;)Y™ denote the corresponding strains. Based on the dis-
cussion in Section 3.2, it suffices to check if the traceless matrix €| — €5 is singular,
ie., if

0 =det(e; —€p) = €1 : cof € — € : cof ¢;

since dete; = dete, = 0. Here, A : B = TrATB = A;jB;j. Since cof [(ris; ®
m;)¥™] = r’t; ® t;, the thesis follows. O

In particular, Lemma 3.10 shows that if the sign condition
aja(ty - s1)(t2 -m)(t - s2)(t -m2) = 0
holds, then there is a simple laminate between matrices of the form
Pr=risi®@mi+w; and By =1 @mr+w

with average 87 = «a1s] ® m| + axsy @ my (the weights are constructed as in
Section 3.1).

We now show that the condition above for the existence of a simple laminate
between two slip systems is actually necessary for the existence of a polyconvex
measure supported on the two independent slip systems. By independent we mean
that the symmetrized shears (s ® m)*Y™ and (s’ ® m’)>Y™ are linearly independent
in R3*3. We shall then in Proposition 3.12 discuss the general case, where only the
average strain is prescribed.

Lemma 3.11. Let (s, m1) and (s2, m2) be two independent slip systems, and fix
two orientations o; € {£1}. If

o102(t2 - s1)(t2 - m1) (81 - s2) (11 - m2) <O, (3.12)
then any L?* polyconvex measure supported on the union of the two sets
Gi = [B e R 1 B = hai(si @m)¥™, 220

(fori € {1, 2}) is actually supported on one of them.



Dislocation Microstructures 125

Proof. Consideran L? polyconvex measure supported on G; UG», i.e., a probability
measure v on R3*3 which obeys the conditions

B = (v,1d), cof B = (v, cof) . (3.13)

Note that the assumption that v is an L2 Young measure permits us to compute the
average of the cofactor, which is a quadratic quantity, but not that of the determinant,
which is cubic. The first of the (3.13) gives

B =Xr0o151 @ mi + A20282 @ mo + w,

where w € so(3) and A2 = 0. We assume without loss of generality that w = 0.
Since the slip systems are independent, if one of the A;’s vanishes the thesis is
proved. From now on we assume that both are strictly positive and show that this
leads to a contradiction. The proof proceeds in strict analogy with the argument of
Lemma 3.9. Precisely, we compute the cofactor of ,

cof B = Aha0102(51 A s2) ® (m1 Amp).
With the definition v = #; A o, where as above t; = s; Am;, (3.12) is equivalent to
v-(cof Bv <0 (3.14)

(again, this is a simple expansion based on the usual manipulation rules for wedge
products). On the other hand, for any Young measure supported on G| U G, the
expression v(cof -)v has nonnegative average. Indeed, if G € G;, then G = w, +
Aois; ® m;, for some A = 0 and skew-symmetric w, (parametrized as in Lemma
3.9 by its axial vector a), and

cof(wg +os@m) =a®a+oca@ (s Am)+o(s-a)wy,.
We obtain, for any G € G| U G»,
v(cof G)v = v cof (g + Aois; @ mi)v = (a - v)> =0

since v is orthogonal to both #; and 1>, and w,, is antisymmetric. A comparison with
the second equation in (3.13) and (3.14) concludes the proof. O

The above result assumes that only two slip systems are used. We now show that
for some average strains 8 no construction with bounded strains, and in particular
no laminate of finite order, achieves the optimal energy.

Proposition 3.12. Consider the fcc set of slip systems Sgec and a positive-definite
elasticity matrix C. Then there is a strain B with the following property. For any
u € W42 such that

1
—/ |Vul?dx <M and u(x) = Bx on 99,
Q Ja
where Q2 is a Lipschitz domain, the following inequality holds:
1
5/ W(Vu)dx =2 WI(B) + c(M),
Q

where c(M) is a positive constant which only depends on M, not on u.



126 SERGIO CONTI & MICHAEL ORTIZ

Proof. The proof is by contradiction. If the thesis were false, there would be for
some M > 0 a sequence uy, such that

1 1
SVl g S M. un(r) = pron g, o /Q W (Vup)dx — WE(B).

The sequence Vu; generates in the limit an L? Young measure, and by a stan-
dard scaling and covering argument we can assume it to be homogeneous. Since it
originates from a sequence of gradients, it is a polyconvex measure, and satisfies

(v,1d) = B8, (v, cof) = cof B, (v, W) = W**(B).

We now intend to use Lemma 3.11 to show that for suitable choices of 8 these

three conditions are incompatible with each other. In order to do this, we start by

constructing a linear lower bound for W which is equal to W only on 8 and on two

slip systems, and therefore proves that only two slip systems can be used by v.
Consider the scalar product (-, -), defined on R3*3 by

BB =) BijBi; + é Y Bib:-
i) i

The matrices M; = (s; ® m;)*¥™ characterizing the symmetrized individual slips
have the products

4 1 2
(M, Mi), = 3, (M;, M), € {:Izg,:tg} ifi £ j

(to see this, it is sufficient to compute explicitly a few not symmetry-related cases;
for brevity we do not report the full details here). Now consider for s € {£1} the
linear map defined on R3*3 by

f(B) = (M +sMa, B),.

