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Abstract

The spatial planetary three-body problem (i.e., one “star” and two “planets”,
modelled by three massive points, interacting through gravity in a three dimensional
space) is considered. It is proved that, near the limiting stable solutions given by the
two planets revolving around the star on Keplerian ellipses with small eccentricity
and small non-zero mutual inclination, the system affords two-dimensional, elliptic,
quasi-periodic solutions, provided the masses of the planets are small enough com-
pared to the mass of the star and provided the osculating Keplerian major semi-axes
belong to a two-dimensional set of density close to one.

1. Introduction and Results

In this paper we consider the (non-planar) planetary three-body problem, namely,
the mechanical system made up of three massive points, one of which (the “star”)
has a significantly larger mass than the other two points (the “planets”), and which
interact through a Newtonian gravitational field; the masses of the planets are re-
garded as small parameters. In particular, motivated by astronomical data, we are
interested in nearly circular planetary motions (“small eccentricities”) taking place
along nearly co-planar orbits (“small mutual inclinations”).

As is well known, such a system has been the source of extremely deep (and
difficult) studies, among which the contributions of Charles Eugene Delaunay and,
especially, of Henri Poincaré are eminent. According to Delaunay and Poincaré, the
three-body problem is described by a nearly-integrable Hamiltonian system on an
eight-dimensional phase space, equipped with real-analytic action-angle variables.
Such a system turns out to be properly degenerate, i.e., the integrable limit (in which
the three-body problem is described by two decoupled and integrable two-body sys-
tems) depends only on two (action) variables: in the integrable limit, all motions lie
on two-dimensional invariant tori run by quasi-periodic motions with two frequen-
cies (related, by Kepler’s law, to the major semi-axis of the two limiting Keplerian
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ellipses). Furthermore, in the small-eccentricity-inclination regime, these two-tori
are linearly stable (i.e., linearizing the full system along the unperturbed tori we
find a linear system with purely imaginary eigenvalues).

A basic natural question is: What is the destiny of these two-dimensional tori
when the full system is considered?

Surprisingly enough, no answer to this question has been given up to now. In a
1966 paper [JM66], Jefferys & Moser established the persistence of two-dimen-
sional invariant tori for the planetary three-body problem in the case of large mutual
inclinations; in such a case the unperturbed tori (as well as the perturbed ones) are
unstable (or partially hyperbolic). Actually, Jefferys and Moser considered explic-
itly the above question (relative to the small-eccentricity-inclination regime), but
were unable to settle it, leaving the reader with the feeling that they did not believe
in the persistence of two-dimensional, elliptic tori1.

In this paper, we answer the above question, showing that, for values of the
“initial” semi-axis of the osculating ellipses in a set of nearly full (two-dimen-
sional) measure, the above described unperturbed tori do persist in the full system,
provided the masses of the planets are small enough.

Let us, now, give an analytical formulation of our result. To do this we re-
call the classical Hamiltonian (action-angle) formulation of the planetary (non-
planar) three-body problem (for small eccentricity and small mutual inclination)
according to Delaunay and Poincaré. Denote the three massive points (“bodies”) by
P0, P1 , P2 and let m0, m1 ,m2 be their masses interacting through gravity (with
constant of gravitation 1). Assume that, for some 0 < κ̄ � 1,

κ̄ε � m1

m0
,
m2

m0
� ε � 1.

The number ε is regarded as a small parameter: the point P0 represents “the star”
and the points P1 and P2 “the planets”. For j = 1, 2, consider the “osculating
ellipses” of the two-body problems associated with the planets Pj and the star2 P0
and assume that the eccentricities of such ellipses are small and that the intersection
angle, ı̂, between the two planes containing the two osculating ellipses (“mutual

1 “The details of the existence proof completed, it should be observed that the solutions
found are of the elliptic-hyperbolic type, and hence are unstable. It would be desirable to
establish similarly the existence of such solutions in the stable case. In this case, however,
there is an essential difficulty,...” ([JM66], Section (7), page 575); and also: “· · · however,
there are good reasons to conjecture that in general the stable solutions need not persist....”
([JM66], Section (1), page 568).

2 The “osculating ellipses (at time t0)” of the two-body problems associated with (P0, Pj ),

(j = 1 or j = 2), are defined as follows. Let u(0) and u(j) denote the coordinates (in some
reference frame) of the points P0 and Pj at time t0 and let u̇(0) and u̇(j) denote the respec-

tive velocities. The “osculating plane” is defined as the plane spanned by (u(j) − u(0)) and
(u̇(j) − u̇(0)); the “osculating ellipse” is defined as the Keplerian ellipse (lying on the oscu-
lating plane) defined by the Kepler solution, with initial data (u(0), u(j)) and (u̇(j)−u̇(0)), of
the two-body problem (P0, Pj ) obtained disregarding (for t � t0) the third body Pi (i �= j );
see Appendix C for details.
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Fig. 1. (Keplerian ellipse): Ō=center, O=focus, Q=perihelion, a=major semi-axis=
dist (Ō,Q), e=eccentricity= dist (Ō,O)/a, u = eccentric anomaly, v=true anomaly,

A=area shaded region= a
2√1−e

2 (u− e sin u).

inclination”) is also small. As customary in celestial mechanics, we denote the
major semi-axes of such ellipses by aj and their eccentricity by ej . Let us, also,
denote the mean anomaly by �j and the longitude of the perihelion by gj (see
Figs. 1 and 2).

Let

�∗
j = κ∗

j

√
aj , κ∗

j := mj

ε

1
√
m0(m0 +mj)

,

(κ∗
j is a dimensionless constant satisfying κ̄√

2
< κ∗

j < 1) and, following the notation
common in celestial mechanics, define

λ∗
j = �j + gj ,

Hj = �∗
j (1 −

√
1 − e2

j ),

ξ∗
j = √2Hj cos gj ,

η∗
j = −√2Hj sin gj .

Since we are interested in small eccentricities, collisions are avoided by requir-
ing that the major semi-axes aj = aj (�

∗) := (�∗
j /κ

∗
j )

2 are different (and different
from zero). We therefore fix, once and for all,

0 < amin < amax and 0 < αmax < 1 (1.1)



94 Luca Biasco, Luigi Chierchia & Enrico Valdinoci

v

N
1

3

O

A

P

Q

k

k

k 2

g

θ

i
C

i

Fig. 2. (Orbital elements): {k1, k2, k3}=heliocentric frame, C=angular momentum of the
2-body system, N=node ∈ ellipse plane ∩ span{k1, k2}, i=inclination, θ=longitude of the
node, g=argument of the perihelion, � = mean anomaly = 2π A

Atot
= u − e sin u w = true

longitude = θ + g + v, w∗=g + v.

and, from now on, we shall consider (attaching the index 1 to the “inner planet”)
values of �∗ in the compact set

{�∗ ∈ R
2 : amin � a1 < a2 � amax and

a1

a2
� αmax}. (1.2)

For a given set A ⊂ R
n and a given number r > 0, we shall denote by Ar the set

in C
n at distance less than r from A, i.e., the set

Ar :=
⋃

I∈A
Dnr (I ) ⊂ C

n, (1.3)

where Dnr (I ) denotes the (open) complex n-ball of radius r centered at I while
the real n-ball of radius r centered at I will be denoted Bnr (I ); complex or real
n-balls centered at the origin will be simply denoted by Dnr or, respectively, Bnr .
The following classical result holds.

Theorem 1.1 (Delaunay, Poincaré). There exist positive constants ε̄, δ̄, ımax and
emax such that the variables (�∗, λ∗) introduced above are, for 0 < ε < ε̄, stan-
dard, real-analytic symplectic variables describing all motions of the spatial three-
body problem in a O(δ̄)-neighborhood of any point �∗

0 in the compact set (1.2),
for ej � emax and for non-vanishing mutual inclinations ı̂ not bigger than ımax;
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the Hamiltonian governing such motions (with respect to the standard symplectic
form

∑
i d�

∗
i ∧ dλ∗

i +∑ dη∗
i ∧ dξ∗

i ) is the real-analytic function

−1

2

2∑

j=1

κj

�∗
j

2 + εF (�∗, λ∗, η∗, ξ∗), (1.4)

where κj :=
(
mj
ε

)3
1

m2
0(m0+mj ) are positive constants of order 1 ( κ̄

3

2 < κj < 1) and

F is a suitable function real-analytic in a neighborhood ofB2
δ̄
(�∗

0)×T
2 ×{(0, 0)}.

More precisely, fix �∗
0 in the compact set (1.2) and fix 0 < ımin < ımax, then, for

any 0 < ε < ε̄, ımin � |ı̂| � ımax, the function F can be taken to be real-analytic
on the complex set

Iσ0 × T
2
2s0 ×D4

2ρ0
⊂ C

8,

where σ0, s0, ρ0 are suitable positive numbers and where

I := [�∗
01 − δ,�∗

01 + δ] × [�∗
02 − δ,�∗

02 + δ],
for some δ � δ̄.

Furthermore, there exists a real-analytic, symplectic change of variables�W :
(I, ϕ, p, q) �→ (�∗, λ∗, η∗, ξ∗) of the form

�∗ = I, λ∗ = ϕ + �̂(I, p, q),
(η∗

ξ∗
)

= A(I)
(p
q

)
, (1.5)

where �̂ and A are real-analytic and A is a (4 × 4) symplectic matrix, such that, in
the variables (I, ϕ, p, q), the Hamiltonian (1.4) takes the form

H(I, ϕ, p, q) = h(I)+ f (I, ϕ, p, q), (1.6)

with

h := −1

2

2∑

i=1

κi

I 2
i

, f := εf1(I, p, q)+ εf2(I, ϕ, p, q),

f1 := f1,0(I )+
2∑

i=1

�̄i(I )(p
2
i + q2

i )+ f̃1(I, p, q),

∫

T2
f2 dϕ = 0, sup

Iσ0

|f̃1| � const|(p, q)|4; (1.7)

�̂, A and fi are real-analytic and uniformly bounded on

D0 := Iσ0 × T
2
s0

×D4
ρ0

⊂ C
8,

and f̃ is even in (p, q). Finally,
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inf
I∈I

�̄i > inf
I∈Iσ0

|�̄i | > const > 0,

(1.8)
inf
I∈I

(
�̄2 − �̄1

)
> inf
I∈Iσ0

|�̄2 − �̄1| > const > 0.

Remark 1.1. (i) Even though the results listed in this theorem are classical, the
analytical formulation presented here (together with a detailed proof of it) is
not easy to find in the literature.An effort to fill this gap was made at the Bureau
des longitudes in Paris in the late 80’s and we refer the interested reader to
the Notes scientifiques et techniques du B.D.L. by Chenciner [Ch88] and
Laskar [L88]. For completeness, we present the proof of Theorem 1.1 in3

Appendix C.
(ii) We sketch here, very briefly, the ideas behind Theorem 1.1, referring for details

to Appendix C. First of all, by elementary mechanics, we can cast the three-
body problem into a nine-degree-of-freedom Hamiltonian formalism. Then,
reduction of the center of mass makes it possible to lower the number of
degrees of freedom to six. In the planetary case considered here (one “star”
and two comparatively small “planets”), such a Hamiltonian system may be
seen as a perturbation of two decoupled Kepler problems. Hence, classical
Delaunay variables may be exploited to integrate the decoupled Kepler prob-
lems. Such variables present however certain singularities, which H. Poincaré
showed how to avoid, by introducing an analytic set of variables, now called
“Poincaré variables” (or, more precisely, “osculating Poincaré variables4”).
Finally, the reduction of the angular momentum (also known in the literature
as Jacobi’s “reduction of the nodes”) introduces two extra integrals of motion–
called Poincaré integrals in Appendix C-which allow us to lower the degrees
of freedom bringing the system into its final form of a four-degree-of-freedom
Hamiltonian system. The non-planarity condition ı̂ �= 0 is only needed in
order to define the osculating Poincaré variables, while the smallness assump-
tion on the inclination ı̂ (i.e., |ı̂| < ımax) is related to the linear stability of the
limiting motions, which, mathematically, reflects in �̄j being real; compare
also with item (iii) below. Finally, we stress that the function F does depend
upon the chosen O(1)-neighborhood of �∗

0 but obeys uniform bounds in the
whole domain (1.2). Such dependence is hidden in the dependence of the
perturbation function upon the above-mentioned Poincaré integrals, which,

3 Be aware that the variables (p, q) appearing in Theorem 1.1 correspond to the vari-
ables (η′, ξ ′) of Appendix C (and are not to be confused with the variables (p, q) used in
Appendix C).

4 In connection with three-body problems, there are two sets of Poincaré vari-
ables, differentiated in Appendix C by means of a “∗”: the “Poincaré variables”
(�, λ, η, ξ) ∈ R

2 × T
2 × R

4 are particularly suited to the treatment of the planar
three-body problem, while the “osculating Poincaré variables” (defined only for non-
vanishing mutual inclinations) (�∗, λ∗, η∗, ξ∗) ∈ R

2 × T
2 × R

4 are more convenient
when dealing with the spatial three-body problem; the word “osculating” refers to the
fact that these variables “live” on the two planes associated with the two osculating
ellipses.
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for small eccentricities, are related to the mutual inclination of the osculating
ellipses.

