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Abstract

Consider the equations of Navier-Stokes on R
n with initial data U0 of the form

U0(x) = u0(x)−Mx, where M is an n× n matrix with constant real entries and
u0 ∈ L

p
σ (R

n). It is shown that under these assumptions the equations of Navier-
Stokes admit a unique local solution in Lpσ (Rn). Moreover, if ‖etM‖ � 1 for all
t � 0, then this mild solution is even analytic in x. This is surprising since the
underlying semigroup of Ornstein-Uhlenbeck type is not analytic, in contrast to the
Stokes semigroup.

1. Introduction

In this paper we consider the flow of an incompressible, viscous fluid in R
n for

initial data which grow linearly at infinity. The equations governing the flow are
the equations of Navier-Stokes, i.e.,

∂tU −�U + U · ∇U + ∇P = 0 in R
n×(0, T ),

∇ · U = 0 in R
n×(0, T ), (1.1)

U(0) = U0 with ∇ · U0 = 0 in R
n.

Here, U = (U1, . . . , Un) and P represent the unknown velocity and the unknown
pressure of the fluid and U0 is the given initial velocity. There is a vast literature on
existence of solutions of (1.1) in R

n, see, e.g., [1, 5–7, 9, 13, 14, 21, 22, 24, 28–30].
All these results assume that the initial data decay as |x| → ∞. On the other hand,
Okamoto [27] showed that for certain concrete flow problems there exist many
exact solutions u which have the property that u grows linearly as |x| → ∞.

It is the aim of this paper to construct mild solutions to the equations of Navier-
Stokes in Lp(Rn) for the case where the initial data may grow as Mx, where M
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is a constant n× n matrix. We hence assume throughout this paper that the initial
velocity is of the form

U0(x) = u0(x)−Mx, x ∈ R
n, (1.2)

where u0 ∈ Lp(Rn)n is a function satisfying ∇ · u0 = 0 and M = (mij )1�i,j�n
denotes an n×n matrix with constant real coefficients.

In the case M = 0, it is well known that there exists a local smooth solu-
tion to (1.1) provided the initial data U0 belongs to Lpσ (Rn) and p � n (see,
e.g., the above list of articles). As usual Lpσ (Rn) denotes the closure of the set
{u ∈ C∞

c (R
n), div u = 0} with respect to the || · ||p norm.

If M �= 0, the situation is more complicated. Notice first that if trM = 0,
then by the substitution u := U +Mx the pair (U, P ) satisfies (1.1) if and only if
(u, p) satisfies

∂tu−�u+ u · ∇u−Mx · ∇u−Mu+ ∇p = 0 in R
n × (0, T ),

∇ · u = 0 in R
n × (0, T ), (1.3)

u(0) = u0 with ∇ · u0 = 0 in R
n,

where p has to be defined in a suitable way; see the beginning of Section 4.
In the particular case where M describes pure rotation, i.e., M = R and R

denotes the rotation matrix, the problem (1.3) was investigated by Hishida and by
Babin, Mahalov and Nicolaenko. Indeed, Hishida constructed in [17–19] a local
mild solution to (1.3) in L2 provided the initial data u0 belongs to a certain frac-
tional power space. Babin, Mahalov & Nicolaenko [3, 4] proved the existence
of a local mild solution to (1.3) provided u0 is in Lpσ (Rn) or u0 is a periodic func-
tion satisfying certain properties. We recall that these results were proved for the
particular case of Mx = ω × x, where ω = (1, 0, 0) and x ∈ R

n.
An interesting example of M is M = R + J where

R =



0 −a 0
a 0 0
0 0 0


 and J =




−b 0 0
0 −b 0
0 0 2b




for a, b ∈ R. Note that R corresponds to pure rotation and describes the Coriolis
force, see [17, 4]. On the other hand, following Majda [23], M = J for b > 0
corresponds to the drain along the x1- and x2-axes and to the jet along the x3-axis
of the fluid. He showed that U = Mx is an exact solution of (1.1) provided that
the pressure is chosen appropriately. Giga & Kambe [11] investigated the axisym-
metric irrotational flow and studied the stability of the vortex, when the velocity
field of the fluid U is expressed as U = Mx + V , where V is a two-dimensional
velocity field.

In [31], Sawada proved the existence of a local mild solution of (1.3), still for
M = R, provided u0 belongs to the Besov space Ḃ0∞,1. It seems to be an open
problem to prove the existence of a local mild solution in this space for arbitrary
M .



The Navier-Stokes Equations in R
n with Linearly Growing Initial Data 271

2. Main results

In this section we state the main results of this paper. To this end, recall that
M denotes an n × n matrix with real coefficients. Let u0 ∈ L

p
σ (R

n) for some p
satisfying 1 < p < ∞. We consider the equation

∂tu−�u+ u · ∇u−Mx · ∇u−Mu+ ∇p = 0 in R
n × (0, T ),

∇ · u = 0 in R
n × (0, T ), (2.1)

u(0) = u0 with ∇ · u0 = 0 in R
n

and define the operator A in Lpσ (Rn)n as

Au := −�u−Mx · ∇u+Mu (2.2)

with domain D(A) := {u ∈ W 2,p(Rn)n ∩ Lpσ (Rn)n;Mx · ∇u ∈ Lp(Rn)n}.
We prove in the following section that −A generates aC0-semigroup (e−tA)t�0

on Lpσ (Rn)
n
, which is not analytic.