Here, M| and M, correspond to the first two entries in Sgcc, Which are any pair of
fcc slip systems. For simplicity of notation we denote them by 1 and 2. It is clear
that

f(My) = f(sMa) = (M1, My), + s(My, Ma), .

Choose s € {1} to have the same sign as (M7, M>),. Then both terms in the
expression above are positive. We define H by

f(M) = f(sMy)=H = 3.
On the other hand, if i = 3, we have

fEM) =£(My, Mi), £5(My, M;), <5 <H.
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Now let oy € R3*3 be a symmetric matrix defined by
v sym 3x3
(00,,3)=ﬁf(,3y ) forall B e R
and B¢ = C~'og. We claim that, for any g,
T
W*(B) = ﬁf(ﬁ — Bo) + W*(Bo), (3.15)
where

Bo = B¢+ 8L, BY = BP(y°) = My +sM,.

Here and below, ylo =1, y20 = s, and yio = 0 for i = 3. To prove (3.15), we
compute (with the usual notation € = (8 — B (y))™¥™, 5 = (B3)Y™, etc.)

1
AB.y) = 5(Ce’ )+t > il

1 1
5 (Ce =€), (69 = €))) + (Cef, € =€) + 5 (Cef ) + 7 Y il

v

T 1
clef — e’ + - f (e — ) + 5 (Cef. ) + 1 ) Il

T
> cle¢ —€§|* + e —e0

\

T 1
o7 [ (e =€)+ S (Cefef) + T > il
Now we focus on the two terms depending only on the plastic part. Since by con-

struction f(M1)/H = y{ = 1, f(M2)/H = y) = s, and for i = 3 we have
f(M;)/H < 1and y? = 0, we get

M;
%f(eé’—e”)thZIyil =IZ[|%|+ /¢ )(yP—m} z7y .

H

Equality here holds only if y; = 0, sy2 = 0, and y; = 0 for i = 3. We conclude
that

AB.y) 2 ABo.v") + %f(ﬂ — Bo)

for all 8 and y. Taking the minimum over y we get (3.15), with equality holding
only if € = €{, 1 2 0,572 2 0, and y; = 0 for i = 3. Therefore both conditions
must hold v-almost everywhere. This implies that the Young measure x obtained
translating v by —e is supported on the set

HYIH
where

G ={F: F¥™ =(si @m)™™ , 1 2 0}
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and has average ,35 = Mj + sM,. If the sign condition (3.12) holds, by Lemma
3.11 the measure p is actually supported on one of them, but this contradicts the
fact that the average is the sum of two (linearly independent) slips. We finally check
that there are pairs of slip systems which obey (3.12). To do this, we need to find
(s1, mp) and (s2, my) in Sgee, s € {1}, such that

s(tr - s1)(f2 - mp) (1 - $2)(11 -mp) <0,
where s has the same sign as ((s; ® m )%™, (s2 ® m2)™),. One such pair is

s1=(-1,0,1), m=1,-1,1), s=(1,-1,00, mx=(,1,1),

with the same orientation (i.e., s = 1); by symmetry there are 11 other equivalent
pairs. Indeed, a simple computation shows that t; = (1,2, 1), » = (—1, —1, 2),
and (3 - s1)(t2 - m1)(t1 - $2)(t1 - m2) = —24. On the other hand, the scalar product
is {((s1 @ m)™™, (s @ mp)>™), = 1/3 > 0. This concludes the proof. O

We conclude that, given any pair of slip systems, it is possible to find a lami-
nation between them, but the same is not true if the orientation is prescribed. This
implies that in simple tests which activate a linear combination of two slip systems,
we expect either a laminate or a more complex pattern involving slip concentration,
depending on the relative orientation.

3.7. Inclusion of Dirichlet boundary conditions

We now extend the relaxation result of Section 3.3 to the case where Dirichlet
boundary conditions are imposed on part of the boundary. We consider the func-
tional (1) as defined in (3.1), with additional smoothness imposed on 2 (see the
statement of the theorem). The main difficulty here is that slip can concentrate
along the boundary. Indeed, only the boundary condition on the component normal
to the boundary will survive the relaxation. A jump in the tangential component is
instead permitted, and only energetically penalized through the singular part W
of the energy. We denote by I (u, €2) the integral of W (Vu) on €2, and by It (u, 2)
the functional with Dirichlet boundary conditions on I' C 9€2. Analogously for J.

Theorem 3.13. Let It (u, 2) be as in (3.1), where W was defined in (2.1) with
a positive-definite elasticity matrix C, and a complete set of slip systems S, and
ug € H 1/ 2(1" ). Also assume that Q2 is an open, bounded, connected set with C 2
boundary, that ' = QN 02, where Qisa Lipschitz open set. Then, the relaxation
of It (u, ) with respect to strong L' convergence is given by

E,
/ W (Eu)dx +/ W (—“) d|Eul
Q Q |Esu|

+ f W ((u — up) ® v)dH>
r
ifueU(Q) andv - (u—ug) =0onT,

Jr(u, Q) =

o0 else.
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Here, W** and W are as in Theorem 3.3, v is the normal to T, and the values of
u and ug on I' are intended in the sense of traces.

We use here and below the fact that functions in BD have a trace in L' (3Q), see,
e.g., [53,2].

