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Abstract

This paper is devoted to constructing agenera theory of nonnegative solutions
for the equation

u, =AW, O0<m<l1,

called “the fast-diffusion equation” in the literature. We consider the Cauchy prob-
lemtakinginitial dataintheset BT of all nonnegative Borel measures, which forces
us to work with singular solutions which are not locally bounded, not even locally
integrable. A satisfactory theory can be formulated in this generality in the range
1>m>m,=max{(N — 2)/N, 0}, in which the limits of classical solutions
are also continuous in RY as extended functions with values in R, U {oo}. We
introduce a precise class of extended continuous solutions £, and prove (i) that the
initial-value problem is well posed in this class, (ii) that every solution u(x, t) in
& hasaninitial tracein BT, and (iii) that the solutionsin &, are limits of classical
solutions.

Our results settle the well-posedness of two other related problems. On the one
hand, they solve theinitial-and-boundary-value problemin R x (0, oo) intheclass
of large solutions which take the value u = oo on the lateral boundary x € aR,
t > 0. Well-posedness is established for this problem for m. < m < 1when R
is any open subset of RV and the restriction of the initial datato R is any locally
finite nonnegative measure in R. On the other hand, by using the special solutions
which have the separate-variables form, our results apply to the élliptic problem
Af = f9posedinany openset R.For 1 < g < N/(N — 2)4 this problemis
well posed in the class of large solutions which tend to infinity on the boundary in
astrong sense.

Asiswell known, initial datawith such agenerality are not allowed for m > 1.
On the other hand, the present theory fails in severa aspects in the subcritical
range 0 < m < m., where the limits of smooth solutions need not be extended-
continuously.
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0. Introduction and statement of the main results

In this paper we extend the existing theory of nonnegative solutions of the
nonlinear evolution equation

ur = A@W™), O0<m<1, (0.2)

which servesasamathematical model for theinterplay of fast and slow propagation
speeds in an evolution process of diffusive type. Indeed, equation (0.1) has been
extensively studiedintheliteratureunder the name of fast-diffusion equatio(FDE),
cf. for instance [7,11, 16, 34-36], because it can be written in the form

u; = div(D(u)Vu), with D) = mu" 1,

so that the diffusion coefficient D(u) — oo asu — 0if m < 1. Thisisreflected
in the well-known property of infinite speed of propagation of small disturbances
with respect to the zero level: a continuous and nonnegative weak solution of the
equation defined in an open cylinder Q x (0, T) ¢ RN+ is necessarily positive
foradl x € Q attimer > O unlessit isidentically zero at this time. Thisis a
property shared by the heat equationu; = Au, but not by theequationwithm > 1
(the porous-medium equatipnHowever, the previous approach to equation (0.1)
overlooksthefact that for high values of u the diffusion coefficient D (1) decreases
and D(u) — Oasu — oo, opening up a perspective of slow propagationfor
u > 1, or even no propagation at the level u = oo, that is absent in the equations
with m = 1. To describe our results it will be convenient to use a terminology
taken from the theory of thermal propagation and think of (0.1) as a nonlinear
heat equation for the temperature distribution u(x, ¢), and then D (u) isthe thermal
diffusivity. Moreover, the space integral of u over aset E c RY istaken as a
measure of the thermal energy contained in E. However, in problems of diffusion
u is a concentration or a density, and in that case the term energy is replaced by
mass, as is often used in properties like conservation of mass. Examples of this
character appear in plasma physics where u is the particle density and m = 1/2
(Okuda-Dawson law) [11] and in the description of the diffusion of impuritiesin
silicon, where u stands for the concentration of impurities [36].

It isthe purpose of thiswork to formulate atheory of existence, uniquenessand
continuous dependence of solutionsfor (0.1) with arbitrarily large datain asuitable
classof large solutions, aswell astheinverse problem of assigning aninitial traceto
any given solution. The project has a successful and simple answer in the so-called
supercritical exponent rangen, < m < 1, withm, = max{(N — 2)/N, 0}. We
show that in that range three closely related problems can be solved in an optimal
sense which is described next. A fourth problem, the well-posedness of the so-
called pressure equation, will be studied in [21]. Before we discuss the results and
the proofs, let us point out the main novelty of our study, namely the existence of
strong singularities which behave like permanent sources of radiationActually,
they radiate into the surrounding space an infinite amount of energy, which isthen
spread according to the diffusion law.

(I Theory of the Cauchy problem. Borel measures and very hot spots. The
Cauchy problem, posedfor x € RY andt > 0, admitsaclassical solutionu(x, 1) >
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0 for any smooth and bounded initial data ug(x) = 0. Thisresult was extended to
locally integrable data by HERRERO & PIERRE [35], to finite Radon measures in
a bounded domain by Brezis & FrRIEDMAN [16] and to locally finite measuresin
the whole space by PIErRRE [42] and DAHLBERG & KENIG [29]. The purpose of
this work is to extend as far as possible the class of data and solve (0.1) for al
nonnegative Borel measures as initial data, up = v € BT (RY). Let usrecall that
every nonnegative Borel measure v € B+ (RY) can be described by a pair (S, ),
where S isthe set of strongly singular point®f the measure v, defined as

S={x eRY :v(B,(x)) = +oo Vr > 0}. (0.2)

and u, therestrictionof v to R = RV \ S, isalocally finite Radon measure, cf. [31].
The strongly singular set S, abbreviated to SSS, can be any arbitrary closed subset
of RV . Weshall think of its pointsasvery hot spotssincethereisan infinitethermal
energy in every neighborhood, as small as we please, of a very hot spot. Observe
that 1« need not be locally finitein RY since it may blow up on the boundary of R.
Asan example, every measurablefunction f(x), x € RV, withvaluesin R, U{oo},
induces aBorel measure (S, 1), where S is the complement of the maximal open
set R where f islocaly integrableand du(x) = f(x) dx on R. While S contains
all strongly singular pointsof v, weak singularitieslike Dirac deltasare containedin
u, i.e., they are not considered very hot. Similar notation applies for the solutions
u(x,t) atr > 0. By asingularity of the temperature distribution u(x, ¢) at time
t = tg, We mean a point xg near which u(zp) is not locally bounded. A weak
singularity isasingularity such that u (-, #p) islocally integrable near xg, otherwise
the singularity is strong.

By taking limits of classical solutions, DAHLBERG & KENIG [29] considered
initial data in the class of locally finite measures and arrived at the class C of
continuous weak solutions. In the present generdity, v € B+ (RY), we arrive at
the class &, of extended continuous solutions with constant singularveleiich is
precisely described as follows.

Definition 1. A solutionu € &£, isanonnegativeand measurablefunctiondefinedin
0 = R x(0, c0), possibly infinite-val ued, and satisfying thefoll owing conditions:

(i) Itiscontinuous asan extended function: u € C(Q, Ry ), whereR, = [0, oc].

(ii) Itisaclassica solution of (0.1) in theregular set @ = {(x,1) | u(x,1) <
oo} C Or.

(iii) For every t > O theinfinite level-set S(¢) = {x : u(x,t) = oo} consists of
strong singularities and is constant in time.

A solutionu e &, of the Cauchy problemwithinitial datav € BT (R") isasolution
which takes on the initial value v in the sense of Borel trace, i.e.,

(iv) For any compactly supported test function ¢ € Co(RY), ¢ > 0,

t—0

Iim/ u(x, e(x)dx = / o(x)dv(x) € Ry U {+o0}. (0.3
RN RN
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Conditions (i) and (ii) are the definition of extended continuous solutions, which
form alarger class &; (iii) restricts this class to a constant and strongly singular
set, because this restriction is naturally found when we obtain solutions as limits
of continuous weak solutions. Thisis a nontrivial restriction, since solutions with
expanding SSS can be constructed cf. Section 8, but they are not the limits of the
classical theory of the Cauchy problem. Finally, condition (iv) is not necessarily
imposed in the definition of the class since every solution satisfying (i)—(iii) will be
shown to have aninitial trace. Note that the Borel trace means the standard tracein
‘R and fU u(x,t)dx — oo for every neighborhood U of any point of S, cf. (2.6).
Because of (iii) the regular set Q2 of asolution &, isthe cylinder

Or =R x(0,00), R=RV\S.

Sincethe solutions are strictly positiveon R and infiniteon S, it turnsout that (i) is
equivalent to the stronger assertion that 1/u (or equivalently, D(u)) is continuous
in Q. The solutions are aso smooth in R x (0, co). The extended continuity of
u near the set S is important to eliminate false solutions of the type u = +o0 on
B x (0, T), where B isaball and u = 0 on the complement.

The main results of this paper establish that the Cauchy problem iswell posed
inthe class &£, and that the resulting theory is the unique extension of the classical
theory to general initial data. We sum up next the precise results which are proved
in the paper.

Theorem. The following holds for the set of nonnegative limit solutions of the
Cauchy problem fo0.1) in the rangem, < m < 1:

(@ The map — u fromB*+(RY) into & is one-to-one, monotone and continuous
with respect to the convergence of data in the sense of Borel measures.

(b) Conversely, every solution defined fos 0 admits an initial trace i3+ (RV).

(c) For locally finite initial masses, i.e., whe$i = @, we recover the seaf of
continuous weak solutions.

(d) Allthe solutions ire, are limits of classical solutions with smooth initial data.

In terms of semigroup theory, we may say that (0.1) generates a semigroup
of maps S; : ug — u(r) in BH(RN) which is the closure of the classical one. As
usual, wewriteu (1) todenotethefunctionx — u(x, r). Let usremark that extended
continuous sol utions with non-empty SSSare notdistributional solutions since the
functionsinvolved are not locally integrable. The theory is, however, an extension
of the distributional theory since the extended solutions are limits of distributional
solutions. A natural renormalizationof the form v = 1/u® for a convenient value
of « > O may allow usto fal into adistributional theory, see Final Remark at the
end of the Introduction.

Asareferenceto resultsof asimilar generality, the use of Borel measuresasdata
appearsin therecent work of Marcus and V éron. The well-posedness of the Cauchy
problem in the class of Borel measures has been established by these authors in
[37] for the semi-linear heat equation u; = Au —u4, withl < g < 1+ 2/N
and we usetheir outline for the uniqueness proof athough the technical aspectsare
different. Concerning equations of the type (0.1), a theory with this generality is
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typical of the fast-diffusion range m < 1, and does not apply to the heat equation,
m = 1, where the initial data accepted in the limit theory must be localy finite
Radon measureswith an exponential growth rate at infinity. More precisely, for any
nonnegative solution of the heat equation existingin atimeinterval 0 < ¢ < T the
initial trace isameasure v such that

]2
/ e dy < 0o
RN

for somec > 0, and then T = 1/4c, cf. [53]. For this equation the presence of
a very hot spot forces the function obtained as the limit of classical solutions to
blow up in the whole space-time domain, u = +o0 in Q. The same appliesto the
porous-medium rage m > 1 with the only proviso that the allowed growth rate for
the optimal class of initial data is power-like, ug(x) ~ O(|x|%™=D). In amore
precise form, theinitial trace of a nonnegative solution existing for atime interval
0 <t < T isaRadon measure ug = v such that

/ dv = O(RNt@m=Dy  asR — oo,
lX|<R

cf. [4,9]. Again, failure to satisfy this condition produces instantaneous and global
blow-up. On the other hand, while the existence of nontrivial solutions with very
hot spots can be extended to the subcritical range 0 < m < m.., the simple charac-
terization of well-posedness fails, and a number of new properties arise from the
even slower rate of propagation for large u, the most typical being the absence of
a point-source solution, [16]. A complete theory is still missing in this case.

(I") Special solutions. Radiation from very hot spots. Let usturnto the question
of qualitative behavior of the solutionsin the good rangem,. < m < 1. In dealing
with general initial data we have extended the theory by introducing the subclass
of solutionswith anontrivia SSS, £/ = &, \ C. Such solutions have many peculiar
features which separate them from the class of continuous weak solutions C. A
representative example of the relationship and differences between the two kinds
of solutions occurs in the passage from a finite point source to an infinite point
source. Thus, let us consider the family of special solutions U.(x, t) of (0.1) with
initial massaDirac delta, U, (x, 0) = ¢8(x). These solutions, known assource-type
solutions Barenblatt solutions or fundamental solutions, exist in the classical sense
for al m > m. and are given by the explicit formula

Ci 1/(1—m)

where = N/(2— N1 —m)), C = 2mN/(O(1 — m)) is afixed constant de-
pending only on m and N, and A > 0 is a decreasing function of the mass c,
A = k(m, N)c™*. If wetakethelimit of the fundamental solutionswith increasing
masses, we get the formula

Ue(x, 1) = ( (0.4)

Ct 1/(1—m) 2
} , C= 1—m(2—N(1—m)) ~0. (05)
—m

|x|2

Uso(x,t) = |:
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Notice that C > 0 precisely for m < m < 1. Thisis an extended continuous
solution of (0.1) that has the simplest singular initia trace with an infinite source
of theform S = {0}, u = 0.Accordingly, weshall call Uy, theinfinite point-source
solution, IPSS. We see that while the solutions U, become bounded and smooth
for + > 0 (the so-caled regularizing effect, the hot spot disappears), U keeps
its strong singularity at x = 0, [, Uso(x, 1) dx = oo for any + > 0 and any ball
Br(0) with r > 0. Solutions like this one with a standing singularity were called
“razor blades’ in the classification of the types of singular solutions that appear as
limits of fundamental solutions performed in[51]. The|PSS can be considered asa
relative of another well-known type, the very singular solutions, introduced in [17,
33] for the study of the nonlinear heat equation u; = Au — u? and subsequently
found in other models. They have in common the strong singularity at + = 0 but
they differ in the fact that theVSSis bounded for all ¢+ > 0 while the “razor blade”
is not.

