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Abstract

Nonclassical conservation laws with viscosity arising in multiphase fluid and
solid mechanics exhibit a rich variety of traveling-wave phenomena, including
homoclinic (pulse-type) and periodic solutions along with the standard heteroclinic
(shock, or front-type) solutions. Here, we investigate stability of periodic traveling
waves within the abstract Evans-function framework established by R.A. Gardner.
Our main result is to derive a useful stability index analogous to that developed
by Gardner and Zumbrun in the traveling-front or -pulse context, giving necessary
conditions for stability with respect to initial perturbations that are periodic on
the same period T as the traveling wave; moreover, we show that the periodic-
stability index has an interpretation analogous to that of the traveling-front or -
pulse index in terms of well-posedness of an associated Riemann problem for an
inviscid medium, now to be interpreted as allowing a wider class of measure-
valued solutions, or, alternatively, in terms of existence and nonsingularity of a
local “mass map” from perturbation mass to potential time-asymptotic T -periodic
states.A closely related calculation yields also a complementary long-wave stability
criterion necessary for stability with respect to periodic perturbations of arbitrarily
large period NT , N → ∞. We augment these analytical results with numerical
investigations analogous to those carried out by Brin in the traveling-front or -pulse
case, approximating the spectrum of the linearized operator about the wave.

The stability index and long-wave stability criterion are explicitly evaluable in
the same planar, Hamiltonian cases as is the index of Gardner and Zumbrun, and
together yield rigorous results of instability similar to those obtained previously for
pulse-type solutions; this is established through a novel dichotomy asserting that the
two criteria are in certain cases logically exclusive. In particular, we obtain results
bearing on the nature and mechanism for formation of highly oscillatory Turing-like
patterns observed numerically by Frid and Liu and Čanić and Peters in models of
multiphase flow. Specifically, for the van der Waals model considered by Frid and
Liu, we show instability of all periodic waves such that the period increases with
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amplitude in the one-parameter family of nearby periodic orbits, and in particular
of large- and small-amplitude waves; for the standard, double-well potential, this
yields instability of all periodic waves. Likewise, for a quadratic-flux model like
that considered by Čanić and Peters, we show instability of large-amplitude waves
of the type lying near observed patterns, and of all small-amplitude waves; our
numerical results give evidence that intermediate-amplitude waves are unstable as
well. These results give support for an alternative mechanism for pattern formation
conjectured by Azevedo, Marchesin, Plohr, and Zumbrun, not involving periodic
waves.

1. Introduction

In this paper, we study stability of periodic traveling-wave solutions of conser-
vation laws with viscosity,

ut + f (u)x = (B(u)ux)x, (1.1)

u, f ∈ R
n, B ∈ R

n×n, modeling flow in compressible media. Periodic solutions
do not occur for classical systems (1.1) possessing a convex entropy in the sense
of [Sm, Ka], for example, ideal gas dynamics or magnetohydrodynamics, being
forbidden by energy considerations. However, they arise in a natural way in cer-
tain nonclassical systems modeling media with multiple phases, for example van
der Waals gas dynamics and elasticity, or three-phase flow in porous media, in con-
junction with a host of other complex phenomena not seen in classical conservation
laws: in particular, hetero- and homoclinic cycles of traveling-front and -pulse type
solutions, and associated nonuniqueness of Riemann solutions in the corresponding
first-order system

ut + f (u)x = 0; (1.2)

see, e.g., [Sl.1–Sl.5, Sh.1–Sh.3,AMPZ.1–AMPZ1.4, Z].As discussed in [AMPZ.2],
these features have the common seed of instability of constant solutions in certain
regions of state space: in the case of phase-transitional models, regions that are
“between phases”. Such instability is frequently (but not always) associated with a
change in type from hyperbolic to elliptic in the first-order system (1.2).

In the case of van der Waals gas and solid dynamics, there is a close relation
between the mechanical model (1.1) and the variational Cahn-Hilliard model for
phase transition; see Section 7 for further details. In particular, their stationary
theories agree, reducing to the Euler-Lagrange equations for the associated van der
Waals/Cahn-Hilliard energy: a planar Hamiltonian ordinary differential equation.
Thus, it is no surprise that the mechanical model features the same rich solution
structure found in the study of Cahn-Hilliard equations utt +f (u) = uxx , or Allen-
Cahn (reaction-diffusion) equations ut + f (u) = uxx based on the same energy
functional. Indeed, the existence of hetero-, homoclinic, and periodic cycles is
already suggested by the planar Hamiltonian form of the stationary-wave ordinary
differential equation.
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On the other hand, the dynamics of these models are quite different, and so a
priori it is not clear to what extent, or in what way, this stationary structure will
be manifested in the asymptotic behavior of solutions. In particular, we would like
to know whether the mechanical model (1.1) indeed supports persistent transition
layers (fronts) between phases, and, more, whether it can successfully predict, at
least at a qualitative level, the experimentally observed phenomena of nucleation
(spontaneous formation of transition layers in previously smooth flow) and pattern
formation (e.g., Martensitic crystal structure in stressed elastic solids). In the case of
three-phase flow models commonly used in oil recovery simulation, with gas, water
and oil treated as separate phases of a single fluid, both modeling and experimental
data are less certain than in the case of the van der Waals model. Nonetheless, the
same basic questions are of interest, now for purposes of experimental prediction
and validation or invalidation of the mathematical model. These questions must
be addressed in the context of the full, dynamical behavior of model (1.1), and
ultimately involve the careful study of stability.

Stability and behavior of hetero- and homoclinic, or front- and pulse-type so-
lutions of phase-transitional models have been investigated numerically and ana-
lytically in, e.g., [ZPM, AMPZ.1–AMPZ.3, LZ.1, LZ.2, GZ, Z.1, Z.2]. For both
van der Waals and three-phase flow models, the picture that has emerged is that
traveling-front solutions connecting one pure phase to another are stable, as are
simple Riemann patterns involving two or more traveling fronts moving away from
each other with nonzero speed, whereas traveling-pulse solutions connecting a
single phase to itself, and therefore Riemann patterns in which they appear, are
unstable. In terms of time-asymptotic dynamics, the latter seem to play the role of
saddle points separating the basins of attraction of the former, attracting asymp-
totic states [AMPZ.1]. These studies essentially answer the first two questions posed
above, showing that phase-transitional layers are indeed supported by the models,
and can form spontaneously from smooth initial data. Moreover, the experiments
of [AMPZ.1] show that a classical, stable small-amplitude Riemann pattern not in-
volving phase transitions may bifurcate under an initial perturbation with compact
support to a stable large-amplitude pattern involving two or more phase-transitional
layers; this is a stronger sense in which nucleation is seen to occur.

The present investigation is motivated by the third question, concerning the
possibility of pattern formation in models of form (1.1). Particularly intriguing
are numerical experiments of Frid & Liu [FL.1, FL.2, LF] and Čanić & Peters
[CP], in which Riemann solutions of various phase-transitional models were seen
to exhibit highly oscillatory, Turing-like patterns reminiscent of Martensitic crystal
structure or nucleation in phase-transitional elasticity. A natural conjecture, by
analogy with similar phenomena in Cahn -Hilliard or reaction-diffusion equations,
is that these are stable patterns consisting of fronts connecting various periodic or
constant states: the classical mechanism for pattern formation.

Support for this point of view was given by recent investigations of Čanić [C]
suggesting a connection with Hopf bifurcation and the appearance of limit cycles in
the traveling-wave equations arising from the specific Riemann data associated with
these phenomena. A closer look [AMPZ.4, AMPZ.5] reveals a rich global struc-
ture in the phase portraits of the associated traveling-wave ordinary differential
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equations, which indeed feature large-amplitude periodic orbits resembling each
of the observed oscillatory motifs. However, these periodic solutions appear in one-
parameter families of varying wavelength, terminating in the infinite-wavelength
limit at a hetero- or homoclinic cycle corresponding to a degenerate Riemann pattern
of front- or pulse-type traveling-waves with common speed: a metastable, slowly
interacting pattern of waves which by themselves would be stable. The criterion that
would select a particular wavelength from among such a family is unclear. More-
over, in further numerical experiments [AMPZ.4, AMPZ.5], the patterns, though
apparently robust, do not appear to settle down into a final, periodic configura-
tion; rather, as conjectured in [AMPZ.4], they seem to be the result of complex
metastable interactions of an infinite pattern of slowly interacting traveling fronts
between pure phases, driven by linear instability in the limiting states at plus and
minus spatial infinity (the “generalized Riemann data” in the sense of [AMPZ.1]).

More precisely, it appears that oscillations in phase originate at spatial infinity
through a linear instability mechanism. A stationary phase calculation [AMPZ.5]
reveals that the response under perturbation of the unstable constant states at in-
finity (i.e., the Green function of the constant-coefficient equations obtained by
linearizing about constant solutions with those values) is well approximated by a
sum of modulated, time-exponentially growing Gaussian wave-packets

�̄j := e
Re λ(k∗j )t eik

∗
j (x−α∗

j t)e
−(x−α∗

j t)
2/4β∗

j t

√
4πβ∗

j t

rj l
∗
j

〈rj , lj 〉 , (1.3)

where k∗
j denotes the frequency for which the associated dispersion relation λj (k)

takes on its maximum real part (temporal growth rate), iα∗
j := −dλj/dk(k∗

j ),

β∗
j := −(1/2)d2λj/dk

2(k∗
j ), and rj , lj denote right and left eigenvectors of the

flux Jacobian df (u) evaluated at the background constant state. The waves �̄j
might be called unstable linear diffusion waves, by analogy with the picture given
by Liu & Zeng [LZe] in the stable case. Their oscillations grow exponentially
in amplitude until they reach the nonlinear regime, at which time they sharpen
into slowly moving fronts connecting approximately pure phases and do not grow
further.

Note that this process does not involve periodic waves, or even their infinite-
wavelength heteroclinic-cycle limit. The average wavelength of the pattern is,
rather, closely approximated by the characteristic wavelength of the linear os-
cillations originating at spatial infinity, i.e., the rate at which new waves are “born”.
Likewise, the “front” separating an oscillatory region from an unstable constant
state is just the front edge of the linear Gaussian wave-packet, whose speed of
propagation can be well approximated by tracking the point at which the Gaussian
envelope reaches a fixed amplitude representing the transition to nonlinear dynam-
ics. For more detailed discussion, and a derivation of (1.3), see Appendix B. This
description, if correct, represents a novel and nonclassical mechanism for pattern
formation, different from that seen in Cahn-Hilliard and reaction-diffusion models
for phase transition. Indeed, it seems more related to certain models for turbulence,
in which energy from high frequency modes drives the evolution of characteristic
large-scale structures on a lower-dimensional attracting manifold.
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It seems difficult to rigorously verify this picture of pattern formation, which
by its nature lies outside the usual analytical frameworks. However, it is possible
to give indirect support by eliminating the more usual scenario involving periodic
waves. For, recall that the patterns of [FL.1, FL.2, LF, CP], consist of one or more
oscillatory regions sandwiched between two unstable constant regions extending to
plus and minus spatial infinity. If these oscillatory regions indeed represent pieces
of different periodic solutions, then the most likely scenario is that at least one of
these periodic solutions should be stable; the alternative, a stable pattern consisting
entirely of unstable pieces, would represent a new type of dynamic stabilization for
which we know of no possible mechanism. Thus, it is strong evidence against the
classical scenario if we can show that there exist no large-amplitude stable periodic
solutions lying near to the observed oscillatory patterns.

Motivated by these considerations, we here study the general question of stabil-
ity of periodic solutions of conservation laws with viscosity. Of particular interest
is the situation present in the above-mentioned numerical studies, of a planar, pe-
riodic family of solutions, originating from a nonlinear center and bounded by a
limiting homoclinic or heteroclinic cycle, i.e., a typical (global) Hopf bifurcation
[GH, HK].

Our analysis is by spectral Evans-function techniques, using an analytic frame-
work developed by Gardner [G.1–G.3]. Specifically, changing coordinates to a
rest frame for the traveling wave ū, we obtain the linearized equation

vt = Lv := (Bvx)x − (Av)x, (1.4)

about the (now stationary) wave u = ū(x). We shall investigate stability of ū by the
study of the spectrum of the linearized operator L about the wave. More precisely,
we investigate the weak spectral stability of ū(·) as a solution of (1.1), defined as

σ(L) ⊂ {Re λ � 0}, (1.5)

i.e., nonexistence of time-exponentially unstable eigenmodes. Note that failure of
(1.5) implies exponential linearized and (appropriately defined) nonlinear instabil-
ity; hence, the study of spectral stability is appropriate for investigation of instability
phenomena. (Linearized stability involves different issues, and will be discussed in
a companion paper [OZ].)

Following Gardner [G.1–G.3], we study the spectrum of L “directly”, via the
periodic Evans function, a determinant D(k, λ) involving the monodromy matrix
of the linearized eigenvalue equation

(L− λ)w = 0 (1.6)

for L, whose zero set (k, λ) corresponds to bounded solutions eikxw(x) of (1.6),
with w periodic; for a detailed derivation, see Section 2. This approach has the
advantage of generality, whereas more specialized analyses based on variational
[M.1, M.2, LP] or Hamiltonian [Mi] structure may take better advantage of the
specific structure of the underlying evolution model. For conservation laws (1.1),
there does not seem to be any such useful structure to which we may appeal.
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Evans-function techniques have been used successfully to study the stability
of traveling-front and -pulse solutions; however, computations in the periodic case
become considerably more complicated. Indeed, to our knowledge, ours is one of
only three such explicit computations that have been carried out using Gardner’s
framework, the others being low-frequency expansion of the Evans functionD(k, λ)
in the wave number k, carried out by Eszter [Es] in a singularly perturbed limit
and by Sandstede & Scheel [SS.1] in the large-amplitude (long-period) limit.
These previous analyses were obtained by different techniques, in the somewhat
different reaction-diffusion setting, and under hypotheses that do not apply here: in
particular, that zero be a simple eigenvalue of the linearized operator about the wave.
However, the main distinction of the present analysis is that it is not in principle
restricted to any type of limiting case, giving useful stability criteria for waves
of arbitrary amplitude or type. (On the other hand, as we shall see, such limiting
situations can be extremely helpful in the analytic evaluation of these criteria).
This feature distinguishes our results also from those obtained in, e.g., [M.1, M.2,
BMi.1, BMi.2, Mi] by other than Evans-function techniques, all of which concern
the limiting cases of a large-amplitude bounding cycle or a small-amplitude constant
solution.

Abstract result 1. Our main result is the development of a stability index anal-
ogous to that obtained by Gardner & Zumbrun [GZ] in the traveling-front or
-pulse context, relating evolutionary stability to the dynamics of the traveling-wave
ordinary differential equation. Specifically, we show that

� = sgn γ� det df (u−) � 0 (1.7)

is necessary for stability with respect to periodic perturbations of the same period as
the background wave, where γ is a transversality coefficient for the traveling-wave
ordinary differential equation

u′ = B−1(u)(f (u)− f (u−)− s(u− u−)), (1.8)

ū(0) = ū(T ) = u0, (1.9)

and � := det(∂ūm/∂u−), where ūm denotes the mass over one period of the
periodic profile ū(·) and u− ∈ R

n is an artificial parameter. For a detailed derivation
of (1.8), (1.9) and precise definitions of γ and�, see Sections 2 and 5, respectively.

Similarly as in the traveling-front or -pulse case [GZ, BSZ, ZS, Z.3], the coef-
ficient� is seen to be related to well-posedness of an associated inviscid Riemann
problem; however, this must now be interpreted in the context of measure-valued
solutions appropriate for oscillatory solutions. Alternatively,� �= 0 may be viewed
as expressing the existence and nonsingularity of a local “mass map” from pertur-
bation mass to potential time-asymptotic T -periodic states, an evident necessary
condition (by conservation of mass) for orbital stability of ūwith respect to nonzero
mass perturbations within the class of T -periodic solutions of (1.1); for further dis-
cussion, see Section 5.

Abstract result 2. The stability index� detects strong (time-exponentially growing)
instabilities analogous in the front or pulse case to an unstable point spectrum of the
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linearized operator about the wave. By closely related computations, we derive also
a complementary long-wave stability criterion detecting weak (time-algebraically
growing) instabilities, analogous in the front or pulse case to an unstable essential
spectrum, or linearized instability of the limiting, constant states connected by
the profile of the traveling wave. Whereas the stability index concerns instability
with respect to periodic perturbations with the same period as the background
wave, the long-wave stability criterion concerns instability with respect to periodic
perturbations on a different period, in the limit as this period goes to infinity: i.e.,
so-called “sideband instabilities”. Specifically, in the “quasi-Hamiltonian” case,
where the traveling-wave ordinary differential equation (1.8) has an integral of
motion, we establish an illuminating small-frequency expansion

D(k, λ) = γ λ det
(− λ(∂ūm/∂u−)df (u−)−1 − ikT

)

+ O((|k| + |λ|)n+2),
(1.10)

of the Evans function, where γ and (∂ūm/∂u−) are as described just above. This
yields a distinguished dispersion relation

λ0(k) = o(k) (1.11)

and n dispersion relations

λj (k) = −ikT αj +O(k2), j = 1, . . . , n, (1.12)

where αj denote the eigenvalues of (∂ūm/∂u−)−1df (u−). Relations (10.3) gen-
eralize those seen in the constant-coefficient case, for which ∂ūm/∂u− reduces to
I ; for further discussion see Example 3.4 and Remarks 3.5 and 5.10. In particular,
they show that the “generalized hyperbolicity” requirement

σ
(
(∂ūm/∂u−)−1df (u−)

)
real (1.13)

is necessary for long-wave stability.

