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Abstract

We consider here the problem of deriving rigorously, for well-prepared initial
data and without any additional assumption, dissipative or smooth solutions of
the incompressible Euler equations from renormalized solutions of the Boltzmann
equation. This completes the partial results obtained by Golse [B. Perthame and L.
Desvillettes eds., Series in Applied Mathematics 4 (2000), Gauthier-Villars, Paris]
and Lions & Masmoudi [Arch. Rational Mech. Anal. 158 (2001), 195–211].

1. Introduction

The present work establishes the convergence of appropriately scaled families
of DiPerna-Lions renormalized solutions of the Boltzmann equation towards solu-
tions of the incompressible Euler equations for well-prepared initial data. In [6] or
[13], this was done by using an energy method and assuming:

(i) the local conservation of momentum, which is not guaranteed for the renormal-
ized solutions of the Boltzmann equation;

(ii) some control on large velocities.

In [17], Lions & Masmoudi have developed an argument based on the study of
a defect measure governed by a transport equation, in order to remove completely
assumption (i).

In the present paper, we show how to circumvent the need for assumption (ii):
the new estimates on large velocities use in a crucial way the dissipation control
given by the H Theorem. They come from a combination of the arguments of [18]
used to derive the incompressible Euler limit from the BGK (Bhatnager Gross
Krock) Boltzmann model, and the ideas of [14] used to study the Navier-Stokes
asymptotic of the Boltzmann equation.
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1.1. The Boltzmann equation

In kinetic theory, a gas is described by a function F ≡ F(t, x, v) � 0, usually
called the “distribution function" or the “number density", measuring the density
of gas molecules which at time t ∈ R+ are located at x ∈ � ⊂ Rd and have
instantaneous velocity v ∈ Rd . If the dimension of the ambient space d = 3, the
collisional model most commonly accepted is the Boltzmann one, which has been
rigorously derived by Lanford for large systems of particles [9]:

∂tF + v · ∇xF = B(F, F ) (1)

where B(F, F ) is the Boltzmann collision integral. This collision integral acts only
on the v-argument of the number density F and is given by the expression

B(F, F )(t, x, v) =
∫∫

S2×R3
(F ′F ′1 − FF1)b(v − v1, σ ) dσ dv1, (2)

where the terms F1, F ′ and F ′1 designate respectively the values F(t, x, v1),
F(t, x, v′) and F(t, x, v′1), with v′ and v′1 given in terms of v1 ∈ R3 and σ ∈ S2

by the formulas

v′ = v + v1

2
+ |v − v1|

2
σ, v′1 =

v + v1

2
− |v − v1|

2
σ, (3)

which ensure the conservation of momentum and kinetic energy for each binary
collision between gas molecules (of like mass).

The collision kernel b ≡ b(z, σ ) is in general an a.e. positive function defined
on R3 × S2 which encodes whichever features of the molecular interaction are rel-
evant in kinetic theory; it depends only on |z| and |z · σ |. Moreover, it is supposed
to satisfy the weak cut-off condition of DiPerna & Lions [10],

(1+ |v|)−2
∫
|z|<R

∫
S2
b(z+ v, σ ) dσ dz→ 0 as |v| → +∞ for all R > 0 (H0)

as well as ∫
S2
b(z, σ ) dσ � kb(1+ |z|2) , z ∈ R3 for some kb > 0. (H1)

This second condition holds for all hard cut-off potentials in the sense of Grad (see
[8, 15]), in particular for cut-off Maxwell molecules and for hard spheres.

The solutions of the functional equation B(F, F ) = 0 are Maxwellians, i.e.,
functions of the form

M(ρ,u,θ)(v) = ρ

(2πθ)3/2
e−

|v−u|2
2θ (4)

for some ρ > 0, θ > 0 and u ∈ R3. In particular, global Maxwellians are equi-
librium states for the inhomogeneous Boltzmann equation. Below, we shall always
use the notation M as an abbreviation for M(1,0,1).
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From now on, we are concerned with the Cauchy problem on R+
t × T3

x × R3
v

(where the spatial domain T3 = R3/Z3 has no boundary), for a scaled variant of
(1):

ε∂tFε + v · ∇xFε = 1

εq
B(F, F ) , t > 0 , (x, v) ∈ T3 × R3 ,

Fε(0, x, v) = F in
ε (x, v) , (x, v) ∈ T3 × R3 , (5)

where ε > 0 designates the order of magnitude of the Mach number and εq (q > 1)
the order of the Knudsen number (see [1, 2] for a detailed discussion on these ques-
tions of scalings), and where F in

ε � 0 a.e. is a family of measurable functions such
that

sup
ε>0

1

ε2

∫∫ [
F in
ε log

(
F in
ε

M

)
− F in

ε +M
]
dv dx < +∞. (6)

Define h : z ∈] − 1,+∞[�→ h(z) = (1 + z) log(1 + z) − z. For any pair of
measurable functions f and g defined a.e. and nonnegative on T3×R3, we use the
following notation for the relative entropy:

H(f |g) =
∫∫

g h

(
f

g
− 1

)
dx dv ∈ [0,+∞]. (7)

A renormalized solution of (5) is a nonnegative function Fε which belongs to
C(R+;w-L1(T3;L1(R3))), satisfies

#′(Fε)B(Fε, Fε) ∈ L1
loc(R+;L1(T3 × R3))

for all # ∈ C1(R+) such that

#(0) = 0 and z �→ (1+ z)#′(z) is bounded on R+, (8)

has finite relative entropy for all positive times:

H(Fε(t, ·, ·)|M) < +∞ ∀ t > 0, (9)

and finally satisfies∫ +∞

0

∫∫
#(Fε)

(
∂tχ + 1

ε
v · ∇xχ

)
dx dv dt

+
∫∫

#(F in
ε (x, v))χ(0, x, v) dx dv

+ 1

ε2

∫ +∞

0

∫∫
#′(Fε)B(Fε, Fε)χ dx dv dt = 0 (10)

for all t > 0 and each test function χ ∈ C∞c (R+ × T3 × R3).
The global existence of such renormalized solutions, as well as the local conser-

vation of mass, are established in [10], while [11] provides the entropy inequality∫∫
Fε logFε(t) dx dv + 1

εq+1

∫ t

0

∫∫
D(Fε)(s) ds dx dv �

∫∫
F in
ε logF in

ε dx dv

(11)
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for all t > 0, where the dissipation term D(f ) is defined for all nonnegative mea-
surable function f ≡ f (v) by

D(f ) = 1

4

∫∫
ff1 r

(
f ′f ′1
ff1

− 1

)
b(v − v1, σ ) dσ dv1, (12)

with r : z ∈] − 1,+∞[�→ r(z) = z log(1 + z). Whether the local conservation
of momentum holds in the sense of distributions on R∗+ × T3 is still unknown;
this is one of the difficulties in rigorously deriving hydrodynamic models from the
Boltzmann equation. A remark by Lions & Masmoudi [17] shows actually that the
construction of [10] yields a solution which satisfies in addition

∂t

∫
vFε dv + ∇x · 1

ε

∫
v ⊗ vFε dv + ∇x ·mε = 0,

∫∫
|v|2Fε(t) dx dv + ε

∫∫
tr(mε)(t) =

∫∫
|v|2F in

ε dx dv,

where the matrix-valued measure mε comes from a possible lack of compactness
of the sequence of approximating solutions.

Theorem 1 (DiPerna-Lions-Masmoudi). For fixed ε > 0, letF in
ε ≡ F in

ε (x, v) be an
a.e. nonnegative, measurable function defined on T3 ×R3 such that H(F in

ε |M) <
+∞. Then there exists a renormalized solution to (5) which satisfies

– the local conservation of mass in the sense of distributions

∂t

∫
Fε dv + ∇x · 1

ε

∫
vFε dv = 0, t > 0, x ∈ T3, (13)

– the local conservation of momentum with a symmetric nonnegative matrix-val-
ued defect measure mε ∈ L∞(R+,M(T3,M3(R))) (coming from the approx-
imation scheme of the Boltzmann equation)

∂t

∫
vFε dv + ∇x · 1

ε

∫
v ⊗ vFε dv + ∇x ·mε = 0, t > 0, x ∈ T3, (14)

– the global conservation of energy with the defect measure mε∫∫
|v|2Fε(t) dx dv + ε

∫∫
tr(mε)(t) =

∫∫
|v|2F in

ε dx dv, t > 0, (15)

– and, by (11) and (15), the relative entropy inequality with the defect measure
mε

H(Fε(t)|M)+ ε
∫

tr(mε)(t)+ 1

εq+1

∫ t

0

∫∫
D(Fε)(s) ds dx dv � H(F in

ε |M)
(16)

for all t > 0, where the dissipation term D(Fε) is defined by (12).
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1.2. The incompressible Euler equations

The Euler equations govern the velocity field u ≡ u(t, x) of a non-viscous
incompressible fluid. In the three-dimensional case, they are

∇x · u = 0, t > 0, x ∈ T3,

∂tu+ u · ∇xu+ ∇xp = 0, t > 0, x ∈ T3. (17)

The first equality in (17) states that the fluid motion preserves the volume, and is re-
ferred to as the incompressibility condition; the second equality expresses Newton’s
law of dynamics for any infinitesimal volume of fluid.

Consider the function space

Hs = {u ∈ Hs(T3;R3) | ∇x · u = 0}.
Let uin ∈ Hs , and consider the Cauchy problem for (17) with initial data

u(0, x) = uin(x), x ∈ T3. (18)

We recall that the only existence theorem that is known to hold for the Cauchy
problem (17), (18) is the following [5].