Next we remark that the strong singularity is not passive, since the solution
becomes positive everywhere for positive time, and moreover, it increases and
tendsto +oco everywherewhent — oo. We say that the singularity radiatesenergy
into the surrounding space with arate that can be calculated as

d oum tm/(l—m)

dt [x|>r

which goesto infinity asr» — 0, to zero asr — oo. Thus, the very hot spot acts
as a permanent source of radiation, and the same property holds for all solutions
witha SSS § # (. For them the above theory impliesthat u > O everywherein
‘R, which means that even though the radiating hot set S (which has diffusivity
D(u) = 0) stays very hot for ever, it also radiates into the surrounding space, and
the radiation arrives up to infinity. Actualy, the IPSS is probably the single most
important solution of the equation since many of the qualitative properties, and
even gquantitative estimates, of the general class of solutions are modeled on its
behaviour. Thus, we prove that any extended solution divergesin the neighborhood
of very hot spots at least like the IPSS,

M(X, t) Z UOO(-x =) t) Vy € S’ (06)

and the estimate holds for all x € RY, and gives alower bound of the asymptotic
behavior as |x| — oo for fixed r > 0, which is exact for solutions with compactly
supported ug. This “radiation lemma’ is one of the key estimates on which the
theory is based. Also of interest is the long-time behavior of solutions with strong
singularities. It turns out that this behavior is governed only by the singular set in
first approximation. Indeed, even when the localy finite part of the initial trace
does not vanish, its effect becomes negligible compared with the radiation of the
singular part when time goesto infinity, and this happensindependently of the rate
of growth of u asx — oo, evenif this rate can be arbitrarily large.

The phenomenon of radiation will not be always true for general initial dataif
m < m,, being the source of new complexitiesin the theory.
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(1) Evolution problem with infiniteboundary data. A conseguence of the above
resultsisthe well-posedness of theinitial-and-boundary valuefor (0.1) posed in an
arbitrary open set R ¢ R, with infinite boundary data

u(x,1) > 0o as (x,1) —> ¥ =R x (0, 00), (0.7)
and initial data
up = p € MY (R), (0.8)

the set of locally finite nonnegative measures. By asol ution of thisproblemwemean
acontinuous functionu : Qg = R x (0, c0) — R, with solves the equation in
OR, diverges at the lateral boundary ¥ locally uniformly, and takes the initia
data i in the sense of trace. We show that there exists a unique maximal solution
in this class, which is at the same time the maximal element in the whole class
of continuous solutions with initial data x and arbitrary boundary behaviour. It is
thereforeauniversal upper barrierlt can be constructed by considering the Cauchy
problem with initial datathe measure v whichisstrongly singular on S = RV \ R
and equals i« on R. Uniquenessfollowsfrom the uniqueness of the Cauchy problem
if we add to the definition of solution the condition of strong singularitynT" = 9R
ast — 0. This condition can be stated in this setting as

Iim/ u(x,t)dx = oo (0.9
t—0 U(y)ﬂR

for every y € I" and every U neighborhood of y. We also show that this condition
need only be checked on acertain subset I'g of I" consisting of pointsof zero density
inS. Thus, whenevery point of I" isapoint of density of S, uniquenesshol dswithout
the strong singularity condition. On the other hand, we construct examples of non-
uniquenesswhen I hasisolated pointsin the form of solutionswhich do not satisfy
the divergence condition (0.9), i.e., they exhibit weak singularities.

Note the complete generdlity both of the open seR, which is allowed to be
unbounded and haveirregular boundary I', and of the locally finite measure, which
may diverge at any rate near I'. The properties derived for the Cauchy problem
can be trandated here. In particular, the map: (S, ) — u is continuous in both
arguments. The solutions are limits of classical solutionsin the same domain. The
results cannot be extended to m = 1 and only partially to 0 < m < me.

On the other hand, let us point out that the generality of domain R is a char-
acteristic of the problem with infinite boundary values which is not allowed for
other initial and boundary-value problems, like the homogeneous Dirichlet prob-
lem, where the zero data cannot be prescribed onisolated partsof I' = dR. For the
Cauchy-Dirichlet problem, we refer to Section 6 and the forthcoming papers [22,
23].

(111 TheElliptic Problem with I nfinite Data. Another consequence of theresults
for the Cauchy problem is obtained when we consider data of theform v = (S, 0),
i.e., apure SSSwith cold surrounding space. Then it can be proved that the solution
takes the separate-variables form

u(x, t) = tYIM £ (x) (0.10)



140 EMMANUEL CHASSEIGNE & JUAN LUIs VAZQUEZ

where f isasolution of the eliptic equation Af™ = (1/(1 — m)) f in R. Taking
the more convenient variable v = ¢ /™, it satisfies

—AY+¢9=0 in R, (0.11)

withg = 1/mintheinterval 1 < ¢ < N/(N—-2) (1<g <if N =1,2),and
takes infinite boundary values

Y(x) > 00 a8 x— IR. (0.12)

Theresultsof (1), (I1) imply that this problem, called the problem of large solutions
iswell posed for any open set R if we add acondition of strong divergence at special
pointsof I". Infact, problem (I11) iscompl etely equivalent in this setting to problem
(1) with & = 0. Our results complete the deep study of MarRcus & VERON [38,
40], from which we draw a number of basic techniques.

As in the problem (I1), the full generality of domain R is a characteristic of
the class of large solutions and is not alowed for other boundary values, like the
homogeneous Dirichlet data, which cannot be prescribed on isolated partsof I' =
dR. Theresults cannot be extendedto g < 1 and only partiallytog = N/(N — 2).

Distribution. The results are organized in ten sections as follows. Section 1 con-
tains the preliminary information on smooth and weak solutions for the Cauchy
problem, references and the main local estimates.

Section 2 contains a study of the properties of extended solutions £ without the
restriction of aconstant singular set. The radiation lemmais proved, the expanding
character of the SSSfollows, and the existence of theinitial traceisprovedinaclass
&, containing &.. As aconsequence, afirst existence result is proved, and extended
solutionswith constant singular set (ECS) are obtained aslimits of continuousweak
solutions.

The following three sections establish the well-posedness for the Cauchy prob-
lem. Existence of the minimal and maximal ECSis shown in Section 3. Separation
of variables |eads to the elliptic problem, studied in Section 4, and uniqueness fol-
lowsfor dataof theform (S, 0). The uniqueness of the general evolution problemis
settled in Section 5, as well as continuous dependence and several other properties
of the solutions. In Section 6 we go back to the Dirichlet problem which is shown
to be well posed in the class of large solutions.

Section 7 investigates the asymptotic behavior, both for large x and large ¢,
where the existence of very hot spots is shown to have an important influence.

Two further sections are devoted to presenting the starting aspects of theories
that run parallel to the main theme of this paper. Thus, the theory of extended
solutions with expanding singular sets and with weak singularities is pursued in
Section 8. Section 9 contains a partial analysis of the fast-diffusion equation with
subcritical exponent, 0 < m < m.. Basic known results are reviewed, new direc-
tions stated, similarities and differences with the supercritical theory are discussed.
A final section contains comments, extensions and open problems.

A number of auxiliary results are collected in an Appendix, among them a
concentrated summary on self-similar solutions. It concludes by aterminology list.
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Final Remark. We want to point out that the change of variables v = m u™1,
defining the so-called pressure variable, allows us to pass from the fast-diffusion
equation (1.1) to the equation

v = vAv + y|Vvl3, (0.13)

withy = 1/(m —1) < 0. Thisequationisavery interesting example of degenerate
parabolic equation in non-divergence form. Nonnegative solutions are considered.
Inthecase y > 0it turns out to be equivalent to the porous medium equation [2].
The less-known case y < 0 has been studied by severa authors and interesting
phenomenaof non-uniqueness have been described, cf. [1,6,12-14)]. Itsdegeneracy
makes it a good benchmark for current theories of classical, weak or viscosity
solutions, see [18, 19, 24-26]. We devote a separate paper [21] to investigating the
consequences of the present theory of fast diffusion for the solutions of (0.13) for
y < —N/2. It will become apparent that the consideration of solutions of (1.1)
with hot spotsisimportant for understanding the behavior of the solutions of (0.13)
whichtakeon zero values, and it isin fact the key to establishing the well-posedness
of the Cauchy problem in an optimal class of initial datathat turnsout to includeall
nonnegative and measurable functiaps: RY — R U {00}, aquite infrequent
situation.

1. The Cauchy problem. Preliminaries

We begin our detail ed study by the Cauchy problemposedin Q7 = RN x (0, T)
withinitial data

u(x,0) =ug(x), xeRY, (D]

in the supercritical rangeof exponents m € (m., 1). We want to take as initial
data any nonnegative Borel measumefore introducing the precise definitions
and results we will briefly review what is known and how the extension arises.
The Cauchy problem (0.1), (1.1) has been studied by a number of authors. One of
the simplest results states that a nonnegative and bounded initial datum uq gives
rise to a unique smooth and positive solution. A result valid forall 0 < m < oo
says that for every initial dataug € L1(R), ug = 0, there exists a unique so-called
mild solution u € C([0; oo] : LY(RY)) and u > 0, cf. [7]. The critical exponent
m. appears for the first time to mark the interval m = m. where the integral
Ju(x, r)dx isaconserved quantity intime; thislaw is usually called conservation
of energy or conservation of mass. A general existence result for functions in the
range0 < m < lisobtained by HERRERO & PIERRE [35], who show that for every
nonnegative function up € Li (RY) there exists a nonnegative weak solution
ue CO,T,; L|10 (RM)); it solves (0.1) in a distribution sense and takes on the
initial valuein L:I;C(RN ). The exponent m. appearsin this framework to mark the
limit of the range where weak solutions become locally bounded as a consequence
of the following Llloc — L{° regularizing effect: for every solution u, every point

loc
x € RN and every time ¢+ > 0 the value u(x, 1) can be estimated uniformly in
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terms of 7, » > 0 and the integral of ug in the ball of radius r around x. This L},
regularity isfalsefor 0 < m < m,, as can be seen on the explicit solution

(e, t) = <CT—_2t>lm =" (NA-m) -2, (12)
[x] 1—m

which hasiinitial datau(x, 0) € L} (RY) foral p < N(1—m)/2. A counterex-
amplefor m = m. and N = 3is constructed in the Appendix. On the other hand,
Brezis & FrIEDMAN [16] showed that when we consider as initial data a Dirac
mass (in abounded domain) and we try to obtain alimit solution by approximation
with smooth data, the process failsfor 0 < m < m, because the limit is constant
intime: u(x, t) = §o(x) ® 1(¢), hence the usua concept of solution islost by lack
of radiation. The same happens when the domain is the whole space.

We quote next the two main estimates from [35] which will be of great usein
the sequel. First, the control of the local energy in time:

Lemmal.l. Let0 < m < 1, andu € C(0, T; L1(Q)) be a solution of;, = Au™
in Q x (0, T) in the sense of distributions. Then for every CS(Q) and every
0 < s,t < T, the following estimate holds:

(o)™ (fsor)

1
loc

s Cp)lt —s). (1.3)

The precise form of the L, - L} regularizing effect is as follows.

Lemma 1.2. For everym,. < m < 1 and every nonnegative weak solution of the
Cauchy problena, the following estimate holds:

20/N
u(x,t)<C(m,N)|:t_0</ uo(y)dy> +(t/r2)1/(1_m)j|, (1.4)
By (x)

withd = (m — 1+ (2/N))~1, x e RN andr > 0.

PIERRE [42] showed existence of a weak solution for all nonnegative Radon
measures as initial data in the supercritical range m. < m < 1, and under a
necessary capacity condition on u when 0 < m < m.. In the latter case the
solutions heed not belocally bounded, only Llloc(QT). Subsequently, DAHLBERG &
KENIG [28] prove the uniqueness of continuousweak solutionsfor this supercritical
range of m alowing the initial data to be a nonnegative Radon (i.e., locally finite)
measure, © € M (RV). Note that locally bounded solutions are continuous and
even C° smooth by standard regularity theory.

