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Abstract

In this paper we introduce a notion of viscosity solutions for the one-phase Hele-
Shaw and Stefan problems when there is no surface tension. We prove the unique-
ness and existence of the solutions for both problems and the uniform convergence
of solutions of porous medium equation to those of the Hele-Shaw problem.

0. Introduction

Let �0 be a bounded domain in R
n with ∂�0 having two disjoint parts �0

and �1, both of them being closed hypersurfaces in R
n. For convenience, we let

�1 = {x ∈ R
n : |x| = 1} (See Fig. 1).

Let � = {x ∈ R
n : |x| > 1}, f ∈ C(�1) and consider a nonnegative function

u0 ∈ C(�̄) such that

u0 = f > 0 on �1
{u0 > 0} = �0. (0.1)

In this paper we study the one-phase Hele-Shaw and Stefan problems with ini-
tial data given as in (0.1). The classical Hele-Shaw problem, in n = 2, models an
incompressible viscous fluid which occupies part of the space between two parallel,
narrowly placed plates. In this case u0 denotes the initial pressure of the fluid and
f denotes the rate of injection from �1 into �. (For convenience we assume that
f is time-independent.) As more fluid is injected through a fixed boundary, the
region occupied by the fluid will grow as time increases. Let us assume that the
equilibrium temperature is zero. Assuming no surface tension, then the pressure of
the fluid u(x, t) solves the following free boundary problem:

−�u = 0 in {u > 0},
V = ut/|Du| = −Du · n̂ = |Du| on ∂{u = 0}, (0.2)
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where V is the normal velocity and n̂ is the outward unit normal vector of the free
boundary ∂{u = 0}.

The classical Stefan problem accounts for phase transitions between solid and
fluid states, such as the melting of ice in contact with water, or the freezing of water
in contact with ice.

Here we assume that the temperature varies in only one phase, which gives us
the following one-phase Stefan problem for the temperature u:

ut −�u = 0 in {u > 0},
V = ut/|Du| = −(Du) · n̂ = |Du| on ∂{u = 0}, (0.3)

where V and n̂ are defined the same as in (0.2).
In both models initially smooth free boundaries may develop singularities in

finite time, and therefore classical solutions are not expected to exist globally in
time. This fact motivates the study of the solutions in a generalized sense, i.e.,
the weak solutions. For the Hele-Shaw problem (0.2), the short-time existence of
classical solutions when the initial interface �0 is C2+α was proved by Escher

& Simonett [ES]. When n = 2, Elliot & Janovsky [EJ] showed the existence
and uniqueness of weak solutions in H 1(Q). An extensive amount of work has
been done on the Stefan problem (0.3). When the initial data and the interface
are C2+α , Hanzawa [H] showed the short-time existence of classical solutions.
Kamenomostskaja [K] introduced the notion of weak solutions of this problem
in H 1, and proved its global existence and uniqueness. Her work was generalized
by Oleinik [O] and Friedman [F]. The formulation of the problem as a parabolic
variational inequality was initiated by Duvaut [D]. This method was developed by,
for example, Friedman & Kinderlehrer [FK] who used variational inequality to
prove the existence and uniqueness of weak solution in L∞(0, T ;H 2,1).

In this paper we apply a notion of viscosity solutions to describe the global-time
behavior of the free boundary problems (0.2) and (0.3) past singularities. The notion
of viscosity solutions, introduced by [CL], has been used very successfully to study
nonlinear elliptic and parabolic equations. The analytical heart of the theory lies in
a comparison principle derived from maximal-principle-type arguments, which in
turn leads to uniqueness and existence results.

The Hele-Shaw problem can be also derived as a limiting case of the porous
medium equation (in short PME). Let the domain Q = � × (0,∞), where � is
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given as above. We consider a sequence of viscosity solutions {um}m � 0 ∈ C(Q̄),
where um satisfies

(PME)m
ut − |Du|2 − (m− 1)u�u = 0 in Q,

u = f on �1,

u(x, 0) = u0(x) in Q̄ ∩ {t = 0}.

Here um = m
m−1v

m−1, where v � 0 satisfies the usual form of porous medium
equation:

vt = �(v)m in Q.

Caffarelli & Vazquez [CV] proved that there is a unique viscosity solu-
tion for the porous medium equation for m > 1 when the initial data is given.
Here viscosity solutions are defined by comparison with the classical solutions of
PME, in particular with the Barenblatt solutions (see Section 1). As m → ∞, by a
formal computation we can easily see that the limiting equation leads to the Hele-
Shaw problem (0.2). However, the Barenblatt solutions become strictly positive
as m → ∞ and thus they cannot be used as test functions for the free boundary
problem (0.2).

In Section 1 we define the viscosity solution of (0.2). Variational inequalities
are used to describe the free boundary condition and to make the viscosity solutions
stable through limit operations in various settings (see, for example, the proof of
Theorem 1.5). The difference between our definition and that for PME in [CV]
comes from (i) the presence of an additional equation on the free boundary (ii)
lack of well-known classical solutions. We also show that the limit of viscosity
sub(super)solutions of (PME)m as m → ∞ is the viscosity sub(super)solution of
(0.2) in our definition.

In Section 2 we show a comparison result between two viscosity solutions of
(0.2) using the sup- and inf-convolutions. Here we require the solutions to be ini-
tially strictly separated. The choice of test functions plays an important role in the
proof. For general cases, a more careful analysis is required to prove the comparison
principle, which we explain in Section 3.

In Section 3 a uniqueness result for the viscosity solution of (0.2), and the
uniqueness of the global time free boundary is proved when the initial free bound-
ary ∂{u0 > 0} expands immediately. This condition holds, for example, if u0
satisfies

−�u0 = 0 in �0,

|Du0| > 0 on �0.
(0.4)

Also we show that in this case the sequence {um} with initial data u0 uniformly
converge to u as m → ∞, which is the unique viscosity solution of (0.2).

In Section 4 we turn to the Stefan problem (0.3) and state the corresponding
uniqueness and existence theorems. Here the main difficulty lies in dealing with
the scaling properties of (0.3) to produce the uniqueness result. We point out the
essential differences between (0.2) and (0.3) in proving each result.
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1. The Hele-Shaw problem

Here we define a notion of viscosity sub- and supersolutions for (0.2) by using
variational inequalities. Recall that Q = {|x| > 1} × (0,∞) and �1 = {|x| = 1}.
u ∈ C(Q̄) is a viscosity solution of (0.2) if it is both viscosity sub- and supersolu-
tion.

Definition 1.1. (1) A nonnegative uppersemicontinuous function u defined in Q̄ is
a viscosity subsolution of (0.2) with initial data u0 and fixed boundary data f if

(i) u = u0 at t = 0, u � f for x ∈ �1;
(ii) {u > 0} ∩ {t = 0} = {u(x, 0) > 0};

(iii) for each T � 0 the set {u > 0} ∩ {t � T } is bounded; and
(iv) for every φ ∈ C2,1(Q) that has a local maximum of

u− φ in {u > 0} ∩ {t � t0} ∩Q at (x0, t0),

(a) −�φ(x0, t0) � 0 if u(x0, t0) > 0.
(b) min(−�φ, φt − |Dφ|2)(x0, t0) � 0

if (x0, t0) ∈ ∂{u > 0}, u(x0, t0) = 0.

(2) A nonnegative lowersemicontinuous function v defined in Q̄ is a viscosity
supersolution of (0.2) with initial data u0 and fixed boundary data f if

(i) v = v0 at t = 0, v � f for x ∈ �1 and
(ii) if for every φ ∈ C2,1(Q) that has a local minimum of v− φ in {v > 0} ∩ {t �

t0} ∩Q at (x0, t0),

(a) −�φ(x0, t0) � 0 if (x0, t0) ∈ {v > 0},
(b) If (x0, t0) ∈ ∂{v > 0} and if

|Dφ|(x0, t0) �= 0 and {φ > 0} ∩ {v > 0} ∩ B(x0, t0) �= ∅ (1.1)

for any ball B(x0, t0), then

max(−�φ, φt − |Dφ|2)(x0, t0) � 0.

Remark. The conditions (ii) and (iii) in (1) control the behavior of the free bound-
ary ∂{u > 0} respectively at t = 0 and at infinity.

The condition (1.1) is to ensure that near (x0, t0) the function φ+ = max(φ, 0)
(x0, t0) is nontrivial in {v > 0}. For example, φ satisfies the condition if there is a
vector ν ∈ R

n such that

(x0 + hν, t0) ∈ {v > 0} for 0 < h � 1,
∂φ/∂ν > 0 at (x0, t0).

For a real-valued function f (x, t) in domain D, we define

f ∗(x, t) = lim sup
(y,s)∈D→(x,t)

f (y, s) and f∗(x, t) = lim inf
(y,s)∈D→(x,t)

f (y, s).