(iii) The change of variables (�∗, λ∗, η∗, ξ∗) �→ (I, ϕ, p, q) is, simply, the
(straightforward) completion of the linear symplectic diagonalization5 of the
(η∗, ξ∗)-quadratic part of the “secular term” of the Hamiltonian (1.4), i.e., of
the average over the angles λ∗ of εF , namely, εf1. Under the assumption that
ı̂ is small enough, the quadratic part turns out to be positive definite and,
hence, ±√−1(2ε�̄j ) are, simply, the purely imaginary eigenvalues of the
(4 × 4)-matrix S4Q′′, where S4 denotes, here, the standard (4 × 4) symplectic
unity matrix and Q = Q(η∗, ξ∗;�∗) denotes the (positive-definite) quadratic
part of ε

∫
T2Fdλ

∗ (thought of as a function of (η∗, ξ∗) and parametrized by
�∗). This diagonalization procedure, already known to Weierstrass, requires,
in the case of the three-body problem, certain calculations involving Laplace
coefficients (which, in turn, are simply related to the Gauss hyper-geometric
function): such calculations are sketched in Appendix C (see, also, [LR95]
and [R95]).

(iv) The Hamiltonian H describes a nearly-integrable, properly degenerate system:
the integrable limit (ε = 0) depends only on the two action variables I1, I2.

The frequency vector associated with the integrable limit is
(
κ1/I

3
1 , κ2/I

3
2

)
,

which is a vector of order one. This means that the conjugated angles ϕ may
be regarded as fast angles and, in “first approximation”, the H-motions are
governed by the averaged Hamiltonian h+ εf1: such a Hamiltonian, which in
case of the spatial three-body problem is non-integrable, is sometimes referred
to as a “secular Hamiltonian6”. By the discussion in the preceding item (iii)
and from (1.7), it follows that p = 0 = q is an elliptic equilibrium for the
Hamiltonian f1 and hence, for any I ,

{ϕ ∈ T
2} × {p = 0 = q} (1.9)

is an elliptic two-torus for the averaged Hamiltonian h+ εf1 run by the linear
flow ϕ → ϕ + ∇(h + εf1,0)t . These are the secular motions that we shall
prove to persist for 0 < ε � 1 and for special, but nearly full measure, values
of I .

We can, now, give a precise formulation of our main result. Let ε̄, δ̄, ımax,
emax, �∗

0, I, ımin, σ0, s0, ρ0 be as in Theorem 1.1 above and let measn denote the
n-dimensional Lebesgue measure.

Theorem 1.2. Fix τ > 1 and pick two numbers bi such that

0 < b1 <
1

2
, 0 < b2 <

(1

2
− b1

) 1

τ + 1
.

5 “Symplectic diagonalization” of a quadratic Hamiltonian Q(z), z ∈ R
2n, means diago-

nalization, by a linear symplectic map, of the constant matrix S2nQ′′, S2n being the standard
(2n× 2n) symplectic unit matrix; Q′′ denotes the Hessian matrix of the second derivatives
of Q.

6 A computer-assisted KAM theory for the secular Hamiltonian of the spatial three-body
problem is studied in [LG00].
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Then there exist ε0 in the range 0 < ε0 < ε̄ and C > 1 such that, for any ε in the
range 0 < ε < ε0, a Cantor set I∗ ⊂ I can be found with

meas2(I \ I∗) � Cεb1 , (1.10)

and the following statement holds. There exist a Lipschitz homeomorphism ω∗ :
I∗ → R

2 and a Lipschitz continuous family of tori embedding

φ : (θ, J ) ∈ T
2×I∗ �→

(
Iφ(θ; J ), ϕφ(θ; J ), pφ(θ; J ), qφ(θ; J )

)
∈I×T

2×B4
ρ∗ ,

with ρ∗ := Cεb2 , such that, for any J ∈ I∗, φ(T2, J ) is a real-analytic (ellip-
tic)H-invariant torus, on which the H-flow is analytically conjugated to the linear
flow θ �→ θ+ω∗t . Furthermore, φ(·, J ) is real-analytic on T

2
s0/8

and the following
bounds hold, uniformly on Ts0/8 × I∗:

|Iφ(θ, J )− J | � Cε
1
2 +b2 ,

|pφ(θ, J )| + |qφ(θ, J )| � Cεb2 ,

|ω∗(J )− ∇h(J )| � Cε. (1.11)

Also, there exists a Lipschitz continuous function �∗ : I∗ −→ R
2 such that

|�∗(J )− ε�̄(J )| � Cε1+b2 , (1.12)

and7

|ω∗ · k +�∗ · �| � ε

C(1 + |k|τ ) (1.13)

for any (k, �) ∈ Z
2 × Z

2 \ {(0, 0)} with |�| � 2.

We make, now, a few comments and remarks:

Amplification. The proof presented below allows us to catch also the limiting
case “b1 → 1/2”: compare also (ii), Remark 2.1 below. In this case, b1 and b2
are not defined, nevertheless, the conclusion of Theorem 1.2 holds with the fol-
lowing estimates replacing, respectively, (1.10), (1.11) and (1.12) ((1.13) remains
unchanged):

meas2(I \ I∗) � Cε
1
2

(
log

1

ε

)τ+1; (1.14)

|Iφ(θ, J )− J | � C
ε

1
2

log 1
ε

;

|pφ(θ, J )| + |qφ(θ, J )| � C
1

log 1
ε

, (1.15)

|ω∗(J )− ∇h(J )| � Cε;
|�∗(J )− ε�̄(J )| � C

ε

log 1
ε

. (1.16)

7 Dot “·” denotes the standard inner product: x · y :=∑j xj yj .
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On the proof of Theorem 1.2. The proof of Theorem 1.2, presented below, rests
upon a KAM (Kolmogorov Arnold Moser) theorem for lower dimensional elliptic
tori, stated by Melnikov in a 1965 paper [M65] and proved only in 1988 by Elias-
son [E88] and, independently, by Kuksin [K88]. In fact, we shall use a quantitative
version of Melnikov’s theorem adapted from a paper by Pöschel [P96]. In order
to apply Melnikov’s theorem to the three-body problem, the difficulties introduced
by the proper degeneracy of the model have to be overcome. For this purpose, we
have to use a quantitatively refined version of averaging theory: the angles associ-
ated with the unperturbed two-dimensional motions are fast and the system “feels”,
at “low orders”, only averaged effects. Averaging theory allows us to exploit this
phenomenon and to “reduce” significantly the effect of the perturbation. The aver-
aging theory we use is not standard and we present it (in a self-contained way) in
Appendix A. After averaging, two more symplectic changes of variables are needed
in order to cast the planetary three-body (small-eccentricity-inclinations) system in
a form suitable for KAM theory.

A physical comment. The elliptic quasi-periodic orbits obtained by Theorem 1.2
are seen to be the continuation of the secular orbitsXth+εf1

(I, ϕ, 0, 0), for suitable
initial values of the major semi-axis of the two osculating ellipses; compare, also,
point (iv) of Remark 1.1. Eccentricities and inclinations of the persistent orbits may
be described as follows:

• the eccentricities are small with ε: in fact, by the second estimate in (1.11), we
will have e1 + e2 � const εb2 ;

• admissible “initial” inclinations range between inclinations of order one in
ε (and close to ımax) and small-with-ε inclinations: choosing b2 small (i.e.,
b2 < 1

2(5+τ) ) the inclinations can be of order εb2 (compare (1.11), (2.14),
points (i) and (ii) of Remark C.2 and (C.62) below);

• during the true motions, however, the inclinations vary little with ε: because of
(1.11) and the relation between the Poincaré integrals and the inclinations, we
find that |i2(t)− i2(0)| = O(ε2b2) (compare (2.14), Remark C.2 and (C.62)).

KAM and the n-body problem. As is well known, KAM theory has been mainly
motivated (by the founding authors) by celestial mechanics, and, in particular, by
the n-body problem, to which Arnold devoted one of the fundamental paper of this
theory ([A63]). In [A63] the problem of the existence of maximal quasi-periodic
solutions for the n-body problem is considered and the author proves existence of
such quasi-periodic solutions for the planar, three-body problem and gives some
indications about how to extend his theorem to more general situations. In 1995,
Laskar & Robutel ([LR95]; see also [R95], to which we refer for further refer-
ences) extended Arnold’s result to the spatial three-body problem. Notice, however,
that such results do not answer the question posed at the beginning of this section
(as they deal with the existence of maximal invariant tori).

Herman announced a complete (and lengthy) proof of Arnold’s theorem for
the n-body problem ([H95]). Unfortunately his untimely decease deprived us of
a certainly beautiful (and, probably, quite technical, as it was in Herman’s style)
piece of mathematics.
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On the measure of the invariant tori. Clearly, the union of the two-dimensional
tori described in Theorem 1.2 form an invariant subset of the (eight-dimensional)
phase space of zero measure. However, it can be shown that in a full neighbor-
hood of such two-dimensional invariant tori there exist a positive measure set of
four-dimensional KAM tori (with two frequencies close to ω∗ and two frequencies
of order ε): in fact, such maximal tori are essentially the tori found by Laskar &
Robutel in [LR95] (see also [R95]).

Incidentally, we mention that around such two-dimensional invariant tori there
exist, also, plenty of periodic orbits; see [BBV].

The planar case. The methods used in this paper are also suitable for dealing with
the planar case (just use planar Poincaré variables in place of osculating Poincaré
variables; compare with footnote 4). However, our methods, for technical reasons,
do not allow us to get the planar case as a limit for the inclination i tending to zero.

For a different approach to the planar case, we refer, also, to the recent preprint8

[F02].

2. Proof of Theorem 1.2

The proof of Theorem 1.2 is based on three well-separated steps, which we now
proceed to explain.

First of all, pick a number b so that

0 < b2 < b <
(1

2
− b1

) 1

τ + 1
. (2.1)

Remark 2.1. (i) The estimates that we shall get in this proof (and which are ex-
pressed in terms of the constant b) are slightly better than those stated in Theo-
rem 1.2; in the comparison keep in mind (2.1) and the fact that 1

2 −b(τ+1) > b1.
(ii) To get the limiting case “b1 → 1/2”, disregard (2.1) and let, in what follows,

b := 0 (and keep in mind that, in such a case, b1 and b2 are not defined).

Step 1 (“fast averaging”). The starting point is the Hamiltonian formulation given
in Theorem 1.1 and the first step will consist in “removing” the angle-dependence
of the perturbation function f in (1.6), (1.7) to higher order in ε. To do this, we shall
make use of “averaging theory” (or “normal form theory”) and, in particular, of the
proposition which we shall shortly state, after we have introduced the necessary
notation.

8 After finishing our manuscript we received the preprint [F02], where an unpublishedC∞
KAM result by M. Herman (together with the inverse Nash-Moser implicit function theorem
in the context of “tame Fréchet spaces”) is used to derive the existence of quasi-periodic
motions in the planar three-body problem. We remark that in the planar three-body problem,
the averaged system (“secular Hamiltonian”) is integrable, a fact that is heavily relied on in
[F02]. (On the other hand, in the non-planar case, such integrability is no more available;
compare, also, footnote 6.)
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Let (I, ϕ, p, q) be standard symplectic variables in U × T
2 × V (with respect

to the symplectic form
∑
i dIi∧dϕi+

∑
i dpi∧dqi), whereU ⊂ R

2 and V ⊂ R
4;

let9

Wr,ρ,s := Ur × T
2
s × Vρ :=

⋃

I∈U
D2
r (I )× T

2
s ×

⋃

(p,q)∈V
D4
ρ((p, q)) ⊂ C

8 ;

(2.2)

and for a function real-analytic onWr,ρ,s denote by ‖f ‖r,ρ,s its “sup-Fourier” norm
given by10

‖f ‖r,ρ,s :=
∑

k∈Z2

(

sup
(I,p,q)∈Ur×Vρ

|fk(I, p, q)|
)

e|k|s , (2.3)

where fk(I, p, q) denotes the Fourier coefficient of index k ∈ Z
2 of the periodic

function ϕ → f (I, ϕ, p, q).

Proposition 2.1 (Averaging Theorem). Let H := h(I) + f (I, ϕ, p, q) be a real-
analytic Hamiltonian on Wr,ρ,s and denote by ω := h′ := ∇h the gradient of h.
Assume that there exist α,K > 0, satisfying Ks � 6, such that

|ω(I) · k| � α, ∀ k ∈ {k ∈ Z
2 : 0 < |k| � K}, ∀ I ∈ Ur. (2.4)

Assume, also, that, if d := min{rs, ρ2}, then

‖f ‖r,ρ,s < αd

c Ks
, (2.5)

where c > 1 is a suitable (universal) constant. Then, there exists a real-analytic
symplectic transformation

� : (I ′, ϕ′, p′, q ′) ∈ Wr/2,ρ/2,s/6 �→ (I, ϕ, p, q) = �(I ′, ϕ′, p′, q ′) ∈ Wr,ρ,s

(2.6)

and a real-analytic function g = g(I ′, p′, q ′) such that

H∗ := H ◦� = h+ g + f∗ , (2.7)

and the following bounds hold11:

sup
(I ′,p′,q ′)∈Ur/2×Vρ/2

|g(I ′, p′, q ′)− f0(I
′, p′, q ′)| � c

αd
‖f ‖2

r,ρ,s , (2.8)

‖f∗‖r/2,ρ/2,s/6 � e−Ks/6 ‖f ‖r,ρ,s . (2.9)

Furthermore (I, ϕ, p, q) = �(I ′, ϕ′, p′, q ′) satisfies

s |I − I ′|, r |ϕ − ϕ′|, ρ |p − p′|, ρ |q − q ′| � c‖f ‖r,ρ,s
α

, (2.10)

for each (I ′, ϕ′, p′, q ′) ∈ Wr/2,ρ/2,s/6.

9 Recall the notation in (1.3).
10 If k ∈ Z

n |k| :=∑n
i=1 |ki |.

11 The 0-Fourier coefficient of f , i.e., its ϕ-average, is denoted by f0.
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Remark 2.2. (i) In order not to interrupt the proof of Theorem 1.2, we present
the proof of (a more general form of) the Averaging Theorem in Appendix A.

