
Digital Object Identifier (DOI) 10.1007/s00205-003-0277-2
Arch. Rational Mech. Anal. 170 (2003) 247–276

Binary Decompositions for Planar N-Body
Problems and Symmetric Periodic Solutions

Kuo-Chang Chen

Communicated by P. Rabinowitz

Abstract

A binary decomposition for a system of N masses is a way of treating the sys-
tem as

(
N
2

)
binaries with the total action exactly the same as that of the original

system. By considering binary decompositions, we are able to provide effective
lower-bound estimates for the action of collision paths in several spaces of sym-
metric loops. As applications, we use our estimates to prove the existence of some
new classes of symmetric periodic solutions for the N -body problem.

1. Introduction

The planar Newtonian N -body problem concerns the motion of N (� 2) mass
points m1, m2, . . . , mN moving in C in accordance with Newton’s law of gravita-
tion:

mkẍk = ∂

∂xk

U(x), k = 1, . . . , N, (1)

where xk ∈ C is the position of mk and

U(x) = U(x1, . . . , xN) =
∑

1�i<j�N

Gmimj

|xi − xj |

is the potential energy, and G > 0 is the gravitation constant. The kinetic energy is
given by

K(ẋ) =
N∑

i=1

1

2
mi |ẋi |2.
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Equations (1) are the Euler-Lagrange equations for the action functional A defined
by

A(x) =
∫ T

0
K(ẋ) + U(x) dt , (2)

where T is a positive constant. In this article we will primarily be dealing with
periodic orbits. Therefore, the ground space over which A is defined is selected as
H 1(R/T Z, C

N).
The major purpose of this article is to provide a systematic way of estimating

the lower bound for the action functional on collision paths in H 1(R/T Z, C
N).

This was carried out by treating each mass as a compound of particles, each of
which interact with exactly one particle in the system. The new system consists of(

N
2

)
binaries with total action exactly the same as the action of the original system.

When a path in H 1(R/T Z, C
N) possesses certain symmetry, we may classify the

binaries and then estimate their action accordingly. As applications, we use our
lower-bound estimates to prove the existence of some new classes of symmetric
periodic solutions with zero angular momentum. Our study is motivated by recent
discoveries made by Chenciner, Montgomery, Simó et al. [1, 6–8].

This paper is organized as follows. The main results can be found in Sections 6
and 7. In Section 5 we define binary decompositions for a system of N masses, based
on which we derive in Section 6 lower-bound estimates for the action functional
on some spaces of symmetric loops. Sections 7, 8 contain some applications of
our lower-bound estimates. In particular, we prove the existence of infinitely many
nontrivial double choreographic solutions (defined in Section 5) for (1). Sections 2,
3, 4 are preparations for the proof of the results in Sections 6, 7, 8.

2. An extension of Gordon’s theorem

In the simplest case, the Kepler problem (N = 2), the action functional A
defined on H 1(R/T Z, C

2) takes the form

A(x) =
∫ T

0

1

2
(m1|ẋ1|2 + m2|ẋ2|2) + Gm1m2

|x1 − x2| dt

= A0(r) + A1(x̄),

where r = x2 − x1, x̄ is the mass center, and

A0(r) =
∫ T

0

m1m2

2(m1 + m2)
|ṙ|2 + Gm1m2

| r| dt, (3)

A1(x̄) =
∫ T

0

m1 + m2

2
| ˙̄x|2 dt. (4)

Granting that linear momentum is an integral of motion, it is customary to drop the
integral A1 and consider critical points of A0 with loops r in H 1(R/T Z, C).

Let �T be the space of loops in H 1(R/T Z, C \ {0}) with nonzero winding
number around 0. In [11] Gordon proved
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Gordon’s Theorem. The functional A0 attains its infimum over �T at elliptical
Keplerian orbits with prime period T , and attains its infimum over ∂�T , the bound-
ary of �T , at collision-ejection Keplerian orbits with prime period T . The values
of A0 over these orbits are all equal to

3

(
G2π2

2(m1 + m2)

) 1
3

m1m2T
1
3 . (5)

Periodic collision-ejection Keplerian orbits can be considered to be degener-
ate elliptical orbits with eccentricity 1. It is easy to see that without the topological
constraint the action functional, in spite of being weakly lower-semicontinuous and
bounded from below, has no minimum. In what follows we present an extension
of Gordon’s theorem in a larger space. Our generalization has no use in the Kepler
problem, but we will see later that it is quite useful when N � 3 (see Theorems 1
and 2).

Restriction to the case with A1 = 0 involves no loss of generality because we
are aiming for critical points of A and it follows from Kepler’s equation that linear
momentum is a first integral. If critical points of A are not the only things we are
concerned about, then it is less natural to make such an assumption. This concern
will become more apparent in Sections 5 and 6. For this reason we consider loops
in H 1(R/T Z, C

2) without assuming a priori that A1 is zero.
Let O(x2 − x1) ⊂ C denote the orbit of r = x2 − x1 for x = (x1, x2) ∈ H 1.

Consider

�T =
{
x ∈ H 1(R/T Z, C

2) : O(x2 − x1) ∩ L �= ∅
for any straight line L containing 0

}
. (6)

Clearly �T is a closed subset in H 1 that contains �T in its interior. It contains lots
of loops with zero winding number around 0.

Proposition 1. The action functional A, and hence A0, attains its infimum over
�T . A minimizer x of A or A0 is either an elliptical Keplerian orbit with prime
period T , a collision-ejection Keplerian orbit with prime period T , or is traveling
back and forth along one half of an elliptical Keplerian orbit with prime period T.
The infimum value of A over �T is given by (5).

Proof. We write � for �T and � for �T here for simplicity. Since �̄ is a subset
of �, by Gordon’s theorem all we need to show is

inf
x∈�\�̄

A(x) � 3

(
G2π2

2(m1 + m2)

) 1
3

m1m2T
1
3 ,

and minimizers in � \ �̄ are orbits that travel back and forth along one half of an
elliptical Keplerian orbit with prime period T.

Note that A0, �, and � are invariant under translations in C; that is, for any
ξ ∈ H 1(R/T Z, C), A0 has the same value at xξ = x − (ξ, ξ) as at x, and xξ

belongs to � (resp. �) if x does. Therefore minimizers of A on � \�, if they exist,
have to be zeros of A1.
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Let x ∈ � \ �̄ be a zero of A1. We may assume that the mass center is at the
origin. By definition of �, x satisfies

max
t∈[0,T ] Arg(r(t)) − min

t∈[0,T ] Arg(r(t)) � π.

Here Arg(w) ∈ [0, 2π) denotes the argument of w ∈ C \ {0}. By rotating about
the origin properly and translating the time variable (neither of which affect the
action), we may assume that

Arg(r(0)) = min
t∈[0,T ] Arg(r(t)) = 0, and

Arg(r(τ )) = π

for some τ ∈ (0, T ). The assumption that the mass center is at the origin implies
that x1, x2 are both on the real axis at t = 0, τ, T .

The winding number of r about 0 is zero since x �∈ �. Now we define a new
loop x̃ = (x̃1, x̃2) ∈ � as follows:

x̃(t) =
{

(x1(t), x2(t)) for t ∈ [0, τ ],
(x̄1(t), x̄2(t)) for t ∈ (τ, T ].

This path reflects a portion of x by complex conjugation. By the construction, x̃

belongs to �, the winding number of r̃ = x̃2 − x̃1 about the origin is nonzero (so
x̃ ∈ �), and A(x) = A(x̃). This proves the inequality we claimed. In order that
the infimum is achieved at x ∈ � \ �̄, the corresponding x̃ defined above has to
be an elliptical Keplerian orbit with prime period T , in which case x has to travel
back and forth along half of the orbit of x̃. This completes the proof. ��

3. Three topological lemmas

From either a theoretic point of view or from numerical simulations, many peri-
odic orbits for the N -body problem have been discovered to, or are expected to,
possess certain symmetries, especially in cases where equal masses are present. In
many cases some masses share a single orbit. This motivates us to investigate the
relationships between particles sharing the same orbit. For this purpose we prove
three topological lemmas in this section. These lemmas together with Proposition 1
show how these masses behave compared to Keplerian orbits, and will be used in
Section 6 to prove Theorems 1 and 2.