Remark 1.1. There is a further analogy between conditions (1.7) and (1.13) and
the stability index and long-wave stability conditions arising in the study of multi-
dimensional planar viscous shock fronts [GZ, BSZ, ZS, Z.3], where, similarly,
the stability index concerns strong instability with respect to planar perturbations
respecting the symmetry of the background solution, while the long-wave stability
condition concerns weak instability with respect to perturbations with small but
nonzero transverse frequency. However, the origins of the long-wave dispersion
relations are rather different in the two cases; in particular, (6.1) appears to be
closely tied to the assumed quasi-Hamiltonian structure, whereas the corresponding
expansion in the shock front case is completely general.

Numerical results. Along with these analytic tools, we develop also numerical
techniques for approximating the spectrum of the linearized operator about the
wave, analogous to those developed by Brin [Br.1, Br.2, BZ] and Brin & Zum-
brun [BZ] in the traveling-front or -pulse case. Here, the issues are rather different.
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For example, the evaluation of the Evans function in the periodic case is numeri-
cally straightforward, since it involves only integration of a well-behaved ordinary
differential equation on a finite interval; by contrast, the traveling-front or -pulse
case involves integration on an infinite interval, making the problem stiff. On the
other hand, the location of the spectrum, that is, the zero set (k, λ(k)) of the Evans
functionD(· , ·) becomes considerably more complicated than in the traveling-front
or -pulse case, for which the Evans function depends on a single argument only.
In particular, it is quite difficult to resolve the n+ 1 curves (1.11), (10.3) bifurcat-
ing from the point (k, λ) = (0, 0). Thus, our numerical techniques are effectively
restricted to (k, λ) bounded away from the origin, and so are complementary to
the analytical techniques described above, which include but are not limited to the
Taylor expansion of D about the origin.

Applications. The stability index and long-wave stability criterion are explicitly
comparable in the same “planar Hamiltonian” case for which the index of Gardner
and Zumbrun was explicitly evaluable in the traveling-front or -pulse case, namely,
the case for which the traveling-wave ordinary differential equation (1.8) is planar
Hamiltonian for some distinguished speed; and together these yield rigorous results
of instability similar to those obtained previously for pulse-type solutions in [GZ,
Z.1] In this case, using a Poincaré-Bendixon argument similar to that used in [GZ],
we may express the sign of the Melnikov integral γ appearing in the stability index
in terms of the sign of the derivative dT /da of period T with respect to amplitude
a in the embedding family of nearby periodic orbits of (1.8), i.e., as simply

sgn γ = sgn dT /da. (1.14)

This reduces both stability conditions (1.7) and (1.13) to requirements on the deriva-
tive ∂ūm/∂u−, a quantity which in the small-amplitude and the large-amplitude
homoclinic limits approaches the identity.

In general (i.e., for intermediate-amplitude waves), ∂ūm/∂u− seems difficult if
not impossible to evaluate analytically. Nonetheless, we are able to obtain rigorous
instability results through a novel dichotomy, asserting that criteria (1.7) and (1.13)
are in certain cases logically exclusive, based only on structure or symmetries of
∂ūm/∂u− rather than its precise value. The basic strategy is to show the matrix
df (u−)(∂um/∂u−)−1 to be trace-free, in which case its eigenvalues are real if and
only if its determinant is negative and thus � = −sgn dT /da < 0 if dT /da > 0.
(Recall that df (u−)(∂um/∂u−)−1 is 2 × 2 in the planar case we consider.) Specif-
ically, we show that for the equations of van der Waals gas dynamics and elasticity
there exist no stable periodic solutions, of any amplitude, with the property that
period increases with amplitude in the one-parameter family of nearby periodic
orbits: in particular that large-amplitude waves are unstable. A separate argument
shows that small-amplitude solutions are unstable, due to Majda-Pego instability
of the limiting constant state [MP]. In the case of a standard double-well potential,
it can be shown that the period is everywhere monotone increasing (see Remark
7.2, below), and so all periodic solutions are unstable. Likewise, for the special
(Hamiltonian) class of planar, quadratic-flux systems considered in [GZ] we es-
tablish instability of large-amplitude waves lying near the numerically observed
patterns, and (by a separate, continuity argument) of small-amplitude solutions.
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These two cases are quite relevant to the issue of pattern formation that originally
motivated our investigations. The former equations, modeling phase-transitional
fluids/solids, are precisely those that were seen to exhibit pattern formation in the
numerical investigations of [FL.1]. The latter, which serve as qualitative models for
multiphase flow in porous media, are prototypical for the other models in which
pattern formation has been observed [FL.2, CP, AMPZ.4, AMPZ.5]. Indeed, taken
together, our results are strongly suggestive of nonexistence of any stable peri-
odic waves in the cases where oscillatory patterns have been observed. Further
support for this conjecture is given by our numerical experiments, in which we
find instability of periodic solutions across their entire (numerically determined)
region of existence. Our results thus appear to eliminate from consideration the
usual paradigm of multiple stable periodic states, pointing to a different mechanism
for pattern formation in multiphase conservation laws than that typically seen in
reaction-diffusion equations: for example, the one proposed in [AMPZ.4,AMPZ.5].

Besides the direct, physical interest of our conclusions, we point out an indirect
contribution of this paper that is perhaps more important. Namely, we provide a
useful, and explicit analogy between the Evans-function framework for the periodic
case and that of the better-studied traveling-front or -pulse case, different than the
large-period limit studied by Gardner [G.1, G.2]. In the present paper, we have
applied this analogy to the results of [GZ, Z.1, BSZ, ZS, Z.3] to obtain interesting
instability results in the context of conservation laws with viscosity, i.e., neces-
sary conditions for stability. A similar translation of the complementary pointwise
semigroup methods developed in [ZH] yields interesting sufficient conditions for
linearized stability; these results will be presented in the companion paper [OZ].

Discussion and open problems. The quasi-Hamiltonian assumption made in de-
riving (6.1) seems to be fundamental for the evaluation of the long-wave viscosity
criterion. Besides appearing frequently in physical examples, quasi-Hamiltonian
systems are shown in [OZ] to be the only type that can support periodic waves
that are asymptotically stable in the usual, diffusive sense (see further discussion,
beginning of Section 6).

A related assumption on the structure of stationary solutions is made by Bridges
& Mielke [BMi.2] in their powerful study, by quite different, center manifold
techniques, of instability of multi-dimensional but small-amplitude periodic waves
in the Cahn-Hilliard/Allen-Cahn setting

m�tt + d�t = �xx +�yy + dF(�), (1.15)

F , �, x ∈ R, y ∈ [0, π ] with periodic boundary, m, d � 0. Namely, they assume
that the center manifold of small bounded solutions of the stationary equation
near some rest point is foliated by periodic solutions consisting of level sets of an
appropriate “spatial” Hamiltonian: that is, it has the same solution structure as does
the (planar Hamiltonian) one-dimensional stationary equation

�xx = dF(�) (1.16)

obtained formally by shrinking the y-dimension to zero in (1.15). Likewise, this
structure is present, and used in an important way in the authors’ (related) landmark



108 M. Oh & K. Zumbrun

study of Benjamin-Feir instability in [BMi.1] and in Mielke’s characterization,
using a Lyapunov-Schmidt type reduction, of linearized stability of roll-up solutions
of the Swift-Hohenberg equation [Mi].

It is interesting to compare our results with those of Bridges & Mielke in
[BMi.2]. They derive a relation (see Lemma 4.1 of the reference)

D̃(k,�) = b0(�− Ck2)+O(|�|2 + |k||�| + |k|3) (1.17)

similar to our (6.1), with

b0 �= 0, sgn C = sgn dT /da. (1.18)

Here,� := mλ2+dλ is the generalized spectral parameter arising in the eigenvalue
equation associated with the linearized stability problem, and D̃ is essentially an
Evans function for the reduced eigenvalue equation they obtain by center manifold
reduction. From (1.17), (1.18) there follows immediately the geometric necessary
condition

dT /da < 0 (1.19)

for stability that is their main result: equivalently, a sufficient condition dT /da > 0
for instability. It is to be noted that this is a sideband-type instability condition, and
not a stability index in the sense of our condition (1.7).

This result generalizes well-known results in the one-dimensional case (ob-
tained by dropping y in (1.15)) relating dT /da > 0 to instability, described, e.g.,
in [IR]. However, as pointed out in [BMi.2, discussion below (1.13)], dT /da < 0 in
the one-dimensional case also implies instability, though of a different kind: strong
(large λ) rather than sideband instability. Thus, it might well be that such instabili-
ties occur also in the multi-dimensional case, even though they are not detected by
the sideband instability analysis of Bridges and Mielke.

In this regard, it is interesting to consider the stability of periodic solutions of
the one-dimensional version

m�tt + d�t = �xx + dF(�) (1.20)

of (1.15) from the point of view of this paper. By exactly the same calculations used
to establish (1.7), (6.1), and (1.14), we obtain for this problem a low-frequency
expansion

D(k,�) = γ�− T 2k2 +O(|�|2 + |k||�| + |k|3) (1.21)

and a stability index

� = sgn γ = sgn dT /da; (1.22)

indeed, the calculations reduce substantially in this case. Here,D as usual denotes
the Evans function for the full (unreduced) eigenvalue equation associated with
linearized stability, and � := mλ2 + dλ as above denotes the generalized spectral
parameter arising in that equation. Thus, we not only recover the sideband insta-
bility analysis (1.17)–(1.19) of [BMi], but, through the stability index, detect also
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strong instabilities in case dT /da < 0. That is, we see a similar dichotomy in a
substantially different setting to the one used here to show instability of solutions of
(1.1); in fact, the absence of the “hyperbolic factor”� = ∂ūm/∂u− in the formulae
makes the argument much simpler to apply in this case, and leads to a stronger
result (instability without regard to sgn dT /da). Note that there is no requirement
here on the amplitude of solutions.

The above discussion suggests that an Evans-function analysis based on “spatial
dynamics” might be a possible direction for generalization of the multi-dimensional
analysis of Bridges and Mielke, both to the case dT /da < 0 and to the case of
large-amplitude waves. The Evans function described by Sandstede & Scheel
[SS.2], based on the Galerkin approximation on finite subspaces, appears to be a
natural candidate for such investigations. This would be an extremely interesting
direction for further study.

The analysis of (1.20) also suggests interesting questions in the one-dimensional
case. Our results for the vectorial van der Waals phase-transitional model are now
seen to be natural, though somewhat weaker, generalizations of those for the scalar
phase-transitional model (1.20). But this suggests that it might be possible to obtain
a weakened version of these results also for the vector version � ∈ R

n of (1.20).
Indeed, for more general equations mutt + dut = uxx + G(u), u ∈ R

n, in the
quasi-Hamiltonian case, a low-frequency expansion

D(k,�) = γ�− δT 2k2 +O(|�|2 + |k||�| + |k|3), (1.23)

is obtained, and a stability index � = sgn γ , where the transversality coefficient γ
no longer has a simple geometric interpretation, and the coefficient δ is no longer
explicitly evaluable. Thus, we do seem to obtain a result of instability when δ > 0,
analogous to that obtained for the van der Waals model when dT /da > 0. However,
it is not clear whether δ > 0 can in fact occur; this would be another interesting
issue for further investigation. Likewise, in the conservation law setting, it would
be interesting to determine whether or not the results for the van der Waals model
carry over to the general planar Hamiltonian case, or even to the vector quasi-
Hamiltonian case, without further assumptions restricting the structure of the matrix
∂ūm/∂u−. We suspect strongly that the answer is “no”, but do not so far have any
counterexamples.

Finally, we mention the related analysis carried out by Laugesen & Pugh [LP]
using quite different, variational methods, of stability under periodic perturbations
of periodic solutions (with the same period) of the thin-film evolution model

ht = (f (h)hxx + g(h)h)xx + ah, (1.24)

h ∈ R, in the zero-gravity case a = 0, which as far as we know is the only
other treatment of stability of periodic waves in the conservation law setting (they
obtain results also for a �= 0, but these are not relevant to our discussion). Here
again the stationary-wave equation is a second-order nonlinear oscillator, so planar
Hamiltonian, even though the general (nonzero speed) traveling-wave equation is
third-order. Applying our methods to this problem, we conjecture that it should
be possible to recover a partial version of their results, namely a stability index
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of � = sgn (dT /da), where the derivative dT /da is taken with the area under h
(i.e., the mass) held fixed, yielding instability whenever dT /da < 0.1 (Laugesen
and Pugh in fact characterize stability by this condition, obtaining positive stability
results as well.) What is more interesting is that it might equally well be possible
to carry out a low-frequency expansion analogous to (6.1), to obtain conditions for
sideband instability as well. These were not treated in [LP], and do not seem to be
accessible by their methods.

Remark 1.2. The planar Hamiltonian structure of (1.20) is what makes possible
the explicit evaluation in (1.21) of the coefficient of the quadratic term in k. For
systems of general type, this can usually be done only in some asymptotic limit;
see for example the analyses of [Es, SS.1] in the large-amplitude limit.

Plan of the paper. In Section 2, we frame the problem, describing the equations
and assumptions under consideration, and deriving traveling-wave and eigenvalue
ordinary differential equations. In Sections 3 and 4, we define the Evans function,
following [G.1, G.2], and recall a result of [G.2] relating the spectra of periodic
waves in the large-amplitude (large-period) limit to that of a bounding homoclinic
solution; we also explore briefly the more elementary small-amplitude limit, in
which periodic waves approach a limiting, constant solution. In Section 5, we define
a periodic-stability index analogous to that of the traveling-front or -pulse case, and
establish the fundamental relation (1.7). In Section 6, restricting our attention to
the quasi-Hamiltonian case, we derive by similar techniques the small-frequency
expansion (1.10). This yields, in particular, an appealing formula for the “averaged”,
or effective constant-coefficient equation governing behavior under perturbation,
and also gives further details completing the description of large-amplitude behavior
given by Gardner in [G.2]. Finally, restricting ourselves further to the planar
Hamiltonian case, and applying a Poincaré-Bendixon argument similar to that used
in [GZ], we obtain the sign of the Melnikov integral γ appearing in the stability
index in terms of the sign of the derivative dT /da of period T with respect to
amplitude a in the embedding family of nearby periodic orbits. In Section 7, we
use the analytic tools developed in Sections 5 and 6 to establish rigorous instability
results for the two classes of example systems described above. In Appendix A,
we describe a numerical algorithm for location of the spectrum, and carry out
systematic numerical experiments for the same two classes of example system;
these support and in some cases extend our earlier analytical results. Finally, in
Appendix B, we describe in detail the alternative mechanism for pattern formation
proposed in [AMPZ.4, AMPZ.5], based on metastable configurations of slowly
interacting fronts, driven by linear instability in the constant states at spatial infinity.
As described in the appendix, these could be thought of as unstable nonlinear
diffusion waves generalizing the stable versions described in [LZe].

1 The situation here is somewhat degenerate due to the fact that the traveling-wave equation
reduces in order at speed zero; indeed, condition (H3) of Section 2 is violated. However, the
computation can still be carried out, as discussed in Remark 5.3 below.
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2. Preliminaries

Consider a conservation law (1.1) and a periodic traveling-wave solution u =
ū(x− st), of period T , satisfying the traveling-wave ordinary differential equation

(B(u)u′)′ = f (u)′ − su′, (2.1)

with initial conditions

ū(0) = ū(T ) =: u0,

ū′(0) = ū′(T )=: u1.
(2.2)

Here, and elsewhere, ‘′’ denotes ∂/∂x. Integrating (2.1) from 0 to x, we obtain a
first-order dynamical system

u′ = B−1(u)(f (u)− su− q), (2.3)

ū(0) = ū(T ) = u0, (2.4)

parametrized by (q, s) ∈ R
n+1, where the “total flux”

q := B(u)u′ − f (u)+ su

≡ B(u0)u1 − f (u0)+ su0

is a constant of motion. Notice that the map (u0, u1) → (u0, q) is locally invertible
so long as detB(u0) �= 0, by the Inverse Function Theorem, hence we have lost no
information by this reparametrization.

To emphasize the connection with the traveling-front or -pulse case, we assume
further that there exists some rest point u− of (2.3), i.e., q = f (u−)− su−, so that
we can rewrite (2.3), (2.4) in the final form (1.8), (1.9) given in the introduction.
We shall use this form of the equations throughout the paper. Recall that (1.8) is
exactly the equation satisfied by a front- or pulse-type traveling-wave solution

u = ū(x − st), lim
x→±∞ ū = u±, (2.5)

allowing the convenient comparison of front- or pulse-type and periodic solutions
within the same dynamical system framework. Note, in the planar case of our main
interest, that such a rest point always exists within the region bounded by a periodic
wave, so there is no loss of generality in changing to the new coordinates; moreover,
provided that u− is a nondegenerate rest point, det(df (u−) − sI ) �= 0, the map
u− → q is again locally invertible.

We make the following nondegeneracy assumptions, analogous to those made
in [GZ,ZH] for the traveling-front or -pulse case:

(H0) f , B ∈ C2;
(H1) Re σ(B(ū(x))) > 0 for all x;
(H2) df (u−)− sI invertible.
(H3) The traveling-wave profile ū is a transversal orbit of traveling-wave equation

(1.8) augmented with s′ = 0, under periodic boundary conditions u(0) =
u(T ); in particular, for fixed u−, ū is, locally, the unique T -periodic solution
of (1.8) up to translation, even allowing variation in the speed of propagation s.
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As mentioned above, (H2) concerns nondegeneracy of the parametrization
(u0, u−, s) of (1.8), and thus is not strictly necessary for our analysis of peri-
odic waves below; a similar analysis without this assumption can be carried out in
(u0, q, s) coordinates, with only minor expositional changes.