(ii) Notice that, unlike the case in standard normal form theory, in the above prop-
osition, the “dummy” symplectic variables (p, q) are also controlled.

(iii) A qualitatively similar statement can be found in [N77] (Lemma 10.3, p. 45);
however, the quantitative bounds proved in [N77] are not enough for our pur-
poses (compare, in particular, the estimates reported in Remark 10.4, p. 46 of
[N77] with the stronger estimate (2.8) above).

(iv) (Notational conventions) In the rest of the proof, we shall denote by “ const ”
(or ci , c∗, C, etc.) positive constants of order one in ε, which may depend
upon τ , b, b1, b2, ε̄, δ̄, ımax, emax supIσ0

|h′′|, and the sup-Fourier norm of
fi in their analyticity domains. Also, the expression “f is real-analytic (or,
simply, analytic) on A ⊂ C

n” will be short for: f is real-analytic on A with
uniformly bounded sup-Fourier norm (2.3).

Let, now, H = h + f be as in Theorem 1.1 and let, as above, ω(I) := h′(I ).
Define

γ̄ = c∗ ε
1
2 −b(τ+1)

(
log

1

ε

)τ+1
, (2.11)

with c∗ > 0 to be chosen later. Consider the set of points I in I for which ω(I) is
(γ̄ , τ )-Diophantine:

Iγ̄ ,τ :=
{
I ∈ I : |ω(I) · k| � γ̄

|k|τ , ∀k ∈ Z
2 \ {0}

}
. (2.12)

Notice that (as a standard proof shows)

meas2

(
I \ Iγ̄ ,τ

)
� const γ̄ = const ε

1
2 −b(τ+1)

(
log

1

ε

)τ+1
. (2.13)

Next, let us choose the sets and the parameters involved in Proposition 2.1 as fol-
lows:

K = 12

s0 εb
log

1

ε
, α = γ̄

2Kτ
, s = s0 ,

r = γ̄

2Kτ+1 supIσ0
|h′′| , ρ := C∗ εb

log 1
ε

< ρ∗ � ρ0 , (2.14)

U = Iγ̄ ,τ , Ur =
⋃

I ′∈Iγ̄ ,τ
Dr(I

′), Vρ = D4
ρ ⊂ D4

ρ0
,

where C∗ is a suitable large constant to be fixed later. Notice that, from these
definitions, it follows (for ε small enough) that

α = const ε
1
2 −b log

1

ε
, r = const

α

K
= const

√
ε, d = const r,

(2.15)
αd = const ε1−b log

1

ε
,

αd

cKs
= const εc2∗

(clearly, in the last evaluation, “ const ” does not involve c∗).
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Now, it is not difficult to check that, choosing c∗ big enough and letting ε be
small enough, assumptions (2.4) and (2.5) are met. In fact, observing that f in (1.6),
(1.7) is such that

‖f ‖r,ρ,s � const ε,

(2.5) follows from the last equality in (2.15), by choosing c∗ large enough. As for

(2.4), observe that for any point in I ∈ Ur there is a point I0 ∈ Iγ̄ ,τ at a distance
less than r from it. Hence, by (2.12), by the definitions of α and r and by Cauchy
estimates12, for any I ∈ Ur and any 0 < |k| � K ,

|h′(I ) · k| � |h′(I0) · k| − |h′(I0)− h′(I )| |k|
� γ̄

Kτ
− sup

Iσ0

|h′′| r K

= γ̄

2Kτ
,

which proves also (2.4). Thus, by Proposition 2.1, there exists a symplectic trans-
formation

� : (I ′, ϕ′, p′, q ′) ∈ D1 := Ur
2
×T

2
s
6
×D4

ρ
2

→ (I, ϕ, p, q) ∈ Ur×T
2
s0

×D4
ρ0

⊂ D0,

such that

|I ′ − I | � const
ε

α
= const

ε
1
2 +b

log 1
ε

,

|p′ − p|, |q ′ − q| � const
ε

αρ
= const

√
ε, (2.16)

and which casts the Hamiltonian H into H′ := H ◦� with

H′(I ′, ϕ′, p′, q ′) := h(I ′)+ g(I ′, p′, q ′)+ f∗(I ′, ϕ′, p′, q ′), (2.17)

where (since, by (1.7), f0 coincides with εf1(I, p, q))

sup
(I ′,p′,q ′)∈Ur/2×Vρ/2

|g − εf1| � const
ε2

αr
= const

ε1+b

log(1/ε)
,

‖f∗‖r/2,ρ/2,s/6 � const εe−Ks/6 � ε3. (2.18)

Notice that if b > 0 then ‖f∗‖ is exponentially small with 1/ε, while if b = 0 then
the above estimates yield exactly ε3. Thus, setting g =: εḡ, f∗ =: ε3f̄ , we see that
H′ can be rewritten as

H′ := h(I ′)+ εḡ(I ′, p′, q ′)+ ε3f̄ (I ′, ϕ′, p′, q ′),

ḡ = f1(I
′, p′, q ′)+ εb

log(1/ε)
f̄1(I

′, p′, q ′) (2.19)

with f̄ and f̄1 real-analytic on D1 (compare (2.14) and recall the convention in (iv)
of Remark 2.2).

12 As is well known, “Cauchy estimates” allow us to bound n-derivatives of analytic
functions on a set A in terms of their sup-norm on larger domains A′ ⊃ A divided by
dist (∂A, ∂A′)n; compare, also, Lemma A.1 of Appendix A.
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Step 2. We now look for elliptic equilibria of the Hamiltonian ḡ in (2.19). Set

G(I ′, p′, q ′) :=
(
∂p′ ḡ(I ′, p′, q ′), ∂q ′ ḡ(I ′, p′, q ′)

)
.

Recalling (2.19) and the definition of f1 in (1.7), we see that, for all I ′ ∈ Ur/2,

G(I ′, 0, 0)
∣∣∣
ε=0

= 0 and det ∂(p′,q ′)G(I
′, 0, 0)

∣∣∣
ε=0

= 16(�̄1�̄2)
2 > 0.

Therefore, by the Implicit Function Theorem, we infer that, for any I ′ ∈ Ur/2 and
for ε small enough, there exist a suitable constant C and real-analytic functions
such that, choosing C∗ > C,

I ′ ∈ Ur/2 →
(
p′(I ′, ε), q ′(I ′, ε)

)
∈ BCεb/ log 1

ε
⊂ Bρ ⊂ Bρ∗ ,

and

∂p′ ḡ
(
I ′, p′(I ′, ε), q ′(I ′, ε)

)
= 0 = ∂q ′ ḡ

(
I ′, p′(I ′, ε), q ′(I ′, ε)

)
. (2.20)

For ε small enough, we can consider the following analytic symplectic transforma-

tion, which leaves fixed the I ′-variable and is O( εb

log 1
ε

)-close to the identity13,

�′ : (J ′, ψ ′, v′, u′) ∈ Ur/2×T
2
s/7×Dρ/3 �→ (I ′, ϕ′, p′, q ′) ∈ Ur/2×T

2
s/6×D4

ρ/2 ,

given by

I ′ = J ′,
ϕ′ = ψ ′ + p′(J ′, ε) ∂I ′q ′(J ′, ε)+ ∂I ′q ′(J ′, ε) v′ − ∂I ′p′(J ′, ε) u′,
p′ = v′ + p′(J ′, ε),
q ′ = u′ + q ′(J ′, ε).

In view of (2.20), the new Hamiltonian Ĥ := H′ ◦�′ has the form

Ĥ(J ′, ψ ′, v′, u′) = h(J ′)+ εg̃(J ′, v′, u′)+ ε3f̃ (J ′, ψ ′, v′, u′),

with f̃ and g̃ analytic in Ur/2 × T
2
s/7 ×Dρ/3 and

∂v′,u′ g̃(J ′, 0, 0) = ∂p′,q ′ ḡ(I ′, p′(I ′, ε), q ′(I ′, ε)) = 0 ∀ I ′ ∈ Ur/2.
Also, the eigenvalues of the symplectic quadratic part of g̃ are given by ±i�̃j (J ′),
for j = 1, 2, where

�̃j ∈ R and |�̃j − �̄j | � const
εb

log 1
ε

. (2.21)

13 The transformation�′ has generating function J ′ ·ϕ′+
(
v′+p′(J ′, ε)

)
·
(
q ′−q ′(J ′, ε)

)
.
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Thus, by a well-known result by Weierstrass on the symplectic diagonalization of

quadratic Hamiltonians, we can find an analytic transformationO

(
εb

log 1
ε

)
-close to

the identity

�̃ : (J̃ , ψ̃, ṽ, ũ) ∈ Ur/2 × T
2
s/8 ×D4

ρ/4 �→ (J ′, ψ ′, v′, u′) ∈ Ur/2 × T
2
s/7 ×D4

ρ/3,

so that J ′ = J̃ and the quadratic part of g̃ becomes, simply,
∑2
i=1 �̃i(J̃ ) (ũ

2
j + ṽ2

j ).

Whence, the Hamiltonian Ĥ takes the form H̃ := Ĥ ◦ �̃, with

H̃(J̃ , ψ̃, ṽ, ũ) = h0(J̃ )+ ε

2∑

i=1

�̃i(J̃ ) (ũ
2
i + ṽ2

i )

+εg̃0(J̃ , ṽ, ũ)+ ε3f̃0(J̃ , ψ̃, ṽ, ũ), (2.22)

where

h0(J̃ ) := h(J̃ )+ εg̃(J̃ , 0, 0), (2.23)

g̃0, f̃0, �̃j are real-analytic for (J̃ , ψ̃, ṽ, ũ) in

D2 := Ur/2 × T
2
s/8 ×D4

ρ/4 (2.24)

and

sup
J̃∈Ur/2

|g̃0(J̃ , ṽ, ũ)| � const |(ṽ, ũ)|3. (2.25)

Finally, because of (2.21), the non-degeneracy condition (1.8) implies (for ε small
enough)

inf
J̃∈U

�̃i > inf
J̃∈Ur/2

|�̃i | > const > 0,

(2.26)
inf
J̃∈U

(
�̃2 − �̃1

)
> inf

J̃∈Ur/2
|�̃2 − �̃1| > const > 0.

Step 3 (KAM). We are now in a position to apply a KAM result in order to find
two-dimensional elliptic tori. The KAM Theorem we shall use is, basically, the
version in [P96] of a result first proved by Eliasson ([E88]) and Kuksin ([K88])
about the conservation of lower dimensional invariant elliptic tori14. To state the
KAM theorem, we need a bit of preparation.

Consider a Hamiltonian system with symplectic variables (y, x, v, u) ∈ R
n ×

T
n×R

2m (endowed with the standard symplectic form
∑
dyj∧dxj+∑ dvi∧dui)

and consider a real-analytic Hamiltonian function of the form

H(y, x, v, u; ξ) = N(y, v, u; ξ)+ P(y, x, v, u; ξ), (2.27)

14 Actually, [K88] and [P96] cover also infinite-dimensional (in (v, u)) cases.
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where ξ is a parameter running over a compact set � ⊂ R
n of positive Lebesgue

measure, N is in normal form,

N(y, v, u; ξ) = e(ξ)+ ω(ξ) · y +
m∑

j=1

�j(ξ)(u
2
j + v2

j ), (2.28)

and P is a small perturbation.
Note that the HamiltonianN(·; ξ) affords, for any given value of the parameter

ξ ∈ �, the n-dimensional elliptic torus

{y = 0} × T
n × {v = u = 0},

which is invariant for the Hamiltonian vector field XN , the flow being, simply,
x �→ x + ω(ξ)t .

Assume that P is real-analytic on

D(r̄, s̄) := {(y, x, v, u) ∈ C
2(n+m) : |y| < r̄2 , x ∈ T

n
s̄ , |v| + |u| < r̄}, (2.29)

and that the dependence of ω, �j and P is Lipschitz in ξ ∈ �.
Let τ > n− 1 and, as in [P96], let us introduce the following weighted norms:

|ω|Lip
� := sup

ξ �=ξ ′∈�
|ω(ξ)− ω(ξ ′)|

|ξ − ξ ′| ,

‖XH‖r̄ ,D(r̄,s̄) := sup
D(r̄,s̄)×�

(
|∂yH | + 1

r̄2 |∂xH | + 1

r̄
(|∂vH | + |∂uH |)

)
,

‖XH‖Lip
r̄ ,D(r̄,s̄) := sup

D(r̄,s̄)

(
|∂yH |Lip

� + 1

r̄2 |∂xH |Lip
� + 1

r̄
(|∂vH |Lip

� + |∂uH |Lip
� )
)
.

Proposition 2.2 (KAM Theorem for elliptic tori). Assume that ω is a Lipschitz
homeomorphism onto its image. Let L and M be such that15

|ω|Lip
� + |�|Lip

� � M, |ω−1|Lip
� � L.

Assume that there exists γ0 > 0 such that

min
ξ∈�, i �=j{|�i(ξ)| , |�i(ξ)−�j(ξ)|} � γ0, (2.30)

|ω(ξ) · k +�(ξ) · �| � γ0 ∀ 0 < |k| � K0 , |�| � 2, (2.31)

where K0 is a suitable constant (depending, also, on n and τ), which is assumed
to be bigger than 16LM . Let γ ∈ (0, γ0/2] and define

|||XH |||r̄ ,s̄,γ := ‖XH‖r̄ ,D(r̄,s̄) + γ

M
‖XH‖Lip

r̄ ,D(r̄,s̄).