Lemma 1. Let C ⊂ C be a piecewise smooth closed curve, possibly with self inter-
sections. Let γ1, γ2 : R/T Z → C be two absolutely continuous parametrizations
of C with the same orientation. Then the orbit O(γ2 −γ1) ⊂ C of γ2 −γ1 intersects
with every straight line passing through the origin.

Proof. The case 0 ∈ O(γ2 − γ1) is obvious. Consider the case 0 �∈ O(γ2 − γ1).
Without loss of generality, we may assume

Arg(γ2(0) − γ1(0)) = min
t∈[0,T ] Arg(γ2(t) − γ1(t)) = 0.
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All we need to show is

max
t∈[0,T ] Arg(γ2(t) − γ1(t)) � π. (7)

Consider a moving frame along γ1(t) with its coordinate axes parallel to the
real and imaginary axis. See Fig. 1. Equation (7) holds if we can show that for some
t the point γ2(t) is inside the third or fourth quadrant or on the negative real axis
of the moving frame. Define

b = max{β : α + βi ∈ C, α, β ∈ R}, a = max{α : α + bi ∈ C, α ∈ R}.
Let P = (a, b); then P ∈ C and there exists some tP ∈ [0, T ] such that γ1(tP ) = P .
Because γ2(tP ) cannot be equal to γ1(tP ), at this moment γ2(tP ) has to be inside
the third or fourth quadrant or on the negative real axis of the moving frame. This
proves (7). ��

From the proof Lemma 1 it looks plausible to strengthen the conclusion by
showing

max
t∈[0,T ] Arg(γ2(t) − γ1(t)) > π.

But this is not the case, as the following example demonstrates.

Example 1. Consider the lemiscate C with the standard parametric equation:

(α(t), β(t)) =
(

cos t

1 + sin2 t
,

cos t sin t

1 + sin2 t

)
.

Let θ0 = tan−1( 1√
2
) ∈ (−π

2 , π
2 ) and let ϕ(t) be a smooth nonnegative function with

support [θ0, π − θ0] and with |ϕ′(t)| < 1 for any t . Define two parametrizations
γ1, γ2 : [−θ0, 2π − θ0) → C by

C

γ1(t)

Pb

C

Fig. 1.
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γ1(t) =
{

α(t) + β(t)i for t ∈ [−θ0, θ0] ∪ [π − θ0, π + θ0] ,

α(t + ϕ(t)) + β(t + ϕ(t))i for t ∈ (θ0, π − θ0) ∪ (π + θ0, 2π − θ0) ,

γ2(t) = α(t + π) + β(t + π)i.

It is easy to verify that γ1(t) �= γ2(t) for any t and

min
t∈[0,T ] Arg(γ2(t) − γ1(t)) = 0, max

t∈[0,T ] Arg(γ2(t) − γ1(t)) = π.

If the parametrizations γ1 and γ2 are in phase, that is, there is some τ such that
γ1(t + τ) = γ2(t) for any t , then Lemma 1 can be strengthened:

Lemma 2. Under the assumptions in Lemma 1. Suppose γ1, γ2 are in phase and
γ1(t) �= γ2(t) for any t , then

max
t∈[0,T ] Arg(γ2(t) − γ1(t)) − min

t∈[0,T ] Arg(γ2(t) − γ1(t)) > π. (8)

Proof. Choose τ ∈ (0, T ) such that γ1(t + τ) = γ2(t) for all t . Without loss of
generality, we may assume that

Arg(γ2(0) − γ1(0)) = min
t∈[0,T ] Arg(γ2(t) − γ1(t)) = 0.

Suppose the inequality in (8) is false, then from Lemma 1 equation (8) would be
an equality, and by assumption for any t ∈ [0, T ] the imaginary part Im(γ2(t)) of
γ2(t) is greater than or equal to the imaginary part Im(γ1(t)) of γ1(t). But

∫ T

0
Im(γ2(t)) dt �

∫ T

0
Im(γ1(t)) dt

=
∫ T

0
Im(γ1(t + τ)) dt

=
∫ T

0
Im(γ2(t)) dt.

This implies that Im(γ1(t)) = Im(γ2(t)) for any t , which means that the image of
Arg(γ2(t) − γ1(t)) is {0, π}. This is impossible since γ1(t) �= γ2(t) for any t . ��

Lemma 3. Suppose γ1, γ2, γ3 : R/T Z → C are three continuous closed curves
such that O(γ2 − γ3) intersect with every straight line passing through the origin.
Given µ ∈ [0, 1], let γ

µ
1j = µγ1 + (1 − µ)γj , j = 2, 3. Then O(γ

µ
12 − γ

µ
13) also

intersect with every straight line passing through the origin.

Proof. This is obvious because γ
µ
12 − γ

µ
13 = (1 − µ)(γ2 − γ3). ��
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4. Coercivity of the action functional

It is not hard to see that the action functional A is weakly lower-semicontin-
uous on H 1(R/T Z, C

N) but not coercive. To find periodic solutions with certain
symmetries, the appropriate variational problem for (1) is to constrain A on some
subspace Y of H 1(R/T Z, C

N). If A is coercive on Y , then it follows from a standard
argument in calculus of variations that A attains its infimum on Ȳ . In the following
we provide a simple criterion for coercivity that will be used in the applications of
Theorems 1 and 2.

We say a subspace Y of H 1(R/T Z, C
N) is noncentral if there exists some

ν ∈ (0, 2] such that, for any x ∈ Y , there corresponds a tx ∈ (0, T ] satisfying

x(0) · x(tx) � (1 − ν)|x(0)| · |x(tx)|. (9)

It is understood that the left-hand side is the standard scalar product in (R2)N ∼= C
N .

Clearly (9) is always valid if ν � 0 and fails if ν > 2. The constant ν ∈ (0, 2] is
independent of x ∈ Y , and therefore each path in Y has to move away from its initial
position by a certain angle (relative to the origin). The following proposition states
that the minimizing problem of the action functional on a noncentral subspace of
H 1(R/T Z, C

N) is solvable.

Proposition 2. Suppose the subspace Y of H 1(R/T Z, C
N) is noncentral and

weakly closed. Then the action functional A restricted to Y is coercive and at-
tains its minimum.

Proof. As remarked above, it suffices to show coercivity.
Consider the function δ : Y → R defined by

δ(x) := max
s1,s2∈[0,T ] |x(s1) − x(s2)|.

This function measures the “size” of the curve x(t).
We first consider the case ν ∈ (0, 2). The case ν = 2 is actually easier. Let

tx ∈ (0, T ] be chosen so that (9) is satisfied. If x(0) �= 0 and x(tx) �= 0 and θ is
the angle between x(0) and x(tx), 0 < θ � π , then clearly

|x(0) − x(tx)| � sin(θ)|x(0)|
and the equality holds only when x(0) − x(tx) is perpendicular to x(tx). From (9)
it can easily be seen that

cos(θ) � 1 − ν, sin(θ) � Cν := √ν(2 − ν).

In the other situation, where x(0) = 0 or x(tx) = 0, we have |x(0) − x(tx)| �
|x(0)| � Cν |x(0)|. In both situations, we obtain

|x(0) − x(tx)| � Cν |x(0)|.
Note that Cν > 0 because ν ∈ (0, 2). For any t ∈ [0, T ],

|x(t)| � |x(0)| + δ(x) � 1

Cν

|x(0) − x(tx)| + δ(x) �
(

1

Cν

+ 1

)
δ(x),
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and hence ∫ T

0
|x|2dt �

(
1

Cν

+ 1

)2

δ(x)2T .