Next we define a viscosity solution of (0.2):
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Definition 1.2. A lowersemicontinuous function u is a viscosity solution of (0.2)
if u∗ is a viscosity subsolution and if u = u∗ is a viscosity supersolution of (0.2).

Remark. We mention that by definition of viscosity sub- and supersolutions it
follows that u∗(x, 0) = u∗(x, 0) = u0(x). Thus u(x, t) given above converges
uniformly to u0(x, 0) as t → 0+.

Note that we did not define u to be continuous. This is because we expect u
to be discontinuous when the free boundary of u develops a singularity. An easy
example is when n = 1, where �0 is given as two disjoint interval with fixed
boundary inside each interval (see Fig. 2).

For later use, we introduce the sup- and inf-convolutions of u and v. Given a
viscosity subsolution u and a constant r > 0, we define

ūr (x, t) = sup
Br(x,t)

u(y, τ ),

where Br(x, t) = {(y, τ ) : |y − x|2 + (t − τ)2 � r2}. Similarly, given a viscosity
supersolution v and δ � r we define

vr(x, t) = inf
Br−δt (x,t)

v(y, τ ).

This kind of construction has been used, for example, in [ACS] and in [CV]. We
point out that for the analysis of free boundary speed it is necessary to involve the
entire space-time balls including future times τ > t in the above definitions. LetD
be a bounded domain inQ. We say thatD has the interior(exterior)-ball property at
P = (x, T ) ∈ ∂D if there is a closed (n+1)-dimensional (space-time) ballB ⊂ D̄

(Dc) such that B ∩ Dc(D̄) = P. For a ball B with radius r , we denote kB as a
ball with the same center as B and radius kr . Similary we define interior(exterior)
ellipsoid property.

Lemma 1.3. In the domain {x : |x| > 1 + r} × (r, r/δ), ūr is a viscosity subsolu-
tion and vr is a viscosity supersolution of (0.2)with corresponding initial and fixed
boundary data. Moreover, on the free boundary the positivity set of ūr (vr ) has the
interior-ball and exterior-ellipsoid properties. At points of the free boundaries of
u, v where these balls are centered we have the complementary results.

t = t 0 t >

u > 0

1 1

t 0

u

u = 0

1

1 1

t = 0

f = 1
1 1ΓΓ Γ Γ Γ Γ

Fig. 2.
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Proof.
Step 1. The exterior(interior)-ball properties are clear from the definition
(see Figs. 3 and 4).

Step 2. To show that ūr is a viscosity subsolution, first observe that conditions
(1)(ii) and (1)(iii) in Definition 1.1 follow from the corresponding properties of u
as a viscosity subsolution. Thus we only have to show that (1)(iv) in Definition 1.1
holds for ūr .

Step 3. We consider a smooth test function φ ∈ C2,1(Q). Suppose that ūr − φ has
a local maximum at (x0, t0) in {ūr > 0}. By definition and upper semicontinuity
of u,

ūr (x0, t0) = sup
Br(x0,t0)

u(x, t) = u(x1, t1) for some (x1, t1) ∈ Br(x0, t0).

But then u(x, t)− φ(x − x1 + x0, t − t1 + t0) has a local maximum at (x1, t1) in
{u > 0}. This leads to our conclusion.

Step 4. Suppose that vr −φ has a local minimum zero at (x0, t0) in {vr > 0}. From
the definition and the lower semicontinuity of v,

vr(x0, t0) = inf
Br−δt0 (x0,t0)

v(x, t) = v(x2, t2) for some (x2, t2) ∈ Br−δt0(x0, t0).

u > 0

ur
> 0

Br

Fig. 3.
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If (x0, t0) ∈ {vr > 0}, then v(x, t)−φ(x−x2 +x0, t− t2 + t0) has a local minimum
at (x2, t2), and thus we get

−�φ(x0, t0) � 0.

If (x0, t0) ∈ ∂{vr > 0} and φ satisfies (1.1) with respect to vr at (x0, t0), then
(x2, t2) ∈ ∂{v > 0} and the function φ(x − x2, t − t2 + t0) satisfies (1.1) with
respect to v at (x2, t2). Thus v(x, t) − ϕ(x − x2 + x0, t − t2 + t0) has its local
minimum at (x2, t2), and this leads to the desired inequality

max(−�φ, φt − |Dφ|2)(x0, t0) � 0. 
�
By definition, for P0 = (x0, t0) ∈ ∂{vr > 0} there is a point P2 = (x2, t2) ∈

∂{v > 0} such that at P0 the set {vr > 0} has an exterior space-time ellipsoid E0

(x − x2)
2 + (t − t2)

2 � (r − δt)2

and atP2 the set {v > 0} has an interior space-time ballB2 of radius r−δt0 centered
at P0 (see Fig. 4.).

Let us denoteH0 as the tangent hyperplane ofE0 at P0 and (ν,m) as the inward
normal vector to H0 with respect to E0 at P0 with |ν| = 1. We denote by m the
advancing speed of the free boundary vr at P0. Observe that the tangent hyperplane
H2 of B2 at P2 has outward normal vector (ν′,m− δ), |ν′| = 1 with respect to B2.
(In other words, the free boundary of vr propagates faster than that of v by δ). In the
following lemma we show that in fact the advancing speed m is strictly positive.

Lemma 1.4. The free boundary of vr has positive advancing speed, that is,m � δ.

Proof. If m < δ, then at P2 = (x2, t2) v has an interior ball B2 with negative ad-
vancing speed. Note that by the lowersemicontinuity v(P2) = 0. Moreover, since
v > 0 in B2, v has a positive lower bound in 1

4 B̄2.
Now for τ � 1, we consider h(x, t) on B2 ∩ [t2 − τ, t2] such that

−�h > 0 outside 1
4B2,

0 < h > v inside 1
4 B̄2,

{h > 0} = B2, |Dh| �= 0 on ∂B2.

(Refer to Appendix A for the construction of h.)
Note that h < 0 outside B2, and thus v − h > 0 on ∂{v > 0} ∩ {t � t0} except

at P2. Also by the maximum principle of harmonic functions, v−h > 0 inside B2.
Therefore v − h has its local minimum zero at P2 in {v > 0} ∩ {t � t0}, but this
contradicts the fact that at P2

−�h < 0, ht − |Dh|2 � −|Dh|2 < 0. 
�
Next we prove that the limit of viscosity solutions of (PME)m asm → ∞, if it

exists, is a viscosity solution of (0.2). We recall the definition of viscosity solutions
for (PME)m in [CV].

A nonnegative function u ∈ C(Q̄) is a classical moving free boundary solution
of (PME)m if
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(i) u ∈ C2,1({u > 0}) solves the equation in the classical sense in {u > 0},
(ii) the free boundary of u, � = ∂{u = 0} ∩Q, is a C2,1 hypersurface in space-

time, and
(iii) on � we have ut = |Du|2 and |Du| �= 0.

Definition 1.5. (1) A nonnegative continuous function u defined in Q̄ is a viscosity
subsolution of (0.2) if u � f on �1 and for every φ ∈ C2,1(Q) that has a local
maximum zero of u− φ at (x0, t0),

(φt −mφ�φ − |Dφ|2)(x0, t0) � 0.

(2) A nonnegative continuous function v defined in Q̄ is a viscosity supersolu-
tion of (0.2) if v � f on �1 and

(a) for every φ ∈ C2,1(Q) that has a local minimum zero of v − φ at (x0, t0) ∈
{v > 0},

(φt −mφ�φ − |Dφ|2)(x0, t0) � 0.

(b) Any classical moving free-boundary solution that lies below v at a time t =
t1 � 0 cannot cross v at a later time t2 > t1.

The comparison principle and the uniqueness result for viscosity solutions of
(PME)m are proved in [CV]. Next we consider

u1(x, t) = lim sup
(y,s)→(x,t)

um(y, s),

u2(x, t) = lim inf
(y,s)→(x,t)

um(y, s),

where (y, s) ∈ Q.

Theorem 1.6. The functions u1, u2 are respectively a viscosity sub- and superso-
lution of (0.2).

To prove Theorem 1.6 the following lemma plays an important role.

Lemma 1.7. Let v be a viscosity supersolution (subsolution) of (PME)m. Suppose
that φ is a smooth function and v − φ has a local minimum (maximum) in {v > 0}
at (x0, t0) ∈ ∂{v > 0}. If φ satisfies (1.1) at (x0, t0), then

(φt − |Dφ|2)(x0, t0) � 0(� 0).

Proof. We only prove the supersolution part. The subsolution part can be shown
with a parallel argument, by comparison with a supersolution of the form A(|x| −
ct − 1)+, where c > A > 0.