15 Define � := (�1, . . . , �m)
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Then, there exist suitable constants c = c(s̄, τ, n) and a = a(τ, n) > 1 such that,
if

c

γ
(LM)a |||XP |||r̄ ,s̄,γ � 1, (2.32)

the following holds. There exists a Cantor set of parameters�∗ ⊂ � and a Lipschitz
continuous family of toris embedding

� : (θ, ξ) ∈ T
n ×�∗ −→

(
y�(θ; ξ), x�(θ; ξ), v�(θ; ξ), u�(θ; ξ)

)
,

�(Tn ×�∗) ⊂ {|y| < r̄2} × T
n × {|v| + |u| < r̄},

a Lipschitz homeomorphism ω∗ on �∗ and a Lipschitz continuous function �∗ on
�∗, such that, for any ξ ∈ �∗, �(Tn, ξ) is a real-analytic (elliptic) H -invariant
n-dimensional torus, on which the flowXH is analytically conjugated to the linear
flow θ �→ θ +ω∗t . Furthermore,�(·, ξ) is real-analytic on T

n
s̄/2 and the following

bounds hold:

1

r̄2 |y�| + |x� − Id| + 1

r̄
(|v�| + |u�|)

+ γ

M

( 1

r̄2 |y�|Lip
�∗ + |x�|Lip

�∗ + 1

r̄
(|v�|Lip

�∗ + |u�|Lip
�∗ )
)

� c
|||XP |||r̄ ,s̄,γ

γ
, (2.33)

|ω∗ − ω| + γ

M
|ω∗ − ω|Lip

�∗ � c |||XP |||r̄ ,s̄,γ , (2.34)

|�∗ −�| + γ

M
|�∗ −�|Lip

�∗ � c |||XP |||r̄ ,s̄,γ , (2.35)

|ω∗ · k +�∗ · �| � γ

1 + |k|τ ∀(k, �) �= (0, 0), |�| � 2, (2.36)

measn(� \�∗) � c
γ

M
(LM diam�)n−1. (2.37)

Remark 2.3. This Theorem is a summary (in the finite-dimensional case) of The-
orems A and B and Corollary C of [P96], to which we refer for the proof16. Notice
that (2.30) and (2.31) here play the role of the “Non-degeneracy Assumption A” of
[P96], whileAssumptions B and C of [P96] are trivially satisfied in the finite dimen-
sional case. Assumptions (2.30) and (2.31) imply the measure estimate (2.37), as
briefly shown in Appendix B.

To apply Proposition 2.2 to our case, we let

n = 2, ω0 = h′
0, �i = ε�̃i , L = const , M = const , K0 := 16LM,

J = ξ ∈ � = U = Iγ̄ ,τ , e(ξ) = h0(ξ), r̄ = ε3/4, s̄ = s

8
,

16 For comparison purposes, we have kept the notation as close as possible to the notation
in [P96]; notice, however, that (in order to avoid confusion with other parameters introduced
in our paper) r and s in [P96] are denoted here by r̄ and s̄.
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N(y, v, u; ξ) = e(ξ)+ ω0(ξ) · y +
2∑

i=1

�i(ξ)(u
2
i + v2

i ), (x, v, u) = (ψ̃, ṽ, ũ),

(2.38)
H(y, x, v, u; ξ) = H̃(J + y, ψ̃, ṽ, ũ).

Recall that r ∼ √
ε, which is much larger than r̄ = ε3/4, so that

�r̄2 :=
⋃

ξ∈�
Dr̄2(ξ) ⊂ Ur/2,

and also r̄ � ρ/4 so that the HamiltonianH in (2.38) is real-analytic for |y| < r̄2,
|u| + |v| < r̄ and | Im x| < s̄, for any ξ ∈ �.

Next, we observe that the perturbation P may be written as

P =
∑

1�k�4

Pk ,

with

P1 = h0(ξ + y)− h0(ξ)− ω0(ξ) · y,

P2 =
2∑

i=1

(
�i(ξ + y)−�i(ξ)

)
(u2
i + v2

i ) ,

P3 = εg̃0(ξ + y, v, u),

P4 = ε3f̃0(ξ + y, x, v, u).

By (2.26) and (2.38), we see that (2.30) holds true, provided γ0 = const ε.
To check (2.31), take 0 < |k| � K0 and |�| � 2. Then, observing that |�j | �

const ε, recalling the definitions of U = � = Iγ̄ ,τ and γ̄ in (2.14), (2.12), (2.11)
and (2.38), for any 0 < |k| � K0 and |�| � 2, we have

|ω0(ξ) · k +�(ξ) · �| � |ω0(ξ) · k| − const ε

� γ̄

Kτ
0

− const ε > ε,

proving (2.31). Finally, recalling the definition of the weighted norms introduced
before Proposition 2.2, (2.25) and (2.38), we infer that

|||XP |||r̄ ,s̄,γ � const
(
r̄2 + εr̄ + ε3

r̄2

)
= const

(
ε3/2 + ε7/4 + ε3/2

)

� const ε3/2,

so that, letting (say)

γ := γ0/2 = const ε, (2.39)

we find

|||XP |||r̄ ,s̄,γ
γ

� const
√
ε. (2.40)
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Therefore, the assumptions of Proposition 2.2 are fulfilled and the existence of the
elliptic quasi-periodic orbits follows from Proposition 2.2: the parametrization φ
in Theorem 1.2 of the elliptic tori is given by

(
Iφ(θ; J ), ϕφ(θ; J ), pφ(θ; J ), qφ(θ; J )

)

:= � ◦�′ ◦ �̃
(
J + y�(θ; J ), x�(θ; J ), v�(θ; J ) , u�(θ; J )

)
, (2.41)

where the parameter J = ξ varies in

J ∈ I∗ := �∗. (2.42)

The estimates (1.11), (1.12) (or (1.15), (1.16)) and (1.13) follow easily from (2.16),
the fact that �′ and �̃ leave fixed the variables J ′ and J̃ and are εb/ log 1

ε
-close to

the identity in the other variables, (2.33)÷(2.36), (2.16), (2.21) and (2.23).
Finally, we turn to the measure estimates (1.10). It follows from (2.37) and

(2.39) that the 2-dimensional elliptic tori are described by a set of parameters �∗,
with

meas2(� \�∗) � const ε. (2.43)

Thus, from (2.13), (2.42) and (2.43), there follows

meas2(I \ I∗) � meas2(I \ Iγ̄ ,τ )+ meas2(Iγ̄ ,τ \ I∗)
:= meas2(I \ Iγ̄ ,τ )+ meas2(� \�∗)

� const
(
ε

1
2 −b(τ+1)

(
log

1

ε

)τ+1 + ε
)

� const ε
1
2 −b(τ+1)

(
log

1

ε

)τ+1
,

completing the proof of Theorem 1.2. ��

Appendix A. Averaging Theory

In this appendix, we prove a general result (Proposition A.1 below) in averaging
theory, which will immediately imply Proposition 2.1. The techniques used here
are similar to techniques used in [P93].

Let us first fix some notation. As above, (I, ϕ) and (p, q) denote sets of stan-
dard symplectic conjugate variables. We will use for I ∈ R

n the usual Euclid-
ean norm |I | := |I |2 :=(∑n

i=1 |Ii |2
)1/2, but for p, q ∈ R

m or ϕ ∈ T
n we will

use the norm |p| := |p|∞ := max1�i�m |pi |, |q| := |q|∞ := max1�i�m |qi |,
|ϕ| := |ϕ|∞ := max1�i�n |ϕi |, (mod 2π ). If such variables are considered in com-
plex domains, we shall use the corresponding conventions. If d > 0 and A is a
subset of R

l with l = n or l = m we define

Ad := {z ∈ C
l , such that ∃ x ∈ A with |z− x|j < d},
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where j = 2 or j = ∞ (according to whether the set is considered in the space of
the actions I ’s or in the space of the other symplectic variables p, q or ϕ). Let

D ⊂ R
n, E, F ⊂ R

m, U := D × E × F, W := U × T
n,

and let r, rp, rq, s > 0 and v := (r, rp, rq). For a function

f (u, ϕ) =
∑

k∈Zn

fk(u)e
ik·ϕ, u := (I, p, q),

real-analytic for (u, ϕ) ∈ Wv,s := Uv × T
n
s , with Uv := Dr ×Erp × Frq , we shall

use the norm17

‖f ‖v,s :=
∑

k∈Zn

sup
u∈Uv

|fk(u)|e|k|s .

Finally, we let � be a sub-lattice of Z
n and, if f =∑ fke

ik·ϕ , we set

TKf :=
∑

|k|�K
fke

ik·ϕ, P�f :=
∑

k∈�
fke

ik·ϕ.

Proposition A.1. LetH := h(I)+f (u, ϕ) be a real-analytic Hamiltonian onWv,s .
Denoting ω := h′ and cm := e(1 + em)/2, suppose that

|ω(I) · k| � α > 0, ∀ |k| � K, k /∈ �, ∀ I ∈ Dr, (A.1)

Ks � 6 and

‖f ‖v,s =: ε < αd

27cmKs
where d := min{rs, rprq}. (A.2)

Then, there exists a real-analytic symplectic transformation

� : (u′, f ′) ∈ Wv∗,s∗ −→ (u, ϕ) ∈ Wv,s

with v∗ := v/2, s∗ := s/6, such that

H∗ := H ◦� = h+ g + f∗, (A.3)

with g in normal form:

g =
∑

k∈�
gk(u

′)eik·ϕ′
. (A.4)

Moreover, when the projection of is denoted �(I ′, p′, q ′, ϕ′) onto the I -variables
by I (I ′, p′, q ′, ϕ′), etc.,

‖g − P�TKf ‖v∗,s∗ � 12

11

27cmε

αd
ε � 1

4
ε, (A.5)

‖f∗‖v∗,s∗ � 29cmε

αd
e−Ks/6ε � e−Ks/6ε, (A.6)

s |I (u′, f ′)− I ′|, rq |p(u′, f ′)− p′|, rp |q(u′, f ′)− q ′|, r |ϕ(u′, f ′)− f ′|
� 9ε/α. (A.7)

17 If k ∈ Z
n |k| :=∑n

i=1 |ki |.
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The proof of this result rests upon a series of technical elementary lemmata, which
we now proceed to state:

Lemma A.1. Let18 0 < ν < v and 0 < σ < s, where ν := (ρ, ρp, ρq). Then

∑

1�i�n
‖ ∂f
∂ϕi

‖v,s−σ � 1

eσ
‖f ‖v,s , max

i
‖ ∂f
∂Ii

‖r−ρ,rp,rq ,s � 1

ρ
‖f ‖r,rp,rq ,s

max
l

‖ ∂f
∂pl

‖r,rp−ρp,rq ,s � 1

ρp
‖f ‖v,s , max

l
‖ ∂f
∂ql

‖r,rp,rq−ρq ,s � 1

ρq
‖f ‖v,s .

This Lemma is a precise version of classical Cauchy estimates. We omit the well-
known proof; just notice that the estimates relative to ϕ-derivatives are a conse-
quence of the choice of the (Fourier) norm.

An immediate corollary of Lemma A.1 is the following Lemma on estimates
for Poisson’s brackets19.

Lemma A.2. Let 0 < v − ν < ṽ, where ṽ := (r0, r̃p, r̃q). Then,

‖{f, g}‖v−ν,s−σ �
[

1

e(r0 − r + ρ)σ
+ 1

e(s̃ − s + σ)ρ

+ m

(r̃p − rp + ρp)ρq
+ m

(r̃q − rq + ρq)ρp

]
‖f ‖ṽ,s̃ ‖g‖v,s .

If φ is a Hamiltonian function, we denote by Xtφ the Hamiltonian flow of φ at
the time t . If f and φ are analytic, expanding in Taylor series in time the function
f ◦Xtφ , we get

f ◦Xtφ =
∑

j

tj

j !L
j
φf,

where Lφf := {f, φ}, L0
φ := Id and

L
j
φ :=

j times
︷ ︸︸ ︷
Lφ ◦ · · · ◦ Lφ .

Lemma A.3. Let 0 < ν < v � ṽ − ν, 0 < σ < s � s̃ − σ and

‖φ‖ṽ,s̃ < G := 2

e

(
ρρpρqσ

ρpρq + emρσ

)
. (A.8)

Then

‖f ◦X1
φ‖v−ν,s−σ �

(
1 − ‖φ‖ṽ,s̃

G

)−1

‖f ‖v,s .

18 If a := (a1, . . . , aj ), b := (b1, . . . , bj ) ∈ R
j , then a < b means ai < bi for all

1 � i � j.
19 The Poisson brackets are {f, g} := ∑

j ∂ϕj f ∂Ij g − ∂Ij f ∂ϕj g + ∑i ∂qi f ∂pi g −
∂pi f ∂qi g.
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Proof. Fix h � 1 and let ν̄ := ν/h, σ̄ := σ/h‖ · ‖i := ‖ · ‖v−iν̄,s−iσ̄ , for all
i with 1 � i � h. We will use Lemma A.2 with ν = ν̄ and σ = σ̄ . Then,
v − iν̄ = [v − (i − 1)ν̄] and s − iσ̄ = [s − (i − 1)σ̄ ]. Hence,

‖Liφf ‖i = ‖{Li−1
φ , φ}‖i

�
[

1

e(r0 − r + iρ̄)σ̄
+ 1

e(s̃ − s + iσ̄ )ρ̄

+ m

(r̃p − rp + iγ̄ )κ̄
+ m

(r̃q − rq + iκ̄)γ̄

]
‖φ‖ṽ,s̃ ‖Li−1

φ ‖i−1

�
[

2

eρ̄σ̄
+ 2m

γ̄ κ̄

]
1

h+ i
‖φ‖ṽ,s̃‖Li−1

φ ‖i−1 .

