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Abstract

We study the Cauchy problem associated with the system of two conservation
laws arising in isothermal gas dynamics, in which the pressure and the density are
related by the γ -law equation p(ρ) ∼ ργ with γ = 1. Our results complete those
obtained earlier for γ > 1. We prove the global existence and compactness of
entropy solutions generated by the vanishing viscosity method. The proof relies on
compensated compactness arguments and symmetry group analysis. Interestingly,
we make use here of the fact that the isothermal gas dynamics system is invari-
ant modulo a linear scaling of the density. This property enables us to reduce our
problem to that with a small initial density.

One symmetry group associated with the linear hyperbolic equations describing
all entropies of the Euler equations gives rise to a fundamental solution with initial
data imposed on the line ρ = 1. This is in contrast to the common approach (when
γ > 1) which prescribes initial data on the vacuum line ρ = 0. The entropies we
construct here are weak entropies, i.e., they vanish when the density vanishes.

Another feature of our proof lies in the reduction theorem, which makes use of
the family of weak entropies to show that a Young measure must reduce to a Dirac
mass. This step is based on new convergence results for regularized products of
measures and functions of bounded variation.

1. Introduction

We consider the Euler equations for compressible fluids

∂tρ + ∂x(ρu) = 0, (1.1)

∂t (ρu)+ ∂x(ρu
2 + p(ρ)) = 0, (1.2)
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where ρ � 0 denotes the density, u the velocity, and p(ρ) � 0 the pressure. We
assume that the fluid is governed by the isothermal equation of state

p(ρ) = k2 ρ, (1.3)

where k > 0 is a constant. Observe that the scaling u → k u, t → t/k allows us to
reduce the system (1.1)–(1.3) to the same system with k = 1.

The existence of weak solutions (containing jump discontinuities) for the Cau-
chy problem associated with (1.1)–(1.3) was first established by Nishida [24] (in
the Lagrangian formulation). The solutions obtained by Nishida have bounded var-
iation and remain bounded away from the vacuum. For background on the BV
theory we refer to [6, 16].

By contrast, we are interested here in solutions in a much weaker functional
class and in solutions possibly reaching the vacuum ρ = 0. Near the vacuum, the
system (1.1)–(1.3) is degenerate and, in particular, the velocity u cannot be defined
uniquely. Indeed, the present paper is devoted to developing the existence theory
in a framework covering solutions satisfying

ρ ∈ L∞(�), ρ|u| � C (ρ + ρ| log ρ|), � = R × (0, T ),

with a constant C > 0 depending solely on initial data. The time interval (0, T ) is
arbitrary. Our proof extends DiPerna’s pioneering work [10] concerned with the
pressure law p(ρ) ∼ ργ .

2. Main result

Introducing the momentum variable m := ρu, it is possible to reformulate the
Cauchy problem associated with (1.1)–(1.3) as follows:

∂tρ + ∂xm = 0,

∂tm+ ∂x

(
m2

ρ
+ ρ

)
= 0,

(2.1)

with initial condition

ρ|t=0 = ρ0, m|t=0 = m0 := ρ0 u0, (2.2)

where ρ0, u0 are prescribed. Let us first recall the following terminology. A pair of
(smooth) functions η = η(m, ρ), q = q(m, ρ) is called an entropy pair if, for any
smooth solution (m, ρ) of (2.1), we also have

∂tη(m, ρ)+ ∂xq(m, ρ) = 0.

More precisely, we consider entropies η, q ∈ C2(�)∩C1(�̄) in any domain of the
form

� := {
0 < ρ < ρ∗, |m| < c∗ρ (1 + | ln ρ|)}, c∗ > 0, ρ∗ > 0.
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It is easily checked that η, q must solve the equations

qm = 2
m

ρ
ηm + ηρ, qρ = ηm − m2

ρ2 ηm, (2.3)

which implies that

ηρρ = p′(ρ)
ρ2 ηuu = 1

ρ2 ηuu. (2.4)

A pair (η, q) is said to be a weak entropy if η(0, 0) = q(0, 0) = 0. It is said to be
convex if in addition, η is convex with respect to the conservative variables (ρ,m).

Given an initial data m0, ρ0 ∈ L∞(R) obeying the inequalities

ρ0(x) � 0, |m0(x)| � c0 ρ0(x) (1 + | ln ρ0(x)|), x ∈ R (2.5)

for some constant c0 > 0, an entropy solution to the Cauchy problem (2.1), (2.2)
on the time interval (0, T ) is, by definition, a pair of functions (m, ρ) ∈ L∞(�)
satisfying the inequalities

ρ(x, t) � 0, |m(x, t)| � cρ(x, t)(1 + | ln ρ(x, t)|), (x, t) ∈ � (2.6)

for some positive constant c, together with the inequality
∫∫

�

(
η(m, ρ) ∂tϕ + q(m, ρ) ∂xϕ

)
dxdt +

∫

R

η(m0, ρ0) ϕ(·, 0) dx � 0 (2.7)

for every convex, weak entropy pair (η, q) and every non-negative function
ϕ ∈ D(R × [0, T )) (smooth functions with compact support).

The main results established in the present paper are summarized in Theorems
2.1–2.3 below.

Theorem 2.1 (Cauchy problem in momentum-density variables). Given an arbi-
trary time interval (0, T ) and an initial data (m0, ρ0) ∈ L∞(R) satisfying the
condition (2.5), there exists an entropy solution (m, ρ) of the Cauchy problem
(2.1), (2.2) satisfying the inequalities (2.6), with a constant c depending on c0 only.

To prove this theorem it will be convenient to introduce the Riemann invariants
W and Z by

W := ρeu, Z := ρe−u,
or equivalently

ρ = f1(W,Z) := (WZ)1/2, ρu = f2(W,Z) := (WZ)1/2 ln(W/Z)1/2.

We can then reformulate the Cauchy problem (2.1), (2.2) in terms of W,Z, as
follows:

∂tf1(W,Z)+ ∂xf2(W,Z) = 0,

∂tf2(W,Z)+ ∂x(f3(W,Z)+ f1(W,Z)) = 0, (2.8)

f3 := (WZ)1/2
(
ln(W/Z)1/2

)2
,

W |t=0 = W0 := ρ0e
u0 , Z|t=0 = Z0 := ρ0e

−u0 . (2.9)
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A pair of non-negative functionsW,Z ∈ L∞(�) is then called an entropy solution
to the problem (2.8), (2.9) if
∫∫

�

(
η̃(W,Z)

)
∂tϕ + q̃(W,Z) ∂xϕ

)
dxdt +

∫

R

η̃(W0, Z0) ϕ(·, 0) dx � 0

for any non-negative function ϕ ∈ D(R × [0, T )), where

η̃(W,Z) := η(f2(W,Z), f1(W,Z)), q̃(W,Z) := q(f2(W,Z), f1(W,Z)),

and (η, q) is any convex, weak entropy pair in the sense introduced above.
Theorem 2.1 above will be obtained as a corollary of the following result.

Theorem 2.2 (Cauchy problem in Riemann invariant variables). Given non-nega-
tive functions W0, Z0 ∈ L∞(R), the Cauchy problem (2.8), (2.9) has an entropy
solution on any time interval (0,T).

It is checked immediately that, if (W,Z) is an entropy solution given by The-
orem 2.2, then the functions m := f2(W,Z) and ρ := f1(W,Z) determine an
entropy solution of the problem (2.1), (2.2).

One more consequence of Theorem 2.2 concerns the original problem (1.1)–
(1.3) in the density-velocity variables. Defining the density and velocity from the
Riemann variables by

u := ln(W/Z)1/2, ρ := (WZ)1/2,

we deduce also the following result from Theorem 2.2.

Theorem 2.3 (Cauchy problem in velocity-density variables). Let (0, T ) be a time
interval. Given any measurable functions u0 and ρ0 satisfying the conditions

0 � ρ0 ∈ L∞(R), |u0(x)| � c0(1 + | ln ρ0(x)|), x ∈ R

for some positive constant c0, there exist measurable functions u = u(x, t) and
ρ = ρ(x, t) such that

0 � ρ ∈ L∞(�), |u(x, t)| � c(1 + | ln ρ(x, t)|), (x, t) ∈ �
(where c > 0 is a constant depending on c0) and (u, ρ) is an entropy solution of
the problem (1.1)–(1.3) in the sense that the entropy inequality
∫∫

�

(
η(ρ, ρ u) ∂tϕ + q(ρ, ρ u) ∂xϕ

)
dxdt +

∫

R

η(ρ0, ρ0 u0) ϕ(·, 0) dx � 0

holds for any convex, weak entropy pair (η, q) and any functionϕ as in Theorem 2.1.

The novel features of our proof of the above results are :

• the use of symmetry and scaling properties of both the isothermal Euler equa-
tions and the entropy-wave equation,

• an analysis of nonconservative products of functions with bounded variation
by measures.



Isothermal Compressible Fluids 393

We rely on two classical ingredients. The first tool is the compensated compactness
method introduced by Tartar in [32, 33]. (See also Murat [22].) This method
allows us to show that a weakly convergent sequence (of approximate solutions
given by the viscosity method) is actually strongly convergent: such a result is
achieved by a “reduction lemma” (to point mass measures) for Young measures
representing the limiting behavior of the sequence. Tartar’s method was applied
to systems of conservation laws by DiPerna [9, 10]. For a completely different
approach to the vanishing viscosity method, we refer to Bianchini & Bressan [2].
Still another (geometric) perspective is introduced in LeFloch [17].

The second main tool is the symmetry group analysis of differential equations
which goes back to Lie’s classical works. The first symmetry property we use con-
cerns the system (1.1)–(1.3) itself: we observe that it is invariant with respect to
the scaling ρ → λ ρ (λ being an arbitrary parameter). This property allows us to
assume that the density is sufficiently small when performing the reduction of the
Young measures.

To generate the class of weak entropies, we calculate all the Lie groups asso-
ciated with the entropy equation (2.4) for the function η. By using one of them we
construct the fundamental solution with initial data prescribed on the line ρ = 1.
This is in contrast with the standard approach which prescribes initial data on the
vacuum line ρ = 0.

The need of a large family of weak entropies for the Young measure reduction
was demonstrated by DiPerna for the isentropic gas dynamics equations with the

pressure law p = ργ , γ > 1. When γ = 2n+3
2n+1 , with n being integer, DiPerna used

weak entropies which are progressive waves given by Lax [14]. The method of
Tartar and DiPerna was then extended by Serre [29] to strictly hyperbolic systems
of two conservation laws, by Chen, et al. [3, 8] to fluid equations with γ ∈ (1, 5/3]
and by Lions, Perthame, Souganidis, and Tadmor [18, 19] to the full range
γ > 1. An alternative proof of DiPerna’s theorem was provided by Morawetz

[20]. The theory was extended to real fluid equations by Chen and LeFloch [4,
15, 5]. We also mention the important work by Perthame and Tzavaras on the
kinetic formulation for systems of two conservation laws; see [26, 27]. The suc-
cess of these works relies on a detailed analysis of the fundamental solution of the
entropy wave equation (2.4), which is a degenerate, linear wave equation.

When γ = 1 the analysis developed in [4, 5] for the construction of entropies
does not work because (2.4) degenerates at a higher degree and the Cauchy problem
at the line ρ = 0 becomes highly singular. One novelty of the present paper is to
rely on symmetry group argument to identify the entropy kernel.

For the convenience of the reader we summarize now the main steps of the
proof of Theorems 2.1–2.3.