Step 1. For r, δ > 0, we prove the lemma for

W(x, t) = inf
Br−δt (x,t)

v(y, τ ).

Then the lemma follows by first taking δ → 0 and then r → 0. Suppose thatW−φ
has a local minimum in {W > 0} at P0 = (x0, t0) ∈ ∂{W > 0} with φ satisfying
(1.1). Suppose that (φt − |Dφ|2)(x0, t0) < 0.
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Step 2. By adding ε(t−t0)−ε(x−x0)
2 to φ if necessary, we assume thatW−φ has

a strict local minimum zero at P0. By condition (1.1), φ+ is nontrivial in {W > 0}
and it has a smooth free boundary near P0.

Let H be the tangent hyperplane of the free boundary of φ+ at P0. Let (ν, α)
be the inward normal vector of H with respect to {φ+ > 0} with |ν| = 1. Then α
is the advancing speed of the free boundary of φ. Note that α � δ > 0 by Lemma
1.4.

Step 3. Observe that from a previous assumption we have

α = −φt/φν(x0, t0) < φν(x0, t0),

and therefore near (x0, t0) we have the nontangential estimate

W(x, t0) � φ+(x, t0) > α[(x − x0) · ν]+ +O(|x − x0|2). (1.2)

Step 4. Next we introduce the Barenblatt solutions given by the formula

S(x, t; τ, C) = (t + τ)−λnm
(
C − κ

x2

(t + τ)2λ

)
+
,

where λ = (mn + 2)−1, κ = λ/2 and C and τ are arbitrary. They are classical
solutions of (PME)m. Observe that C controls the size of the support of S, and τ
controls the advancing speed of the free boundary of S.

At t = t0, by the regularity of the free boundary at P0 the set {x : φ(x, t0) > 0}
has a space interior ball B with radius 0 < r1 < d1. Note that H ∩ {t = t0} is
tangent to B at P0. We may replace the origin so that (0, t0) is the center of B.
ChooseC, τ such that supp S(x, t0) = B and the free boundary of S(x, t) at P0 has
the advancing speed α. Let H̃ be the hyperplane with a normal vector (ν, α(1− δ))
such that H̃ ∩ {t = t0} = H ∩ {t = t0}.

Since the support of S is tangent to H̃ ∩ {t = t0} at P0 and advancing faster
than H̃ near P0, we have 0 < θ < π/2 such that for k = sin θ the support of
S̃(x, t) = kS(k−1x, k−1t) crosses H̃ at P̃ = (x̃, τ ), τ > t0. Note that τ → t0
as θ → π/2. Finally observe that suppS̃(x, t0) = (sin θ)B ⊂ K, where K is a
nontangential space cone with vertex P0, axis e1 and aperture θ . Note that θ does
not depend on the size of r1.

Step 5. Since S̃(P̃ ) = 0 and S̃ satisfies (PME)m, we have

S̃t /|DS̃|(P̃ ) = |DS̃|(P̃ ) = α.

Due to (1.2) we can put S below W at t = t0 when r is small enough. By
definition of W it follows that a translate of S̃ crosses the free boundary of v near
the point P2, which leads to a contradiction. 
�
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Proof of Theorem 1.6.
Step 1. First we show the supersolution part. Suppose that there is a smooth func-
tion φ such that u2 − φ has a local minimum zero at (x0, t0) in {u2 > 0}. Adding
ε(t − t0) − ε(x − x0)

2 to φ if necessary, we assume that u2 − φ has a strict local
minimum zero at (x0, t0) ∩ Br(x0, t0) for small r > 0. Then for large enough m,
along a subsequence um − φ has its minimum at (xm, tm) in {um > 0} ∩Br(x0, t0)

with (xm, tm) → (x0, t0).

Step 2. If (x0, t0) ∈ {u2 > 0}, then (xm, tm) ∈ {um > 0} for large m. By definition

[
1

m− 1
(φt − |Dφ|2)− φ�φ

]
(xm, tm) � 0

and since φ(x0, t0) > 0, in the limit we get

−�φ(x0, t0) � 0

as desired.

Step 3. Suppose that (x0, t0) ∈ ∂{u2 > 0} and (1.1) holds for φ. If we have
max(−�φ, φt − |Dφ|2)(x0, t0) < 0, then for large enough m

[φt − (m− 1)φ�φ − |Dφ|2](xm, tm) < 0.

Thus (xm, tm) ∈ ∂{um > 0}. Moreover φ satisfies (1.1) at (xm, tm) for large m
since φ is smooth in its support. This and the above inequality contradict Lemma
1.6.

Step 4. To show the subsolution part, we first observe that for each T > 0 and for
large m = m(T ) > 0, the family of sets ({um > 0} ∩ {t � T })m are uniformly
bounded. This can be easily shown by comparing um with a barrier function ϕ and
using the finite-propagation property of {um > 0}. For example, we let ϕ(x, t) =
h(r(t)|x|), where h(r) = M2 − r2 andM large enough that u0 ≺ ϕ at t = 0. Now
if we choose r(t) to satisfy r(0) = 1 and r = e−8Mt , then on ∂{ϕ(x, t) > 0} =
{|x| = M/r(t)},

ϕt = −r ′(t)Mϕr > 2(ϕr)
2.

Thus ϕ is a supersoluton of (PME)m for large m = m(T ), and {um > 0} ⊂
{ϕ > 0} form > m(T ) and t � T . Similarly, we can also show that {u1 > 0}∩{t =
0} = {u0 > 0}. Suppose not, and there is a point x0 such that u0 = 0 in D2r (x0)

and u1(x0, t) > 0 for t > 0. This leads to a contradiction by comparing um with
ϕ(x, t) = M(r(t)|x − x0|2 − r2), where M = M(r) is large enough that u0 ≺ ϕ

and r(t) = 1/(1 −Mt).
The rest of the proof can be shown as in the supersolution part. 
�
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2. Comparison principle for separated initial data

Definition 2.1. A pair of functions u0, v0 are (strictly) separated if

(i) the support of u0, supp(u0), is a compact subset of R
n and

supp(u0(x)) ⊂ Int(supp(v0(x))).

(ii) inside the support of u0 the functions are strictly ordered:

u0(x) < v0(x).

We represent such a strict ordering, or separation, by the symbol u0 ≺ v0.

Theorem 2.2. Let u, v be respectively viscosity sub- and supersolutions of (0.2) in
Q. If their initial data are strictly separated (u0 ≺ v0, ) then the solutions remain
separated for all time:

u(x, t) ≺ v(x, t) for t � 0.

To prove the theorem, we use sup- and inf-convolutions as in Section 1. For
technical reasons concerning semicontinuous functions, we apply inf- and sup-con-
volution twice, first in the space ballsDr(x, t) = {(y, t) : |x−y| � r2} and then in
the space-time balls Br(x, t) = {(y, s) : |x− y|2 + |t − s|2 � r2}. More precisely,
in the domain Qr = {x : |x| > 1 + 2r} × [r, r/δ) let us define functions Z and W
as given below:

Z(x, t) = supBr(x,t) U(y, s) where U(x, t) = supDr(x,t) u(y, t),
W(x, t) = infBr−δt (x,t) V (y, s) where V (x, t) = infDr(x,t) v(y, t).

Note that Z,U and W,V are respectively viscosity sub- and supersolutions of
(0.2).

Suppose that u crosses v from below at some point. Then we have 0 < T < ∞
such that

T = sup{t : u(x, τ ) ≺ v(x, τ ), 0 < τ < t}.
Since {u > 0}∩{t = 0} = {u0 > 0}, v > u on ∂Q and u−v is upper semicontinu-
ous, we can take r, δ small enough that r < T < r/δ andW > Z on ∂Qr × [r, T ].
Now consider the contact time

0 < t0 = sup{t : Z(x, t) ≺ W(x, t)} � T .

Before proceeding to further arguments, we need the following two observa-
tions at t = t0.

Lemma 2.3. For any T > 0,

∂{Z > 0; t � T } ∩ {t = T } ⊂ {Z > 0; t < T } ∩ {t = T }.
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Proof. Suppose that the lemma does not hold. Then there is a point (x1, T ) ∈
∂{Z > 0} and h > 0 such that (x1, t) belongs to the interior of {Z = 0} for
T − h < t < T . If Z(x1, T ) > 0, then we can choose (x′

1, T ) ∈ ∂{Z(·, T ) > 0}
which belongs to the interior of {Z = 0} for T −h < t < T . (Note that this is possi-
ble since {Z(·, T ) > 0} is bounded.) By definition ofZ there is (x2, t2) ∈ ∂{u > 0}
such that

(∗) there is a cylinder C = Dr(x2)× [t2 − h, t2] such that u = 0 in C for t < t2.