Iterating h times the previous estimate we obtain

‖Lhφ‖h = ‖Lhφ‖v−ν,s−σ �
[

2

eρ̄σ̄
+ 2m

γ̄ κ̄

]h
h!
(2h)! ‖φ‖hṽ,s̃‖f ‖v,s

=
[

2

eρσ
+ 2m

ρpρq

]h
h2hh!
(2h)! ‖φ‖hṽ,s̃‖f ‖v,s

�
[
e

2ρσ
+ e2m

2ρpρq

]h
h!‖φ‖hṽ,s̃‖f ‖v,s = 1

G
h!‖φ‖hṽ,s̃‖f ‖v,s .

Finally, summing over h, we get

‖f ◦X1
φ‖v−ν,s−σ = ‖

∑

h

1

h!L
h
φf ‖v−ν,s−σ �

∑

h

1

h! ‖L
h
φf ‖v−ν,s−σ

� ‖f ‖v,s
∑

h

1

Gh
‖φ‖hṽ,s̃ =

(
1 − ‖φ‖ṽ,s̃

G

)−1

‖f ‖v,s . ��

The next lemma is an immediate consequence of Hamilton equations (and the
trivial proof is omitted).

Lemma A.4. Let 0 < v − ν < v, 0 < s − σ < s and suppose that

max
1�i�n

‖ ∂φ
∂Ii

‖v,s � σ̄ � σ,

n∑

i=1

‖ ∂φ
∂ϕi

‖v,s � ρ̄ � ρ,

max
1�l�m

‖ ∂φ
∂pl

‖v,s � ρ̄q � ρq, max
1�l�m

‖ ∂φ
∂ql

‖v,s � ρ̄p � ρp .

Let (u0, ϕ0) := (u(0), ϕ(0)) ∈ Wv−ν,s−σ . Then Xtφ(u(0), ϕ(0)) = (u(t), ϕ(t))

∈ Wv,s for all t with 0 � t � 1. More precisely,

|I (t)− I (0)| �
n∑

i=1

|Ii(t)− Ii(0)| � ρ̄, max
i

|ϕi(t)− ϕi(0)| � σ̄ ,

max
1�l�m

|pl(t)− pl(0)| � ρ̄p, max
1�l�m

|ql(t)− ql(0)| � ρ̄q .
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Lemma A.5. Let H(u, ϕ) := h(I) + g(u, ϕ) + f (u, ϕ) be real-analytic on Wv,s

with g =∑k∈� gk(u)eik·ϕ. Let ν < v/2 and σ < s/2. Suppose that

|ω(I) · k| � α > 0 ∀ |k| � K, k /∈ � , ∀ I ∈ Dr , (A.9)

and

‖f ‖v,s < αδ/cm where δ := min{ρσ, ρpρq} . (A.10)

Then, there exists a real-analytic symplectic transformation

� : (ũ, ϕ̃) ∈ Wv−2ν,s−2σ −→ (u, ϕ) ∈ Wv,s

such that

H ◦� = h+ g+ + f+, g+ − g = P�TKf. (A.11)

Here, � := X1
φ for a suitable φ :Wv,s → C such that

‖f+‖v−2ν,s−2σ

�
(

1 − cm

αδ
‖f ‖v,s

)−1[
cm

αδ
‖f ‖2

v,s + ‖{g, φ}‖v−ν,s−σ + e−Kσ‖f ‖v,s
]
.

(A.12)

Furthermore,

σ |I (ũ, ϕ̃)− Ĩ |, ρq |p(ũ, ϕ̃)− p̃|, ρp |q(ũ, ϕ̃)− q̃|, ρ |ϕ(ũ, ϕ̃)− ϕ̃|
� ‖f ‖v,s/α. (A.13)

Proof. We have H ◦� = h ◦�+ (g + TKf ) ◦�+ (f − TKf ) ◦� and we can
write

h ◦� = h+ {h, φ} +
∫ 1

0
(1 − t){{h, φ}, φ} ◦Xtφ dt,

(g + TKf ) ◦� = (g + TKf )+
∫ 1

0
{(g + TKf ), φ} ◦Xtφ dt.

Since we want g+ = [{h, φ} + g + TKf ] and g+ − g = P�TKf we have to solve
{h, φ} + TKf = P�TKf , that is

{h, φ} =
∑

|k|�K,k /∈�
fk(u)e

ik·ϕ.

The solution of such an equation is explicitly given by

φ(u, ϕ) =
∑

|k|�K,k /∈�

fk(u)

ik · ω(I)e
ik·ϕ with ‖φ‖v,s � 1

α
‖f ‖v,s . (A.14)

From (A.14), Lemma A.1 and Lemma A.4, we obtain (A.13) and the inclusion

� : Wv−2ν,s−2σ −→ Wv,s .
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If ft := (1 − t)(g+ − g)+ tTKf , we have

f+ =
∫ 1

0
{(g + ft ), φ} ◦Xtφ dt + (f − TKf ) ◦�.

We can estimate G in (A.8) with G � δ/cm. Then, for all F and for all t with
0 � t � 1, substituting ṽ → v, v → v − ν, ν → ν, we have (by Lemma A.3)

‖F ◦Xtφ‖v−2ν,s−2σ � C‖F‖v−ν,s−σ ,
with C := (1 − cm‖φ‖v,s/δ)−1. Then, choosing F := {ft , φ}, and using Lemma
A.2 we have
∥∥∥∥

∫ 1

0
{ft , φ} ◦Xtφ dt

∥∥∥∥
v−2ν,s−2σ

�
∫ 1

0
‖{ft , φ} ◦Xtφ‖v−2ν,s−2σ dt

� C

∫ 1

0
‖{ft , φ}‖v−ν,s−σ dt

� C

∫ 1

0

(
2

eρσ
+ 2m

ρpρq

)
‖ft‖v,s‖φ‖v,s dt

� C
cm

δ

∫ 1

0
‖ft‖v,s‖φ‖v,s dt

� C
cm

αδ
‖f ‖2

v,s , (A.15)

where in the last inequality we have used the simple fact that ‖ft‖v,s � ‖f ‖v,s .
Similarly we obtain

∥∥∥∥

∫ 1

0
{g, φ} ◦Xtφ dt

∥∥∥∥
v−2ν,s−2σ

� C‖{g, φ}‖v−ν,s−σ (A.16)

and

‖(f − TKf ) ◦X1
φ‖v−2ν,s−2σ

� C‖f − TKf ‖v−ν,s−σ � C e−Kσ‖f ‖v,s . (A.17)

Collecting (A.15), (A.16), (A.17) we have (A.12). ��
We are now ready for the

Proof of Proposition A.1. Let ε0 := ε, ν0 := v/8, σ0 := s/6, δ0 := min{ρ0σ0,

ρp0ρq0}. Suppose that20

e−Ks/6 � 32cmε/αd (A.18)

20 The case in which in (A.18) holds “>” is even simpler. In fact it is sufficient to apply
Lemma A.5 with ν := v

4 , σ := s
3 , v − 2ν = v∗, s − 2σ = s∗, g = 0, having � := �,

g+ = P�TKf , f∗ := f+. It is easy to verify that (A.6) and (A.7) follow from (A.2), (A.12)
and from Ks � 6.
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Substituting ν → ν0, σ → σ0, δ → δ0, we can use Lemma A.5 since δ0 � d/64
and (A.2) implies (A.10). Defining W1 := Wv1,s1 with v1 := v − 2ν0 = 3/4v
and s1 := s − 2σ0 = 2/3s, we obtain an analytic symplectic transformation
�0 : W1 → Wv,s with H ◦ �0 = h + g0 + f1, where g0 = P�TKf . Moreover
from (A.2), (A.18), (A.12) we obtain

‖f1‖1 := ‖f1‖v1,s1 =: ε1 �
(

1 − 64cmε

αd

)−1[64cmε

αd
+ e−Ks

]
ε

� 9

11

27cmε

αd
ε

� 1

6
ε. (A.19)

Letting (u, ϕ) = �0(u
(1), ϕ(1)), from (A.13) we have, for all (u, ϕ) ∈ W1,

s |I (1) − I |, rp |p(1) − p|, rq |q(1) − q|, r |ϕ(1) − ϕ|, � 8ε/α. (A.20)

Let L ∈ N be such that

L � Ks

12 ln 2
< L+ 1,

(
�⇒ Ks � 8L

)
. (A.21)

Let ν := v/8L, σ := s/4L, and define for 1 � i � L, vi := vi−1 − 2ν
= v1 − 2(i − 1)ν, si := si−1 − 2σ = s1 − 2(i − 1)σ , �i : Wi+1 → Wi :=
Wvi,si with Hi := H ◦�i−1 =: h+ gi−1 + fi on Wi and εi := ‖fi‖Wi =: ‖fi‖i .
Observing that Wi+1 ⊂ Wi , we can iterate Lemma A.5 with v → vi , s → si , after
verifying by induction (see below) that

εi � ε1 ∀ 1 � i � L. (A.22)

In fact, in order to apply Lemma A.5 we have to verify (A.10), which is implied,
for any 1 � i � L, by (A.22) and the estimate21

εi � ε1 � 2−6(αd/64cmL
2), (A.23)

which follows directly from (A.19), (A.2) and (A.21). We observe that, for all
1 � i � L,

‖gi − gi−1‖i = ‖P�TKfi‖i � ‖fi‖i = εi . (A.24)

We now prove (A.22). In order to estimate fi+1, we evaluate gi−1 = ∑i−1
j=0 g̃j

where g̃0 := g0 and g̃j := (gj − gj−1) are defined on Wj . Since from (A.14) we
have ‖φi‖i � ‖fi‖i/α = εi/α, and

‖{gi−1, φi}‖vi−ν,si−σ

21 We observe that δ � d/64.
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�
i−1∑

j=0

‖{g̃j , φi}‖vi−ν,si−σ

�
i−1∑

j=0

[
1

e(rj − ri + ρ)σ
+ 1

e(sj − si + σ)ρ

+ m

(rpj − rpi + ρp)ρq
+ m

(rqj − rqi + ρq)ρp

]
‖g̃j‖j‖φi‖i

� 2

3

[
1

eρσ
+ m

ρpρq

] i−1∑

j=1

‖P�TKfj‖j 1

α
εi + ε

αL
εi

[
1

eρσ
+ m

ρqρp

]

� 64cmL2εi

αd

[
2

3

i−1∑

j=1

εj + ε

L

]

� 64cmL2εi

αd

[
ε1 + ε

L

]
, (A.25)

where we have used Lemma A.2 and the fact that g̃j = P�TKfj , considered sep-
arately the case j = 0 from j > 0, and observed that, if j > 0, then

v − vj + ν � v − v1 + ν � ν + v/4 = (2L+ 1)ν,

s − sj + σ � s − s1 + σ � σ + s/3 = (4L/3 + 1)σ .

Using (A.21), (A.19), (A.23) and εi � ε1 we obtain from Lemma A.5

εi+1 = ‖fi+1‖i+1

�
(

1 − 64cmL2εi

αd

)−1[64cmL2εi

αd
(εi + ε1 + ε/L)+ e−Ks

]
εi

� εi

4
. (A.26)

Moreover, from (A.19), there follows

‖f∗‖v∗,s∗ = εL+1 � 4−Lε1 � 29cmε

αd
4−(L+1)ε

� 29cmε

αd
4− Ks

12 ln 2 ε = 29cmε

αd
e−Ks/6ε,

and

‖g − g0‖v∗,s∗ �
L∑

i=1

‖gi − gi−1‖vi ,si �
L∑

i=1

εi � 4
L∑

i=1

(
1

4

)i
ε1 = 4

3
ε1 ,

from which (A.5) and (A.6) follow.
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Let, now, � := φ0 ◦ · · · ◦ φL and (u(i), ϕ(i)) ∈ Wi. Using (A.21), (A.20) and
Lemma A.5 we have

|I − I ′| = |I (L+1) − I (0)|

� |I (1) − I (0)| +
L∑

i=1

|I (i+1) − I (i)| � 8ε

αs
+ 4L

αs

L∑

i=1

εi � 9

αs
ε.

The estimates for |p − p′|, |q − q ′| and |ϕ − ϕ′| are analogous. ��

Appendix B. KAM measure estimates

Here, we show how assumptions (2.30) and (2.31) imply the measure estimate
(2.37).

Indeed, the set �∗ is obtained as �∗ =⋂ν∈N
�ν , where �0 := � and, recur-

sively,

�ν+1 := �ν \
( ⋃

(k,�)∈Zn+m\{0}
|�|�2, |k|>Kν

Rν+1
k�

)
,

with Kν := K0 2ν , and Rν+1
k� is a suitable “resonant set” to be discarded at the

νth step of the KAM iteration (compare with the Iterative Lemma in Section 4 of
[P96]). The sets Rν+1

k� satisfy the measure estimate

measn(Rν+1
kl ) � λ

|k|τ+1 , λ := const (LM)n
γ

M
( diam�)n−1, (B.1)

for any |k| � K0, ν � 0, |�| � 2 (see Lemma 5 in [P96]). Therefore,

measn(�ν+1) � measn(�ν)− const λ
∑

|k|>Kν
|k|−(τ+1)

� measn(�ν)− const λ
1

Kτ−n+1
ν

.

Iterating this relation and using the definition of Kν , we get

measn(�ν+1) � measn(�)− const
γ

M
(LM diam�)n−1,

which proves (2.37).