Note that assumption (H3) does not preclude the interesting case of a planar
Hamiltonian ordinary differential equation possessing a family of nested periodic
solutions, since generically the orbits of the periodic family have distinct periods;
this will in fact be the main source of our examples in Sections 6 and 7.

Now, assume without loss of generality that speed s = 0, i.e., u ≡ ū(x) is
a stationary solution of (1.1). Linearizing (1.1) about ū(·), we obtain the usual
linearized equation (1.4), where now A,B are periodic, rather than asymptotically
constant as in the traveling-front or -pulse context. The eigenvalue equation for L
is likewise

(Bw′)′ = (Aw)′ + λw, (2.6)

where again ‘′’ denotes ∂/∂x, or, written as a first-order system:

W ′ = A(λ, x)W, (2.7)

where W := (w,w′)t and coefficient

A :=
(

0 I

B−1(λI + A′) B−1(A− B ′)

)
(2.8)

is a periodic 2n× 2n matrix.
Through a study of the eigenvalue equations, we shall investigate the weak

spectral stability of ū(·) as a solution of (1.1), as defined in (1.5). That is, we shall
investigate whether or not the linearized operatorL possesses unstable eigenmodes
λ : Re λ > 0. Failure of (1.5) implies exponential linear instability with respect
to test-function initial data, as measured in any norms whatsoever; this can be
seen by applying the evolution operator to φχM for M sufficiently large, where φ
is a (merely bounded) unstable mode and χM(x) := χ(x/M), with χ a smooth
cutoff function that is 1 on [−1, 1] and vanishes off [−2, 2]. By the “almost-finite
propagation speed” property of (1.4), we find that the amplification of the resulting
solution v(t) in going from time zero to time t is of order

‖v(t)‖Lp/‖v(0)‖Lq ∼ t1/p−1/qeRe λt → ∞

as t → ∞, precluding uniform Lq → Lp stability for any choice of p and q.

Remark 2.1. It is shown in [OZ] that strong spectral stability, defined as (1.5)
augmented with appropriate nondegeneracy conditions (conditions (D1)–(D3) of
[OZ]), implies linearizedL1 → Lp asymptotic stability for allp > 1, with uniform
rates of decay equal to those for the standard heat equation.
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3. The Evans function and the Spectrum of L

A brief calculation reveals that L has no point spectrum in Lp, p < ∞. Fol-
lowing [G.1, G.2], we introduce the monodromy matrix

M(λ) := �(T , λ), (3.1)

where �(·, λ) is the fundamental solution of (2.7), i.e.,

� ′ = A(λ, x)�, �(0, λ) = I (3.2)

and T is the period of the coefficients. Then,

W(NT ) = M(λ)NW(0) (3.3)

for any integer N , for any solution W of the eigenvalue equation (2.7), whence W
can be at most bounded and not decaying at ±∞. Indeed, we have:

Proposition 3.1. The spectrum σ(L) consists, for all Lp, precisely of L∞ eigen-
values, i.e., λ such that

det(M(λ)− γ ) = 0, |γ | = 1. (3.4)

Proof. If M(λ) has no eigenvalue of modulus 1, then there exist k “stable”, i.e.,
with modulus less than 1, eigenvalues, and 2n − k “unstable”, or with modulus
greater than 1, eigenvalues, the associated normal modes decaying exponentially at
+∞ and −∞ respectively, and linearly independent. We can thus construct a Green
functionGλ, as in the asymptotically constant case, to obtain a bounded resolvent,
hence λ ∈ ρ(L). For further details, see [He, Z.3, Z.4, OZ].

On the other hand, L∞ eigenvalues can be shown to lie in any Lp spectrum, by
a standard limiting argument: specifically, by showing that

‖χMφ‖Lp/‖(L− λ)χMφ‖Lp → ∞
asM → ∞ for any bounded φ such that (L−λ)φ = 0, where χM(x) := χ(x/M)

for any C∞ cutoff function χ that is 1 on [−1, 1] and vanishes off [−2, 2]. ��
Loosely following [G.1, G.2], we define the Evans function

D(k, λ) := det
(
M(λ)− eikT

)
(3.5)

for any (k, λ) ∈ R × C. Note that D(k, λ) is clearly jointly analytic in k and λ on
all of R × C; thus, it is somewhat better behaved than the corresponding object
in the traveling-front or -pulse case, see [GZ, ZH] for further discussion. From
Proposition 3.1, we have immediately:

Corollary 3.2. The spectrum of σ(L) consists of the set of all λ such that D(k, λ)
vanishes for some k.
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In the terminology of [G.1, G.2], points λ satisfying (3.4) are called γ -eigen-
values; we will call them k-eigenvalues, where γ = eikT . The parametrization
by k gives a more transparent analogy to the analysis by Fourier transform of the
constant-coefficient case, see Example 3.4 just below (or, see [OZ] or [S.1–S.3] for
a deeper discussion of this analogy).

Remark 3.3. More generally,

M(λ) = �̃(L)�̃−1(0) (3.6)

for any matrix �̃ of solutions of (2.7). The coordinate-independent representation
(3.6) is quite useful in computations. Likewise, D(· , ·) is invariant under linear
changes of coordinates,

� → P(x)�, (3.7)

withP periodic. (Note that this includes changes of coordinates at the level of (2.6),
but also more general ones at the level of phase coordinates, (2.7).)

It is interesting to compare this to the spectrum of L considered as an operator
on periodic functions L2[0, T ]. Necessarily discrete, the spectrum of L acting on
the bounded interval [0, T ] corresponds precisely to the set of (k = 0)-eigenvalues
of L acting on the unbounded domain; conversely, (k = 0)-stability corresponds
to stability with respect to periodic perturbations of period T . More generally,
(k = 2πm/n)-stability corresponds to stability with respect to perturbations that
are periodic with period nT ; letting n → ∞, we recover stability with respect to
general perturbations. Applying the Implicit Function Theorem to (3.4), we find
that the spectrum ofL on the real line consists typically of curves of k-spectra, given
by the closure of the spectra of L considered as an operator on periodic functions
over all multiple intervals [0, nT ], n an integer.

Example 3.4. In the constant-coefficient case, Lv := Bvxx −Avx with A, B iden-
tically constant, an elementary computation yields

D(k, λ) = �2n
j=1(e

µj (λ)T − eikT ),

where µj , j = 1, . . . , 2n denote the roots of the characteristic equation

det(Bµ2 − Aµ− λ) = 0 (3.8)

associated with eigenvalue equation (2.7). On the set of λ such that A is diagonaliz-
able, this is easily seen by changing coordinates to a basis in which it is diagonal, see
Remark 3.3; recalling that this set is dense, we obtain the full result by continuity.
Thus, the zero set of D consists of all k, λ such that

µj (λ) = ik (mod 2πi/T ) (3.9)

for some j . Setting µ = ik in (3.8), we obtain the dispersion relation

det(λ− ikA− k2B) = 0, (3.10)

recovering the standard characterization of σ(L) by Fourier transform.
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Note that D(0, 0) = 0 in the example above, for any choice of A, B, since
µ = 0 is an n-fold root of (3.8) at λ = 0; we shall see later that this holds also in
the general variable-coefficient case. An obvious necessary condition for stability
is thus:

(∂/∂k)λ∗(0) is imaginary, (3.11)

where λ∗(k) is any smooth root of D(k, λ∗(k)) ≡ 0 bifurcating from λ∗(0) = 0.
For, otherwise there would exist exponentially unstable modes λ = λ∗(k) for k suf-
ficiently small (in fact for all k > 0 or all k < 0, depending on sgn Re (∂/∂k)λ∗(0)).
We shall make essential use of this simple observation later on.

Remark 3.5. In the constant-coefficient case, relation (3.10) yields expansions

λj (k) = 0 − iaj k + · · · , j = 1, . . . , n, (3.12)

for the n roots bifurcating from λ(0) = 0, where aj denote the eigenvalues of A.
Thus, we obtain the necessary stability condition of hyperbolicity, σ(A) real.

4. A result of Gardner

Before beginning our main analysis, we recall an interesting related result of
Gardner [G.2] concerning a particular (rather typical) kind of large-amplitude
limit for a family of periodic waves. Specifically, consider the situation of a family
of periodic traveling waves {ūε}, approaching as ε → 0 a limiting homoclinic, or
“pulse-type”, solution ū0, the vertex of which is a nondegenerate (i.e., hyperbolic)
rest point of the associated traveling-wave ordinary differential equation. Here, ūε

may be taken without loss of generality to be stationary (i.e., zero speed), and
the partial differential equations they solve to vary smoothly with ε, so long as
ε → 0 is a regular perturbation, with all ε-equations parabolic of some fixed order.
Included in this framework is the usual case of traveling-wave solutions of the same
(parabolic) partial differential equation, with possibly differing speeds, approaching
a homoclinic separatrix in the ε → 0 limit.

In this scenario, as ε → 0, the period T ε of ūε goes to infinity, while the
profile on a single period [0, T ε] approaches uniformly an appropriate shift of the
homoclinic profile ū0, without loss of generality to ū0(x−T/2). Thus, it is natural
to ask whether the stability properties of periodic waves may be related in the
large-period limit to those of the limiting homoclinic wave. The following result of
Gardner shows that this is indeed correct.

Assume as is standard [GZ, ZH] that the linearized operator L0 about the ho-
moclinic wave ū0 has an essential spectrum contained in Re λ � 0, so that the point
spectrum determines spectral stability, (1.5). This point spectrum may be detected
by the vanishing of a traveling-front-type Evans function

D(λ) := det(φ−
1 , . . . , φ

−
k , φ

+
k+1, . . . , φ

+
N), (4.1)

where {φ−
1 , . . . , φ

−
k } and {φ+

k+1, . . . , φ
+
N } are appropriately chosen bases of the

subspaces of decaying solutions at −∞ and +∞ respectively, of the eigenvalue
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equation (2.7). This can be constructed in a way that is analytic in λ on all of
{λ : Re λ > 0}; for details, see [GZ, ZH].

Then, we have:

Proposition 4.1 ([G.2]). The homoclinic limit ū0 is weakly spectrally stable if and
only if the family of periodic waves {ūε} is “weakly spectrally stable in the limit”,
in the sense that the spectra of the associated linearized operators Lε about ūε

satisfy
σ(Lε) ⊂ {λ : Re λ � η(ε)},

with η → 0 as ε → 0. In particular, if the homoclinic ū0 is spectrally unstable,
then so are all ūε for ε sufficiently small.

More precisely:

Proposition 4.2 ([G.2]). Let � ⊂ C be compactly contained in {λ : Re λ > 0},
with ∂� contained in the resolvent set of L0. Then, for ε sufficiently small, the
number of zeros in � of the periodic Evans function D(·, k), for any fixed k, is
equal to the number of zeros of the front-type Evans function D(·).

Proposition 4.1 is an immediate consequence of Proposition 4.2 together with
standard sectorial bounds [Pa, He, Z.3, Z.4] restricting the spectra of elliptic oper-
ators in {λ : Re λ � 0} to a bounded domain. Proposition 4.2 is of more general
application, applying (under suitable, mild assumptions) also to evolution equa-
tions that are not parabolic. From Proposition 4.2 we obtain the revealing picture
that eigenvalues of L0, as ε increases from zero, unfold into loops of the (essen-
tial) spectrum of Lε; looking in reverse, we see that, as ε → 0, the radius of the
corresponding spectral loop decreases to zero (Proof. Denoting the eigenvalue in
question as λ∗, apply Proposition 4.2 on balls B(λ∗, r), with ε(r) → 0 as r → 0.)

In [G.2], (an equivalent version of) Proposition 4.2 was established using the
topological index (Chern number) construction introduced in [AGJ]. Here, we
sketch an alternative, more elementary proof. On an initial reading, the reader
may wish to skip this proof, which is independent from and uses a different set of
techniques than the analysis in the rest of the paper.

Proof of Proposition 4.2. We sketch the proof in the context of (1.1), in which case
k = n and N = 2n in (4.1), where n as in (1.1) is the dimension of u. Analogous
computations hold in the general case. Since both periodic- and front-type Evans
functions are analytic in λ on �̄ ⊂ {λ : Re λ > 0} the result will follow (using
Rouché’s Theorem) by a winding number calculation about the contour � = ∂�,
provided we establish:
Assertion . On any compact subset� of the resolvent set ofL0 intersect {λ : Re λ >
0},

e−α−T ε (−eikT ε )nD(k, λ∗) → C(k, λ)D(λ∗)
as ε → 0, uniformly in k, λ, where C(k, λ) is a nonvanishing (jointly) analytic
function, α−(λ) is analytic, and n as above is the dimension of u.
Proof of Assertion. By the general theory of [AGJ, GZ, ZH], the basis elements φ+

j

and φ−
j approach exponentially, as x → +∞ and −∞ respectively, the stable and
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unstable subspace of the limiting coefficient matrix A∞ := A(±∞) of (2.7) (recall
that in the homoclinic case coefficients are not periodic, but approach limiting
values at the same rate as does the background wave ū0: exponential, in the case
assumed here that ū0(±∞) is a nondegenerate rest point of the traveling-wave
ordinary differential equation). More precisely,

φ−
1 ∧ · · · ∧ φ−

n ∼ φ̄−
1 ∧ · · · ∧ φ̄−

n

and
φ+
n+1 ∧ · · · ∧ φ+

2n ∼ φ̄+
n+1 ∧ · · · ∧ φ̄+

2n,

where · ∧ · · · ∧ · denotes an n-fold exterior algebraic product, or minor, and φ̄±
j

denote basis elements for the manifolds of decaying solutions at ±∞ of the limiting,
constant-coefficient equations

W ′ = A∞W

at infinity. In turn, we have

φ̄−
1 ∧ · · · ∧ φ̄−

n = eα−xV −
1 ∧ · · · ∧ V −

n ,

φ̄+
n+1 ∧ · · · ∧ φ̄+

2n = eα+xV +
n+1 ∧ · · · ∧ V +

2n,

where vectors V −
j and V +

j respectively span the unstable and stable subspaces of
A∞, and α− and α+ denote the trace of A∞ on these respective subspaces.

Now, let the matrix of solutions �̃ in (3.6), Remark 3.3, be chosen by

�̃(0) := (ψ̃−
1 (0), . . . , ψ̃

−
n (0), ψ̃

+
n+1(+T/2), . . . , ψ̃+

2n(+T/2)),

where ψ̃±
j are determined by

ψ̃−
j (0) := φ̄−

j (−T/2), ψ̃+
j (T ) := φ̄+

j (+T/2).

Then, the standard estimates of [GZ, ZH] show that det �̃(λ, T /2) → D(λ) uni-
formly in λ as ε → 0.

Moreover, since D(λ) was assumed not to vanish on �, we have

φ−
1 (x) ∧ · · · ∧ φ−

n (x) ∼ C−(λ)eα+xV +
n+1 ∧ · · · ∧ V +

2n

as x → +∞, which says that decaying solutions at −∞ must be growing at +∞,
and likewise

φ+
n+1(x) ∧ · · · ∧ φ+

2n(x) ∼ C+(λ)eα−xV +
n+1 ∧ · · · ∧ V +

2n

as x → −∞; the transmission coefficientsC± as in [ZH] are determined by solving
appropriate systems of linear equations with analytic coefficients, whose respective
determinants factor as D(λ) times a nonvanishing analytic function. Therefore,

ψ̃−
1 (T ) ∧ · · · ∧ ψ̃−

n (T ) ∼ C−(λ)eα+T/2V +
n+1 ∧ · · · ∧ V +

2n, (4.2)
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and likewise

ψ̃+
n+1(0) ∧ · · · ∧ ψ̃+

2n(0) ∼ C+(λ)e−α−T/2V −
1 ∧ · · · ∧ V −

n . (4.3)

Using the representationD(k, λ) = det
(
�̃(T )−eikT �̃(0))/ det �̃(0) afforded

by Remark 3.3, combined with (4.2), (4.3) and the fact that α+ < 0 < α− (more
precisely, φ+

1 , . . . , φ
+
n decay exponentially, while φ−

n+1, . . . , φ
−
2n grow exponen-

tially), we therefore obtain

D(k, λ)∼det(ψ̃−
1 (T ), . . . , ψ̃

−
n (T ),−eikT ψ̃+

n+1(0), . . . ,−eikT ψ̃+
2n(0))/ det �̃(0)

∼C−C+(−eikT )ne(α−−α+)T /C+e−α+T

=C−(−eikT )neα−T .
(4.4)

On the other hand, Abel’s formula and the exponential convergence A → A∞
as x → ±∞ imply that

D(λ) ∼ det �̃(T /2)

= C0e
−(α−+α+)(T /2) det �̃(T )

∼ C0C− det(V +
1 , . . . , V

+
n , V

−
n+1, . . . , V

−
2n),

(4.5)

where
C0(λ) := e

∫∞
0 (Tr A∞(λ)−Tr A(λ,x))dx = O(1).

Comparing (4.4) and (4.5), we obtain the result, with

C(k, λ) := (
C0 det(V +

1 , . . . , V
+
n , V

−
n+1, . . . , V

−
2n)
)−1

. ��

Remarks. 1. As noted above, the calculation in the proof of Proposition 4.2 also
shows explicitly that the k-loops of the spectrum shrink as T → ∞ to single
eigenvalues, thus illuminating the passage from continuous to point spectrum as
the period T goes to infinity. Though we did not do it here, we could have quantified
the rate of shrinking by a more careful version of the same argument.

2. The final assertion of Proposition 4.1 (the one that mainly concerns us here) is
intuitively clear from consideration of a small multiple of an unstable eigenfunction
of the homoclinic wave given as initial perturbation of a periodic wave – this will
grow exponentially for some time, by the property of “almost finite propagation
speed”, or approximate localization of behavior.