Step 1. We rely on the vanishing viscosity method and first construct a sequence of
approximate solutions (uε, ρε), ε ↓ 0, defined on the strip �, and such that

2 εr � ρε � ρ2 < 1

for some r > 1. The constant ρ2 can be chosen to be arbitrarily small by intro-
ducing a rescaled, initial density λ ρ0. We will thus establish first Theorems 2.1
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to 2.3 in the case when the initial density is small. Then we will treat the gen-
eral case by observing that the system (1.1)–(1.3) is invariant via the symmetry
(u, ρ) → (u, λρ). More precisely, given an entropy solution (u, ρ) of the problem
(1.1)–(1.3) with initial data (u0, ρ0), the pair (u′, ρ′) := (u, λρ) is also an entropy
solution with the initial data (u′

0, ρ
′
0) = (u0, λρ0).

Step 2. Next, we prove that there is a sequence ε ↓ 0 such that

Wε := ρεeu
ε

⇀ W, Zε := ρεe−uε ⇀ Z weakly � in L∞
loc(�) (2.10)

and there existYoung measures νx,t , associated with the sequence ε ↓ 0 and defined
on the (W,Z)-plane for each point (x, t) ∈ �, such that

lim
ε→0

F(Wε(x, t), Zε(x, t)) =
∫∫

F(α, β)dνx,t = 〈νx,t , F 〉 =: 〈F 〉 in D′(R2)

for any F(α, β) ∈ Cloc(R
2). The crucial point in the compensated compactness

argument is to prove that ν is a point mass measure. In that case the convergence
in (2.10) becomes strong in any Lrloc(�), 1 � r < ∞.

Step 3. Given two entropy pairs (ηi, qi), obeying the conditions of Theorem 2.1,
we check that Tartar’s commutation relations

〈νx,t , η1 q2 − η2 q1〉 = 〈νx,t , η1〉 〈νx,t , q2〉 − 〈νx,t , η2〉 〈νx,t , q1〉 (2.11)

hold. Here, we apply the so-called div-curl lemma of Murat [22] and Tartar [32,
33]. The objective is to prove that the measure ν is a point mass measure by using
a “sufficiently large” class of entropy pairs in (2.11).

Step 4. To produce a large family of entropy pairs, we have to construct a funda-
mental solution χ(R, u − s) (where R := ln ρ) of the entropy equation (2.4). To
this end, we rely on symmetry group arguments for the equation (2.4). We find that
it has an invariant solution

η(u, ρ) = √
ρ f (u2 − ln2 ρ), where ξ f ′′(ξ)+ f ′(ξ)+ 1

16
f (ξ) = 0.

Then we define
χ = eR/2 f (|u− s|2 − R2) 1|u−s|<|R|.

The function f (ξ) can be represented by a Bessel function of zero index.

Step 5. Then we search for the entropy pairs in the form

η =
∫
χ(R, u− s) ψ(s) ds, q =

∫
σ(R, u, s) ds, (2.12)

where ψ ∈ L1(R) is arbitrary and we describe properties of the kernels χ, σ . In
particular, we find that σ = uχ(R, u− s)+ h(R, u− s), where the function h is
given by an explicit formula. We also will show that

Pχ := ∂sχ = eR/2
(
δs=u−|R| − δs=u+|R|

)
+Gχ(R, u− s) 1|u−s|<|R|,

Ph := ∂sh = eR/2
(
δs=u−|R| + δs=u+|R|

)
+Gh(R, u− s) 1|u−s|<|R|,

where Gχ(R, v) and Gh(R, v) are bounded, continuous functions.
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Step 6. Finally, we plug in the entropy pairs (2.12) inTartar’s commutation relations,
but in the form derived by Chen and LeFloch [4]. We arrive after cancellation of
ψ at the following equality in D′(R)3:

〈χ1P2h2 − h1P2χ2〉〈P3χ3〉 + 〈h1P3χ3 − χ1P3h3〉〈P2χ2〉
= −〈P3h3P2χ2 − P3χ3P2h2〉〈χ1〉,

where the notation gi := g(R, u, si) and Pigi := ∂si g(R, u, si) is used. Then we
test this equality with the function

1

δ2ψ(s1)ϕ2(
s1 − s2

δ
)ϕ3(

s1 − s3

δ
),

where ψ ∈ D(R) and ϕj are molifiers such that

Y :=
∫ ∞

−∞

∫ s2

−∞
(
ϕ2(s2) ϕ3(s3)− ϕ3(s2) ϕ2(s3)

)
ds2ds3 �= 0.

This identity involves products of measures by functions of bounded variation. Such
products were earlier discussed by Dal Maso, LeFloch, & Murat [7].

By letting δ go to zero we obtain the equalities

Y

∫∫

W,Z

D(ρ)ρ

∫∫
{
W ′<W

}
∩
{
Z′<1/W

}
√
ρ

′
dν(W ′, Z′)dν(W,Z) = 0, (2.13)

Y

∫∫

W,Z

D(ρ)ρ

∫∫
{
W ′<1/Z

}
∩
{
Z′<Z

}
√
ρ

′
dν(W ′, Z′)dν(W,Z) = 0, (2.14)

where

ρ = (WZ)1/2, D(ρ) = √
ρ

(
−1

2
+ 15

8
ln

1

ρ

)
, ρ′ = (W ′Z′)1/2,

and the measure dν(W ′, Z′) is a copy of dν on the (W ′, Z′)-plane. At this point
we choose the constant ρ2 (see Step 1) small enough to ensure the inequality
D(ρ) � √

ρ/2. Hence, it follows from (2.13), (2.14) that dνx,t = αδP + µx,t and
α (1 − α) = 0, where P(x, t) is a point on the (W,Z)-plane and the support of
the measure supp µx,t lies in the set{ρ = 0}. This representation formula for the
measure νx,t enables us to justify the passage to the limit as ε ↓ 0. We summarize
Step 6 in the following key result.

Theorem 2.4. Let (mn, ρn) be a bounded in L∞(�) sequence of entropy solutions
of the problem (2.1) and such that

0 � ρn, |mn| � cρn(1 + | ln ρn|)
uniformly in n. Then, passing to a subsequence if necessary, (mn, ρn) converges
almost everywhere in � to an entropy solution (m, ρ) of (2.1).
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Remark 2.5. A recent paper by Huang & Wang [12] claims to establish the exis-
tence and compactness of weak solutions to (1.1)–(1.3), with initial data allowing
for vacuum states. Their proof however is not complete as it stands, for the following
reason. They make use of the entropies

η∗ = ρ−γ (eβu + e−βu), γ = 4α2

4α + 1
, β = α(4α + 2)

4α + 1
, 0 < α <

1

4
.

and claim that η∗ ∈ L(dνt,x). The exact meaning of this inclusion is the following
limit relationship (for all ϕ ∈ D(R2)):

lim
ε→0

∫∫

�

η∗(mε, ρε)ϕ(x, t) dxdt =
∫∫

�

ϕ(x, t)

∫

m,ρ

η∗(m, ρ) dνx,t dxdt

(2.15)

for the Young measures νx,t associated with the weakly convergent sequence
(mε, ρε), where (mε, ρε) is either a sequence of solutions to a viscous approxi-
mation problem or a sequence of bounded entropy solutions. But the uniform a
priori estimates

0 � ρε � c, |mε| � c

do not imply both that the function η∗(mε, ρε) is bounded uniformly with respect
to ε in L1

loc(�) and that the limit in the left-hand side of (2.15) exists.
The following example shows that the above strong entropies cannot be used

in the proof of the compactness result. Consider the bounded sequence of constant
entropy solutions

ρε = ε, mε = ε ln ε, ε → 0.

Clearly the limit in the left-hand side of (2.15) is equal to ∞. On the other hand,
the method in [12] can probably be applied when the vacuum is avoided, that is,
under the extra assumption ρε � c = const > 0.

3. Vanishing viscosity method

Given parameters ε, ε1 > 0 we consider the Cauchy problem

ρt + (ρu)x = ερxx + 2ε1ux, (3.1)

(ρu)t + (ρu2)x + ρx = ε(ρu)xx + ε1(u
2)x + 2ε1(ln ρ)x, (3.2)

with initial condition

ρ|t=0 = ρε0 + 2 ε1, u|t=0 = uε0. (3.3)

In this section we establish the existence of smooth solutions to this problem. Later
in this section we will assume that ε1 = εr for some r > 1. The positivity of the
density will be obtained by the following argument.
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Lemma 3.1 (Positivity for convection-diffusion equations). If v = v(x, t) is a
smooth bounded solution of the Cauchy problem

vt + (u v)x = εvxx, v|t=0 = v0(x), (3.4)

where u = u(x, t) ∈ L∞(�) and u0 ∈ L∞(R), then v � 0 provided v0 � 0.

Proof. Given R > 0, let ψ : R+ → R be a non-increasing function of class
C2 such that ψ(x) = 1 for x ∈ [0, R], ψ(x) = e−x for x � 2R, and ψ(x) is
a non-negative polynomial for R � x � 2R. Define �(x) = ψ(|x|) for x ∈ R.
Clearly,

|� ′
(x)| � c1

R
�(x), |� ′′

(x)| � c1

R2�(x) (3.5)

for some constant c1 > 0. The map

Uµ(v) =
{√

v2 + µ2 − µ, v � 0,
0, v > 0,

is a regularization of the mapping v → v− := max{−v, 0}.
Using (3.4) and (3.5) we can compute the t-derivative of the integral∫
�Uµ(v) dx:

d

dt

∫
�Uµdx + ε

∫
�v2

x

∂2Uµ

∂v2 dx

=
∫
∂2Uµ

∂v2 vvx(ε�x + u�)dx +
∫
v
∂Uµ

∂v
(ε�xx + u�x)dx

�
∫
∂2Uµ

∂v2 v|vx |�(εc1/R + |u|)dx

+
∫
v

∣∣∣∣
∂Uµ

∂v

∣∣∣∣�(εc1/R
2 + |u|c1/R)dx. (3.6)

Observe that

εv2
x − v|vx |(εc1/R + |u|) = ε

(
|vx | − v

(
c1

2R
+ |u|

2ε

))2

− v2
(
c1

2R
+ |u|

2ε

)2

,

v2 ∂
2Uµ

∂v2 � µ2v2

(v2 + µ2)3/2
,

and

v
∂Uµ

∂v
→ v− as µ → 0.

We integrate (3.6) with respect to t and let µ tend to zero, by taking into account
that Uµ(v0) = 0:

∫
�v− dx �

t∫

0

∫
�v−

(
ε c1

R2 + |u| c1

R

)
dxdτ.

By Gronwall’s lemma,
∫
�v− dx = 0. We thus conclude that v � 0. ��



398 Philippe G. LeFloch & Vladimir Shelukhin

As a consequence of Lemma 3.1, we deduce that any bounded solution (u, ρ)
of the problem (3.1)–(3.3) has the following property:

ρ � 2 ε1 uniformly in ε. (3.7)

Namely, this is clear since the function v = ρ − 2 ε1 solves the problem

vt + (u v)x = ε vxx, v|t=0 � 0.

From now on, we assume that the initial data ρε0 and uε0 belong to the Hölder
space H 2+β(R) for some β ∈ (0, 1) and satisfy

0 � ρε0 � M, ‖uε0‖∞ � u1,

and

uε0 → u0, ρε0 → ρ0 in L1
loc(R),

where u1 := ‖u0‖∞ and M := ‖ρ0‖∞.