Appendix C. The Delaunay-Poincaré theory of the planetary three-body
problem

In this appendix, following [Ch88] and [L88], we discuss, in a self-contained
way, the Hamiltonian formulation of the planetary (non-planar) three-body prob-
lem, discussing, in particular, the classical Delaunay-Poincaré Theorem 1.1 and its
proof. The appendix is divided in two parts dealing, respectively, with the canonical
treatment of the two-body problem and with the (partial) extension of such theory
to the three-body problem.
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C.1. Canonical variables for the two-body problem

C.1.1. Integration of the Kepler problem. Consider two bodies P0, P1 of masses
m0, m1 and spatial position u(0), u(1) ∈ R

3, interacting through gravity, with grav-
itational constant 1; the (inertial) frame R

3 is chosen so that its origin coincides
with the center of mass. Let

M := m0 + m1, m := m0m1

M
, x := u(1) − u(0), X := mẋ. (C.1)

Then, the motion of the two bodies is governed by the Hamiltonian

K(X, x) = 1

2m
|X|2 − mM

|x| , (C.2)

with (X, x) ∈ R
3 × R

3 conjugate variables22, i.e., the equations of motion are
ẋ = ∂XK, Ẋ = −∂xK.

As is well known, such a system is integrable and for K < 0 the (x-projection
of the) orbits are ellipses. More precisely, we have

Proposition C.1. Fix �− > 0 > K0 and let �+ :=
(

m3M2

−2K0

) 1
2
. Then, there exist

ρ̂ > 0 and a real-analytic symplectic transformation23

�DP :
(
(�, η, p), (λ, ξ, q)

)
∈
(
[�−,�+] × B2

ρ̂

)
×
(
T × B2

ρ̂

)

�→ (X, x) ∈ {|x| � ρ̂2

m2M
},

casting (C.2) into the integrable Hamiltonian (−m3M2)/(2�2).

This classical proposition is due to Poincaré ([Poi1905], Chapter III) and the
variables (�, η, p, λ, ξ, q) are, usually, called “Poincaré variables”. The proof of
Proposition C.1 is particularly interesting from the physical point of view and rests
upon the introduction of three different (famous) changes of variables, which we,
now, proceed to describe briefly (for more details, see [Ch88]).

Recall that �, θ and g denote, respectively, the mean anomaly, the longitude of
the (ascending) node and the argument of the perihelion (see Fig. 2).

22 Often, in this appendix, upper/lower case letters indicate couples of standard symplectic
conjugate momentum-coordinate variables.
23 Recall that Bnr , Dnr , Bnr (x0) and Dnr (x0) denote, respectively, the real n-ball of radius
r centered at the origin, the complex n-ball of radius r centered at the origin, the real n-ball
of radius r centered at x0 and the complex n-ball of radius r centered at x0.
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Step 1. The system is set in “symplectic” spherical polar variables: namely, we

consider the symplectic map �spc :
(
(R,�,�), (r, ω, ϕ)

)
�→ (X, x) (where r >

0, 0 < ω < π and 0 � ϕ < 2π ) given by24






x1 = r sinω cosϕ

x2 = r sinω sin ϕ

x3 = r cosω

, X =






sinω cosϕ cosω cosϕ
r

− sin ϕ
r sinω

sinω sin ϕ cosω sin ϕ
r

cosϕ
r sinω

cosω − sinω
r

0











R

�

�






(C.3)

and consider the new Hamiltonian Kspc := K ◦�spc.

Step 2. Using the Hamilton-Jacobi, method we can find a symplectic map �D :(
(L,G,�), (�, g, θ)

)
�→
(
(R,�,�), (r, ω, ϕ)

)
that integrates the system:�D is

the symplectic transformation with generating function

S(L,G,�, r, ω, ϕ) =
∫ √

−m4M2

L2 + 2m2M

r
− G2

r2 dr

+
∫ √

G2 − �2

sin2 ω
dω +�ϕ. (C.4)

The variables
(
(L,G,�), (�, g, θ)

)
are known as “Delaunay variables”. In such

variables, the new Hamiltonian becomes

KD := Kspc ◦�D = −m3M2

2L2 .

LetC be the angular momentum of the planet, let a be the major semi-axis and let i
be its inclination, i.e., the angle between a fixed reference plane and the Keplerian
ellipse plane; compare Fig. 2 (later, such a reference plane will be taken to be the
“total angular momentum plane”). By construction, the following relations hold:

G = |C|, � = G cos i and L = m
√

Ma.

Step 3. To remove singularities, following Poincaré, we proceed as follows. First,
we introduce Poincaré action-angle variables by means of the linear symplectic
transformation

�Paa :
(
(�,H,Z), (λ, h, ζ )

)
�→
(
(L,G,�), (�, g, θ)

)

given by

�Paa :
{
� = L, H = L−G, Z = G−�,

λ = �+ g + θ, h = −g − θ, ζ = −θ. (C.5)

24 The matrix in (C.3) is the transpose of the inverse of the Jacobian ∂x
∂(r,ω,ϕ)

.



120 Luca Biasco, Luigi Chierchia & Enrico Valdinoci

Then, we let25 �P :
(
(�, η, p), (λ, ξ, q)

)
�→
(
(�,H,Z), (λ, h, ζ )

)
be the sym-

plectic map defined by the relations

H = η2+ξ2

2 ,
√

2H cosh = η,
√

2H sin h = ξ,

Z = p2+q2

2 ,
√

2Z cos ζ = p,
√

2Z sin ζ = q.
(C.6)

As Poincaré showed (see below), the symplectic map

�DP :
(
(�, η, p), (λ, ξ, q)

)
�→ (X, x)

with

�DP := �spc ◦�D ◦�Paa ◦�P (C.7)

is real-analytic in a neighborhood of
(
[�−,�+]×{(0, 0)}

)
×
(
T×{(0, 0)}

)
, (and

the two-body Hamiltonian, in Poincaré variables, is K ◦� = −m3M2

2�2 ).

Remark C.1. (i) If we define (X, x) = �DP

(
(�, η, p), (λ, ξ, q)

)
, then26

X = m4M2

�3

∂x

∂λ
.

(ii) Let us collect, here, some important relations among the quantities introduced
above. Let, as usual, e denote the eccentricity of the Keplerian ellipse and let
a and i denote the major semi-axis and the inclination. Then, by construction,
we see that

� = m
√

Ma,
√
ξ2 + η2 = √

�e (1 +O(e2)), (C.8)
√

p2 + q2 = √
� i (1 +O(e2)+O(i2)).

A more explicit link between H , the eccentricity and the major semi-axis is
given by

H = �(1 −
√

1 − e2) = �
e2

2
(1 +O(e2)), (C.9)

e(H,�) =
√
H

�

(
2 − H

�

)
. (C.10)

25 Do not confuse the variables (p, q) here with the variables (p, q) used in the text (and,
in particular, in Theorem 1.2, where the variables (p, q) correspond to the variables (η′, ξ ′)
introduced below).
26 By Hamilton equations it can be seen that λ̇ = ∂�

(
− m3M2

2�2

)
= m3M2

�3 , and �̇ = ξ̇ =
η̇ = ṗ = q̇ = 0. Thus, by the chain rule, X = mẋ = m(∂λx) λ̇ = m4M2

�3
∂x
∂λ

.
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Also, if C is the angular momentum of the system, we infer that

|C| = �
√

1 − e2 = �(1 +O(e2)), (C.11)

Z = |C| (1 − cos i) = �
√

1 − e2 (1 − cos i)

= |C| i
2

2
(1 +O(i2)). (C.12)

Poincaré’s argument ([Poi1905]) for proving the analyticity of �DP goes as fol-
lows:

Let us define α := g + v, ψ := ϕ − θ , X := r cos(v − �), Y := r sin(v − �).
Let us also denote by “ trig ” sin or cos and by Z the vector (X ,Y). By (C.3), we
get an analytic expression of x in terms of

(
Z, cos2 i

2
trig λ, sin2 i

2
trig (λ+ 2ζ ), sin i trig (λ+ ζ )

)
. (C.13)

By geometric considerations, r cos v = a(cos u− e) and r sin v = a
√

1 − e2 sin u.
Thus, we get an analytic expression of Z of the form

Z = Z(a, e2, trig (u− �), e2 trig (u+ �), e trig �). (C.14)

By geometric considerations, u − � = e sin u, from which u − � results to be
an analytic function of e trig �. Hence, by standard trigonometric computations,
e2 trig (u+ �) is proved to be an analytic function of e trig �.

Thus, from (C.14), we get an analytic representation Z = Z(a, e2, e trig �). By
e2 = (e sin �)2 +(e cos �)2 and the first of (C.8), it follows that Z = Z(�, e trig �).

From (C.5), (C.6) and (C.9), Z = Z(�, λ, η, ξ).
Hence, we come back to the expression in (C.13). To complete the proof of the

analytic dependence of x with respect to the Poincaré variables, we need to find an
expression of sin i

2 trig ζ and trig i
2 . From (C.6),

sin
i

2
cos ζ = p

2
√
�−H

, sin
i

2
sin ζ = q

2
√
�−H

, H = ξ2 + η2

2
.

Using again trigonometric relations, we see that sin i trig ζ is an analytic function
of (�, λ, η, ξ, p, q). Moreover, by (C.6), (C.11) and (C.12), we have

1 − cos i = p2 + q2

2�− (η2 + ξ2)
,

and an analytic expression of trig i
2 in terms of (�, η, ξ, p, q) easily follows. Hence,

we obtain an analytic expression of x in terms of (�, λ, η, ξ, p, q).
From point (i) of Remark C.1, we finally show that X is analytic in (�, λ, η,

ξ, p, q).
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C.I.2. “Osculating” Poincaré variables. Following Poincaré, we introduce a
new set of action-angle variables (linearly related to the Delaunay variables),(
(�∗, H ∗, Z∗), (λ∗, h∗, ζ ∗)

)
∈ (R3 × T

3), by letting

�P∗
aa

:
{
�∗ = �, H ∗ = H, Z∗ = Z −�+H,

λ∗ = λ+ ζ, h∗ = h− ζ, ζ ∗ = ζ.
(C.15)

The physical interpretation of these variables follows from the above construction.
In particular,

λ∗ = �+ g, h∗ = −g, ζ ∗ = −θ. (C.16)

Observe that the angles (λ∗, h∗) are defined in the orbital plane: for this reason, we

shall call the set of variables
(
(�∗, H ∗, Z∗), (λ∗, h∗, ζ ∗)

)
“osculating action-angle

variables”27. Notice that, by (C.11),

Z∗ = Z −�
√

1 − e2 = −�+O(e2)+O(i2)

is negative for small eccentricity and inclination.
In a way analogous to (C.6), we can introduce symplectic “osculating Poincaré

variables”,

�P∗ :
(
(�∗, η∗, p∗), (λ∗, ξ∗, q∗)

)
�→
(
(�∗, H ∗, Z∗), (λ∗, h∗, ζ ∗)

)
,

through the relations

H ∗ = η∗2 + ξ∗2

2
,

√
2H ∗ cosh∗ = η∗,

√
2H ∗ sin h∗ = ξ∗, (C.17)

−Z∗ = p∗2 + q∗2

2
,

√−2Z∗ cos ζ ∗ = p∗,
√−2Z∗ sin ζ ∗ = q∗. (C.18)

Notice that (C.17) and (C.18) are singular forH ∗ = 0 and Z∗ = 0, respectively28.
However, the Hamiltonian formalism in osculating Poincaré variables is analytic
for p2 + q2 > 0 (which, for small eccentricities and in view of (C.8), means for
non-zero inclinations):

27 Obviously, in the two-body problem the “osculating plane” coincides with the orbital
plane, but we shall use these symplectic variables also for the spatial three-body problem,
where the two two-body systems considered (star+planet Pj ) will not move on fixed planes
and, in such a case, it makes sense to speak about “osculating planes”; we also anticipate
that, choosing as reference plane the “total angular momentum plane”, ζ∗ will turn out to
be a cyclic variable and, hence, Z∗

j
will be integrals of the motions (Poincaré integrals).

28 The singularity Z∗ = 0 would not actually be a problem since in our case Z∗ ∼ −�
which is bounded away from 0.
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Proposition C.2. There exists 0 < ρ0 <
√

2 min{�−,�+ −�−}, such that the

symplectic transformation�DP∗ :
(
(�∗, η∗, p∗), (λ∗, ξ∗, q∗)

)
�→ (X, x) ∈ {|x| �

ρ̂2

m2M
} given by

�DP∗ = �spc ◦�D ◦�P∗
aa

◦�P∗

is real-analytic for
(
(�∗, λ∗), (η∗, ξ∗), (p∗, q∗)

)
∈ C where C = C(�−,�+, ρ0)

is the “conical” region defined as

C :=
⋃

�−��̃��+
0�ρ̃<ρ0

(
{�̃} × T

)
×
{
|(η∗, ξ∗)| = ρ̃

}

×
{
(p∗, q∗) : �̃− ρ̃2 + ρ2

0

2
< −Z∗ < �̃− ρ̃2

2

}
. (C.19)

Furthermore, there exist positive numbers β, β̄, ρ∗ satisfying

2β + β̄ <
ρ2

0

2
, ρ∗2

< ρ2
0 − 2(β̄ + 2β), (C.20)

such that, for any �∗
0 ∈ [�− + β,�+ − β],

([�∗
0 − β,�∗

0 + β] × T)× B2
ρ∗

×
{
(p∗, q∗) : �∗

0 − β − ρ∗2

2
− β̄ < −Z∗ < �∗

0 − β − ρ∗2

2

}
⊂ C. (C.21)

For a suitable s > 0 and for any (p∗, q∗) such that �∗
0 − β − ρ∗2

2 − β̄ < −Z∗ <
�∗

0 − β − ρ∗2

2 , the map ((�∗, λ∗), (η∗, ξ∗)) → �DP∗
(
(�∗, η∗, p∗), (λ∗, ξ∗, q∗)

)

is analytic on the complex domain

((�∗, λ∗), (η∗, ξ∗)) ∈ (Eρ∗2 × Ts)×D2
ρ∗ , (C.22)

where

E :=
[
�∗

0 − β + ρ∗2
,�∗

0 + β − ρ∗2
]
, Eρ∗2 :=

⋃

�̃∈E
D1
ρ∗2(�̃). (C.23)

In the osculating variables the two-body Hamiltonian is given by K ◦ �DP∗ =
− m3M2

2(�∗)2 .