Theorem 2 (Beale-Kato-Majda). For each uin ∈ Hs
(
s > 1+ 3

2

)
, there exist a

unique T ∗ ∈]0,+∞] and a unique u ∈ L∞loc([0, T ∗[,Hs) solution of (17), (18)
which satisfies in addition∫ T ∗

0
‖∇x ∧ u(t, x)‖L∞(T3) dt = +∞. (19)

As the global existence of solutions of (17), (18) (even of weak solutions) is
not known, Lions has proposed the following very weak notion of solution [16]:

A dissipative solution of (17), (18) on [0, T ) is a function

u ∈ L∞([0, T ), L2(T3)) ∩ C0([0, T ), w − L2(T3))

satisfying ∇x · u = 0, u(0, .) = uin in the sense of distributions and such that∫
|w − u|2(t, x) dx

�
∫
|win − uin|2(x) dx exp

(∫ t

0
2‖X(w)(τ)‖∞ dτ

)

+ 2
∫ t

0
exp

(∫ t

τ

2‖X(w)(s)‖∞ ds

)∫
E(w).(w − u)(τ, x) dx dτ

(20)

for all t ∈ [0, T ) and all w ∈ C0([0, T ] × T3) satisfying

∇x · w = 0,

X(w) = 1

2
(∇xw + (∇xw)T ) ∈ L1([0, T ], L∞(T3)),

E(w) = ∂tw + w · ∇xw ∈ L1([0, T ], L2(T3)).
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Such solutions always exist, they are not weak solutions of (17), (18) in con-
servative form, but they coincide with the unique smooth solution with the same
initial data as long as the latter does exist.

Proposition 1 (Lions). If there exists u ∈ C([0, T ], L2(T3)) solution of (17), (18)
on [0, T ] × T3 such that X(u) ∈ L1([0, T ], L∞(T3)) and E(u) ∈ L1([0, T ],
L2(T3)), then any dissipative solution u of (17), (18) is equal to u on [0, T ] ×T3.

Remark. In the two-dimensional case, the vorticity ω = ∇x ∧u (which is a scalar)
satisfies

∂tω + u · ∇xω = 0

so that Theorem 2 provides a global existence result for regular initial data [20].
Moreover, the comparison principle stated in Proposition 1 provides uniqueness in
the class of dissipative solutions. Nevertheless the two-dimensional case will not
be considered in the limiting process, since the Boltzmann equation seems not to
be relevant, and the Caflisch estimates – which are a crucial argument in the proof
– are not established in this case.

1.3. Main results

The incompressible Euler limit of the Boltzmann equation considers fluctu-
ations of the number density about an absolute Maxwellian. We shall need the
linearized collision operator

Lg =
∫∫

(g + g1 − g′ − g′1)b(v − v1, σ ) dσM1 dv1; (21)

For all interaction potentials considered in the present paper, it was proved by Grad
[15] that L is a possibly unbounded, self-adjoint Fredholm operator on L2(Mdv)

with the null space

Ker L = span{1, v1, v2, v3, |v|2}. (22)

In particular, each component of the tensor v⊗2 − 1
3 |v|2Id is orthogonal to KerL,

which guarantees the existence and uniqueness of a tensor A such that

LA = v⊗2 − 1
3 |v|2Id, A⊥Ker L. (23)

For the sake of simplicity we will assume from now on that the Boltzmann collision
kernel b satisfies∫∫∫

MM1(A+ A1 − A′ − A′1)2b(v − v1, σ ) dv1 dv dσ < +∞ (H2)

which is guaranteed for all hard cut-off potentials in the sense of Grad [15], and

1

kb
� b(z, σ ), z ∈ R3, ω ∈ S2, for some kb > 0. (H3)
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Theorem 3 (Dissipative Euler Limit). Let b satisfy (H0)–(H3), and let F in
ε be a

family of nonnegative, measurable functions on T3 × R3 such that there exists a
divergence-free vector field uin ∈ L2(T3) for which

1

ε2H(F
in
ε |M1,εuin,1)→ 0 as ε→ 0. (24)

Let Fε be a family of renormalized solutions to (5). Then,

(
1

ε

∫
vFε dv

)
ε>0

is relatively compact in w-L∞(R+;L1(T3))

and each of its limit points as ε→ 0 is a dissipative solution of (17), (18).

If the limiting initial data uin is smooth and such that (17), (18) has a (unique)
smooth solution u, the stability result above can be strengthened: the convenient
notion of convergence has been introduced in [3].

Definition 1. A family gε ≡ gε(x, v) of L1
loc(Mdv dx) converges to g ≡ g(x, v)

entropically as ε→ 0 if

– for all ε, 1+ εgε � 0 a.e. on T3 × R3,
– gε ⇀ g in w-L1

loc(Mdv dx) as ε→ 0,
– and

1

ε2H(M(1+ εgε)|M)→
1

2

∫∫
g2Mdv dx

as ε→ 0.

Theorem 4 (Strong Euler Limit). Under the same assumptions as in Theorem 3,
assume that

1

ε

F in
ε (x, v)−M(v)

M(v)
→ uin(x) · v

entropically as ε→ 0, where uin is a smooth divergence-free vector field such that
the Euler equations (17), (18) have a strong solution u on [0, T ]. Then, for almost
every t ∈ [0, T ],

1

ε

Fε(t, x, v)−M(v)
M(v)

→ u(t, x) · v

entropically as ε→ 0.

This theorem follows immediatly from Theorem 3 by the strong-weak stability
argument stated in Proposition 1.
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Remark. Both convergence results hold only for “well-prepared" initial data in the
sense of (24), i.e., for data satisfying the incompressibility condition and having no
density or temperature fluctuation. If these conditions are not satisfied, we expect
formally that high-frequency acoustic oscillations occur, which do not modify the
weak limit but cannot be taken into account in the framework of our study. Indeed,
acoustic oscillations introduce a coupling between the density, the momentum and
the temperature, for which no local conservation holds.

The second restriction in our convergence results is about collision kernels
which are supposed to be bounded from below (satisfying (H3)): for such collision
kernels, the entropy dissipation gives a good control on the integrand |FεFε1 −
F ′εF ′ε1|. This assumption can be relaxed if we keep some control on the size of the
sets where b is close to 0. For instance, Theorems 1.3 and 1.4 can be extended if
b(z, σ ) � C|z|γ for some γ > 0, and in particular for hard spheres (b(z, σ ) = |z|).

2. Sketch of the proof

The main results of this paper are obtained by a classical energy method. The
principle is to modulate a Lyapunov functional of the system by test functions, and
to obtain a stability inequality of the same type as (20). The idea to use the relative
entropy for this type of problem comes from the notion of entropic convergence
defined in [3] and from the method used byYau [19] to derive hydrodynamic limits
from the Ginzburg-Landau models.

The first step consists in computing the variation in time of the relative entropy
H(Fε|M(1,εw,1))(t) where w is any divergence-free test function.

Theorem 5. Considerw ∈ C1([0, T ]×T3) satisfying∇x·w = 0. Define the family
Fε as in Theorem 3. Then,

1

ε2H(Fε|M(1,εw,1))(t)− 1

ε2H(F
in
ε |M(1,εwin,1))+

1

ε

∫
tr(mε)(t)

� −1

ε

∫ t

0

∫
E(w).

∫
(v − εw)Fε(s, x, v) dx dv ds

−
∫ t

0

∫
X(w) : 1

ε2

∫
(v − εw)⊗2Fε(s, x, v) dv dx ds

−
∫ t

0

∫
X(w) : 1

ε
mε(s, x) ds

Proof. The relative entropy inequality (16) implies

H(Fε(t)|M)+ ε
∫

tr (mε)(t) � H(F in
ε |M).

It is easy to check that

H(Fε|M(1,εw,1))(t) = H(Fε(t)|M)+ 1
2

∫∫
(ε2w2 − 2v · εw)Fε(t, x, v) dx dv
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from which we deduce that

1

ε2H(Fε|M(1,εw,1))(t)− 1

ε2H(F
in
ε |M(1,εwin,1))+

1

ε

∫
tr(mε)(t)

� 1
2ε2

∫ t
0 ds

d
ds

∫∫
(ε2w2 − 2v · εw)Fε(s, x, v) dx dv

(25)

Using the local conservation laws (13), (14) to compute the time derivative in (25)
leads to

1

2

d

dt

∫∫
Fε(t, x, v)(εw

2 − 2v · w) dx dv

=
∫∫

∂tw · (εw − v)Fε(t, x, v) dx dv
+
∫ (

ε

2
w2∂t

∫
Fε(t, x, v) dv − w · ∂t

∫
Fε(t, x, v)v dv

)
dx

=
∫
∂tw ·

∫
(εw − v)Fε(t, x, v) dv dx −

∫
1

2
w2∇x ·

∫
Fε(t, x, v) vdv dx

+
∫
w · (∇x ·mε)(t, x)+

∫
1

ε
w ·

(
∇x ·

∫
Fε(t, x, v)v ⊗ v dv

)
dx

=
∫∫

∂tw · (εw − v)Fε(t, x, v)dx dv +
∫∫

(v · ∇x)w · wFε(t, x, v) dv dx
+
∫
w · (∇x ·mε)(t, x)− 1

ε

∫∫
(v · ∇x)w · vFε(t, x, v) dv dx

=
∫∫

(∂tw + (w · ∇x)w) · (εw − v)Fε(t, x, v)dx dv +
∫
w · (∇x ·mε)(t, x)

−1

ε

∫∫
((v − εw) · ∇x)w · (v − εw)Fε(t, x, v) dv dx.