The idea of the proof can be explained with a standard one-dimensional exam-
ple (see, e.g., [53]). Minimize fol |ux |dx, subject to fol udx = 1,u(0) = u(1) = 0.
Minimizing sequences converge to u(x) = 1, with energy converging to the limit
value 2 — but, if the integrals are interpreted in the usual way, the limit violates the
boundary condition and its energy is zero. The simplest way to resolve the problem
is to impose boundary conditions not on the inner trace, but on the outer one. In
other words, we extend u to (—38, 1+46), and impose #(x) = Oforx < Oandx > 1.
Then, the minimizing sequence converges to the characteristic function of (0, 1),
which has two singular contributions to the energy at the endpoints. In our case,
two additional difficulties appear: one is that we impose boundary conditions only
on part of the boundary, the other is that the trace of Eu has stronger coercivity
than the deviatoric part, hence the normal and tangential components have to be
treated differently.

We start with compactness.

Lemma 3.14. Let uj, be a sequence in W%(2, R?) such that It (uj, Q) = c. Then,
there is u € U(S2) and a subsequence such that

up — u stronglyin L', Euj — Eu weakly in M,

div up, — div u weakly in L.
Further, if up, = ug on I' C 0%, then the limit u satisfies (u — ug) -v=0onT.

Proof. The existence of a converging subsequence follows from the compactness
result for B D. To prove that the boundary condition is preserved, we observe that
the trace of B D functions satisfies Green’s formula

/(uh ® Vo) Mdx +/ ¢ dEuj, = / b (up @ V)Y dH?
Q Q a0
for any ¢ € C'(Q) (see, e.g., [53, Theorem 1.1]). Taking the trace, we get
/ (up - Vo + ¢ divuy) dx =/ ¢ up-vdH?.
Q aQ
Since u;, — u in L' and divuj, — div u weakly in L?, we obtain, for all such ¢,

¢>uh~vdH2—> ¢u'vd’H2.
a0 a0
By assumption uj, - v = ug - v on I for all /&, and therefore the same holds for u.
O

Now we give a proof of Theorem 3.13.
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Proof of Theorem 3.13. We start from the lower bound. Consider a sequence

uh—>uinL1, up =uponl", lim I(up, Q) =FE < 00.
h—o00

As discussed above, we modify the boundary conditions so that they involve the
outer trace. To do this, we first gxtend ug € H'2(I', R3) to ug € WH2(R3, R3).
For each u, we define u* : QU Q — R3 by

" {u(x) ifx € Q,
u(x)= . ~
up(x) ifx e\ Q.

Ifu € WH2(Q) and satisfies the boundary condition, then u™ € W1’2(~Q U Q). Itis
also clear that since u;, — u in L'(Q) we have u} — u* in LY(Q U Q).
Given a small § > 0, let 25 be an open, bounded set such that

QCQs, '=Qs;No, [QB\RI S8

(such a set can, for example, be defined as the intersection of €2 U Q with a neigh-
borhood of €2). Consider now the sequence / (uz, s) (no boundary conditions are
imposed here). From Theorem 3.3 we get

lim inf 7 (uj;, Q) 2 J (", Q). (3.16)
— 00

Since outside 2 we have uj; = u* = ug € W12, Euj, and Eu* can have singular
contributions only in € and on I'. At the same time, the outer trace on I' of u™*
equals ug. Therefore (3.16) gives

liminf I (up, Q) = Jr(u, Q) +/ W** (Viug) — W (Vug)dx .
h— o0 Qs5\Q

On the other hand, as § — 0 we have

W Vug)dx — 0,
Q5\Q

since Vug € WhZand W(B) < c|B|>. Finally, continuity of the normal component
follows from the compactness result of Lemma 3.14. This concludes the proof of
the lower bound.

We now turn to the upper bound. We follow the argument of ANZELLOTTI &
GIAQUINTA [2]. The main idea is to first modify u so that it takes the full boundary
condition, not only the normal component. This is done by moving the tangential
discontinuity occurring on I' slightly inside the domain. This is the point where the
C?-smoothness of the boundary dS2 is relevant. Let a be such that in the set

Qq = {x € Q:dist(x, Q) < a}

the function x — dist(x, 0L2) is C!, the projection x — Px on the boundary is
well defined and C!, and Vdist(x, 3Q)(x) = v(Px). ANZELLOTTI & GIAQUINTA
have shown (Theorem 1.8 of [2], see also Theorem 5.2 of [3]) that for any boundary
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value u — u with zero normal component, a function ¥ € U (£2) can be found such
that

v = u—ug onl,
o ondQ\ T,

supp ¥ C 4 and Y (x) - Vdist(-, 9RQ2)(x) =0on .

We now set
Nk (x) = max (0, 1 — kdist(x, 0Q2)) and W =u~+ngy.
‘We have

Ewg=Eu+mEY +5 (Vi @y + v @ Vi)
and in particular
divwg =divu + ni divy,

since Vny(x) is parallel to Vdist(x, 9€2), which is orthogonal to v (x).
‘We now claim that, as k — oo,

/ W* (Ve @ v)¥™) dx — / W (1 — ug) @ v)dH? . (3.17)
Q r
To see this, let ¢ be defined as u — ug on I' (as usual, in the sense of traces) and

zero on the rest of 2. By the trace theorem there is a subset £ C (0, a) of full
measure (i.e., |E| = a) such that

f [ (x + bu(x)) — p(x)| dH2(x) — 0 ash—>0, bekE.
Q2

The first integral in (3.17) can be written as
[ v (e vy dx
Q

1/k
2/ dHQ/ W** (k(v(Px) ® ¥ (x + bv(x))¥™) J db,
Q2 0

where J is the suitable Jacobian determinant, which converges uniformly to unity
for small k since the boundary is C2. The argument of W** is traceless, there-
fore W** has linear growth, and by the L! convergence above we can replace
¥ (x + bv(x)) with ¢(x) in its argument, in the limit. This concludes the proof of
(3.17).