Lemma 3.2. Let (u, ρ) be a smooth bounded solution of the Cauchy problem (3.1)–
(3.3). Then there exist positive constants c1, ρ1, W1, and Z1 such that

2ε1 � ρ � ρ1, |m| := ρ|u| � c1ρ(1 + | ln ρ|)�m1,

ρ1 :=(2ε1 +M)eu1 , m1 := c1 sup
0�ρ�ρ1

ρ(1 + | ln ρ|),

0 � W := ρeu � W1, 0 � Z := ρe−u � Z1, (3.8)

uniformly in ε.

Proof. Passing to the Riemann invariant variables

w := u+ ln ρ, z := u− ln ρ,

we can rewrite the system (3.1), (3.2) as

wt + wx

(
u+ 1 − 2ε1

ρ
+ εzx

2
− 3εwx

4

)
= εwxx − εz2

x

4
,

zt + zx

(
u− 1 + 2ε1

ρ
− εwx

2
+ 3εzx

4

)
= εzxx + εw2

x

4
.

By the maximum principle,

w � maxw0(x), z � min z0(x).

Now, the estimates (3.8) are a simple consequence of these inequalities. ��
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By the estimates (3.8) there exist sequencesWεn , Zεn , ρεn , and mεn := ρεnuεn

and a family of non-negative probability measures νx,t , called Young measures,
defined on the (W,Z)-plane, such that

Wεn ⇀ W, Zεn ⇀ Z, ρεn ⇀ ρ, ρεnuεn ⇀ m weakly � in L∞
loc(�),

(3.9)

and ∫∫

�

(
F(Wεn(x, t), Zεn(x, t))− 〈F 〉

)
ϕ(x, t) dtdx → 0,

where we have set 〈F 〉 := ∫
W,Z

F(W,Z)dνx,t for any test function ϕ ∈ D(R2)

and any continuous function F(W,Z) ∈ Cloc(R2). Moreover,

supp νx,t ⊂ {(W,Z) : 0 � W � W1, 0 � Z � Z1}.

For a proof that aYoung measureµx,t can be associated with each bounded sequence
vn(x, t), we refer to Tartar [32] and Ball [1]; see also [30].

Lemma 3.3 (Entropy dissipation estimate). The smooth solution (u, ρ) of the Cau-
chy problem (3.1)–(3.3) satisfies the estimate

∥∥∥∥
ερ2
x

ρ
+ ε ρu2

x

∥∥∥∥
L1

loc(�)

� c (3.10)

uniformly in ε.

Proof. The identity

∂

∂t

(ρu2

2
+ (1 + ρ ln ρ − ρ)

)
+ ερ2

x

ρ
+ ερu2

x

= − ∂

∂x

{
ρu3

2
+ uρ ln ρ − ερx ln ρ − 2ε1u ln ρ − ε

(
ρu2

2

)

x

− ε1u
3

3

}

=: −Jx (3.11)

follows immediately from (3.1) and (3.2). Multiplying this identity by the function
�(x) introduced in the proof of Lemma 3.1 and integrating with respect to x we
deduce, in view of the estimates (3.7) and (3.8),

∫
J�x dx � 1

2

∫
�

(
ερ2
x

ρ
+ ερu2

x

)
dx + c

∫
�

(
1 + ρu2

2

)
dx.

Hence, we have ∫ T

0

∫
�(
ερ2
x

ρ
+ ε ρu2

x) dxdt � c,

which yields the desired estimate. ��
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We rewrite the equations (3.1), (3.2) as a quasi-linear parabolic system:

ut + a1(u, ρ, uxρx) = ε uxx, ρt + a2(u, ρ, uxρx) = ε ρxx, (3.12)

where we have set

a1 := uux − ρx

ρ
− 2ερxux

ρ
− 2ε1ρx

ρ2 , a2 := (ρu)x − 2ε1 ux.

In view of (3.7) and (3.8), we obtain the global a priori estimates

2 ε1 � ρ � ρ1, |u| � c(u1, ρ1, ε).

With these estimates at hand, it is a standard matter to derive estimates in
Hölder’s norms, depending on ε, by standard techniques of the theory of quasi-
linear parabolic equations [13]. We will only sketch the derivation. Let ζ(x, t)
be a smooth function such that ζ �= 0 only if x ∈ ω, where ω is an interval
[x0 − σ, x0 + σ ]. Define

u(n) := max{u− n, 0}.
Multiplying the second equation in (3.12) by ζ 2ρ(n) and integrating with respect
to x, we obtain

d

dt

∫
ζ 2|ρ(n)|2dx+ε

∫
ζ 2|ρ(n)x |2dx�γ

∫
(ζ 2
x +ζ |ζt |)|ρ(n)|2dx+γ

∫
ζ1ρ�ndx.

Similarly, for the velocity variable we get

d

dt

∫
ζ 2|u(n)|2 dx + ε

∫
ζ 2|u(n)x |2 dx

� γ

∫
(ζ 2
x + ζ |ζt |)|u(n)|2 + ζ1ρ�n + εζ 2|ρ(n)x |2 dx.

These inequalities imply that u and ρ belong to a class B2(Q,M, γ, r, δ, n) [13]
(Chapter II, Section 7, formula (7.5)), for some parameters Q,M, γ, r, δ, and n.
Then it follows that the estimate

‖u, ρ‖Hα,α/2(ω×[0,T ]) � c

holds for some α ∈ (0, 1).
In the same manner, we can estimate the Hölder norm of the derivatives ux ,

uxx , ut , ρx , ρxx , and ρt , in the same way as done in [11] for a general class of
parabolic systems.

We now arrive at the main existence result, concerning the viscous approxima-
tion (3.1)–(3.3).

Lemma 3.4 (Existence of smooth solution of the regularized system). Let uε0, ρε0
∈ L∞ ∩ Hβ

loc, 0 < β < 1. Then the Cauchy problem (3.1)–(3.3) has a unique
solution such that

u, ρ ∈ L∞(�) ∩H 2+β,1+β/2
loc (�).
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Now, we set ε1 = εr , r > 1, and study compactness of the viscous solutions
(uε, ρε) when ε → 0.

Lemma 3.5. Given an entropy/entropy-flux pair (η(m, ρ), q(m, ρ)), m = ρu, the
sequence

θε := ∂ηε

∂t
+ ∂qε

∂x

is compact in W−1,2
loc (�), where ηε = η(mε, ρε), qε = q(mε, ρε).

Proof. We use the following lemma due to Murat [23].
Let Q ⊂ R

2 be a bounded domain, Q ∈ C1,1. Let A be a compact set in
W−1,2(Q), B be a bounded set in the space of bounded Radon measures M(Q),
andC be a bounded set inW−1,p(Q) for somep ∈ (2,∞]. Further, letD ⊂ D′(Q)
be such that

D ⊂ (A+ B) ∩ C.
Then there exists E, a compact set in W−1,2(Q) such that D ⊂ E.

By definition, the functions η(m, ρ) and q(m, ρ) solve the system

qm = 2m

ρ
ηm + ηρ, qρ = ηm − m2

ρ2 ηm.

Hence, calculations show that

θε = 2ε1mx

(
ηερ

ρ
+ mηεm

ρ2

)
+ 2ε1

(
−mη

ε
ρ

ρ2 − m2ηεm

ρ3 + ηεm

ρ

)

+εηερρxx + εηεm mxx

= ε1ux(q
ε
m + ηερ)− 2ε1

ρxη
ε
m

ρ
+ εηεxx

−ε[ηερρρ2
x + ηεmm m

2
x + 2ηερmρxmx]. (3.13)

We check the conditions of Murat’s lemma. By Lemma 3.2, the sequence θε is
bounded in W−1,∞

loc (�). Hence, it is enough to show that εηεx → 0 in L2
loc(�) and

the residual sequence θε − εηεxx is bounded in L1
loc(�).

We have

εηεx = ερuxη
ε
m + ερx

qεm + ηερ

2
.

Thus, by estimates (3.8) and (3.10), εηεx → 0 in L2
loc.

Consider the sequence θε − εηεxx . We have

θε − εηεxx = −ε[ηερρρ2
x + ηεmmm

2
x + 2ηερmρxmx] + ε1ux(q

ε
m + ηερ)− 2ε1

ρxη
ε
m

ρ
.

Each term on the right-hand side is bounded in L1
loc provided ε1 = ε. Indeed, by

(3.7),

2ε1|ux | = 2ε1ρ
1/2|ux |
ρ1/2 �

√
2ερ1/2|ux |, 2ε1|ρx |

ρ
�

√
2ε|ρx |
ρ1/2 .
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Moreover, if ε1 = 0(ε),

ε1ux(q
ε
m + ηερ)− 2ε1

ρxη
ε
m

ρ
→ 0 in L2

loc(�). (3.14)

The other terms are treated similarly. This completes the proof. ��
Given two entropy pairs (ηi(m, ρ), qi(m, ρ)), (i = 1, 2), from Lemma 3.5, we

define

η̃i (W,Z) = ηi(f2(W,Z), f1(W,Z)), q̃i(W,Z) = qi(f2(W,Z), f1(W,Z)).

Clearly, the functions
∂t η̃

ε
i + ∂xq̃

ε
i

are compact inW−1,2
loc (�). Hence, by the div-curl lemma [32], Tartar’s commutation

relation

〈η̃1 q̃2 − η̃2 q̃1〉 = 〈η̃1〉 〈q̃2〉 − 〈η̃2〉 〈q̃1〉 (3.15)

is valid.
For their convenience, we remind readers that the div-curl lemma states the

following.
Let Q ⊂ R

2 be a bounded domain, Q ∈ C1,1. Let

wk1 ⇀ w, wk2 ⇀ w2, vk1 ⇀ v1, vk2 ⇀ v2,

weakly in L2(Q), as k → ∞. With curl(w1, w2) denoting ∂w2/∂x1− ∂w1/∂x2,
suppose that the sequences div(vk1, v

k
2) and curl(wk1, w

k
2) lie in a compact subset E

of W−1,2(Q). Then, for a subsequence,

vk1w
k
1 + vk2w

k
2 → v1w1 + v2w2 in D′(Q) as k → ∞.

The further claim is due to the fact that system (1.1)–(1.3) is invariant with
respect to the scaling ρ → λρ.

Lemma 3.6. If (m, ρ) is an entropy solution with initial data (m0, ρ0), then (cm, cρ)
is also the entropy solution with the initial data (cm0, cρ0), where c is an arbitrary
positive constant.

Proof. The claim follows easily from the fact that the pair (η(cm, cρ), q(cm, cρ))
is an entropy/entropy-flux pair as soon as the pair (η(m, ρ), q(m, ρ)) is an entropy/
entropy-flux pair. ��

Given λ > 0, let us consider the auxiliary problem:

ρt + (ρu)x = ερxx + 2ε2ux, (3.16)

(ρu)t + (ρu2)x + ρx = ε(ρu)xx + ε2(u
2)x + 2ε2(ln ρ)x, (3.17)

ρ|t=0 = λρε0(x)+ 2ε2, u|t=0 = uε0(x), (3.18)

where ε2 = λε1 = λεr .
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The main feature of the auxiliary problem is the following. If the functions
(uε, ρε) solve the problem (3.1)–(3.3) then the functions (uε, ρ

′
ε) solve the prob-

lem (3.16)–(3.18) with ρ
′
ε = λρε.