Moreover, at (x2, t2) the set {u > 0} has a exterior cylinder C′ = Dr(x3) ×
[t2 −h, t2]. Now at t = t2 we can construct a strict superharmonic function ϕ(x) =
ϕ(|x − x3|) in 2Dr(x3)−Dr(x3) with the boundary data

ϕ = sup
2Dr

u on ∂(2Dr) and ϕ = 0 on ∂Dr .

Due to (∗), we can extend ϕ(x, t) for t2 − τ � t � t2 with

ϕ(x, t) = ϕ+(k(t − t2)(|x − x3| − 2r)+ |x − x3|),
where k = (2τ)−1 and ϕ � 0 = u for t < t2. If we choose τ sufficiently small,
then

ϕt > kr = sup
2Dr

|Dϕ|2(x).

This choice ofϕ(x, t) leads to a contradiction since u−ϕ+ has a local maximum
in the set

(2Dr −Dr) ∩ {u > 0} × (t2 − τ, t2] at t = t2.


�
By Lemma 2.3 and Lemma 1.4, {Z(·, t0) > 0} ⊆ {W(·, t0) > 0}. Consider

P0 = (x0, t0), where the nonnegative maximum of Z−W is attained in {Z > 0} ∩
{t � t0}. If Z(P0) � W(P0) > 0, at t = t0 the function Z −W has a maximum
in {Z > 0} ∩ {W > 0}. Then using the definition of Z,W we get a contradic-
tion by the maximum principle of harmonic functions. Hence W(P0) = 0 and
P0 ∈ ∂{Z > 0} ∩ ∂{W > 0}.
Lemma 2.4. The function Z(P0) = 0.

Proof.
Step 1. Suppose that the lemma does not hold. Then Z(x0, t0) > 0. By definition
there is (x1, t1) ∈ ∂{u > 0} with u(x1, t1) = Z(x0, t0) > 0. Moreover, by defini-
tion of Z and by Lemma 1.4 there is a cylinder C = Dr(x2)×[t1 −h, t1] such that
C ∩ {u > 0} = (x1, t1).

Step 2. Let ϕ(x, t) = ϕ(x) be a smooth and strictly superharmonic function 2C−C
such that ϕ = 0 on ∂xC, ϕ > 0 outside C and ϕ > u on the parabolic boundary of
2C. Since u− ϕ is positive at (x1, t1), u− ϕ has a positive maximum at (x3, t3) in
the set 2C − C and this contradicts the definition of u. 
�
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Now we come back to the analysis of W and Z at the contact time t = T . By
Lemma 2.3 and 2.4, P0 is the contact point of the free boundaries of W and Z and
Z � W at t = t0. (From now on we do not need the convolution in the space ball
and therefore for simplicity we denoteU by u andV by v.) By Lemma 1.3, atP0 the
set {Z > 0} has an interior space-time ball of radius r , centered at P1 ∈ ∂{u > 0}.
Also at P1, the set {u > 0} has an exterior space-time ball B1 of radius r centered
at P0 (see Fig. 5.)

By choosing appropriate origin and coordinates, we may assume that P0 =
(0, t0) and the space projection of P0P1 = d1e1, where e1 = (1, 0, . . . , 0). Let us
write x = (x1, x

′), x′ ∈ R
n−1. Finally, ifH is the tangent hyperplane to the interior

ball of Z at P0, let us write (e1,m) as the internal normal vector to H with respect
to {Z > 0} at P0 with m = tan α for some 0 < α < π/2. Then m is the advancing
speed of {Z > 0} and P1 = (x1, t1) = (r cosα, 0, t0 + r sin α), 0 ∈ R

n−1.

Moreover by Lemma 1.3 at P0 the set{W > 0} has a exterior space-time ball
B centered at P2 ∈ ∂{v > 0}, and at P2 the set {v > 0} has an interior space-time
ball B2 centered at P0. Note that the space projection of P2P0 = d2e1, d2 > 0.

Lemma 2.5. The tangent hyperplane H is neither vertical nor horizontal.

Proof.
Step 1. By Lemma 1.4, m is bigger than δ and therefore H is not vertical.

Step 2. Suppose H is horizontal. Then {u > 0} has an exterior ball B1 at P1 with
horizontal tangency. Recall that by Lemma 2.3 x1 ∈ ∂{u(·, t1) > 0} and by Lemma
2.4 u(x1, t1) = 0.

After parabolic scaling (x, t) → (λ(x − x1), λ
2(t − t1) + 1), for any δ > 0

we can build up a new subsolution ω in the unit cylinder C1 = B1 × [0, 1] with
P1 = (0, 1) ∈ ∂{ω(·, 1) > 0}, 0 ∈ R

n, which takes on the value 0 on the bottom,
and less than δ on the lateral boundary. Consider

φ(x, t) = g(|x| + 1
4 t),

where g(r) : R
+ → R is such that

g(1) > δ, g < 0 if 0 < r < 1
2 , and − g′′ − n−1

r
g′ > 0 for r > 0.

(For example, let g = 2δ(2 − r−2n).)

W > 0

Z > 0

H

P1

P2

P0

Fig. 5.
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Consider φ+ = max(φ, 0). Since P1 ∈ ∂{ω(·, 1) > 0} and {φ(·, 1) > 0} ⊂
{|x| > 1/4}, we have sup(ω − φ+) > ω(P1) = 0 in C1. Observe that ω � φ+ on
the lateral boundary and bottom of C1. Therefore ω−φ has a local maximum zero
in {ω > 0} ∩ {t � T } at (x̄, T ).

Since −�φ = −g′′ − n−1
r
g > 0, (x̄, T ) ∈ ∂{ω > 0} ∩ ∂{φ > 0}. By taking

small δ, we can make g′ small enough so that

φt − |Dφ|2 = 1
4g

′ − (g′)2 > 0 on ∂{φ > 0},
which contradicts the definition of ω. 
�

The following lemma is essential for proving Theorem 2.2. The main idea of
the proof is drawn from [CV], but we state the full proof to present the role of test
functions. A nontangential cone at P0 is a space cone with vertex P0, axis e1 and
aperture 0 < θ < π/2. Recall that we set P0 = (x0, t0) = (0, t0).

Lemma 2.6. In any nontangential cone K ,

lim inf
x→0,x∈K

Z(x, t0)

m(x1)+
� 1. (2.1)

Proof.
Step 1. It will be convenient to displace the t axis so that t1 = 0, P1 = (x1, t1) =
(r cosαe1, 0) and P0 = (x0, t0) = (0,−r sin α). Suppose that (2.1) is not true.
Then there is a sequence of points An = (x1n, x

′
n) converging to 0 ∈ R

n and lying
in a nontangential cone K such that

Z(Qn) � m(1 − ε)(x1n)
+ for some ε > 0 (2.2)

with Qn = (An, t0). By definition of Z we have

u � m(1 − ε)(x1n)
+ in Br(Qn).

Besides, u = 0 in B1. Moreover, since v = 0 at P2, at time t0 the function
W = 0 in the space ball B ′ of radius 0 < d < r − δt0 centered at Q′ and tangent
to H at (0, t0). Since Z � W at t = t0 so does Z. By definition of Z we conclude
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that u = 0 in the set � : union of the space-time balls of radius r centered at the
points of B ′.

Step 2. As a consequence of both estimates above and taking x1n = λ > 0 small in
(2.2) we conclude that there is a set L = Lλ in space-time as portrayed in Fig. 7
where u � µλ = m(1 − ε)λ.

Moreover, the boundary of Lλ contains a concave part closer to the origin,
which is a piece of the boundary part of � containing the point P1, and there we
have u = 0. The farther boundary part of Lλ is formed by a piece of the sphere
Sr(Qλ), boundary of Br(Qλ) where u � µλ. From a straightforward computation
it turns out thatLλ is of depth λ and widthO(

√
λ) in space. Observe that� contains

B1 with ∂� ∩ B̄1 = {P1}.
Step 3. Consider a smooth function φ such that

φ(x, t)

{
> 0 outside B1,

= 0 on ∂B1,

−�φ > 0 outside B1,

φ(x, t) = φ(r, t) where r = |x|,
φr = m(1 − ε/3) at P1.

(2.3)

Since B1 has the outward normal vector (e1,m) at P1, we have

φt/|Dφ|(P1) = m > |Dφ|(P1) = φr(P1) = m(1 − ε/3).

(See Appendix A for the construction of φ.)
We compare φ with u in Lλ,τ = L∩ {−τ � t � 0}. First we compare them on

the boundary of Lλ,τ . Since � contains B1, φ � 0 on ∂�, and thus φ is above u
on �.