At the same time,

/ W** (Eu + nEvy) dx — 0
Q/k
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since they are both summable. It follows that
J (i, Q) = Jr(u, Q)

with wy satisfying the full Dirichlet boundary conditions, i.e., wy = ug on I'. Then,
the proof is concluded as the one of Theorem 3.3. In particular, we have shown there

that each wy can be approximated by a sequence v}(lk) such that
v}(lk) — Wi In L' , I(v,(f),Q) — I(wg, Q), v;(lk) = wi on 082

If we take a diagonal subsequence the proof is concluded. O

4. Nonlocal problem

In this section we extend the analysis to a nonlocal problem which includes a
singular perturbation representing the line energy of dislocations, as the functional
(2.4). This permits us to incorporate a length scale into the problem and therefore
to study size effects, as for example the Hall-Petch dependence on grain size in
polycrystals. We consider a cubic grain of material Q; = (0, L) embedded in an
elastic matrix, on which an average shear y is imposed. For simplicity we focus on
the case where only two slip systems are active, and consider only one scalar com-
ponent of the deformation field. The assumption that the matrix can only deform
elastically is appropriate for a polycrystal since neighboring grains with a different
orientation cannot deform plastically along the considered direction. We seek a
deformation u : Q7 — R and a plastic strain 8? : Q; — R3 which minimize the
free energy

|Vu — BP|>dx + r/ |BP |dx
QL

E(u,p’ o,pn, 7, L,y) =/

QL

+U/ |V Xﬁp|+ﬂ||u_yx1”ill/2(3QL) (41)
QL

subject to the side conditions ,BIP = :I:,Bé7 and ,33p = 0 a.e.. We remark that, at
variance with the previous section, here u is a scalar and 7 a vector. Here and
below we use the shorthand notation

1
/ IV x | = Ef 131 +82)(BY — B + 101 — 82) (B + B3
Q Q
+103(B1 + B + 19:(B] — B (4.2)
where the norms on the right are intended in the sense of measures, i.e., for example

/QI(Bl — N (B] + B = SUP/Q(¢,1 — $2) (B + BY)dx.

The supremum is here taken over all ¢ € C8(Q, [—1, 1]), and the (distributional)
partial derivatives are denoted by d1¢p = ¢ 1 = 9¢/0x;. It is easy to check that
for smooth functions 87 which satisfy the side condition ﬁlp = :I:,Bé7 , ﬁé’ = 0 this
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coincides with the classical interpretation of |V x 87| as the norm of the curl of 7.
We remark, however, that (4.2) does not coincide with the norm of the distributional
curl for generic functions of bounded variation which satisfy the side condition.
Indeed, consider for example the field given by

T la,=1,07  ifx <0.

The distributional curl of A7 vanishes, since B” = V(x; + |x2]), but the norm
defined in (4.2) does not. From the point of view of relaxation, it is easy to approx-
imate A7 with smooth curl-free vector fields, e.g., by mollification, but this is
impossible if the constraint is also considered. An approximation with smooth
vector fields which satisfy the constraint and for which the quantity in (4.2) is con-
tinuous is instead easy. Namely, we first insert a small region where the vector field
vanishes, as for example in

(1,1,07 ifx, > ¢,
B =10 if —e<x)<e,
(1, =1,07 ifxy; <—¢.

Then, we can mollify separately for positive and negative x», still keeping the zero
boundary condition on the plane xo = 0, and finally take a diagonal subsequence.
This shows that the definition (4.2) is appropriate for the curl of a distribution
obtained by relaxation subject to the side condition 8] = £87, B = 0. Physi-
cally, this corresponds to assuming that a thin elastic layer is always present between
regions deformed along the two different slip systems. In other words, dislocations
generated by the two slip systems do not annihilate each other, even if they have
opposite Burgers vector.

In (4.1) a global multiplicative factor representing the typical elastic constant of
the material has been set to unity for simplicity. The material parameter o represents
the line energy of dislocations, or equivalently the surface energy of dislocation
walls, called T'/b in (2.4), and y represents the average shear deformation imposed
on the material. The parameter u represents the relative strength of the matrix
(i.e., of the rest of the material, located in R3 \ €1 ) with respect to the considered
grain. The squared H'/? seminorm on the boundary used here is equivalent to the
squared L2 norm of the optimal continuation of Vi on the complement of Q7 . In
the limit 4 — oo we expect to recover the hard Dirichlet boundary conditions,
namely, u(x) = yx; on 0€2.

By scaling we can eliminate the parameters L and y. Precisely, we set

- 1 ~ 1
u(x) = —u(lLx), BP(x) = =B (Lx),
yL 4
and obtain

.~ o T
E(M, ﬂps o, U, T, L? V) = L3V2E (us ﬂpv y_9 M, ;1 17 1) .
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Fig. 4.1. Idealized phase diagram in the (i, ) plane for r = 0, with all constants set to
unity, as in (4.3).