We will aso need a uniqueness result for finite measuresin cylinders.

Proposition 1.1. Let0 < m < 1, © c R regular and bounded, ang e
MT(Q) of finite mass. Then there exist at most a weak solution C°(Q x
(0, T)) N L>(0, T; LY(2)) such that

u; = Au™ inD'(Q x (0, T)),
u(x,t) =0 onad2 x (0, 7),
ux,0 =pu inQ.
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This uniqueness result is a direct conseguence of the fact that Lemmas 2 and
3 of [28] remain valid even in the fast- diffusion case, although in this reference
they are stated in the case of dow diffusion m > 1. A study of the homogeneous
Dirichlet problemismadein[22]. Werecall that, according to PIERRE’sresults[42],
existence can be shown only under a capacity condition in the subcritical case.

Next, we need a comparison result for the Cauchy-Dirichlet problem in a pos-
sibly unbounded domain.

Proposition 1.2. Letm > m.andS be aregular open subset®f' (not necessarily
boundedl. Letu andv be two smooth solutions of

u,— Au™ =0 in Q x (11, 1),

such thai: andv are continuous if2 x [1, 2] andu(x, 1) < v(x, t) on the lateral
boundaryd2 x (z1, r2). Note thatQr = @ N Br(0). Then for every € (11, t2),
and everyR > 0, the following estimate holds:

/ W—v)p)SC / (U = )4 (11) + C(1 — )Y/ M RN=2/=m) (1 5)
Qr Q2R

whereC depends only om and N. In particular if u (1) < v(1),
u<v in Qxl[n, ol (1.6)

Proof. We recall that the Heaviside or sign™ function is defined as H(s) = 1
fors > 0, H(s) = Ofors < 0. Let p; be an approximation of H(s) such that
pk € C2(R), pr(0) = O and p; = 0. We also note jix(a) = [y pi(o)do. For
@ € CgO(RN), we use pi (u™ — v™)¢ asthetest function, which is allowed since
both u and v are smooth solutionsin  x (z1, t2). Here, p standsfor py (u™ — v™),
andr € (11, t2):

a(u™ — ™)
f[(u—v),p(p](t):/ o~V by
Q IQ v

- f V" = v Ve - / IV =™ P,
Q Q

Hence if ¢ is nonnegative, with another integration by parts, we find that

U™ — ™ )
/[(u—v)tpwl(r)gf Mm}—/ j(u'"—v"’)a—“”
Q 02 02

av v
+/ Jjw™ — v Ag.
Q

The surface integrals are zero sinceu < v on 92 and since v and u are smooth
solutionson 2 x (11, t2), we can passto the limit ask — oo, which yields:

d
d—/(u—v>+(t>¢ §/(um — ™) Ag.
tJa Q
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Finally, since 2 is not bounded, we apply the techniques of [35, p. 155]: taking test
functions pr € C§°(RY) of the form

o) = ¢1(%):

where @1 has compact support in B2(0) and0 < ¢ < 1, ¢ = 1 on B1(0), wefind
that

d m
5 [a—vewo| scwn | [a-ve]
tJo Q

and by the estimate on C(pr) (same reference), this implies that for some other
C=C(m,N),

f —v)4(Hpr < C / ( — v)4 (1)pr + C(t — 11)Y/ =M gN=2/A=m),
Q Q
(1.7)

Inequality (1.5) follows easily from our assumptions on gg. In the case when
u(t1) < v(rp), letting R increase to infinity, sincem > m. yields

/(u VL) =0
Q

forevery t € (1, 12), henceu < vinQ x [r1,12]. O

We use the notation f. to denote the positive part of a measurable function,
f+ = max{f, 0} amost everywhere. To end these preliminaries, let us mention
that by well-known properties of the fast-diffusion equation when m > m., every
extended solutionu € £ with non-zeroinitial tracewill be positivewhereitisfinite,
and thus it will be smooth in this set. We shall show this property in the following
section thanks to the radiation lemma.

2. Limit solutions and extended solutions

Weshall seeinthissectionthat taking limits of weak solutionsleadsto thewider
class of extended continuous solutions with singular sets which are preserved in
time. Before we prove the convergence result, Theorem 2.2, we will establish some
basic properties of the classes of extended solutions. We point out that, though the
condition of constancy of the singular set will be satisfied by the limits of smooth
solutions, it is not a condition that appears as necessary in the definition of the
extended solution. Actually, properties like the persistence of strong singularities,
cf. Lemma2.1, the lower estimate near astrong singularity, (2.3), and the existence
of aninitia trace, Theorem 2.1, which we show below, are shared by larger classes
of extended solutions. Among them, we may find solutionswith weak singul arities.
Even if we consider the class of solutions whose singularities are strong, there are
solutions with expanding singular sets, hencenot in &,.

We start by the important property of persistence of the strongly singular set
for all solutionsin &£, that we call the radiation lemma
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Lemma 2.1. Letu € £ and define its initial singular set as

S = {yeRN | u(x,t)dx — oo Vr>0}. (2.1)
B, (y) =0
Then forC defined in(0.5),
otz | o (22)
D= dist(r, 8)2 '

In particular, S remains a singular set far at all later times, and for every > 0,
u(x,t) - +ooasx — S.

Proof. (i) Let u and S be as above andtake y € S. Let usfix ¢ > 0and 0 <
r < R, and let us recal that, by standard arguments, u is positive and smooth in
Q= {(x,1) € Or | u(x, 1) < oo} (seeAppendix). We choose r > 0 small enough
such that

/ u(x, v)dx = 2c.
Br(y)

Since this integral may be infinite, we then define the solution v¢ in B x (z, T),
where B = B (y), by theinitia data

v (x, 7) = f(x),
where f(x) € C(B) with compact support in B, (y) is chosen so that

0= fF(x) <u(x, 1), fx)dx =c,
B (y)

whichisawayspossibleif t issmall enough. Moreover, weput zero lateral datafor
vSondB x (t, T). Now wewill comparex and vS in Qg = (Br(y) x (7, T)) N Q.
Attimer = 7, itisclear that v¢ < u, and

O0=vi(x,t) <u(x,t) on 9B x(t,T),

so that by continuity of both solutions, they remain strictly ordered in Qz up to a
time greater than t. Thus we can define the first moment where v¢ and u “touch”:

fo=sup{t € (v, T) | u(x,t) > vi(x,t) Vx e B} >,

and let us assume that 1 is finite. Then consider a point xg such that u(xo, fo) =
Ve (xo, to). It is clear that xo cannot belong to 92 since u(rg) = +oo on this set,
hence xo € Q. By continuity of u there exists asmall cylinder

B, (x0) x [t1, 0] C B x (7, 10,

whichisstrictly includedinthe set  whereu isfinite. Inthiscylinder, by continuity
and positivity of both  and v¢, there exist constants o, 8 > 0 such that

O<a=u,vy S B <00 in Bylxp) x (1, o).
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Thus setting w = u — v¢, we have

w; —a(x,)Aw =0 in B,(xg) x (t1, t0),
wherea € C (B, (xg) x (11, fp)) issuchthat 0 < o/ < a < B’ < oo for some other
constants«” and B’. Since w ispositive on B, (xg) x {t1} and on d B, (xo) x (t1, fo),
because u > v¢ in this domain, we reach a contradiction by applying the strong

maximum principle to w, which should be positivein B, (xo) x {fo}. Hence, 1 and
v never touch, which means that

u(x,t) >vi(x,t) in Bx(t,T).

(i) By letting » decreaseto zero, T also decreasesto zero, and thus v¢ converges
to the fundamental solution vgv in B x (tr, T). Hence we obtain

u(x, 1) Zv5 (x,1) in Bx(0,7).

By letting theradius of B increaseto infinity (recall that B = B (y)), wefind that
thefundamental solutionv.s (x, 1) = Uc(x—y, 1) (thistimedefi nedinRY x (0, 7))
minorizes u in RY x (0, T). Finally, we let ¢ increase to +oo, and we find the
comparison with the self-similar IPSS:

¢ T‘"’ 23)

lx — yI?

u(x,t) = |:

The Proposition follows since y € S was chosen arbitrary. O

Remark. A first consequence of this estimate is the everywhere positivity of ex-
tended solutionswith nontrivial initial singular set. Furthermore, by local regularity,
they will be C°° smooth on the regular set @ = {u < oo}. Another consequence
of the lower estimate is that we are able to show that any extended solution has a
strong blow-up in S for all times¢ > 0. Even more, the divergence of the integral
can be computed in R for points of 3S.

Coroallary 2.1. Let u be an extended solution with initial singular s&tdefined
above in(2.1). Then for every € 3S, everyr > Oandr > 0,

/ u(x, t)dx = +o0.
B,(y)NR

Proof. Let x € B,2(y) and let y’ € S beapoint in dS that realizes the distance
d(x,S)=r"<r/2.Let B= B,/(x) C B,(y). Sinceu satisfiesthe lower estimate
(2.2), then

/ u(x, t)dx 2 / Uso(x — ¥/, t)dx.
B, (y))NR B

But we can compute the last integral: sincem > m.,

1 r! 2
/ Uso(x — ¥, )dx = C'tT-m / r T rNldr = oo,
B 0

which provestheintegral property of u. O
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Thisestimate will haveaninterest in the study of the Cauchy-Dirichlet problem
and the elliptic problemin Sections4 and 6. By applying theresult of LemmaZ2.1to
solutionsstarting at times#1 > 0 we concludethe monotonicity of strongly singular
sets of extended solutions at different times.

Coroallary 2.2. If u is an extended solution and the strongly singularseg) at a
timer is defined as the set of pointss R" at whichu(- , ¢) is not locally integrable,
then

S(t1) C S(tp) forall 051 <.

The rate of divergence (2.3) is characteristic of all strongly singular points of
extended continuous solutions. To get this lower bound it is in fact sufficient to
check condition (2.1) only on the points of zero density in S. More precisdly, we
have the following technical result that can be skipped at this stage but will be
useful later.

Proposition 2.1. LetS be a closed subset &" with frontierI' = 3S and let the
setl'g be such that

Fo={yel|3rg>0, meas{B,(y) NS} =0 if r < ro}. (2.9

Letu € £ be any extended solution such thét, ) = co onS for anyr > 0 and
such that for every € I'g, r > 0,

Iim/ u(x,t) = +oo.
1=0JB,(y)

Thenu satisfies the lower boun@.2) for every(x, ) € Qr.

Proof. We observe that I'g is a subset of points of I" with zero Lebesgue density
inS. For the points y € I'g, the proof is the same as above, and we find that

1

Ct =)

ulx,t) = |: 2:| )
lx — ¥l

Soweconsider apoint y € S\ I'g : forany r > 0, themeasureof theset B, (y) NS
is positive. Let r > 0, consider the weak solution U¢ in RN x (z, T) defined by
itsinitial data

Ui(t) = Xr»

C
|Br(y) N S|
xr being the characteristic function of B, (y) N S. Then outside S, Uf (7) is zero,
and on aS x (r,T), Uf remains bounded while there u blows up. We can then
apply our comparison result on R¢ x (z, T), where R¢ = RV \ S¢, S¢ being the
e-neighborhood of the singular set

8% = {x e RY | dist(x, S) < ¢},
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and pass to the limit when ¢ — 0O, which gives
ux, 1) 2 U7 (x, 1) in Rx(,T).