Applying the Helmholtz projection P to (2.1) we may rewrite (2.1) as

u′(t)+ Au+ Pu · ∇u− 2PMu = 0,

u(0) = u0. (2.3)

In the given situation of R
n, the Helmholtz projection P can be expressed explicitly

by P := (δij + RiRj )1�i,j�n, where δij denotes the Kronecker’s delta, and Ri is
the i-th Riesz transform on R

n defined by Ri := ∂i(−�)−1/2, i = 1, . . . , n. Note
thatA and P commute, since ∇ ·Au = 0 if ∇ ·u = 0. For T > 0 we call a function
u ∈ C([0, T );Lpσ (Rn)) a mild solution of (2.3) if u satisfies the integral equation

u(t) = e−tAu0 −
∫ t

0
e−(t−s)APu(s) · ∇u(s)ds

+2
∫ t

0
e−(t−s)APMu(s)ds, t > 0, (2.4)

and u(0) = u0.
We now state the local existence and uniqueness result for mild solutions of

(2.3) in Lp spaces. Note that the underlying semigroup (e−tA)t�0 is not analytic;
hence it is a priori not obvious that the classical iteration procedure due to Kato is
applicable in the given situation.

Theorem 2.1 (Local Existence and Uniqueness). Let n � 2, p ∈ [n,∞) and
q ∈ [p,∞]. Let M be an n × n matrix with real coefficients and assume that
u0 ∈ Lpσ (Rn). Then there exist T0 > 0 and a unique mild solution u of (2.3) such
that

t
n
2 (

1
p

− 1
q
)
u ∈ C([0, T0);Lqσ (Rn)), (2.5)

t
n
2 (

1
p

− 1
q
)+ 1

2 ∇u ∈ C([0, T0);Lq(Rn)). (2.6)
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Remark 2.2. (a) The functions defined in (2.5) and (2.6) are continuous in t ,
moreover, they vanish at t = 0 provided q �= p in (2.5).

(b) In the case p = ∞, it can also be shown that there exists a unique u ∈
Cw([0, T0);L∞

σ (R
n)) satisfying (2.4) provided u0 ∈ L∞

σ (R
n).

We now give a corollary of the above Theorem 2.1 concerning higher-order
regularity of the mild solution. Observe first that it seems not to be known whether
the above mild solution to (2.3) is aC∞-function. However, we may deduce certain
regularity properties of u as long as we couple the size of the time interval with the
order of differentiation.

Corollary 2.3. Assume that n,m ∈ N with n,m � 2. Let u0 ∈ Lnσ (R
n) and

q ∈ [n,∞]. Denote by u the mild solution of (2.3). Then there exist constants
T1(m) ∈ (0, T0) satisfying T1(m) � C1m

−m for some C1 > 0 and C2 > 0 such
that

‖∇mu(t)‖q � C2t
− n

2 (
1
n
− 1
q
)−m

2 , t ∈ (0, T1(m)]. (2.7)

The estimates given in Proposition 3.3 below show that in general the linear
term of (2.3) grows exponentially. Hence it seems to be difficult to obtain results
on global existence of mild solutions to (2.3).

Considering questions analogous to those above for exterior domains� instead
of R

n, leads us to interesting applications such as spin-coating of fluids. This will
be the content of a forthcoming publication; in [16] we prove that −A generates a
C0-semigroup on Lp(�) for 1 < p < ∞.

We now turn to regularity questions of the mild solution obtained above. The
estimates for higher-order derivatives given in the following result imply that the
mild solution to (2.3) is analytic in the space variable x, see Corollary 2.6 below.

Theorem 2.4. Let n � 2, u0 ∈ Lnσ (Rn), r ∈ (n,∞) and q ∈ [n,∞]. Assume that
‖etM‖ � 1 for all t � 0. Let u be the local mild solution of (2.1) for some T > 0.
Assume further that there exist constants M1,M2 � 0 such that

sup
0<t<T

‖u(t)‖n � M1 < ∞ and sup
0<t<T

t
n
2 (

1
n
− 1
r
)‖u(t)‖r � M2 < ∞.

Then there exist constants K1 and K2 such that

‖∇mu(t)‖q � K1(K2m)
mt

−m
2 − n

2 (
1
n
− 1
q
)
, t ∈ (0, T ), m ∈ N0. (2.8)

Remark 2.5. Suppose that M1 and M2 do not depend on T . Then K1 and K2 do
not depend on T either and the estimate (2.8) yields estimates for higher-order
derivatives of mild solutions in the class C([0, T );Lnσ (Rn))∩C((0, T );Lrσ (Rn)).