The solution (uε, ρε) of problem (3.16)–(3.18) obeys the estimates

2ε2 � ρε � (2ε2 + λ‖ρ0‖∞)e‖u0‖∞ =: ρ2,

|uερε| � cρε(1 + | ln ρε|) (3.19)

uniformly in ε. Lemmas 3.3–3.5 are also valid for (uε, ρε). The corresponding
Young measure νx,t has a finite support:

supp νx,t ⊂ {(W,Z) : 0 � W � W2, 0 � Z � Z2} := K. (3.20)

We impose the following smallness conditions for λ:

ρ2 < 1, ln
1

ρ2
� 8

15
. (3.21)

Assume that the solution (uε, ρε) of the auxiliary problem converges to an entropy
solution (m, ρ) of the problem (2.1):

(uερε, ρε) → (m, ρ) almost everywhere in �.

The initial data for (m, ρ) are

ρ|t=0 = λρ0, m|t=0 = λm0.

By Lemma 3.6, the functions (m
′
, ρ

′
) = (m/λ, ρ/λ) are an entropy solution of the

same problem with the initial data

ρ
′ |t=0 = ρ0, m

′ |t=0 = m0.

Thus, it is enough to study convergence of the solutions to the auxiliary problem.
With the condition (3.21) at hand, the function

D(R) :=
(

−1

2
+ 15|R|

8

)
eR/2, R := ln ρ,

from Section 5 admits the estimateD(R) � 1
2e
R/2. Hence,D(R) vanishes only at

the vacuum points ρ = 0.
To conclude the section, we remark that the parameter ε1 serves as a regularizer

for the hyperbolic system (1.1)–(1.3) with ε = 0 due to the estimate (3.7) (cf. [21]).
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4. A large class of mathematical entropies

4.1. Symmetry group analysis

We already pointed out that a pair (η, q) is a mathematical entropy if and only
if η satisfies

ηρρ = 1

ρ2 ηuu. (4.1)

In order to derive an explicit formula for the weak entropies of the Euler system we
rely on symmetry group analysis, following [31]. Using the Riemann invariants

w := u+ ln ρ, z := u− ln ρ,

we write the equation (4.1) for the entropies in the form

F(ηw, ηz, ηwz) := ηwz − A (ηz − ηw) = 0, A := 1

4
. (4.2)

In the more general case whereA is a function ofw and z, complete group analysis
arguments were developed in Ovsyannikov’s monograph [28]. In our case, A is
a constant and this analysis is simpler. We only present the results of the formal
derivation and we refer to [28] for further details on the theory.

We look for a one-parameter group determined by the infinitesimal operator

X = ξ(w, z, η)
∂

∂w
+ τ(w, z, η)

∂

∂z
+ ϕ(w, z, η)

∂

∂η
.

Calculation of the first and the second prolongations of this operator yields

X1 = X+ζ ηw ∂

∂ηw
+ζ ηz ∂

∂ηz
, X2 = X1 +ζ ηww ∂

∂ηww
+ζ ηwz ∂

∂ηwz
+ζ ηzz ∂

∂ηzz
,

where

ζ ηw = Dwϕ − ηwDwξ − ηzDwτ, Dw = ∂

∂w
+ ηw

∂

∂η
,

ζ ηz = Dzϕ − ηwDzξ − ηzDzτ, Dz = ∂

∂z
+ ηz

∂

∂η
,

and

ζ ηwz = Dzϕw + ηwDzϕη + ϕηηwz − ηwwDzξ − ηwz(Dwξ +Dzτ)

−ηw(Dzξw + ηwDzξη + ξηηwz)− ηzzDwτ

−ηz(Dzτw + ηwDzτη + ηwzτη).

Note that we need not calculate the coefficients ζ ηww and ζ ηzz . Application of the
operator X2 to F and analysis of this application on the manifold F = 0 enable
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us to conclude that (4.2) admits four one-dimensional groups Gi and one infinite-
dimensional group G5, associated with the infinitesimal operators

∂

∂w
,

∂

∂z
, η

∂

∂η
, E := w

∂

∂w
− z

∂

∂z
+ A(w + z)η

∂

∂η
, β(w, z)

∂

∂η
,

where β is a solution to (4.2). The fact that (4.2) admits the group Gi means the
following: if η(w, z) solves (4.2), then for any c, ξ ∈ R the following functions are
solutions of (4.2) as well:

η(w + c, z), η(w, z+ c), cη(w, z),

η(e−ξw, eξ z) exp (Aw(1 − e−ξ )− Az(1 − eξ )), η(w, z)+ β(w, z).

Note that, once this assertion is obtained, its validity can be checked directly without
referring to group analysis.

Let us find an invariant solution to (4.2), by applying the one-dimensional
groupG4 associated with the infinitesimal operatorE. First, we look for invariants
I (w, z, η) of the group G4 as solutions of the equation E(I) = 0. By the method
of characteristics, we derive the system of ordinary differential equations

dw

w
= −dz

z
= dη

A(w + z)

and obtain easily the following two invariants:

I1 = wz, I2 = ηe−A(w−z).

Then, we look for an invariant solution of (4.2) in the form (see again [28]) I2 =
f (I1), or equivalently

η = eA(w−z)f (wz). (4.3)

Plugging (4.3) in (4.2), we arrive at the following condition for the function f (x):

xf ′′(x)+ f ′(x)+ A2f (x) = 0. (4.4)

In conclusion, equation (4.2) admits the solution

η = ρ1/2 f (u2 − ln2 ρ),

where the function f satisfies equation (4.4).
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4.2. Mathematical entropies

We search for entropies η = η(ρ, u) having the form

η(ρ, u) = ρ1/2 f (u2 − ln2 ρ).

It is straightforward to see that η solves the entropy equation (4.1) if and only if the
function f = f (m) is a solution of the ordinary differential equation

mf ′′ + f ′ + A2f = 0, A2 = 1

16
. (4.5)

With the notation

R := ln ρ

the entropy then takes the form

η = η(R, u) = eR/2 f (u2 − R2),

while the entropy equation (4.1) reads

L(η) := ηRR − ηuu − ηR = 0. (4.6)

One solution to the second-order equation (4.5) is given by the expansion series

f (m) :=
∞∑
n=0

(An
n!
)2
(−1)nmn,

with

f (0) = 1, f ′(0) = −A2, f (−y2) =
∞∑
n=0

(
Anyn

n!
)2

.

Observe that f (m) can be represented by the Bessel function of zero order. Given
any function g : R → R, we introduce the notation

g(m) =
{
g(m), m � 0,

0, m > 0.

In particular, this defines the function f . We denote by δ the Dirac measure con-
centrated at the point m = 0 and, more generally, by δm=a the Dirac measure
concentrated at the point a. We denote by D(R) the space of smooth functions with
compact support and by D′(R) the space of distributions.

Lemma 4.1. The functionf solves the ordinary differential equation (4.5) inD′(R).
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Proof. Given a test function ϕ ∈ D(R), we have

〈mf ′′
, ϕ〉 :=

∫

R

(mϕ)′′ f dm =
∫ 0

−∞
(mϕ)′′ f dm = 〈f (0) δ +mf ′′, ϕ〉

and

〈f ′
, ϕ〉 = 〈−f (0) δ + f ′, ϕ〉.

Hence, we find

〈mf ′′ + f
′ + A2 f , ϕ〉 = 〈mf ′′ + f ′ + A2 f , ϕ〉 = 0. ��

Motivated by Lemma 4.1 we introduce the function

χ(R, u) := eR/2 f (u2 − R2) = eR/2 1R2−u2�0 f (R
2 − u2)

= eR/2
∞∑
n=0

(An
n!
)2
(R2 − u2)n+, (4.7)

where

λ+ :=
{
λ, λ � 0,

0, λ < 0,

and 1g�0 denotes the characteristic function of the set
{
g � 0

}
.

Theorem 4.2 (Existence of the entropy kernel). The function χ defined by (4.7) is
a fundamental solution of the equation (4.6) in D′(R2). More precisely, L(χ) =
4 δ(R,u)=(0,0).

Proof. From the definition (4.7) of χ and since the multiplicative factor eR/2 is a
smooth function, it is straightforward to obtain

L(χ) = eR/2

(
f RR − f uu − f

4

)

in the sense of distributions. Note that, throughout the calculation, f = f (u2 −R2)

and that the variables u and R describe R. We compute each term in the right-hand
side of the above identity successively. We have first

〈f RR, ϕ〉 = 〈f , ϕRR〉 =
∫∫

u2−R2�0
f ϕRR dudR

=
∫∫

|R|>|u|
f ϕRR dRdu

=
∫∫

|R|>|u|
(ϕR f )R + 2R f ′ ϕR dRdu.
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Hence, we obtain

〈f RR, ϕ〉 = f (0)
∫

R

(
ϕR(−|u|, u)− ϕR(|u|, u)

)
du

+
∫∫

|R|>|u|
(
(2R ϕf ′)R − ϕ (2f ′ − 4R2 f ′′)

)
dRdu

= f (0)
∫

R

(
ϕR(−|u|, u)− ϕR(|u|, u)

)
du

−2f ′(0)
∫

R

(
ϕ(−|u|, u) |u| + ϕ(|u|, u) |u|) du

+
∫∫

|R|>|u|
ϕ (4R2 f ′′ − 2f ′) dRdu.

Thus, we have established that

f RR = 4R2 f ′′ − 2 f ′ + J1, (4.8)

where J1 is the distribution defined by

〈J1, ϕ〉 = f (0)
( ∫ 0

−∞
(
ϕR(u, u)− ϕR(−u, u)

)
du

+
∫ +∞

0

(
ϕR(−u, u)− ϕR(u, u)

)
du
)

+ 2 f ′(0)
( ∫ 0

−∞
(
uϕ(u, u)+ uϕ(−u, u)) du

−
∫ +∞

0

(
uϕ(−u, u)+ uϕ(u, u)

)
du
)
.

The derivative in u is determined in a similar fashion. We get

〈f uu, ϕ〉 =
∫∫

|u|<|R|
f ϕuu dudR

=
∫ +∞

−∞

∫ +|R|

−|R|
(
(ϕuf )u − 2uϕu f

′) dudR

= f (0)

+∞∫

−∞

(
ϕu(R, |R|)− ϕu(R,−|R|)) dR

+
∫∫

|u|<|R|

(
ϕ (2f ′ + 4u2 f ′′)− 2 (u f ′ ϕ)u

)
dudR

and thus

f uu = 2f ′ + 4u2 f ′′ + J2, (4.9)
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where the distribution J2 is given by

〈J2, ϕ〉 = f (0)
( ∫ 0

−∞
ϕu(R,−R)− ϕu(R,R)dR

+
∫ +∞

0
ϕu(R,R)− ϕu(R,−R)dR

)

+2f ′(0)
( ∫ 0

−∞
(
R ϕ(R,−R)+ R ϕ(R,R)

)
dR

−
∫ +∞

0

(
R ϕ(R,R)+ R ϕ(R,−R)) dR

)
.

Now, since the function f satisfies the differential equation (4.5) it follows from
(4.8), (4.9) that

f RR − f uu − f /4 = J1 − J2.