(26)

As mε is a symmetric matrix-valued measure,∫
w.(∇x ·mε) = −

∫
∇xw : mε = −

∫
X(w) : mε, (27)

and ∫∫
((v − εw) · ∇x)w · (v − εw)Fε(t, x, v) dv dx

=
∫∫

∇xw : (v − εw)⊗2Fε(t, x, v) dv dx

=
∫∫

X(w) : (v − εw)⊗2Fε(t, x, v) dv dx. (28)

Replacing the three formulas (26), (27) and (28) in (25) gives the expected in-
equality. ��

The second step consists in establishing an inequality of the same type as (20).
In previous works [6, 17], the main arguments are approximatively the following:∥∥∥∥1

ε

∫
F̃εv dv − w

∥∥∥∥
2

L2(T3)

� 1

ε2H(Fε|M(1,εw,1)) (29)
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where F̃ε designates some convenient truncation of Fε, and∥∥∥∥X(w) : 1

ε2

∫
(v − εw)⊗2Fε(s, x, v) dv

∥∥∥∥
L1(T3)

� ‖X(w)‖L∞(T3)

∥∥∥∥1

ε

∫
F̃εv dv − w

∥∥∥∥
2

L2(T3)

+ rε , (30)

where rε converges to 0 in an appropriate sense. This last property comes from the
assumption on large velocities which ensures that

1
ε2 (Fε − F̃ε)(1+ |v|2) is equi-integrable in L1([0, T ] × T3 × R3).

We first remark that there is little hope of establishing such a claim: with this type
of scaling, we are not able to obtain a priori compactness with respect to space
variables. In particular, in the limit case, we do not have compactness on the average
velocity, which is why we do not have global weak solutions.

The key idea here is to estimate the remainder (Fε− F̃ε) in terms of the relative
entropy H(Fε|M(1,εw,1)) and of the entropy dissipation. More precisely, we will
not use here the lower bound (29) which looses any control on large tails in the
distribution Fε. The crucial argument in our proof is adapted from a similar work
on the BGK model [18], it consists in establishing a Gronwall inequality for the
relative entropy, rather than for the relative mean velocity. Indeed we replace the
estimate (30) by the following

Theorem 6. Consider T > 0 and w ∈ C1([0, T ] × T3) satisfying ∇x · w = 0.
Define the family Fε as in Theorem 3. Then, there exists a nonnegative constant C
such that∫ t

0

∫
X(w) : 1

ε2

∫
(v − εw)⊗2Fε(s, x, v) dv dx ds

� C

ε2

∫ t

0
‖X(w)‖L∞(T3)H(Fε|M(1,εw,1))(s)ds + o(1) as ε→ 0.

The proof of this estimate will be given in detail in Section 4. It relies on
proper decompositions of (Fε −M(1,εw,1)) given in Section 3 and on the fact that
ε−2B(Fε, Fε)#′(Fε) converges to 0 for all # ∈ C1(R+) satisfying (8).

The last step in the convergence proof is to deduce (20) from the Gronwall
inequality implied by Theorems 5 and 6

1

ε2H(Fε|M(1,εw,1))(t)− 1

ε2H(F
in
ε |M(1,εwin,1))+

1

ε

∫
tr(mε)(t) dx

� −1

ε

∫ t

0

∫∫
E(w).(v − εw)Fε(s, x, v) dx dv ds

+ C

∫ t

0
‖X(w)‖L∞(T3)

(
1

ε2H(Fε|M(1,εw,1))(s)+ 1

ε

∫
tr (mε)(s)

)
ds+o(1).

(31)

Then we have to take weak limits (up to extraction of a subsequence ε→ 0)∫
Fε dv→ 1,

1

ε

∫
Fεv dv ⇀ u,
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and to prove that

∇x · u = 0, ‖u− w‖2
L2(T3)

� lim inf
ε→0

(
1

ε2H(Fε|M(1,εw,1))

)
.

This last step will be detailed in Section 5.

3. A priori estimates

The goal of this section is to establish the following

Theorem 7. Let γ : R+ → [0, 1] be a C∞ function supported in [ 1
2 ,

3
2 ] such

that γ ([ 3
4 ,

5
4 ]) = {1}. Consider a test divergence-free vector field w as in Theorem

6. Define the family Fε as in Theorem 3. Then, there exists C > 0 such that the
following bounds hold:∥∥∥∥ (Fε −M(1,εw,1))

2

ε2M(1,εw,1)
γ 2
(

Fε

M(1,εw,1)

)
(1+ v2)

∥∥∥∥
L1(dv dx)

� C

ε2H(Fε/M(1,εw,1))+ rε, (32)

∥∥∥∥ (Fε −M(1,εw,1))

ε2 (1− γ )
(

Fε

M(1,εw,1)

)
(1+ v2)

∥∥∥∥
L1(dv dx)

� C

ε2H(Fε/M(1,εw,1))+ rε, (33)

where rε converges to 0 in L1([0, T ]).
This theorem provides a decomposition of the fluctuation 1

ε
(Fε − M(1,εw,1))

into two parts: the first one is controlled in L2 norm, while the second one is of
order ε in L1 norm, with two moments in v. This decomposition is a variant of
the so-called “Flat-Sharp decomposition" introduced in [3] and used in almost all
works concerning the hydrodynamic limits of the Boltzmann equation (for example
[6, 13, 17]). The main difference is that we consider here fluctuations with respect
to the local Maxwellian M(1,εw,1) instead of the global Maxwellian M: this kind
of estimate, already used in [18] and [13] in the case of the BGK model, allows
us to establish the inequality of Gronwall’s type (31). The second particularity of
this result is the control on large velocities: we are able to obtain estimates with
two moments in v. This comes from dissipation estimates, and from regularizing
properties of the gain part of the collision operator established by Caflisch [7].
This method has already been used successfully in [14] to obtain estimates for the
Boltzmann equation with the Navier-Stokes scaling.

The proof of Theorem 7 is rather technical and will be divided into several
steps. We start with the standard decomposition associated with the entropy bound
H(f |g): it consists in splitting (f −g) into two parts depending on the size of f/g.
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Lemma 1 (Usual decomposition). Consider a test divergence-free vector field w
as in Theorem 6. Define the family Fε as in Theorem 3. Then, if γ is a trunca-
tion function as in Theorem 7, there exists C > 0 such that the following bounds
hold: ∥∥∥∥∥ (Fε −M(1,εw,1))

ε
√
M(1,εw,1)

γ

(
Fε

M(1,εw,1)

)∥∥∥∥∥
2

L2(dv dx)

� C

ε2H(Fε/M(1,εw,1)),

∥∥∥∥Fε +M(1,εw,1)

ε2 (1− γ )
(

Fε

M(1,εw,1)

)∥∥∥∥
L1(dv dx)

� C

ε2H(Fε/M(1,εw,1)). (34)

Proof. From the elementary inequalities

z2 � Ch(z) for |z| ≤ 1
2 , 1+ |z| � Ch(z) for z ∈ [−1,− 1

4 ] ∪ [ 1
4 ,+∞[,

(35)

which hold for some constant C > 0, and

(2+ z)(1− γ (1+ z)) � (2× 4|z| + |z|)(1− γ (1+ z))
� 9|z|(1− γ (1+ z)) for z > −1, (36)

we deduce∥∥∥∥∥ (Fε −M(1,εw,1))

ε
√
M(1,εw,1)

γ

(
Fε

M(1,εw,1)

)∥∥∥∥∥
2

L2(dv dx)

�
∥∥∥∥∥M(1,εw,1)

ε2

(
Fε

M(1,εw,1)
− 1

)2

γ 2
(

Fε

M(1,εw,1)

)∥∥∥∥∥
L1(dv dx)

� C

ε2 ‖γ ‖2∞H(Fε/M(1,εw,1)),

and ∥∥∥∥Fε +M(1,εw,1)

ε2 (1− γ )
(

Fε

M(1,εw,1)

)∥∥∥∥
L1(dv dx)

� 9

∥∥∥∥M(1,εw,1)

ε2

∣∣∣∣ Fε

M(1,εw,1)
− 1

∣∣∣∣ (1− γ )
(

Fε

M(1,εw,1)

)∥∥∥∥
L1(dv dx)

� 9C

ε2 ‖1− γ ‖∞H(Fε/M(1,εw,1)),

which are the expected estimates. ��
In order to establish Theorem 7, the main difficulty is in adding a |v|2 weight

in the estimates in Lemma 1. It will be obtained essentially by using the decompo-
sition

Fε −M(1,εw,1) =
(
Fε −A+(Fε, Fε)

)+A+(Fε −M(1,εw,1), Fε +M(1,εw,1)),

(37)
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where

A+(f, g) = 1

8π

∫∫
(f ′1g′ + f ′g′1) dv1dσ. (38)

The first term is then controlled by the entropy dissipation, while the second term is
a little more regular with respect to v than (Fε−M(1,εw,1)) by Caflisch estimates
[7] ∥∥∥M−1/2 A+ (√Mg,M) (1+ |v|3/2)

∥∥∥
L∞v

� C‖g‖L2
v
,∥∥∥M−1/2 A+(

√
Mg,M)(1+ |v|2)

∥∥∥
L∞v

� C‖g‖L∞v ,

from which we deduce that∥∥∥M−1/2
(1,εw,1) A+(

√
M(1,εw,1) g,M(1,εw,1))(1+ |v|3/2)

∥∥∥
L∞v

�
∥∥∥M−1/2 A+(

√
M g(.+ εw),M)(1+ |v + εw|3/2)

∥∥∥
L∞v

� C‖w‖∞ ‖g(.+ εw)‖L2
v

� C‖w‖∞ ‖g‖L2
v
,

∥∥∥M−1/2
(1,εw,1) A+(

√
M(1,εw,1) g,M(1,εw,1))(1+ |v|2)

∥∥∥
L∞v

�
∥∥∥M−1/2 A+(

√
M g(.+ εw),M)(1+ |v + εw|2)

∥∥∥
L∞v

� C‖w‖∞ ‖g(.+ εw)‖L∞v � C‖w‖∞ ‖g‖L∞v ,

(39)

because ε ∈ [0, 1] and w ∈ C1([0, T ] × T3) ⊂ L∞([0, T ] × T3).
Actually this decomposition will give good estimates under two conditions.

