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Abstract

We estimate the Hausdorff dimension of the singular set of solutions to elliptic
systems of the type

− div a(x,Du) = b(x,Du).

If the vector fields a and b are Hölder continuous with respect to the variable x with
exponent α, then the Hausdorff dimension of the singular set of any weak solution
is at most n − 2α.

1. Introduction

Let us consider the following elliptic system in divergence form:

− div a(x,Du) = b(x,Du) (1.1)

in a bounded open subset � ⊂ R
n, n � 2. Suppose that the continuous vector

fields a : � × M
N×n → M

N×n and b : � × M
N×n → R

N satisfy the following
growth, ellipticity and continuity assumptions:

|Dza(x, z)| � L(1 + |z|2) p−2
2 , |b(x, z)| � L(1 + |z|2) p−1

2 , (1.2)

L−1(1 + |z|2) p−2
2 |λ|2 �

∂ak
i

∂zhj

(x, z)λk
i λ

h
j , (1.3)

|a(x, z) − a(x0, z)| � L|x − x0|α(1 + |z|2) p−1
2 , (1.4)

for any z, λ ∈ M
N×n and x, x0 ∈ �, where p � 2, L ∈ (1,+∞) and α ∈ (0, 1).

Then it is well know that any local weak solution u ∈ W
1,p
loc (�; R

N) is partially
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C1,α̃-regular, that is, there exists an open subset of full measure �0 ⊆ � such that
Du is Hölder continuous in �0:

u ∈ C1,α̃(�0; R
N), |� \ �0| = 0, α̃ ≡ α̃(α, n, p) ∈ (0, α]. (1.5)

The study of partial regularity of solutions to elliptic systems started with pa-
pers by Morrey and Giusti& Miranda (see [19] and [14]), inspired by the works
of Almgren and De Giorgi on Minimal Surfaces, and it has continued up to now,
gaining contributions valid in more general settings (see [10, 8, 9]).

The reason for the interest in partial regularity lies in the fact that, except for
very peculiar cases in which the vector field a has a special structure (see for in-
stance [22]), local weak solutions are not everywhere regular. This fact is known
since the counterexamples of De Giorgi and Maz’ya [6] and [18]. In particular,
John, Malý& Stará [17] show that solutions to linear elliptic systems can be no-
where continuous and, as recently discovered by Sverak & Yan [21], minimizers
of smooth convex variational integrals can be even unbounded.

In this situation we try to prove that � \ �0 is “reasonably small” in the sense
that it is not only negligible but it has also a low Hausdorff dimension. We consider
for simplicity the case when b(x, z) = 0. If we work with a differentiable system,
that is with the additional assumption∣∣∣∣∂a∂x (x, z)

∣∣∣∣ � L(1 + |z|2) p−1
2 , (1.6)

corresponding to Lipschitz continuity with respect to the variable x, then (see for
instance [5],[11],[16])

dimH(� \ �0) � n − 2 (1.7)

with dimH(A) denoting the Hausdorff dimension of a set A ⊂ R
n. This latter fact

relies on the possibility of differentiating the system (this is why (1.6) is then in-
troduced) and obtaining the existence (in suitable Sobolev spaces) of second-order
derivatives of the solution. In turn, this implies a better control on certain integral
quantities measuring the oscillations of the gradient Du and thus controlling the
Hölder continuity of Du itself. So, in general, what is known is either (1.5) if a(·, z)
is Hölder continuous or (1.7) if a(·, z) is Lipschitz continuous, (1.6). In this paper
we build a bridge between Hölder and Lipschitz continuity, trying to fill such a gap.
Indeed, since partial C1,α̃ regularity of solutions (that is, (1.5)) holds under the only
Hölder continuity condition (1.4), it is natural to wonder whether it is still possible
to give an estimate on the dimension of the singular set � \ �0 of local weak so-
lutions under such a natural assumption, i.e., without passing through the second
derivatives D2u and, in other words, without the possibility of differentiating the
system. Our aim is to show that this is actually the case; indeed under appropriate
assumptions on b, as for example,

|b(x, z) − b(x0, z)| � L|x − x0|α(1 + |z|2) p−1
2 ,

|b(x, z) − b(x, z0)| � L|z − z0|α(1 + |z0|2 + |z|2) p−1−α
2 ,

(1.8)

we have:
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Theorem 1.1. Let u ∈ W
1,p
loc (�; R