Next we compare them on the other part of the boundary, Sr(Qλ)∩{−τ � t �
0}.
Claim 1. For λ, τ > 0 (let ετ = λ) small enough compared to ε,

φ � m(1 − ε)λ on Sr ∩ {−τ � t � 0}. (2.4)
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Proof of the claim. By definition, Sr consists of points (x, t) such that

|x1 − λ|2 + |x′ − kλ|2 + (t + r sin α)2 = r2

with k : bounded independently of λ. Then for d1 = r cosα

|x|2 = x2
1 + (x′)2 = d2

1 + 2x1λ+ 2kx′λ− 2tr sin α − λ2(1 + k2)t2.

Note that r sin α = d1m. In the first approximation we have x1 = d1 + λ and
x′ = O(

√
λ) from the previous argument. Therefore up to terms of higher order in

λ and −τ � t � 0 we have

|x| = d1 + λ−mt + o(λ).

Moreover,

φ((d1+λ−mt)e1, t) = φ((d1 + λ)e1, 0)+t (−mφr+φt )((d1+λ)e1, 0)+O(t2)
= φ((d1+λ)e1,0)+t (−mφr+φt )(d1e1, 0)+O(tλ)+O(t2)
= λφr(d1e1, 0)+O(λ2, τλ, τ 2)

= m(1 − ε/3)λ+ o(λ)

> m(1 − ε)λ for small enough λ.


�
Hence at each time t ∈ [−τ, 0], φ � u on ∂Lλ,τ for small λ and therefore

φ � u in Lλ,τ .

But then u−φ has its maximum zero atP1 inLλ,τ . SinceLλ,τ is a neighborhood
of P1 in {u > 0} ∩ {0 � t � t1}, by definition of u we need

min(−�φ, φt − |Dφ|2)(P1) � 0,

which is not true. 
�
Proof of Theorem 2.2.
Step 1. At P2 = (x2, t2), for any 0 < r2 < d2 the set {x : v(x, t) > 0} has an
interior space-time ball B2 with radius r2 (see Fig. 8). Note that by definition B2
has the outward normal vector (e1,m− δ) at P2, i.e., B2 has the advancing speed
(m− δ) at P2. Since Z � W at t = t0, by Lemma 2.4 and the definition of W, for
any ε0 > 0 we can choose r2 such that 0 < r2 < d2 and

m(1 − ε0)d(x, ∂B2 ∩ {t = s}) < v(x, s) for (x, s) ∈ B2. (2.5)

Step 2. Take 0 < ε0 < δ/2 and consider ϕ such that

φ(x, t)

{
> 0 outside B2,

= 0 on ∂B2,

−�ϕ < 0 outside 1
4B2,

ϕ(x, t) = ϕ(r, t),

ϕr = m(1 − ε0) on ∂[B2 ∩ {t = t2}].

(2.6)
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(See Appendix A for the construction of ϕ.) Here r = |x − C|, C being the
space projection of the center of B2. Since B2 has the advancing speed m − δ at
t = t2, we can choose τ so small that

−ϕt/ϕr < m(1 − δ/2) < −ϕr on ∂B2 ∩ {t2 − τ � t � t2}. (2.7)

Step 3. By (2.5) and the last condition of (2.6), for small τ there is 1/4 < r < 1
such that

ϕ(x, t) < v(x, t) on ∂(rB2) ∩ {t2 − τ � t � t2}. (2.8)

Since ϕ = 0 � v onB2, by the maximal principle of harmonic functions v−ϕ � 0
on B2 − rB2 for t2 − τ � t � t2. Thus the function v(x, t) − ϕ(x, t) has a local
minimum zero at P2 in the closure of �2, where

�2 = (B2 − rB2) ∩ {t2 − τ � t � t2}.
However, by (2.6) and (2.7) we have

max(−�ϕ, ϕt − |Dϕ|2)(P2) < 0,

which leads to a contradiction. 
�

3. Uniqueness and existence results

Due to Theorem 2.2 and the scaling properties of (0.2), we now complete the
comparison principle as below. For a real-valued function f (x, t) we define

f̄ (x, t) = lim
ε→0+ sup

t�s<t+ε
f (x, s); f (x, t) = lim

ε→0+ inf
t−ε<s�t

f (x, s).

Theorem 3.1. Let u, v be respectively viscosity sub- and supersolutions of (0.2)
in Q with initial data u0(x), v0(x). Suppose that {v0 > 0} is bounded, v0 ∈
C1({v0 > 0}) and

|Dv0| �= 0 on ∂{v0 = 0}. (3.1)

If u0 � v0, then

u(x, t) � v̄(x, t); u(x, t) � v(x, t) for t � 0.
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Proof.
Step 1. For ε > 0, define

vε(x, t) = (1 + ε)v(x, (1 + ε)t + ε).

Then vε is also a viscosity supersolution of (0.2) with the initial data

vε(x, 0) = (1 + ε)v(x, ε).

Step 2. From (3.1) it follows that the initial free boundary of v expands with strictly
positive speed |Dv0|. Moreover v is harmonic in {v > 0}, and thus v0 � v(·, ε) for
any ε > 0. Hence for any ε > 0 we have u0 ≺ vε(·, 0), and from Theorem 2.2

u(x, t) � vε(x, t) for t � 0.

Now we conclude by sending ε → 0. 
�
Remark. If v0 is a superharmonic function in {v0 > 0}, by standard barrier argu-
ments (for example, see Chapter 2 of [GT]) it turns out that v0 satisfies the condition
(3.1) if {v0 > 0} satisfies the interior-ball property on its free boundary (in other
words, if {v > 0} has interior-ball property at every point on its free boundary).

Corollary 3.2. Let u, v be viscosity solutions of (0.2) with initial data v0 given as
in Theorem 3.1. Then u = v and u∗ = ū.

Due to Theorem 3.1 we can prove the following result. Recall that in our initial
setting the boundary of �0 has two components �1 and �0, where u0 = f > 0 on
�1 and u0 = 0 on �0.

Theorem 3.3. Let um(x, t) be the viscosity solution of (PME)m with um(x, 0) ≡
u0(x), where u0(x) has a compact support with

−�u0 = 0 in �0,

|Du0| > 0 on �0.
(0.4)

Consider u1, u2 defined as in Theorem 1.6. Then u2 is the unique viscosity
solution of (0.2) with the initial data u0. Moreover, u2 = u1.

Proof.
Step 1. Let u1, u2 be defined as in Theorem 1.5, where um(x, 0) ≡ u0(x). Accord-
ing to Theorem 1.5, u1 (u2) is a viscosity subsolution (supersolution) of (0.2). We
claim that u1 = u2 = f on ∂Q and u1 = u2 = u0 at t = 0. The following lemma
is easily deduced from the definition of u1, u2 and the stability property of the
viscosity solutions (see [CIL]).

Lemma 3.4. The functions u1, u2 satisfies the following inequalities in the viscosity
sense:

min(u1 − u0,−�u1)(x, 0) � 0,
min(u1 − f,−�u1) � 0 on x ∈ �1,

max(u2 − u0,−�u2)(x, 0) � 0 if u2(x, 0) > 0,
max(u2 − u0,−�u2, (u2)t − |Du2|2)(x, 0) � 0 if u2(x, 0) = 0,

max(u2 − f,−�u2) � 0 on x ∈ �1.
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Remark. In the lemma the partial differential equations on u1, u2 are used in the
viscosity sense. For instance, the first inequality means that, if u1 > u0 at x = x0,
then for smooth φ that has a local maximum of u1(x, 0) − φ(x) at x = x0 in
{u1 > 0} we have −�φ(x0) � 0.

Step 2. We apply Lemma 3.3 to show that u1 = u2 = f on x ∈ �1 and u1 = u2 =
u0 at t = 0.

Suppose that for some x0 ∈ �1 we have u1(x0, t0) > f (x0, t0). Consider a
smooth function φ: C2({1 < |x| < 2}) solving the following Dirichlet problem:

φ = f ε � f on �1 = {|x| = 1},
φ = M = max|x|=1f on {|x| = 2}, and

−�φ = 1 in {1 < |x| < 2}.
where f ε is C3 in the neighborhood of �1, and f ε → f locally uniformly as
ε → 0. In fact φ is C2 up to the boundary �1 (see [CC]).

Since u1 � M , by the maximal principle of harmonic functions u1(x, t)−φ(x)
has its positive maximum in {1 � |x| < 2}×[0, t0] for small ε. But this contradicts
Lemma 3.3. We showed that u1 � f on x ∈ �1. Since um = f on x ∈ �1 for all
m, we get u1 � f , and thus we conclude that u1 = f on ∂Q. Similarly we can
also prove that u2 = f on ∂Q.