Proof. By (C.17), (C.15) and (C.6),

η∗ = ηp + ξq
√

p2 + q2
and ξ∗ = ξp − ηq

√
p2 + q2

.

Also, (C.6) is regular for (p, q) �= 0, so that, for non-zero inclination, we can express
Z = Z(p, q)= (p2 + q2)/2 and ζ = ζ(p, q) as analytic functions (more precisely,
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ζ(p, q) is analytic on the pinched complex torus {C/(2πZ)} \ 2πZ). Thus, in light
of (C.15) and (C.18),

λ∗ = λ+ ζ(p, q),

p∗ =
√

2�− p2 − q2 − η2 − ξ2 sin ζ(p, q),

q∗ =
√

2�− p2 − q2 − η2 − ξ2 cos ζ(p, q).

Therefore, the diffeomorphism

� := �−1
P∗ ◦�−1

P∗
aa

◦�Paa ◦�P :
(
(�, η, p), (λ, ξ, q)

)

�→
(
(�∗, η∗, p∗), (λ∗, ξ∗, q∗)

)
,

which maps the Poincaré variables into the osculating Poincaré variables is analytic
for �− < � < �+, λ ∈ T, (η, ξ) ∈ B2

ρ0
, (p, q) ∈ B2

ρ0
\ {0}, for a suitably small

ρ0.
By construction, �DP∗ = �DP ◦ �−1, where �DP has been defined in (C.7),

and, as shown in Fig. 3,

�
(
{� = �̃, λ ∈ T, |(η, ξ)| = ρ̃, |(p, q)| = r̃}

)

=
{
�∗ = �̃, λ∗ ∈ T, |(η∗, ξ∗)| = ρ̃, |(p∗, q∗)| =

√
2�̃− ρ̃2 − r̃2

}
.

Ψ

(h, x)

(p,q)

(h*

zh

h-

∼

r

z

∼

r

2

*, x )

∼r

~

z

( p*, q*)

r2-Λ2 r
∼ -

Fig. 3.
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Now, observe that, in view of the above relation,

�
({
� ∈ [�−,�+], λ ∈ T, (η, ξ) ∈ B2

ρ0
, (p, q) ∈ B2

ρ0
\ {0}

})

=
⋃

�̃∈[�−,�+]
ρ̃∈[0,ρ0)
r̃∈(0,ρ0)

{
�∗ = �̃, λ∗ ∈ T, |(η∗, ξ∗)|

= ρ̃, |(p∗, q∗)| =
√

2�̃− ρ̃2 − r̃2
}

=
⋃

�̃∈[�−,�+]
ρ̃∈[0,ρ0)

{
�∗ = �̃, λ∗ ∈ T , |(η∗, ξ∗)| = ρ̃,

√
2�̃− ρ̃2 − ρ2

0 < |(p∗, q∗)| <
√

2�̃− ρ̃2
}
,

which proves the real-analyticity of �DP∗ on C. Any choice of β, β̄, ρ∗ satisfying
(C.20) implies easily the inclusion (C.21) and (C.22). ��
Remark C.2. (i) The Poincaré integral Z∗ is (in the small inclination-eccentric-

ity regime considered here), for fixed values of H ∗ and �∗, in one-to-one
correspondence with the squared inclination i2. In fact, by (C.9)÷(C.12) and
(C.15),

i2

2

(
1 +O(i2)

)
= 1 − cos i

= Z∗ +�∗√1 − e(H ∗,�∗)2

�∗√1 − e(H ∗,�∗)2

= 1 + Z∗

�∗ +O(e2). (C.24)

(ii) In view of the preceding remark, the set in (C.21) corresponds to absolute

values of the inclination betweenO(ρ∗) andO
(
(β̄)

1
2

)
: indeed, choosing, for

β ′ ∈ (0, β̄),

−Z∗ = �∗
0 − β − ρ∗2

2
− β ′, �∗ = �∗

0 − β + ρ∗2
, H ∗ = 0,

we have (by (C.24))

i2 = O
(Z∗ +�∗

�∗
)

= O
(
ρ∗2 + β ′).

(iii) Finally, we point out that, as above (compare Remark C.1 and the relative

proof in the footnote), if (X, x) = �DP∗
(
(�∗, η∗, p∗), (λ∗, ξ∗, q∗)

)
is as in

Proposition C.2, then

X = m4M2

�∗3

∂x

∂λ∗ .

(iv) The use of osculating variables will turn out to be particularly useful in the
reduction of the angular momentum (see Section C.2, below).
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C.1.3. Some orbital elements in terms of osculating Poincaré variables. In this
subsubsection we show a way to express some of the classical orbital elements as
functions of the osculating Poincaré variables (�∗, λ∗, η∗, ξ∗). Denote the eccen-
tric anomaly by u and the true anomaly by v (compare Fig. 1); denote, also, by d
the distance between the planet and its star, byw the true longitudew := v+g+ θ
and letw∗ := w−θ = v+g. The target here is, also, to find (for later use) analytic
expressions d andw∗ as functions of (�∗, λ∗, η∗, ξ∗). From the definition of � and
(C.16) we have

λ∗ + h∗ = � = u− e sin u. (C.25)

Inverting (C.25), we find u = u(�∗, λ∗, h∗, e). Then we obtain u in terms of
(�∗, λ∗, H ∗, h∗) from (C.10). Furthermore, we have

d = a (1 − e cos u) (C.26)

= a (1 − e2)

1 + e cos v
. (C.27)

In light of (C.26), (C.10), the first of (C.8) and the above expression of u, we get
a representation d in terms of (�∗, λ∗, H ∗, h∗). Therefore, via (C.17), we obtain a
representation of d in terms of osculating Poincaré variables (�∗, λ∗, η∗, ξ∗).

Let us now expressw∗ in osculating Poincaré variables. From (C.26) and (C.27),

cos v = cos u− e

1 − e cos u
. (C.28)

Hence, recalling (C.10) and the expressions ofu and v above, we can readily express
v as a function of (�∗, λ∗, H ∗, h∗). Making use of (C.16), we infer thatw∗ = v−h∗.
Hence, from the above construction and (C.17), we obtain a representation of w∗
in terms of osculating Poincaré variables (λ∗, η∗, ξ∗).

C.2. Canonical variables for the three-body problem

C.2.1. The Poincaré Hamiltonian of the planetary three-body problem. The
discussion of this subsection follows [Ch88] and [L88]. We consider three bodies
P0, P1 , P2 of massm0, m1 ,m2 interacting through gravity (with constant of grav-
itation 1). Assume that

κ̄ε � m1

m0
,
m2

m0
� ε < 1, (C.29)

for a fixed constant 0 < κ̄ � 1 and a small parameter ε > 0. We consider a (iner-
tial) frame {k1, k2, k3} in R

3 with origin in the center of mass of the system and
with vertical axis parallel to the (conserved) total angular momentum. Thus, if u(i)

denotes the position of Pi , U(i) := miu̇i denotes the momentum of Pi and C is the
total angular momentum,

C =
2∑

i=0

u(i) × U(i), (C.30)
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our choices imply

2∑

i=0

miu
(i) = 0,

C

|C| = k3. (C.31)

Newton’s laws imply that the three-body problem is governed by the nine-degree-
of-freedom Hamiltonian

H̄tb(U(1), U(2), U(3), u(1), u(2), u(3)) :=
2∑

i=0

1

2mi
|U(i)|2 −

∑

0�i<j�2

mimj

|u(i) − u(j)| ,

where U = (U(0), U(1), U(2)) ∈ R
9 and u = (u(0), u(1), u(2)) ∈ R

9 are conjugate
symplectic variables.

We, now, introduce canonical heliocentric variables (R(0), R(1), R(2), r(0),
r(1), r(2)) by means of the linear symplectic transformation

u(0) = r(0), u(1) = r(0) + r(1), u(2) = r(0) + r(2),
(C.32)

U(0) = R(0) − R(1) − R(2), U(1) = R(1), U(2) = R(2).

The angular momentum is preserved by this transformation:

2∑

i=0

r(i) × R(i) = C. (C.33)

By means of (C.31), R(0) = ∑2
i=0 U

(i) = 0. Hence, the three-body Hamiltonian
H̄tb in (R(i), r(i))-variables takes the form

H̃tb(R(1), R(2), r(1), r(2)) :=
2∑

i=1

(m0 +mi

2m0mi
|R(i)|2 − m0mi

|r(i)|
)

+R
(1) · R(2)
m0

− m1m2

|r(1) − r(2)| .

We have, therefore, obtained a six-degree-of-freedom Hamiltonian of conjugated
variables (R(1), R(2))∈ R

6 and (r(1), r(2)) ∈ R
6: the number of degrees of freedom

decreased by three units because of the above reduction of the center of mass.
The masses mj appear in the definition of the momenta R(1) and R(2), which

are both of order ε. In order to remove this singularity (as ε → 0), we introduce
new symplectic variables29

X(i) = R(i)

εm
5/3
0

, x(i) = r(i)

m
2/3
0

. (C.34)

29 Recall that, if α > 0 and β > 0 are two “rescaling factors”, the Hamiltonian flow gov-
erned by a Hamiltonian function h(X, x) (with respect to the symplectic form dX∧dx) coin-
cides with the Hamiltonian flow governed by the Hamiltonian 1

αβ h(αX̃, βx̃) (with respect

to the symplectic form dX̃ ∧ dx̃) with initial data X̃(0) = 1
αX(0) and x̃(0) = 1

β x(0).
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In such variables, the H̃tb-flow is equivalent to the Htb-flow with

Htb(X(1), X(2), x(1), x(2)) := Htb
0 (X

(1), X(2), x(1), x(2))

+Htb
1 (X

(1), X(2), x(1), x(2)), (C.35)

where

Htb
0 :=

2∑

i=1

( 1

2mi
|X(i)|2 − miMi

|x(i)|
)
,

Htb
1 := ε X(1) ·X(2) − m1m2

ε m2
0

1

|x(1) − x(2)| , (C.36)

mi := mi

ε

1

m0 +mi
, Mi := 1 + mi

m0
.

Recalling (C.29), it follows that mi and Mi are bounded and bounded away from
zero (uniformly in ε):

κ̄

1 + κ̄
� mi � 1, 1 � Mi � 2. (C.37)

Notice that the Hamiltonian Htb
0 , which is of order one, is simply the sum of two

uncoupled Kepler problems, while Htb
1 is of order ε and will be considered as a

perturbation.
We can, therefore, introduce osculating Poincaré variables associated with the

osculating orbital elements relative to (P0, Pi) with i = 1, 2 and masses m0, mi .
More precisely, let

(�∗
i , η

∗
i , p∗

i , λ
∗
i , ξ

∗
i , q∗

i ) := �−1
DP∗(X(i), x(i)),

where �DP∗ is defined in Proposition C.2 (and the reference plane for computing
the orbital elements relative to (P0, Pi) is the plane spanned by {k1, k2}, i.e., the
total-angular-momentum plane). For example, the expression of �∗

i with respect
to the major semi-axis of the planet Pi is

�∗
i = κ∗

i

√
ai , κ∗

i := mi

ε

1√
m0(m0 +mi)

. (C.38)

In osculating Poincaré variables

(�∗, η∗, p∗, λ∗, ξ∗, q∗)

:=
(
(�∗

1,�
∗
2), (η

∗
1, η

∗
2), (p

∗
1, p∗

2), (λ
∗
1, λ

∗
2), (ξ

∗
1 , ξ

∗
2 ), (q

∗
1, q∗

2)
)

(C.39)

the unperturbed Hamiltonian Htb
0 becomes, simply,

H∗
0(�

∗) := −
2∑

i=1

κi

2(�∗
i )

2 , κi :=
(mi
ε

)3 1

m2
0(m0 +mi)

(C.40)
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(with κi of order one), and the full three-body Hamiltonian becomes

H∗(�∗, η∗, p∗, λ∗, ξ∗, q∗) = H∗
0(�

∗)+ H∗
1(�

∗, η∗, p∗, λ∗, ξ∗, q∗), (C.41)

with H∗
1 real-analytic on C × C (compare Proposition C.2). It is customary to split

the O(ε)-perturbation H∗
1 as the sum of two functions:

H∗
1 := H∗,compl

1 + H∗,princ
1 , (C.42)

where H∗,compl
1 , called the “complementary part” of the perturbation, is the function

ε X(1)·X(2) expressed in Poincaré osculating variables (C.39), while H∗,princ
1 , called

the “principal part” of the perturbation, is the function m1m2
εm2

0

1
|x(1)−x(2)| expressed in

Poincaré osculating variables (C.39).
Notice that, because of point (iii) of Remark C.2, the λ∗-average of H∗,compl

1
vanishes: let x(i) = x(i)(�∗

i , η
∗
i , p∗

i , λ
∗
i , ξ

∗
i , q∗

i ) and X(i) = X(i)(�∗
i , η

∗
i , p∗

i , λ
∗
i ,

ξ∗
i , q∗

i ). Then

∫ 2π

0

∫ 2π

0
H∗,compl

1 (�∗, η∗, p∗, λ∗, ξ∗, q∗) dλ∗
1 dλ

∗
2

= ε

∫ 2π

0

∫ 2π

0
X(1) · X(2) dλ∗

1 dλ
∗
2

= ε const
∫ 2π

0

∫ 2π

0
∂λ∗

1
x(1) · ∂λ∗

2
x(2) dλ∗

1 dλ
∗
2 = 0. (C.43)

C.2.2. Reduction of the angular momentum. The conservation of the total angu-
lar momentum allows us to lower by two more units the number of degrees of free-
dom (“reduction of the angular momentum”). Recall that we are excluding planar
motions, i.e., motions with vanishing mutual inclinations.