It follows from the above Theorem 2.4 that the mild solutionu of (2.3) is analytic
in x. More precisely, we have the following estimate on the radius of analyticity
of u.
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Corollary 2.6. Let u be a mild solution of (2.3) satisfying the assumptions of The-
orem 2.4. Then u is analytic in x. Moreover, there exists a constant C > 0 such
that the radius ρ(t) of analyticity is given by

ρ(t) � lim sup
m→∞

(‖∇mu(t)‖∞
m!

)−1/m

� C
√
t .

The proof of the above results relies heavily on certain smoothing properties of
the underlying semigroup (e−tA)t�0. It should be noted that – due to the unbounded
coefficient in the drift term – the underlying semigroup (e−tA)t�0 is not analytic.
Hence estimates for ‖∇e−tA‖ do not follow automatically as in the situation of the
classical Stokes semigroup from the theory of semigroups. We hence have to give
explicit proofs for decay estimates for (e−tA)t�0; this will be done in Section 3.

3. Estimates for the semigroup e−tA

Let M be an n× n matrix with constant real entries. We define the realization
of the operator

Lu(x) := −�u(x)− < Mx,∇u(x) >, x ∈ R
n, (3.1)

in Lp(Rn) as follows. Set

Lu := Lu,
D(L) := {u ∈ W 2,p(Rn);< Mx,∇u >∈ Lp(Rn)}.

Then the following result on the Ornstein-Uhlenbeck semigroup was proved by
Metafune, Pallara & Priola [25] and by Metafune, Prüss, Rhandi &
Schnaubelt [26].

Proposition 3.1. Let 1 < p < ∞. Then the operator −L generates a C0-semi-

group (e−tL)t�0 on Lp(Rn) satisfying ‖e−tL‖ � e
− t
p
trM for all t � 0. Moreover,

the semigroup (e−tL)t�0 is given by

e−tLf (x) := 1

(4π)n/2(detQt)1/2

∫
Rn
f (etMx − y)

×e− 1
4 (Q

−1
t y,y)dy, x ∈ R

n, t > 0,

where Qt for t > 0 is given by Qt := ∫ t
0 e

sMesM
T
ds.

Remark 3.2. (a) It is a well-known fact that the semigroup (e−tL)t�0 is not ana-
lytic.

(b) By Young’s inequality, the family (e−tL)t�0 is also a semigroup on L∞(Rn)
which, however, is not strongly continuous.
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By the above proposition, the semigroup (e−tL)t�0 acts on the space Lp(Rn).
For the iteration scheme described in Section 4, it is however essential that the
semigroup maps an Lp-function u with ∇ · u = 0 into the space of Lp-functions
which are divergence free. To this end, we introduce the operator A by

Au := DLu+Mu,

where u = (u1, . . . , un) ∈ Lp(Rn)n andDL is the n×n diagonal matrix operator
with entries L. Observe that

∇ · {−Mx · ∇u+Mu} = 0 provided ∇ · u = 0.

Hence we define the realization of A of A in Lpσ (Rn)n as

Au := Au,
D(A) := D(L)n ∩ Lpσ (Rn)n (3.2)

and by standard perturbation theory it follows that −A generates a C0-semigroup
on Lpσ (Rn)n. Indeed, we have the following lemma.

Lemma 3.3. The operator −A generates a C0-semigroup on Lpσ (Rn)n which is
given by

(e−tAu)(x) := 1

(4π)n/2(detQt)1/2
e−tM

∫
Rn
u(etMx − y)

×e− 1
4 (Q

−1
t y,y)dy, x ∈ R

n. (3.3)

Note that the semigroup (e−tA)t�0 is not analytic. This is due to the fact that
(e−tL)t�0 is not analytic. In order to simplify our notation, we do not distinguish in
the following between the spaces Lpσ (Rn) and Lpσ (Rn)n. Notice also that as before
(e−tA)t�0 extends to a semigroup on L∞(Rn) which is not strongly continuous.

We now turn to (Lp–Lq )-smoothing properties for the semigroup (e−tL)t�0 as
well as gradient estimates for e−tA. Note that due to the non-analyticity of (e−tA)t�0,
gradient estimates for e−tA do not follow from the general theory of semigroups.
Notice also that in the special case where M = Id, (Lp–Lq )-smoothing estimates
as well as gradient estimates for e−tA were obtain by Gallay & Wayne [8].

We introduce the following condition on the matrixM: assume that there exists
a constant C > 0 such that

‖e−tM‖ � C for all t > 0. (3.4)

We note that the above condition is satisfied if and only if Reλ � 0 for all eigen-
values λ of M and the algebraic and geometric multiplicities coincide for those
eigenvalues λ which satisfy Reλ = 0.

Since Qt = ∫ t
0 e

sMesM
T
ds is symmetric and positive definite for all t > 0,

condition (3.4) implies that that there exists a constant C > 0 such that

detQt � Ctn, t > 0. (3.5)

We start with the following result.
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Proposition 3.4. Let 1 < p < ∞ and p � q � ∞.