The first one is linked to the fact that the operator A+ is quadratic: thus, in order to
define correctly all the terms in the decomposition, we will need a L∞t,x bound on∫
M(1,εw,1)h

(
(Fε/M(1,εw,1)) − 1

)
dv. The second condition is linked to the form

of the entropy dissipation which gives a control in L logL and not in L2: then it
provides only a control for moderate velocities. Large values of the local relative
entropy

∫
M(1,εw,1)h

(
(Fε/M(1,εw,1)) − 1

)
dv and very large velocities have to be

treated separately. This is the substance of the two following lemmas.

Lemma 2 (Macroscopic truncation). Consider a test divergence-free vector field
w as in Theorem 6. Define the family Fε as in Theorem 3. Denote by χε ≡ χε(t, x)

the indicator function of the set{
(t, x) ∈ [0, T ] × T3 |

∫
M(1,εw,1)h

(
Fε

M(1,εw,1)
− 1

)
dv � 1

}
.

Then, the following estimate holds:∥∥∥∥(1− χε)Fε +M(1,εw,1)

ε2 (1+ |v|2)
∥∥∥∥
L1(dv dx)

� C

ε2H(Fε/M(1,εw,1)) (40)

for all ε ∈ [0, 1] and for some constant C > 0 depending only on ‖w‖∞.
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Proof. ByYoung’s inequality (91) withp = (1+|v|2)/8 and z = (Fε/M(1,εw,1))−
1, and (89),

1

ε2 |Fε −M(1,εw,1)|(1+ |v|2)

� 8

ε2M(1,εw,1)

(
h

(
Fε

M(1,εw,1)
− 1

)
+ e(1+|v|2)/8

)
. (41)

In order to estimate the second term in the right-hand side of (41), we need the
following decay estimate

M(1,εw,1) exp
( 1

8 (1+ |v|2)) = (2π)−3/2 exp(− 1
2 |v − εw|2) exp

( 1
8 (1+ |v|2))

� (2π)−3/2 exp(− 1
4 |v|2+ 1

2 |εw|2) exp
( 1

8+ 1
8 |v|2

)
� C‖w‖∞ exp(− 1

8 |v|2) (42)

Then, by (41) and (42),

1

ε2

∫
(Fε +M(1,εw,1))(1+ |v|2) dv

� 1

ε2

∫ (|Fε −M(1,εw,1)| + 2M(1,εw,1)
)
(1+ |v|2) dv

� 8

ε2

∫
M(1,εw,1)h

(
Fε

M(1,εw,1)
− 1

)
dv

+ 1

ε2

∫
M(1,εw,1)

(
8e(1+|v|2)/8 + 2(1+ |v|2)) dv

� 8

ε2

∫
M(1,εw,1)h

(
Fε

M(1,εw,1)
− 1

)
dv + 1

ε2C‖w‖∞ (43)

for some C‖w‖∞ > 0 depending only on ‖w‖∞. By the definition of χε,

1− χε
ε2 � 1− χε

ε2

∫
M(1,εw,1)h

(
Fε/M(1,εw,1) − 1

)
dv. (44)

Then, multiply (43) by (1− χε), use (44), and integrate with respect to x to obtain
the expected estimate. ��
Lemma 3 (Control of very large velocities). Consider a test divergence-free vec-
tor fieldw as in Theorem 6. Define the familyFε as in Theorem 3. Then, the following
estimate holds ∥∥∥∥1|v|2�100| log ε|

Fε +M(1,εw,1)

ε2 (1+ |v|2)
∥∥∥∥
L1( dv dx)

� C

ε2H(Fε/M(1,εw,1))+ o(1) (45)

as ε→ 0, for some C > 0 depending on ‖w‖∞.
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Proof. By (41) and (42), we have

1

ε2

∫
(Fε +M(1,εw,1))(1+ |v|2)1|v|2�100| log ε| dv

� 1

ε2

∫ (|Fε −M(1,εw,1)| + 2M(1,εw,1)
)
(1+ |v|2)1|v|2�100| log ε| dv

� 8

ε2

∫
M(1,εw,1)h

(
Fε

M(1,εw,1)
− 1

)
dv

+ 1

ε2

∫
M(1,εw,1)

(
8e(1+|v|2)/8 + 2(1+ |v|2))1|v|2�100| log ε| dv

� 8

ε2

∫
M(1,εw,1)h

(
Fε

M(1,εw,1)
− 1

)
dv

+ 1

ε2C‖w‖∞
∫

exp

(
−1

8
|v|2

)
1|v|2�100| log ε| dv (46)

for some C‖w‖∞ > 0 depending on ‖w‖∞. Then, check that∫
exp

(
−1

8
|v|2

)
1|v|2�100| log ε| dv = 4π

∫ +∞
√

100| log ε|
exp(−1

8
r2)r2dr

� Cε100/8| log ε|1/2

for some C > 0, and integrate (46) on T3 to get the expected estimate. ��
Equipped with these preliminary results, we can now restrict our attention to the

situation where we can use decomposition (37) to obtain further estimates on theL1

part of (Fε −M(1,εw,1)). We start by giving the precise form of the decomposition
we will use.

Lemma 4 (Decomposition by A+). Consider a test divergence-free vector field w
as in Theorem 6. Define the family Fε as in Theorem 3. Then, if γ is a trunca-
tion function as in Theorem 7, the following estimate holds for some nonnegative
constant C:

1

ε
|Fε −Mε|

� CA+(
√
Mεgε,Mε)+ C

√
1+ Fε

Mε

A+(
√
Mεkε,Mε)

+ Cε3A+(k2
ε , k

2
ε )+ Cε(q+1)/2

(
D(Fε)

εq+3 + Fε
)

+ C(Fε +Mε)

(
1

ε2

∫
Mεh

(
Fε

Mε

− 1

)
dv

)1/2

, (47)

where Mε is an abbreviation for M(1,εw,1), and gε and kε are defined by

gε = |Fε −Mε|
ε
√
Mε

γ

(
Fε

Mε

)
, kε =

(
Fε +Mε

ε2 (1− γ )
(
Fε

Mε

))1/2

. (48)
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Proof. Define F̃ε by

F̃ε = Fεγ

(
Fε

Mε

)
+Mε(1− γ )

(
Fε

Mε

)
,

and R̃ε =
∫
F̃ε dv. By the definition of γ ,

1
2Mε � F̃ε � 3

2Mε,
1
2 � R̃ε � 3

2 . (49)

A slighty modified version of (37) gives

1
ε
|Fε −Mε| � 1

ε

∣∣∣Fε − A+(F̃ε,F̃ε)
R̃ε

∣∣∣+ 1
ε

∣∣∣A+(F̃ε,F̃ε)
R̃ε

−A+(Mε,Mε)

∣∣∣
= J1 + J2.

Then J2 can be decomposed into two terms as follows:

J2 � 1

R̃ε

∣∣∣∣∣A+
(
F̃ε −Mε

ε
, F̃ε +Mε

)∣∣∣∣∣+ 1

R̃ε

∣∣∣∣∣ R̃ε − 1

ε

∣∣∣∣∣Mε = J 1
2 + J 2

2 .

From (49) we deduce that

J 1
2 � 5A+

( |Fε −Mε|
ε

γ

(
Fε

Mε

)
,Mε

)
� 5A+(

√
Mεgε,Mε). (50)

On the other hand, by (35), there exists a nonnegative constant C such that

|R̃ε − 1| =
∣∣∣∣
∫
(Fε −Mε)γ

(
Fε

Mε

)
dv

∣∣∣∣
�
(∫

Mε dv

)1/2 (∫
(Fε −Mε)

2

Mε

γ 2
(
Fε

Mε

)
dv

)1/2

� C‖γ ‖∞
(∫

Mεh

(
Fε

Mε

− 1

)
dv

)1/2

,

from which we deduce that

J 2
2 � 2C‖γ ‖∞Mε

(
1

ε2

∫
Mεh

(
Fε

Mε

− 1

)
dv

)1/2

. (51)

As we have replaced Fε by its truncation F̃ε inside the bilinear form A+, J1
cannot be directly estimated by the entropy dissipation: we have to decompose it
into several terms using the basic identity

F̃ε = γεFε + (1− γε)Mε,
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where γε = γ (Fε/Mε). If we denote respectively by γε1, γ ′ε and γ ′ε1 the values of
γε at points v1, v′ and v′1,

J1 = 1

εR̃ε

∣∣∣∣Fε
∫
F̃ε1 dv1 − 1

4π

∫∫
F̃ ′εF̃ ′ε1 dv1dσ

∣∣∣∣
= 1

4πεR̃ε

∣∣∣∣
∫∫

(FεF̃ε1 − F̃ ′εF̃ ′ε1) dv1dσ

∣∣∣∣
� 1

4πεR̃ε

∫∫
(1− γε1)|FεMε1 − F̃ ′εF̃ ′ε1| dv1dσ

+ 1

4πεR̃ε

∫∫
γε1(1− γ ′ε)(1− γ ′ε1)|FεFε1 −M ′

εM
′
ε1| dv1dσ

+ 1

4πεR̃ε

∫∫
(1− γ ′ε)γε1γ ′ε1|FεFε1 −M ′

εF
′
ε1| dv1dσ

+ 1

4πεR̃ε

∫∫
(1− γ ′ε1)γε1γ ′ε|FεFε1 − F ′εM ′

ε1| dv1dσ

+ 1

4πεR̃ε

∫∫
γ ′εγε1γ ′ε1|FεFε1 − F ′εF ′ε1| dv1dσ

= J 1
1 + J 2

1 + J 3
1 + J 4

1 + J 5
1 .

By (49) and the identity M ′
εM

′
ε1 = MεMε1,

J 1
1 � 1

2πε

∫∫
(1− γε1)(FεMε1 + F̃ ′εF̃ ′ε1) dv1dσ

� 1

2πε

∫∫
(1− γε1)

(
FεMε1 + 9

4M
′
εM

′
ε1

)
dv1dσ

� 9

8π
(Fε +Mε)

∫∫
(1− γε1)

ε
Mε1 dv1dσ.