To conclude, we observe that
∫ 0

−∞
uϕ(−u, u) du = −

∫ ∞

0
R ϕ(R,−R) dR,

∫ ∞

0
uϕ(−u, u) du = −

∫ 0

−∞
R ϕ(R,−R)dR,

d

dR
ϕ(R,R) = ϕu(R,R)+ ϕR(R,R),

d

dR
ϕ(R,−R) = −ϕu(R,−R)+ ϕR(R,−R),

and
∫ 0

−∞
ϕu(R,R) dR = ϕ(0)−

∫ 0

−∞
ϕR(R,R) dR,

∫ ∞

0
ϕu(R,R) dR = −ϕ(0)−

∫ ∞

0
ϕR(R,R) dR,

∫ 0

−∞
ϕu(R,−R) dR = −ϕ(0)+

∫ 0

−∞
ϕR(R,−R) dR,

∫ ∞

0
ϕu(R,−R) dR = ϕ(0)+

∫ ∞

0
ϕR(R,−R) dR.

We find that
〈J1 − J2, ϕ〉 = 4f (0) ϕ(0).

Since f (0) = 1 and eR/2 = 1 when R = 0, this completes the proof of Lemma
4.2. ��
Lemma 4.3. The kernel χ vanishes on the vacuum

lim
R→−∞χ(R, u) = 0 for every u,
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and, at the origin R = 0, satisfies

lim
R→0

χ(R, ·) = 0, lim
R→0±χR(R, ·) → ±2 δu=0 (4.10)

in the distributional sense in u. Moreover, for any fixedR, χ has a compact support,
precisely

χ(R, u) = 0, |u| > R.

It is smooth everywhere except along the boundary of its support where it has a
jump of strength ±eR/2.

Proof. Detailed behavior of χ as R → −∞ can be derived from the asymptotic
formula [25]

∞∑
0

(
xn

n!
)2

= e2x

2
√
πx

(
1 +O

(
1

x

))
when x ↑ ∞.

It follows that

χ(R, u)=1R2−u2�0
e(−|R|+√

R2−u2)/2

√
π(R2 − u2)1/4

(
1 +O

(
1√

R2 − u2

))
when R ↓ −∞.

Next, given ϕ = ϕ(u), ψ = ψ(R) ∈ D(R) we have

〈χR, ϕ ψ〉 = −
∫

R

ϕ(u)

∫

|R|>|u|
eR/2 f (m)ψR dRdu

= −J +
∫

|R|>|u|
ϕ ψ eR/2

(
f

2
− 2R f ′

)
dudR,

where

J =
∫

R

ϕ(u)
{ ∫ −|u|

−∞
+
∫ ∞

|u|

}
(eR/2 fψ)R dRdu

=
∫

R

ϕ(u)
(
e−|u|/2 ψ(−|u|)− e|u|/2 ψ(|u|)

)
du.

We calculate
∫

R

ϕ(u) e−|u|/2 ψ(−|u|) du =
∫

R

eR/2ψ(R)
(
ϕ(R)+ ϕ(−R)) 1R<0 dR,

∫

R

ϕ(u) e|u|/2 ψ(|u|) du =
∫

R

eR/2ψ(R)
(
ϕ(R)+ ϕ(−R)) 1R>0 dR.

It follows that, for eachR,χR is a distribution in the variable u, given by the formula

〈χR(R, ·), ϕ(u)〉 =
∫

|u|<|R|
ϕ(u) eR/2

(f (u2 − R2)

2
− 2R f ′(u2 − R2)

)
du

+eR/2(ϕ(R)+ ϕ(−R)) (1R>0 − 1R<0
)
.

This completes the proof of (4.10) and thus the proof of Lemma 4.3. ��
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Since (4.6) is invariant under the transformations u → u− s for every constant
s, we deduce immediately from Lemma 4.2 that, for every s ∈ R, the function

χ(R, u− s) = eR/2 f (|u− s|2 − R2)

satisfies the partial differential equation

L(χ)(R, u− s) = 4 δ(R,u)=(0,s) (4.11)

in D′(R2). We arrive at:

Theorem 4.4 (The class of weak entropies to the isothermal Euler equations). Re-
strict attention to the region R < 0 (respectively, R > 0). The formula

η(R, u) =
∫

R

χ(R, u− s) ψ(s) ds,

whereψ is an arbitrary function inL1(R), describes the class of all weak entropies
to the Euler equations for isothermal fluids (1.1)–(1.3). In particular, for all u ∈ R,

lim
R→0

η(R, u) = 0, lim
R→0± ηR(R, u) = ±2ψ(u), lim

R→−∞ η(R, u) = 0. (4.12)

Proof. It follows from (4.11) that, for all ϕ ∈ D(R2),
∫

R

L(η)ϕ dRdu = 4
∫

R

ψ(s) ϕ(s, 0) ds,

which implies that
L(η) = 0, R �= 0.

Since, for any fixed s, R, the fundamental solution χ(R, u − s) has a compact
support in the variable u, we also have

∫

R

χ(R, u− s) ψ(s) ds → 0, R → 0. ��

4.3. Mathematical entropy-flux functions

We look for the entropy-flux kernel σ which should generate the class of
entropy-flux functions q via the general formula

q(R, u) =
∫

R

σ(R, u, s) ψ(s) ds.

In the variables (R, u), the system of equations characterizing the entropies

qρ = u ηρ + ρ−1 ηu, qu = ρ ηρ + u ηu

reads, by setting Q := q − u η,

QR = ηu, Qu = ηR − η. (4.13)

It is clear that the entropy flux can be deduced from the entropy by integration in
R and u. We focus attention on the region 0 � ρ � 1, that is, R � 0. We will use
the notation

a ∨ b := max(a, b).
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Theorem 4.5 (Entropy-flux kernel). The entropy-flux kernel has the form

σ(R, u, s) = uχ(R, u− s)+ h(R, u− s),

where the function h admits the following representation formulas:

h = −sgn(u− s)+ ∂

∂u

∫ R

0
χ(r, u− s) dr,

or equivalently

h = ∂

∂s
H(|u− s|, R), H = |u− s| +

∫ −|u−s|

−(|R|∨|u−s|)
er/2 f (|u− s|2 − r2) dr,

(4.14)

or still

h = sgn(u− s)
(
e−|u−s|/2 1|u−s|<|R| − 1

)

−2
∫ −|u−s|

−(|R|∨|u−s|)
(u− s) er/2 f ′(|u− s|2 − r2) dr. (4.15)

Proof. In view of (4.13) we can calculate any value Q∗ = Q(R∗, u∗) via an
integral, as follows. We have

Q∗ =
∫

l∗
ηu dR + (ηR − η) du, l∗ = l− ∪ l0,

where l− and l0 are the curves in the (R, u)–plane given by

l− : R = 0, u = λ, −∞ < λ < u∗,
l0 : R = λR∗, u = u∗, 0 < λ < 1.

It follows from (4.12) that

Q∗ = −2
∫ u∗

−∞
ψ(u) du+

∫ R∗

0
ηu(R, u∗) dR.

Replacing l− by
l+ : u = λ, u∗ < λ < ∞, R = 0,

We obtain similarly

Q∗ = −2
∫ u∗

∞
ψ(u)du+

∫ R∗

0
ηu(u∗, R)dR.

Observe, that
∫ u∗

−∞
ψ(u) du+

∫ u∗

∞
ψ(u) du =

∫

R

ψ(u)sgn(u∗ − u) du.
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Hence,

Q(R, u) = −
∫

R

ψ(s)sgn(u− s) ds +
∫

R

ψ(s)
∂

∂u

∫ R

0
χ(r, u− s) drds,

Next, we have
∫ R

0
χ(r, u− s) dr = −

∫ 0

−|R|
er/2f (|u− s|2 − r2)1r<−|u−s|1r>−|R|dr = −H1,

whereH1 is the last integral in (4.14) and, therefore, the first formula is established.
To calculate

∂

∂u
H1 = ∂

∂u

∫ −|u−s|

−(|R|∨|u−s|)
er/2 f (|u− s|2 − r2) dr,

we observe that

∂

∂u
(|R| ∨ |u− s|) = 1|u−s|>|R| sgn(u− s).

Hence, we have

∂

∂u
H1 = 2

∫ −|u−s|

−(|R|∨|u−s|)
(u− s)er/2f ′(|u− s|2 − r2)dr−f (0)e−|u−s|/2sgn(u− s)

+1|u−s|�|R|e−(|R|∨|u−s|)/2 f (|u− s|2 − (|R| ∨ |u− s|)2) sgn(u− s).

The last term coincides with

1|u−s|�|R| e−|u−s|/2 sgn(u− s).

Thus, the representation formula (4.15) is proved and the proof of Theorem 4.5 is
completed. ��

4.4. Singularities of entropy and entropy-flux kernels

From the above results we see that the functions χ and h are continuous every-
where except along the boundary of their support, that is, the lines u = s ± |R|.
The most singular parts (measures and BV part) of the first-order derivatives of the
functions χ and h with respect to the variable s are now computed.

Theorem 4.6 (Singularities of the entropy kernels). The derivatives χs and hs in
D′(R) are as follows:

χs = eR/2
(
δs=u−|R| − δs=u+|R|

)
+Gχ(R, u− s) 1|u−s|<|R|, (4.16)

hs = eR/2
(
δs=u−|R| + δs=u+|R|

)
+Gh(R, u− s) 1|u−s|<|R|, (4.17)

where, for all |v| � |R|,
Gχ(R, v) := 2eR/2 v f ′(v2 − R2)
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and

Gh(R, v) := e−|v|/2 (1/2 − 2|v|)
+2

∫ −|v|

−(|R|∨|v|)

(
er/2 f ′(v2 − r2)+ 2er/2 v2 f ′′(v2 − r2)

)
dr.

It will be convenient to extend the functions Gχ and Gh by continuity outside
the region |v| < |R| by setting

Gχ(R, v) =
{

2|R| f ′(0) eR/2, v � |R|,
−2|R| f ′(0) eR/2, v � −|R|,

and

Gh(R, v) = eR/2 (2R + 1/2), |v| � |R|.
Proof. Given a test function ϕ = ϕ(s), we can write

∫

R

χ ϕ′(s) ds = eR/2
∫ u+|R|

u−|R|
ϕ′(s) f (|u− s|2 − R2) ds

= eR/2
(
ϕ(u+ |R|)− ϕ(u− |R|))

+eR/2
u+|R|∫

u−|R|
2ϕf ′(|u− s|2 − R2)(u− s)ds,

which yields the first formula (4.16).
Next, it follows from (4.14) that

hs = sgn(u− s) e−|u−s|/2 (δs=u−|R| − δs=u+|R| + 1

2
sgn(u− s)1|u−s|<|R|

)

−2
∫ −|u−s|

−(|R|∨|u−s|)
∂

∂s

(
(u− s) er/2 f ′(|u− s|2 − r2)

)
dr

+2 f ′(0) e−|u−s|/2 (u− s) sgn(s − u)

−2e−(|R|∨|u−s|)/21|u−s|�|R|f ′(|u−s|2−(|R| ∨ |u−s|)2)(u−s) sgn(u− s).

The last term above coincides with

−2 e−|u−s|/2 1|u−s|�|R| f ′(0)|u− s|

and, therefore, the second formula (4.17) is also established. ��
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5. Reduction of the support of the Young measure

5.1. Tartar’s commutation relations

We now turn to investigating Tartar’s commutation relation forYoung measures,
following the approach in Chen & LeFloch [4, 5]. In the previous section we con-
structed the class of weak entropies η and entropy fluxes q in terms of the variables
ρ and u. We can also express η and q as functions of the Riemann invariants W
and Z, via the following change of variables:

η̄(W,Z) := η(u, ρ), q̄(W,Z) = q(u, ρ),

W := ρeu, Z := ρe−u.