N) be a local weak solution to the system (1.1),
under the assumptions (1.2)–(1.4) and (1.8). Then:

dimH(� \ �0) � n − 2α. (1.9)

As far as we know, this result is the first of general type. The proof of Theorem
1.1 rests basically on the simple observation that the Hölder continuity can be read
as a fractional differentiability and thus the system can be still differentiated, but
in a fractional sense. Therefore, rather than proving the existence of weak second
derivatives, we come up with the fact that the gradient is in a certain fractional
Sobolev space Wθ,q . This suggests the idea that the estimate of the singular set can
be performed via a suitable result on the pointwise behavior of functions in this
space. This is exactly what we do, but following only elementary and short argu-
ments, without appealing to heavy tools from Potential Theory: spaces of Bessel
potentials, Lθ,q , the theorems describing the pointwise behavior of functions from
Lθ,q via Bessel (θ, q)-capacities and so on (see [4]). Instead we just use an ele-
mentary Poincaré-type inequality valid in Wθ,q and simple measure density results
(Lemmata 4.1, 4.2) that rely on Vitali covering argument only.

2. Preliminaries and statements

Further Notation and Statements. In the following we shall define BR ≡ B

(x0,R) := {x ∈ R
n : | x − x0 |< R}. When not differently specified, all the balls

considered will be concentric; c will denote a constant not necessarily the same in
any two occurrences.As usual {es}1 � s � n stands for the standard basis of R

n while,

if v,w ∈ R
k , the tensor product v ⊗ w ∈ R

k2
is defined by (v ⊗ w)i,j := viwj . If

B(x0, R) ⊂⊂ � and v is a locally integrable function on �, we put

(v)R ≡ (v)x0,R := −
∫
BR

v dx ≡ 1

|BR|
∫
BR

v dx.

A function u ∈ W
1,p
loc (�; R

N) is a local weak solution to the system (1.1) if and
only, if, for any ϕ ∈ W 1,p(�; R

N) such that supp ϕ ⊂ �,∫
�

a(x,Du)Dϕ dx =
∫
�

b(x,Du)ϕ dx. (2.1)

If u ∈ W
1,p
loc (�; R

N) is a local weak solution to the system (1.1), then we shall put

& := � \ �0 := “the singular set of u”

with the convention that �0 ⊆ � denotes an open subset, with full measure, where
Du is Hölder continuous with some exponent (note, anyway, that α̃ = α in (1.5),
for instance when p = 2 and b(x, z) = 0, with generalizations to elliptic systems
with nonlinear growth (p �= 2) being possible as well; see [7]).

Under the previous assumptions we shall first prove Theorem 1.1 and sub-
sequently we shall perform a sharp and significant refinement of the result that
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perfectly parallels the usual situation. Indeed, it is known that for certain classes
of elliptic differentiable systems the Hausdorff dimension of & can be further re-
duced: dimH(&) < n − 2 (see [5]). Here we prove an analogous result; in order
to avoid technicalities cropping up, we shall confine ourself to the model case of
homogeneous systems with linear growth, i.e., p = 2 and b(x, z) = 0.

Theorem 2.1. Let u ∈ W
1,2
loc (�; R

N) be a local weak solution to the system (1.1)
under the assumptions in (1.2)–(1.4) with p = 2 and b(x, z) = 0. Then there exists
t ≡ t (n, L) > 1 such that Hn−2tα+ε(&) = 0 for any ε > 0, i.e.,

dimH(&) < n − 2α.