Now welet r decreaseto zero. Itisalwayspossibleto define U becausethe measure
of B,(y) NS isaways positive, so that in the limit, we concentrate the mass ¢ at
the point y. Hence by uniqueness of the fundamental solution Ues, = Uc(x — y, 1)

inRY, we get, in the limit,
ux,t) 2 Ues, (x,1) in Rx (7, T).
We end the proof as in the previous theorem by letting ¢ increase to infinity, and

then t decrease to zero, which gives the estimate we were looking for:

1

Ct Tom
] Vy € S\ Io.

lx — yI2

ulx,t) 2 |:

Hence (2.2) holds since this estimate holdsforany y € S. O

We will construct in Section 8 extended solutions having weak singularities
which do not satisfy the conditions of the last Proposition and the divergence of
the solution near them proceeds at a lower rate than (2.3). Moreover, these weak
singularities may appear or disappear in time, so that the monotonicity result of
Corollary 2.2 is false for the complete singular set. It is therefore advisable to
introduce the intermediate class &, of extended solutionsu € £ having only strong
singularitiesfort > 0O: for every space neighborhood U of apoint (x,t) ¢ 2,z > 0
we have

/ u(x,t)dx = oo.
U

Itisclear that & C & C £ . An example of an extended solution in & with
expanding singular set is given by the explicit solution

Ct 1/(1—m)
vix, 1) = (m) , A>0, (2.5)

with C and 6 asin (0.4), which isavariant of the fundamental solutions and hasan
expanding singular set of the form {(x, 1) : ¢t > 0, |x| < AY2:0/N},

Thanks to the non-shrinking property of the strong singular set we will deduce
two important results. The first one establishes the existence of an initial trace for
solutionsin &. The Borel trace can be expressed asfollows: for every nonnegative
and compactly supported test function ¢ € Co(RV),

Iim/ u(x,t)fp(x)dx:/ p(x)dv(x), (2.6)
t—=0 JrN RN

the limit being finite or infinite.
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Theorem 2.1. Every extended solutione & of (0.1) defined in astrifRY x (0, T)
possesses an initial trace which is a Borel measuse (S, u) with initial singular
set

S=()Sw.

t>0

Proof. Wedefinetheinitia singular set S asaboveand put R = RV \ S. Existence
of theinitial trace on R is a consequence of (1.3) which we can write as

/u(x,s)l//(x)dx§/ w(x, DY (dx + C)lt —s| B (2.7)
]RN RN

for every ¢ € Cg°(R) and 0 < s, t small enough. Indeed, by definition of R, for
every open U CcC R, thereexists(U) > 0 and C > 0 such that

/ u(x,dx <C V0<t <t(U).
U

Thusif r and s are small enough, (2.7) proves first that [ u(s)y is bounded when
s goes to zero, hence there exists a sequence s, — 0 such that u(s,) converges
weakly to ameasure i in R (because v is arbitrary). Now if there exists another
sequence ¢, — 0 such that u(z,) converges to some other measure 1/ in R, then
letting s,, decreasefirstin (2.7), andthenr,, — 0, wefindthat u < u'. But reverting
the roles of s, and 1,,, we get the other inequality, so that u = 1/, and finally the
whole sequence convergesto u in R. Thus,

u(t) _6 (S, ) inthe sense of Borel measures,
t—

since by definition of S, u(t) — oo in Borel measureonS. O

The second result gives the existence of extended solutions as limits of contin-
uous weak solutions.

Theorem 2.2. Let u, be a sequence of nonnegative Radon measures which con-
verge tov = (S, ) in the sense of Borel measures. gt> 0 the continuous
weak solution of Probler{0.1),(1.1) with initial data u,,. Thenu,, converges along

a subsequence to an extended solutian & of the problem with constant singular
setS and initial datav.

Proof. We recall that a sequence of Radon measures p,, converges to a measure
v in the sense of Borel measures if, for every smooth test function ¢ = 0 with
compact support in R, we have

lim /(pdun :/(pdv (2.8)
n—oo

If as usual we note R = R" \ S, then for every compact K C R, the sequence
1, (K) remains bounded as a consequence of (1.3), sothat using (1.4) in R, we see
that u,, islocally bounded and will converge along a subsequencelocally uniformly
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inR x (0, T) to asolution u of the equation with initial trace ' on R. The fact
that ' = u isaconsequence of passing to the limit in (1.3) withs =0andr > 0
when n — oo, and then letting r — 0. Now for every y € S, estimate (1.3) with
s = 0,7 > 0and ¢ with support intersecting S showsthat for every neighborhood
U of yandevery r > 0,

/ u(x,t)dx = +oo,
U

hence S is preserved in the strong sense for every + > 0. It is also clear that
u e C(R x (0,T)), and that u(t) — +oco onS for every t+ > 0 by Lemma 2.1.
Henceu € & and hasinitia tracev. O

The existence of limits of solutions which are singular in some constant set
S and are solutions of (0.1) in the complement of S, has been the motivation to
introduce the new concept of an extended continuous sol ution with non-expanding
singular set when the initial data is not a locally finite measure. These solutions
will be smooth in Qr = R x (0, T). In the following sections we will use the
abbreviation ECS to denote asolution in the class &, as defined in the Introduction

by properties (i)—(iv).

3. Existence of minimal and maximal ECS

This section is devoted to the construction of extrema ECS with a prescribed
initial trace. To beginwith, thefollowing result givesexistence of aminimal solution
with respect to a localy finite .« on R. Note that this solution is only defined in
O, and not thewhole Q7 (infactitisnot an ECS).

Lemma3.1. Letm > m,., R be an open subset &" andu € M*(R). Then
there exists a minimal solutio@u ofu, = Au™ in Qx such thatu_M(O) = W, in
the sense that for any EG8with initial trace 1 on R,

u(x,t)ggﬂ(x,t) in Og.

Proof. Let u be as above any ECS with initial trace 4 on R, and let K,, be an
increasing sequence of compact subsets of R, with regular boundary and such that
UK, = R. We define ¢ asthe solution of the Cauchy-Dirichlet problem:

atufl = A(uli)m inD/(Kil X (85 T))ﬂ
u,(x,t) =0 onok, x (¢, T),
ub(x,e) =ux, &) xa(x) in Ky,

xn being the characteristic function of K,,. By construction, since u¢ and u are
boundedin K,, x (g, T),

ut(x,t) Sux,t) in K, x (7).
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Moreover, when ¢ decreasesto zero, u, convergeslocally uniformly in K, x (0, T)
to some solution u,, with initial data u,(0) = wy,. But since uy, is finite, by
Proposition 1.1 we know that u,, is the unique strong solution of the problem

dupn = Aull iInD' (K, x (0, T)),
uy,(x,t) =0 onodkK, x (0, 7),
un(x,0) = puxn iNKy.

In particular, u,, can be constructed independently of any solution. Now welet n go
toinfinity, thenu, convergeslocally uniformly in O toasolutionu,,, independent
of any solution in O, with initial data u and such that

u,(x,t) Su(x, 1) in Og,
for any solution . Hence it is the announced minimal solution. O

It might be thought that u, isthe minimal solution we are looking for, but the
problem is that this solution does not necessarily blow up near S (by the way, this
impliesthat u ,, extended by +o0 on S, is not necessarily alimit solution). In the
following Theorem, we impose the blow-up on S:

Theorem 3.1. Letm > m.andv = (S, n) € BT (RY). Then there exists a minimal
solutionu of (0.1) with singular setS. In other words, for any ECS such that
trgy () = v,

ux,t) Su(x,t) in Rx(0,T).
Moreoveru is a limit of weak solutions, and thus of smooth solutions.

Proof. For e > 0, let S¢ be an e-neighborhood of S, with regular boundary and
R¢ beits complement. Let ustake for v alimit solutionon RY x (1/n, T) with
initial data:
Ues,(x,1/n) if x € S¢/2,
Ve, 1/n) =4 w,(x,1/n) ifx € R%/2,
0 if x € $%/2\ §¢/2,

where y(x) € S isapoint such that dist(x, S) = dist(x, y), U.s, being the funda-
mental solution with mass ¢ > 0 placed at y. We will first compare v with any
ECSu onR? x (1/n, T). First, we know from Lemmas 2.1 and 3.1, that

u(x,1/n) 2 v&(x,1/n) on RV,

We also know that « blows up on S locally uniformly in time:

1

Ct 1-m
> —
u(x, 1) 2 |:d(x,8)2i| ;

while v}y ¢ is bounded. We will compare both solutions in the domain D = R? x
(1/n, T). Thecomparison hasbeen made at theinitial time. Besides, we can choose
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8 > 0 small, depending on u, ¢ and ¢, such that on the lateral boundary aR% x
(1/n,T)
v S

Wealsotake § < ¢/2. Applying Proposition 1.2 we conclude that
vEC(e, 1) Sux, 1) in RS x (I/n, T). (31

We observe next that the same inequality istruein the smaller set R x (1/n, T).

Now we let ¢ increase to infinity: vy, converges monotonically to asolution vf
with singular set S (because of Lemma 2.1 and the fact that points y(x) remainin
S), and inequality (3.1) is preserved at the limit. Now we let n increase to infinity,
and in the limit, we get a solution v® with singular set S and the initial trace of v*
is u on R3/2, In fact the initial trace of v® is zero on S%/2 \ S, but this is not
important here since when ¢ decreases to zero, v¢ converges to a solution u with
initial trace exactly

trpy () = (S, 1),

and with singular set S for every ¢+ > 0 (because it is alimit solution — see The-
orem 2.2). Moreover, this solution is minimal since by passing to the limit in the
different variables, we get

ulx,t) Zulx,t) in Rx(0,T). O

Remark. For the minimal solution, aswell asfor the maximal solution aswe shall
see below, it is not sufficient to assign the infinite value on S since S may be of
zero measurein RY . By first taking the S, we make sure that S¢ is“viewed”. But
we need the lower bound near S to prevent the possibility that the singular set of v*
shrinksto the empty set when ¢ decreases. It isimportant that the lower comparison
holds thanks to the existence of solutions with Dirac masses, which is not the case
whenm < (N — 2)4/N. Actudly, in thisrange of parameters, when v* decreases,
we*“lose” some pointsof S, so that existence holds only for aclass of singular sets,
and aclass of measures on its complement (. has to satisfy a capacity condition —
see[42] and Section 9).

We next show that there exists a maximal ECS with a given initia trace by
modifying alittle the construction of the minimal ECS.

Theorem 3.2. Letm > m.andv = (S, u) € BT (R"). Thenthere exists amaximal
ECS solutionz of (0.1) with initial trace

trRN (ﬁ) =V,

which has a constant blow-up st As for the minimal ECS, it is a limit of smooth
solutions.
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Proof. Letu beany solution. We use the same notation asin the previous Theorem,
and we define v} “ (x, 1) asthe solution in RY x (1/n, T) with initial data

e _ c if x € §%,
v, (1/n) = {gu(x, 1n) if x € RE.

Asfor theminimal ECS, itisclear that if welet ¢ go toinfinity, thenn go to infinity
and finally ¢ decrease to zero, we have in the limit a solution v with initial trace
(S, n) = v, thuswe have only to check the maximality of v. So let u be any ECS,
and noticethat u isbounded on R¢ x (1/n, T). But if welet ¢ increase to infinity,
vy, will converge to a solution v¢ such that v¢ = +o00 on S¢ and by comparison
with IPSS, we have

1

Ct =T
vy (x,8) 2 [W] ,
hence v’ will be greater than u on IR x (1/n, o) for somes’ > & small enough.
Moreover, by Lemma 3.1,

w(x, 1/n) 2 vi(x, 1/n) = u, (x,1/n) Vx e R°.
So it is possible to apply Proposition 1.2 on Q@ = R€ andr, = 1/n, 1, = T.
Inequality (1.5) becomes here:
/ W =)0 < C f (4 — ) (1m) + CRV -2/,
RE/ﬂBR RE/QBZR

But sinceu > u,, wecanletn go toinfinity: by weak convergence in measure on
R!

[ w—wpsam= [ wam- [ wam o
Re NBog RE NBog RE NBog n—00

This gives
/ (u—v%)4 () £ CRN2/A=m),
RslﬂBZR
where v® = lim,,_, o v, and letting R go to infinity, we obtain

u(x,t) S vé(x,t) in RE x O, T).

We can let ¢’ decrease to ¢ with no problem, so that the same inequality holds on
Rf x (0, T). By passing to the limit when ¢ goes to zero, we find

ulx,t) <vx,t) in Orn.
Hencen = v isthe announced maximal solution. O
Remark. In proving maximality we do not use the continuity property at u = oo,
i.e, that u(x, ) - oo asdist(x, S) — 0. This property is however needed in the

proof of minimality. Hence, u ismaximal inalarger class of solutionswith constant
singular set.
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4. Thedliptic problem

In this section, we relate the solutions of the Cauchy problem (0.1), (1.1) with
special initial data (S, 0) totheelliptic equations—A /™ + ﬁf =0,and—Avy +
¥4 = 0. Passing from one of the elliptic equations to the other is just a matter of
changing functions and variables. Let us mention that although we use here some
estimates and results for the extended solutions of the fast-diffusion equation, the
results of this section can be completely handled by elliptic techniques, which
constitute in fact the elliptic version of thiswork. The complete elliptic theory was
already donein [38,40,52] except for Theorem 4.1. Our improvement comes from
the fact that we only deal with strong singularities here (see however Section 8 for
more general singularities).

If u and v are two nonnegative functions defined near a point xo, wenoteu ~ v
near xg if there exist two constants C1, C» > 0 such that

Civ S u £ Cov.

We begin with the following Lemmawhich explains the link with the elliptic prob-
lem.

Lemma4.l. Letm,. < m < 1andS be a closed subset &". Then the minimal
and maximal EC& andu with initial trace (S, 0) have the form

wr, 1) = 157 f1(x), (1) = 157 fo(x),
where f1 and f> are classical positive solutions of the problem

~Af"+ 2 f=0 inRV\S,

f =400 onadS. (4.1

Proof. We show the result for the maximal solution, the method being the same
for the minimal solution. (i) If we put

1
vp(x,t) = A" Tmu(x, At),

then v, is again an ECS for any » > 0, and it has the same initial trace, (S, 0).
Indeed, v, satisfies the equationin R x (0,00) andast — 0, v;, — 0 localy
uniformly in R. On S, theintegrals of v, areawaysinfinitesince S isthe strongly
singular set of u(-, ), so that the initial trace of v, isexactly (S, 0).