To simplify notation, it is convenient to adopt the following convention. In the rest
of this section we will write 〈F 〉 = ∫

F(u, ρ) dν instead of
∫
F̄ (W,Z) dν, by

assuming that ρ, u are the functions of the variables W,Z given by

ρ = (WZ)1/2, u = 1

2
ln
W

Z
.

We will prove:

Theorem 5.1 (Reduction of the support of the Young measure). Let ν = ν(W,Z)

be a probability measure with support included in the region

{(W,Z) : 0 � W � W2, 0 � Z � Z2}
and such that

〈η1 q2 − η2 q1〉 = 〈η1〉 〈q2〉 − 〈η2〉 〈q1〉 (5.1)

(where 〈F 〉 := 〈ν, F 〉) for any two weak entropy pairs (η1, q1) and (η2, q2) of the
Euler equations (1.1), (1.2). Then, the support of ν in the (W,Z)-plane is either a
single point or a subset of the vacuum line

{
ρ = 0

} = {WZ = 0}.
The proof of Theorem 5.1 will be based on cancellation properties associated

with the entropy and entropy-flux pairs of systems of conservation laws. The key
idea (going back to DiPerna [10]) is that, nearby the diagonal

{
s2 = s3

}
, the

function

E(ρ, v; s2, s3) := χ(ρ, v − s2) σ (ρ, v, s3)− χ(ρ, v − s2) σ (ρ, v, s3)

is much more regular than the kernels χ and σ themselves.
The principal scheme can be explained as follows. Given functionsψi ∈ D(R),

(i = 1, 2, 3), we define the entropy pairs

ηi(u, R) =
∫
χ(u− si, R)ψi(si)dsi, qi(u, R) =

∫
σ(u,R, si)ψi(si)dsi,

and deduce from Tartar’s relations (5.1) the following remarkable identity (see
Chen & LeFloch [4], as well as the earlier work [19])

〈η1q2 − q1η2〉 〈η3〉 + 〈q1η3 − η1q3〉 〈η2〉 + 〈q3η2 − η3q2〉 〈η1〉 = 0.
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Next, replacing ψi(si) with −ψ ′
i (si) = −Piψi(si) and defining Fi = F(u,R, si),

we arrive, after cancellation of the arbitrary functions ψi(si), at the equality

〈χ1P2h2 − h1P2χ2〉〈P3χ3〉 + 〈h1P3χ3 − χ1P3h3〉〈P2χ2〉
= −〈P3h3P2χ2 − P3χ3P2h2〉〈χ1〉, (5.2)

which is valid in D′(R)3. In view of the expression of the distributional derivative
of σ and h (Theorem 4.6), each term in (5.2) can be calculated explicitly. Writing

w = u− |R|, z = u+ |R|,
we find

χ1P2h2 − h1P2χ2 = eR/2(h1 − χ1)δs2=w − eR/2(h1 + χ1)δs2=z
+(h1G

χ
2 − χ1G

h
2)1|u−s2|<|R| (5.3)

and, similarly,

χ1P3h3 − h1P3χ3 = eR/2(h1 − χ1)δs3=w − eR/2(h1 + χ1)δs3=z
+(h1G

χ
3 − χ1G

h
3)1|u−s3|<|R|. (5.4)

Moreover, we have

P3χ3P2h2 − P3h3P2χ2 = 2eR
(
δs2=z δs3=w − δs2=w δs3=z

)

+eR/2
(
δs2=w(G

χ
3 −Gh3)+ δs2=z(G

χ
3 +Gh3)

)
1|u−s3|<|R|

+eR/2
(
δs3=w(Gh2 −G

χ
2 )− δs3=z(Gh2 +G

χ
2 )
)

1|u−s2|<|R|

+(Gχ3Gh2 −G
χ
2G

h
3)1|u−s2|<|R|1|u−s3|<|R|.

In view of the formulas (5.3) and (5.4) the right-hand side of (5.2) contains
products of functions with bounded variation (involving σ and h) and Dirac masses
plus smoother terms. Such products were earlier discussed by Dal Maso, LeFloch

& Murat [7]. On the other hand, the right-hand side of (5.2) is more singular and
involves products of measures, product of BV functions by measures, and smoother
contributions; see (5.2). Our calculation below will show that the left-hand side of
(5.2) tends to zero in the sense of distributions if s2 → s1 and s3 → s1, while the
right-hand side tends to a (possibly) non-trivial limit.

We test the equality (5.2) with the function

ψ(s) ϕε2(s − s2) ϕ
ε
3(s − s3) := ψ(s)

1

ε2 ϕ2

(
s − s2

ε

)
ϕ3

(
s − s3

ε

)
(5.5)

of the variables s = s1, s2, s3, where ψ ∈ D(R) and ϕj : R → R is a molifier such
that

ϕj (sj ) � 0,
∫

R

ϕj (sj ) dsj = 1, supp ϕj (sj ) ⊂ (−1, 1).
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5.2. Nonconservative products

To provide testing of equality (5.2) by the function (5.5), we will need the
following technical observations.

Lemma 5.2. Let ψ,F : R → R and f : [a′, b′] → R be continuous functions.
Then, for every interval [a, b] ⊂ R, the integral

I ε(a, b, a′, b′) :=
∫ b′

a′
ψ(s1) f (s1) ϕ

ε
2(s1 − a)

∫ b

a

F (s3) ϕ
ε
3(s1 − s3) ds3ds1

has the limit, when ε → 0,

ψ(a) F (a)
(
A−

2,3 f (a) 1a′<a<b′ + B−
2,3 f (a

′+) 1a=a′ + C−
2,3 f (b

′−) 1a=b′
)
,

where A−
2,3 := B−

2,3 + C−
2,3 and the coefficients B− and C− depend only on the

mollifying functions:

B−
2,3 :=

∫ ∞

0

∫ y1

−∞
ϕ2(y1)ϕ3(y3)dy3dy1,

C−
2,3 :=

∫ 0

−∞

∫ y1

−∞
ϕ2(y1)ϕ3(y3)dy3dy1.

Formally the integral I ε has the form

I (a, b, a′, b′) :=
∫ b′

s1=a′
ψ(s1) f (s1) δs1=a

∫ b

s3=a
F (s3) δs1=s3 .

Lemma 5.2 shows that this term cannot be defined in a classical manner and that,
by regularization of the Dirac masses, different limits may be obtained, depending
on the choice of the mollifying functions.

Similarly we have

Lemma 5.3. Let ψ,F : R → R and f : [a′, b′] → R be continuous functions.
Then, for every interval [a, b] ⊂ R, the integral

J ε(a, b, a′, b′) :=
∫ b′

a′
ψ(s1) f (s1) ϕ

ε
2(s1 − b)

∫ b

a

F (s3) ϕ
ε
3(s1 − s3) ds3ds1

has the following limit when ε → 0:

ψ(b) F (b)
(
A+

2,3 f (b) 1a′<b<b′ + B+
2,3 f (a

′+) 1a=a′ + C+
2,3 f (b

′−) 1a=b′
)
,

where A+
2,3 := B+

2,3 + C+
2,3 and

B+
2,3 :=

∫ ∞

0

∫ ∞

y1

ϕ2(y1)ϕ3(y3)dy3dy1, C
+
2,3 :=

∫ 0

−∞

∫ ∞

y1

ϕ2(y1)ϕ3(y3) dy3dy1.
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Along the same lines we have also:

Lemma 5.4. Let ψ,F : R → R be continuous functions and let the function
f : R → R be continuous everywhere except possibly at two points a and b with
a < b. Then, for every real α, the integral

Kε(a, b, α) :=
∫

R

ψ(s1) f (s1) ϕ
ε
3(s1 − α)

∫ b

a

F (s2) ϕ
ε
2(s1 − s2) ds2ds1

has the following limit when ε → 0:

ψ(α) F (α)
(
f (α) 1a<α<b + (

C−
2,3 f (a−)+ B−

2,3f (a+)
)

1α=a

+(C+
2,3 f (b−)+ B+

2,3 f (b+)
)

1α=b
)
.

We only give the proof of this last statement. Lemma 5.2 and 5.3 can be checked
similarly.

Proof. Making first the change of variables s2 = s1 − εy2 and then s1 = εy1 + α,
we can write

Kε = −
∫

R

ψ(εy1 + α)f (εy1 + α)ϕ3(y1)

∫ y1+(α−b)/ε

y1+(α−a)/ε
F (ε(y1 − y2)+ α)ϕ2(y2)dy2dy1.

Clearly, we have Kε → 0 when α < a or α > b.

Now, if α = a, we can write

Kε =
3∑
1

Kε
i = −

(∫ a

−∞
+
∫ b

a

+
∫ ∞

b

)
ψ(s1)f (s1)ϕ

ε
3(s1 − a)

∫ s1−b
ε

s1−a
ε

F (s1 − εy2)ϕ2(y2) dy2ds1.

Consider the first term Kε
1 (obtained by taking s1 = εy1 + a)

Kε
1= −

∫ 0

−∞
ψ(εy1 + a)f (εy1 + a)ϕ3(y1)

∫ y1− b−a
ε

y1

F(ε(y1 − y2)+ a)ϕ2(y2) dy2dy1,

which satisfies

Kε
1 → ψ(a) F (a)f (a−)

∫ 0

−∞
ϕ3(y1)

∫ y1

−∞
ϕ2(y2) dy2dy1.

Similarly, we see that

Kε
2 → ψ(a)F (a)f (a+)

∫ ∞

0
ϕ3(y1)

∫ y1

−∞
ϕ2(y2)dy2dy1, Kε

3 → 0.

The other values of α can be studied by the same arguments and this completes the
proof of Lemma 5.4. ��
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5.3. Proof of Theorem 5.1

Step 1. First, we consider the right-hand side of (5.2). Let us denote

dν := dν(W,Z), dν′ := dν(W ′, Z′), w′ = u′ − |R′|, z′ = u′ + |R′|.
Applying the distribution 〈P3h3P2χ2 − P3χ3P2h2〉〈χ1〉 to the test function (5.5),
we write the integral

∫

R3
〈P3h3(s3)P2χ2(s2)

−P3χ3(s3)P2h2(s2)〉〈χ1(s)〉ψ(s)ϕε2(s − s2)ϕ
ε
3(s − s3)dsds2ds3 (5.6)

as the sum
∑4

1 I
ε
i , in which, in view of Theorem 4.6, we can distinguish between

products of Dirac measures

I ε1 :=
∫
ψ〈χ1〉

〈
2eRϕε2(s − z))ϕε3(s − w))− 2eRϕε2(s − w))ϕε3(s − z))

〉
ds,

products of Dirac measure by functions with bounded variation

I ε2 :=
∫
ψ〈χ1〉

〈
eR/2ϕε2(s − w))

∫
(G

χ
3 −Gh3)ϕ

ε
3(s − s3)1|u−s3|<|R|ds3

〉
ds

−
∫
ψ〈χ1〉

〈
eR/2ϕε3(s − w))

∫
(G

χ
2 −Gh2)ϕ

ε
2(s − s2)1|u−s2|<|R|ds2

〉
ds

=: I ε2,1 − I ε2,2,

I ε3 :=
∫
ψ〈χ1〉

〈
eR/2ϕε2(s − z))

∫
(G

χ
3 +Gh3)ϕ

ε
3(s − s3)1|u−s3|<|R| ds3

〉
ds

−
∫
ψ〈χ1〉

〈
eR/2ϕε3(s − z))

∫
(G

χ
2 +Gh2)ϕ

ε
2(s − s2)1|u−s2|<|R| ds2

〉
ds,

and a smoother remainder

I ε4 =
∫

R3

ψ〈χ1〉
〈
(G

χ
3G

h
2−Gχ2Gh3)1|u−s3|<|R|1|u−s2|<|R|

〉
ϕε2(s−s2)ϕε3(s−s3)dsds2ds3.