Some Preliminary Material. We shall use fractional Sobolev spaces; given a
smooth, bounded open subset A ⊂ R

n and θ ∈ (0, 1), 1 � q < +∞, a function
u ∈ Wθ,q(A; R

N) if and only if

||u||Wθ,q :=
(∫

A

|u(x)|q dx

) 1
q +

(∫
A

∫
A

|u(x) − u(y)|q
|x − y|n+qθ

dx dy

) 1
q

with the previous quantity being a norm making Wθ,q(A; R
N) a Banach space,

the local variant Wθ,q
loc (A; R

N) is then defined in the usual way. For the properties
of fractional Sobolev spaces the reader is referred to [3], Chapter 7. In a standard
notation, for a vector-valued function G : R

n → R
k we define

τs,hG(x) = G(x + hes) − G(x).

The following are simple properties of Sobolev functions:

Lemma 2.2. If 0 < ρ < R, |h| < R − ρ, 1 � q < ∞, s ∈ {1, . . . , n} and
G ∈ Lq(BR) , then∫

Bρ

|G(x + hes)|q dx � c(n, q)

∫
BR

|G(x)|q dx;

moreover, if DsG ∈ Lq(BR) then∫
Bρ

|τs,hG(x)|q dx � |h|q
∫
BR

|DsG(x)|q dx.

The next result exploits the relations between fractional Sobolev spaces Wθ,q and
Nikolskii spaces Hθ,q . See [3], 7.73.

Lemma 2.3. If G : R
n → M

N×n, G ∈ Lq(B4R; M
N×n), 1 < q < +∞ and, for

some ρ ∈ (0, R] and θ ∈ (0, 1),∫
Bρ

n∑
s=1

|τs,hG(x)|q dx � Mq |h|qθ

for every h with |h| < R/A with M � 0, A � 1, then G ∈ Wb,q(Bρ; M
N×n) for

every b ∈ (0, θ), and there exists c ≡ c(n, k, q, b, θ, R,A) such that

|| G ||Wb,q (Bρ)
� c

(
M+ || G ||Lq(B4R)

)
.
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The following uniform version of Gehring’s lemma can be inferred from [20]:

Lemma 2.4. Let {vh}h> 0 ⊂ L2
loc(�; R

N), {wh}h> 0 ⊂ L
2(1+δ1)
loc (�; R

N) be two
families of functions such that

−
∫
BR/2

|vh|2 dx � c1

(
−
∫
BR

|vh|2σ dx

) 1
σ + c1 −

∫
BR

|wh|2 dx

for any BR ⊂⊂ �, where c1 ∈ (1,+∞), δ1 > 0 and σ ∈ (0, 1) are independent
of h. Then there exist c̃ ≡ c̃(n, c1, σ, δ1) and 1 < t ≡ t (n, c1, σ, δ1) < (1 + δ1),
independent of h, such that, for any BR ⊂⊂ � and h > 0,

(
−
∫
BR/2

|vh|2t dx
) 1

t

� c̃ −
∫
BR

|vh|2 dx + c̃

(
−
∫
BR

|wh|2(1+δ1) dx

) 1
1+δ1

.

3. Fractional estimates

Proposition 3.1. Let u ∈ W
1,p
loc (�; R

N) be a local weak solution to the system (1.1)

under the assumptions (1.2)–(1.4), (1.8). Then Du ∈ W
2β/p,p
loc (�; M

N×n) for any
β < α.

Proof. Since we are going to prove a local result, we shall assume without loss of
generality that u ∈ W 1,p(�; R

N). We fix a ball B(x0, 4R) ≡ B4R ⊂⊂ � and, in
the weak formulation (2.1), we pick the test function ϕ := τs,−h(η

2τs,hu), where
0 < |h| � min{R/1000, 1} and η ∈ C∞

0 (B3R/2) is a cut-off function such that
η ≡ 1 on BR , |Dη| � c(n)/R and 0 � η � 1. We obtain∫

�

η2τs,h(a(x,Du(x)))τs,hDu dx

= −
∫
�

2ητs,h(a(x,Du(x)))Dη ⊗ τs,hu dx (3.1)

+
∫
�

η2τs,h(b(x,Du(x)))τs,hu dx.