Step 3. Next suppose that u1(x, 0) − u0(x) has a positive maximum at x = x0.
Since the initial free boundary of (um)m moves with the normal velocity |Du0|, it
is easy to see that {u1(x, 0) > 0} = {u0 > 0}. If x0 ∈ int{u0 = 0}, then it contra-
dicts the fact that u1 is subharmonic in a neighborhood of x0. Thus x0 ∈ {u0 > 0}.
Let µ = Du0(x0) ∈ R

N . Then there is a sequence (xε, yε) → (x0, x0) where the
function

u1(x, 0)− u0(y)− ε−4|x − y + εµ|2
has a positive maximum in {u0 > 0} × {u0 > 0}.

By continuity of u0, for small ε, u1(xε, 0) > u0(xε) � 0, and thus

−�u1(xε, 0) � 0.

Moreover, since |xε−yε+εµ| = o(ε2), we haveu0(yε) = u0(xε)+εµ2+o(ε) > 0,
and thus

−�u0(yε) = 0 for small ε > 0.

Now a standard viscosity-solutions argument (refer to Lemma 3.2 in [CIL])
leads to a contradiction as ε goes to zero. We proved that u1 � u0, and therefore
u1 = u0.

Step 4. Finally suppose that u2(x, 0) − u0(x) has a negative minimum at x = x0.
Note that u0(x0) > 0 in this case, since u2 � 0. If −�u2(x0) � 0, then we pro-
ceed as above to make a contradiction. If not, then u2(x0, 0) = 0 and there is a
smooth function φ(x, t) such that u2 − φ has a minimum at (x0, 0) and −�φ <
0, φt − |Dφ|2 � 0 at (x0, 0). This leads to a contradiction since then for any λ > 0
u2 + λt − φ has a minimum at (x0, 0) and we have

(φt − |Dφ|2)(x0, 0) � λ.



318 Inwon C. Kim

Step 5. Thus u2 = u0. Now we can apply Theorem 3.1 to show that u1 � u2 and
u1 � u2, which means that

u1 = u2 and u2 = u1. 
�

Theorem 3.5. Let �0 be a closed C1 hypersurface in�. Then for given continuous
boundary data f (x) > 0 on �1, there exists a unique viscosity solution of (0.2)
with its initial free boundary �0 and its initial data u0 satisfying (0.4). In fact for
any viscosity solution u of (0.2), its initial data u0 is a viscosity solution of

−�u0 = 0 in {u0 > 0}.
Proof.
Step 1. We prove the second assertion first. Suppose we have a viscosity solution
of (0.2) with initial data u0 and take a positive time sequence tn → 0 as n → ∞.
Then by definition of u we have

u0 � lim inf
n→∞ u(x, tn) � lim sup

n→∞
ū(x, tn) � u0,

and thus the sequence un(x) = u(x, tn) and ūn(x) = ū(x, tn) uniformly converges
to u0(x). Since −�un(x) � 0 and −�ūn(x) � 0 in {un > 0} for each n, we can
conclude by the stability property of viscosity solutions.

Step 2. Recall that �0 is a subset of � such that ∂�0 = �0 ∪ �1. Since �0, �1 is
C1, we can solve the Dirichlet problem

−�u0 = 0 in �0,

u0 = f in �1,

u0 = 0 on �0.

Due to the regularity of �0, the set {u0 > 0} has the interior-ball condition on
its free boundary and thus condition (0.4) holds. Now we apply Theorem 3.2 to
obtain the unique viscosity solution of (0.2). 
�

For a closedC1 hypersurface�0 in {x : |x| > 1} and a positive continuous func-
tion f on �1, let�t(�0, f ) = int{x : u(x, t) > 0}, where u(x, t) = u(�0, f ; x, t)
is the unique viscosity solution of (0.2) in Theorem 3.4 . From previous arguments
we have the following results for �t :

Corollary 3.6.
(a) If �0(�0, f ) ⊂ �0(�̃0, f ), then

�t(�0, f ) ⊂ �t(�̃0, f ) for t � 0.

(b) If f (x) > g(x) > 0, then

�t(�0, g) � �t(�0, f ) for t > 0.
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Proof.
Step 1. For (a), observe that u0(�0, f ) � u0(�̃0, f ) by the maximum principle of
harmonic functions. Now (a) follows from Theorem 2.1.

Step 2. For (b), there is an ε > 0 such that f > (1 + ε)g on �1. For this ε define

uε(�0, g; x, t) = (1 + ε)u(�0, g; x, (1 + ε)t). (3.2)

Since |Du(x, 0)| > 0 on �0 (see the remark below Theorem 3.1), the initial
free boundary expands immediately and thus we have

�(�0, g; x, t) � �(�0, g; x, (1 + ε)t) for every t � 0.

On the other hand, note that uε(�0, g; x, t) = u(�0, (1+ε)g; x, t). From (3.2)
and (a),

�t(�0, g; x, (1 + ε)t) = �t(�0, (1 + ε)g; x, t) ⊂ �t(�0, f ; x, t)
and hence we conclude the proof. 
�

4. The Stefan problem

In this section we study the Stefan problem (0.3) stated as below:

ut −�u = 0 in {u > 0},
ut − |Du|2 = 0 on ∂{u > 0},

u(x, 0) = u0(x).

(4.1)

Definition 4.1. (1) A nonnegative uppersemicontinuous function u in R
n×[0,∞)

is a viscosity subsolution of (4.1) if (i) u(x, 0) = u0, (ii) {u > 0} ∩ {t = 0} =
{u0 > 0} and (iii) for φ ∈ C2,1(Q) that has a local maximum of

u− φ in {u > 0} ∩ {t � t0} ∩Q at (x0, t0),

(a) φt −�φ(x0, t0) � 0 if u(x0, t0) > 0,
(b) min(φt −�φ, φt − |Dφ|2)(x0, t0)�0 if (x0, t0) ∈ ∂{u>0}

and u(x0, t0)=0.

(2) A nonnegative lowersemicontinuous function v defined in Q̄ is a viscos-
ity supersolution of (4.1) if v(x, 0) = u0 and for φ ∈ C2,1(Q) that has a local
minimum of

v − φ in {v > 0} ∩ {t � t0} ∩Q at (x0, t0),

(a) φt −�φ(x0, t0) � 0 if (x0, t0) ∈ {v > 0},
(b) If (x0, t0) ∈ ∂{v > 0} and if (1.1) holds, then

max(φt −�φ, φt − |Dφ|2)(x0, t0) � 0.

(3) The function u is a viscosity solution of (4.1) if u∗ is a viscosity supersolu-
tion and u∗ is a viscosity supersolution of (4.1).
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Theorem 4.2. Let u, v be respectively viscosity sub- and supersolutions of (4.1) in
Q × (0,∞) with strictly separated initial data u0 ≺ v0 in �. Then the solutions
remain ordered for all time:

u(x, t) ≺ v(x, t) for t � 0.

As before, in the domain Qr = {x : |x| > 1 + 2r} × [r, r/δ) let us define
functions Z and W as

Z(x, t) = supBr(x,t) U(y, s) where U(x, t) = supDr(x,t) u(y, t),
W(x, t) = infBr−δt (x,t) V (y, s) where V (x, t) = infDr(x,t) v(y, t).

Note that Z,U and W,V are respectively viscosity sub- and supersolutions of
(P ). Since u0 ≺ v0 and u − v is uppersemicontinuous, Z ≺ W at t = r if r is
small.

Suppose that u crosses v from below at some point. Then we have 0 < T < ∞
such that

T = sup{t : u(x, t) ≺ v(x, t)}.
Since {u > 0} ∩ {t = 0} = {u0 > 0}, v > u on ∂Q and u − v is upper semi-

continuous, we can take r, δ small enough that r < T < r/δ and W > Z on
∂Qr ∩ [r, T ]. Now consider the contact time

0 < t0 = sup{t : Z(x, t) ≺ W(x, t)} � T .

Lemma 4.3. For any T > 0,

∂{Z > 0; t � T } ∩ {t = T } ⊆ {Z > 0; t < T } ∩ {t = T }.
Proof. Suppose the lemma does not hold. Then there is a point (x1, T ) ∈ ∂{Z > 0}
such that (x1, t) belongs to the interior of {Z = 0} for T − h � t < T . If
Z(x1, T ) = 0, then we proceed as in Lemma 2.3 to conclude. IfZ(x1, T ) = δ > 0,
then

(∗) there is a cylinder C = Dr(x1) × [T − h, T ] such that Z = 0 in C for
T − h � t < T .

Now for T − h < t < T we can solve the heat equation for ϕ(x, t) in Dr(x1)

with the boundary data bigger thanZ(x1, T ) on ∂Dr and with ϕ(x1, T −h) < δ/2.
Now if h is small enough then ϕ(x1, T )+ δh < δ and we have a contradiction. 
�

Due to Lemma 4.3, {Z(·, t0) > 0} ⊆ {W(·, t0) > 0}. Moreover from Lemma
4.3 and by a barrier argument we can easily show that the set {Z > 0} ∩ {t � t0}
is bounded, and thus at t = t0 the intersection ∂{Z(·, t0) > 0} ∩ ∂{W(·, t0) > 0}
is nonempty. By the maximal principle of the heat equation and by a parallel result
of Lemma 2.4, we can show that Z � W at t = t0.