(a) Let T > 0. Then there exists a constant C > 0 such that

‖e−tAf ‖q � Ct
− n

2 (
1
p

− 1
q
)‖f ‖p, 0 < t < T, (3.6)

‖∇e−tAf ‖p � Ct−
1
2 ‖f ‖p, 0 < t < T . (3.7)

(b) Assume in addition that (3.4) holds. Then there exists a constant C > 0 such
that

‖e−tAf ‖q � Ct
− n

2 (
1
p

− 1
q
)‖f ‖p, t > 0, (3.8)

‖∇e−tAf ‖p � Ct−
1
2 ‖f ‖p, t > 0. (3.9)

(c) Moreover, for 1 < p < q � ∞ and f ∈ Lp(Rn)n,

t
n
2 (

1
p

− 1
q
)‖e−tAf ‖q → 0 as t → 0, (3.10)

t
1
2 ‖∇e−tAf ‖p → 0 as t → 0. (3.11)

Proof. We start by showing (3.8). Notice first that by (3.5) there exists a constant
C > 0 such that detQt � Ctn for t > 0. By Young’s inequality,

‖e−tAf ‖q � 1

(4π)n/2(detQt)1/2
‖e−tM‖

( ∫
Rn
e−

r
4 (Q

−1
t y,y)dy

)1/r‖f (etM ·)‖p,

where r ∈ (1,∞) with 1/q = 1/r + 1/p − 1. Note further that ‖f (etM ·)‖p =
e
−t trM

p ‖f ‖p. By the change of variables y = Q
1/2
t z we obtain

( ∫
Rn
e−

r
4 (Q

−1
t y,y)dy

)1/r =
( ∫

Rn
e−

r|z|2
4 (detQt)

1/2dz
)1/r

� Ceωt t
n
2 (1− 1

p
+ 1
q
)
, t > 0

for some constant C > 0. We thus proved (3.8).
In order to prove the gradient estimates (3.9), we verify that

∇e−tAf (x)
= 1

(4π)n/2(detQt)1/2
e−tM

∫
Rn
f (etMx − y)∇ye− 1

4 (Q
−1
t y,y)dy

= 1

(4π)n/2(detQt)1/2
e−tM

∫
Rn
f (etMx − y)(−1

2
)Q−1

t ye−
1
4 (Q

−1
t y,y)dy.

Similarly as above we obtain

‖∇e−tAf ‖p � 1

(4π)n/2
‖e−tM‖1

2

∫
Rn

‖Q−1/2
t ‖|y|e− 1

4 (Q
−1
t y,y)dy‖f (etM ·)‖p

� Ct−1/2‖f ‖p
for some constant C > 0. Here we used the fact that ‖Q−1

t ‖ � C
t

for t > 0 and
some C > 0.
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Assertions (3.6) and (3.7) are proved in a similar way.
In order to prove (3.10) we note first that, without loss of generality, we may

assume q < ∞. Let g ∈ C∞
c (R

n) ⊂ Lp(Rn) ∩ Lq(Rn) and t < 1. The triangle
inequality and (3.8) imply that there exists a constant C > 0 such that

t
n
2 (

1
p

− 1
q
)‖e−tAf ‖q � t

n
2 (

1
p

− 1
q
)‖e−tAf − e−tAg‖q + t

n
2 (

1
p

− 1
q
)‖e−tAg‖q

� C‖f − g‖p + Ct
n
2 (

1
p

− 1
q
)‖g‖q → 0,

by sending first t → 0 and then approximating f by g. The prove of (3.11) follows
the above lines and is therefore omitted. ��

The following estimates for higher-order derivatives of semigroup, i.e., for
∇me−tAf , are very useful in Section 4 where we consider smoothing properties of
mild solutions of the Navier-Stokes equations. The main difficulty is again as in the
proof of Proposition 3.4 that the semigroup e−tA and the derivatives in ∇ do not,
in general, commute. Nevertheless, we obtain estimates similar to those which are
known for the classical Stokes operator.

Lemma 3.5. Let 1 < p < ∞ and p � q � ∞. Then there exist constants
C1, C2, C3 > 0, ω1, ω2, ω3, ω4 ∈ R such that

‖∇me−tAf ‖q � C1e
(ω1+ω2m)t t

− n
2 (

1
p

− 1
q
)‖∇mf ‖p, t > 0,m ∈ N, (3.12)

for f ∈ Wm,p(Rn) and

‖∇me−tAf ‖q � C2(C3m)
m/2e(ω3+ω4m)t t

− n
2 (

1
p

− 1
q
)−m

2 ‖f ‖p, t > 0,m ∈ N

(3.13)

for f ∈ Lp(Rn).
Proof. Consider first the case p = q. Since ‖etM‖ = ‖etMT ‖ � Ceωt for all t � 0
and some constants C > 0, ω2 ∈ R, it follows that

‖∇me−tAf ‖p � ‖etM‖m‖e−tA∇mf ‖p � Ceω2mteω1t‖∇mf ‖p (3.14)

for some ω1 ∈ R. The case p < q follows by combining (3.14) for p = q with
(3.8). This shows assertion (3.12).