We now define 6 = o/y L, T = t/y, and study the infimum of the reduced energy
E(w,B’,o,u,7)=E(u, B’ 6,u,t,l1,1)overuand S7. Our main result is that
its scaling behavior is the same as that of

EoG. 1, ®) = min (1,1, T+ 12512, 7 462 4.3)

This shows that four regimes are present, which are discussed in Section 4.2 below
and illustrated, for the simplest case T = 0, in Fig. 4.1. At large ¢ (i.e.,, 6/y L)
no microstructure can form, and the crystal deforms uniformly. If p is large, the
coupling to the matrix is also strong, and this results in a purely elastic regime. If
the coupling is weak, i.e., u is small, the grain decouples from the rest of the crystal,
and does not follow the average deformation. For small ¢ (i.e., o/y L) the grain
deforms plastically, and the macroscopic imposed deformation is realized by form-
ing fine mixtures between regions deformed along the two slip systems. Depending
on the value of the coupling constant u, this can either be a laminar structure or a
branched structure with finer mixtures closer to the boundary. These two patterns,
which are illustrated in Fig. 4.2, have been used in a number of different problems
where a nonconvex bulk energy density with multiple minima is accompanied by
boundary conditions, or forcing terms, which favor some convex combination of
the minima, by a differential condition favoring a certain orientation of the inter-
faces, and by a singular perturbation that penalizes very fine structures. Oscillations
which refine towards the boundary as a possible competitor to uniform oscillations
have been first used in the discussion of branched domains in the intermediate state
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Dislocation Microstructures

(a) (b)

Fig. 4.2. Two different kinds of fine-scale structures may form. (a) An essentially one-
dimensional pattern, known as laminate, minimizes the bulk energy but realizes boundary
conditions only up to a small error. (b) A two-dimensional domain-branching pattern can
accommodate Dirichlet boundary conditions, and still have coarse oscillations in the interior,
at the expense of higher bulk energy in the transition layers.

of type-I superconductors by LANDAU back in 1938 [34, 35]. Mathematically, a
transition between a laminar regime at weak coupling to the outside material and
a branching pattern when the coupling is stronger was first proved in a simplified
model of martensitic phase transitions by KOHN & MULLER in 1992 and 1994 [32,
33], and later refined in [13]. Since then, analogous results have been obtained for
models of uniaxial ferromagnets [10, 11], of blistering in compressed thin films
[29, 7, and references therein], and of flux domain structures in the intermediate
state of type-I superconductor plates [12].

4.1. Energy scaling

Theorem 4.1. There are constants ¢, ¢’ such that, foralloc > 0, u > 0, T 2 0,
L>0vy>0,

cEg (0.1, T) = inf E(u, BP0, u, 7, L, y) = 'Eo(6, p. T)

L3y2
where the infimum is taken over all u and BP which obey the side condition ,Bf =
:I:ﬂé’, ,3; =0ae,0 =0/yL, T=r1/y, and

Eo(G, . ¥) = min (1, o F 4 2512 4 52

Proof. By the scaling mentioned above, itis clearly sufficient to prove the result for
L = y =1, and to work with the reduced energy E. We state the proof separately
for the upper and lower bounds.

Upper bound. We shall prove that the energy is bounded from above by a constant
times each of the four terms entering Ey, and hence also by their minimum. This
requires four different constructions, two of which are trivial. We proceed in order
of increasing complexity.
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The first upper bound corresponds to the purely elastic deformation obtained
by setting S = 0, u(x) = x1. A direct substitution gives E(xl, 0,0,u,7)=1.

The second upper bound corresponds to no deformation at all, i.e., to a decou-
pling of the grain from the matrix. Setting 7 = u = 0, we get E(O, 0,0,u,7)=
cu for some ¢ > 0.

The third construction is the laminate, as illustrated in Fig. 4.2(a). This is essen-
tially the same construction used in the previous section for the local problem. The
difference here is that the boundary conditions need to be satisfied only approxi-
mately, whereas the surface energy needs to be accounted for. Therefore we need
to choose the optimal length scale for the oscillation. Precisely, given a positive
integer n, we set 87 (x) = Vu(x) = (1, 1, 0) if nx; has an odd integer part, and
BP(x) = Vu(x) = (1, —1, 0) else. The first term in E vanishes, the second equals
7+/2 (since |BP| = V/2), and the third equals 2o n (since there are n planar interfaces
of unit area). To estimate the last term, we recall that by a standard interpolation
inequality for any v we have

2
||U||H1/2(3QL) <c ||U||H1(aQL) : ||U||L2(39L) .

Since |u — x| £ 1/n and |Vu| £ 2, setting v = u — x| we see that the squared
H'/? seminorm is controlled by c¢/n, and hence the boundary term is controlled
by cu/n. Combining the four terms we get E < ¢(t + on + p/n), and choosing
n = u'/26=1/2 we get the result. This construction only needs to be done in the
regime 0 < W, hence n > 1, and rounding to an integer only affects the estimate
by a factor. We remark that the period of the laminar pattern is given by

1 (O_)I/Z
l=—-=|— .
n \u

Finally, the fourth upper bound is obtained with a branched construction, as
illustrated in Fig. 4.2(b). This is a more complex construction, and for greater clar-
ity we present it first in two dimensions (i.e., on a section at constant x3 in the
central part of the sample) and then extend it to three dimensions. This construction
is characterized by the fact that it can accommodate a large oscillation period in the
bulk of the sample while reaching the exact boundary conditions, i.e., withu = yx;
on 02y . Therefore the resulting energy bound does not depend on .