Now to apply barrier arguments as in Theorem 2.2, we only have to choose
appropriate test functions, which are essentially (local) smooth sub- and superso-
lutions of (4.1). For the construction of such functions, refer to Appendix B.

Next we proceed to the comparison result for general initial data. For the Stefan
problem, the scaling property of the Hele-Shaw problem (0.2) does not hold, and
therefore more careful analysis is required to prove the following theorem. Let v̄
be defined the same as in Theorem 3.1.
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Theorem 4.4. Let u, v be respectively viscosity sub- and supersolutions of (4.1) in
Q with initial data u0(x), v0(x). Suppose that v0 satisfies

v0 ∈ C2({v0 > 0}) and −�v0 > 0 on ∂{v0 > 0}. (4.2)

If u0 � v0, then
u � v̄ for t � 0.

Remark. Observe that from Theorem 4.2 and from the standard viscosity theory
(for example, see the proof of Theorem 4.6) the functions

U(x, t) = sup{α(x, t)|α : a viscosity subsolution of (4.1) with α(x, 0) � v0(x)}
and

V (x, t) = inf{β(x, t)|β : a viscosity supersolution of (4.1) with v0(x) � β(x, 0)

are respectively the maximal and minimal viscosity solutions with initial data v0(x)

with U = U∗ and V = V∗. Therefore it is enough to prove the theorem when
u = U and v = V . In the following proposition we first prove that the free bound-
ary ∂{v(·, t) > 0} strictly expands. Then we use the main idea of the proof of the
proposition to prove Theorem 4.2.

The condition (4.2) is to guarantee the smooth behavior of v at t = 0. The
formula (4.2) can be replaced by the short-time existence of a classical solution of
(4.1) with initial data v0. Note that the condition (4.2) implies (3.1) if the initial
free boundary satisfies the interior-ball condition.

In the following proposition we first prove that the free boundary of a viscosity
solution strictly expands. Then we use the main idea of the proof of the proposition
to prove Theorem 4.2.

Proposition 4.5. Let v be a viscosity solution of (4.1) with initial data v0, where
(3.1) and (4.2) hold for v0. Then the free boundary of v strictly expands, i.e.,

{v∗(·, t) > 0} ⊂⊂ {v∗(·, t + s) > 0} if t � 0, s > 0.

Proof.
Step 1. Suppose this is not the case. Then there is T < ∞ such that T = infs{s ∈
M}, where

M = {s : ∂{v∗(·, s) > 0} ∩ ∂{v∗(·, s + ε) > 0} �= 0 for 0 < ε < ε0 = ε(s)}.
Note that by (3.1), T > 0.
For simplicity we first assume that T ∈ M and ε(T ) = ε0 > 0. Observe that

for δ > 0 and for α = α(δ) satisfying

v(x, 0) ≺ (1 + α)v∗(x, ε) for 0 < ε � δ,

we have v∗(x, t) ≺ (1 + α)v∗(x, t + ε) for t < T , 0 < ε � δ by the maximum
principle of heat equation.
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Step 2. Now consider the function

w(x, t) = (1 + α)v∗(x, (1 + α)t − β)

where α = α(ε0) and β is such that (1 + α)T − β = T + ε0 (see Fig. 9.) Take τ
so small that at t = T − τ we have t < (1 + α)t − β, and thus v∗(x, T − τ) ≺
w(x, T − τ). Observe that w satisfies

wt − (1 + α)�w � 0 in {w > 0},
max(wt − (1 + α)�w,wt − |Dw|2) � 0 on ∂{w > 0}. (4.3)

Take r > 0, 0 < δ � r small enough that

W(x.t) = inf
Br−δt (x,t)

w(y, s)

and
Z(x, t) = sup

Br(x,t)

v∗(y, s)

satisfies Z ≺ W1 at t = T − τ . By definition, Z crossesW from below at T − τ <
t � T . If Z crosses W with Z = W > 0 at t = t0, then for

W2 = inf
Br−δt

(1 + α)v∗(x, t + γ )

with γ such that t0 + γ = (1 +α)t0 −β (see Fig. 6), Z−W2 has a local maximum
zero at t = t0 in {Z1 > 0}∩{t � t0}. Observe that for T � t � t0, the free boundary
of Z does not crossW2 since t + γ > (1 + α)t − β for t � t0. But this contradicts
the fact thatZ1 −W2 is a subsolution of the heat equation in {Z1 > 0} ⊆ {W2 > 0}
for T − τ � t � t0.

Step 3. Thus the contact point is on the boundary: in other words,W andZ intersect
at P0 = (x0, t0) on the free boundary with Z � W for T − τ � t = t0 � T . Thus
we expect the free boundary of Z to advance faster than that of W at the contact
point P0. But roughly speaking, the free boundary ofW advances with speed larger
than |DW | + δ, whereas that of Z advances with speed smaller than |DZ|. This

t = T

tt = T -

s = t s = t +g s = t + 0d

α bs = (1 +   ) t   -

t

s

Fig. 9.
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implies that |DW | < |DZ|, which contradicts the fact that Z � W for t � t0.
Following the steps of the proof for Theorem 2.2, a contradiction occurs if there is
a corresponding test function for (4.3) to compare withW . Such test functions can
be built with a slight modification from the construction in Appendix B. Now we
proceed as in the proof of Theorem 2.2 to conclude.

Step 4. To prove the general case, i.e., when T /∈M , we argue at time t = Tδ instead
of t = T and replace t = T − τ by t = T , where Tδ is given as

Tδ = inf
s

{s : ∂{v∗(·, s) > 0} ∩ ∂{v∗(·, s + δ) > 0} �= 0}.

(For details refer to the proof of Theorem 4.4 below.) To apply the above arguments
we only need to show that if δ is small enough then there is α > 0 such that

v0 ≺ (1 + α)v∗(x, ε) for 0 < ε � δ, and α|T − Tδ| < δ. (4.4)

This is always possible if �v0 � 0, since then the interior regularity of v at
t = 0 and straightforward computation implies that we can choose α = o(δ). Thus
we assume that�v0 is negative at some point and therefore at that point v is decreas-
ing. Let x̄ = x̄(δ) be the point where v∗(x, δ)− v(x, 0) has its negative minimum.
Note that by (4.2) v strictly increases near the free boundary for 0 < t < τ for
small τ and thus v0(x̄) > c0 for small δ, where c0 is independent of δ. Now if we
take δ so small that |T − Tδ| < 1/4M , whereM = −κ/c0 > 0 and κ is the strictly
negative minimum of �v0, then α = 2Mδ satisfies (4.4). 
�

Now we turn to the proof of Theorem 4.4.

Proof of Theorem 4.4.
Step 1. As mentioned above, it is enough to consider the case when u = U and
v = V . (In particular v(x, 0) = u(x, 0) = v0 and v � u.) For given δ, take α > 0
so that

v0(x) ≺ (1 + α)v∗(x, ε) for 0 < ε � δ.

Step 2. Let
vδ(x, t) = (1 + α)v(x, t + δ).

Suppose that u crosses v̄ from below at t = T . Then for small δ > 0, u crosses
vδ at Pδ = (xδ, Tδ), where T < Tδ .

As shown above, we can choose δ small enough so that α(Tδ − T ) < δ. As in
Lemma 4.3 we consider

w(x, t) = vδ(x, (1 + α)t − αTδ).

Step 3. Then u(x, T ) ≺ w(x, T ) and w crosses u from above at P̄ = (x̄, T̄ ) with
T < T̄ � Tδ . If u = w > 0 at P̄ , then

f (x, t) ≡ u− (1 + α)v(x, t + γ ) = 0 at P̄ ,

where γ = γδ is chosen to satisfy f (x, t) = (u − w)(x, t) at t = T̄ . Note that
f is a subsolution of the heat equation in the domain {u > 0} × (T , T̄ ]. From the
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choice of α and by the fact that γ � δ, u ≺ (1 + α)v(x, t + γ ) at t = T . Also for
T � t < T̄ , we have (1 + α)(t − T )+ T + δ < t + γ and thus

{u(x, t) > 0} � {w(x, t) > 0} ⊂ {v(x, t + γ ) > 0}.
This and the maximal principle of the heat equation lead to a contradiction.

Step 4. Hence u = w = 0 at P̄ , i.e., the contact point is on the free boundary. Now
we proceed as in Proposition 4.5 to get a contradiction, observing that u andw have
the same motion law on the free boundary. 
�
Corollary 4.6. If u,v are lowersemicontinuous viscosity solutions of (4.1) with
initial data v0, then

u = v and ū = u∗.