In order to prove (3.13), we write

‖∇me−tAf ‖q = ‖∇e− t
2mAe(m−1)tM∇m−1e−(1− 1

2m )tAf ‖q
� C

( t

2m

)−1/2
e
ωt
2mCeω(m−1)t‖∇m−1e−(1− 1

2m )tAf ‖q .

Iterating this procedure, we see that there exist constant C > 0, ω3, ω4 ∈ R such
that

‖∇me−tAf ‖q � Cmmm/2eω4mteω3t t−m/2‖e− t
2Af ‖q .

Applying (3.8) we finally obtain (3.13). ��
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Remark 3.6. The assertion (3.12) holds true with ω2 = 0 provided ‖etM‖ � 1 for
all t > 0.

The following estimate on ‖∇e−tAP‖ will be of central importance in the proof
of Corollary 2.6.

Lemma 3.7. Let 1 � p � ∞ and let A and P as above. Then there exist constants
Cp > 0, w ∈ R such that

‖∇e−tAP‖L(Lp(Rn)) � Cp

t1/2
ewt , t > 0.

We remark that this estimate was shown in [10] for the case A = −�.

Proof. Denote by Mp(R
n) the space of all Fourier multipliers for Lp(Rn); see,

e.g., the monographs [32] or [2]. Given a ∈ Mp(R
n), define at by at (ξ) :=

a(etMξ) where t > 0 and ξ ∈ R
n. Then at ∈ Mp(R

n) for all t > 0 and
‖at‖Mp(Rn) = ‖a‖ for all t > 0. This follows from the fact that

F−1(atF) = J−1
t F−1aFJt ,

where Jt is the isometry (Jtf )(x) = f (etMx)e
t
p
trM on Lp(Rn) and F denotes the

Fourier transform. Thus we have

‖∇e−tAP‖L(Lp(Rn)) = ewt‖Q−1/2
t ‖‖a‖Mp(Rn),

where

a(ξ) := ξi
ξj

|ξ |
ξk

|ξ |e
− −|ξ |2

4 , ξ ∈ R
n

for some i, j, k ∈ {1, . . . , n}. Now a ∈ Mp(R
n) for all p satisfying 1 � p � ∞

by Proposition 8.2.3 and Lemma 8.2.2 of [2]. ��
After these preparations, we are now in the position to show that (2.3) admits a

local mild solution and to investigate its properties.

4. Mild solutions of the Navier-Stokes equations

For a given matrixM , we denote byMsym andMssym the symmetric and skew-
symmetric part of M , respectively, i.e.

Msym := 1
2 (M +MT ) and Mssym := 1

2 (M −MT ).

Here MT denotes the transposed matrix of M .
Setting u := U +Mx, we see that (U, P ) is a solution of (1.1) if and only if

u satisfies (1.3), where p is defined by p(x, t) := P(x, t) − (�x, x), and � :=
1
2 ((M

sym)2 + (Mssym)2). We thus consider in the following, (1.3) and its abstract
formulation in (2.3).
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Proof of Theorem 2.1. Let n � 2 and u0 ∈ Lnσ (R
n). For j � 1 and t > 0, we

define functions uj+1 by

uj+1(t) := e−tAu0 −
∫ t

0
e−(t−s)APuj (s) · ∇uj (s)ds + 2

∫ t

0
e−(t−s)APuj (s)ds

(4.1)

provided the above integrals exist and where u1(t) := e−tAu0. Since (e−tA)t�0
acts on Lpσ (Rn) it follows from the definition of the Helmholtz projection that the
functions uj are divergence-free for all t > 0 and all j .

For T ∈ (0, 1] and δ ∈ (0, 1), we define

A0 := sup
0<t�T

t
1−δ

2 ‖e−tAu0‖n/δ and A′
0 := sup

0<t�T
t

1
2 ‖∇e−tAu0‖n,

as well as Aj := Aj(T ) and A′
j := A′

j (T ), where

Aj(T ) := sup
0<t�T

t
1−δ

2 ‖uj (t)‖n/δ
A′
j (T ) := sup

0<t�T
t1/2‖∇uj (t)‖n



j � 1.

We thus obtain the following from (4.1), the (Lp–Lq )-smoothing of the semigroup,
and the boundedness of P from Lp(Rn) into Lpσ (Rn):

‖uj+1(t)‖n/δ � ‖et�u0‖n/δ +
∫ t

0
‖e−(t−s)APuj (s) · ∇uj (s)‖n/δds

+2
∫ t

0
‖e−(t−s)APMuj(s)‖n/δds

� t−
1−δ

2 A0 + C

∫ t

0
(t − s)−

n
2 (

1
r
− δ
n
)‖uj (s) · ∇uj (s)‖rds

+C
∫ t

0
‖uj (s)‖n/δds,

where r = n
1+δ . In order to estimate the second term on the right-hand side of the

last inequality, we now apply Hölder’s inequality to conclude that

‖uj (s) · ∇uj (s)‖r � ‖uj (s)‖n/δ‖∇uj (s)‖n � AjA
′
j s

− 1−δ
2 − 1

2 .

This implies

‖uj+1(t)‖n/δ � t−
1−δ

2 A0 + CAjA
′
j

∫ t

0
(t − s)−

1
2 s−1+ δ

2 ds + CAj

∫ t

0
s−

1−δ
2 ds.