On the other hand, by the Cauchy-Schwarz inequality

δ(x)2 �
(∫ T

0
|ẋ| dt

)2

� T

∫ T

0
|ẋ|2 dt.

Therefore the H 1 norm of x is controlled by its action:

‖x‖2
H 1 =

∫ T

0
|x|2 + |ẋ|2 dt

�
((

1

Cν

+ 1

)2

T 2 + 1

)∫ T

0
|ẋ|2 dt

<

((
1

Cν

+ 1

)2

T 2 + 1

)(
2

m

)
A(x).

Here m = mini{mi}. This implies that A restricted to Y is coercive.
The other case, ν = 2, is similar. Let tx be as before, then it follows easily from

(9) that
|x(0)| � |x(0) − x(tx)| � δ(x).

Thus
|x(t)| � |x(0)| + δ(x) � 2δ(x)

for any t ∈ [0, T ]. The fact that A is coercive on Y follows by the same argument
as above. ��

5. Binary decompositions for a system of N bodies

Consider a system of N (� 2) mass points m1, m2, . . . , mN moving in C. A
binary decomposition of this system of N bodies is a selection of two nonnegative
N × N matrices M = [mij ] and � = [λij ] satisfying

mii = λii = 0 for any i,

mij > 0 for any i �= j,

0 � λij = λji � 1 for any i �= j,∑N
j=1 mij = mi for any i.

The matrices G0 = [G0
ij ], G1 = [G1

ij ] defined by

G0
ij = Gλijmimj

mijmji

, (10)

G1
ij = G(1 − λij )mimj

mijmji

(11)
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are called the matrices of attraction constants for the binary decomposition. The
special case

λij = λ, mij = mi

N − 1
for any i �= j (12)

is called the standard binary decomposition of the system. The constant λ ∈ [0, 1]
is called the weight of the standard binary decomposition.

Regard {mij }i �=j as a system of distinct N(N − 1) elementary particles mov-
ing in space; mij and mji constitute a pair of particle-antiparticle with attraction
constant Gij = G0

ij + G1
ij , and they do not interact with any other particle. Fixing

any i, we bind the subsystem {mij : j �= i} so that the particles all have the same
position xi . The potential and kinetic energy for the binary {mij , mji} are given by

Uij (x) = Gijmijmji

|xi − xj | ,

Kij (ẋ) = 1

2
(mij |ẋi |2 + mji |ẋj |2).

Due to the binding force for the subsystems, the binary {mij , mji} do not move as
an isolated Newtonian mechanical system, and therefore their path is not a critical
point (except for N = 2) of their action

Aij (x) =
∫ T

0
Kij (ẋ) + Uij (x) dt. (13)

Clearly Uij = Uji , Kij = Kji , Aij = Aji , and from (13) the total action of the
decomposed system is exactly the same as the action of the original system:

A(x) =
∑

(i,j)
i<j

Aij (x). (14)

Similar to (3),(4), we may decompose the action Aij of each binary into A0
ij ,

A1
ij as follows:

K0
ij (ẋ) = mijmji

2(mij + mji)
|ẋi − ẋj |2, K1

ij (ẋ) = mij + mji

2
| ˙̄xij |2,

U0
ij (x) = G0

ijmijmji

|xi − xj | , U1
ij (x) = G1

ijmijmji

|xi − xj | ,

where x̄ij = 1
mij +mji

(mij xi + mjixj ) is the mass center of the binary {mij , mji}.
When the decomposition is standard, x̄ij is the same as the mass center of {mi, mj }.
Let

A0
ij (x) =

∫ T

0
K0

ij (ẋ) + U0
ij (x) dt,

A1
ij (x) =

∫ T

0
K1

ij (ẋ) + U1
ij (x) dt,

A0(x) =
∑

(i,j)
i<j

A0
ij , A1(x) =

∑

(i,j)
i<j

A1
ij .
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Then

A(x) = A0(x) + A1(x).

According to Gordon’s theorem, if xj − xi : R/T Z → C belongs to �̄T then
(5) provides a lower-bound estimate for Aij and A0

ij . This condition, unfortunately,
is invalid in many cases. This prompts us to select another path space:

XT = {x = (x1, . . . , xN) ∈ H 1(R/T Z, C
N) : (xi, xj ) ∈ �T for any i �= j},

(15)

where the set �T is defined in (6). The examples below show that many interesting
cases fall into this category.

Example 2. A periodic solution is called self-similar or homographic if the config-
uration remains similar at any instant. If the whole system moves as a rigid body
the solution is called a relative equilibrium. By stopping a relative equilibrium and
releasing all masses with zero initial velocity, the configuration will shrink homo-
thetically to a total collapse. These types of solutions are called homothetic solutions
and their configurations are called central configurations. It is quite obvious that
the set of T -periodic self-similar solutions, including collision-ejection homothetic
solutions, are in XT .

Example 3. A periodic solution is called a simple choreographic solution if all
masses chase along a single closed curve. If the orbit consists of two or more
closed curves, each of which is the trajectory of at least two masses, then we call
the solution a multiple choreographic solution. Placing N equal masses on the ver-
texes of a regular N -gon can result in a relative equilibria which is clearly a simple
choreographic solution; many other relative equilibria with nested polygons are
multiple choreographic solutions. These types of relative equilibria will be referred
to as trivial choreographic solutions. We will be most interested in nontrivial cho-
reographic solutions.

The first nontrivial simple choreographic solution ever found is the figure-8
orbit with three equal masses [7]. A nontrivial double choreographic solution for
the four-body problem is given in [1]. In [15, 16], Terracini & Venturelli prove
the existence of a nonplanar simple choreographic solution for the four-body prob-
lem. Many simple choreographic solutions were numerically discovered [6, 14]
without any analytical proof for the existence.

All T -periodic simple choreographic solutions are in XT . This is a direct conse-
quence of Lemma 1. Among all the numerical discoveries of simple choreographic
solutions, the masses are all equal and in phase, in which cases Lemma 2 can be
applied.

Example 4. We say a loop x ∈ H 1(R/T Z, C
N) has d-fold rotation symmetry,

d � 2, if x(t) = e
2πi
d x(t + T

d
) for any t . The case d = 2 was first studied by

Coti Zelati [9] and then many others, mostly focusing on Newtonian-type poten-
tials with stronger forces.

Clearly orbits with some d-fold rotation symmetry belong to XT . Relative equi-
libria are the only solutions that have d-fold rotation symmetry for every d � 2.
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We say a loop x ∈ H 1(R/T Z, C
N) has mirror symmetry if there is a straight

line L such that x(t) and x(t + T
2 ) are symmetric with respect to L for any t . No

self-similar loops have mirror symmetry except the collinear ones.
Numerical findings indicate that many choreographic solutions belong to one

or the other category. A loop with mirror symmetry is not necessarily in XT , but
usually it is easy to determine whether it is in XT if there exists additional symmetry.

6. Lower-bound estimates for the action functional

In this section we provide lower-bound estimates for the action functional over
loops in XT with rotation or mirror symmetry.

For any x = (x1, . . . , xN) ∈ XT , i �= j , we use the symbol “i �� j” to indicate
that xi(t) = xj (t) for some t . The set Ix of collision indexes of x is defined by

Ix = {(i, j) : i < j and i �� j}. (16)

6.1. Closed loops with rotation symmetry

Proposition 3. Consider a system of N mass points m1, . . . , mN with positions
x1, . . . , xN ∈ C. Suppose [mij ], [λij ] is a binary decomposition of the system. Let
x = (x1, . . . , xN) and Ix be collision indexes of x. Suppose x has d-fold rotation
symmetry. Then

A0(x) � 3

(
G2π2

2

) 1
3









d

2
3
∑

(i,j)∈Ix
i<j

+
∑

(i,j) �∈Ix
i<j






(
λ2

ijm
2
i m

2
jmijmji

mij + mji

) 1
3




 T

1
3 .