3. In the more general case where the family of orbits corresponding to {ūε}
converges as ε → 0 to a heteroclinic cycle, we can carry out an entirely similar
analysis to show that the k-spectra of the periodic operators Lε, for k fixed, ε suffi-
ciently small, correspond approximately to the union of the spectra of the linearized
operators about each of the heteroclinic traveling waves in the limiting cycle. (This
computation is in the spirit of “multi-bump” calculations carried out for multiple
traveling-pulse solutions in models of nerve-impulse and optical transmission.)
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Applications. In [GZ], there was derived a stability index suitable for the evalu-
ation of stability of traveling-front- or -pulse-type solutions of conservation laws.
Precisely, this index yields the parity of the number of unstable eigenvalues λ such
that Re λ > 0 of the linearized operator about the wave; evidently odd parity es-
tablishes instability, while even parity is consistent with stability but inconclusive.
This index was explicitly evaluated in [GZ] for the class of planar, Hamiltonian
quadratic-flux models, and later in [Z.1] for the equations of van der Waals gas
dynamics: precisely the models we will study here in connection with pattern for-
mation. In both cases, homoclinic, or pulse-type, solutions were found to have odd
index, implying instability, while heteroclinic, or front-type, solutions were found
to have even index, consistent with stability. Though the latter result is inconclu-
sive, there is substantial evidence from other quarters [AMPZ.1, LZ.1, LZ.2] that
the heteroclinic waves are indeed stable.

Combining these results with the result of Proposition 4.1, we find for these
models that periodic solutions approaching a bounding homoclinic solution must
be unstable in the large-period limit, an observation that was already made in [GZ].
This is suggestive, but not conclusive evidence regarding the nature of numerically
observed pattern formation. For, though numerically observed patterns do appear
to lie near limiting separatrices [AMPZ.5], the distance relative to the requirements
of the abstract theory is difficult to quantify. Also, in both cases, the patterns appear
to lie near not only homoclinic but also heteroclinic cycles: 3- and 2-cycles, respec-
tively. Presuming, as evidence suggests, that the component heteroclinic fronts of
such a limiting cycle are stable, we find from Remark 3 above that the approaching
periodic waves are at worst weakly unstable, in the sense that unstable eigenvalues
must have vanishingly small real part as ε → 0. Thus, the question of stability is in
this case much more sensitive. Indeed, our numerical experiments in Appendix A
indicate that such periodic waves are in the large-amplitude (i.e., large-period) limit
stable with respect to period-T /(k = 0) perturbations, but unstable with respect
to perturbations of some other periods/values of k, whereas, recall, the methods of
this section do not distinguish between different k-values. Similar considerations
hold in the small-amplitude limit; see Remark 4.5 below.

These difficulties motivate us to develop, in the following sections, a more direct
and general approach to stability of periodic waves. First, rather than using the front
or pulse stability index to obtain information in the large-period limit, we will define
an analogous stability index in the periodic case, and compute this directly, thus
obtaining, at least in principle, information about small- and intermediate- as well
as large-amplitude waves. This corresponds essentially to determining the Taylor
expansion in λ of the Evans function at the origin (k, λ) = (0, 0). Next, performing
a similar but less generally applicable Taylor expansion in the variable k, we will
obtain a complementary, “long-wave” stability criterion differentiating between
different values of k. Together, these will turn out to be sufficient to obtain rigorous
instability results relevant to the pattern formation phenomena discussed above:
in particular, in the case of the van der Waals equations, for waves of arbitrary
amplitude.
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Remark 4.3. At least formally,2 the same kind of “multi-bump” analysis as sketched
in Remark 3, above, suggests that, for a family of homoclinic orbits {ūε} converging
to a 2-cycle limit ū0, the spectra of the associated linearized operators Lε should
converge as ε → 0 to approximately the union of the spectra of the component het-
eroclinic waves in the 2-cycle. We have conjectured that these heteroclinic waves
are stable, in which case their point spectra consist, in the set {λ : Re λ � 0},
of single translational eigenvalues at λ = 0. Pursuing this line of reasoning, we
deduce that the approaching homoclinic solutions should have, besides the oblig-
atory translational eigenvalue at λ = 0, a second eigenvalue of vanishingly small
real part, the sign of which determines stability or instability. Thus, the stability
of homoclinic solutions would be quite sensitive in the limit as they approach a
2-cycle, a result consistent with the sensitive stability we have deduced for their
nearby periodic waves (which must with them approach the same 2-cycle).

Remark 4.4. It is interesting also to consider the opposite situation from that stud-
ied by Gardner, namely the small-amplitude limit as a family of periodic waves
{ūε} shrinks to a single point, or nonlinear center uc. Specifically, let us consider
the typical situation of a Hopf bifurcation, for which the linearization

v′ = B−1A(uc)v (4.6)

of the traveling-wave ordinary differential equationBu′ = Au about uc possesses a
two-dimensional center manifold corresponding to a single pair of complex eigen-
values α± := ±iτ of the coefficient matrix B−1A(uc). In this scenario, the period
T ε of ūε converges as ε → 0 to T 0 := 2π/τ , while the amplitude shrinks to zero.

Likewise, the eigenvalue equation (2.7) converges as ε → 0 to a constant-
coefficient equation as considered in Example 3.4, withA ≡ A(uc) andB ≡ B(uc).
Referring to (3.8), we find that, for λ = 0, there is an n-fold root µ = 0 and n
remaining roots µ consisting of the eigenvalues of B−1A. Consulting (3.9), and
noting that roots ±iτ are by definition equal to ±2πi/T 0, we find, fixing k = 0,
that λ = 0 is an (n+ 2)-fold root ofD(0, ·) = 0, while all other roots are far from
the origin, and may in fact be stable: this is the case, for example, when B = I .
Thus, stability with respect to periodic perturbations of period T , corresponding
to stability/instability of the roots of the restricted Evans function D(0, ·), may be
quite sensitive in the small-amplitude limit. On the other hand, waves are usually
quite unstable with respect to perturbations on different periods, corresponding to

2 There is a technical difficulty associated with the accumulation of the essential spectrum
at the imaginary axis of the linearized operators about these waves; in particular, note that the
argument of Proposition 4.1 makes essential use, specifically in the derivation of the crucial
estimate (4.4), of the fact that φ+

1 , . . . , φ
+
n are exponentially decaying for x near +∞, while

φ−
n+1, . . . , φ

−
2n are exponentially growing for x near −∞ (which is to say they decay as

x → −∞). It is a standard fact (see, e.g. [He, GZ, ZH]) that this property is equivalent to the
assumption that λ lie uniformly to the right of the essential spectrum boundary of L. On the
other hand, the more general bundle construction of [AGJ, G.1, G.2] should still go through,
in conjunction with analytic continuation into the essential spectrum of the traveling-front-
or -pulse-type Evans function using the Gap Lemma of [GZ, KS]; see, for example, the
related analysis in [DGK].
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zeros ofD(k, ·)with k �= 0: for example, in the case whereB = I ,A has imaginary
eigenvalues ±iτ , and so hyperbolicity, hence also (3.11), is violated.

5. The stability index

Motivated by the discussion of the previous section, we now define directly a
stability index for periodic waves analogous to the one defined in [GZ] for traveling-
front- or -pulse-type solutions. This index, being designed to identify strong insta-
bilities, concerns only (k = 0)-eigenvalues, i.e., instability with respect to periodic
perturbations of the same period T as the background solution ū. For this purpose
the choice of k is expected to be somewhat arbitrary (by continuity; see also the
large-period analysis of the previous section). And, this allows us to make a link to
the previous analyses of heteroclinic waves, for which the Evans function has only
the argument λ.

As in the analysis of [GZ] in the traveling-front or -pulse case, our goal is to
relate sgn D(0, λ) for λ near +∞ to sgn D(0, λ) for λ near 0, for λ restricted
to the real axis, and, in turn, to relate the latter to the dynamics of the traveling-
wave ordinary differential equation. This approach, introduced by Evans in the
pioneering papers [E.1–E.4], and widely generalized in, e.g., [J, AGJ, PW], has
proved to be a powerful tool in the stability analysis of traveling-front or -pulse
type solutions. However, until now it does not seem to have been carried out in the
periodic case.

Large-λ behavior. We begin with the large-λ limit, which admits a particularly
simple treatment.

Lemma 5.1. As λ → +∞ along the real axis, sgn D(0, λ) → (−1)n, where n as
in (1.1) is the dimension of u.

Proof. By standard Gärding-type (i.e., sectorial) energy estimates, L has no spec-
trum in Re λ � 0 for |λ| sufficiently large. Moreover, the Evans function varies
continuously with respect to continuous changes in the coefficients of L, by con-
tinuous dependence with respect to initial data of solutions of ordinary differential
equation. Thus, the quantity

lim
λ→+∞ sgn D(0, λ), (5.1)

with λ restricted to the real axis, is both well-defined and invariant under homotopy
inLwithin the class of strictly elliptic operators with periodic coefficients of period
T . Deforming L to the Laplacian L̄ := (∂/∂x)

2 via the homotopy

θL̄+ (1 − θ)L,

θ going from 0 to 1, we may thus evaluate (5.1) by an explicit and elementary
computation, which we omit. This could alternatively be carried out directly, for
the original operator L, using a rescaling argument as in [GZ]. A related, but much
more complicated, homotopy argument was used in [BSZ] to treat the traveling-
front or -pulse case. ��
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Remark 1. Note that in this periodic context, the sign of (5.1) is an absolute quan-
tity, and does not depend on any choice of coordinates. Likewise, in the homoclinic
case, there is a natural choice of coordinates by which the sign may be made absolute
(namely, choosing initializing bases of the stable subspace at +∞ and the unstable
subspace at −∞ that together form a basis of R

2n with the standard orientation;
see construction of the front- or pulse-type Evans function in the previous section).
By contrast, a significant difficulty confronted in [GZ] for the traveling-front case
was to relate the sign at infinity to the normalization chosen at λ = 0. Indeed, this
limited the original analysis of [GZ] to the case n = 2; for the extension to the
general case, see [BSZ, Z.3].

Small-λ behavior. We next address the crucial small-λ case. By analogy with the
traveling-front or -pulse case, we seek to relate small-λ behavior to the dynamics
of the traveling-wave ordinary differential equations (1.8), (1.9).

Notice, in the present periodic context, that (1.8), (1.9) involve 2n+1 parameters
(u−, u0, s) rather than the n+ 1 parameters (u−, s) of the traveling-front or -pulse
case, since the choice of initial conditionu0 is completely independent of the critical
point u−. For each choice of parameters, there is a unique solution ū(u−,u0,s)(x) of
(1.8). We can thus define the special separation function

d(u−, u0, s) := ū(u−,u0,s)(x)|T0 . (5.2)

Note that this is a bit different from the usual separation function in that the vanishing
of d(·) corresponds to existence of a periodic solution of precisely period T . A
standard Melnikov function would be based, rather, on the Poincaré return map;
here, however, we are concerned only with period T .

Variations

wj := ∂ū/∂u0 · ej , j = 1, . . . , n, (5.3)

satisfy the linearized traveling-wave equation

Bw′ = Aw, w(0) = ej . (5.4)

Without loss of generality, take coordinates such that

ūx(0) = e1; (5.5)

hence

w1 = ūx . (5.6)

Likewise, the variation

z̃1 := −∂ū/∂s (5.7)

satisfies

Bz′ = Az+ (ū− u−), z(0) = 0, (5.8)
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while

wn+j := (∂ū/∂u−) · ej , j = 1, · · · n, (5.9)

satisfy

Bw′ = Aw − f ′(u−)ej , w(0) = 0. (5.10)

We thus have relations

(∂d/∂u0) · ej = [wj ], (5.11)

−∂d/∂s = [̃z1], (5.12)

(∂d/∂u−) · ej = [wn+j ], (5.13)

where ej denotes the j th standard basis element in R
n.

With these definitions, we may restate (H3) in the more quantitative form:

(H3′) ∂d/∂(u0, s) = ([̃z1], [w1], . . . , [wn]) is full rank,

i.e., (recalling that [w1] = [ūx] = 0)

γ := det([̃z1], [w2], . . . , [wn]) �= 0. (5.14)

That is, for a fixed period T and equilibrium u−, the orbit ū(·) is locally unique up to
translations, even allowing variation in s; moreover, it corresponds to a transverse
intersection of the tangent manifolds at ū(0)(u−,u0,s) and ū(T )(u−,u0,s) with respect
to variations in (u0, s).

Then, by the Implicit Function Theorem, there is an (n+1)-dimensional surface

(u−, u1
0) → (u−, u0, s) (5.15)

in parameter space for which ū(u−,u0,s)(·) has period T , where u1
0 := u0 ·e1 denotes

the component of u0 in the e1 = ūx(0) direction. Fixing u1
0 to factor out translation

invariance and fix the phase, we find n directions in which connections persist. We
can thus uniquely specify n variations in ū(u−,u0,s),

w̃n+j ∈ wn+j ⊕ Span(̃z1, w2, · · ·wn), (5.16)

by the requirement

[w̃n+j ] = 0. (5.17)

Finally, we define the “zero-viscosity stability coefficient”:

� := det

(∫
w̃n+1, · · · ,

∫
w̃2n

)
= det(∂ūm/∂u−), (5.18)

where
∫
w̃n+j denotes

∫ T
0 w̃n+j (y)dy and

ūm(u−, u1
0) :=

∫ T

0
ū(u−,u0,s)(y)dy (5.19)
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denotes the mass over one period of the solution ū(u−,u0,s) determined by (u−, u1
0)

via map (5.15); note that this does not depend on u1
0, since it is invariant under

phase shifts. The condition � �= 0 corresponds to the requirement that there exist
no nearby periodic orbits of period T that have the same mass as does ū(·), at
least up to linear order in the perturbation of (u−, u0, s). This has an interesting
heuristic interpretation in the spirit of [FL.1, FL.2] as linearized well-posedness
within a special class of measure-valued solutions, in the limit of zero viscosity,
of an associated Riemann problem having left and right states both equal to the
average value of ū over one period: namely, the class of measure-valued solutions
for which the associated limiting sequence consists of periodic functions with a
fixed ratio between period and viscosity. (Note that average value is preserved
both under compact perturbations of ū(·) and, by conservation of mass, under the
nonlinear flow of (1.1).) The latter restriction comes from the fact that we are here
considering stability only within the class of periodic functions of fixed period T ;
its somewhat awkward form reflects the link via rescaling between the long-time
and small-viscosity limits. For a careful description of measure-valued solutions
and their relation to asymptotic behavior of (1.1), we refer the reader to [FL.1,
FL.2].

Alternatively, � �= 0 may be viewed as the requirement that, near ū, there is
a unique periodic orbit of period T having a given mass ūm over one period: that
is, the “mass map” from perturbation mass to possible time-asymptotic (periodic)
states is both well defined and nonsingular. Since mass per period is preserved
under the flow of (1.1) with periodic boundary conditions, this condition is clearly
necessary for orbital stability of ū within the class of T -periodic solutions, under
perturbations with nonzero mass.

In this sense, � is precisely analogous to the corresponding one-dimensional
zero-viscosity stability coefficient �(0, 1) defined in [ZS, Z.3]3 for the traveling-
front or -pulse case, which has the same relations to linearized well-posedness of
the Riemann problem and nonsingularity of the mass map. With these definitions,
we have the following fundamental relation, analogous to the one described in [GZ,
ZS, BSZ, Z.3] for the traveling-front or -pulse case.

Proposition 5.2. Let (H0)–(H3) hold. Then

D(0, λ) = λn+1(−1)n det
(
df (u−)−1)γ�+ O(λn+2), (5.20)

or, equivalently,

(∂/∂λ)kD(0, 0) = 0, 0 � k � n, (5.21)

and

(∂/∂λ)n+1D(0, 0) = (−1)n(n+ 1)! det df (u−)−1γ�, (5.22)

where γ is the transversality coefficient defined in (5.14) and � = det(∂ūm/∂u−)
is the inviscid stability coefficient defined in (5.18), (5.19).

3 The relation between the stability index, linearized well-posedness of the Riemann prob-
lem, and the mass map was first noted in [GZ], in slightly less explicit form; see [FreZ] for
related applications.
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Remark 5.3. In the case where γ = 0, but ∂d/∂(u0, u−, s) is still of full rank, a
similar calculation gives

(∂/∂λ)n+1D(0, 0) = (−1)n(n+ 1)! det df (u−)−1γ1�,

where γ1 now denotes the determinant of an appropriately chosen alternative trans-
verse set of vectors, and � is as in (5.18), with w̃n+1, . . . , w̃2n chosen again to
span the tangent manifold to the family of nearby periodic orbits, modulo transla-
tion, i.e., satisfying (5.17). (Of course, these cannot now be defined as in (5.16).)
Thus, we see precisely the same relation to linearized well-posedness of Riemann
problems as found in the case of Lax and undercompressive shock waves in [GZ,
ZS, BSZ, Z.3].

Remark 5.4. It may happen that γ → 0 but � remains bounded as (u,u−, s) and
T approach certain limiting values. In this case, we may conclude that � = 0 for
the limiting periodic orbit, since D, as the uniform limit of analytic functions, has
continuous partial derivatives as well. For example, γ = 0 in the small-amplitude,
constant-coefficient limit described in Remark 4.4, since in this case there is a one-
parameter family of periodic orbits with period T = T 0, but also ∂ū/∂u− → I as
this limit is approached; see Remark 5.10, below. Thus, we may conclude that� = 0
in the constant-coefficient case. This is consistent with our previous observation,
obtained by direct calculation, thatD(0, ·)must vanish in this case to order (n+2)
and not (n+ 1).