Proposition C.3. The function H∗
1 in (C.41) is independent of ζ ∗. More precisely,

let r∗j :=
√

p∗2
j + q∗2

j and r∗ := (r∗1 , r∗2 ). Then, for any ζ ∗
j ∈ T and for each

r∗j > 0 (for which (p∗, q∗) belong to the real part of their domain of definition; see
Proposition C.2),

H∗
1

(
�∗, η∗, (r∗1 cos ζ ∗

1 , r
∗
2 cos ζ ∗

2 ), λ
∗, ξ∗, (r∗1 sin ζ ∗

1 , r
∗
2 sin ζ ∗

2 )
)

= H∗
1(�

∗, η∗, r∗, λ∗, ξ∗, (0, 0)). (C.44)

In particular, Z∗
j := − r∗j

2

2 are analytic integrals: {Z∗
j , H∗

1} = 0.

We shall call the Z∗
j ’s the “Poincaré integrals” of the non-planar three-body prob-

lem.

Proof. Looking at the force field, we see that, if at some time t0 the mutual incli-
nation of the planets vanishes, it vanishes at every instant of time: therefore the
motions of the three-body problem are either planar, so that the mutual inclination
is identically zero, or non-planar, so that the mutual inclination is always non-zero.
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Now, recall our choice of reference plane as the total-angular-momentum plane,
fix a time t0 and consider the inclination ij = ij (t0) of the instant orbital plane
(“osculating plane”) associated with the planet Pj (i.e., the plane spanned by the
position and velocity of Pj at time t0): ij (t0) is the angle between the {k1, k2}-plane
and the plane spanned by the position and velocity of Pj at time t0. If i1 �= i2, we
can define the line of the nodes as the intersection of the two osculating planes; let
N �= P0 be a node, i.e., a point in the line of the nodes. Let, also, the vector V be the
difference betweenN and the position of the star P0. By construction, V lies in the
intersection of the osculating planes spanned by (rj (t0), Rj (t0)), j = 1, 2. There-
fore, recalling (C.33), V · C = 0. Whence, the difference between the longitudes
of the ascending nodes of the planets is constant: indeed,

θ1 − θ2 = π. (C.45)

Since i1 �= i2 in a neighborhood of t0, we can perform the transformation
(C.18): we obtain a Hamiltonian H∗∗(�∗, λ∗, η∗, ξ∗, Z∗, ζ ∗), with

ζ ∗
2 − ζ ∗

1 = θ1 − θ2 = π. (C.46)

Let us consider a rotation Rϑ of an angle ϑ around C. By construction (see the
relations (C.8), (C.9), (C.11) and (C.16) above), the variables (�∗, λ∗, η∗, ξ∗, Z∗)
are preserved by Rϑ , while (ζ ∗

1 , ζ
∗
2 ) is sent into (ζ ∗

1 + ϑ, ζ ∗
2 + ϑ). Since the

energy of the system is also preserved by Rϑ , we find that H∗∗(. . . , ζ ∗
1 , ζ

∗
2 ) =

H∗∗(. . . , ζ ∗
1 + ϑ, ζ ∗

2 + ϑ). Thus, the Hamiltonian H∗∗ (and, hence, the function
H∗

1) does not depend on ζ ∗
1 and ζ ∗

2 separately, but only on their difference. The
thesis follows, now, from (C.46). ��

Hence, we can consider the Hamiltonian H∗ as depending only on (�∗, λ∗, η∗,
ξ∗) and on the initial value of Poincaré integral Z∗. We, therefore, let30

εF := εF (�∗, η∗, λ∗, ξ∗;Z∗)

:= H∗
1

(
�∗, η∗,

(√
−2Z∗

1 ,

√
−2Z∗

2

)
, λ∗, ξ∗, (0, 0)

)
, (C.47)

Z∗ = (Z∗
1 , Z

∗
2) , Z∗

j := −p∗
j

2 + q∗
j

2

2
.

Analogously, we set

Hcompl
1 (�∗, η∗, λ∗, ξ∗;Z∗)

:= H∗,compl
1

(
�∗, η∗,

(√
−2Z∗

1 ,

√
−2Z∗

2

)
, λ∗, ξ∗, (0, 0)

)
,

Hprinc
1 (�∗, η∗, λ∗, ξ∗;Z∗) (C.48)

:= H∗,princ
1

(
�∗, η∗,

(√
−2Z∗

1 ,

√
−2Z∗

2

)
, λ∗, ξ∗, (0, 0)

)
.

From now on the values of the Poincaré integrals Z∗
j will be taken to be real in the

domains described in Proposition C.2. Notice that, physically, changing values of

30 Compare (1.4) in Theorem 1.1.
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the Poincaré integrals corresponds to considering different ranges of mutual incli-
nations; compare (C.9), (C.12), (C.15), In fact, choosing Z∗

j as in (C.21), (C.22)
implies that ımin ∼ ρ∗.

Often, however, the value of the Poincaré integral will be omitted from the
notation.

C.3.3. The principal part of the perturbation Here we will obtain an “explicit”
representation in terms of osculating Poincaré variables of the principal part of the
perturbation Hprinc

1 .

Let, as above, wi := θi + gi + vi be the true longitude of the planet Pi and Ŝ
the angle between the planets P1 and P2 (see Fig. 4).

Let ı̂ be the mutual inclination of the planets and w∗
i = wi − θi . Notice that,

by (C.45), w∗
2 − w∗

1 = w2 − w1 + π . By elementary trigonometry,

cos Ŝ = − cosw∗
1 cosw∗

2 − sinw∗
1 sinw∗

2 cos ı̂. (C.49)

Denote the angular momentum of the planet Pi by C(i), so that C = C(1) + C(2).
Then, using (C.11), we infer that

|C|2 = |C(1)|2 + |C(2)|2 + 2 |C(1)| |C(2)| cos ı̂

= �2
1 (1 − e2

1)+�2
2 (1 − e2

2)+ 2�1�2

√
(1 − e2

1)(1 − e2
2) cos ı̂. (C.50)

N P

P1

2

O

î

Ŝ

w *

w *
2

1

Fig. 4.
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Using (C.50) and (C.10), we can express cos ı̂ in terms of the osculating Poincaré
variables (and the initial value parameter C). Explicitly:

cos ı̂ =
|C|2 −∑2

i=1

(
�∗
i −H ∗

i

)2

2
∏2
i=1(�

∗
i −H ∗

i )

= |C|2 −�∗
1

2 +�∗
2

2

2�∗
1�

∗
2

+O(e2
1)+O(e2

2) . (C.51)

Also, as proved in Section C.1.3 w∗
i = w∗

i (�
∗
i , λ

∗
i , η

∗
i , ξ

∗
i ). Therefore, by (C.49),

the expression of cos Ŝ in terms of osculating Poincaré variables follows.
Also,

|r(1) − r(2)|2 = |r(1)|2 + |r(2)|2 − 2 |r(1)| |r(2)| cos Ŝ.

Thus, from the definition of x(i), we have

m2
0

|x(1) − x(2)| = 1

|r(1) − r(2)| = 1
√

|r(1)|2 + |r(2)|2 − 2 |r(1)| |r(2)| cos Ŝ
(C.52)

Since we expressed cos Ŝ and |r(i)| in osculating Poincaré variables, the expres-
sion of the principal part of the perturbation in osculating Poincaré variables
(�∗, η∗, λ∗, ξ∗) readily follows.

Also, we can see, by (C.18) and a 180-degree rotation of the perihelia, that the
λ∗-average of Hprinc

1 in (C.48) is even in (η∗, ξ∗):

Proposition C.4. Let

f ∗
1 (�

∗, η∗, ξ∗) := 1

ε

∫

T2
Hprinc

1 (�∗, η∗, λ∗, ξ∗;Z∗) dλ∗.

Then, f ∗
1 (�

∗,−η∗,−ξ∗) = f ∗
1 (�

∗, η∗, ξ∗).

The rescaling by 1
ε

is made so that f ∗
1 is a (real-analytic) uniformly bounded (by

an order-one constant) function.

Proof. The system is invariant under the map R(�∗, η∗, λ∗, ξ∗) = (�∗,−η∗,
λ∗ +π,−ξ∗) (usually referred to as “space inversion”). Thus, the thesis follows by
observing that

∫
T2 H∗ ◦ R dλ∗ = ∫

T2 H∗ dλ∗, and making use of (C.43). ��
Thus, dropping the explicit dependence upon the Poincaré integrals, the perturba-
tion function εF (see (1.4) and (C.47)), has the form

F(�∗, η∗, λ∗, ξ∗) =: f ∗
1 (�

∗, η∗, ξ∗)+ f ∗
2 (�

∗, η∗, λ∗, ξ∗), (C.53)

where

1

4π2

∫

T2
f ∗

2 dλ
∗ = 0 (C.54)
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and f ∗
1 is even in (η∗, ξ∗) (Proposition C.4). Thus, we can split f ∗

1 as

f ∗
1 = f ∗

1,0(�
∗)+ f ∗

1,2(�
∗, η∗, ξ∗)+ f̃ ∗

1 (�
∗, η∗, ξ∗),

with f ∗
1,2 quadratic in (η∗, ξ∗) and, uniformly in �∗ (complex),

|f̃ ∗
1 (�

∗, η∗, ξ∗)| � const |(η∗, ξ∗)|4.
C.2.4. Symplectic diagonalization and conclusion. The final step consists in
showing that f ∗

1,2 is a positive definite quadratic form and in finding “explicitly”
the (purely imaginary) eigenvalues of

Q := S4∂
2
η∗,ξ∗f ∗

1,2(�
∗, 0, 0) (C.55)

(S4 being the standard (4 × 4)-symplectic matrix). This calculation has been per-
formed in detail in [R95] (§ 3.4, § 3.5), which, we follow here31.

Let us introduce some notation (which we shall keep similar to that used in
[R95]): let α denote the ratio of the planetary semi-axis, α := a1/a2 (recall that by
our assumptions α � αmax < 1); let

h := m1

m2

√
m0 +m2

m0 +m1

(which is close to the planetary mass ratio for small ε and is a quantity of order
one); let

D := (�∗
1 +�∗

2)
2 − |C|2

�∗
1�

∗
2

= ı̂2 +O(ı̂4)+O(e2
1)+O(e2

2)

(where the asymptotic evaluation is a consequence of (C.51)); let ±√−1(2ε�̄j )
denote the eigenvalues of the matrix Q in (C.55) and let

Li := �1

c
�̄i , c := − 2m1m

3
2

ε4m3
0(m0 +m2)�

2
2

(C.56)

(notice that c is a quantity of order one). Finally, recall the well-known definition
of Laplace coefficients for 0 � α < 1:

b(k)s (α) = 2
s(s + 1) . . . (s + k − 1)

k! αk

∗


1 +
∑

��0

(
s . . . (s + �)

�!
(s + k) . . . (s + k + �)

(k + 1) . . . (k + 1 + �)
α2(�+1))



 .

After the above preparation (and after quite a bit of algebra), we find that (compare
with [R95])

Li = L(0)i (α)+O(D),

31 Notational remark: the Hamiltonian H∗ here differs from the one in [R95] by a scaling
factor of size ε3m5

0.
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(O(D) being a real quantity of order D) with

L(0)1 (α) = α

32

[
3(1 + h

√
α)b

(1)
3/2(α)−√D(α)

]
,

L(0)2 (α) = α

32

[
3(1 + h

√
α)b

(1)
3/2(α)+√D(α)

]
, (C.57)

D(α) := (1 − h
√
α)2
(
b
(1)
3/2(α)

)2 + 4h
√
α
(
b
(2)
3/2(α)

)2
,

showing, in particular, that Li and hence �̄i are real. Furthermore, from the defini-
tion of Laplace coefficients, it follows that b(2)3/2(α) < b

(1)
3/2(α) for α ∈ (0, 1). Thus,

because of (C.57), there exist suitable (order-one) constants D̄ > 0 and c̄ > 0 such
that, ifD � D̄ (i.e., if the mutual inclination is sufficiently small), then, uniformly
in �∗,

inf Li > c̄ > 0, inf
(
L2 − L1

)
> c̄ > 0. (C.58)

Finally, by a standard argument going back to Weierstrass, we can find, for any
fixed �∗, a linear symplectic transformation

(η′

ξ ′
)

�→
(η∗

ξ∗
)

= A(�∗)
(η′

ξ ′
)
, (C.59)

which sends f ∗
1,2 into

f1,2 := c

�1

(
L1(�

∗) · ((η′
1)

2 + (ξ ′
1)

2)+ L2(�
∗) · ((η′

2)
2 + (ξ ′

2)
2)
)
. (C.60)

By classical generating function theory, it is easy to see that the transformation
(C.59) can be extended to a symplectic transformation on the whole phase space
�W : (�′, η′, λ′, ξ ′) �→ (�∗, η∗, λ∗, ξ∗) with

�∗ = �′ and λ∗ = λ′ + �̂(�′, η′, ξ ′), (C.61)

for a suitable function �̂.
Letting (I, ϕ) := (�′, λ′), (p, q) := (η′, ξ ′), f1 := f ∗

1 ◦�W, f2 := f ∗
2 ◦�W,

σ0 := ρ∗2
, δ := β − ρ∗2

, ρ0 := ρ∗, (C.62)

we realize that the proof of the Delaunay-Poincaré Theorem 1.1 is completed.
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