Now, let us write

τs,h(a(x,Du(x))) = a(x + hes,Du(x + hes)) − a(x,Du(x + hes))

+a(x,Du(x + hes)) − a(x,Du(x))

=: A(h) + B(h),

τs,h(b(x,Du(x))) = b(x + hes,Du(x + hes)) − b(x,Du(x + hes))

+b(x,Du(x + hes)) − b(x,Du(x))

=: C(h) + D(h).
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With such notation (3.1) becomes:∫
�

η2 [A(h) + B(h)] τs,hDu dx

= −
∫
�

2η [A(h) + B(h)]Dη ⊗ τs,hu dx (3.2)

+
∫
�

η2 [C(h) + D(h)] τs,hu dx.

We proceed to estimate the various terms arising from (3.2).
Using Young’s inequality with ε ∈ (0, 1), (1.4) and Lemma 2.2, we have

∫
�

η2A(h)τs,hDu dx

� c

∫
�

η2|h|α(1 + |Du(x)|2 + |Du(x + hes)|2) p−1
2 |τs,hDu| dx

� ε

∫
�

η2(1 + |Du(x)|2 + |Du(x + hes)|2) p−2
2 |τs,hDu|2 dx

+ Cε

(∫
�

η2(1 + |Du(x)|2 + |Du(x + hes)|2) p
2 dx

)
|h|2α

� ε

∫
�

η2(1 + |Du(x)|2 + |Du(x + hes)|2) p−2
2 |τs,hDu|2 dx

+ Cε

(∫
B2R

(1 + |Du(x)|2) p
2 dx

)
|h|2α.

Using (1.4), the Hölder inequality and Lemma 2.2 (recall that supp η ⊂⊂ B3R/2,
|h| � R/1000 and 0 � η � 1), we get,

∫
�

ηA(h)Dη ⊗ τs,hu dx

� c

(∫
�

η||Dη||∞(1 + |Du(x + hes)|2) p−1
2 |τs,hu| dx

)
|h|α

� c

(∫
�

η(1 + |Du(x + hes)|2) p
2 dx

)1− 1
p ×

(∫
BR

η|τs,hu|p dx

) 1
p |h|α

� c

(∫
B2R

(1 + |Du(x)|2) p
2 dx

)
|h|2α,

where we have estimated |h|1+α � |h|2α and c ≡ c(||Dη||∞).

In order to estimate the terms containing B(h) we write

B(h) =
∫ 1

0
Dza(x,Du(x) + tτs,h(Du(x))) dt τs,hDu

=: B̃(h)τs,hDu. (3.3)
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Moreover the following estimate is a standard consequence of (1.2) and (1.3) via
Lemmata 2.1 and 2.2 from [1] (which hold for any p > 1):

c−1(1 + |Du(x)|2 + |Du(x + hes)|2) p−2
2 |τs,hDu|2

� B̃(h)τs,hDu ⊗ τs,hDu, (3.4)

where c ≡ c(n, p, L) > 0. Therefore, combining (3.3) and (3.4) in a suitable way,
we may write:∫

�

η2B(h)τs,hDu dx

� 1

2

∫
�

η2B̃(h)τs,hDu ⊗ τs,hDu dx

+ c−1
∫
�

η2(1 + |Du(x)|2 + |Du(x + hes)|2) p−2
2 |τs,hDu|2 dx. (3.5)

Using the notation introduced before and, in a standard way, Cauchy-Schwartz
and Young inequalities with ε ∈ (0, 1), we obtain, as for the previous integral:∫