Proof of Proposition 5.2. Defining the fundamental set of solutionsW1, . . . ,W2n
of eigenvalue ordinary differential equation (2.7) by initialization

(W1, . . . ,W2n)(0) =
(

I 0
B−1A − B−1df (u−)|0

)
, (5.23)

and writing Wj =: (wj ,w′
j )
t , we obtain by Remark 3.3 the representation

D(0, λ) = det([W1], . . . , [W2n])/ det(W1(0), . . . ,W2n(0))

= (−1)n det

([w1], . . . , [w2n]
[w′

1], . . . , [w′
2n]
)
/ det

(
B−1(u0)df (u−)

)
.

(5.24)

With this choice of coordinates, the wj(λ) defined here agree at λ = 0 with
the traveling-wave ordinary differential equation variations wj defined in (5.4),
(5.9), satisfying the (second-order) linearized traveling-wave ordinary differential
equation

(Bw′)′ = (Aw)′. (5.25)

Likewise, variations zj := wjλ are seen at λ = 0 to satisfy

(Bz′)′ = (Az)′ + wj , z(0) = z′(0) = 0, (5.26)

and yj := wjλλ to satisfy

(By′)′ = (Ay)′ + 2zj , y(0) = y′(0) = 0. (5.27)
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In particular, z1 satisfies

(Bz′)′ = (Az)′ + ūx, z(0) = 0, (5.28)

hence

Bz′ = Az+ (ū− u0), z(0) = 0. (5.29)

Comparing (5.29) with (5.8), (5.10), we find that

z1 = z̃1 modulo span (wn+1, · · ·w2n). (5.30)

Next, integrating (5.25) from 0 to T , we find that, at λ = 0,

B(u0)[w′
j ] = [Bw′

j ] = [Awj ] = A(u0)[wj ]; (5.31)

hence

[w′
j ] − B−1A(u0)[wj ] = 0 (5.32)

for all 1 � j � 2n. Likewise, integrating (5.26) and (5.27) gives

[z′j ] − B−1A(u0)[zj ] = B−1(u0)

∫ T

0
wj , (5.33)

[y′
j ] − B−1A(u0)[yj ] = 2B−1(u0)

∫ T

0
zj , (5.34)

respectively. In the special case j = 1, (5.33) gives

[z′1] − B−1A(u0)[z1] = B−1(u0)

∫ T

0
ūx = ū|T0 = 0. (5.35)

Now, Taylor expanding formula (5.24) about λ = 0, we obtain, for small λ,

D(0, λ) = (−1)n det
(
df (u−)−1B(u0)

)

× det

([w1] + λ[z1] + 1
2λ

2[y1] + · · · , . . . , [w2n] + λ[z2n] + · · ·
[w′

1] + λ[z′1] + 1
2λ

2[y′
1] + · · · , . . . , [w′

2n] + λ[z′2n] + · · ·
)
.

(5.36)

Subtracting B−1A(u0) times the first row from the second, and using (5.33), (5.34)
and

∫
w1 = [w1] = [w′

1] = 0, we obtain

D(0, λ) = (−1)n det
(
df (u−)−1B(u0)

)

× det

(
λ[z1] + · · · , [w2] + · · · , . . . , [w2n] + · · ·

λ2B−1
∫
z1+ · · ·, λB−1

∫
w2 + · · ·, . . . , λB−1

∫
w2n + · · ·

)

= λn+1(−1)n det
(
df (u−)−1) det

([z1], [w2], . . . , [w2n]∫
z1,

∫
w2, . . . ,

∫
w2n

)

+ O(λn+2),

(5.37)
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where
∫

denotes
∫ T

0 . Applying now appropriate column operations, we obtain from
(5.16), (5.17), (5.30) that

D(0, λ) = λn+1(−1)n det
(
df (u−)−1)

× det

( [̃z1], [w2], . . . , [wn], 0, . . . , 0∫
z̃1,

∫
w2, . . . ,

∫
wn,

∫
w̃n+1, . . .

∫
w̃2n

)

+ O(λn+2)

= λn+1(−1)n det
(
df (u−)−1)

× det([̃z1], [w2], . . . , [wn]) det
( ∫

w̃n+1, . . . ,

∫
w̃2n

)

+ O(λn+2)

= λn+1(−1)n det
(
df (u−)−1)γ�+ O(λn+2),

(5.38)

as claimed. ��

Remark 5.5. The solutions wn+1, . . . , w2n, satisfy the inhomogeneous equations

Bw′
n+j = Awn+j − df (u−)ej , wn+j (0) = 0. (5.39)

Thus, they also can be expressed in terms of the fundamental solution ψ(x) of the
n-dimensional linearized traveling-wave equation

Bw′ = Aw (5.40)

(different from the fundamental solution� of the 2n-dimensional eigenvalue ordi-
nary differential equation (2.7)) via Duhamel’s principle:

wn+j (x) = −
( ∫ x

0
ψ(x)ψ(y)−1dy

)
df (u−)ej , (5.41)

and therefore

[wn+j ] = wn+j (T )

=
(
ψ(T )

∫ T

0
ψ(y)−1dy

)
df (u−)ej .

(5.42)

Likewise,

[wj ] = (ψ(T )− ψ(0))ej , (5.43)
∫
wj =

( ∫ T

0
ψ(y)dy

)
ej , (5.44)

[̃z1] = ψ(T )

∫ T

0
ψ(y)−1(ū(y)− u−)dy. (5.45)

That is, formula (5.18) for � can be interpreted as a sort of Melnikov integral,
like the corresponding object in the homoclinic (undercompressive) case of the
traveling-front or -pulse theory [GZ, Z.1].
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Remark 5.6. The quantity [z1] can clearly be substituted for [̃z1] in (5.14), since
the two quantities are equal, modulo Span(wn+1, . . . , w2n).

The stability index. With these preparations, we now define the stability index:

� := sgn (∂/∂λ)n+1D(0, 0)D(0,+∞). (5.46)

We have immediately:

Proposition 5.7. Let (H0)–(H3) hold. Then, the parity of the number of unstable
eigenvalues of L, considered as an operator on the space of functions periodic on
[0, T ] is even if � is positive, and odd if � is negative. In particular, � � 0 is
necessary for weak spectral stability as defined in (1.5).

Proof. Evidently, D(0, λ) is invariant with respect to complex conjugation, i.e.,
D(0, λ̄) = D̄(0, λ), by the definition of D(· , ·). This yields the familiar fact that
the eigenvalues of the real-valued operator L, considered as acting on the periodic
functions on [0, T ], are either real or else belong to complex conjugate pairs, whence
the parity of the number of unstable eigenvalues is equal to the parity of the number
of unstable real eigenvalues. But, this is clearly determined by � in the manner
stated. ��
Remark 5.8. The strict inequality � > 0 is necessary for strong spectral stability
as defined in [OZ]. In particular, it is necessary for L1 → Lp linearized stability
for any p < ∞, by Proposition 1.5 and condition (D̃3)(i) of [OZ] combined with
(5.46), (5.10) above. This is analogous to the situation in the traveling-front or
-pulse case; see discussion, Section 11 [ZH], of the “neutrally stable case”.

Combining the results of Lemma 5.1, Proposition 5.2, and Proposition 5.7, we
obtain the main result of this section, an expression for � involving only geometry
of the phase space of the traveling-wave ordinary differential equation:

Theorem 5.9. Let (H0)–(H3) hold. Then,

� = sgn γ� det df (u−), (5.47)

where γ and � = det(∂ūm/∂u−) are as defined in (5.14) and (5.18), (5.19), re-
spectively. In particular,

sgn γ� det df (u−) � 0 (5.48)

is necessary for weak spectral stability of ū.

Remark 5.10. In the small-amplitude limit discussed in Remark 4.4, recall that
D(0, ·) typically has n+ 2 zeros lying near the origin λ = 0, and the rest lying in
the strictly stable complex half-plane Re λ < 0. By Propositions 5.2 and 5.7, n+ 1
of these in fact lie precisely at λ = 0, with the remaining small eigenvalue being
stable, unstable, or zero according as the stability index � is positive, negative, or
zero. Therefore, in this case, � � 0 is necessary and sufficient for weak spectral
stability with respect to periodic perturbations of period T .
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Remark 5.11. With appropriate choice of the rest point u−, it can be shown that
the key quantity (∂ūm/∂u−) in (5.10) approaches the identity in both the small-
amplitude and the large-amplitude homoclinic limits considered earlier. For the
small-amplitude limit described in Remark 4.4, we may choose u− to be the rest
point lying near the nonlinear center uc to which the family of periodic orbits
converges; for the homoclinic limit, we choose u− to be the rest point lying near
the vertex of the homoclinic orbit. We omit the standard, but somewhat involved
calculations giving these results.

This has an interesting implication in the planar case, n = 2. For, in the simplest
case, where γ is nonvanishing for the entire family of periodic waves, we find by
Theorem 5.9 that the sign of � depends entirely on sgn det(df (u−)). The latter
is negative when u− is set equal to a homoclinic vertex, since this is a saddle
of the traveling-wave ordinary differential equation, so that det(B−1df (u−)), and
thus also det(df (u−)) = detB det(B−1df (u−)), is negative, as the product of a
positive and a negative eigenvalue. But, by similar reasoning, it is positive when u−
is set equal to a nonlinear center, since then the eigenvalues of det(B−1df (u−)) are
complex conjugates. Thus, combining this observation with that of Remark 5.10 just
above, we find that if large-amplitude waves are spectrally unstable with respect
to period-T perturbations, then small-amplitude waves are necessarily stable in
this sense. Regarding period-T perturbations, we thus have the global picture of
a single, small real eigenvalue detaching from the origin at amplitude zero and
initially moving into the stable complex half-plane, later crossing zero again at
some critical intermediate amplitude to become unstable thereafter; this picture is
borne out by our numerical investigations in Appendix A. On the other hand, we
see that the stability index by itself is not likely to be effective across the range of
all amplitudes, even when it is useful in the large-amplitude limit, and for small
amplitudes is usually not useful.

Remark 5.12. By calculations similar to those in the proof ofAssertion 4 (see proof
of Proposition 4.2), the expression for γ given in (5.14) may, in the large-amplitude
homoclinic limit discussed in Section 4, be related to a corresponding quantity
arising in the study of stability of homoclinic, or pulse-type, traveling waves. For
n = 2, this is the quantity � defined in (3.18), Lemma 3.4 of [GZ]; a similar
quantity arises in the general case [BSZ, Z.3]. Combining this observation with
that of Remark 5.11 above, we can show that the sign of the periodic stability index
converges in the large-amplitude homoclinic limit, to the sign of the traveling-pulse-
type index for the limiting homoclinic wave. We omit the associated calculations
as lying too far from the direction of our main interest; however, see the related,
explicit computation (6.26) in Section 6 below.

6. The quasi-Hamiltonian case

We next restrict attention to the case where the traveling-wave ordinary differ-
ential equation (1.8) is “quasi-Hamiltonian” in the sense that it admits an integral
of motion for each (u−, u0), with s held fixed at the base value under consideration,
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without loss of generality s = 0. This situation arises in some physical applications;
see Section 7. Furthermore, it has a particular mathematical interest; as shown in
[OZ], this is essentially the only circumstance under which we can expect standard
“diffusive”, or asymptotic L1 → Lp linearized stability of periodic solutions: in
the generic case, linearized L1 → Lp stability can hold only for p = ∞, and is
bounded at best; see [OZ], Proposition 1.5 and discussion surrounding condition
(D̃3).

With this additional structure, we may determine not only the low-frequency
behavior of the Evans function with respect to λ, but (to lowest order) the Taylor
expansion with respect to (k, λ):

Theorem 6.1. Let (H0)–(H3) hold, and suppose in addition that the traveling-
wave ordinary differential equation (1.8) is quasi-Hamiltonian for the value of s
associated with solution ū. Then, for k, λ sufficiently small,

D(k, λ) = γ λ det
(− λ(∂ūm/∂u−)df (u−)−1 − ikT

)

+ O((|k| + |λ|)n+2),
(6.1)

where γ and (∂ūm/∂u−) are as defined in (5.14) and (5.18), (5.19), respectively.

Proof. By assumption, (1.8) admits an integral of motion H(u−, u) for each
(u−, u0), i.e.,

H(u−, u(t)) ≡ H(u−, u0) (6.2)

for all solutions u(t), where s is held fixed. Then, perturbing the periodic orbit ū
with respect to these parameters, we find that variations

[wj ] := (∂/∂u0)
(
ū(u−,u0,s)(T )− ū(u−,u0,s)(0)

)
, (6.3)

[wn+j ] := (∂/∂u−)
(
ū(u−,u0,s)(T )− ū(u−,u0,s)(0)

)
(6.4)

must have range lying tangent to the hypersurface H(u−, u) ≡ H(u−, u0) at the
base values of (u−, u0) associated with ū, i.e., orthogonal to ∇uH(u−, u0). For,
differentiating H(u−, ū(T ))−H(u−, ū(0)) = 0 with respect to u0 yields

0 = ∇uH(u−, u0)[∂ū/∂u0], (6.5)

where, as usual, [f ] denotes f (T )− f (0); likewise, differentiating with respect to
u− yields

0 = ∇uH(u−, u0)[∂ū/∂u−] + ∇u−H(u−, u0)I − ∇u−H(u−, u0)I

= ∇uH(u−, u0)[∂ū/∂u−]. (6.6)

Moreover, w1 := ūx(0) is also orthogonal to ∇uH(u−, u0), since

0 = (d/dx)H
(
u−, ū(0)

) = ∇uH(u−, u0)ūx(0). (6.7)

Noting that [w2], . . . , [wn] must be independent, by (H3′), we thus find that
they are by themselves a basis for

Span {[wj ]} ⊕ Span (w1), (6.8)
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with [̃z1] not required. This simply reflects the fact that, by the Implicit Function
Theorem, the full (n + 1)-parameter family of nearby periodic orbits of period T
can be generated with s held fixed; for, thanks to (6.2), only n− 1 conditions must
be satisfied to obtain existence.

Defining W1, . . . ,W2n again as in (5.23), but allowing k to vary, we obtain in
place of (5.24) the representation:

D(k, λ) = det
(− df (u−)−1B(u0)

)

× det
([W1]−(eikT −I )W1(0),. . . ,[W2n]−(eikT −I )W2n(0)

)
.

(6.9)

Taylor expanding this about (k, λ) = (0, 0), we thus find for small k, λ that

D(0, λ) = det
(− df (u−)−1B(u0)

)

× det

([w1]+λ[z1]−ikT w1(0)+· · · , . . . , [w2n]+λ[z2n]−ikT w2n(0)+· · ·
[w′

1]+λ[z′1]−ikT w′
1(0)+· · · ,. . . , [w′

2n]+λ[z′2n]−ikT w′
2n(0)+· · ·

)
.

(6.10)

Recalling (5.4), (5.9), we find that

(
w′
j − B−1Awj

)
(0) = 0,

(
w′
n+j − B−1Awn+j

)
(0) = −B−1(u0)df (u−)ej

for j = 1, . . . , n. Thus, subtracting B−1A(u0) times the first row from the second,
we obtain as in (5.37) the expression

D(k, λ) = det
(− df (u−)−1)

× det

(
λ[z1] − ikT w1(0), [w2], . . . , [w2n]

λ2
∫
z̃1, λ

∫
w2, . . . , λ

∫
w2n + ikT df (u−)en

)

+ O((|k| + |λ|)n+2)

= det
(− df (u−)−1)

× det

(
λ[z1], [w2], . . . , [w2n]
λ2
∫
z̃1, λ

∫
w2, . . . , λ

∫
w2n + ikT df (u−)en

)

+ O((|k| + |λ|)n+2),
(6.11)

where in the final equality we have used (6.8) to eliminate term ikT w1(0).Applying
column operations as in (5.38), we thus obtain

D(k, λ) = det
(− df (u−)−1) det

(
λ[̃z1], [w2], . . . , [wn], 0∫
z̃1,

∫
w2, . . . ,

∫
wn, M(k, λ)

)

+ O((|k| + |λ|)n+2),
(6.12)
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where the n× n block M is given by

M(k, λ) :=
( ∫

w̃n+1 + ikT df (u−)e1, . . . ,

∫
w̃2n + ikT df (u−)en

)

= (∂ūm/∂u−)+ ikT df (u−)I.
(6.13)

Finally, factoring the determinant on the right-hand side of (6.12) using its block
triangular form yields

D(k, λ) = γ λ det
(
λ(∂ūm/∂u−)+ ikT df (u−)

)
det

(
− df (u−)−1

)

+ O((|k| + |λ|)n+2).
(6.14)

Rearranging (6.14), we obtain (6.1). ��
Notice that result (6.1) is consistent with our previous result (3.3). As an im-

mediate consequence, we obtain:

Corollary 6.2. Let (H0)–(H3) hold, and suppose in addition that the traveling-
wave ordinary differential equation (1.8) is quasi-Hamiltonian for the value of s
associated with solution ū. If � := det(∂ūm/∂u−) �= 0, then, for k, λ sufficiently
small, the spectrum of L consists of (n+ 1) smooth curves:

λ0(k) = o(k), (6.15)

λj (k) = −iαj kT + o(k), j = 1, . . . , n, (6.16)

where αj denote the eigenvalues of

df (u−)(∂ūm/∂u−)−1, (6.17)

and where (∂ūm/∂u−) is as defined in (5.18), (5.19). In particular, the “effective
hyperbolicity” condition

σ
(
df (u−)(∂ūm/∂u−)−1) real (6.18)

is necessary for weak spectral stability of ū.
If � = 0, then (6.15) holds as before. Likewise, (6.16) holds with αj := β−1

j ,

whereβj denote the eigenvalues of (∂ūm/∂u−)df (u−)−1, for all j such thatβj �= 0.
Associated with vanishing βj , however, are nonsmooth curves

λ(k) ∼ kp/q,

p/q not an integer; in particular, det(∂ūm/∂u−) = 0 implies spectral instability.