As the support of (1 − γ ) is a subset of [0, 3
4 ] ∪ [ 5

4 ,+∞[, by (35), there exists a
nonnegative constant C such that

∫
Mε(1− γ )

(
Fε

Mε

)
dv

� ‖1− γ ‖1/2∞
(∫

Mε(1− γ )
(
Fε

Mε

)
dv

)1/2 (∫
Mε dv

)1/2

� ‖1− γ ‖∞
(
C

∫
Mεh

(
Fε

Mε

− 1

)
dv

)1/2

.

Since ‖1− γ ‖∞ = 1,

J 1
1 � C(Fε +Mε)

(
1

ε2

∫
Mεh

(
Fε

Mε

− 1

)
dv

)1/2

. (52)
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In order to estimate the other terms in J1, we will combine the control on the
entropy dissipation with bounds on kε. For instance, by (49),

J 2
1 � 1

2πε

∫∫
γε1(1− γ ′ε)(1− γ ′ε1)|FεFε1 − F ′εF ′ε1| dv1dσ

+ 1

2πε

∫∫
γε1(1− γ ′ε)(1− γ ′ε1)|F ′εF ′ε1 −M ′

εM
′
ε1| dv1dσ

� 1

2πε

∫∫
γε1(1− γ ′ε)(1− γ ′ε1)|FεFε1 − F ′εF ′ε1| dv1dσ

+ ‖γ ‖∞
2πε

∫∫
(1− γ ′ε)(1− γ ′ε1)(F ′ε +M ′

ε)(F
′
ε1 +M ′

ε1) dv1dσ,

which, coupled with the definitions (38) and (48) of A+ and kε, and the assumption
γ (R+) ⊂ [0, 1], implies

J 2
1 � 1

2πε

∫∫
γε1|FεFε1 − F ′εF ′ε1| dv1dσ + 2ε3A+(k2

ε , k
2
ε ). (53)

Elementary computations give

γε1γ
′
ε1(1− γ ′ε)|FεFε1 −M ′

εF
′
ε1|

� γε1γ
′
ε1(1− γ ′ε) inf

(|FεFε1 − F ′εF ′ε1|+|F ′εF ′ε1 −M ′
εF

′
ε1|, |FεFε1 −M ′

εF
′
ε1|
)

� γε1γ
′
ε1(1− γ ′ε) inf

(|F ′εF ′ε1 −M ′
εF

′
ε1|, |FεFε1 −M ′

εF
′
ε1|
)

+ γε1γ
′
ε1(1− γ ′ε)|FεFε1 − F ′εF ′ε1|

� γε1γ
′
ε1(1− γ ′ε)|F ′εF ′ε1 −M ′

εF
′
ε1|1/2|FεFε1 −M ′

εF
′
ε1|1/2

+ γε1|FεFε1 − F ′εF ′ε1|
� γε1γ

′
ε1(1− γ ′ε)(F ′εF ′ε1 +M ′

εF
′
ε1)

1/2(FεFε1 +M ′
εF

′
ε1)

1/2

+ γε1|FεFε1 − F ′εF ′ε1|
� (1−γ ′ε)(F ′εF ′ε1γ ′ε1γε1 +M ′

εF
′
ε1γ

′
ε1γε1)

1/2(FεFε1γε1γ
′
ε1 +M ′

εF
′
ε1γ

′
ε1γε1)

1/2

+ γε1|FεFε1 − F ′εF ′ε1|.

Because of the properties of the support of γ ,

γεFε � 3
2Mε.
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Then, by the identity M ′
εM

′
ε1 = MεMε1 and the definition (48) of kε,

γε1γ
′
ε1(1− γ ′ε)|FεFε1 −M ′

εF
′
ε1|

�(1− γ ′ε)
( 3

2F
′
εM

′
ε1 + 3

2M
′
εM

′
ε1

)1/2 ( 3
2FεMε1 + 3

2M
′
εM

′
ε1

)1/2
+ γε1|FεFε1 − F ′εF ′ε1|

� 3

2
(1− γ ′ε)(F ′εM ′

ε1 +M ′
εM

′
ε1)

1/2(FεMε1 +MεMε1)
1/2

+ γε1|FεFε1 − F ′εF ′ε1|
� 3

2
(1− γ ′ε)(M ′

εM
′
ε1MεMε1)

1/2
(
F ′ε
M ′
ε

+ 1

)1/2 (
Fε

Mε

+ 1

)1/2

+ γε1|FεFε1 − F ′εF ′ε1|
� 3

2
(1− γ ′ε)1/2M ′

εM
′
ε1(1− γ ′ε)1/2

(
F ′ε
M ′
ε

+ 1

)1/2 (
Fε

Mε

+ 1

)1/2

+ γε1|FεFε1 − F ′εF ′ε1|
� 3

2
(M ′

ε)
1/2‖1− γ ‖1/2∞ εk′εM ′

ε1

(
Fε

Mε

+ 1

)1/2

+ γε1|FεFε1 − F ′εF ′ε1|,

(54)

and in the same way

γε1γ
′
ε1(1− γ ′ε1)|FεFε1 − F ′εM ′

ε1|
� 3

2 (M
′
ε1)

1/2‖1− γ ‖1/2∞ εk′ε1M ′
ε

(
Fε
Mε

+ 1
)1/2

+ γε1|FεFε1 − F ′εF ′ε1|.
(55)

Then, by (54), (55) and the definition of A+,

J 3
1 + J 4

1 � 1

πε

∫∫
γε1|FεFε1 − F ′εF ′ε1| dv1dσ + 6

√
1+ Fε

Mε

A+(M1/2
ε kε,Mε).

(56)

It remains to estimate the dissipation terms. ApplyYoung’s inequality (91) with
z = (F ′εF ′ε1 − FεFε1)/FεFε1, p = 1, and η = ε(q+3)/2 and use (H3) to get

∫∫
γε1|FεFε1 − F ′εF ′ε1| dv1dσ

� 4kb
ε(q+3)/2

D(Fε)+ ε(q+3)/2h∗(1)Fε
∫∫

Fε1γε1 dv1dσ.

Thus

1

ε

∫∫
γε1|FεFε1 − F ′εF ′ε1| dv1dσ � ε(q+1)/2

(
4kb

D(Fε)

εq+3 + 6πFε

)
. (57)

Combining (50)–(53), and (56),(57) leads to the decomposition (47). ��
Applying Caflisch estimates [7] (see also Appendix A) to the previous decom-

position leads to
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Lemma 5 (Decay estimates). Consider a test divergence-free vector field w as in
Theorem 6. Define the family Fε as in Theorem 3. Then, if γ is a truncation function
as in Theorem 7, there exists C > 0 such that the following bounds hold:∥∥∥∥ (Fε −M(1,εw,1))

2

ε2M(1,εw,1)
γ 2
(

Fε

M(1,εw,1)

)
|v|2

∥∥∥∥
L1(dv dx)

� C

ε2H(Fε/M(1,εw,1))+ rε
(58)

∥∥∥∥Fε +M(1,εw,1)

ε2 (1− γ )
(

Fε

M(1,εw,1)

)
|v|2

∥∥∥∥
L1(dv dx)

� C

ε2H(Fε/M(1,εw,1))+ rε
(59)

where rε converges to 0 in L1([0, T ]) as ε→ 0.

Proof. Lemma 5 gives bounds on the second moments of the functions g2
ε and k2

ε

defined by (48).
The first step of the proof consists in applying decomposition (47) to estimate

both functions. Recall that the definition of γ , coupled with the elementary inequal-
ity (36), implies

1
2Mεγε � Fεγε � 3

2Mεγε thus |gεγε| �
√
Mε

2ε and
(

1+ Fε
Mε

)
γε � 5

2 ,

(Fε +Mε)(1− γε) � 9|Fε −Mε|(1− γε) � 9|Fε −Mε|(1− γε)1/2.
(60)

Then, multiplying (47) by |Fε−Mε |
εMε

γ 2
ε = gε√

Mε
γε leads to the estimate

g2
ε � CM−1/2

ε A+(
√
Mεgε,Mε)gε +

√
5

2
CM−1/2

ε A+(
√
Mεkε,Mε)gε

+ 1

2ε

(
Cε3A+(k2

ε , k
2
ε )+ Cε(q+1)/2

(
D(Fε)

εq+3 + Fε
))

+ 5

2
CM1/2

ε gε

(
1

ε2

∫
Mεh

(
Fε

Mε

− 1

)
dv

)1/2

(61)

for some C > 0, which can be rewritten

g2
ε � Xgε + Y,

with

X = CM−1/2
ε A+ (√Mεgε,Mε

)
+ C

√
5

2
M−1/2
ε A+ (√Mεkε,Mε

)
+ 5

2
CM1/2

ε

(
1

ε2

∫
Mεh

(
Fε

Mε

− 1

)
dv

)1/2

,

Y = 1

2

(
Cε2A+(k2

ε , k
2
ε )+ Cε(q−1)/2

(
D(Fε)

εq+3 + Fε
))
.
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Then, from the trivial inequality

Xgε � 1
2X

2 + 1
2g

2
ε ,

we deduce that

g2
ε � X2 + 2Y,

and we get

g2
ε � C2M−1

ε A+(
√
Mεgε,Mε)

2 + 5
2C

2M−1
ε A+(

√
Mεkε,Mε)

2

+ 25
4 C

2Mε

(
1
ε2

∫
Mεh

(
Fε
Mε

− 1
)
dv
)

+ Cε2A+(k2
ε , k

2
ε )+ Cε(q−1)/2

(
D(Fε)

εq+3 + Fε
)
. (62)

In the same way, multiplying (47) by (1−γε)1/2
ε

and using (60), we obtain

k2
ε � 9

ε2 |Fε −Mε|(1− γε)1/2
� 9CA+ (√Mεgε,Mε

) (1−γε)1/2
ε

+ 9CM−1/2
ε kεA+ (√Mεkε,Mε

)
+ 9Cε2(1− γε)1/2A+(k2

ε , k
2
ε )+ 9Cε(q−1)/2(1− γε)1/2

(
D(Fε)

εq+3 + Fε
)

+ 9C(Fε +Mε)
1/2kε

(
1

ε2

∫
Mεh

(
Fε

Mε

− 1

)
dv

)1/2

.