�

2ηB(h)Dη ⊗ τs,hu dx

=
∫
�

2ηB̃(h)τs,hDu ⊗ (Dη ⊗ τs,hu) dx

� ε

∫
�

η2B̃(h)τs,hDu ⊗ τs,hDu dx

+ Cε||Dη||2∞
∫
�

η2(1 + |Du(x)|2 + |Du(x + hes)|2) p−2
2 |τs,hu|2 dx

� ε

∫
�

η2B̃(h)τs,hDu ⊗ τs,hDu dx

+ Cε

(∫
�

η(1 + |Du(x)|2 + |Du(x + hes)|2) p
2 dx

)1− 2
p

×
(∫

�

η|τs,hu(x)|p dx

) 2
p

� ε

∫
�

η2B̃(h)τs,hDu ⊗ τs,hDu dx

+ Cε

(∫
B2R

(1 + |Du(x)|2) p
2 dx

)
|h|2α,

where Cε ≡ Cε(||Dη||∞) and we have used Lemma 2.2.
Proceeding as for the term

∫
�

2ηA(h)Dη ⊗ τs,hu dx we gain, via (1.8)1,∫
�

η2C(h)τs,hu dx � c

(∫
�

η2(1 + |Du(x + hes)|2) p−1
2 |τs,hu| dx

)
|h|α

� c

(∫
B2R

(1 + |Du(x)|2) p
2 dx

)
|h|2α.
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Again using Young and Hölder inequalities with (1.8)2, we estimate∫
�

η2D(h)τs,hu dx

� c

∫
�

η2(1 + |Du(x)|2 + |Du(x + hes)|2) p−1−α
2 |τs,hDu|α|τs,hu| dx

� ε

∫
�

η2(1 + |Du(x)|2 + |Du(x + hes)|2) p−2
2 |τs,hDu|2 dx

+Cε

∫
�

η2(1 + |Du(x)|2 + |Du(x + hes)|2)
p
2 − 1

2−α |τs,hu| 2
2−α dx

� ε

∫
�

η2(1 + |Du(x)|2 + |Du(x + hes)|2) p−2
2 |τs,hDu|2 dx

+Cε

(∫
BR

(1 + |Du(x)|2) p
2 dx

)p− 2
(2−α)p ×

(∫
�

η|τs,hu|p dx

) 2
(2−α)p

� ε

∫
�

η2(1 + |Du(x)|2 + |Du(x + hes)|2) p−2
2 |τs,hDu|2 dx

+Cε

(∫
B2R

(1 + |Du(x)|2) p
2 dx

)
|h|2α, (3.6)

where in the last estimate we have used Lemma 2.2, estimating |h|2/(2−α) � |h|2α
in view of the elementary inequality 2α � 2/(2 − α).

Since p � 2, we can estimate

|τs,h(Du(x))|p = |τs,h(Du(x))|p−2|τs,h(Du(x))|2
� c(n, p)(1 + |Du(x)|2 + |Du(x + hes)|2) p−2

2 | τs,hDu(x)|2 .

Combining the last inequality with (3.5) and the other ones found for the terms aris-
ing from (3.2) and developed up to (3.6), choosing ε suitably small in a standard
way, we finally get, summing up on s ∈ {1, . . . , n}:

∫
BR

n∑
s=1

|τs,h(Du(x))|p dx � c

(∫
B2R

1 + |Du(x)|p dx

)
|h|p(2α/p) (3.7)

where the constant c depends on n, p,L,R and is independent of the particu-
lar ball considered BR , α and even of the particular vector fields a and b. Using
Lemma 2.3 (with ρ := R) it follows that Du ∈ W 2β/p,p(BR; M

N×n) for any
β < α with the quantity ||Du||W 2β/p,p(BR; MN×n) being bounded by a constant
c ≡ c(n, p, L,R, β, ||Du||Lp(�)) independent of the ball considered: now the
assertion follows via a standard covering argument. ��
Proposition 3.2. Let u ∈ W

1,2
loc (�; R

N) be a local weak solution to the system (1.1)
under the assumptions in (1.2)–(1.4) with p = 2 and b(x, z) = 0. Then there exists
t ≡ t (n, L) > 1 such that Du ∈ W

β,2t
loc (�; M

N×n) for any β < α.
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Proof. Let us observe that, being a local weak solution to (1.1), the function u

is higher integrable: u ∈ W
1,2(1+δ1)
loc (�; R

N) for some δ1 ≡ δ1(n, L) > 0 (see
[12]). In particular, for any ball B4R ⊂⊂ �, we have the following reverse Hölder
inequality:

(
−
∫
B2R

(1 + |Du(x)|2)(1+δ1) dx

) 1
1+δ1 � c −

∫
B4R

1 + |Du(x)|2 dx (3.8)

with c ≡ c(n, L). In (2.1) we can replace the test function ϕ with the translated
one τs,−hϕ for 0 < |h| � dist(supp ϕ, ∂�)/1000; we find that∫

�

τs,h(a(x,Du))Dϕ dx = 0.