By change of variable we see that the integral

I ε1 = 2

ε

∫

W,Z

∫

W ′,Z′

∫
eR ψ(εy + z) χ(R′, u′ − (εy + z))

(
ϕ2(y) ϕ3(y + 2|R|/ε)− ϕ2(y + 2|R|/ε) ϕ3(y)

)
dydνdν′.

tends to zero : I ε1 → 0. The same is true for the smoothest term I ε4 , in view of the
identity

I ε4 =
∫ ∫ ∫ ( ∫ z

w

Gχ(R, u, s3) ϕ
ε
3(s − s3) ds3

∫ z

w

Gh(R, u, s2) ϕ
ε
2(s − s2) ds2

−
∫ z

w

Gχ(R, u, s2) ϕ
ε
2(s − s2) ds2

∫ z

w

Gh(R, u, s3) ϕ
ε
3(s − s3) ds3

)

ψχ(R′, u′ − s) dsdνdν′,
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which clearly tends to
∫ ∫ ∫

ψ χ(R′, u′ − s) 1|u−s|<|R|
(
Gχ(R, u, s)Gh(R, u, s)

−Gχ(R, u, s)Gh(R, u, s)
)
dsdνdν′ = 0.

We define

Q± := Gχ ±Gh, Fi = F(R, u, si), F ′
i = F(R′, u′, si).

Let us now consider the term I ε2 = I ε2,1 − I ε2,2 in (5.6). We have

I ε2,1 =
∫ ∫ ∫

ψeR/2χ ′
1 ϕ

ε
2(s − w)

∫ z

w

Q−
3 ϕ

ε
3(s − s3) ds3dsdνdν

′.

Therefore, in view of Lemma 5.2, we find that I ε2,1 tends to

∫∫
eR/2ψ(w)Q−(w)

(
χ ′(w)1w′<w<z′A

−
2,3 + χ ′(w′+)1w=w′B−

2,3 + χ ′(z′−)1w=z′C−
2,3

)
dνdν′,

and I ε2,2 tends to

∫∫
eR/2ψ(w)Q−(w)

(
χ ′(w)1w′<w<z′A

−
3,2 + χ ′(w′+)1w=w′B−

3,2 + χ ′(z′−)1w=z′C−
3,2

)
dνdν′,

as ε → 0. We conclude that the limit of I ε2 is equal to
∫∫

eR/2 ψ(w)Q−(w)
(
χ ′(w) 1w′<w<z′ A

− + χ ′(w′+) 1w=w′ B− + χ ′(z′−) 1w=z′ C−) dνdν′,

where

A− = A−
2,3 − A−

3,2, B− = B−
2,3 − B−

3,2, C− = C−
2,3 − C−

3,2.

By Lemma 5.3 we can determine similarly that limε→0 I
ε
3 is equal to

∫∫
eR/2 ψ(z)Q+(z)

(
χ ′(z) 1w′<z<z′A

+ + χ ′(w′+) 1z=w′ B+ + χ ′(z′−) 1z=z′ C+)dνdν′,

where

A+ := A+
2,3 − A+

3,2, B+ := B+
2,3 − B+

3,2, C+ := C+
2,3 − C+

3,2.
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In conclusion, we have identified the limit of the term (5.10). It is equal to
∫∫

eR/2ψ(w)Q−(w)
(
χ ′(w)1w′<w<z′A

− + χ ′(w′+)1w=w′B− + χ ′(z′−)1w=z′C−)dνdν′

+
∫∫

eR/2ψ(z)Q+(z)
(
χ ′(z)1w′<z<z′A

+ + χ ′(w′+)1z=w′B+ + χ ′(z′−)1z=z′C+)dνdν′.

Step 2. We now proceed by studying the two terms in the left-hand side of (5.2).
We apply the distribution 〈χ1(s1)P2h2(s2)−h1(s1)P2χ2(s2)〉 〈P3χ3(s3)〉 to the test
function (5.5). We write the integral

∫

R3
〈χ1(s1)P2h2(s2)− h1(s1)P2χ2(s2)〉

〈P3χ3(s3)〉ψ(s1) ϕε2(s1 − s2) ϕ
ε
3(s1 − s3) ds1ds2ds3

as the sum
∑3

1 J
ε
i , where

J ε1 :=
∫

R3
〈eR/2 (h1 − χ1) δs2=w〉 〈P3χ3〉ψ(s) ϕε2(s − s2) ϕ

ε
3(s − s3) dsds2ds3

J ε2 := −
∫

R3
〈eR/2(h1 + χ1)δs2=z〉 〈P3χ3〉ψ(s) ϕε2(s − s2) ϕ

ε
3(s − s3) dsds2ds3,

and

J ε3 :=
∫

R3
〈(h1G

χ
2 −χ1G

h
2)1|u−s2|<|R|〉〈P3χ3〉ψ(s)ϕε2(s− s2)ϕε3(s− s3)dsds2ds3.

The application of the distribution 〈χ1P3h
ε
3 − h1P3χ

ε
3 〉〈P2χ

ε
2 〉 to the test func-

tion (5.5) can be represented similarly. The integral
∫

R3
〈χ1(s)P3h3(s3)− h1(s)P3χ3(s3)〉

〈P2χ2(s2)〉ψ(s) ϕε2(s − s2) ϕ
ε
3(s − s3) dsds2ds3

is equal to
∑3

1K
ε
i , where

Kε
1 :=

∫

R3
〈eR/2 (h1 − χ1) δs3=w 〉〈P2χ2〉ψ(s) ϕε2(s − s2) ϕ

ε
3(s − s3) dsds2ds3,

Kε
2 := −

∫

R3
〈eR/2 (h1 + χ1) δs3=z〉 〈P2χ2〉ψ(s)ϕε2(s − s2) ϕ

ε
3(s − s3) dsds2ds3,

and

Kε
3 :=

∫

R3
〈(h1G

χ
3 −χ1G

h
3)1|u−s3|<|R|〉〈P2χ2〉ψ(s)ϕε2(s−s2)ϕε3(s−s3)dsds2ds3.
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Some further decomposition of these integral terms will be necessary:

J εi =
3∑
1

J εi,j , Kε
i =

3∑
1

Kε
i,j ,

where

J ε1,1 :=
∫

R3
〈eR/2(h1 − χ1)δs2=w〉〈eR/2δs3=w〉

ψ(s1)ϕ
ε
2(s − s2)ϕ

ε
3(s − s3) dsds2ds3,

J ε1,2 := −
∫

R3
〈eR/2(h1 − χ1)δs2=w〉〈eR/2δs3=z〉

ψ(s1)ϕ
ε
2(s − s2)ϕ

ε
3(s − s3) dsds2ds3,

J ε1,3 :=
∫

R3
〈eR/2(h1 − χ1)δs2=w〉〈Gχ3 1|u−s3|<|R|〉

ψ(s)ϕε2(s − s2)ϕ
ε
3(s − s3) dsds2ds3,

J ε2,1 := −
∫

R3
〈eR/2(h1 + χ1)δs2=z〉〈eR/2δs3=w〉

ψ(s)ϕε2(s − s2)ϕ
ε
3(s − s3) dsds2ds3,

J ε2,2 :=
∫

R3
〈eR/2(h1 + χ1)δs2=z〉〈eR/2δs3=z〉

ψ(s)ϕε2(s − s2)ϕ
ε
3(s − s3) dsds2ds3,

J ε2,3 := −
∫

R3
〈eR/2(h1 + χ1)δs2=z〉〈Gχ3 1|u−s3|<|R|〉

ψ(s)ϕε2(s − s2)ϕ
ε
3(s − s3) dsds2ds3,

J ε3,1 :=
∫

R3
〈(h1G

χ
2 − χ1G

h
2)1|u−s2|<|R|〉〈eR/2δs3=w〉

ψ(s)ϕε2(s − s2)ϕ
ε
3(s − s3) dsds2ds3,

J ε3,2 := −
∫

R3
〈(h1G

χ
2 − χ1G

h
2)1|u−s2|<|R|〉〈eR/2δs3=z〉

ψ(s)ϕε2(s − s2)ϕ
ε
3(s − s3) dsds2ds3,

J ε3,3 :=
∫

R3
〈(h1G

χ
2 − χ1G

h
2)1|u−s2|<|R|〉〈Gχ3 1|u−s3|<|R|〉

ψ(s)ϕε2(s − s2)ϕ
ε
3(s − s3) dsds2ds3.

The terms Kε
1,1, Kε

1,2, etc. are defined in a completely analogous fashion.
We can put J ε1,1 in the form

J ε1,1 = 1

ε2

∫∫∫
ψ e(R+R′)/2 (h1 − χ1) ϕ2

(
s − w)

ε

)
ϕ3

(
s − w′

ε

)
) dνdν′ds

= 1

ε

∫∫∫
ψ(s)e(R+R′)/2 (h− χ)(s)

ϕ2(y1)|s=εy1+wϕ3

(
y1 + w − w′

ε

)
dνdν′dy1.
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A similar representation formula is valid for Kε
1,1. In consequence we find

J ε1,1 −Kε
1,1 = 1

ε

∫∫∫
ψ(s) e(R+R′)/2(h− χ)(s)|s=εy1+w

(
ϕ2(y1)ϕ3

(
y1+w − w′

ε

)
−ϕ3(y1)ϕ2

(
y1+w − w′

ε

))
dνdν′dy1.

Clearly, we have
J ε1,1 −Kε

1,1 → 0.

The terms J εk,l andKε
k,l contain the product of measures or the product of BV-func-

tions and can be treated in the same manner. In turn, we obtain

J ε1,2 −Kε
1,2 → 0, J ε2,1 −Kε

2,1 → 0, J ε2,2 −Kε
2,2 → 0, J ε3,3 −Kε

3,3 → 0.

Let us consider the terms J εk,l and Kε
k,l , containing the product of a measure

and a BV-function. By Lemma 5.4, the term

J ε1,3 =
∫∫∫

ψ(s)eR/2 (h1 − χ1) ϕ
ε
2(s − w)

∫ z′

w′
G
χ
3

′
ϕε3(s − s3) ds3dsdνdν

′

converges toward
∫∫

eR/2 ψ(w) (h− χ)(w)Gχ
′
(w)

(
1w′<w<z′ + 1w=w′ (C−

2,3 + B−
2,3)+ 1w=z′ (C+

2,3 + B+
2,3)

)
dνdν′,

hence,

lim
ε→0

(J ε1,3 −Kε
1,3) =

∫∫
eR/2 ψ(w) (h− χ)(w)Gχ

′
(w)

(
1w=w′ (C− + B−)+ 1w=z′(C+ + B+)

)
dνdν′.