Remark. Note that � = 0 in this (quasi-Hamiltonian) case implies spectral, i.e.,
exponential instability, since then det(∂ūm/∂u−) = 0 by (5.10) together with (H2)
and (H3’). This is to be compared with the (apparently) more subtle situation of
the general case; see Remark 5.8.
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The formulae of Corollary 6.2 may be regarded as the natural generalizations
of the constant-coefficient formulae of Remarks 3.5 and 4.4. In particular, compar-
ing (6.16), (6.17) to (3.12), we see that df (u−)(∂ūm/∂u−)−1 plays in the quasi-
Hamiltonian case the role played in the constant-coefficient case ū ≡ u0 = u−
by A := df (u−). That is, df (u−)(∂ūm/∂u−)−1 may be regarded as an “aver-
aged” or “effective” convection matrix for the variable-coefficient case (indeed,
this is shown in [OZ] to hold true in a very strong sense). Note, further, that
df (u−)(∂ūm/∂u−)−1 converges in the small-amplitude limit to df (u−), since,
as pointed out in Remark 5.11, (∂ūm/∂u−) → I .

Likewise, in the large-amplitude, homoclinic limit considered by Gardner, we
find again (Remark 5.11) that df (u−)(∂ūm/∂u−)−1 converges to df (u−), where
u− now denotes the vertex of the homoclinic orbit, i.e., the limiting state of the
homoclinic wave as x → ±∞. Thus, the spectral curves described in (6.16), (6.17)
correspond to first order in k with the spectral curves of this limiting, constant state,
which are in turn curves of essential spectrum for the linearized operator about
the homoclinic wave: for a detailed discussion, see the introduction of [OZ]. The
remaining curve (6.15) corresponds to the translational (continuous) eigenfunction
at λ = 0 associated with the spatial derivative ūε of the profile under consideration.

This extends to the small-frequency regime the picture described by Gardner
(Section 4) in the large-amplitude homoclinic limit. It can be shown by an argument
similar to that of Section 4 (together with the observations made in the introduction
of [OZ] regarding structure of the resolvent set of the limiting homoclinic profile)
that the former curves in fact globally approach the essential spectrum curves of
the limiting homoclinic wave, in the sense that they approach on a ball of radius
going to infinity with the period; thus, they extend arbitrarily far as the homoclinic
limit is approached. We conjecture without proof that the latter curve belongs to
a closed loop of spectra, shrinking in the large amplitude limit to the eigenvalue
λ = 0 associated with the translational eigenfunction ū0

x of the limiting, homoclinic
wave.

Remark. The Taylor expansion of D can likewise be carried out in the general
(non-quasi-Hamiltonian) case, but does not seem amenable to any such simple
interpretation.

The planar Hamiltonian case. Finally, we consider the planar case, n = 2, under
the assumption that the traveling-wave ordinary differential equation (1.8) is in fact
Hamiltonian for all u−, with s held fixed at the base speed associated with ū, i.e.,

0 = Tr du
(
B−1(u)(f (u)− f (u−)− s(u− u−))

)
. (6.19)

This is the class from which we will take our example systems in the following
section. Note that, for B ≡ constant, condition (6.19) reduces to

0 = Tr
(
B−1(df (u)− sI )

)
, (6.20)

which is evidently independent of u−; with this observation, it is straightforward
to construct examples.



134 M. Oh & K. Zumbrun

−0.2 0 0.2 0.4 0.6 0.8

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 1. The planar Hamiltonian case: bounding homoclinic cycle.

From (6.19), we find that the traveling-wave equation may be expressed as a
Hamiltonian system

u′ = B−1(u)(f (u)− f (u−)− s(u− u−)) = ∇su⊥H(u, u−), (6.21)

for an appropriate Hamiltonian H(u, u−), whence H(u(t), u−) is an integral of
motion; in particular, we see that the planar Hamiltonian systems are a subclass of
the quasi-Hamiltonian systems defined above.

Existence of an integral of motion in the planar case implies considerable struc-
ture of the phase portrait of the traveling-wave ordinary differential equation. For
example, in the situation we consider, where the phase portrait contains a hetero-
clinic poly-cycle, we find that the interior of the cycle must be entirely filled with
cycles, either periodic or heteroclinic. In the simplest case, where there is only a
single nonlinear center uc enclosed, the interior must be made up entirely of pe-
riodic orbits; see, for example, the depiction of the homoclinic case in Fig. 1. In
this situation, we may globally parametrize these orbits by amplitude a, defined as
distance from center uc along some (fixed) curve of steepest descent if uc is a local
maximum, or ascent if uc is a minimum. In more general situations, we may still
define a local parametrization in this way, in the vicinity of any fixed periodic orbit
ū.

Let us consider the period T as a function of amplitude, T = T (a). Then, we
have:

Lemma 6.3. Let (H0)–(H3) hold, and suppose in addition that the traveling-wave
ordinary differential equation (1.8) is planar Hamiltonian for the value of s asso-
ciated with solution ū, with B ≡ constant. Then,

sgn γ = sgn (dT /da) (6.22)

for γ := det([̃z1], [w2]) as in (5.14).
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Proof. Letw1,w2 denote the variations defined in (5.4), (5.9), as usual normalizing
w1 = ūx(0) = e1. We may locally parametrize amplitude by location of u0 along
a curve tangent to the outward normal η = ±e2 at ū(0) to the orbit {ū(x)}, so that

da/du0 = η

at ū(0), where a(u0) is the amplitude of the orbit corresponding through u0, with
(u−, s) held fixed. Differentiating the identity

ū(u−,u0,s)(T (a(u0)))− ū(u−,u0,s)(0) ≡ 0

with respect to u0 in direction e2, we thus obtain

[w2] + ūx(T )(dT /da)(η · e2) = 0,

or

[w2] = Cūx(0) = Cūx(T ) = Ce1, (6.23)

with

sgn (C) = sgn (dT /da)sgn det(η, ūx(0)). (6.24)

The quantity

γ = det([̃z1], [w2]) = C det(̃z1(T ), ūx(T )) (6.25)

can therefore be conveniently calculated, using the inhomogeneous Abel’s equa-
tion/Duhamel principal as a Melnikov integral:

γ = C

∫ T

0
e
∫

Tr (B−1A) det(B−1(ū− ū−), ūx)dx

= C

∫ T

0
det(B−1(ū− u−), ūx)dx,

(6.26)

where in the second equality we have used the Hamiltonian property Tr (B−1A) ≡
constant. More precisely, this is found by setting γ (t) := C det(̃z1(t), ūx(t)) and
observing that γ satisfies

γ ′ = Tr (B−1A)γ + C det(B−1(ū− u−), ūx), γ (0) = 0

by (5.4) and (5.7), (5.8); for similar calculations in the traveling-front or -pulse
case, see [GZ].

But, (6.26), as in [GZ], may be viewed as a contour integral and explicitly
evaluated using the Gauss-Green formula as

γ = Csgn det(η, ūx)
∫

∂�

B−1(u− u−) · η ds

= Csgn det(η, ūx)
∫

�

div
(
B−1(u− u−)

)
du

= Csgn det(η, ūx)|�|Tr (B−1),

(6.27)

where � is the region bounded by the orbit ū(·), and η denotes the outward unit
normal. Recalling that Tr B−1 > 0 by (H1), and combining with (6.25), we are
done. ��
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Remarks. 1. Formulae (6.26), (6.27) clearly show that

det([z1], [w2]) = det([̃z1], w2]),
as asserted in Remark 5.6, since substitution of u0 for u− leaves the result un-
changed.

2. Comparison of formula (6.26) to that given for � in (3.18), Lemma 3.4 of
[GZ] shows explicitly the convergence described in Remark 5.12, since the two
formulae are formally identical, differing only in the choice of profile ū.

3. Near a bounding poly-cycle, it is clear that dT /da > 0, indeed dT /da →
+∞ as the boundary is approached. Thus, γ > 0, and in combination with the
observation of Remark 5.11 that (∂ūm/∂u−) → I and det df (u−) < 0 in the
homoclinic case, we find that sgn � < 0, recovering the result of instability obtained
by Gardner’s technique together with the homoclinic instability results of [GZ, Z.1].

It is interesting to note that our periodic instability result for the homoclinic
limit makes no requirement on the shape of the limiting homoclinic orbit, whereas
the general homoclinic instability results of [GZ] require that the orbit be convex
in the vicinity of its vertex. Indeed, in the nonconvex case, the stability index of
the homoclinic orbit is positive, consistent with stability, an apparent contradiction
with Remark 2 just above. In the quadratic-flux case considered in [GZ], it was
shown that all homoclinic orbits are (globally) convex, hence this situation does
not arise. Likewise, it does not arise in the van der Waals models studied in [Z.1]
(described in the following section, just below), for which orbits are graphs over
the v axis. However, it can certainly arise in more general situations; see [Z.4].

A closer inspection quickly resolves this apparent paradox. For, it is readily
seen that a planar homoclinic orbit that is nonconvex at its vertex saddle must
enclose a second, interior poly-cycle, containing the interior branches of its stable
and unstable manifolds. Periodic orbits are thus bounded by both the interior poly-
cycle and the exterior homoclinic orbit, so that the argument for Remark 2 does
not apply. Indeed, considering the simplest case that the interior poly-cycle is a
second, locally convex homoclinic orbit, and applying the “multi-bump” heuristics
of Remark 4.3 and Remark 3 above it, we obtain, formally, the correct prediction
of an odd multiplicity of unstable eigenvalues for the periodic orbit, as the sum of
even and odd multiplicities.

Combining the results of Theorem 5.9, Corollary 6.2, and Lemma 6.3, we
obtain, finally, the composite stability test:

Corollary 6.4. Let (H0)–(H3) hold, and suppose also that the traveling-wave ordi-
nary differential equation (1.8) is planar Hamiltonian for the value of s associated
with solution ū, with B ≡ constant. Then, provided that (∂ūm/∂u−) is invertible,
both

sgn
(
dT /da

)
det

(
df (u−)(∂ūm/∂u−)−1) � 0 (6.28)

and

σ
(
df (u−)(∂ūm/∂u−)−1) real (6.29)
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are necessary for weak spectral stability of ū, where dT /da is the rate of change of
period with respect to amplitude, with amplitude measured in the direction of the
outward normal to the orbit {ū(x)}. If det(∂ūm/∂u−) = 0, on the other hand, then
ū is spectrally unstable. (Recall, dT /da �= 0 by (H3′) combined with Lemma 6.3.)

7. Calculations for example systems

Using the complementary stability conditions of Corollary 6.4, we now derive
instability results for the two classes of model, planar Hamiltonian systems that
were considered in [Z.1] and [GZ]: van der Waals gas dynamics with artificial
dispersion-viscosity, and the class of planar Hamiltonian models with quadratic flux
functions. These are directly relevant to the issue of oscillatory pattern formation,
being prototypes for the two kinds of systems in which these patterns have been
observed numerically.

Van der Waals gas dynamics. The viscous-capillary p-system,

vt − ux = ε1vxx,

ut + p(v)x = ε2uxx,
(7.1)

with nonmonotone stress relation p, has been studied by several authors as a model
for dynamical phase transitions in compressible van der Waals fluids/solids un-
dergoing isothermal motion (see, for example, [Ja,Sh.1–Sh.3,Sl.1–Sl.5,ST]). Here,
ε1 > 0 and ε2 > 0 are related to the coefficients of viscosity and capillarity of
the medium (ε1 + ε2 and ε1ε2, respectively), v denotes specific volume/strain,
ũ := u + ε1vx is the velocity of the medium, and p(v) denotes pressure/stress. A
typical stress relation is p = −W ′(v), where

W(v) = 1
2 (1 − v2)2 (7.2)

is the standard “double-well” potential.
In physical, (v, ũ) coordinates, equations (7.1) take the form

vt − ũx = 0,

ũt + p(v)x = (ε1 + ε2)ũxx − (ε1ε2)vxxx,
(7.3)

which is sometimes more natural for computations.

Existence. The traveling-wave ordinary differential equation associated with (7.1)
(for periodic and front- or pulse-type waves alike) is

(
v

u

)′
=
(

1
ε1

0
0 1

ε2

)[( −u+ u−
p(v)− p(v−)

)
− s

(
v − v−
u− u−

)]
, (7.4)
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where s denotes the speed of propagation of the wave. For speed s = 0, this becomes
a Hamiltonian system with Hamiltonian

H(v, u, v−, u−) := 1

2ε1
(u− u−)2 − 1

ε2
P(v)

= 1

2ε1
(u− u−)2 − 1

ε2

(
W(v−)−W(v)+W ′(v−)(v − v−)

)
,

(7.5)

where

P(v) :=
∫ v

v−

(
p(v−)− p(z)

)
dz. (7.6)

For nonmonotone p, the orbits of (7.4), corresponding to level sets of H , will
on some range of v− include one-parameter families of periodic orbits bounded by
heteroclinic or homoclinic cycles. For example, in the case of (7.2), there appears for
v− = ±1 a 2-cycle of heteroclinic orbits connecting (v−, u−) to (−v−, u−) in either
direction, respecting the vertical symmetry ofH about the line u = u−; within this
cycle is a one-parameter family of periodic orbits converging in the small-amplitude
limit to the nonlinear center (0, u−). For v− in the range [0.55, 1) or (−1,−0.55],
there appears a single homoclinic orbit with vertex at v−, likewise enclosing a one-
parameter family of periodic orbits about a nonlinear center (vc, u−). Together,
these constitute all periodic solutions of (7.4) with s = 0 for the double-well case
(7.2).

We may deduce by energy considerations that traveling periodic solutions of
(7.1) must in fact be stationary, so that the Hamiltonian solutions just described
constitute all periodic solutions of the van der Waals system (7.1). For, as noted in
[Se.1, Se.2], the flow of (7.1), for periodic solutions of period T , serves to decrease
the mechanical energy

Ẽ(v) := E(v)+
∫ T

0

1
2 ũ

2 dx = E(v)+
∫ T

0

1
2 (u+ ε1vx)

2 dx, (7.7)

where

E(v) :=
∫ T

0

(ε1ε2

2
|v′|2 + P(v)

)
dx (7.8)

denotes the Cahn-Hilliard/van der Waals energy for the associated equilibrium
problem. More precisely,

dẼ/dt = −(ε1 + ε2)

∫ T

0
|ũx |2dx, (7.9)

as may easily be derived from (7.3). Thus, we may deduce that ũ ≡ constant for
any periodic traveling-wave solution of (7.1), from which we immediately obtain
0 ≡ vt = −svx . It follows that either v is identically constant, in which case u is
as well, or else s = 0; in either case, we find as asserted that the wave must be
stationary.
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Moreover, we readily find for ũx = 0 that any solution of (7.3) must satisfy the
Euler-Lagrange equations

ε1ε2vxx = p(v−)− p(v) (7.10)

for the equilibrium variational problem

min
v
E(v), (7.11)

yielding back the stationary-wave ordinary differential equation (7.4) with s = 0.

Stability. Using the result of Corollary 6.4, we readily obtain:

Theorem 7.1. Periodic orbits of (7.1) are unstable whenever dT /da > 0, in par-
ticular, in the large-amplitude limit as they approach either a bounding homoclinic
orbit or two-cycle. Orbits for which dT /da < 0 are unstable if the spectrum of
(∂ūm/∂u−)−1df (u−) is nonreal. In the small-amplitude limit as orbits approach
a nonlinear center, they are unstable regardless of the value of sgn dT /da.

Proof. Clearly, (H0)–(H2), hold, whence the results of Corollary 6.4 apply when-
ever (H3′) holds, or dT /da �= 0. By the final assertion of Corollary 6.4, we may
without loss of generality take det(∂ūm/∂u−) �= 0. The second assertion then fol-
lows by either of (6.28), (6.29), the former because in this case the determinant of
the real matrix (∂ūm/∂u−)−1df (u−) must be positive, as the product of complex
conjugates. To establish the first assertion, we make use of the structure of equations
(7.1).

By direct computation, we obtain

df (u−, v−) =
(

0 −1
p′(v−) 0

)
. (7.12)

Moreover, from translational invariance of (7.1) with respect to u, in combination
with the reflective symmetry u → −u, x → −x, we find without any computation
that ∂ūm/∂u− must be of diagonal form

(
α 0
0 1

)
, (7.13)

with a single undetermined quantity α �= 0. Thus, assuming that det(∂ūm/∂u−) �=
0, or α �= 0, we find that the matrix

(∂ūm/∂u−)−1df (v−, u−) =
(

0 −1/α
p′(v−) 0

)
(7.14)

is trace-free, whence we may conclude that its spectrum is real if and only if
its determinant is negative. But, this implies that (6.28) and (6.29) are mutually
exclusive when dT /da > 0, yielding spectral instability.

Finally, the third assertion follows simply by continuity of the Evans function,
without invoking (H3′) or Corollary 6.4, once we observe that the limiting, constant-
coefficient equations at a nonlinear center are always unstable, since the trace-free
real matrix df (vc, uc) must necessarily have pure imaginary eigenvalues (or else
(vc, uc) would instead be a saddle). ��
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Remark 7.2. In the special case of the double-well potential (7.2), monotonicity
dT /da > 0 holds for all periodic van der Waals orbits. This follows as a straight-
forward application of a monotonicity theorem of Schaaf (see [Sc, p. 102], or [LP,
Theorem 7.1, p. 331]), which asserts that monotonicity holds for the nonlinear os-
cillator

v′′ + µ(v) = 0, (7.15)

provided: (i) µ′ > 0 implies 5(µ′′)2 −3µ′µ′′′ > 0; and, (ii) µ′ = 0 implies µµ′′ <
0. Noting that the van der Waals traveling-wave ordinary differential equation is
of form (7.15), with µ(v) = p(v) − p(v−), we readily verify (i) and (ii) in the
double-well case p(v) = 2v(1 − v2), by direct computation. In particular, note
that (i) follows simply from the fact that p′′′(v) = −12v < 0. This finding is quite
significant, since it shows that there is at least one model exhibiting oscillatory
pattern formation for which no stable periodic waves exist, thus indicating the
presence of some alternative mechanism for the formation of oscillatory patterns.