With the notation of Proposition 3.1, we get∫
�

B̃(h)D(|h|−ατs,hu)Dϕ dx = −
∫
�

|h|−αA(h)Dϕ dx;

therefore, if we introduce

vh := τs,hu

|h|α , W(h) := −A(h)

|h|α , (3.9)

then vh ∈ W
1,2
loc (�; R

N) is a local weak solution to the elliptic system∫
�

B̃(h)DvhDϕ dx =
∫
�

W(h)Dϕ dx (3.10)

with growth and ellipticity bounds dictated by the ones in (1.2), (1.3) (recall that
p = 2); and for any λ ∈ M

N×n

L−1|λ|2 � B̃(h)λ ⊗ λ � L|λ|2. (3.11)

Our aim now is to derive a family of uniform (in h) reverse Hölder inequali-
ties for the functions Dvh. We fix BR ⊂⊂ � and a non-negative cut-off function
η ∈ C∞

0 (BR) such that η ≡ 1 on BR/2 and |Dη| � c(n)/R and we test (3.10) with
ϕ := η2(vh − (vh)R). Using in a standard way Young’s inequality and (3.11), we
finally get the following Caccioppoli-type inequality:∫

BR/2

|Dvh|2 dx

� c(n, L)

R2

∫
BR

|vh − (vh)R|2 dx + c(n, L)

∫
BR

|W(h)|2 dx. (3.12)

Therefore, using Poincaré inequality in (3.12), we come up with:

−
∫
BR/2

|Dvh|2 dx

� c(n, L)

(
−
∫
BR

|Dvh| 2n
n+2 dx

) n+2
n + c(n, L) −

∫
BR

|W(h)|2 dx. (3.13)
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Let us observe that by (1.4) and (3.8) it follows that |W(h)|2 ∈ L1+δ1 ; moreover,
if 0 < |h| � min{R/1000, 1}, the following bound takes place using the definition
of W(h) (see (3.9)) and again (1.4) together with Lemma 2.2:∫

BR

|W(h)|2(1+δ1) dx � c(n, L)

∫
B2R

1 + |Du(x)|2(1+δ1) dx. (3.14)

Taking into account that the constants in the previous inequalities are independent
of h, and since BR is arbitrary, by (3.13) we can apply Lemma 2.4 with a standard
covering argument and with σ = n/(n + 2), to show that for a fixed exponent
1 < t ≡ t (n, L) < 1 + δ1, and constant c ≡ c(n, L), both independent of h, we
have, for any B4R ⊂⊂ �,

(
−
∫
BR/2

|Dvh|2t dx
) 1

t

� c −
∫
BR

|Dvh|2 dx + c

(
−
∫
B2R

(1 + |Du(x)|2)(1+δ1) dx

) 1
1+δ1

� c −
∫
B2R

1 + |Du(x)|2 dx + c

(
−
∫
B2R

(1 + |Du(x)|2)(1+δ1) dx

) 1
1+δ1

� c −
∫
B4R

1 + |Du(x)|2 dx, (3.15)

where we also used, in order: (3.14), (3.7) (we are assuming that p = 2) and finally
(3.8).