(i) Let us prove next that the property of maximality implies that vy (x, ¢)
must equal #, and that this one must have the self-similar form /=) £ (x) with
f(x) =1u(x,1). Notethat f € C®°(RN \ S), f(x) = oo when dist(x, 3S) — O.
By maximality of i, we have vy (x, ) < u(x,t) in RN x (0, T), hence, putting
A=1/t,

i f) = 1T f(x) Sa ) in RY x (0, 7).
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Moreover, taking r = 1, we get, again from the maximality of u,

1
0. (6, 1) = A" Tmu(x, A) = f(x)
for every A > 0. Putting both inequalities together we get
W, 1) = 157 f(x),

hence u is self-similar, and thus necessarily f satisfies the eliptic problem (4.1).
]

Here is now our main result concerning the elliptic problem. Existence and
unigueness under suitable assumptions on 92 were shown by MArcus & VERON
[40] (no conditions for existence). But here we prove unigqueness in the class of
solutions which take on the infinite value on 92 in the strong sense, avoiding the
possibility of weak singularities at isolated points:

Definition 1. By avery large solutiorof the problem

—AY+y?=0 inQ,
Y = +o00 0N odL2, (4.2)
we mean a positive function ¥ € C?(2), satisfying the equation in the classical
sense, such that ¥ (x) - coasx — y € 3R, x € , and for every y € 9Q2, and
every r > 0,

/ Y (x)dx = +o0. 4.3
QNB, ()

The class of such solutionsiscalled £; .

In fact, less regularity on ¢ can be required, since by standard arguments,
will be automatically smooth if it satisfies the equation in the distributional sense.

The solutions constructed above by separation of variables belong to the class
&L, inparticular, the strong blow-up condition (4.3) wasproved in Corollary 2.1. In
fact, thereis one-to-one correspondence between separate-variable solutionsu €&,
withiinitial data (S, 0) and solutions ¢ € &, .

Theorem 4.1. Letl < g < (NN_—Z) if N >2,¢g>1if N=12andQ be an open
subset ofRY. Then there exists a unique solutignof problem(4.2) in the class

&r. Moreover,
¥(x) ~ dist(x, 9Q) 1. (4.4)

Proof. Wefirst apply the preceding result to prove the existence of aminimal and
amaximal solution to (4.2): we can construct aminimal and a maximal ECS with
initial trace (S, 0), where S = R \ €, and these solutions have the separation-of -
variables form. Henceit yields two solutions £ and £ of the elliptic problem (4.1).
By using thetransformation v = f™, we get indeed two solutions of problem (4.2)
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satisfying (4.3) withg = 1/m € (1, N/(N — 2);). Moreover, if ¢ isasolution of
(4.2), satisfying (4.3), then

u(x, 1) = 1T g (x)

is obvioudly an ECSwith initial trace (S, 0), henceit can be compared with z and
u, which proves the maximality and minimality of v and . Finally, the behavior
(4.4) of all solutions v comes from the behavior of the minimal ECS near S : for
any ECSwith initial, trace (S, 0),

1

Ct T-m
>(——
ute 0 = (dist(x, 33)2> ’
sothat using thevariable separationfor i (s o) andu s ¢, andthefact thatg = 1/m,
we find exactly the required behavior from below for any . The behavior from
above is well known, and comes from comparison with explicit super-solutions
[38].

Now thanks to estimate (4.4), we will prove uniqueness of ¥ by using the
methods of [38]. Noting as above ¥ and ¥ the maximal and minimal solutions for
theé€lliptic problem, weknow by (4.4) that thereexistsaconstantC = C(g, N) = 1
such that

Yy<C-y in Q=RV\S.

Now if we assume that Y # r, then by the strong maximum principle,
¥y<y in Q.
Soleta € (0,1/C), and put
V=y—a@—¥)=1A+a)y —ay.
Since our choice for «, V isnonnegative, V < ¢, and (g = 1/m)

AV = L+ o)y —ay".

By an easy convexity argument, it followsthat AV < VY™ thatis, V isa super-
solution of the elliptic problem, and moreover, for every 8 € (0, @), itis clear that
By isasub-solution and

By <V <.

To construct a solution which lies between gy and V, we use here the parabolic
fast-diffusion problem: if

Ulx, 1) = tTa VY (x, 1),

then clearly U is a super-solution of the fast-diffusion problem with initial trace
(S,0). Let n € N and let u,, be the minimal solution with initial trace

trpn (uy) = (S, U(1/n)).
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Then by comparison on @ x (1/n, T), since U — oo on 9L (because V > ),
un(x,t) SUx,t) in Qx(/n,T).

Letting » go to infinity, we find that (up to extraction), u,, will converge to an ECS
u with initial trace (S, 0). Indeed, the singular set S is preserved thanks to lower
estimates for the u,,, and on 2, sinceu < U inthelimit, theinitial trace of u on Q
is zero, but since

1
u(x, ) SU <ugsg =tTm @),

we contradict the minimality of u s o). Thus necessarily = ¥, which proves
unigueness. O

Remark. Some form of the L1 divergence condition (4.3) is necessary to obtain
uniqueness for genera . If, for instance, 92 contains an isolated point, we can
construct a solution with awesk singularity at this point, of the form

u@) ~clx|~ " if N =3, ux)~cloglx])r if N=2

which will be of course different form the very large solution, which has a strong
singularity at this point. Solutions with weak singularities will be studied in Sec-
tion 8.

In order to weaken condition (4.3), we observe that at any point y € 92 such
that meas{ B, (y) \ 2} > Oforevery r > 0, thesolution u of theassociated evolution
problem will have a strong singular point, as we have shown in Lemma 2.1. This
implies that ¢ will automatically satisfy (4.3) a y. Thus we only need to check
(4.3) on points of the set

Fo={y €d|3r >0, meas(B.(y) \ &) = O}.
Marcus & VERON [40] prove unigqueness without (4.3) for domains such that
30 = 0%,
because they show that, then, all 92 is strongly singular. Their result differs from
oursin the fact that they impose a condition on €2 for unigqueness, while weimpose

alocal behavior on the class of solutions.

Corollary 4.1. Letm. < m < 1andS be a closed subset B . Then there exists
a unique ECS with initial tracésS, 0).

Proof. Sincei(s o) andu g o, havetheseparation-of-variablesformandtheelliptic
problem has a unique solution, they are equal, hence the solution isunique. O
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Estimate (4.4) givesthe behavior of ¢ as x approaches 92. When we consider
aparticular point xg € 02, the lower estimate

(0 2 Calx —x0l 71, xeQ
is still true but an upper estimate with this rate may be false when Q2 forms a spine
near xo, SO that dist(x, d2) is not comparable with |x — xp|. Indeed, any higher
rate may be allowed, if the spineis slender enough, as the following result shows.
This Proposition extends results form [43] and shows that we can obtain arbitrarily
large rates of divergence near special points of 32 (thin spines).

Proposition 4.1. LetN > 2,1 < ¢ < N/(N —2) and$2 be an open subset Bf".
Assume thab € 92 and there exist > 0 such that

Bs(0O)NQ={(x,y) e Ry xRN |y < f(0)},

where f is a convex function such thgt € C1([0, §]; Ry), f(0) = f/'(0) = 0.
Then the solutiony of the elliptic problen{4.2) satisfies

_2

Y(x, 0~ f(x) 1.
Proof. Let A(x, 0) for 0 < x < §. Since f is convex,
dist(A, Q) = dist(A, B),

where B(xp, yp) istheorthogona projectionof A onthegraphof f.Moreprecisely,
if T isthetangent to the graph of f at the point B, we have necessarily (AB) L T,
which gives xp — x = — f'(xp)|yg|. Hence,

Nl

1
dist(A, B) = (2Gw)lvsl +1vs1?)" = 1) (14 f2e)

On the other hand, asx — Owehave yg = f(xp) = o(xp) +o(x) (0 < xp < x),
so that xg = x + o(x). Hence,

dist(4, B) = [f(x) + 0()][L + o(1)]2,

whichinturnimpliesthat dist(A, 9Q2) = f(x) + o(x). Now, by our estimate (4.4),
it follows that for every solution v,

Y0~ f0) T O
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5. Well-posedness of the Cauchy problemin &,

We proceed now with the central results of our paper. We have seen that unique-
ness of ECSholdswhen . = 0. We show next uniqueness of the ECSfor any initial
trace (S, u) € BY(RY). We first show the monotone convergence of extremal so-
[utions.

Lemmab.l. Letv = (S, u) € BY(RY) and, for everyR > 0, letvg = vy,
whereyy is the characteristic function of the balz (0). Then wherr increases
to infinity,

u,, Su, and u,, Si,.

Proof. The convergence of the minimal solutionsis obvious since we approach the
minimal solution from below. It can be aso proved by the method we use below
to handle the convergence of the maximal solutions, but this oneis not so obvious.
Recall that %, andu,,, are constructed asthelimits of theweak solutionswithinitial
dataatr = 1/n :

¢ on&Sé,

()5 (1/m) = {u on Rt
= ’

and

e.c | ¢ on &N Byg,
(MUR)n (1/”') - {EMR on RS U{lxl 2 R},

where g = p on Bg N'R and 0 on RY \ Bg. Now we use the techniques of
Herrero and Pierre to compare the approximations on RN x (1/n, T'), which are
ordered: for every ¢ € C3° (RY) nonnegative,

1-m 1-m
(/[(Mu)f{c - (MuR)f,’c](t)w) = (/[(uv)f,’c - (MuR)fl’c](l/n)ﬁl))

+ C(p)|t — 1/n|.
We take now the special test functions
¢r(x) = ¢1(x/R),

where g1 € Cg° (RN), with compact support in B2(0), and ¢ = 1 on B1(0). Then
it follows that

[t = i1/ = /R T, 0,13/ mn 2

because ¢r/» has compact support in Bg. Thus when ¢ increases to infinity, and
then n increases to infinity, we obtain in the limit

1-m
( [ - uiRJu)wR/z) < Cloron.
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Indeed, u,, (1/n) and u,, , (1/n) converge weakly in measure to u and /g respec-
tively when n increasesto infinity, and these two measures are equal on Bg. Finaly
we let ¢ decrease to zero and get

0< / [, — 1, 1(Ogr/2 < Clpr2)TriTn < CTTm RN -2/A-m),

by our choice for ¢. Fixing ¢ > 0 and letting R increase to infinity, we get the
result:

u,(t) = Rli_)mOOEVR(t) vt > 0. O

Now we can establish our general uniqueness resullt.

Theorem 5.1. Letm. < m < Landv = (S, n) € BT (@RY). Then there exists a
unique ECSq (s ,,) with initial trace v.

Proof. Step 1. We will first assume that v = (S, 1) has compact support. Let

Z,=ul. S. where we keep the same notation for the approximations of
extremal sol utlons ifet ¢m bethe function defined by
| = it £,
P (r, ) = { OS ifr=s.

Then by convexity of ¢, (since0 < m < 1), itisclear thatif r1 = rg, s1 = sg and
ro 2 so, r1 = s1, we have

Gm(r1, s1) 2 ém (ro, so).
Then writing the equation satisfied for each solution, we get
0 AuZy — roZo) = A(Z, — Zo),
wherei,, = ¢m (U(s ), Us, ) INtegrating the equationin time, and using thefact
that Z,, = Zg att = 0, we get

t
A/ (Zy — Z0) = Ay Zy — AoZo 2 A(Zy — Zo).
0

Thus defining W (1) = [ (Z, — Zo), we get
W, < A—iAW inRN x (0, T),
W(@©0) =0 inRN.
Now we use the fact that v has compact support, which implies that W (¢) goes
to zero at infinity for every r > 0. This is a consequence of the L*° estimates

of Herrero and Pierre on the complement of the support of v. Thus we define the
function

H(it)=W@e e CRY) Vi>D0.
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Moreover, Z,, — Zg isbounded in RY x (0, T') (because wework with the approx-
imations), W and H arein fact continuousin RV x [0, T']. Assume now that there
existsapoint (x, 1) € RN x (0, T) such that H(x, r) > 0. Then the maximum of
H ispositive and attained at some point (xo, o) € RV x (0, T]. Indeed, H goesto
zerowhent = 0 and when |x| — oo. Thuswe have

Hi(x0,10) 20 and AH(xo,10) = e 'AW(xg,10) <0,

which impliesthat at this point,

1
O0<H =e¢e'"W,—e "W A_AW —e "W —e "W =—-H,
”w

and we reach a contradiction since H (xg, tg) > 0. Thus
w<0 in RY x (7).