(17)

If all masses are equal, m1 = · · · = mN = 1, and λij = λ for any i �= j , then

A0(x) � 3

(
G2λ2π2

4(N − 1)

) 1
3
((

d
2
3 − 1)|Ix | +

(N

2

))
T

1
3 . (18)

Proof. First note that d-fold rotation symmetry implies that x belongs to XT , and
therefore by Proposition 1 the action of each binary in the decomposition is com-
parable to Keplerian ones.

It follows directly from the definition of XT , Gij , and Proposition 1 that, for
any i �= j ,

A0
ij (x) � 3

(
G2π2

2

) 1
3
(

λ2
ijm

2
i m

2
jmijmji

mij + mji

) 1
3

T
1
3 .

If i �� j , then by the symmetry assumption there exists some τ such that
xi

(
τ + kT

d

) = xj

(
τ + kT

d

)
for k = 0, 1, . . . , d − 1. The path xj − xi is a closed

loop that begins and ends at the origin on the interval
[
τ + kT

d
, τ + (k+1)T

d

]
for
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any k, and its orbits on these intervals are identical except that they differ by an
angle. Thus, by rotating xi , xj once after every kT

d
, (xi, xj ) can be considered to

be a loop in �T
d

. By Proposition 1,

A0
ij (x) = d

∫ T
d

0
K0

ij (ẋ) + U0
ij (x) dt

� 3d

(
G2π2

2

) 1
3
(

λ2
ijm

2
i m

2
jmijmji

mij + mji

) 1
3 (

T

d

) 1
3

.

Equation (17) is obtained by summing up A0
ij over all i < j .

Equation (18) follows easily from (17) by considering the standard decompo-
sition. ��

Now we estimate A1(x):

∑

(i,j)
i<j

K1
ij (ẋ) =

∑

(i,j)
i<j

mij + mji

2
| ˙̄xij |2

=
∑

(i,j)
i �=j

1

2
mij | ˙̄xij |2

= 1

2(N − 2)

∑

(i,j,k)
i,j,k distinct

mij | ˙̄xij |2

= 1

2(N − 2)

∑

(i,j,k)
i,j,k distinct

1

2
(mik| ˙̄xik|2 + mjk| ˙̄xjk|2)

= 1

N − 2

N∑

k=1

∑

(i,j)
i<j

i,j �=k

1

2
(mik| ˙̄xik|2 + mjk| ˙̄xjk|2) ,

∑

(i,j)
i<j

U1
ij (x) =

∑

(i,j)
i<j

G1
ijmijmji

|xi − xj |

= 1

N − 2

N∑

k=1

∑

(i,j)
i<j

i,j �=k

G1
ijmijmji

|xi − xj | .

This process essentially treats all mass centers x̄ij as real masses and then con-
siders their binary decomposition. The problem here is that |xi − xj | may not be
expressed as a fixed multiple of |x̄ik − x̄jk|. In the case of equal masses this can be
most easily resolved, and the corresponding lower-bound estimate for A is given
in the following theorem.
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Theorem 1. Consider a systems of N equal masses m1 = · · · = mN = 1 with
positions x1, . . . , xN ∈ C. Let Ix be collision indexes of x. Suppose x has d-fold
rotation symmetry. Then

A(x) � 3

(
5G2π2

16(N − 1)

) 1
3
(

(d
2
3 − 1)|Ix | +

(
N

2

))
T

1
3 . (19)

Proof. Consider a standard decomposition with λij = λ, mij = 1
N−1 for any

i �= j . We first prove the following lower-bound estimate for A1:

A1(x) � 3

(
G2(1 − λ)2π2

16(N − 1)

) 1
3
((

d
2
3 − 1

)|Ix | +
(

N

2

))
T

1
3 . (20)

Clearly |x̄jk − x̄ik| = 1
2 |xj − xi | for any k �= i, j . If i �� j , then by Lemma 3

x̄jk − x̄ik can actually be considered a loop in �T
d

that begins and ends at the origin.
Note that the symmetry assumption automatically implies x ∈ XT . By the same
argument as in the proof of Proposition 3,

A1(x)

=
∑

(i,j)
i<j

∫ T

0
K1

ij (ẋ) + U1
ij (x) dt

= 1

N − 2

N∑

k=1

∑

(i,j)
i<j

i,j �=k

∫ T

0

1

2
(mik| ˙̄xik|2 + mjk| ˙̄xjk|2) + G1

ijmikmjk

2|x̄ik − x̄jk| dt

= 1

(N − 2)(N − 1)

∑

(i,j)
i<j

N∑

k=1
k �=i,j

∫ T

0

1

2
(| ˙̄xik|2 + | ˙̄xjk|2) +

G
2 (1 − λ)(N − 1)

|x̄ik − x̄jk| dt

= 1

(N − 2)(N − 1)




d

∑

(i,j)∈Ix
i<j

N∑

k=1
k �=i,j

∫ T
d

0
· · · +

∑

(i,j) �∈Ix
i<j

N∑

k=1
k �=i,j

∫ T

0
· · ·





� 3

N − 1

(
G2(1 − λ)2(N − 1)2π2

24

) 1
3 (

d
2
3 |Ix | +

(N

2

)
− |Ix |

)
T

1
3 .

The last inequality is obtained by applying Proposition 1 to both integrals. This
proves (20). Equation (19) follows easily by adding (18) to (20) and then maximiz-
ing over λ ∈ [0, 1]. ��

6.2. Closed loops with mirror symmetry

The arguments in Proposition 3 and Theorem 1 with d = 2 work for closed loops
in XT with mirror symmetry. We list the corresponding lower-bound estimates here
and omit the proof.
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Proposition 4. Consider a systems of N mass points m1, . . . , mN with positions
x1, . . . , xN ∈ C. Suppose x = (x1, . . . , xN) ∈ XT and [mij ], [λij ] is a binary
decomposition of the system. Let Ix be collision indexes of x. Suppose x has mirror
symmetry. Then

A0(x) � 3

(
G2π2

2

) 1
3









2

2
3
∑

(i,j)∈Ix
i<j

+
∑

(i,j) �∈Ix
i<j






(
λ2

ijm
2
i m

2
jmijmji

mij + mji

) 1
3




 T

1
3 .

(21)

If all masses are equal, m1 = · · · = mN = 1, and λij = λ for any i �= j , then

A0(x) � 3

(
G2λ2π2

4(N − 1)

) 1
3
(

(2
2
3 − 1)|Ix | +

(
N

2

))
T

1
3 , (22)

A1(x) � 3

(
G2(1 − λ)2π2

16(N − 1)

) 1
3
(

(2
2
3 − 1)|Ix | +

(
N

2

))
T

1
3 . (23)

Theorem 2. Consider a systems of N equal masses m1 = · · · = mN = 1 with
positions x1, . . . , xN ∈ C. Let Ix be collision indexes of x. Suppose x ∈ XT has
mirror symmetry. Then

A(x) � 3

(
5G2π2

16(N − 1)

) 1
3
(

(2
2
3 − 1)|Ix | +

(N

2

))
T

1
3 . (24)

Example 5. The discovery of the figure-8 orbit [7] for the three-body problem with
equal masses has attracted much attention in recent years. Apart from Chenciner
and Montgomery’s original proof, there have been several other existence proofs
[2, 4, 17]. The estimate in Zhang & Zhou [17] is the sharpest. Further results and
open questions related to the figure-8 orbit can be found in [5].

The figure-8 orbit is a simple choreographic solution that satisfies the following
symmetry:

(x1, x2, x3)(t) = −(x̄3, x̄1, x̄2)
(
t + T

6

)

= −(x2, x1, x3)(−t).