Multiplying with t
1−δ

2 and taking sup0<t�T on both sides, we obtain

Aj+1 � A0 + C1AjA
′
j + C2TAj (4.2)

with some positive constants C1, C2 independent of j and T .
Similarly, applying ∇ to (4.1) and estimating it in the Ln norm, by (3.9) we

obtain
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A′
j+1 � A′

0 + C3AjA
′
j + C4TAj (4.3)

with some positive constantsC3 andC4. The estimates (3.10) and (3.11) imply that
for any λ > 0, there exists T̃0 > 0 such that A0, A

′
0 � λ for all T � T̃0. More

precisely, we may choose T̃0 � min(1, 1
3C2
, 1

3C4
) provided λ � min( 1

9C1
, 1

9C3
).

Therefore, we obtain bounds for Aj(T ) and A′
j (T ) for any T � T̃0 uniformly in j

provided that T̃0 is small enough.
Using the uniform bounds of Aj and A′

j we just obtained, it follows that

t
1
2 − n

2q ‖uj (t)‖q as well as t1− n
2q ‖∇uj (t)‖q are bounded for q ∈ [n,∞), t � T̃0 and

all j ∈ N. The continuity of the above functions follows from similar calculations
and (3.10).

We finally derive estimates for the differences uj+1 − uj . Indeed, we now put

Lj (T ) := sup
0<t�T

t
1−δ

2 ‖uj+1(t)− uj (t)‖n/δ
L′
j (T ) := sup

0<t�T
t1/2‖∇uj+1(t)− ∇uj (t)‖n



j � 1.

Similarly as before, we have for all j � 1,

Lj (T ) � C5λ(Lj−1 + L′
j−1)+ C6T Lj−1,

L′
j (T ) � C7λ(Lj−1 + L′

j−1)+ C8T Lj−1

with some positive constants C5, C6, C7 and C8. We now choose T0 � T̃0 small
enough so that T0 � min( 1

3C6
, 1

3C8
) provided 3(C5 + C7)λ � 1. Hence we have

(Lj + L′
j )/(Lj−1 + L′

j−1) � 1/2 for all j and T � T0. This implies that Lj and
L′
j tend to zero as j → ∞. It thus follows that the above sequences are Cauchy

sequences and we conclude that there are unique limit functions

t
1
2 − n

2q u(t) ∈ C([0, T0];Lq), t
1− n

2q v(t) ∈ C([0, T0];Lq),
of the sequences (t

1
2 − n

2q uj (t))j�1 and (t1− n
2q ∇uj (t))j�1. Finally, note that v(t) =

t1/2∇u(t) and that u is a mild solution of (2.3) on [0, T0].
Uniqueness of mild solutions follows as in [12] from Gronwall’s inequality.

This completes the proof of Theorem 2.1. ��
Proof of Corollary 2.3. The proof of Corollary 2.3 essentially follows the same
lines as above. In fact, in order to prove the assertion we replace the estimates for
∇e−tAf given in Proposition 3.3 by the estimates for ∇me−tAf given in Lemma
3.4. ��

We now turn to the proof of Theorem 2.4. In the situation of the classical Stokes
operator, i.e., M = 0, it was recently proved by Giga & Sawada [15] that mild
solutions to (2.3) are analytic in x. The following proof is a modification of that
proof to this situation. Note, however, that in contrast to the heat semigroup the
semigroup (e−tA)t�0 is not analytic. On the other hand, the smoothing properties of
(e−tA)t�0 given in Proposition 3.3 and Lemma 3.4 allow us to follow the strategy
of [15].
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Proof of Theorem 2.4. We start by proving the assertion under the additional
assumption that the mild solution of (2.3) is already smooth. More precisely, we
prove first the following result. ��
Proposition 4.1. Suppose that the assumptions of Theorem 2.4 are satisfied.
Assume furthermore that

∂αx u ∈ C((0, T );Lq(Rn)) (4.4)

for all q ∈ [n,∞] and all α ∈ N
n
0 . Then, given δ ∈ ( 1

2 , 1], there exist constants
K1 > 0,K2 > 0 (depending only on n, r , M , M1, M2, T and δ) such that

‖∇mu(t)‖q � K1(K2m)
m−δt−

m
2 − n

2 (
1
n
− 1
q
)
, t ∈ (0, T ],m ∈ N0 (4.5)

for all q ∈ [n,∞].
Proof. We use an induction argument with respect tom. We may argue that ∇mu is
continuous up to t = 0 and has a value in Lq(Rn) by considering u((e−tA)t�0) for
(e−tA)t�0 > 0 as initial data and sending (e−tA)t�0 → 0. To this end, let k0 � 2
(depending only on n and M). Then (4.5) follows for all m � k0, provided K1 is
chosen large enough.

Assume hence that k � k0. We suppose by assumption that (4.5) holds for all
q ∈ [n,∞] and all m � k − 1. We claim that (4.5) holds for m = k.