This holds for W constructed from the approximate solutions. But by uniqueness
in the case © = 0, we know that when passing to the limit on the approximations,
Zo goes to zero, hence

t t
wz/(zﬂ—zo)a/ Z, <0,
0 0

Since Z,, = Ointhelimit, thisimpliesthat W = 0, hence(s ) = us )
Step 2Now, for general Borel measures v, we use the sequence vy of Borel mea-
sures defined by

VR = VXR;

where x g isthe characteristic function of Bg(0). By Lemma5.1 weknow that u,,
and u,, converge monotonically to u, and u, respectively. But since u,,, = iy,
for every R > 0, the same holdsin the limit:

and uniquenessisproved. 0O

We can now prove the well-posedness of the Cauchy problem (0.1), (1.1) inthe
class &, together with the converse problem of initial traces. The set of extended
solutions &, is equipped with the local uniform convergence in R, while the
convergence in the sense of Borel measures has already been defined.

Theorem 5.2. Letm,. < m < 1. Then the mapping

trgn : & — BTRY),
u — u(0)

is a bicontinuous, nondecreasing one-to-one correspondence.
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Proof. The fact that the trace application is invertible is a direct consequence of
existence. Now by uniqueness, it is clear that the mapping is monotone. Indeed, the
solutions are ordered by construction. Finally let usassumethat v, isasequence of
Borel measures converging to v in the Borel sense. Then we have already seenin
Theorem 2.2 that up to extraction, the associated sequences of solutions converge
locally uniformly in R to the unique solution « with initia trace v. In fact, in
this Theorem, we al so assumed that the v,, werein locally finite (Radon) measures,
but the same proof works also here with no changes. Now if there exists another
subsequence which converges, then by uniqueness, the limit is again u, so that
finally all the sequences of solutions converge to u. The continuity is thus proved.
Obviously, the inverse mapping is also continuous; this can be done essentialy in
thesameway. O

We collect here the most important properties of the ECS. Most of them have
been already shown, or they are consequences of former results.

Proposition 5.1. Letu be the ECS with initial trace = (S, u) € BT (RY). Then

eu>0in QOp,

ouc CP(QOR),

o D(u) =mu""' € C(Qr; Ry),

e u; = Au™ in the classical sense i@y .

Proof. In the case of a non-empty singular set S, the positivity property comes
from estimate (2.2). Then, since u is continuous, it is automatically smooth in the
regular set O, sincethe equationislocally not degenerate. In the case of an empty
singular set, thisproperty iswell known (seefor instance[35] or [3]). Thecontinuity
of D(u) isaconsegquence of thefactthat u > Oandregularin Q,andthatu — oo
asx— §. O

The following derivative estimates are also valid for ECS since they are limit
solutions.

Proposition 5.2. For every ECS inthe range. < m < 1, the following estimates
hold:

(i) The ratiou,/u is bounded for any > 0. More precisely,

Ou u
—— < S—, 0= -1 2N_1. 51
T (m — 1+ 2/N) (51)

(i) The bounds for spatial derivatives of 1 are
1 C
— < A(mu™1) < 71 CL=0(1—m), (5.2)

and

m—1

IVmu™ H12 < ¢, Co =20(1—m)/N. (5.3)
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(iii) Moreover, when the initial trace i&S, 0), thenu, > 0in OR.

Proof. Inegualities (5.1) and the right-hand one in (5.2) are due to ARONSON &
BENILAN [3] for regular solutions. Wepassto thelocal uniformlimitin O toobtain
the same bounds for ECS. Concerning the lower estimate for Av, v = mu™ 1,
writing the fast-diffusion equation for classical solutionsin the form

vAv = v + |y || V)3,

it turns out that vAv 2 v, = —v/t. Dividing by v, we obtain the lower bound for
Av. The estimate for Vv isthen immediate.

When = 0, itisclear that u(t) > u(t + v) forany ¢, T > 0. Indeed, u(z + 7)
can be viewed as an ECS with initial trace (S, u(t)), and thus by uniqueness, it is
greater than u(¢) which hasinitial trace (S, 0). Sinceu, isdefinedin QO becauseu
issmooth there, we seethat indeed u; > 0in Q. Sincev = u, satisfiesaclassical
parabolic equation in Qr, u; > Ointhisset. 0O

Thetwo-sided estimates on u; and on Av aretypical of therangem, <m < 1
and do not hold for m > 1 or m < m,.. An estimate from below for Au”—1 works
form > 1aswell asan estimate from below for u, /u; the estimate from above for
u;/u holdsfor all m < 1. Estimates (5.2) and (5.3) are an indication of the interest
of reviewing the whole theory in terms of the pressure variable v. We will devote
paper [21] to such an analysis.

Let usremark that, but for (5.2)-1eft, the constantsin the estimates are sharp, as
can be checked by inspection of the IPSS and the fundamental solutions (take the
limitx — oo or x = 0).

We conclude this section with a simple continuity result at t = 0.

Proposition 5.3. Let u € &, and assume that the initial trace is given in a
neighborhood/ of a pointxg € RN asafunction/v = f(x)dx whichis continuous
at xg. Then
lim  u(x,t) = f(xo). (5.9
0

t—0,x—x

Proof. Since v is continuous at xo, for any ¢ > 0, there existsa bal Vv c U
centered at xg such that

c—e<S fx)Sc+e VxeV, c¢= f(xp).
If ¢ > 0, weconstruct alower barrier by considering any smooth bounded function
g(x) supportedin V such that g(x) < f(x) in V and g(xo) = ¢ — 2¢. By classical
theory, the corresponding solution u is continuous down to ¢+ = 0 in RY, and
u1(x,t) < u(x, ) in Q. Hence we obtain the lower estimate

lim  u(x,1) 2 f(xo).
0

t—0,x— x|

Thebarrier for the upper bound is constructed by separation of variablesintheform

ua(x, 1) = (t +a) T F(x),

where F(x) solves the elliptic problem (4.1) in V, and we select a so that F (xg)
a1~ = ¢ + ¢. Comparison shows again that us(x, 1) = u(x, 1) in V x (0, 00).
Hence the upper limit since F isacontinuous function. 0O
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6. TheDirichlet problem

Our results prove directly that the singular Dirichlet problem posed in an open
domain @ c R¥ has aunique solution, which isa universal barrier in Q. Here, Q
need be neither bounded nor regular.

Theorem 6.1. Letm. < m < landu be anonnegative Radon measuré&jopen
subset oRY . Then there exists a unique extended soluti@C (< x (0, co); R;)
of the following problem:

u, = Au™ in Q x (0, 00),
(CD) o u(x,t) = +oo ona2 x (0, 0o),
u@@ =pn InQ.

In fact this solution is the unique ECSRIY x (0, co) with initial trace (S, u),
whereS = RN \ Q.

On the contrary, the homogeneous Dirichlet problem in an open set ©2 does not
necessarily have a solution for two reasons. The first oneiswell known and is due
to the geometry of Q. For instance, if  isa punctured ball, it isclear that it is not
possible to construct a positive solution of the elliptic problem

—AY +¢¥?7=0in<,
Y =00nag.

Hence for similar reasons, it is not possible in this case to construct a solution of
the parabolic Dirichlet problem

u, — Au™ =0 inQ x (0, 7),
(CD)o u(x,t) =0 ondQ x (0, 7),
u) =ug #0inQ.

The optimal condition on 9<2 is that it satisfies a Wiener criterion, which can be
expressed as an H1-capacity density.

Now, even in the case of regular, bounded subsets Q of RY, it turns out that
thereisno solution to (CD)g if

/ dist(x, Q) du(x) = +o0, (6.1)
Q

sincein this case the zero lateral dataislost not only pointwise but also in astrong
sense on some part of the boundary. We derive atheory of extended solutions for
the homogeneous Cauchy-Dirichlet problem (CD)g in [22] when (N — 2). /N <
m < 1, where the following facts are established:

o If v = (S, ) is a Borel measure in  such that dist(S,02) > 0 and
]Q dist(x, 9Q)du(x) < oo, there exists a unique extended solution u in the
sense of the present paper, which takes on the zero lateral dataon 92 x (0, c0)
in the weak sense (i.e., in the senseif integration by parts).
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o Ifv=(S, ) issuchthat S N a2 # @ or (6.1) holds, then the lateral dataislost
somewherein 92 for any positive time.

Werefer to[22] for amore detail ed study, including results concerning thelong-
time behavior of the solutions, the presence of an extrameasuretermon 92 x {0},
as well as new regularizing effects. A new critical exponent appearsin that study,
mi1=(N—-1)/(N+1).

7. Asymptotic behavior for the Cauchy problem

We discussin this section the behavior of the solutionsas |x| — oo or ¢ — oo.
We start with a general result on space asymptotics, valid for al nontrivial ECS.
For weak solutions, this result was proved by HERRERO & PIERRE [35].

Proposition 7.1. For every ECS;,

. 1
lim x| yu(x, 1) = (CHTn, (7.2)
|x]—o00
whereC = C(m, N) is defined in(0.5). This rate is the optimal minimal rate and,
moreover, the limit is exact in the case of compactly supported initial traces.

Proof. Thelower rate(7.1) comesfromthelower estimatesfor u: if wefirst assume
that v = (S, n) has compact support, then it is clear that

dist(x, S)

|x| |x]—o00

9

so that (2.2) implies (7.1). For general v we take an increasing sequence of com-
pactly supported Borel measuresv,,. Asin Lemmab.1, by uniqueness, the solution
u, with initial trace v,, converges monotonically to u, and since u,, satisfies (7.1),
u aso in the limit. Now let us assume that v = (S, ) is compactly supported.
Consider the pseudo-Barenblatt solutions

Uc(x,t) = ( (7.2

Ct 1/1-m
(xz _ AtZG/N)Jr) ’

where = N/(2 — N(1 — m)), A = k(m, N)c™® where ¢ is the mass carried
by U,.. Then Uq(x,t) = oo ontheset {(x,7) € Or | |x| £ VA -1/}, o for
t > 0 fixed, there exists ¢ big enough such that A is small and the support of v is
contained in the set {x € RY | v/A - 1N}, Thus we can easily compare the ECS
u with U, since u is obtained as alimit of smooth solutionswith initial datain the
same support as v. This provesthat for any r > 0,

. 2 . 2
lim |x|T=nu(x,t) £ lim |x|T-
|x]—00 |x]—o00

m UC([) = (C[)ﬁ

Thus we have the exact rate at infinity for such solutions. O
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Such alower bound holds also near the singularities and is typical of the sin-
gularitiesthat remain constantintime, i.e., it characterizesour class &,.. In fact, we
will seein Section 8 solutions with expanding strong singularities whose behavior
islike |x|Y/d=m) and weak singularities with arate |x|~N—2/m,

Therearethreekindsof resultsthat can be obtained for the large-time behaviour
of the ECSwith non-empty singular sets. They describetheway inwhich the singu-
lar set S radiatesinto the surrounding space. Thefirst one concernsthe asymptotics
for fixed x. We show convergence to the stationary problem. As announced, only
the radiation of the singular set determines the limit, the locally finite part of the
measure being negligible for large:.

Theorem 7.1. Let u(s ) be an ECS. with initial tracéS, ) € BY(RYN), and
assume tha$ is non-empty. Then

R i . .
lim ¢~ = us ) — us,0l(x, 1) =0 locally uniformly inR,

—>00

or in other words,

lim t_l—lmu(g’u)(x, t) = f(x) locally uniformly inR,

—0o0

where f is the unique solution of probled.1) (with strong singularities on the
boundary.

Proof. Wewill first assumethat S containsthe complement of aball Bg. Thusthe
regular set R isincludedin Bg.Lete > 0,and 7o > 0. Then u s, ) (o) is bounded
onR¢ = RN\ 8¢, whereasusual S¢ = {x € RV | dist(x, S) < ¢} (recdl that R?
is bounded). Since u s o) satisfies the lower bound (2.2), there exists r > 0 such
that

us, (1) < us,0(+1t) on RE x (tg, 00).

Now weusethefact that u s o) hasthe separation-of-variableform: if f isasabove,
then

1 1 1
T,y St (t 4 1) f(x),
and thuswhen t — 400,

1
. i < H &
ll_l)rgot Fnug ) S f(x) in R
Now since ¢ > 0 is arbitrary, we obtain the upper estimate pointwise in R. The
lower estimate comes from the fact that u s ) = u(s,0) INR x (0, T). Moreover,
if x staysin afixed compact K C R, then there exists r > 0 as above such that
CER () S 1T, SR A DT f(x) i K x (0, 00),
(7.3

and thusthe limit isuniformin K, which proves the result.
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Now for general S, we have only to find an upper estimate since the lower one
comes from the fact that us ;) = u(s,0), @ above. Let us consider a sequence S,
of singular sets such that

Sy = SU{RY \ B,(0)}.