The first equation shows that it has mirror symmetry. It belongs to the space XT

since it is simple choreographic (Lemma 1). The space Y of loops satisfying the
symmetry described above is noncentral. This can be seen by choosing tx = T

3
and ν = 1

2 in (9). By Proposition 2, the action functional A attains its infimum
on Y , and by Palais’ principle (see Section 7) the minimizers are solutions to the
three-body problem.

Set G = T = 1. By Theorem 2, the action of a collision path is at least

9

2
(5π2)

1
3 ≈ 16.5058.

This estimate is not as sharp as the one in [17], but is higher than the action of the
test paths selected in [2, 7]. According to [7], the numerical value of the action of a
figure-8 orbit with period T = 1 is approximately 13.2078. In fact, we may choose
a simpler test path by parametrizing the lemiscate.
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7. Multiple choreographic solutions with equal masses

In this section we show some applications of Theorem 1. Consider a system of
N equal masses m1 = · · · = mN = 1. Let G be a group of linear transformations
on H = H 1(R/T Z, C

N). The space HG of G-invariant loops is defined by:

HG = {x ∈ H : g · x = x for any g ∈ G}.
Critical points of A restricted to HG, called G-critical points, are not necessarily
critical points of A on H . In this regard we quote a result of Palais [13]:

Palais’ Principle of Symmetric Criticality. Suppose the group G is orthogonal
and A is G-invariant, then G-critical points of A are critical points of A on H .

For all the applications presented herein, the assumptions in Palais’ principle
are met.

Given a finite orthogonal group G acting on H , it is usually easy to determine
coercivity of the action A restricted to HG (Proposition 2). For instance, if HG is
contained in the space of loops with some d-fold rotation symmetry, then we can
easily verify that HG is noncentral.

Suppose A is coercive on HG and x ∈ HG is a minimizer. Let [τ1, τ2] be
a fundamental domain of the action, that is, a smallest closed time interval over
which the projection HG → H 1([τ1, τ2], C

N) is injective. Then x is clearly also a
minimizer for the fixed-ends problem:

inf{A(y) : y ∈ H 1([τ1, τ2], C
N), y(τ1) = ξ1, y(τ2) = ξ2} , (25)

where ξ1 = x(τ1) and ξ2 = x(τ2). A fundamental result by Marchal [12] (see
also [4]) states

Marchal’s Theorem. Given any ξ1, ξ2 ∈ C
N . Minimizers of the fixed-ends prob-

lem (25) are collision-free on the interval (τ1, τ2).

Based on the estimates in the previous section and the theorems of Palais

and Marchal, in what follows we show the existence of some highly symmetric
periodic solutions for the N -body problem.

7.1. Double choreographic solutions with 2n equal masses

Let n be any odd number. In this subsection we will show the existence of dou-
ble choreographic solutions with N = 2n equal masses. Throughout this section
the gravitation constant is assumed to be 1.

Let n = 3. Consider the group K3 generated by σ3 and τ3:

σ3 · x(t) = e
πi
3 (x6, x1, x2, x3, x4, x5)(−t)

τ3 · x(t) = (x3, x6, x5, x2, x1, x4)

(
t + T

3

)
.
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Fig. 2. Double choreographic loops with 2n equal masses.

More generally, for any odd integer n, we define the group Kn generated by σn

and τn:

σn · x(t) = e
πi
n (x2n, x1, x2, . . . , x2n−1)(−t)

τn · x(t) = (x3, x2n, x5, x2, . . . , x2k−1, x2(k−2),

. . . , x2n−1, x2(n−2), x1, x2(n−1))

(
t + T

n

)
.

Figure 2 shows some paths that are numerically the minimizers of A on HKn .

Theorem 3. The action functional A attains its infimum on HKn for any odd num-
ber n � 3. All minimizers are collision-free double choreographic solutions for the
2n-body problem with zero angular momentum.

Proof. The assumption that all masses are equal ensures that A is Kn-invariant, and
all requirements in Palais’ principle are met. The symmetry assumptions immedi-
ately implies that A is coercive on HKn (Proposition 2), and therefore minimizers
of A on HKn exist and are solutions of the 2n-body problem. Invariance under
the action of σn implies that the solutions have zero angular momentum. Also,
{m1, m3, . . . , m2n−1} share the same orbit, and {m2, m4, . . . , m2n} share another
identical orbit which differs from the orbit of {m1, m3, . . . , m2n−1} by an angle of
π
n

. If we can show that minimizers are collision-free, then they have to be double
choreographic solutions.

A fundamental domain of the group action is
[
0, T

2n

]
.At t = 0, the configuration

is a regular 2n-gon. At t = T
2n

, we have
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e
πi
n (x2n, x1, x2, . . . , x2n−1)

(
T

2n

)

= x

(
− T

2n

)

= (x3, x2n, x5, x2, . . . , x2k−1, x2(k−2),

. . . , x2n−1, x2(n−2), x1, x2(n−1))

(
T

2n

)
,

which implies that the configuration is a regular 2n-gon as well. According to Mar-
chal’s theorem, all we need to show is that minimizers cannot begin or end at a total
collapse; that is, a collision of all 2n bodies.

Suppose x ∈ HKn begins or ends with a total collapse. Then the size of the set
Ix of collision indexes is

( 2n
2 ) = n(2n − 1). Note that each pair (xi, xj ), i �= j ,

can be considered as a loop in �T
n

, and thus x is contained in XT . This case is no
different from the case with n-fold rotation symmetry. By Theorem 1,

A(x) � 3

(
5π2

16(2n − 1)

) 1
3

n
2
3

(2n

2

)
T

1
3 =: Mn .

The only thing that remains is to select an appropriate test path in HKn for each n

that has smaller action than the lower-bound estimate Mn. Below is a short list of
the approximate values of the lower-bound estimate Mn for the case T = 1 and the
action Atest of the test paths. All data are accurate to the third decimal place.

N = 2n Mn Atest α β γ

6 79.681 61.380 0.39 0.64 0.83
10 276.238 170.504 0.50 0.55 0.44
14 618.439 327.029 0.57 0.55 0.32
18 1124.280 527.263 0.65 0.55 0.30

In each case we select a test path x = xtest by setting x1(t) = r1(t)e
iθ1(t) defined

on
[− 1

4n
, 1

4n

]
, extending it periodically to

[− 1
4n

, 4n−1
4n

]
, and then defining each xk

by symmetry. More precisely, let

r1(t) = α

(
1 + β

n
sin(2nπt)

)
,

θ1(t) = 1

2n
(π(1 − 4nt) − γ cos(2nπt)),

r2(t) = r1(−t),

θ2(t) = θ1(−t) + π

n
,
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x1(t) = r1(t)e
iθ1(t),

x2(t) = r2(t)e
iθ2(t),

x2k+1(t) = x1(t)e
2k π

n
i ,

x2k+2(t) = x2(t)e
2k π

n
i , k = 1, . . . , n − 1.

The values of α, β, γ are given in the table above. The resulting test path belongs
to HKn and the configuration remains a union of two regular n-gons. The estimates
of their action Atest in the above table is straightforward, and they are all below
the value of Mn. This proves the theorem for n = 3, 5, 7, 9. To prove the theorem
for general n, we need to give a general formula for our test paths and provide a
direct upper-bound estimate for their action. The formula we provide below actually
works for all n � 5.

By symmetry the polar form for the kinetic energy K(ẋ) is given by

K(ẋ) = n

2
(ṙ2

1 + ṙ2
2 + r2

1 θ̇2
1 + r2

2 θ̇2
2 ).