Now, taking into account (3.8), from the very definition of vh (see (3.9)) and
using (3.15) for every s ∈ {1, . . . , n}, it follows that

∫
BR/2

n∑
s=1

|τs,hDu|2t dx � c(n, L)Rn(1−t)

(∫
B4R

1 + |Du(x)|2 dx

)t

|h|2tα,

which is analogous to (3.7) when p = 2. The proof finally follows as for the
previous Proposition, via Lemma 2.3 (with ρ := R/2) and a standard covering
argument. ��

4. Proof of the theorems

We only give the proof of Theorem 1.1, the proof of Theorem 2.1 being the
same but using Proposition 3.2 instead of Proposition 3.1. Before starting, we
observe that since we are going to show a local partial regularity result, up to pass-
ing to open subsets �h ⊂⊂ � such that �h ↑ �, and in view of the local result of
Proposition 3.1, without loss of generality, we shall assume that the fundamental
fractional differentiablity result of Du holds globally in �:

Du ∈ W 2β/p,p(�; M
N×n) ∀ β < α. (4.1)
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Step 1. A fractional Poincaré inequality

Here we want to state a Poincaré-type inequality valid for functions belong-
ing to fractional Sobolev spaces. We are interested in the following statement: if
BR ≡ B(x0, R), then∫

BR

|v(x) − (v)R|q dx � c(n, q)Rqθ

∫
BR

∫
BR

|v(x) − v(y)|q
|x − y|n+qθ

dx dy (4.2)

whenever v ∈ W
θ,q
loc (�; R

N), where q � 1, θ ∈ (0, 1) and BR ⊂⊂ �.
It is difficult to trace back in the literature an explicit statement of such a fact,

therefore we give here a very simple and elementary proof. Clearly, the previous
inequality can be obtained via a standard scaling and translation argument from the
following one (here B1 ≡ B(0, 1)):∫

B1

|v(x) − (v)1|q dx � c(n, q)

∫
B1

∫
B1

|v(x) − v(y)|q
|x − y|n+qθ

dx dy (4.3)

for any v ∈ Wθ,q(B1; R
N). To prove (4.3), fix x ∈ B1. Then, by Jensen’s inequality,

we trivially have

|v(x) − (v)1|q � c(n, q) −
∫
B1

|v(x) − v(y)|q dy

� c(n, q) −
∫
B1

|v(x) − v(y)|qGε(|x − y|) dy,

where, for ε ∈ (0, 1), Gε(t) := min{t−(n+qθ), ε−1}. Integrating, we get∫
B1

|v(x) − (v)1|q dx � c(n, q)

∫
B1

∫
B1

|v(x) − v(y)|qGε(|x − y|) dx dy

and (4.3) follows letting ε → 0+.

Step 2. An idea of Giusti, revisited

After Giusti ([13]), it is standard to use the following measure density result to
estimate the Hausdorff dimension of singular sets of solutions to elliptic systems:

Lemma 4.1. Let A ⊂ R
n be an open subset and µ be a Radon measure on A such

that µ(A) < +∞. If 0 < t < n. Then dimH(Et ) � t where

Et :=
{
x ∈ A : lim sup

ρ→0+
ρ−tµ(B(x, ρ)) > 0

}
.

We make a simple observation. As an inspection of the proof easily reveals, the
previous result still holds if the Radon measure µ is replaced by a non-negative
and increasing, finite-set function λ defined on the family of open subsets of A,
which is also countably superadditive, the latter meaning that whenever {6i}i∈N is
a family of disjoint open subsets of A, then

∑
i∈N

λ(6i) � λ

(⋃
i∈N

6i

)
.
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Now we observe that if v ∈ Wθ,q(�; R
n), then the function

λ(B) ≡ λv(B) :=
∫
B

∫
B

|v(x) − v(y)|q
|x − y|n+qθ

dx dy, (4.4)

defined for any open subsetB ⊆ �, actually meets all these requirements. Therefore
Lemma 4.1 can be recast as follows:

Lemma 4.2. Let v ∈ Wθ,q(�; R
n) and 0 < t < n. If λ ≡ λv is as in (4.4), then

dimH(Et ) � t where

Et :=
{
x ∈ � : lim sup

ρ→0+
ρ−t λ(B(x, ρ)) > 0

}
.