Remarking that

1

ε
M1/2
ε (1− γε)1/2 � kε,

we obtain

k2
ε � Xkε + Y,

with

X = 9CM−1/2
ε A+ (√Mεgε,Mε

)
+ 9CM−1/2

ε A+ (√Mεkε,Mε

)

+ 9C(Fε +Mε)
1/2
(

1

ε2

∫
Mεh

(
Fε

Mε

− 1

)
dv

)1/2

,

Y = 9Cε2A+(k2
ε , k

2
ε )+ 9Cε(q−1)/2

(
D(Fε)

εq+3 + Fε
)
.

Then,

k2
ε � X2 + 2Y

� 81C2M−1
ε A+ (√Mεgε,Mε

)2 + 81C2M−1
ε A+ (√Mεkε,Mε

)2

+ 81C2(Fε +Mε)

(
1

ε2

∫
Mεh

(
Fε

Mε

− 1

)
dv

)

+ 18Cε2A+(k2
ε , k

2
ε )+ 18Cε(q−1)/2

(
D(Fε)

εq+3 + Fε
)
. (63)
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The second step is to obtain estimates on the terms in (62) and (63) which are
not in the form M

−1/2
ε A+(

√
Mε...,Mε). By (41), (42), and the definition of χε,

χε

∫
(Fε +Mε)(1+ |v|2) dv

� χε

∫
(|Fε −Mε| + 2Mε)(1+ |v|2) dv

� 8χε

∫
Mεh

(
Fε

Mε

− 1

)
dv +

∫
Mε(8e

(1+|v|2)/8 + 2(1+ |v|2)) dv
� 8+ C‖w‖∞ (64)

for some C‖w‖∞ > 0 depending on ‖w‖∞. By definition of A+, and because
dv dv1dσ = dv′dv′1dσ ,

‖A+(k2
ε , k

2
ε )(1+ |v|2)‖L1

v

� 1

4π

∫∫∫
(k′ε)2(k′ε1)2(1+ |v′|2 + |v′1|2) dv′dv′1dσ

� 2‖k2
ε‖L1

v
‖k2
ε (1+ |v|2)‖L1

v
,

from which we deduce by (48), Lemma 1 and (64), that

∥∥∥ε2χεA+(k2
ε , k

2
ε )|v|2

∥∥∥
L1
x,v

� 2
∥∥∥k2
ε

∥∥∥
L1
x,v

∥∥∥ε2χεk
2
ε (1+ |v|2)

∥∥∥
L∞x (L1

v)

� 2
∥∥∥k2
ε

∥∥∥
L1
x,v

∥∥∥χε(Fε +Mε)(1+ |v|2)
∥∥∥
L∞x (L1

v)

� C

ε2H(Fε|Mε)(8+ C‖w‖∞). (65)

In the same way, by (64),

∥∥∥∥χε(Fε +Mε)(1+ |v|2)
(

1

ε2

∫
Mεh(

Fε

Mε

− 1) dv

)∥∥∥∥
L1
x,v

� ‖χε(Fε +Mε)(1+ |v|2)‖L∞x (L1
v)

∥∥∥∥ 1

ε2

∫
Mεh(

Fε

Mε

− 1) dv

∥∥∥∥
L1
x

� (8+ C‖w‖∞)
ε2 H(Fε|Mε). (66)

On the other hand, the dissipation bound and the global energy inequality provide

∥∥∥ε(q−1)/2χε1|v|2�100| log ε|
(
D(Fε)

εq+3 + Fε
)
(1+ |v|2)

∥∥∥
L1([0,T ],L1

x,v)

� Cε(q−1)/2| log ε|.
(67)
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Replacing (65), (66) and (67) in (62) and (63) leads to

g2
ε + k2

ε � CM−1
ε A+

(√
Mε

√
g2
ε + k2

ε ,Mε

)2

+ I,
∥∥∥χε1|v|2�100| log ε|I (1+ |v|2)

∥∥∥
L1
x,v

� C

ε2H(Fε|Mε)+ rε ,

for some C > 0 depending only on ‖w‖∞, where rε → 0 in L1([0, T ]).
In order to get rid of the truncation in the previous estimate of I , we now use

the preliminary results giving some control on very large velocities and on the mac-
roscopic truncation χε. Using the definition (48) of gε and kε, and the pointwise
estimate (49) coming from the properties of γ , we get

g2
ε + k2

ε � 1
√
Mε

2ε

|Fε −Mε|
ε
√
Mε

γε + Fε +Mε

ε2 (1− γε)

� 1

ε2 (Fε +Mε)γε + 1

ε2 (Fε +Mε)(1− γε)

� 1

ε2 (Fε +Mε).

Then, by Lemmas 2 and 3, we have∥∥∥(1− χε1|v|2�100| log ε|)(g2
ε + k2

ε )(1+ |v|2)
∥∥∥
L1
x,v

�
∥∥∥ 1
ε2 (1− χε1|v|2�100| log ε|)(Fε +Mε)(1+ |v|2)

∥∥∥
L1
x,v

�
∥∥∥ 1
ε2 1|v|2�100| log ε|(Fε +Mε)(1+ |v|2)

∥∥∥
L1
x,v

+
∥∥∥ 1
ε2 (1− χε)(Fε +Mε)(1+ |v|2)

∥∥∥
L1
x,v

� C
ε2H(Fε|Mε)+ o(1).

Finally, from the trivial decomposition

g2
ε + k2

ε = (1− χε1|v|2�100| log ε|)(g2
ε + k2

ε )+ χε1|v|2�100| log ε|(g2
ε + k2

ε )

� (1− χε1|v|2�100| log ε|)(g2
ε + k2

ε )

+ χε1|v|2�100| log ε|
(
CM−1

ε A+
(√

Mε

√
g2
ε + k2

ε ,Mε

)2 + I
)

� CM−1
ε A+

(√
Mε

√
g2
ε + k2

ε ,Mε

)2

+ (1− χε1|v|2�100| log ε|)(g2
ε + k2

ε )+ χε1|v|2�100| log ε|I,

we deduce that

g2
ε + k2

ε � CM−1
ε A+

(√
Mε

√
g2
ε + k2

ε ,Mε

)2

+ I2 ,

∥∥∥I2(1+ |v|2)
∥∥∥
L1
x,v

� C

ε2H(Fε|Mε)+ rε , (68)

where rε → 0 in L1([0, T ]).
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The third step of the proof uses in a crucial way the Caflisch estimates (39) on
the operator g �→ M

−1/2
ε A+ (√Mεg,Mε

)
. By (68),

g2
ε + k2

ε � I1 + I2 ,

with

I1 = CM−1
ε A+(

√
Mε

√
g2
ε + k2

ε ,Mε)
2,

and ∥∥∥I2(1+ |v|2)
∥∥∥
L1
x,v

� C

ε2H(Fε|Mε)+ rε .

By Lemma 1, for all t ∈ [0, T ],

‖gε‖2
L2
x,v

� C

ε2H(Fε|Mε), ‖kε‖2
L2
x,v

� C

ε2H(Fε|Mε).

Then, by (39),

‖M−1
ε A+(

√
Mε

√
g2
ε + k2

ε ,Mε)
2(1+ |v|3)‖L1

x(L
∞
v )

� C‖w‖∞
ε2 H(Fε|Mε).

Finally this first iteration leads to

g2
ε + k2

ε � I1 + I2,∥∥∥I1(1+ |v|3)
∥∥∥
L1
x(L

∞
v )

� C‖w‖∞
ε2 H(Fε|Mε),∥∥∥I2(1+ |v|2)

∥∥∥
L1
x,v

� C

ε2H(Fε|Mε)+ rε. (69)

The idea is then to iterate A+ on I1, the piece in L1
x(L

∞
v ), to improve its decay

in v by the Caflisch estimate, while the stability in L1
x,v – implied by Proposition 2

(in Appendix A) – controls the other piece. From (87) we deduce that∥∥∥M−1
ε A+(

√
Mε
√
g,Mε)

2(1+ |v|2)
∥∥∥
L1
v

� C‖w‖∞‖g(1+ |v|2)‖L1
v

(70)

for some C‖w‖∞ > 0 depending on ‖w‖∞. Then, by (69) and (39), (70),

I1 = CM−1
ε A+(

√
Mε

√
g2
ε + k2

ε ,Mε)
2

� 2CM−1
ε A+(

√
Mε

√
I1,Mε)

2 + 2CM−1
ε A+(

√
Mε

√
I2,Mε)

2

= I 1
1 + I 2

1 ,

with

‖I 2
1 (1+ |v|2)‖L1

x,v
� C‖w‖∞‖I2(1+ |v|2)‖L1

x,v

� C‖w‖∞
ε2 H(Fε|Mε)+ rε,

‖I 1
1 (1+ |v|7)‖L1

x(L
∞
v )

� C‖w‖∞
∥∥I1(1+ |v|3)∥∥

L1
x(L

∞
v )

� C‖w‖∞
ε2 H(Fε|Mε),

(71)

and rε → 0 in L1([0, T ]).
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From (69), (71) and the decomposition

g2
ε + k2

ε � I1 + I2 � I 1
1 + I 2

1 + I2 ,

we deduce the bounds (58) and (59). ��

4. Estimate of the flux term

Equipped with the previous a priori estimates, we can now perform the

Proof of Theorem 6. Define Fwε , f wε and γ wε by

Fwε (t, x, v) = Fε(t, x, v + εw), f wε = Fwε −M
εM

, γwε = γ

(
Fwε

M

)
.