The basic building block is the transition from a single oscillation to a dou-
ble oscillation (period-doubling step), as represented in Fig. 4.3(a). Consider for
definiteness a rectangle of width k and height 2k, with the origin in the midpoint
of the left side. The central triangle in Fig. 4.3(b) has (vertical) basis /4 and (hor-
izontal) height k. The plastic deformation takes only the two values (1, +1), and
the elastic field u takes the values given in Fig. 4.3(a) (the third component of 87,
which vanishes by the side condition, is here dropped from the notation). We now
evaluate the energy inside this k x 24 rectangle. The elastic energy is the integral of
|Vu — BP|?. The latter equals (h/k)? per unit area inside the central triangle, and
zero outside, hence the total elastic energy is 43 /2k. The two horizontal interfaces
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Fig. 4.3. Branching construction. (a) Sketch of the transition between a double laminate and
a single one. The value of u is given in each piece where it is affine, and u_ = x| + xp +

h(1 —x1/k), u+ = x1 —x3 + h(1 — x1/k). The dot marks the origin of the chosen axis.
(b) The basic block of size (0, k) x (—h, h) used for the branching construction. The values
give BP in the four regions.

VIV VY
LB

Fig. 4.4. Branching construction, global picture. Three steps of refinement are shown. The
black triangles are the boundary layer where no branching takes place. In the text only the
left half of the construction is discussed explicitly, the rest is symmetric.

have total energy 2 - 2ko. Each of the oblique interfaces has energy controlled by
20 (k + h). The total energy in the rectangle is then controlled by

3

Z—k + 0 (4 + 4k + h)) + hkt/2. (4.4)

Optimization with respect to the horizontal width k gives k = h(h/o)'/?/4, and
(assuming /2 = o) an energy bound on each rectangle of

Erect,2D < Ch3/2(71/2 + 4hkt .

In a second step, the various rectangles are combined together to achieve the branch-
ing pattern represented in Fig. 4.4. At the i-th iteration step the period is given by
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h; = ho2', and there are 1/ h; rectangles like the one in Fig. 4.3(b). The total energy
for the i-th iteration is controlled by

ESD < ch!*6? 4+ dkr

At the left and right boundaries there is a series of triangles where 87 = 0 and u
interpolates between the oscillatory value in the interior and the affine boundary
data. These triangles have basis o given by the smallest period reached by the
branching construction, and height also of order %¢. This first layer has surface
energy controlled by o, and elastic energy controlled by its area, which is of order
hg. Therefore its total energy is

EQ <cthog+o+1).

Summing over all periods, we can estimate the energy of the two-dimensional
branched construction by

N
Epr = EE%) + Z E% <c [ho +o+1t+ (hod)l/ZzN/z] .

The value of N is determined by the length of the sample in the x; direction,

N o3 hs/z

_ _ 0 3i/2 0 3N/Z
1= Zk Zc 2% = 2

The total energy satisfies
Epe < chg+co +co?® +ct.

We finally have to choose kg, which needs to fulfill 9 = o (this was used after
equation (4.4)). The optimal value is clearly iy = o, and gives for the optimal
branching construction the scaling estimates

hi =02 ki = o23/? En < co?P +cr.

This construction is admissible only for small o, i.e., in the regime g < 1, N 2 1.
In the center of the sample the oscillation period scales as o!/3.

Now we generalize to three dimensions. The idea is that for intermediate values
of x3 the above construction applies with no changes, and that for x3 approaching
the upper and lower boundaries the oscillations refine much as for x; approaching
the left and right boundaries. For simplicity, we consider explicitly only the situation
around the origin, i.e., present a construction on (0, 00)3; the other seven corners
of the cube are treated analogously. Note that no refinement is needed approaching
the face xo = 0, since this is parallel to the oscillation direction.

Let [; be the value of x; where the i-th branching step takes place in the two-
dimensional construction, /; = > . _. k ;- We define the regions

j<i

T; = {x : I; < min(x1, x3) < i1}
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Xy

Fig. 4.5. Domains 7; in the (x1, x3) plane in which the three-dimensional branching takes
place.

where branching between period h; and period h; 41 = 2h; takes place (see
Fig. 4.5). Precisely, on the surface min(x1, x3) = [; the field BP oscillates in
X7 on a scale h; between the values (1, 1, 0); analogously u oscillates between
X1 4 x2 4+ ¢ and x; — x2 + ¢ on the same scale, with constants chosen to guarantee
continuity. The same holds for all i.

We now show how to construct the branching step in region 7;. If x3 = xi, the
above construction applies with no changes, and no dependence on x3 is present.
If instead x; = x3, a very similar construction applies. Precisely, the domain is
subdivided in an x-independent way as in Fig. 4.3(b), where now the horizontal
axis represents x3 (and the vertical one still x). The values of 87 in the different
triangles remain the same (with vanishing third component); the same expression
holds for u on the boundary and in the two outer regions. Then, u is defined in
the two triangles by linear interpolation between the values at the corners. Pre-
cisely, we find that the expressions for u_ and u4 in Fig. 4.3(a) are replaced by
u_ = x1+x2+ h(l —x3/k), iy = x;1 — x3 + h(1 — x3/k). The remaining
expressions for u are unchanged. Note that this construction gives a continuous u
on the line x; = x3. The energy is the same as in the two-dimensional case, after
multiplication by the length in the third direction (which is unity), and inclusion
of an additional interface in B” on the surface x; = x3, which gives a negligible
energy contribution of order %;0.