Then the unique ECS u,, with initial trace (S,,, u,), where u, = u/r, converges
monotonically to the unique ECSu s ,,) withinitial trace (S, ). Thus defining f,
asthe unique solution of (4.1) in 2, = R, (7.3) gives, for somet = 7(n, ¢),

_1 _ 1 _ 1 1 i .
U () St Tmu,(t) ST (4 1) fr(x) in Ry

Moreover, it is clear that if K is a fixed compact in R, then 7 can be chosen
independently of n and ¢. Thus|etting n increaseto infinity, by monotonicity of the
fl’h We get

1 __1 1 .
U Tnus, O St @+ o) f(x) in K,

where f isthe unique solution of (4.1) in @ = Rf. We end as above by letting ¢
increase to infinity, which gives the local uniform convergence. 0O

Remark. More precisely, it is obvious by (7.3) that if x remainsin a compact set
K CR,

s (. 1) = 177 f(x)(1+ O(1/1)). (7.4)

When § = #, the case of classical weak solutions, the long-time behavior is
given by a smaller rate than (7.4) (such a rate characterizes then the presence of
singularities).

Theorem 7.2. Letu be a continuous distributional solution of = Au™. Then as
t goes to infinity,

u(x, 1) = o(tTm) (7.5)
locally uniformly inR”" .

Proof. Let ug € &, be the unique ECS with initial data vg, the Borel measure
defined as

r(E) if E C Bg(0),

vr(E) = { +o00 otherwise,

where 1 istheinitial trace of u (it isaRadon measurein RY since u does not have
singularitiesin the cylinder R x (0, T')). Then obviously,

u(x,t) Sug(x,t) in Br(0) x (0, 7),
and by 7.4, since in our case the singular set is exactly RV \ Bg(0), we have

ugr(x, ) = C(m, N)t T (R — |x|) T [1+ Or(1/0)].
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Thus if x remainsin a compact set K, for any ¢ > 0, there exists R big enough
such that when ¢ goes to infinity,

u(x, 1) = ¢ - 1T [+ 0.(1/0)],

which provesthat u(x, t) = o(tﬁ) locally uniformly inRY. o

Remark. We can obtain continuousweak solutions having astime growth rate any
power less than 1/(1 — m) by means of the family of self-similar solutions of the
form

u(x, 1) =t f(xt™P),

which solve the Cauchy problem with initial dataug(x) = c|x|¥, withy (1 —m) +
2 # 0. Therelation between «, g and y isthen given by

y 1

- < = 7.6
“=rya—m PTrasw (78)

Itisclear that u(0,1) = O(t%),andasy — oo, weseethat o« — 1/(1 —m), a
rate that is never attained according to (7.5). For amore detailed description of the
self-similar solutions cf. Appendix, Subsection A4.

The second asymptotic result states the intermediate asymptotiéa expanding
sets. A first result in the direction of time asymptoticsin expanding setswas proved
by FrRiIEDMAN & KaMmiN [32], who show that the source-type solutions, which are
self-similar solutions formally corresponding to y = —N in (7.6), represent the
asymptotic behaviour of al solutions with integrable initial data, ug € L*(RY).
We show that for a large class of ECS, the intermediate behavior is given by the
IPSS.

Theorem 7.3. Let 8 > 0 and assume that is an ECS with initial tracev =
(S, n) € BY(RY), whereS is bounded and non-empty, aiid = fdx. Under the
condition

1-—28
= 7Y, =" 7.7
F@ =0l =g (7.7)
the asymptotic formula is
1-28

tlim 7 Nu(y, 1) —Usp(y,1)| =0, a= >0, (7.8
—00

1-m
uniformly on sets of the fori@i1r# < |y| < CotP.

Proof. Notethaty > — 2. Given g as(7.6), we perform the change of variables

w (x, 1) = A %uMPx, ar), A >1,
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whichisagainasolutionsincea (1 —m) + 28 = 1. Theinitial trace of u, satisfies
the following estimate as . — oo: for every ¢, ¢ > 0 there exist Ao such that for
A>Xdoand x| > ¢

w0(x) = A %uo(APx) < glx|VaPr e,
By our assumptions on « and y, the exponent of A vanishes so that
lim u;0(x) =0
A—00

uniformly away from zero. On the other hand, all the u;’s are strongly singular at
zero, hence u; (x, t) converges to the IPSS on compact sets away from |x| = O.
This happensin particular for # = 1, which gives

lim A~ %u(\Px,A) = Us(x,1) for C1 < x| £ Co.

A— 00
Writing A = ¢ and A#x = y, we get the desired formula(7.8). O

Remark. Actualy, the same proof works if u is a Radon measure and condition
(7.7) issatisfied in integral average,

1

=N di = o(RY), R — oo.
Br

The condition is optimal since for f(x) = O(|x|") the behavior is not given by
U This can be aso checked on the family of self-similar solutions u(x, ) =
% f(xt~P). These solutions behave like t* f (&) on the set |x| = &r?. Actually,
they give the intermediate asymptotics for alarger class of data

Theorem 7.4. Under the conditions of Theorem 7.3, with the assumptiorf of
replaced by

f&) =clxl” +o(x]") as [|x| — oo,
the asymptotic formula is
lim = u(y, 1) — Uy (y,1)| =0,
11— 00

whereU,, is the self-similar solution with initial dat&{0}, c|x|”), and the con-
vergence is uniform on the same sétg? < |y| < CarP. If S = @, the same
resultis true taking’/, as the self-similar solution with initial dat@, c|x|"), and
convergence is uniform ify| < Cot#.

Theproof isessentially the sameasin Theorem 7.3 and weleaveit to the reader.

The term “intermediate asymptotics’ refers to the fact that this limit does not
happen either for fixed x, or for far-away regions of the form |y|r=# — oo as
t — oo. In this far-field regionthe behavior depends on the asymptotics of the
initial data. This third behavior can be checked on the same family of self-similar
solutionsFory > —2/(1—m),i.e, B > O, theinitial dataimply that f (&) ~ c|&|”
as|é| — ocowhenever y > —2/(1—m). Thisimpliesthat u behaveslike|x|" r*—AY
on sets of theform |x|r—# > 1.
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8. Extended solutions with weak singularities. Expanding singular sets

Up to now, we have only considered strong singularitiesin RV x (0, T'), that
is, the points y where the solution u is infinite and such that, at sometimet > O,
for every r > 0,

/ u(x, t)dx = +oo.
By (y)

In this section, we first investigate the possibility that solutions develop weak sin-
gularities. That is, some points where u isinfinite, but where the above integral is
finitefor somerg > 0. Our previous study has proved that the theory of initial trace
for solutions having only non-expanding strong singularitiesis complete, but thisis
not the case for solutions presenting weak singularities. Indeed, we shall see below
that the initial trace does not characterize these solutions, since weak singularities
may appear only after some positive time, and then possibly increase to form a
strong singularity, or even disappear in finitetime.

Proposition 8.1. Let (N — 2),./N < m < 1, and f € C([0, T]), nhonnegative.
Then the following problem has a weak solution:

up — Au™ = 8o(x) ® f(t) inD'(Qr),
u(©0) =0 in RV,

andu € L1(Q7).

Proof. Wefollowtheproofin[44].Letn € CS"(RN ) be nonnegativeand supported
in B1(0) such that [ # = ¢, and moreover assume that 7 isradially symmetric and
decreasing. Let ni(x) = kY n(kx), then n; converges to §o weakly in measure in
R¥, and according to standard theory, there exists a unique bounded solution u;, of
the following problem:

uy — Au" = (x) ® f(t) iInD'(Qr),
() =0 inRVN.

It isobviousthat the u; areradially symmetric, non-increasing in |x|, and that they
are bounded in L>°(0, T; LL(RY)) since [ ux(t) = f(r) isboundedin [0, T]. As
in [44], we have the following uniform bound: for some constant K > 0,

u (e, 1) < Klx|~ 8.1)

Thisalowsusto passto thelimit in the equation, and wefind that (up to extraction)
the sequence {uy} converges to afunction u which is solution of our problem with
the singular right-hand side. Moreover, estimate (8.1) still holds in the limit for u,
sothatu € LY(Q7). O
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Consequences of thisresult.

e We can construct the PSS by solving the above problem with f = ¢ and letting
¢ increase to infinity. Indeed, it is clear that in this case the solution u; satisfies
the scaling property

N-2 N(m—1)+2
up(x,t)y =k ul(kx,k m t),

hence when ¢ — oo, we find a self-similar solution which isthe IPSS.

o We can construct solutions with standing weak singularities, by taking f = 1in
the above example, although it is not seen on the initial trace which is zero.

e We can construct solutions with singularities which appear only after a certain
time, and which disappear in finite time. This is achieved by taking f with
compact support in (¢1, r2) C (0, T).

e We can create a strong singularity after some positive time thanks to weak sin-
gularities (see the theorem just below). In this case, the strong singularity is not
seen on theinitia trace.

Theorem8.1. Let(N —2)4/N <m < land f = 0, continuous in0, 7)) with
values inR; We assume thaf ~ +oco whent  t for somer € (0, 7). Then
there exists a solution to the following problem:

ur — Au™ = 8o(x) ® f(t) inD'(Qr),
(@ =0 in RV .

Such a solutiomn has a weak singularity at = O for everyr € (0, t), and it has
a strong singularity att = Oon[r, T) if for instancef = co on|[z, T + ¢].

Proof. The construction on (0, 7) has been already made above. Moreover, it is
easy to see that for any ¢ > 0, there exists 7. € (0, t) sufficiently close to T such
that f(¢.) > c. Henceon (., T),

u(x, 1) Zuc(x,t—1),

whereu. isthe solution with /' = ¢. We have seen that letting ¢ increase to infinity
yields the IPSS v, and thus

u(x,t) 2 vt — 1) on RN x (z, 7).

Thus u has astrong singularity at x = Oforany r = t (at timet = t, we take the
trace). O

Thepreviousexamplesshow that the set of weak singul aritiesdoesnot enjoy any
monotonicity properties, whichisnot the casefor strong singularities, as proved by
Lemma 2.1: once a strong singularity is created, it remains as such for any larger
time. We give below a construction of solutions with general expanding strong
singular sets, which proves in particular that strong singularities may develop in
finite time although there are nonein theinitial trace. So in this case @ so, theinitial
trace does not characterize the solutions.
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Theorem 8.2. Letm. < m < 1 and, for everyt € (0,T), letS(t) € RN be a
closed set such that the mapping> S(¢) is nondecreasing. Then there exists an
extended solution with strong singular s&t) at timer € (0, T) and initial trace
(S(0), 0), where

S0 =[S.

t>0

In particular, it is possible to start witly = @. If moreover the mapping— S(t) is
continuous, then the solution constructed is continuous with values in{-+oo}.

Proof. We define Sp = N;~0S(1). Let x, be the characteristic function of S(z).
Then by our assumptions, ¢ — x; is nondecreasing. We solve the problem

uy — Au™ = f,;(x, 1) inD'(Qr),
u©0) =0 inRN,

where f;;¢ is continuous and such that
fné‘,L'(x’t) > C'X[E(.X,[),
n— 00

x{ being the characteristic function of S¢(t) = {x € RY | dist(x,S) < &}.
By arguments similar to those in the case of point singularities, we can solve the
problem and pass to the limit which yields a solution u®¢ with right-hand side
c - x.°. Now letting ¢ increase to infinity, the u*¢ converge monotonically to a
solution u® possessing a strong singularity on S¢(¢) for every ¢ > 0. Indeed, it is
clear that we can compare »® with any solution with right-hand side ¢é, (x) x 1(z),
y being any pointin §¢, and wecanlet ¢ increasetoinfinity, whichyieldsan IPSSat
y. Thesamebeing truefor y € S, whenwe et ¢ decrease to zero, the u® decreases
to asolution # which has strong singularitieson S, and wefind for any ¢ > 79 = 0,

1
Ct o) > o 8.2)

, 1 > =5
e = <d|st(x, S(10))2
Itis moreover clear that if 1 — S(¢) is continuous, the solution is continuous with
extended valuesin R U {+oc0}. O

Remark. It isimportant to recall that limit solutions of the fast-diffusion equa-
tion u; = Au™ have a constant singular set: these are in fact what we call ECS.
Thus, solutions with a strictly expanding singular set are not limit solutions of this
equation, but they are if we add a right-hand side to the equation. It seems that a
general theory for such solutions can be drawn. At least, we have just constructed
amaximal solution, and a minimal solution can be constructed by using the same
method as for ECS. However, the question of uniqueness (given the S(¢)) is not
clear.
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Asymptotic behavior near singularities. We finaly give three examples which
prove that the space behavior near the singular set given in (2.2) does not hold in
the case of an expanding singular set. In fact the blow-up rate (exponent) is divided
by two in this case, and can be explained by means of the Darcy Law, which says
that the velocity of normal movement of an interface is given by a multiple of the
pressure gradient, cf. [2].