With this notation, Theorem 7 can be recast as∥∥f wε γ wε ∥∥2
L2(dxM(1+v2) dv)

� C
ε2H(Fε|M(1,εw,1))+ rε,∥∥ 1

ε
f wε (1− γ wε )

∥∥
L1(dxM(1+v2) dv)

� C
ε2H(Fε|M(1,εw,1))+ rε, (72)

with rε → 0 in L1([0, T ]). Following Golse & Levermore (see [12]), we also
define

Nw
ε = 1+ ε

3
f wε ,

so that

Nw
ε � 2

3
, Nw

ε � 1

3

Fwε

M
. (73)

Then the fluctuation f wε can be decomposed as

f wε = f wε

Nw
ε

+ ε

3

(f wε )
2

Nw
ε

(74)

with

2

3

(
f wε

Nw
ε

)2

� (f wε )
2

Nw
ε

= 1

Nw
ε

(f wε γ
w
ε )

2 + ε|f wε |
Nw
ε

(1+ γ wε )
(1− γ wε )|f wε |

ε

� 3

2
(f wε γ

w
ε )

2 + 6
(1− γ wε )|f wε |

ε
.

Estimates (72) imply then∥∥∥ f wεNwε
∥∥∥2

L2(dxM(1+v2) dv)
� C

ε2H(Fε|M(1,εw,1))+ rε,∥∥∥ (f wε )2Nwε

∥∥∥
L1(dxM(1+v2) dv)

� C
ε2H(Fε|M(1,εw,1))+ rε,

(75)
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with rε → 0 in L1([0, T ]). Using the new decomposition (74), we rewrite the flux
term

1

ε2

∫ (
(v − εw)⊗2 − |v − εw|2

3
Id

)
Fε dv

= 1

ε2

∫ (
v⊗2 − |v|2

3
Id

)
(Fwε −M)dv

= 1

ε

∫
M(LA) f

w
ε

Nw
ε

dv + 1

3

∫
M

(
v⊗2 − |v|2

3
Id

)
(f wε )

2

Nw
ε

dv

= 1

4ε

∫∫∫
MM1A

(
f wε

Nw
ε

+ f wε1

Nw
ε1
− f wε

′

Nw
ε
′ −

f wε1
′

Nw
ε1
′
)
b dv1dσ dv

+ 1

3

∫
M

(
v⊗2 − |v|2

3
Id

)
(f wε )

2

Nw
ε

dv,

where A is defined by (23), and A = (A+A1 −A′ −A′1). Then we introduce the
scaled collision integrand

qwε = − 1

ε(q+1)/2

(
f wε + f wε1 − f wε ′ − f wε1′

)+ 1

ε(q−1)/2

(
f wε

′
f wε1

′ − f wε1f wε
)
.

A computation given in [12] (formula (10.6)) shows that

ε(q−1)/2qwε

Nw
ε N

w
ε1N

w
ε
′Nw
ε1
′ +

1

ε

(
f wε

Nw
ε

+ f wε1

Nw
ε1
− f wε

′

Nw
ε
′ −

f wε1
′

Nw
ε1
′
)

= 1

3

(
1

Nw
ε N

w
ε1
+ 1

Nw
ε

+ 1

Nw
ε1
− 2

)
f wε

′f wε1
′

Nw
ε
′Nw
ε1
′

−1

3

(
1

Nw
ε
′Nw
ε1
′ +

1

Nw
ε
′ +

1

Nw
ε1
′ − 2

)
f wε f

w
ε1

Nw
ε N

w
ε1
.

(76)

Thus,

1

ε2

∫ (
(v − εw)⊗2 − |v − εw|2

3
Id

)
Fε dv

= −1

4
ε(q−1)/2

∫∫∫
MM1A

qwε

Nw
ε N

w
ε1N

w
ε
′Nw
ε1
′ b dv1dσ dv

+ 1

12

∫∫∫
MM1A

(
1

Nw
ε N

w
ε1
+ 1

Nw
ε

+ 1

Nw
ε1
− 2

)
f wε

′f wε1
′

Nw
ε
′Nw
ε1
′ b dv1dσ dv

− 1

12

∫∫∫
MM1A

(
1

Nw
ε
′Nw
ε1
′ +

1

Nw
ε
′ +

1

Nw
ε1
′ − 2

)
f wε f

w
ε1

Nw
ε N

w
ε1
b dv1dσ dv

+ 1

3

∫
M

(
v⊗2 − |v|2

3
Id

)
(f wε )

2

Nw
ε

dv

= I1 + I2 + I3 + I4
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Estimates (75) will provide the convenient bounds on I2, I3 and I4, while I1 will
be proved to converge to 0. The first term is estimated by means of the entropy
dissipation in the following way. By Cauchy-Schwarz inequality and (H2),

|I1| � ε(q−1)/2

4

(∫∫∫
MM1

(
qwε

Nw
ε N

w
ε1N

w
ε
′Nw
ε1
′
)2

b dv dv1dσ

)1/2

(∫∫∫
MM1(A)

2b dv dv1dσ

)1/2

� Cε(q−1)/2

4

(∫∫∫
MM1

(
qwε

Nw
ε N

w
ε1N

w
ε
′Nw
ε1
′
)2

b dv dv1dσ

)1/2

.

(77)

Define γ as in Theorem 7. Then decompose the previous integrand as follows:

MM1
(qwε )

2

(Nw
ε N

w
ε1N

w
ε
′Nw
ε1
′)2

= 1

εq+3

|Fwε Fwε1 − Fwε ′Fwε1
′|2

MM1(Nw
ε N

w
ε1N

w
ε
′Nw
ε1
′)2

= 1

εq+3

|Fwε Fwε1 − Fwε ′Fwε1
′|2

Fwε F
w
ε1

γ

(
Fwε

′Fwε1
′

Fwε F
w
ε1

)
Fwε F

w
ε1

MM1(Nw
ε N

w
ε1N

w
ε
′Nw
ε1
′)2

+ 1

εq+3 |Fwε Fwε1 − Fwε ′
Fwε1

′|
(

1− γ
(
Fwε

′Fwε1
′

Fwε F
w
ε1

)) |Fwε Fwε1 − Fwε ′Fwε1
′|

MM1(Nw
ε N

w
ε1N

w
ε
′Nw
ε1
′)2
.

By (73) and the elementary inequalities (35), we have

MM1
(qwε )

2

(Nw
ε N

w
ε1N

w
ε
′Nw
ε1
′)2

� 38

26

1

εq+3F
w
ε F

w
ε1

∣∣∣∣Fwε ′Fwε1
′

Fwε F
w
ε1

− 1

∣∣∣∣
2

γ

(
Fwε

′Fwε1
′

Fwε F
w
ε1

)

+ 38

26

1

εq+3F
w
ε F

w
ε1

∣∣∣∣Fwε ′Fwε1
′

Fwε F
w
ε1

− 1

∣∣∣∣
(

1− γ
(
Fwε

′Fwε1
′

Fwε F
w
ε1

))

� C‖γ ‖∞
εq+3 Fwε F

w
ε1h

(
Fwε

′Fwε1
′

Fwε F
w
ε1

− 1

)

+ C‖1− γ ‖∞
εq+3 Fwε F

w
ε1h

(
Fwε

′Fwε1
′

Fwε F
w
ε1

− 1

)
.

Using (88), we deduce that

∫∫∫
MM1

(qwε )
2

(Nw
ε N

w
ε1N

w
ε
′Nw
ε1
′)2
b dv dv1dσ � C

εq+3

∫
D(Fε) dv (78)

for some C > 0. Plugging (78) into (77) and using the dissipation bound, we get

‖I1‖L1
t,x,v

� Cε(q−1)/2. (79)
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By (73), we have

∣∣∣∣ 1

Nw
ε N

w
ε1
+ 1

Nw
ε

+ 1

Nw
ε1
− 2

∣∣∣∣ � 13

4
,

and then, by Cauchy-Schwarz inequality,

|I2| � C

∫∫∫
MM1|A|

∣∣∣∣ f wε ′f wε1
′

Nw
ε
′Nw
ε1
′

∣∣∣∣ b dv1dσ dv

� C

(∫∫∫
MM1|A|2b dv1dσ dv

)1/2

(∫∫∫
M

(
f wε

′

Nw
ε
′
)2

M1

(
f wε1

′

Nw
ε1
′
)2

b dv1dσ dv

)1/2

� C

(∫∫∫
MM1|A|2b dv1dσ dv

)1/2

(∫∫∫
M ′

(
f wε

′

Nw
ε
′
)2

M ′
1

(
f wε1

′

Nw
ε1
′
)2

bdv′1dσ dv′
)1/2

,

which coupled with (H2), the first estimate in (75) and (H1) gives

‖I2‖L1
x,v

� C

ε2H(Fε|M(1,εw,1))+ rε, (80)

with rε → 0 in L1([0, T ]). In the same way,

‖I3‖L1
x,v

� C

ε2H(Fε|M(1,εw,1))+ rε. (81)

And the second estimate in (75) gives directly

‖I4‖L1
x,v

� C

ε2H(Fε|M(1,εw,1))+ rε. (82)

Combining (79), (80), (81) and (82) gives

∥∥∥X(w) : 1
ε2

(
(v − εw)⊗2 − |v−εw|2

3 Id
)
Fε

∥∥∥
L1
t,x,v

� C 1
ε2

∫ T
0 ‖X(w)‖L∞x H(Fε|M(1,εw,1))(t) dt + o(1).