For simplicity, we first prove the assertion under the additional assumptions
that T � 1, n � 3 and q < ∞. The claim then follows by minor modifications of
the proof given below.

We start by noticing that, given q ∈ [n,∞) and ε ∈ (0, 1), we have

‖∇ku(t)‖q � ‖∇ke−tAu0‖q +
(∫ (1−ε)t

0
+
∫ t

(1−ε)t

)
‖∇ke−(t−s)APu · ∇u(s)‖qds

+2

(∫ (1−ε)t

0
+
∫ t

(1−ε)t

)
‖∇ke−(t−s)APMu(s)‖qds

=: B1 + B2 + B3 + B4 + B5.

We shall estimate each of the above terms B1 − B5 separately.
The estimates for B1 are derived from (3.13) as follows:

B1 � C2(C3k)
k/2eω3kt‖u0‖nt−

n
2 (

1
n
− 1
q
)− k

2

� C4(C5k)
k−δt−

n
2 (

1
n
− 1
q
)− k

2 , t ∈ (0, T ),
for constants C4 := C2‖u0‖n � C2M1 and C5 := C3e

ω3 . This follows since
k/2 � k − δ for k � 2 and δ � 1.

Similarly, we estimate B4 as

B4 � 2C2(C3k)
k/2eω3kt

∫ (1−ε)t

0
‖∇ke−(t−s)A‖L(Ln,Lq)‖PM‖L(Ln)‖u(s)‖nds

� C6(C7k/ε)
k/2t

− n
2 (

1
n
− 1
q
)− k

2
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for t ∈ (0, T ) and some positive constants C6 := C6(n, q,M,M1) and C7 :=
C7(n,M). Here we used the boundedness of the Helmholtz projection and the
Riesz transform in Lp(Rn) for 1 < p < ∞.

Estimate (3.13) implies also the following estimate for B5:

B5 � 2C1e
ω1t

∫ t

(1−ε)t
‖e−(t−s)APM‖L(Lq ,Lp)‖∇ku(s)‖qds

� C8

∫ t

(1−ε)t
‖∇ku(s)‖qds

for some constant C8 := C8(n, q,M) > 0. Note that C8 does not depend on k,
since we assumed that ‖etM‖ � C; see Remark 3.6(a).

In order to estimate B2 note that

B2 �
∫ (1−ε)t

0
‖∇ke−(t−s)A‖L(Ln/2,Lq)‖P‖L(Ln/2)‖u · ∇u(s)‖n/2ds

� C9(C10k/ε)
k/2t

− n
2 (

1
n
− 1
q
)− k

2

for some constants C9 := C6(n, p, q,M,M1,M2) and C10 := C10(n,M). Here
we have used Hölder’s inequality to obtain ‖u · ∇u‖n/2 � ‖u‖n‖∇u‖n and we
also made use of the estimate ‖∇u(s)‖n � Cs−1/2 for some constant C :=
C(n, p,M,M1,M2). See also the proof of Step 2 of Proposition 3.1 in [15].

We now estimate B3. Similarly as in the estimates for B5, we obtain by (3.12),

B3 � C1e
ω1t

∫ t

(1−ε)t
‖∇e−(t−s)AP‖L(Lq)‖∇k(u⊗ u)(s)‖qds

� C11

∫ t

(1−ε)t
(t − s)−1/2‖∇k(u⊗ u)(s)‖qds

with some C11 := C11(n,M). Since ‖etM‖ � 1, the constant C11 can be chosen
independently not only of k but also of q. Note next that by Lemma 3.7 for all
q ∈ [1,∞] there exist constant C > 0 and w ∈ R such that ‖∇e−tAP‖L(Lq) �
Ct−1/2ewt .

We now calculate ∇k(u ⊗ u) by Leibniz’s rule. We divide the sum into two
parts:

B3 � 2C11

∫ t

(1−ε)t
(t − s)−1/2‖∇ku(s)‖q‖u(s)‖∞ds

+C11

∫ t

(1−ε)t
(t − s)−1/2 max|β|=k

∑
0<γ<β

(
β

γ

)
‖∂γx u(s)‖q‖∂β−γ

x u(s)‖∞ds

=: B3a + B3b.

Here, γ < β means γi � βi for all i and |γ | < |β| for multi-indices β and γ
Consider B3a . Then there exists C > 0 (depending only on n, p,M,M1,M2

such that ‖u(s)‖∞ � Cs−1/2; see Step 1 of the proof of Proposition 3.1 in [15].
Thus
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B3a � C12

∫ t

(1−ε)t
(t − s)−1/2s−1/2‖∇ku(s)‖qds

with some constant C12 := C12(n, p, q,M,M1,M2).
We next estimate B3b. By assumption of induction, we obtain

B3b � C11

∫ t

(1−ε)t
(t − s)−

1
2 max|β|=k

∑
0<γ<β

(
β

γ

)
K1(K2|γ |)|γ |−δs−

n
2 (

1
n
− 1
q
)− |γ |

2

×K1(K2|β − γ |)|β−γ |−δs−
n
2 (

1
n
− 1
q
− |β−γ |

2 ds

� C11K
2
1K

k−2δ
2

∑
0<γ<β

(
β

γ

)
|γ ||γ |−δ|β − γ ||β−γ |−δ

×
∫ t

(1−ε)t
(t − s)−

1
2 s

−1− n
2q− k

2 ds.