Remark 7.3. By Remark 5.10, in conjunction with Lemma 6.3, we find that small-
amplitude periodic waves are stable with respect to periodic perturbations (of the
same period T ) if and only if dT /da > 0; in particular, they are stable for the
double-well potential, as discussed just above. Likewise, numerical evaluation of
∂ūm/∂u− for large-amplitude waves in the two-cycle configuration yields � > 0,
suggestive of stability under T -periodic perturbation, a conjecture that is further
supported by numerical approximation of the (k = 0)-spectrum ofL; see Appendix
A. On the other hand, we have already seen analytically that large-amplitude waves
in the homoclinic case are unstable with respect to T -periodic perturbations.

These results are quite interesting from the point of view of the associated
variational problem (7.11). They imply that periodic solutions may or may not be
stable critical points of the energy E, depending on the details of their structure.
This is in sharp contrast to the results of [CGS.1, CGS.2, GM] for the same problem
with Neumann in place of periodic boundary conditions, in which critical points
are seen to be stable if and only if they are monotone. In both cases, stability is
interpreted with respect to perturbations conserving mass. Note, in the conservation
law setting, that stability is at best orbital, in the sense of convergence to the three-
parameter family of nearby periodic solutions of the same period T , with the two
conserved quantities given by the mass of the perturbed solution determining the
limiting solution up to phase shift (translation).

To put things slightly differently, stability in the periodic setting is not deter-
minable as in the Neumann setting by Sturm-Liouville-type considerations alone,
but must indeed be estimated by some such computation as we have carried out.
Similarly, stability for the variational problem on the whole line is more subtle than
that for the (Neumann) problem on the bounded interval, requiring further analysis
as in [Z.1].

Quadratic-flux models. Planar systems (1.1) with quadratic flux f have been
studied as qualitative models for multiphase flow in porous media near an “elliptic
boundary” where characteristics of the flux Jacobian df (u) coalesce; see, e.g.,
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[SSh,SSMP,MP]. Here, following [GZ], we consider the restricted class of 2 × 2
systems with f quadratic andB constant for which, additionally, the traveling-wave
ordinary differential equation

u′ = B(u)−1[f (u)− f (u−)− s(u− u−)]
is Hamiltonian, i.e.,

tr(B−1(f ′(u)− sI )) ≡ 0

for some choice of s. This is a codimension-2 subclass of the quadratic-flux models,
as parametrized by the coefficients of B and f .

Generically, such systems can be reduced by an affine change of variables to
the canonical form

(
u

v

)

t

+ B

(
ε
2v

2 − 1
2u

2 + v

uv

)

x

= B

(
u

v

)

xx

(7.16)

where ε = ±1. For ε = 1 and s = 0, the traveling-wave ordinary differential
equation then reduces to the Hamiltonian system

(
u

v

)′
=
( 1

2v
2 − 1

2u
2 + v

uv

)
−
( 1

2v
2− − 1

2u
2− + v−

u−v−

)
, (7.17)

with Hamiltonian

H(u, v) = 1
2 (

1
3v

3 − u2v + v2)− ( 1
2v

2−v − 1
2u

2−v + v−v − u−v−u) ≡ H(u0, v0)

(7.18)

preserved along orbits [GZ].
Explicit computation of the phase portrait of (7.17) using (7.18) reveals the

existence of a unique three-cycle configuration for the special parameter values

(u−, v−) = (±√
3/2, 0), (0,−1.5), (0,−.5), (7.19)

corresponding, respectively, to the three saddle equilibria at the vertices of the three-
cycle, and the single nonlinear center contained within. Enclosed within the three-
cycle is a nested one-parameter family of periodic orbits. The heteroclinic orbits
making up the three-cycle lie on straight lines, forming an equilateral triangle; in
fact the entire phase portrait has the same triple symmetry about the center as does
the bounding triangle. The three states (7.19) at the vertices of the triangle may be
regarded as analogous to pure phases in physical models for three-phase flow, and
the interior of the triangle to the physical state space of volume fractions thereof
[AMPZ.3].

This configuration bifurcates as (u−, v−) is varied into various one- and two-
cycle configurations, each cycle likewise enclosing a nested one-parameter family
of periodic orbits. Where dT /da �= 0, these are the only nearby periodic orbits to
be found in parameter space, where s is now allowed to vary; however, we have
not so far been able to rule out the possibility of further periodic orbits with large
speed s.
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In numerical experiments carried out in [AMPZ.5], systems (7.16) were seen
to exhibit the same sort of oscillatory pattern formation discussed in [FL.1, FL.2,
CP], with patterns composed of motifs with (u, v) profiles lying near either the
three-cycle, or the various two-, and one-cycle configurations that bifurcate from it
as (u−, v−) is varied from (7.19). Thus, the relevant issue from the point of view of
pattern formation seems to be the stability or instability of large-amplitude periodic
waves for parameters near the three-cycle values (7.19). Regarding this problem,
we have a complete solution; indeed, the additional symmetries of the three-cycle
case allow us to obtain results for general amplitude waves:

Theorem 7.4. For B constant, symmetric, and positive-definite, periodic orbits of
(7.16) are unstable for (u−, v−) lying near the three-cycle values (7.19), indepen-
dent of amplitude, provided that dT /da �= 0. Likewise, so long as dT /da �= 0,
large-amplitude waves are unstable for (u−, v−) corresponding to a homoclinic
configuration in the phase portrait of (7.17); moreover, small-amplitude waves are
unstable for any phase configuration.

Proof. Clearly, (H0)–(H2) hold, whence, again, the results of Corollary 6.4 apply
whenever (H3′) holds, or dT /da �= 0. Taking (u−, v−) to be the nonlinear center
(uc, vc) = (0,−0.5), we find using the triple symmetry of the phase portrait that
∂(ūm, v̄m)/∂(u−, v−) must be a multiple of the identity, for any periodic orbit
whatsoever. More precisely, we note that, for (u−, v−) = (uc, vc) = (0,−0.5), the
traveling-wave ordinary differential equation (7.17) has reflective symmetry about
each of the lines from (uc, vc) through the vertices of the surrounding three-cycle;
moreover, each individual symmetry is preserved as (u−, v−) is varied along the
respective line of symmetry. It follows that, under perturbations of (u−, v−) in
direction ν, where ν is the direction vector of a line of symmetry, (ūm, v̄m)must be
confined to the same line of symmetry, i.e., the resulting perturbation of the mean
(ūm, v̄m) must lie in the same direction ν, for any choice of initial periodic orbit
(ū, v̄). In other words, each of the direction vectors of the three lines of symmetry
is an eigenvector of ∂(ūm, v̄m)/∂(u−, v−), whence ∂(ūm, v̄m)/∂(u−, v−) must be
a (real) multiple of the identity.

Thus,
df (u−, v−)∂(ūm, v̄m)/∂(u−, v−)−1

is simply a real multiple of

df (u−, v−) = B

(
0 0.5

−0.5 0

)
. (7.20)

But, this matrix is similar to the anti-symmetric matrix

B1/2
(

0 0.5
−0.5 0

)
B1/2,

hence must have a pure imaginary spectrum. (Note: in particular, it is again trace-
free, as in the proof of Theorem 7.1.) We thus obtain instability by (6.29), for waves
of arbitrary amplitude. The result for (u−, v−) near (0,−0.5) follows by the same
argument, together with continuity of ∂(ūm, v̄m)/∂(u−, v−).
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The large-amplitude homoclinic result has been established already by several
different techniques. Likewise, the small-amplitude result follows from the insta-
bility of the constant-coefficient limit, as discussed previously in Remark 4.4. ��
Remark 7.5. The proof of Theorem 7.4 shows also that, for (u−, v−) near the 3-
cycle values (7.19) and dT /da > 0 – in particular, for large-amplitude periodic
orbits approaching the 3-cycle, the stability index � is positive, suggestive of sta-
bility with respect to T -periodic perturbations. This conjecture is supported by
numerical approximation of the (k = 0)-spectrum, which also indicates stability
with respect to T -periodic perturbations of large-amplitude periodic solutions in
the 2-cycle limit; see Appendix A. This is in contrast to the T -periodic instabil-
ity observed in the large-amplitude homoclinic limit for both van der Waals and
quadratic flux models.

Remark 7.6. The general features of the global phase portrait structure described
above for the Hamiltonian models considered here have been shown in [AMPZ.4] to
hold, more generally, for all 2×2 quadratic-flux models of type I under the viscous
classification scheme of Hurley [HP]. In particular, there exist unique (u−, v−, s)
such that the phase portrait of the traveling-wave ordinary differential equation
contains a three-cycle, of which the connecting heteroclinic orbits must lie along
straight lines; moreover, it can be shown by affine reduction to canonical form
that the corresponding ordinary differential equation is quasi-Hamiltonian [CL].
It follows that the three-cycle encloses a nested one-parameter family of periodic
orbits, as in the “pure” Hamiltonian case considered above. Likewise, formation
of oscillatory patterns has been observed numerically for such systems [AMPZ.5],
with patterns again lying near the special three-cycle configuration.

Appendix A. Numerical experiments

In this appendix, we describe numerical methods for the location of the zero
set of the periodic Evans functionD(k, λ), or equivalently the spectrum of a linear
operator L with periodic coefficients, and, in particular, the well-conditioned nu-
merical verification of instability. We demonstrate these methods for the example
systems considered in Section 7, amplifying and (in the case of the quadratic-flux
models) extending the analytical results there obtained. The real advantage of the
numerical approach, of course, is that it is applicable to general models.

The algorithm. We use the following basic strategy for numerical verification of
instability:

1. Determine the range of existence of periodic orbits, and (numerically) solve for
a representative sampling of profiles.

For each profile:

2. Find spectral curves λ(k), i.e., zero-level sets of D(λ, k).
3. Choose k = k∗ giving a maximum (positive) value of Re (λ(k)) and a numeri-

cally advantageous closed contour � contained in the strictly positive half-plane
Re λ > 0 and containing λ(k∗).



144 M. Oh & K. Zumbrun

4. Perform a winding-number calculation in λ, with k = k∗ held fixed, to establish
that there indeed lies a root of D(k∗, ·) in the vicinity of the original numerical
approximation of λ(k∗) in steps 2 and 3.

The point of steps 3 and 4 is that the curves found in step 2 are “graphical”
approximations of the zero-level sets, which, though extremely illuminating, do
not give conclusive information about existence of zeros. Step 4 by contrast is both
accurate and well-conditioned, and could be used as the basis for numerical proof;
however, it requires an a priori guess for k∗, λ(k∗).
Choosing k∗ and �. By a standard Gärding-type energy estimate on (2.6), the
zeros of the Evans function must lie in the truncated wedge

V = {λ ∈ C : Im (λ)+ Re (λ) � r, Im (λ)− Re (λ) � −r,Re (λ) � r/4}

where r = ‖f (ξ)‖2∞/‖B‖2, f (ξ) = ‖A(ξ)‖2. Obviously, this is not a bounded
region but it does give us a bound on the unstable zeros of D. We find spectral
curves/zero sets of D numerically and observe that those are contained in V . We
can see also agreement between our numerics and the analysis in Sections 1–7 (see
discussion under Applications, below).

It is more tricky to find the zero sets of the two-parameter periodic-type Evans
function than of the one-parameter front-type Evans function. Adding to the diffi-
culty is the fact thatD(λ, k) vanishes to (n+1)th order in λ at (0, 0), where n is the
dimension of variable u, so that there are n+ 1 spectral curves bifurcating through
the origin. The apparently straightforward step 2 in the algorithm is thus in fact a
tricky problem in graphical display. To find spectral curves/zero sets of D, we use
Müller’s method which can approximate complex roots and converges to the root
for any initial approximation choice. We also use deflation to achieve a reasonable
result near the bifurcation point (k, λ) = (0, 0).

Since the argument principle will be used to count the zeros inside some contour
�, care must be taken that � itself does not contain any zeros. We avoid the origin
and high multiplicities by looking at k �= 0. A natural choice is to choose the value
of kwhich gives the maximum value of the positive Re (λ) from the spectral curves,
and for simplicity choose � as the rectangle whose center is that maximum positive
value of Re (λ) in the right half-plane. In this process, we find that a practical
upper bound on the size of the contour is enforced by the need to obtain good error
estimates, which degrade rapidly for high frequencies. This particular k allows
good numerics. When the computed winding number exceeds zero, the wave being
tested is unstable; otherwise the wave is stable.

Applying the Argument Principle. Here we follow the approach of [Br.1, Br.2]. The
first problem in calculating the winding number ofD[�] lies in evaluatingD(λ, k)
for a fixed value of k. We use the maximal value k = k∗ described above. The second
problem lies in partitioning� into subcontours�i such thatD[�i] lies in a slit plane;
a slit plane being a subset of C of the form C\{rα : 0 �= α ∈ C, 0 � r ∈ R}. This
will ensure that the calculated winding number is correct. We partition � so that
D[�i] is contained in a half plane whose boundary passes through the origin.
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For w, z ∈ C, define 〈w, z〉 to be the dot product between the real 2-vectors
(Re (w), Im (w)) and (Re (z), Im (z)):

〈w, z〉 = Re (w)Re (z)+ Im (w)Im (z). (8.1)

If �(si) is the starting point of �i , it suffices to find si+1 and β ∈ [0, 1) such that

〈D(si +�s),D(si)〉 > β|D(si)| (8.2)

for 0 � �s � si+1 − si . In other words, the component of D(si + �s) in the
direction of D(si) should be a positive multiple of D(si). Strictly speaking, the
right side of inequality (8.2) could simply be 0 in practice. However, to allow for
numerical error, a positive value of β should be chosen. We choose β = 1/2 over
all. This condition allows checking whether a given partition is appropriate.

Error Estimates. In contrast to the front case [Br.1, Br.2], computation of D for
moderate values of |λ|, given exact values for coefficients of L, is straightforward
and numerically well-conditioned, and for practical purposes may be regarded as
exact. The main approximation error comes rather from the computation of coeffi-
cientsA and B in (1.4) through solution of the traveling-wave ordinary differential
equation (1.8), which is likewise a standard and relatively well-conditioned prob-
lem; here we use a fourth-order Runge-Kutta method, for which analytical error
estimates may be found, for example, in [SB]. For large |λ|, it is rather the O(|λ|)
exponential growth rate in the eigenvalue ordinary differential equation that domi-
nates the growth of errors; indeed, it is this consideration that effectively limits the
size of our contours in the winding-number calculations described above. However,
again, the relevant analytic error bounds are standard and straightforward.

We therefore omit the discussion of analytical error estimates, instead carrying
out a numerical convergence study. Specifically, we use Richardson extrapolation
to compute “exact values” to which we compare when we calculate relative errors
and to check the convergence ofD as the step size h becomes small. The resulting
estimated errors are seen to be quite small, consistent with the above discussion.

Numerical experiments. We now describe the results of our numerical experi-
ments for the two classes of systems discussed in Section 7.

Van derWaals gas or solid mechanics. Our first set of experiments is for the viscous-
capillary p-system (7.1) with standard double-well potential (7.2). As discussed in
Section 7, periodic solutions of this model are of necessity stationary, satisfying
the Hamiltonian system (7.4) with s = 0, and this system features for v− = ±1
a one-parameter family of heteroclinic two-cycles, indexed by u− due to Galilean
invariance in the speed u, in which there lie nested families of periodic orbits.
Likewise, there exists a two-parameter family of homoclinic cycles for v− in range
[0.55, 1), and u− again arbitrary by Galilean invariance, in which there lie nested
families of periodic orbits. Without loss of generality (using translation invariance),
we may fix u− = 0, reducing our study to a single 2-cycle and a one-parameter
family of homoclinic orbits, and their enclosed periodic orbits, see Figs. 6 (top) and
6 (bottom) below.

First, we use a fourth-order Runge-Kutta method to get a profile (v, u) by solv-
ing the Hamiltonian system. By plotting v versus u, we can see clearly there exist
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Fig. 2. Existence of periodic orbits (top); Period as a function of amplitude (bottom).

periodic orbits (Fig. 2 (top)) inside the two cycle. From these orbits, we observe a
monotone relationship between the periods and the amplitudes (Fig. 2 (bottom)).
Second, we use the method again to solve (2.7). Finally, we use the LU decompo-
sition method to get a value of D. We also find periodic orbits and the monotone
relationship inside the homoclinic orbit numerically. We study several periodic
orbits in each cycle.
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Fig. 3. Spectral curves of the Evans function D; Part I.
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Fig. 4. The number of unstable eigenvalues in the two-cycle case.

Figure 3 shows spectral curves of L, or zero sets of D, for various periodic
orbits within the 2-cycle depicted in Fig. 2 (top), starting with the (zero amplitude)
constant-coefficient case and shows how the spectral curves are changed as the
amplitude becomes large. We see what differences are made by change of ampli-
tudes. These figures are extremely illuminating, showing in a way that calculations
cannot, the detailed evolution of the spectrum as the amplitude of the underlying
periodic orbit is varied from zero (constant-coefficient case) to the limiting ampli-
tude as orbits approach their bounding poly-cycle. They both verify and amplify
the observations obtained earlier by Evans function calculations. In particular, we
immediately see that instability is rather dramatic, whereas the analytical results via
Taylor expansion about the origin imply only that there exist infinitesimally unsta-
ble spectra; moreover, this instability is not confined to small- or large-amplitude
limits, but persists across all amplitudes.