Combining the different pieces, and inserting boundary layers as above, we get
a function u which obeys u(x) = x; on (0, 1)* and has energy controlled by

En <co?P +ecr.

This concludes the proof of the upper bound.

Lower bound. The proof of the lower bound is based on a subdivision of the domain
in small parallelepipeds, and on the rigidity results of Lemmas 4.2 and 4.3 (below)
applied to their sections. We start from the case 7 = 0.
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For any [ < 1/2, inside the square (0, 1)> we can choose at least /=2 /2 squares
with sides of length / and parallel to the lines x| = x2 and x| = —x, respectively.

Denote them by Qf. Let E; be the amount of energy contained in the set Q; x R,
defined by

— P .
= |Vu — ,3 ”LZ(QI % (0, 1))+U||VX,B ||L'(Q§><(O,1))+u’”u xlllH]/Z(Ql %{0,1})

(the L' norm is understood in the sense of (4.2). Due to the superadditivity of the
squared H'/? seminorm, which can be easily checked using the double-integral
representation, we get

[
E;ZEizl—zm’mEi.

Further, the side condition f’ = :i:,Bé’ , ﬂé’ = 0 is satisfied a.e. in each parallelepi-
ped.

We now choose an optimal section of an optimal parallelepiped, i.e., choose i
and x3 so that E; = min; E; and

2
Vu — /Sp”Lz(Q;'X{x}}) +olV x ,Bp||Ll(Q;'><{x3}) S E;,

with the side condition satisfied a.e. in Qf x {x3}.
By Lemma 4.3 there is a function f of the form g(x; 4+ x2) or g(x; — x2) such
that

IE;
lu = Fllziguxpuay = By’ +CT
Combining the Poincaré inequality and the L>-L! embedding we get
e = FlLrcgxion = M = FllLiixrpy + 183Ul x0.1))
< lu— f”L](Q,x{xz}) +1103ull12(0;x(0.1))
12
< lE pe—L
o

since |3u|? < |Vu — BP|?and < 1.
Finally, we use Lemma 4.2 on Q; x {0}. We get

3
e = Fllzguxtop + 1 = X150, wjop Z -

Combined with the previous inequality and the definition of E;, this gives

12
2UE] 2 DR B
o u
i.e.,
E;
Ezl—zicmm(l e lu)
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for any / < 1/2. It only remains to choose the appropriate values of / in the four
regimes. If o 2 min(1, p) we choose ! = 1/2, and get E = ¢ min(1, w). This cov-
ers the two “simple” regimes. In the lamination regime 13 < o < v < 1, we choose
[ =0'"2,712 and get E > o'/?1.'/2. In the branching regime o < min(1, u3),
we choose | = ¢!/3 and get E > ¢%/3. This concludes the proof if T = 0.

Now we prove the result for large 7, then the thesis will follow by interpolation.
As above, we choose a “good” section x3, such that the restriction of the energy to
(0, 1)% x {x3} is as low as on average. Combining the first two terms of the energy
we obtain

IVull L. n2x ey = 1V = BPlL20.1)2x e + 18P L1 0,12 031
<pry B
- T

By the Poincaré inequality there is a constant ¢ € R such that
E

1/2
e = ell o, n2xpep = EV? + -

Now, as above, we use the d3u part of the first term in the energy on (0, l)2 x (0, x3)
to get

E
1/2
lu = ellponexion < 2B+ —,

and from Lemma 4.2 with f = cand/ = 1 we get

2E1/2+£+£zc.
Toou

Equivalently,
E 2 cmin(l, p, 1),

which is the desired bound for large 7. Finally, the thesis follows by averaging
between the two bounds (i.e., from E = min(x, y) and E = min(x, y') we get
E 2 min(x, (y +y)/2)). O

Finally we present the two interpolation lemmas used in the proof.

Lemma 4.2. There is a constant ¢ > 0 such that foranyu : Q; - R, f : R — R,
where Q) is a square of side [, the following inequality holds:

luCer, x2) = £ 1+ x2) 1Ly + Nuxr, x2) = x1ll31 g, Z €l
The same holds if f(x1 + x2) is replaced by f(x1 — x2).

Proof. By scaling i(x) = [u(x/I), and f(x) = [f(x/]), it is clearly sufficient
to prove the statement for / = 1. We proceed by contradiction. If the thesis were
false, there would be sequences u; and f; such thatu; — f; — 0in L'(Q)), and
uj — x1in H'2(Qy) and hence u; — ¢; — x1 in L'(Q1), for some constants c;.
But then, fj(x +x2) — ¢; — x; in L!(Q1), a contradiction. O
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Lemma 4.3. Let Q; = {|x; £ x| < l/ﬁ} be a square of side l, and consider
functions u : Q; — R and BP : Q; — R2, with ,Bf’ = iﬂf a.e.. Then, there is
f 1 (=1/v2,1/v2) — R? such that
min (||u(x1, x2) = fx1 +x2) g1, lulxr, x2) — fx1 — x2)||L1(Ql))
< PIIVu = B 20y + IV % B”lIL1(g) -

The last term is understood in the sense of (4.2).