The way test paths are selected makes it easy to find the exact contribution of the
kinetic energy to the total action:

∫ 1

0
K(ẋ) dt = n

2

∫ 1

0
(ṙ2

1 + ṙ2
2 + r2

1 θ̇2
1 + r2

2 θ̇2
2 ) dt

= π2α2

8n

(
4(8 + 4β2 + γ 2)n2 − 32βγn + 16β2 + 3β2γ 2

)
=: Kn

The estimates for the contribution of the potential energy U(x) to the total action
is more delicate. By symmetry of the test path and Lemma 4, Lemma 5,

∫ 1

0
U(x) dt

= n

∫ 1

0
2

n−1
2∑

k=1

(
1

|x1 − x2k+1| + 1

|x2 − x2(k+1)|
)

+
n∑

k=1

1

|x1 − x2k| dt

= n

∫ 1

0

n−1
2∑

k=1

(
1

r1 sin( kπ
n

)
+ 1

r2 sin( kπ
n

)

)

+





n−1
2∑

k=1

+
n−1∑

k= n+1
2

1

|x1 − x2k|






+ 1

|x1 − x2n| dt

� n






2

α(1 − β
n
)

n−1
2∑

k=1

csc(
kπ

n
) + n

4α

n−1
2∑

k=1

1

k − 1
2

+ n

4α

n−1∑

k= n+1
2

1

k − n
2

+ n

2αβ





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� n

α






n ln n

1 − β
n

+ n

2

n−1
2∑

k=1

1

k − 1
2

+ n

2β






� n2

α

(
ln n

1 − β
n

+ 1

2

(

2 +
∫ n+1

2

2

1

s − 1
ds

)

+ 1

2β

)

= n2

α

(
ln n

1 − β
n

+ 1

2

(
2 − ln 2 + ln(n − 1)

)+ 1

2β

)

=: Un.

The action Atest of the test path is bounded from above by Un + Kn. This is
valid regardless of the value of α > 0, β ∈ (0, 2

π
], and γ > 0. Observe that

Mn = O(n
7
3 ) and Un + Kn = O(n2 ln n) as n approaches infinity. This already

shows the theorem is valid for every large n.
By choosing α = β = γ = 0.6 and considering single variable functions Mn,

Un, Kn in n, we can easily verify that

Mn � Un + Kn for any n � 5

and, by Newton’s method, the largest real solution for Mn = Un + Kn is at n ≈
4.0879. This proves the theorem for n � 5. ��

Lemma 4. Let n � 3 be an odd number. Then

n−1
2∑

j=1

csc

(
jπ

n

)
� n

2
ln n.

Proof. This follows easily from the following two elementary inequalities:

csc(s) � π

2s
for any s ∈

(
0,

π

2

]
;

k∑

j=1

1

j
� ln(2k + 1) for any integer k � 1. ��

Lemma 5. Let x be the test path defined in the proof of Theorem 3. Let n � 3 be
an odd number and 0 < β � 2

π
. Then, for any t ∈ [0, 1

4n
],

|x1(t) − x2k(t)| �






4α(k − 1
2 )

n
for k = 1, 2, . . . , n−1

2 ;
4α(k − n

2 )

n
for k = n+1

2 , n+3
2 · · · , n − 1;

2αβ

n
for k = n.
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Proof. Define

hk(t) = 1 − cos

(
2k − 1

n
π + 4πt

)

+ β2

n2 sin2(2nπt)

(
1 + cos

(
2k − 1

n
π + 4πt

))
.

Then

|x1 − x2k|2 = r2
1 + r2

2 − 2r1r2 cos

(
θ1 − θ2 − 2(k − 1)π

n

)

= α2
(

1 + β

n
sin(2nπt)

)2

+ α2
(

1 − β

n
sin(2nπt)

)2

− 2α2
(

1 − β2

n2 sin2(2nπt)

)
cos

(
4πt + 2k − 1

n
π

)

= 2α2hk(t).

When k = 1, 2, . . . , n−1
2 , it is quite obvious that

1

4π
ḣk(t)

= sin

(
4πt + 2k − 1

n
π

)[
1 − β2

n2 sin2(2nπt)

]

+β2

2n
sin(4nπt)

(
1 + cos

(
4πt + 2k − 1

n
π

))

is nonnegative on [0, 1
4n

]. Therefore, the minimum value of |x1 − x2k|2 on [0, 1
4n

]
is

|x1(0) − x2k(0)|2 = 2α2
[

1 − cos

(
2k − 1

n
π

)]

� 2α2
(

2

π2

)(
2k − 1

n
π

)2

= 16α2

(
k − 1

2

n

)2

.

The second line uses the fact that 1 − cos(s) � 2s2

π2 for s ∈ [0, π ]. This proves the
first inequality in the lemma.

Consider k = n+1
2 , n+3

2 · · · , n. We will show that the minimum value of |x1 −
x2k| on [0, 1

4n
] is at t = 1

4n
. Note that 1 − cos(4πt) � sin(4πt) for any t ∈ [0, 1

4n
].

When k = n+1
2 ,

1

4π
ḣ n+1

2
(t)

= − sin(4πt)

[
1 − β2

n2 sin2(2nπt)

]
+ β2

2n
sin(4nπt) (1 − cos(4πt))
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� − sin(4πt)

[
1 − 1

n2

]
+ 1

2n
sin(4πt)

= − sin(4πt)

[
1 − 2 + n

2n2

]

� 0.

When k = n+3
2 , n+5

2 · · · , n − 1, the bound 2 � 2k − n − 1 � n − 3 and the
assumptions 0 � t � 1

4n
, 0 < β � 2

π
yield

1

4π
ḣ n+1

2
(t)

� − sin

(
4πt + 2k − n − 1

n
π

)[
1 − β2

n2

]

+ β2

2n

(
1 − cos

(
4πt + 2k − n − 1

n
π

))

� − sin

(
2π

n

)[
1 − 1

n2

]
+ 2

nπ2

(
1 − cos

(
π

n
+ 2k − n − 1

n
π

))

� − 2

π

(
2π

n

)[
1 − 1

n2

]
+ 2

nπ2

(1

2

)(2k − n

n
π

)2

� −4(n2 − 1)

n3 + (n − 2)2

n3

< 0.

In the above we used the inequality 1 − cos(s) � s2

2 for any s ∈ [0, π ]. We have
proved that, for k = n+1

2 , n+3
2 · · · , n − 1, the minimum value of |x1 − x2k|2 on

[0, 1
4n

] is

∣∣∣∣x1

(
1

4n

)
− x2k

(
1

4n

)∣∣∣∣

2

= 2α2hk

(
1

4n

)

= 2α2
[

1 − cos

(
2kπ

n

)
+ β2

n2

(
1 + cos

(
2kπ

n

))]

� 2α2
[

1 + cos

(
2n − 2k

n
π

)]

= 4α2 cos2
(

n − k

n
π

)

� 4α2
[

1 − 2

π

(
n − k

n
π

)]2

= 16α2
(

k − n
2

n

)2

.

This proves the second inequality in the lemma.
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When k = n, for any t ∈ [0, 1
4n

],
1

4π
ḣn(t) = − sin

(π

n
− 4πt

) [
1 − β2

n2 sin2(2nπt)

]

+ β2

2n
sin(4nπt)

(
1 + cos

(
4πt − π

n

))

� −2

(
1

n
− 4t

)[
1 − β2

n2 sin2(2nπt)

]
+ β2

n
sin(4nπt)

=: gn(t).

The function gn(t) in the last row is negative when t = 0, zero when t = 1
4n

.
With the upper bound for β, it is an easy exercise to verify that gn is increasing on
[0, 1

4n
] for any n � 3, implying that gn (and hence ḣn) is nonpositive on [0, 1

4n
].

This shows that the minimum value of |x1 − x2n|2 on [0, 1
4n

] is

∣
∣
∣
∣x1

(
1

4n

)
− x2n

(
1

4n

)∣∣
∣
∣

2

= 2α2hn

(
1

4n

)
= 4α2β2

n2 .