For the multiplication of multi-sequences we apply Kahane’s lemma [20, Lemma
2.1] and obtain

B3b � C13K
2
1K

k−2δ
2 kk−δt−

n
2 (

1
n
− 1
q
)− k

2 I (ε),

where I (ε) := ∫ 1
1−ε(1−τ)− 1

2 τ
− n

2 (
1
n
− 1
q
)− k

2 − 1
2 dτ andC13 depends only onC11 and

δ. Note that C13 in δ is proportional to
∑∞
j=1 j

−1/2−δ/2.
Combining the estimates for B1, . . . , B5 and defining bε by

bε := C4(C5k)
k−δ + C6(C7k/ε)

k/2 + C9(C10k/ε)
k/2 + C13K

2
1K

k−2δ
2 kk−δI (ε),

we obtain

‖∇ku(t)‖q � bεt
− n

2 (
1
n
− 1
q
)− k

2 + (C8 +C12)

∫ t

(1−ε)t
(t − s)−1/2s−1/2‖∇ku(s)‖qds.

Applying a Gronwall-type inequality (see [15, Lemma 2.4]), we see that there exists
εk ∈ (0, 1) such that

‖∇ku(t)‖q � 2bεk t
− n

2 (
1
n
− 1
q
)− k

2 , t ∈ (0, T ). (4.6)

If εk := 1/k then I (1/k) � 1
2(C8+C12)

for sufficiently large k, say k � k0 :=
k0(n, p,M,M1,M2).

Finally, we show 2b1/k � K1(K2k)
k−δ for any kwith suitable constantsK1 and

K2. When K1 is large enough, (4.5) holds for k � k0, i.e., there exists a constant
K0 > 0 (depending only on n, p, M , M1 and M2) such that ‖∇ku(t)‖q � K0 for
k � k0. Since I (1/k) � 2 for all k � 2, we have

2b1/k � 2{C4C
k−δ
5 + C6C

k−δ
7 + C9C

k−δ
10 + 2C13K

2
1K

k−2δ
2 }kk−δ.

Choosing the constants K1 and K2 as

K1 := max
(
K0, 4(C4 +C6 +C9)

)
and K2 := max

(
C5, C7, C10, (8C13K1)

δ
)
,

we obtain (4.5) for all k. The proof is complete. ��
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Proposition 4.2. Assume that the assumptions of Theorem 2.4 are satisfied. Then
the mild solution u of (2.3) satisfies (4.4). There even exist constants K̃1, K̃2 > 0
such that

‖∇mu(t)‖q � K̃1(K̃2m)
mt

−m
2 − n

2 (
1
n
− 1
q
)
, t ∈ (0, T ),m ∈ N0, q ∈ [n,∞].

(4.7)

Proof. Let u0 ∈ Lnσ (R
n). As in the proof of Theorem 2.1, we derive an a priori

estimate in order to obtain uniform bounds for ‖uj (t)‖q and ‖∇uj (t)‖q . More
precisely, there exists T > 0 such that

sup
j

t
n
2 (

1
n
− 1
q
)‖uj (t)‖q � 3‖u0‖n sup

j

t
n
2 (

1
n
− 1
q
)+ 1

2 ‖∇uj (t)‖q
� 3‖u0‖n, t ∈ (0, T )

for q ∈ [n,∞]. Moreover, there exists a unique u such that

lim
j→∞ uj (t) = u(t) in Ln(Rn)

for all t ∈ (0, T ).
We fix k ∈ N0, q ∈ [n,∞] and set ψj (t) := ‖∇kuj (t)‖q . Similarly as the

proof of Proposition 4.1 we conclude that, for j � 0, t ∈ (0, T ),

ψj+1(t) � b̃εt
− k

2 + n
2 (

1
n
− 1
q
) + C̃

∫ t

(1−ε)t
(t − s)−1/2s−1/2ψj (s)ds,

where C̃ is a constant depending only on n, u0 and T and b̃ε is chosen similarly to
bε. Applying a Gronwall-type inequality (see [15, Lemma 2.4]), we find that there

exists εk such that ψj (t) � 2b̃εk t
− k

2 + n
2 (

1
n
− 1
q
) for all j . We thus have

‖∇kuj (t)‖q � K̃1(K̃2k)
k−δt−

k
2 − n

2 (
1
n
− 1
q
)

for all j � 0 and t ∈ (0, T ), provided we are able to choose constants K̃1 and K̃2
uniformly in j , similarly as in the end of the proof of Proposition 4.1.

Since the limit is unique, we obtain ∂βx u(t) =: v(t) and v(t) also satisfies

‖v(t)‖q � K̃1(K̃2k)
k−δt−

k
2 − n

2 (
1
n
− 1
q
)

for all t ∈ (0, T ). We thus obtain (4.7) for arbitrary k ∈ N0 and q ∈ [n,∞]. ��
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