Proof. By the same scaling as above, it is sufficient to prove the thesis for / = 1.
Let (&, ) be coordinates rotated by 45 degrees with respect to (x1, x7), such that the
domain Q; becomes Q = {0 < &, n < 1}. In these coordinates, the side condition
requires that at a.e. point either ' = (8] + BYY/N2 or B = (B — BY)/2
vanishes. We define

0® = {g € (0. 1) such that B (&, 1) # 0 for ae. 7 € (0, 1)} ,

0 = {n € (0, 1) such that B2 (¢, 1) # O fora.e. & € (0, 1)} ,

and o = 0@ x o™ C (0, 1)2. These definitions ensure that ﬂé’ # (0 almost

everywhere on w, and the same for ;3,1,” . Since by the side condition for almost every
point of Q at least one of ﬂg and ﬂf; vanishes, the set w is a null set (with respect
to the two-dimensional Lebesgue measure), and hence at least one of the two sets
»® and o™ has vanishing one-dimensional measure. Assume for concreteness
that 0®) is a null set. Then, fora.e. £ € (0, 1) thereis aset8(&) C (0, 1) of positive
measure such that ,BSP = 0on {£} x (). It follows that, for a.e. n € (0, 1),

1
Bl & )| < /O dn'|, 80|

and hence, integrating first with respect to  and then with respect to &,

/|ﬂ§<s,n>|§/ |9y L -
0 0

In these coordinates the definition (4.2) reads |V x 7| = |9, ﬂg | + 0¢ ,B,f |. There-
fore

/ |0 u| §/ |3gu—ﬂ§|+/ 181 < IIVu—ﬂplle(Q)+/ IV x BP|.
Q Q Q Q

Let f(n) = u(0, n). Then

/|u<s,n>—f<n>|§f e
0 0

and the proof is concluded. In the other case, i.e., if @™ is a null set, we get the
same with f(§) = u(£,0). O
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4.2. Discussion of the phase diagram

The estimate of the energy (4.3) shows that the yield strength t only enters
through special combinations, namely,

T+ ul2512 and T4+623.
Both expressions have a very simple interpretation. Indeed, let/ be the length scale
of the microstructure, [ = ¢/ ,ul/ 2 in the first case and [ = &!/3 in the second one

(see constructions above). Then, both expressions can be written in the common
form

T+

qul

The same relation holds in unscaled variables, if the appropriate expression for the
unscaled / is used. This corresponds exactly to the scaling argument proposed by
AUBRY & ORTIZ [4, equation (5.4)], based on which the dislocation line energy
o increases the effective yield strength of a material T by an amount o//. In the
following we shall focus on the geometric effects and for simplicity assume 7 = 0.

The phase diagram depicted in Fig. 4.1 is degenerate, in that all four phases
meet at a point. This is merely a consequence of the fact that all constants have
been set to unity. A more realistic model can be obtained by evaluating the upper
bounds with appropriate constants. Whereas this procedure is not rigorous, and only
provides upper bounds on the constants, it constitutes at a heuristic level a natural
way to lift the degeneracy. Simple calculations show that, of the four constants, the
one in the branching regime is the largest. Assume, for definiteness, that it is 50%
larger than the others. Then we would estimate the energy with

3
Ei(o, £, 0) = min (1, ”w, ul/zol/z, 502/3> . 4.5)

Note that the statement of Theorem 4.1 holds also if Ej is replaced with E; there,
since they have the same scaling behavior. The phase diagram resulting from E
is illustrated in Fig. 4.6 (with the assumed factor 3/2, if the ratio is bigger, the
laminate construction gains additional weight at the expense of the branching one).

Consider now a typical monotonic loading experiment. The material parameters
o, b, and L are fixed, whereas the strain y is increased monotonically starting from
zero. This means that 6 = o/y L decreases, starting from infinity, hence that we
move down vertically in the phase diagram of Fig. 4.6, as indicated by the arrow.
A different behavior is expected depending on the precise value of . To decide
which is appropriate for a realistic experimental situation, the following two obser-
vations are helpful: (i) u represents the relative strength of the other grains, hence
is expected to be of order unity; (ii) for very small y (i.e., very large &) a uniform
elastic deformation is expected, and therefore the appropriate phase is the elastic
one, not the decoupled one. Hence the first phase transition encountered is the one
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o
Decoupl. Elastic
u 1
Lam.
Branching
‘u 1 /261 /2 0-2 3
u

Fig. 4.6. Phase diagram in the (u, &) plane, according to (4.5). The arrow denotes the
direction of increasing deformation y .

between elastic and laminate, which occurs at 6 = 1. After that, the energy per
unit volume is given by

Y321 /25172

E -
3w =

L3

hence the strain, obtained by taking the derivative of the energy per unit volume
with respect to y, scales in the lamination regime as (y uo/L)'/2. If the strain y is
increased further, we expect that the branching regime will eventually be reached,
where the strain scales as y /3 (o /L)%/3.

From the point of view of the modeling of a polycrystalline material, the depen-
dence of the stress on L corresponds to the dependence of the macroscopic stress
on grain size. Therefore our model predicts that in polycrystals the stress beyond
the elastic-to-plastic transition scales as the inverse square root of the grain size.
This fact corresponds exactly to the experimentally known Hall-Petch law [20, 44].
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