This completes the proof. ��

7.2. Multiple choreographic solutions with 4n equal masses

Let N = 4n, n = 1, 2, . . . . Consider the group Gn generated by σn and τn:

σn · x(t) = e
πi
2n (x4n, x1, x2, . . . , x4n−1)(−t)

τn · x(t) = (x2n+1, x2n+2, . . . , x4n, x1, x2, . . . , x2n)

(
t + T

2

)
.

The group Gn is isomorphic to Z4n ×Z2. The assumption that all masses are equal
implies that A is Gn-invariant. Clearly the group Gn is orthogonal. Therefore the
requirements in Palais’ principle are met. Note that the configuration of any x in
HGn begins with a regular 4n-gon and the ordering of masses are reversed after T

2 .
In particular, a loop in HGn cannot be self-similar. Masses with odd indexes remain
in the configuration of a regular 2n-gon and masses with even indexes remain in the
configuration of another. These two regular 2n-gons rotate in opposite directions.
Figure 3 shows several loops in HGn whose action values are approximately the
infimum of A on HGn .

Theorem 4. The action functional A attains its infimum on HGn for n =
1, 2, . . . , 10. All minimizers are collision-free multiple choreographic solutions
for the 4n-body problem with zero angular momentum.

Proof. By Proposition 2 the action functional A is coercive (choose tx = T
2 and

ν = 2 in (9)), and therefore minimizers on HGn exist. Minimizers of A on HGn

are multiple choreographic solutions because all requirements in Palais’ principle
are satisfied and xi and x2n+i share the same orbit. Invariance under the action of
σn implies minimizers have zero angular momentum, which shows they cannot be
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Fig. 3. Multiple choreographic loops with 4n equal masses.

relative equilibria. A fundamental domain of the group action is [0, T
4 ]. At t = 0,

the configuration is a regular 4n-gon. At t = T
4 , we have

e
πi
2n (x4n, x1, x2, . . . , x4n−1)

(
T

4

)

= x

(
−T

4

)

= (x2n+1, x2n+2, . . . , x4n, x1, x2, . . . , x2n)

(
T

4

)
,

which implies the configuration is a regular 4n-gon as well. According to Mar-
chal’s theorem, all we need to show is that minimizers cannot begin or end at a total
collapse.

Suppose x ∈ HGn begins or ends with a total collapse. Then the size of the set
Ix of collision indexes is

( 4n
2 ) = 2n(4n − 1). Observe that the space HGn has a

two-fold rotation symmetry, and hence is contained in XT . By Theorem 1,

A(x) � 3

(
5π2

16(4n − 1)

) 1
3

2
2
3

(
4n

2

)
T

1
3 =: Ln.

The only thing that remains is to select appropriate test paths in HGn that have
smaller action than this lower-bound estimate. Below is a list of the approximate
values of Ln for the case T = 1 and the action Atest of the test paths. All data are
accurate to the third decimal place.
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N = 4n Ln Atest α β γ

4 28.838 22.158 0.29 0.436 1.53
8 101.465 84.188 0.40 0.394 1.41

12 205.717 178.528 0.48 0.378 1.38
16 337.294 301.986 0.54 0.365 1.32
20 493.583 452.550 0.59 0.354 1.30
24 672.756 628.670 0.64 0.350 1.28
28 873.431 829.246 0.68 0.345 1.27
32 1094.508 1053.316 0.72 0.340 1.25
36 1335.085 1300.113 0.75 0.336 1.24
40 1594.401 1568.928 0.79 0.332 1.23

In each case we select a test path x = xtest by setting x1(t) = r1(t)e
iθ1(t) defined on

[− 1
8 , 1

8 ], extend it periodically to [− 1
8 , 7

8 ], and then define each xk by symmetry.
More precisely, on [− 1

8 , 1
8 ], let

r1(t) = α(1 + β sin(4πt)),

θ1(t) = 1

4
(π(1 − 8t) − γ cos(4πt)),

r2(t) = r1(−t),

θ2(t) = θ1(−t) + π

2n
,

x1(t) = r1(t)e
iθ1(t),

x2(t) = r2(t)e
iθ2(t),

x2k−1(t) = x1(t)e
2(k−1) π

2n
i ,

x2k(t) = x2(t)e
2(k−1) π

2n
i , k = 1, . . . , 2n.

The values of α, β, γ are given in the table above. The resulting test path remains
a union of two regular 2n-gons. This makes the evaluation of their action much
simpler.

By symmetry the kinetic energy K(ẋ) = 1
2 |ẋ|2 satisfies

K(ẋ) = 1

2

2n∑

j=1

(|ẋ2j−1|2 + |ẋ2j |2) = n(|ẋ1|2 + |ẋ2|2).

Thus, in polar form,

K(ẋ) = n(ṙ2
1 + ṙ2

2 + r2
1 θ̇2

1 + r2
2 θ̇2

2 ). (26)

The polar form of the potential energy is

U(x) = n








1

2
+

n−1∑

j=1

csc

(
jπ

2n

)


(

1

r1
+ 1

r2

)

+ 2
2n−1∑

j=0

1
√

r2
1 + r2

2 − 2r1r2 cos(θ1 − θ2 + jπ
n

)








Binary Decompositions for N -Body Problems and Symmetric Solutions 271

This combined with (26) gives the polar form of the Lagrangian. With the numerical
values of α, β, γ provided in the table, we can easily verify the numerical value of
their action Atest listed in the table. The values are all below the lower bound Ln

we obtained. ��
Remark 1. Numerical estimates indicate that Ln is relatively close to the infimum
of A on HGn . This means that, in general, a crude estimate of Atest (as done in the
proof of Theorem 4) will not be sufficient to extend the theorem to general n.

Remark 2. Double choreographic solutions in Theorem 3 and the case N = 4
in Theorem 4 have zero angular momentum because the path spaces are invari-
ant under some action σ that reverses the time variable, and in the meanwhile
σ 2 stabilizes exactly two groups of indexes. These two groups of masses move
in opposite directions along identical curves so that the total angular momentum
vanishes. This type of symmetry is impossible when N is odd, for otherwise σ 2

as a permutation of indexes would be of the form (j1, j2, . . . , jk)(jk+1, . . . , jN)

for some permutation j of {1, . . . , N} and even number k. Then, as permutation of
indexes, 1 = σ 2kn = (jk+1, . . . , jN)kn, which is impossible since kn is even and
N − k is odd. From this point of view it would be interesting if we could construct
double choreographic solutions with zero angular momentum for an odd number
of masses.

8. An example in FERRARIO & TERRACINI [10]

Even though the case n = 3 in Theorem 3 is the only example in Section 7
that was specifically included in the recent article by Ferrario & Terracini [10],
the major theorem (Theorem 10.8) in [10] can actually be applied to every example
in there. Below we discuss some examples in which their theorem cannot fully
apply. Theorem 10.8 in [10] will be referred to as the Ferrario - Terracini theorem.

First we remark that the symmetry group for the figure-8 orbit in Example 5
is isomorphic to the dihedral group D6 (denoted by D12 in [10]) of order 12. Two
maximal subgroups are D3 and Z6. The Ferrario-Terracini theorem can be applied
to the figure-8 orbit with less symmetry – either with a D3 or Z6 symmetry – but not
for the figure-8 with D6 symmetry. See Example (11.2) in [10]. (Thanks to Chen-
ciner for pointing this out!) Our argument in Example 5 applies to all these cases
since the mirror symmetry and the property of being simple choreographic are the
only properties our arguments rely on. Existence of any additional symmetry does
not effect the validity of the proof.