As w is divergence-free,

X(w) : 1

ε2

∫ ( |v − εw|2
3

Id

)
Fε dv = 0,

and Theorem 6 is established. ��
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5. Convergence proof

From Theorems 5 and 6 we deduce that
1

ε2H(Fε|M(1,εw,1))(t)− 1

ε2H(F
in
ε |M(1,εwin,1))+

1

ε

∫
tr (mε)(t)

� −1

ε

∫ t

0

∫∫
E(w).(v − εw)Fε(s, x, v) dx dv ds

+ C

∫ t

0
‖X(w)‖L∞(T3)

(
1

ε2H(Fε|M(1,εw,1))(s)+ 1

ε

∫
tr (mε)(s)

)
ds+ o(1),

which implies that for all w ∈ C1([0, T ] × T3) satisfying ∇x · w = 0, and for all
t � T ,

1

ε2H(Fε|M(1,εw,1))(t)

� 1

ε2H(F
in
ε |M(1,εwin,1)) exp(C

∫ t

0
‖X(w)(s)‖L∞(T3)ds)

−
∫ t

0
exp(C

∫ t

s

‖X(w)(τ)‖L∞(T3)dτ )

×
∫∫

E(w).
v − εw
ε

Fε(s, x, v)dx dv ds + o(1). (83)

In order to see that any limit point u in the limit ε→ 0 of the sequence ( 1
ε

∫
Fεv dv)

is a dissipative solution of the incompressible Euler equation, it remains to prove
that

∇x · u = 0,

‖u− w‖2
L2(T3)

� 2 lim inf
ε→0

1

ε2H(Fε|M(1,εw,1)),

and that ∫
v − εw
ε

Fε dv ⇀ u− w,
up to extraction of a subsequence.

We start with the weak compactness results.

Lemma 6. Under the assumptions of Theorem 3, for all T > 0, any sequence of
fluctuations 1

εn
(Fεn−M)with εn → 0 is weakly compact inL∞([0, T ], L1(dx(1+

|v|2) dv)). In particular,∫
Fε dv→ 1 in L∞([0, T ], L1(T3)),

and there exists u ∈ L∞([0, T ], L1(T3)) such that, up to extraction of a subse-
quence,

1

ε

∫
Fεv dv ⇀ u in w − L∞([0, T ], L1(T3)).
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Proof. From the entropy bound

1

ε2H(Fε(t)|M) � 1

ε2H(F
in
ε |M)

� 1

ε2H(F
in
ε |M(1,εuin,1))+

1

2ε

∫∫
F in
ε u

in.(2v − εuin) dv dx

� 1

ε2H(F
in
ε |M(1,εuin,1))+ ‖uin‖2

L2(T3)

+ 1

2ε

∫∫
(F in
ε −M(1,εuin,1))u

in.(2v − εuin) dv dx

�
C‖uin‖∞
ε2 H(F in

ε |M(1,εuin,1))+ C‖uin‖2
L2(T3)

,

andYoung’s inequality (91) withp = (1+|v|2)/4, z = (Fε−M)/M and η = 4ε/α

1
ε
|Fε −M|(1+ |v|2) � α

ε2Mh
(
Fε
M
− 1

)
+ 16

α
Me(1+|v|2)/4, (84)

we deduce (see [4], Proposition 3.2) that any subsequence of

1

ε
(Fε −M)(1+ |v|2)

is bounded and uniformly equi-integrable in L∞([0, T ], L1(T3 × R3)), and thus
relatively weakly compact by the Dunford-Pettis theorem. Then, up to extraction
of a subsequence,

1

ε
(Fε −M) ⇀ f in w − L∞([0, T ], L1(T3 × R3)).

The convergence of the density of mass
∫
Fε dv follows immediately:∫

Fε dv =
∫
M dv + ε

∫
1

ε
(Fε −M)dv = 1+O(ε)

in L∞([0, T ], L1(T3)). Moreover, as v = o(|v|2) as |v| → ∞,∫
1

ε
(Fε −M)v dv ⇀

∫
f v dv ≡ u in w − L∞([0, T ], L1(T3)).

In particular, the weak convergence∫
v − εw
ε

Fε dv ⇀ u− w

holds in L∞([0, T ], L1(T3)). ��
In the second step, we establish the incompressibility relation taking limits in

the local conservation of mass (13) in the sense of distributions (see [4]).

Lemma 7. Under the assumptions of Theorem 3, any limit point u of the sequence
( 1
ε

∫
Fεv dv) satisfies the incompressibility relation

∇x · u = 0

in the sense of distributions.
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It remains then to estimate the L2 norm of (u−w) for all divergence-free test
vector fields w.

Lemma 8. Under the assumptions of Theorem 3, any limit point u of the sequence
( 1
ε

∫
Fεv dv) satisfies

‖u− w‖2
L2(T3)

� 2 lim inf
ε→0

1

ε2H(Fε|M(1,εw,1)).

Proof. A direct computation shows that

H(Fε|M(1,εw,1)) = H(MFε |M(1,εw,1))+H(Fε|MFε) � H(MFε |M(1,εw,1)),

where MFε denotes the local Maxwellian having the same moments as Fε. If we
define Rε, Jε and Tε by

Rε =
∫
Fε dv, Jε = 1

ε

∫
Fεv dv, RεTε + ε2 J

2
ε

Rε
=
∫
Fεv

2 dv,

it is easy to check that

H(MFε |M(1,εw,1)) =
∫
(Rε logRε − Rε + 1) dx + ε2

2

∫
(Jε − Rεw)2

Rε
dx

+ 3
2

∫
Rε(Tε − log Tε − 1) dx.

In particular, we have∫
(Jε − Rεw)2

Rε
dx � 2

ε2H(Fε|M(1,εw,1)).

By convexity of the functional (R, J ) �→ (J − Rw)2/R, since Rε → 1 and
Jε → u in the vague sense of measure,

‖u− w‖2
L2(T3)

� 2 lim inf
ε→0

1

ε2H(Fε|M(1,εw,1)),

which is the expected estimate. ��
From (24) and the identity

1

ε2H(F
in
ε |M(1,εwin,1))

= 1

ε2H(F
in
ε |M(1,εuin,1))+

1

2

∫∫
F in
ε dv(u

in − win)2dx

+ 1

ε

∫∫
F in
ε (v − εuin) dv.(uin − win) dx

= 1

ε2H(F
in
ε |M(1,εuin,1))+

1

2
‖uin − win‖2

L2(T3)

+ 1

2

∫∫
(F in
ε −M(1,εuin,1)) dv(u

in − win)2 dx

+ 1

ε

∫∫
(F in
ε −M(1,εuin,1))(v − εuin) dv.(uin − win) dx,
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we deduce that

1

ε2H(F
in
ε |M(1,εwin,1)) = ‖uin − win‖2

L2(T3)
+ o(1). (85)

Combining Lemmas 6, 7 and 8 with (83) and (85) shows that any limit point u
of the sequence ( 1

ε

∫
Fεv dv) satisfies the incompressibility relation as well as a

stability inequality similar to (20) for allw ∈ C1([0, T ]×T3) such that∇x·w = 0,
X(w) ∈ L∞([0, T ], L∞(T3)), E(w) ∈ L1([0, T ], L2(T3)). A standard argument
of density shows that (20) holds actually for all w ∈ C0([0, T ] × T3) satisfying
∇x·w = 0,X(w) ∈ L1([0, T ], L∞(T3)),E(w) ∈ L1([0, T ], L2(T3)). This means
exactly that u is a dissipative solution of the incompressible Euler equation.

6. Appendix A. Caflisch estimates

Continuity results regarding the operator g �→ M−1/2A+(M1/2g,M) are the
key arguments of the estimates established in this article: we record them below
for the sake of completeness.

Theorem 8 (Caflisch Theorem). Define A+(f, g) = 1
8π

∫∫
(f ′1g′ + g′1f ′) dv1dω

with the notation defined in (3), and denote by M any Maxwellian. Then, for all
measurable function g,∥∥∥M−1/2 A+(

√
Mg,M)(1+ |v|3/2)

∥∥∥
L∞v

� C‖g‖L2
v
,∥∥∥M−1/2 A+(

√
Mg,M)(1+ |v|r+2)

∥∥∥
L∞v

� C‖g(1+ |v|r )‖L∞v .
(86)

We complete this result by the following

Proposition 2. With the same notation as in Theorem 8, for all measurable non-
negative function g,∥∥∥M−1 A+(

√
M
√
g,M)2(1+ |v|2)

∥∥∥
L1
v

� C‖g(1+ |v|2)‖L1
v
. (87)

Proof. The identity M ′M ′
1 = MM1 implies

M−1 A+(
√
M
√
g,M)2 =

(
1

4π

∫∫ √
g′
√
M ′

1

√
M1 dv1dσ

)2

.

As |v|2 � |v′1|2 + |v′|2, by Cauchy-Schwarz inequality,

M−1 A+(
√
M
√
g,M)2(1+ |v|2)

�
(

1

4π

∫∫
M1 dv1dσ

)(
1

4π

∫∫
g′M ′

1(1+ |v′|2 + |v′1|2) dv1dσ

)

As dv dv1dσ = dv′dv′1dσ , integrating with respect to v leads to the expected
inequality. ��
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7. Appendix B. Young’s inequality

The functions h : [−1,+∞[→ R+ and r : ] − 1,+∞[→ R+ are both strictly
convex, and satisfy, for all z > −1,

h(|z|) � h(z), r(|z|) � r(z), h(z) � r(z). (88)

The Legendre transform of h is defined for all p ∈ R by

h∗(p) = sup
z>−1

(pz− h(z)) = ep − p − 1 � ep ; (89)

that of r is also defined for all p ∈ R by the implicit relation

r∗(p) = sup
z>−1

(pz− r(z)) = z2

1+ z , with log(1+ z)+ z

1+ z = p.

Further, the Legendre transform h∗ is super-quadratic, i.e.,

h∗(ηp) ≤ η2h∗(p), p ∈ R, η ∈ [0, 1]. (90)

Finally, Young’s inequality states that, for all p ∈ R, z > −1 and η ∈ [0, 1],

p|z| � 1

η
h(z)+ ηh∗(p) ≤ 1

η
r(z)+ ηh∗(p). (91)
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