Step 3. The structure of the singular set &

Here we recall a characterization of singular set & of a local weak solution u

to (1.1). It is very well known that this set is included in the set of non-Lebesgue
points of Du. Indeed, if we let

&0 :=
{
x ∈ � : lim inf

ρ→0+ −
∫
B(x,ρ)

|Du(y) − (Du)x,ρ |p dy > 0

}

&1 :=
{
x ∈ � : lim sup

ρ→0+
|(Du)x,ρ | = +∞

}
,

it follows that

& ⊆ &0 ∪ &1. (4.5)

This fact is standard and it can be easily inferred, for instance, from [15] or [2] (see
also [11] and [7] for the case of systems with linear growth p = 2; see [8] and [9]
for similar results in the variational setting and for quasiconvex integrals). Such a
type of characterization (that is, via non-Lebesgue points) has been known since
the original paper [14] (see also [19]).

Step 4. Conclusion

By the inclusion stated in (4.5), in order to prove (1.9) it suffices to show that
Hn−2α+ε(&0) = Hn−2α+ε(&1) = 0 for any ε > 0. We do this by proving that for
every β < α and for any ε > 0 it follows that Hn−2β+ε(&0) = Hn−2β+ε(&1) = 0.

By (4.1) we apply Lemma 4.2 with t := n− 2β, q := p, θ := 2β/p, v := Du

and

λ(B) ≡ λv(B) :=
∫
B

∫
B

|Du(x) − Du(y)|p
|x − y|n+2β dx dy B open subset of �.

Therefore, if we let

S0 :=
{
x ∈ � : lim sup

ρ→0+
ρ2β−nλ(B(x, ρ)) > 0

}
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we end up with Hn−2β+ε(S0) = 0. On the other hand, applying (4.2) gives

−
∫
B(x0,ρ)

|Du(x) − (Du)x0,ρ |p dx

� c(n, p)ρ2β−n

∫
B(x0,ρ)

∫
B(x0,ρ)

|Du(x) − Du(y)|p
|x − y|n+2β dx dy.

So we conclude that if x0 ∈ &0, then x0 ∈ S0, so that &0 ⊆ S0 and therefore
Hn−2β+ε(&0) = 0.

Now we prove that Hn−2β+ε(&1) = 0. To this end, fix 0 < ε0 < ε and consider

S1 :=
{
x ∈ � : lim sup

ρ→0+
ρ2β−n−ε0λ(B(x, ρ)) > 0

}
.

Then applying Lemma 4.2 it follows that Hn−2β+ε(S1) = 0. We shall prove that
&1 ⊂ S1 and the proof will be finished. In turn this will be achieved as follows. We
take x0 ∈ � \ S1 and B(x0, R) ⊂⊂ � and we prove that the following limit exists
and is finite:

lim
k→+∞ |(Du)x0,2−kR| < +∞. (4.6)

Then a simple interpolation argument (see Remark 1 below) shows that, for any se-
quence ak → 0, lim supk |(Du)x0,Rak | < +∞, therefore x0 ∈ �\&1 and &1 ⊆ S1.
It remains to prove (4.6). Arguing as in Step 1, using Jensen’s inequality and the
fractional Poincaré inequality in (4.2), we estimate:

|(Du)x0,2−(k+1)R − (Du)x0,2−kR|p

� −
∫
B2−(k+1)R

|Du(x) − (Du)2−kR|p dx

� 2n −
∫
B2−kR

|Du(x) − (Du)2−kR|p dx

� c(n, p)

(
R

2k

)2β−n

λ(B(x0, 2−kR))

= c(n, p)

(
R

2k

)ε0
(

R

2k

)2β−n−ε0

λ(B(x0, 2−kR))

� c̃

(
1

2k

)ε0

(4.7)

and (4.6) easily follows. ��
Remark 1. The interpolation argument goes as follows: observe that the estimate
in (4.7) works if we replace {R/2k} with any decreasing sequence {Rbk} such that
bk/bk+1 � c and

∑
b
ε0/p
k converges for any ε0 > 0. Then when considering an

arbitrary sequence {ak}, we first observe, eventually passing to a subsequence, that
we can assume it to be decreasing and ak � 2−k; then it suffices to nest it in a



300 Giuseppe Mingione

dyadic one (for example considering the decreasing rearrangement of {ak}∪{2−k})
to view it as a subsequence of the type {bk}.
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