Another example in which the Ferrario-Terracini theorem cannot apply is exam-
ple (11.4) in [10]. Consider four equal masses m1 = m2 = m3 = m4 = 1 moving
in C. En Let E be the group generated by σ , τ , and δ:

σ · x(t) = (x̄2, x̄1, x̄4, x̄3)(−t),

τ · x(t) = e
πi
3 (x3, x4, x1, x2)

(
t + T

6

)
,

δ · x(t) = −(x2, x1, x4, x3)(t).
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Fig. 4. A double choreographic loop with 3-fold rotation symmetry.

In [10] the transformation τ = τn is given by

τn · x(t) = e
πi
n (x3, x4, x1, x2)

(
t + T

2n

)

for an odd integer n � 3. We only treat the case n = 3 here.
The group E is isomorphic to D6 × Z2, where D6 is generated by σ , τ , and

Z2 is generated by δ. Let H = H 1(R/T Z, C
4). Clearly paths in HE have 3-fold

rotation symmetry. Figure 4 shows a loop in HE that is numerically a minimizer
for A on HE .

Theorem 5. The action functional A attains its infimum on HE . All minimizers
are collision-free and nontrivial double choreographic solutions for the 4-body
problem with 3-fold rotation symmetry.

Proof. Without loss of generality we assume G = T = 1. By Proposition 2 the
action functional A is coercive (choose tx = 1

2 and ν = 2 in (9)), and therefore
minimizers on HE exist. Clearly A is E-invariant and E is orthogonal. Therefore
the requirements in Palais’ principle are satisfied. Unless there are collisions, min-
imizers of A on HE are double choreographic solutions since {m1, m4} share one
orbit and {m2, m3} share another.

A fundamental domain of the group action is [0, 1
12 ].At t = 0, the configuration

is collinear and masses are aligned on the imaginary axis. Moreover,

(x̄2, x̄1, x̄4, x̄3)

(
1

12

)
= x

(
− 1

12

)
= e

πi
3 (x3, x4, x1, x2)

(
1

12

)
. (27)

This restricts the configuration for x ∈ HE at t = 1
12 or any k

6 + 1
12 , k ∈ Z. Relative

equilibria can be easily excluded by the boundary constraints on any fundamental
domain. According to Marchal’s theorem, all we need to show is that minimizers
cannot begin or end with a collision on the interval [0, 1

12 ]. ��

Let x ∈ HE be a path that begins or ends with a collision on [0, 1
12 ]. There are

four possibilities:



Binary Decompositions for N -Body Problems and Symmetric Solutions 273

Case 1: x begins or ends with a total collapse.
The size of the set of collision indexes Ix is 6. Using the fact that paths in HE

have 3-fold rotation symmetry, by Theorem 1,

A(x) � 3

(
5π2

48

) 1
3

3
2
3

(4

2

)
≈ 37.7888.

Note that this case includes the following cases:

x1(0) = x2(0) and x3(0) = x4(0);
x1

(
1

12

)
= x2

(
1

12

)
;

x3

(
1

12

)
= x4

(
1

12

)
.

The case x1(
1

12 ) = x2(
1

12 ) implies x3(
1

12 ) = x4(
1

12 ) and vice versa because of (27).
They all results in a total collapse since x1 = −x2, x3 = −x4.

Case 2: x1(0) = x3(0) (or x2(0) = x4(0)).
Clearly the case x1(0) = x3(0) implies x2(0) = x4(0) and vice versa. The size

of the set of collision indexes Ix is at least 2. By symmetry, x1(
k
6 ) = x3(

k
6 ) and

x2(
k
6 ) = x4(

k
6 ) for any k ∈ Z. The path x actually has 6-fold symmetry instead of

just 3. By Theorem 1,

A(x) � 3

(
5π2

6

) 1
3 (

6
2
3 + 2

)
≈ 32.1066.

Case 3: x1(
1

12 ) = x3(
1

12 ) (or x2(
1

12 ) = x4(
1

12 )).
Clearly the case x1(

1
12 ) = x3(

1
12 ) implies x2(

1
12 ) = x4(

1
12 ) and vice versa. The

estimates for this case is identical to Case 2.

Case 4: x3(0) = x4(0) (or x1(0) = x2(0)).
The cases x3(0) = x4(0) and x1(0) = x2(0) are similar.Assume x3(0) = x4(0).

Then x3(
k
3 ) = x4(

k
3 ) and x1(

k
3 + 1

6 ) = x2(
k
3 + 1

6 ) for any k ∈ Z. Instead of applying
Theorem 1, we will follow the lines of the proof for Proposition 3 and obtain a better
estimate by using symmetry.

Consider the standard decomposition with λij = 1 for any i �= j . As in the
proof of Proposition 3,

A0
34(x) = 3

∫ 1
3

0

1

12
|ẋ3 − ẋ4|2 + 1

|x3 − x4| dt � 3

(
π2

12

) 1
3

3
2
3 .

Similarly,

A0
12(x) � 3

(
π2

12

) 1
3

3
2
3 .
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By the invariance under the action of τ ,

(x1 − x3)

(
k

6

)
= (−1)ke− kπi

3 (x1 − x3)(0) for any k ∈ Z.

When k = 3, (x1 − x3)(
1
2 ) = (x1 − x3)(0). This shows that (x1, x3) can be con-

sidered a closed loop in � 1
2

and

A0
13(x) = 2

∫ 1
2

0

1

12
|ẋ1 − ẋ3|2 + 1

|x1 − x3| dt � 3

(
π2

12

) 1
3

2
2
3 .

The same estimate holds for A0
24(x) by symmetry. Similarly, (x1, x4), (x2, x3) ∈ �1

and

A0
14(x), A0

23(x) � 3

(
π2

12

) 1
3

.

Combining all these,

A(x) �
∑

(i,j)
i<j

A0
ij � 3

(
π2

12

) 1
3 (

2 · 3
2
3 + 2 · 2

2
3 + 2

)
≈ 26.2386.

To finish the proof it suffices to select a test path x = xtest with action lower
than the bound we obtain in Case 4. Let

r(t) = 0.257(1 + 0.413 cos(6πt) − 0.042 cos(12πt)),

θ(t) = −1

3
(6πt − 1.43 sin(6πt) + 0.3 sin(12πt) − 0.07 sin(18πt)) + π

2
,

x1(t) = r(t)eiθ(t),

x2(t) = −r(t)eiθ(t),

x3(t) = r

(
t − 1

6

)
ei(θ(t− 1

6 )− π
3 ),

x4(t) = −r

(
t − 1

6

)
ei(θ(t− 1

6 )− π
3 ).

It can easily be verified that x = (x1, x2, x3, x4) belongs to HE . The action of this
test path is approximately 26.0476 (accurate to the fourth decimal place), which is
smaller than the lower-bound estimate we obtained.

Remark 3. For the case n = 5, following the proof of Theorem 5 with a modifi-
cation for Case 4, we obtain a lower bound ≈36.2246 for the action of collision
paths. By choosing the test path
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Fig. 5. A double choreographic loop with 5-fold rotation symmetry.

r(t) = 0.248(1 + 0.282 cos(10πt)),

θ(t) = −1

5
(10πt − 1.449 sin(10πt)) + π

2
,

x1(t) = r(t)eiθ(t),

x2(t) = −r(t)eiθ(t),

x3(t) = r

(
t − 1

10

)
ei(θ(t− 1

10 )− π
5 ),

x4(t) = −r

(
t − 1

10

)
ei(θ(t− 1

10 )− π
5 ),

it can be shown that the value of its action is approximately 33.8819. This proves
the theorem for n = 5. See [3] for general n and further examples. Figure 5 shows
a path that is numerically a minimizer of the action functional.

Note added. Around the same time this article was completed, I received an article by Fer-

rario & Terracini [10] which includes existence proofs for a number of choreographic
solutions. Their results can be applied to examples in Section 7, but their proof is totally
different from the one here. Except for Section 8, which discusses some examples that
distinguish these two approaches, the present work is independent of [10].
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