This suggests the strategy described above for numerical verification of insta-
bility; namely, to fix k at the value k∗ corresponding to the maximally unstable
spectrum λ∗ = λ(k∗) obtained by graphical examination, then perform a winding-
number calculation on a well-chosen contour about λ∗.

As for stability results, Figs. 4 and 5 show� andD[�] for periodic waves inside
a two cycle and a homoclinic orbit respectively. Here, D[�] is normalized by the
mapping D �−→ 0.1 ∗ (i + 1) ∗ D/|D| for i = 0, 1, . . . , 39 (i is the index of λ
on the contour �). The winding numbers are greater than 1 in both cases so the
periodic waves are unstable.

We next perform the error analysis that was mentioned earlier. There is no
analytic solution of the eigenvalue ordinary differential equation (2.7) for the van
der Waals equations. We have to rely entirely on numerical estimates to gauge the
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Fig. 5. The number of unstable eigenvalues in the two-cycle case.

accuracy of the Evans function method. In the tables below, third-order polynomial
extrapolation was used to compute the values for τ = 0 where τ is a local truncation
error depending on the step size h, i.e., τ := Ch4 for some positive constant C
(recall that the error to lowest order comes from solution of the profile equation by
the fourth-order Runge-Kutta scheme).

Starting with the extrapolation results, examine Tables 1 and 2, which describe
an illustrative calculation when the amplitude of periodic orbit is 0.32. The values
chosen for λ are the points on � closest to and furthest from the center of �; in
practice, these are found to give the extrema of errors. The extrapolated values are
used as exact values in computing extrapolated relative errors. Note that τ = 10−6

is sufficient for calculating D(λ, k) with approximate estimated accuracy 0.05.

Table 1. D(0.32) for the van der Waals equations

τ D(0.32) Extrapolated Relative error

10−5 3.358392 0.0121955

10−6 3.358958 0.0120290

10−7 3.359097 0.0119882

10−8 3.399841 0.0000041

. .

. .

. .

0 3.399855
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Table 2. D(0.52 − 0.1i) for the van der Waals equations

τ D(0.52 − 0.1i) Extrapolated Relative error

10−5 −4.636345 − 12.13182i 0.0082597282

10−6 −4.636959 − 12.13066i 0.0082772553

10−7 −4.637134 − 12.13046i 0.0006327496

10−8 −4.722007 − 12.19752i 0.0000185195

. .

. .

. .

0 −4.721931 − 12.19775i

Similar calculations were carried out for all mesh points λ on the contours for
each periodic orbit under consideration. For example, in the two-cycle case, we
tested all periodic orbits indicated in Fig. 6 (top). The points in the figure represent
the amplitudes of each periodic orbit. Note: translation invariance greatly reduces
the dimension of the problem. Likewise we considered homoclinic profiles with
vertices v− ∈ [0.55, 1) with vertex mesh 0.05 (see Fig. 6 (bottom)). For each ho-
moclinic case, we then computed periodic orbits with amplitude mesh O(0.01)
where amplitude ∈ [0,O(0.1)]. In each case, the winding number was found to be
greater than 1. The bounds for the winding-number calculations were found conser-
vatively to be of order 10−2, i.e., the worst-case Rouché error over all calculations
was

max
|
D|
|D| � C10−2 << 1/2,

for some constant C (Table). This is comfortably below the bound 1 needed to
apply Rouché’s Theorem. Thus, we have numerical instability across the whole
parameter range of existence.

As discussed in the main body of the paper, there are various interesting transi-
tions of the number of unstable 0-eigenvalues of the periodic waves with respect to
different amplitude. Recall that the small-amplitude limit is the constant-coefficient
case. For fixed k = 0, the Evans function has four roots at the origin if the amplitude
is zero, and three roots at zero otherwise when n = 2; see Remark 4.4. But, we
can track a fourth small root ofD as the amplitude changes. When the amplitude is
small, the fourth root is typically in the left half-plane of Re (λ) (Remark 4.4). In
the homoclinic case, as the amplitude becomes large, the fourth root moves from
the left to the right half-plane crossing the origin (Fig. 7); see Remark 5.11. For the
two-cycle case, no such transition occurs.

The quadratic-flux models. We next consider the class of quadratic-flux models
(7.16) with identity viscosity matrixB = I , applying the same methods that we used
for the van der Waals equations. First, we get a profile (u, v) by solving (7.17). By
plotting u versus v, we can see clearly that there exist periodic orbits (Fig. 8 (top)).
From these orbits, we observe that there is a monotone relationship between the
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Fig. 6. The plotted points represent the amplitudes for which the experiments were carried
out in the two-cycle case (top); The plotted points represent the amplitudes for which the
experiments were carried out in the homoclinic case (bottom).

periods and the amplitudes (Fig. 8 (bottom)). Finally, we use the LU decomposition
method to get a value of D. We have spectral curves of λ with respect to various
amplitudes (Fig. 9).

The quadratic-flux model admits, for s = 0, a single 3-cycle solution, a 1-
parameter family of 2-cycle solutions, and a 2-parameter family of homoclinic
solutions, each containing a 1-parameter family of nested periodic orbits.We restrict
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Fig. 7. Transition of the number of unstable 0-eigenvalues for the van der Waals equations,
homoclinic case.

attention to the case s near zero, for which these are the only periodic solutions. The
location of 3- and 2-cycles may be determined analytically; however, a new issue
as compared to the van der Waals case is that the region of existence for homoclinic
solutions is no longer analytically obtainable. Note: the regions of existence for
two-cycles and three-cycles are analytically obtainable, as discussed in [AMPZ.3]
and [GZ]. We determine the region of existence of homoclinic orbits numerically by
varying (u−, v−) where u− = (−0.86, 0.86), v− ∈ [−0.5, 0.5). Figure 10 shows
the break-up of the homoclinic orbit of this model. Figure 11 (top) shows the tested
points (u−, v−) which are vertices of homoclinic orbits (·) and two-cycles (*),
respectively. The vertices of the (unique) three-cycle are the three vertices of the
surrounding triangle, the vertices of two-cycles lie on the edges, and the vertices
of homoclinic orbits lie within shaded region (Fig. 11 (bottom)). For homoclinic
orbits, we only need to treat the region of (u−, v−) inside the triangle since every
outside point has a corresponding inside point yielding the same dynamical system
(i.e., stationary points occur in pairs, one inside, one outside).

Inside each poly-cycle, we find several periodic orbits. To these, we apply the
error analysis and the winding-number calculations as for the previous model. The
same error analysis applies here as in the previous section so we shall not discuss
this aspect. The maximum Rouché error over the entire region of testing wasC10−3

for some positive constant C, where in each case the winding number was greater
than 1. Figures 12, 13, and 14 show the instability of each representative periodic
orbit within three-cycle, two-cycle and homoclinic configurations. We see that
small-amplitude orbits and also large-amplitude orbits lying near the three-cycle
are unstable, as shown in Theorem 7.4, and also intermediate-amplitude orbits are
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Fig. 8. Existence of periodic orbits (top); Period as a function of amplitude (bottom).

unstable. Thus, for this model system, too, we have instability across the whole
region of existence.

Finally, similarly as in the case of the van der Waals equations, we may track the
number of unstable 0-eigenvalues of the periodic waves with respect to amplitude
in the homoclinic, two-, and three-cycle cases. The result in the homoclinic case is
that there is a transition from zero to one unstable root as amplitude increases. In the
two- and three-cycle cases, there is no such transition, indicating that waves of all
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Fig. 9. The spectral curves of Evans function D; Part I.

amplitudes are stable under T -periodic perturbations, even though they are unstable
under perturbations of general period. (Recall, T -periodic stability can be shown
analytically for small-amplitude waves by consideration of the constant-coefficient
case; see Remark 4.4.)
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Fig. 9. The spectral curves of Evans function D; Part II.

Discussion. The instability of stationary periodic solutions of the example systems
of Section 7 has been shown numerically. The code is general and easy to manip-
ulate. It would be quite interesting, for more general systems, to either establish
analytically a corresponding result of uniform instability or find a counter-example
of a stable wave. Note that the code can be used also to investigate stability (for all
k, not one k), though it has some difficulties near k = 0 due to numerical sensitivity
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associated with the multiple root in λ occurring there. This allows the systematic
exploration of periodic wave stability for families of conservation laws, and also
for Cahn-Hilliard and reaction-diffusion equations.
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Appendix B. Stationary phase approximation

In this appendix, we reproduce some unpublished computations of [AMPZ.5]
referred to in the introduction, concerning the linear response under perturbation
of a linearly unstable constant solution u ≡ u0 of a conservation law with viscosity
(1.1). Consider the linearized equation (1.4), where A and B are now constant.
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Fig. 12. The number of unstable eigenvalues, three-cycle case.
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Fig. 13. The number of unstable eigenvalues, two-cycle case.

Taking the Fourier transform, we obtain

v̂t = P(ik)v̂ := (−ikA− k2B)v̂. (10.1)

The fundamental solution of (10.1) is clearly �̂(k, t) = eP (ik)t , whence the fun-
damental solution of (1.4), i.e., the solution with initial data given by a Dirac delta
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Fig. 14. The number of unstable eigenvalues, homoclinic case.

function centered at the origin, is given by the inverse Fourier transform

�(x, t) = 1

2π

∫ +∞

−∞
eikxeP (ik)t dk, (10.2)

and the Green function for (1.4) by G(x, t; y) = �(x − y, t).
The n eigenvalues of the symbol P(ik) determine n dispersion relations

λ = λj (k), j = 1, . . . , n, (10.3)

with linearized stability corresponding to the condition Re λj � 0 for all k ∈ R.
Denote by k∗

j the critical frequency at which Re λj takes on its maximum value.
For simplicity, we restrict attention to the generic situation where λj is isolated
from the rest of the spectrum of P(ik) at k = k∗

j , and λj (k∗
j ) is a nondegenerate

maximum. Thus, λj admits a second-order Taylor expansion

λj (k) = λj (k
∗
j )− iαj (k − k∗

j )− βj (k − k∗
j )

2 + · · · (10.4)

about k∗
j , where αj is real, and Re βj > 0. Let Rj (k) = Rj (k∗)+ · · · and Lj (k) =

Lj (k∗) + · · · denote right and left eigenvectors and �j := RjL
∗
j /〈Rj ,Lj 〉 the

spectral projection of P associated with λj .
Decomposing (10.2) by spectral resolution as �(x, t) = ∑

j �j (x, t), where

�j(x, t) :=
∑

j

1

2π

∫ +∞

−∞
eikxeλj (k)t�j (k) dk, (10.5)
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we may estimate each of the �j by stationary phase approximation about k∗
j as

�j(x, t) ∼ �̄j := 1

2π

∫ +∞

−∞
eikxe

(λj (k
∗
j )−iαj (k−k∗j )−βj (k−k∗j )2)t�j (k∗

j ) dk

= 1

2π
e
ik∗j x+λ(k∗j )t�j (k∗

j )

∫ +∞

−∞
e
i(k−k∗j )xe(−iαj (k−k

∗
j )−βj (k−k∗j )2)t dk.

(10.6)

Let us now restrict ourselves to the simplest case B = I . In this situation, the
dispersion relations are exactly λj (k) = −ikaj−k2, where aj are the eigenvalues of
A, and the associated eigenprojections�j are just the eigenprojections rj l∗j /〈rj , lj 〉
ofA associated with aj , where rj and lj denote associated right and left eigenvectors
ofA. Thus, linear stability is equivalent to reality of aj , or hyperbolicity of the first-
order coefficient A. By direct calculation, we find that k∗

j = Im aj /2, αj = Re aj ,

λ(k∗
j ) = (Im aj /2)2 − iRe aj Im aj /2, and so

αj = −Im λ(k∗
j )/k

∗
j . (10.7)

Likewise, noting that βj is real, we may explicitly carry out the Fourier inversion
in the final factor of (10.6) to obtain

�̄j = e
ik∗j x+λ(k∗j )t�j (k∗

j )× e−(x−αj t)2/4βj t
√

4πβj t

= e
Re λ(k∗j )t

rj l
∗
j

〈rj , lj 〉 × e
ik∗j (x−αj t)e−(x−αj t)2/4t√

4πt

= e(Im aj /2)2t
rj l

∗
j

〈rj , lj 〉 × ei(Im aj /2)(x−Re aj t)e−(x−Re aj t)2/4t

√
4πt

,

(10.8)

where we have used (10.7) in the second equality. That is, the behavior of � in
the j th mode is, to lowest order, that of a time-exponentially growing modulated
Gaussian wave packet traveling with speed αj , with exponential growth rate equal
to the maximum real part Re λj (k∗

j ) of λj , and modulating spatial frequency equal
to the critical frequency k∗

j .
In the case of a linearly stable mode Im aj = 0, (10.8) reduces to the usual

Gaussian “linear diffusion wave”
rj l

∗
j

〈rj ,lj 〉 × e
−(x−Re aj t)

2/4t√
4πt

of [LZe]. By analogy, we
might call (10.8) an “unstable linear diffusion wave.” Note that unstable modes
Im aj �= 0 group in conjugate pairs, with equal propagation speeds αj = Re aj , and
thus their diffusion waves combine to give a single real, sinusoidal diffusion wave
of dimension two. The proper analogy is, therefore, to the “generalized diffusion
wave” defined in [LZe] in the case of repeated real eigenvalues of A (the boundary
case between strict hyperbolicity and ellipticity of A).

Example 10.1. For the equations of van der Waal gas dynamics or elasticity, we
have B = I , and

A = df (u0, v0) =
(

0 −1
p′(v0) 0

)
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has eigenvaluesaj = ±√−p′(v0).Thus, linearized stability of the constant solution
(u, v) ≡ (u0, v0) is equivalent to p′(v0) < 0, and failure of stability entails a pair
of pure imaginary eigenvalues aj = ±iτ . In this case, therefore, there is a single
conjugate pair of standing unstable linear diffusion waves, αj ≡ 0, with time-

exponential growth rate eτ
2t/4 and modulating spatial frequency eiτx/2.

Application to pattern formation. Now, let us consider the implications of the
linear estimate (10.8) on the behavior under perturbation of solutions of the nonlin-
ear equations, for initial data approaching a linearly unstable constant state u∞ as
x → +∞. In view of the global nonlinear structure of our models, let us make the
crude approximation that nonlinear effects take over at some prescribed amplitude
A, turning off the time-exponential growth and converting the sinusoidal oscilla-
tions of the linearized approximation (10.8) to a series of traveling fronts moving
with approximately zero speed (the last assumption implies some normalization to
achieve a rest frame). Looking at a single unstable mode j , the picture that emerges
from this crude model on the half line [0,+∞) is an oscillatory pattern of phase
transitions separated from the constant state by a modulated front whose location
x(t) is determined by the property that

|�̄(xj (t), t)| ∼ A, (10.9)

i.e., ignoring the algebraic factor t−1/2 in (10.8), travels with approximate speed
σj determined by (Im aj /2)2t − (σj t − αj t)

2/4t = 0. Solving, and recalling that
αj = Re aj , Re λ(k∗

j ) = (Im aj /2)2, we obtain a value of

σj = Re aj + |Im aj | (10.10)

for the approximate front speed.
Since waves under this model are “born” in the linearized regime, we can

estimate the approximate wave-length inherited in the nonlinear regime by dividing
the distance d = σj t swept out by the front x(t) from time 0 to time t , divided
by the number of peaks of the linearized unstable diffusion wave (10.8) that it
has crossed during that time. Working in the rest frame x = αj t of the diffusion
wave, we find that the number of peaks is (σj − αj )t divided by the wavelength
2π/k∗

j = 2π/Im aj /2 of its spatial modulation, yielding an estimated wavelength
of

Tj = σj t

(σj−αj )t
(2π/k∗j )

.

This predicts an average (Doppler-shifted) frequency for the nonlinear pattern of

k̃j = 2π/Tj = k∗
j

(σj − αj

σj

)

= k∗
j

( |Im aj |
Re aj + |Im aj |

)
.

(10.11)

In the (standing) case αj = Re aj = 0 of Example 10.1, this is just the critical
frequency k∗

j = Im aj /2. Note: here and above we are implicitly assuming that the
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front speed σj is positive, i.e., the pattern is expansive. This is in fact a necessary
condition for pattern formation to occur.

Numerical experiments in [AMPZ.4] showed close agreement between the pre-
dictions of (10.10) and (10.11) and behavior of actual patterns in solutions of (1.1).
Likewise, the condition σj � 0 was seen to well predict nonlinear instability, and
the appearance of pattern formation, as model parameters (e.g., Riemann endstates)
were varied.

Remark 2. In the linearly stable case, Liu & Zeng [LZe] derive also a self-similar
nonlinear diffusion wave refining the linear estimate (10.8), by judiciously append-
ing to an approximately diagonalized version of the linearized equations (1.4) the
“diagonal” quadratic-order terms in the Taylor expansion of the nonlinear flux f .
This approximation makes essential use of the small-amplitude nature of solutions.
In the large-amplitude linearly unstable case, we have no such simple description
of a nonlinear diffusion wave; indeed, the relevant entity seems to be the entire
metastable pattern described above. We might neatly summarize the conclusions of
this paper (together with those of [AMPZ.4, AMPZ.5]) as suggesting that patterns
observed in dynamical phase-transitional models represent metastable nonlinear
diffusion waves rather than stable periodic states.
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