By the same argument we find that the term

J ε3,1 =
∫∫∫

ψ(s) eR
′/2ϕε3(s − w′)

∫ z

w

(h1G
χ
2 − χ1G

h
2) ϕ

ε
2(s − s2) ds2dsdνdν

′

tends toward
∫∫

eR
′/2 ψ(w′)Gχ(w′) L dνdν′ −

∫∫
eR

′/2 ψ(w′)Gh(w′) S dνdν′,

where

L := 1w<w′<z h(w
′)+ 1w′=w

(
h(w−) C−

3,2 + h(w+) B−
3,2

)

+1w′=z
(
h(z−) C+

3,2 + h(z+) B+
3,2

)
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and

S := 1w<w′<z χ(w
′)+ 1w′=w

(
χ(w−) C−

3,2 + χ(w+) B−
3,2

)

+1w′=z
(
χ(z−)C+

3,2 + χ(z+)B+
3,2

)
.

Hence,

J ε3,1 −Kε
3,1 → −

∫∫
eR

′/2ψ(w′) (1w′=wMw + 1w′=z Mz) dνdν
′,

where

Mw := Gχ(w)
(
h(w−)C− + h(w+)B−)−Gh(w)

(
χ(w−)C− + χ(w+)B−),

Mz = Gχ(z)
(
h(z−)C+ + h(z+)B+)−Gh(z)

(
χ(z−)C+ + χ(z+)B+).

It can be seen that the integrals, containing the functions 1w′=w and 1w′=z cancel
each other.

In a similar way, we can treat the other terms and arrive at the final equality
∫∫

eR/2 ψ(w)Q−(w) χ ′(w)A− 1w′<w<z′

+eR/2 ψ(z)Q−(z) χ ′(z)A+ 1w′<z<z′ dνdν
′ = 0,

resulting from (5.2).

Step 3. Observing that A+ = −A− and

Q−(w) = −Q+(z) = eR/2
(

− f (0)

2
+ 2|R| + 2|R|f ′(0)

)
=: D(R),

we can write∫∫
Y eR/2D(R)

(
ψ(w) χ ′(w) 1w′<w<z′ + ψ(z) χ ′(z) 1w′<z<z′

)
dνdν′ = 0,

(5.7)

where

Y =
+∞∫

−∞

s2∫

−∞
ϕ2(s2)ϕ3(s3)− ϕ2(s3)ϕ3(s3)ds2ds3.

As observed in [5], the functions ϕ2 and ϕ3 can easily be chosen in such a way that
Y �= 0.

In accordance with our notation, the equality (5.7) means precisely
∫∫

D

(
1

2
ln(WZ)

)
(W Z)1/4 (W ′ Z′)1/4

(
f

((
− ln

W ′

W
ln(Z′W)

)
ψ(lnW) 1W ′<W<1/Z′

+f (− ln(W ′Z) ln
Z′

Z

)
ψ(− lnZ) 1W ′<1/Z<1/Z′

)
dνdν′ = 0.
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The conditions (3.21) guarantee that |D(R)| � eR/2/2. Since f (−x2) � 1 and the
function ψ is arbitrary, we conclude from the last equality that
∫∫

W,Z

(WZ)1/2
∫∫

{
W ′<W

}
∩
{
Z′<1/W

}(W ′Z′)1/4 dν(W ′, Z′)dν(W,Z) = 0

and
∫∫

W,Z

(WZ)1/2
∫∫

{
W ′<1/Z

}
∩
{
Z′<Z

}(W ′Z′)1/4 dν(W ′, Z′) dν(W,Z) = 0.

We arrive at the following important claim: whenever

W ∗Z∗ �= 0, (W ∗, Z∗) ∈ supp ν,

we have ∫∫

W,Z

(WZ)1/2dν(W,Z) �= 0

and therefore
∫∫

{
W ′<W ∗

}
∩
{
Z′<1/W ∗

}(W ′Z′)1/4 dν(W ′, Z′) = 0,
∫∫

{
W ′<1/Z∗

}
∩
{
Z′<Z∗

}(W ′Z′)1/4 dν(W ′, Z′) = 0.
(5.8)

We will now conclude from (5.8) that the Young measure is a Dirac mass or
a measure concentrated at the vacuum. At this stage, it is useful to draw a picture
on the W,Z-plane, with the W -axis being horizontal. We draw two hyperbolas,
WZ = 1 and WZ = ρ2

2 , keeping in mind that supp ν lies below the hyperbola
WZ = ρ2

2 , where the constant ρ2 < 1 is defined in Section 3. The hyperbola
WZ = 1 helps us to picture the set

M∗ :=
({

0 < W ′ < W ∗} ∩ {0 < Z′ < 1/W ∗})

∪
({

0 < W ′ < 1/Z∗} ∩ {0 < Z′ < Z∗}),

a union of two rectangles. The relations (5.8) imply that M∗ does not intersect the
support of ν:

W ∗Z∗ �= 0 and (W ∗, Z∗) ∈ supp ν �⇒ M∗ ∩ supp ν = ∅. (5.9)

By construction, the hyperbola WZ = 1 does not intersect supp ν. The inclu-
sion supp ν ⊂ {ρ = 0} holds if no hyperbola WZ = δ, 0 < δ < 1, intersects
supp ν. If supp ν contains a point (W,Z) such that ρ(W,Z) �= 0, there is a number
0 < δ < 1 such that the hyperbola WZ = δ intersects supp ν. Let 0 < δ0 < 1 be
the largest number such that the hyperbola WZ = δ0 intersects supp ν. By (5.9),
the intersection

supp ν ∩ {WZ = δ0}
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may contain only one point (W ∗, Z∗) and

supp ν ∩ {0 < WZ < δ0} = ∅.
Thus

ν = αδ∗ + µ, (5.10)

with suppµ ⊂ {ρ = 0}. Throughout the paper we use only weak entropies. Hence,
putting (5.10) into Tartar’s commutation relation (5.1), we find that any two entropy
pairs satisfy the equality

α(q2η1 − q1η2) = α2(q2η1 − q1η2) (5.11)

at the point (W ∗, Z∗). Let us choose the following entropy pair (as in [31]):

ηi = ρBi eAiu, qi = − Ai

Bi − 1
ρBi−1eAiu, Ai = √

Bi(Bi − 1), B1 �= B2.

Now, the equality(5.11) is rewritten as

α(1 − α)ρB1+B2−1∗ e(A1+A2)u∗
(√ B1

B1 − 1
−
√

B2

B2 − 1

)
= 0.

Hence, α = 0 or α = 1. This completes the proof of Theorem 5.1.

6. Convergence and compactness of solutions

Due to the decomposition (5.10) of the Young measures, the convergence for-
mulas (3.9) imply that

Wε ⇀ W, Zε ⇀ Z, F(Wε,Zε) ⇀ F(W,Z) weakly � in L∞(�),

for any function F(α, β), F ∈ C(K), such that F = 0 at the vacuum set αβ = 0.
(See formula (3.20) for the definition of the compact set K .) Hence, for almost all
(x, t) ∈ �,

ρε := (WεZε)1/2 → ρ = (WZ)1/2 =: f1(W,Z),

mε := (Wε Zε)1/2 ln

(
Wε

Zε

)1/2

→ m

= (WZ)1/2 ln

(
W

Z

)1/2

=: f2(W,Z),

(mε)2

ρε
:= (Wε Zε)1/2

(
ln

(
Wε

Zε

)1/2
)2

→ m2

ρ

= f3(W,Z) := (WZ)1/2

(
ln

(
W

Z

)1/2
)2

.
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Moreover,

F(mε, ρε) → F(m, ρ) for almost all (x, t) ∈ � (6.1)

for any function F(m, ρ) such that

F̃ (α, β) := F(f2(α, β), f1(α, β)) ∈ C(K), F̃ |αβ=0 = 0. (6.2)

Indeed, the convergence (6.1) can be derived from the following fact:

vε → v and (vε)2 → v2 weakly in L2
loc(�)

�⇒ vε → v strongly in L2
loc(�).

Let us show that (m, ρ) is an entropy solution of problem (2.1). To this end
we let ε and ε1 go to zero in (3.13). (More exactly we should do it in the similar
equality relevant to the auxiliary approximation.) If functions η(m, ρ), q(m, ρ)
obey the restrictions (6.2), we obtain∫

(η(mε, ρε)− η(mε0, ρ
ε
0))ϕt + q(mε, ρε)ϕx dxdt

→
∫
(η(m, ρ)− η(m0, ρ0))ϕt + q(m, ρ)ϕx dxdt,

ε

∫
η(mε, ρε)ϕxx dxdt → 0

for any ϕ ∈ D(R2).
From now on we assume that ε1 = εr , r > 1. If a function η(m, ρ) meets the

conditions of Theorem 2.1, the derivatives ηm(m, ρ) andmρ(m, ρ) are continuous
on any closed set

{0 � ρ � ρ1, |m| � c1ρ(1 + | ln ρ|)}, ρ1 > 0, c1 > 0.

Hence, by estimate (3.19),

|ε1ux(qm + ηρ)| =
∣∣∣∣2ε1ux

(
m

ρ
ηm + ηρ

)∣∣∣∣ � cε1(|uux | + |ux |)

� ε1/2ρ1/2|ux |(ε r−1
2 + |u|ργ εδ),

where 2γ < r−1
r
, 2δ = r(1 − 2γ )− 1. Besides,

ε1ρ
−1|ηmρx | � cε1/2ρ−1/2|ρx |ε r−1

r .

Now, it follows from Lemma 3.3 and estimates (3.19) that

ε1ux(qm + ηρ)− 2ε1ηmρ
−1ρx → 0 in L2

loc(�).

Taking into account the convexity of the function η(m, ρ), we send ε to zero in
(3.13) to deduce that the pair (m, ρ) is an entropy solution of (2.1), (2.2). The proof
of Theorems 2.1 to 2.3 is completed.

We conclude by giving a proof of Theorem 2.4. Let (mn, ρn) be a sequence of
bounded in L∞(�) entropy solutions of the problem (2.1) obeying the restriction
of Theorem 2.4. We introduce the sequences

Wn := ρne
mn/ρn, Zn = ρn e

−mn/ρn .
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Clearly, we have

Wn ⇀ W, Zn ⇀ Z weakly � in L∞
loc(�),

and there exist Young measures νx,t such that, for all F(α, β) ∈ Cloc(R
2),

F(Wn(x, t), Zn(x, t)) ⇀ 〈νx,t , F 〉.
Given two entropy pairs (ηi(m, ρ), qi(m, ρ)) from Theorem 2.1, the sequences of
measures

θni := ∂tηi(mn, ρn)+ ∂xqi(mn, ρn) = ∂t η̃(Wn,Zn)+ ∂xq̃(Wn,Zn),

satisfy the conditions of Murat’s lemma and are compact in W−1,2
loc (�). (We recall

the notation q̃(W,Z) := q(f2(W,Z), f1(W,Z)).) By the div-curl lemma, the Tar-
tar commutation relation (3.15) is valid for theYoung measures νx,t . Then we argue
like in the proof of Theorem 2.1 to arrive at the decomposition (5.10) for νx,t . Hence,

F(Wn(x, t), Zn(x, t)) → F(W(x, t), Z(x, t)) almost everywhere in �

for any F(α, β) ∈ Cloc(R
2) such that F(α, β) = 0 if αβ = 0. Writing

ρ = f1(W,Z), m = f2(W,Z), ρn = f1(Wn,Zn), mn = f2(Wn,Zn),

we pass to the limit, as n → ∞, in the inequality
∫∫

η(mn, ρn) ∂tϕ + q(mn, ρn) ∂xϕ dxdt +
∫
η(m0, ρ0) ϕ(x, 0) dx � 0

and check that (m, ρ) is an entropy solution of the problem (2.1), (2.2). The proof
of Theorem 2.4 is completed.
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