Theorem 4.7. Let �0 be a closed C1,1 hypersurface in R
n and let�0 be the region

bounded by �0. Then there exists a unique lowersemicontinuous viscosity solution
v of (4.1) for given initial data u0 � 0 with {u0 > 0} = �0 and with the condition
(4.2).

Proof.
Step 1. We apply Perron’s method to show the existence part. First consider �: a
solution of heat equation in Q0 = �0 × (0,∞) with initial data u0 and zero on
the lateral boundary. Then �(x, t) is a supersolution of (4.1) since �t − |Dψ |2 =
−|Dψ |2 < 0 on ∂{� = 0}. Let

U = sup{z : z is a subsolution of (4.1), z0 = u0 and � � z}.
From barrier arguments at each point on �0 we can easily check that U∗(x, 0) =
u0(x) and {U∗ > 0} = {u0 > 0}. SinceU is a supremum of viscosity subsolutions,
it follows thatU∗ is a viscosity subsolution with initial data u0. Hence by definition
of U we have U = U∗.

Step 2. Next we claim that

U∗(x, t) = lim inf
(y,s)→(x,t)

U(y, s) is a supersolution of (4.1).

Since � � U , we get U∗ = u0. We only have to show that U∗ is a supersolution
on the free boundary of U∗. (For the arguments in the interior of positive set see
for example [CIL].) Suppose this is not the case. Then there is a smooth function

φ(x, t) = s(t − t0)+ < p, x − x0 > +1/2

< X(x − x0), x − x0 > +o(|x − x0|2 + |t − t0|),
where (s, p,X) ∈ R × R

n × Sn such that U∗ − φ has its local maximum zero in
{U∗ > 0} ∩ {t � t0} ∩Q at (x0, t0) ∈ ∂{U∗ = 0}, φ satisfies (1.1) and

s − |p|2 > 0 and − traceX > 0. (4.5)
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Here Sn is the set of n×n symmetric matrices. Then, by (4.5) and (1.1), the function

Ũδ,γ (x, t) = (φ(x, t)+ δ − γ (|x − x0|2 + |t − t0|2))+
is a supersolution of (4.1) in Br = {(x, t) : |x − x0|2 + |t − t0|2 < r2} for all
small r, δ, γ > 0. Note that by (1.1), we can choose δ = δ0 > 0 such that Ũ = 0
outside {U > 0} ∪ Br/2. Finally, observe that by definition there is a sequence
(xn, tn) → (x0, t0) such that U(xn, tn) → U∗(x0, t0) and thus

−δ = lim
n→∞(Ũ(xn, tn)− U(xn, tn)) � Ũ (x0, t0)− U(x0, t0).

Hence we have a bigger subsolution U2 if we let

U2(x) =
{

max{U, Ū} if |x − x0|2 + |t − t0|2 < r2,

U(x) otherwise.

with U2 = U on ∂Q for small r . This contradicts the definition of U .

Step 3. By Theorem 4.4 we obtain U∗ � Ū∗, and therefore U∗ = Ū∗ = U∗∗ and
v = U∗ is our desired solution. 
�

Appendix A. Construction of h, φ and ϕ

Here we construct our test functions in Section 1 and Section 2, based on a
space-time ball B. For simplicity we set B: a unit space ball centered at the origin.
First we construct φ in the proof of Lemma 2.4 based on B = B1: a space-time
exterior ball of ∂{u > 0} at P1. We will specify later that we also construct h
in the proof of Lemma 1.3 with a slight modification. For convenience we may
assume that B1 = B1(0, 0) is a unit space-time ball centered at the origin, with
P1 = (cosαe1, sin α) ∈ ∂B1 for some 0 < α < π/2. Note that in this case we
have m = tan α > 0 as the advancing speed of ∂{u > 0} at P1.

At first we solve the ordinary differential equation

φrr + n− 1

r
φr = 0, where r > 0.

Then we get φ0(r) = − ln r if n = 2 or φ0(r) = r2−n if n > 2. For r > 0, let

φ1(r) =



ln r − r−1 if n = 2,

2 − r2−n − r1−n if n > 2.

For x ∈ R
n, let

φ2(x) = ϕ1((x
2
1 + · · · + x2

n)
1
2 ) outside 1

4B1(0).

then for r � 1/4, φ2,r > 0 and

−�φ2 = −φ1,rr − n− 1

r
φ1,r = (n− 1)r−1−n > 0.
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Since φ2,r > 0 on ∂ 1
4B1(0), we can extend φ2 to 1

4B1(0) so that

φ2(x)



> 0 outside B1(0),
= 0 on ∂B1(0),
< 0 inside B1(0).

Now to extend it to the space-time ball B1(0, 0)/{t = ±1}, define

φ(x, t) = φ2(
x√

1 − t2
),−1 < t < 1.

After multiplying by a constant depending on m, for given ε > 0 we get

φ(x, t)



> 0 outside B1,

= 0 on ∂B1,

< 0 inside B1,

φ(x, t) = φ(r, t), where r = |x|,
−�φ > 0 outside 1

4Bv,

φr = m(1 − ε/3) on ∂B1 ∩ {t = sin α}.

(A.1)

In particular at P1,

φt

φr
= φt

|Dφ| = m > φr = |Dφ| > 0.

Thus φ is a local supersolution of [HS] near P1. For constuction of h in Lemma
1.3, instead of the last condition in (A.1) we put

0 < φ < inf
1
4 B̄

v on 1
4 B̄.

(This is possible since v > 0 in B.)
Next we set B = B2 as in the proof of Theorem 2.2, where B2 is the interior

ball of {v > 0} at P2 ∈ ∂{v > 0}. Recall that at t = t2, B2 propagates with nor-
mal velocity m(1 − δ). By letting ϕ = −φ and multiplying by a constant, we can
construct ϕ such that

ϕ(x, t)



> 0 inside B,
= 0 on ∂B,
< 0 outside B.

−�ϕ < 0 outside 1
4B,

ϕ(x, t) = ϕ(r, t), where r = |x|,
−ϕr = m(1 − ε0), ε0 � δ/4 on ∂[B ∩ {t = t2}].

(A.2)

Observe that at t = t0 = sin α,

−ϕt
ϕr

= ϕt

|Dϕ| = m(1 − δ/2).

Thus for τ > 0 small enough and 0 < ε0 < δ/2 we get

−ϕt
ϕr

� m(1 − δ/2) < −ϕr on ∂B ∩ {t2 − τ � t � t2}.
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Appendix B. Test functions for the Stefan problem

Here the test functions used in Section 4 are constructed. Observe that for the
supersolution part, for m > 0, the advancing speed of the free boundary at P1, we
can simply use the same function φ constructed in the previous section, since we
have φt = m|Dφ| > 0 at P1 and thus φt −�φ > 0 in {φ � 0} in a neighborhood
of P1.

Therefore we only have to construct a local subsolution ϕ in a neighborhood of
P2 = (x2, t2) ∈ ∂{v > 0} for the proof of Theorem 4.2. Recall that at P2 {v > 0}
has an interior space-time ball B2 with its advancing speed m− δ. We consider S
such that

S ∩ {t = t2 + s} = r1 +m1s

r1
B,

where r1 is the radius of B, m1 = m− δ/2 and B, where B = B2 ∩ {t = t2}. Note
that S ∩ [t2 − τ, t2] ⊆ B2 for small τ > 0. Let ϕ(gx, t) = ϕ(r − m1t), where
r = |x − c|, c is the center of B, and solve for ϕt − �ϕ < 0 in S − 1/4S. For
convenience, we take c = 0, r1 = 1 and t2 = 0. Then we get

ϕ(x, t) = ϕ0(r −m1t)+ ε(r2 − (m1t + 1)2),

where ε > 0 and

ϕ0(r) =
∫ 1

r

s1−ne−sds.

After multiplying by a constant, for small ε and for t ∈ [t2 − τ, t2], we get

ϕ(x, t)

{
> 0 inside S − 1

4S,= 0 on ∂S.
ϕt −�ϕ < 0 outside 1

4S,

ϕ(x, t) = ϕ(r, t), where r = |x|,
−ϕr = m(1 − ε0), ε0 � δ/4 on ∂S ∩ {t = t2}.

(B.1)

Note that for small τ we have

ϕt/|Dϕ| < m1 < −ϕr on ∂S ∩ {t2 − τ � t � t2}.

Now we proceed the same as in the proof of Theorem 2.2 to show that for small
r1 we have ϕ � v on (S− rS)∩ {t2 − τ � t � t2}. Thus ϕ̃ crosses v from below at
P2, and this leads to a contradiction since ϕ is a (strict) local subsolution of (4.1).

�
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