Example 1. The travelling waweith speed ¢ > 0, given by

1

m =
Uc(x,t) = |: ] .

L—-—m)c(x1—ct)+

Then U, behaveslike
COm, o)dist(x, S(1))"Tm

asx goesto 0S(r) = {x1 = ct} withx1 > ct. Theinterfaceisx1 = ct, itsvelocity

¢, and Darcy’s Law reads
. m
lim —_—

x1—ct, x1<ct 1 — m

Vu™ YHx, 1) = (0,...,0.

Example 2: The pseudo-Barenblatt solutiogiven in (2.5). Clearly if z is fixed,
v(x, t) behaveslike

c 1 =T
2A12t0/N=1 x|l — ro(2) ’

asx goesto S (r) = {|x| = AY%9/N = ro(r)} with |x| > ro(r). Now theinterface
is|x| = ro(t) and Darcy’s Law says
m 0

jim ——— "N (x, 1) = rp().
lx|>ro@), Ix|>ro(t) 1 —m Br( )(x, 1) o)

Example 3: The pseudo-Barenblatt solution with complete blow-up in finite time.
It is another variation of the source-type solution which is obtained by replacing ¢
by (T — ) and changing accordingly the signs of the profile. This reads

C(T —1) 1/(d=m)
UT(XJ)Z(A(T_t)ze/lv_|x|2> » A4>0,

C definedin (0.5) and |x| < AY2(T —1)?/N | the solution being defined asinfinite
for |x| = AY2(T — 1)?/N | Indeed, U7 has acomplete blow-up at timer = 7. The
asymptotic behavior near the singular set is as above.

To concludethe section, et usrecall that ECS solutionswith expanding singular
sets trandate into continuous weak solutions of the pressure equation (0.13) with
shrinking support. In particular, the last example becomes a model for extinction
in finite time which has been studied by BARENBLATT et al.[6].
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9. Fast diffusion with subcritical exponents

As a complement to the study of (0.1) in the supercritical rangem, <m < 1
we discuss in this section several aspects of subcritical diffusion, 0 < m < m.. A
new phenomenon occurs for Dirac masses [16]. In fact, the Dirac mass does not
radiate, and moreover, the fundamental solutions understood as limits of classical
solutions in the usua way turn out to be stationary masses. The following result
from BrEzis & FRIEDMAN [16] explains the phenomenon:

Proposition 9.1 (Brezis and Friedman). Let0 < m < m, andn, € C®®RY),
n, = 0andn, — c8o weakly in measure. If, is the associated sequence of
solutions, then

Uy (x,1) = cso(x) @ 1(r) in D'RN x (0, T)).

Hence, when taking the limit of those singular fundamental solutions with in-
creasing masses, wefind an |PSSwhichisalso stationary, henceit isnot continuous,
not even afunction. Consequently, there is no hope of finding a theory of continu-
ous extended solutions for general initial data. These difficulties are related to the
fact that thereis no L>°-regularizing effect from L1, as can be seen on the explicit
solution (1.2). On the other hand, it was proved by Pierre [42] that the Radon
measures admissible as initial data are exactly those which satisfy the following
condition:

Cp 1 (E) =0= u(E) =0, 9.)

C2,1/(1—m) being the capacity associated with the Sobolev space w? =T .Underthis
condition, he proves that the constructed solution is alocally integrable function,
not just a measure.

We can generalize Brezisand Friedman’sresult to the case of general measures:
if u isan arbitrary nonnegative Radon measure charging some set of zero capacity,
then it will not be regularized and will remain fixed on this set (we refer to [20]
for more details). Moreover, the same phenomenon happens for singular setsasthe
following result shows:;

Lemma9.1. Let0 < m < m. andS be closed such that
Cp 1 (S)=0.
Then the maximal solutians o) (¢) is zero outside for anyr > 0.

Proof. We construct the maximal solution as usual by constructing a solution u®
with singular set S¢, which is an e-neighborhood of S. Since u(0) = 0 outside
S, we know that u remains bounded outside S¢, so that when ¢ decreases, u® also
and there exist local uniform bounds for the ¢ on the complement of S. Thelocal
estimates outside S are obtained asin [16] by comparison with a super-solution in
Br(xp) x (0, T) of theform
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The limit solution u is obviously the maximal solution we are looking for. We will
prove that outside S, u is zero. Of course, u(0) iszerofor x € S.

Let g € Cgo(RN ), nonnegative. Then S N supp(y) is aso compact (because
S isclosed) and it has zero capacity, thus there exists a sequence v, € CSO(RN )
such that 0 £ v, £ 1, v, = 1 on aneighborhood of S N supp(¢) and v, — 0
in w2Y/A-m@RN). Fora > 2-, we usethetest function ¢ = [p(1 — v,)]* €

CERN\ 8):
t
Jwwoi= [ [uracy=o (©2)

since the support of ¢, isoutside S. Then we estimate
t T m
[ [macizean| [ [uc] .
0 0

am

1-m
ceH=1"" [/IAE,?lll’"Cn_l_"’] §C(m,N)||§0IIW

with

2 1 .
T (RN)

The estimate of C () comes from easy computations and the fact that (1 — v,)
remains bounded in W2 T (RM). Thusintegrating (9.2) on (0, T'), we get

/OT/M;“ <c [/()T/u;,j‘]m. (9.9

Hence it follows that for some constant C” depending only on m, N and

Il
T
o < oV
/0 /u;, <c <m,N, ”“’”qufwm))

Passing to the limit when n goes to infinity, and using the fact that ¢ is arbitrary,
we obtain

2L )
w? T (RN)

u e LY, T; L (RM)). (9.4)

Now take ¢ € CP RN x [0, T)), and put ¢, = ¢(1 — vy,) as the test function,
where v, is as above;

t t
/u(t)gn _/ /Mar§n _/ /MmAé‘n =0.
0 0

When n goes to infinity, the two first terms converge by dominated convergence
and for the last one, we use both the fact that

G —> @ in W2Ta(RY),

n—o00
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and that u™ € LY™(0, T; LY™(RN)) (by (9.4)), so that

loc

t t
f /u’"Ag,, —> / /u’"A(p.
0 n—od 0

Hence we find that u satisfies

t
/u(t)w—/ /usoz—/t/umAgtJ:O,
0 0

which meansthat u € L1(0, T; LL (R")) isasolution of

u— A" =0 in D'RY x (0, 7)),

with zero initial data. Thus by Lemma 3.1 of [35], we have
/ u(t) < Ctl/(l—m)RN—Z/(l—m).
Br o

(In fact, in [35, Lemma 3.1], the result is stated under the extra assumption that
u € C([0, T); LE(RV)), but it is easy to see that if u is only assumed to satisfy
(9.4), and u(t) — Oinmeasurewhent — 0, then the sameresult holds, for almost

every t > 0).

The problem here isthat sincem < m,, letting R go to infinity does not yield
u(r) = 0. However, using the same technique as in the proof of [35, Theorem 2.3],
we easily show that u = 0 almost everywhere. Indeed, if w(x) = [y u™ (x, 0)do,
which is defined almost everywherein RV, then w is sub-harmonic, and thus

C

wE) £ — w(x)dx
RN Jpp)

C ! "
=N RN=m) |:/ u(s)] ds
0 Br(§)

€11/ Am) p=2m/(A=m),

A

[IA

which goes to zero when R goes to infinity. Note that here we do not need to
assume that « isastrong solution (in [35], this assumption is needed because they
use Kato’'sinequality). O

Asaconsequence, the PSS, does not existtor 0 < m < m.. Moreprecisely, the
limit solution corresponding to an infinite masslocated at x = Oisconstantintime.
This result does not imply however that solutions with strong singularities cannot
exist. Inthesimplest case, the solution correspondingtodatav = (S, 0), whereS =
B, (0), r > Oisaball, is easily shown to exist as an extended continuous solution
and to have the standard separati on-of-variables form discussed in Section 4. More
generally, it is possible to construct solutions which will preserve the singular set
if either S is created by the measure ., or it is dense enough. More precisely, the
“bad” points of S, i.e., the points that do not radiate, are those which have zero
density in the sense of (2.4), with the Lebesgue measure replaced by the C, 1

*1-m
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capacity. Following Marcus & VERON [39], we can thusdefinethe singular interior
S* of S, which consists of density points of S, and the singular part d,[u] created

by w:
S*={yeS|Co1ya-mB(y)NS) >0 Vr>0}
d[ul ={y € 9S8 | w(Br(y) N"R) = +o0 Vr > O}.

Then the result is that there exists a non-stationary solution which preserves S as
astrong singular set if and only if S = 9,[] U &* and u satisfies the capacity
condition (9.1) (see [20] for a proof). However, the continuity property of such
solutions is not preserved unless 1 = 0. See aso Section A.4 for the study of
self-similar solutions in this range.

Another interesting aspect of the subcritical caseisthe property of extinction in
finite timewhich has been proved by BENILAN & CRANDALL [7] for all solutions
in LP(RY), p = N1 —m)/2, 0 < m < m,. The result can be extended to
the Marcinkiewicz space M?(R"), the space to which the explicit solution (1.2)
belongs. This property does not hold for m = m since then conservation of mass
istrue, [u(x,1)dx = [uo(x)dx.

10. Comments, extensions and open problems

We have constructed in this paper acompletetheory of existence and uniqueness
of nonnegative solutions of the Cauchy problem for equation u;, = A@™) inthe
range m. < m < 1, posed in the whole space 2 = RY. We have also solved the
initial-and-boundary value problem posed in an arbitrary open set @ c RY with
infinite boundary values. However, the same problem with finite boundary values
cannot be solved with the same generality, and the theory offers a number of new
qualitative aspects. Thus, thereisanew critical exponent mq1 = (N — 1)/(N + 1).
We study this problem in [22,23].

There is a remarkable novelty in the class of extended continuous solutions
with strong singul arities that we have already noted in the Introduction, namely the
radiation of energy from the singularities. This phenomenon has nothing to do with
the diffusion process that takes place in the regular set R. Actually, the equation
does not hold in S, even though the radiative solutions arise as limits of purely
diffusive solutions (the subclass C). We want to emphasize at this moment that
the radiation is a consequence of the presence of strongly singular initial data and
cannot be stopped later at any given moment (for instance by trying to enforce the
equationin RN forr > T > 0) without breaking the maximum principle, since the
radiation lemma says that al singular solutions lie above any Barenblatt solution
(which is aclassical solution for ¢+ > 0), hence above the IPSS in the limit, thus
they must be singular for al ¢ at the very hot spots of the initial data. It would
be very interesting to find more related models of radiation-diffusion equations,
maybe systems, in particular systems with quenching mechanismsfor theradiation
process.

As we have pointed out, the fast-diffusion equation can be transformed into
the so-called pressure equation (0.13) by means of thetransformation v = mu” 1,



178 EMMANUEL CHASSEIGNE & JUAN LUIs VAZQUEZ

whichmapsu = oo intov = 0. Therefore, problems concerning singul aritiestrans-
forminto problemsconcerning zero val ues. Theinvestigation of the correspondence
between the two equations for general classes of solutions is taken up in [21]. In
particular, we prove that a bounded and continuous viscosity solutiorfG13) in
the rangey < —N/2is not uniquely determined by prescribing continuous initial
data if these data have a nontrivial zero set

Welist below anumber of other problemsthat represent natural extensionsof the
abovetheory. Since none of the applicationsisimmediate and they are not essential
at this point, we will only present the main features, results and open questions as
far as we know. We begin with the extensions which offer larger similarities. A first
extension concerns very fast diffusion in one dimension. We note that, though we
have taken the critical exponent to be m, = 0 in this casg, it is formally given by
me = (N —2)/N = —1. Similaritiesand some differences appear in theremaining
range —1 < m < 0 where the equation is written in the form u, = (" Lu,),
which preservesthe parabolicity. Actually, atheory of existence has been developed
in this range and appliesto al ug € L,loc(IR), uo = 0, while the peculiar feature
is the non-uniqueness of solutions of the Cauchy problem for integrable data [30,
47]. The present theory of ECS, based on local estimates and strong singularities
of the IPSS type, can be extended to this range with few differences aside from the
non-uniqueness phenomenon. The detailed analysis will appear elsewhere.

A second extension concerns the filtration equation, u, = A® («), under suit-
able conditions on the monotone increasing function ®. Following DAHLBERG &
KENIG [29] we assume the power-growth condition

s (s
()Scz

O<c = =
D (s)

holdsfor all large s > 1, wherem, < c1 £ ¢2 < 1. Examples of such equations
have been proposed by King [36] in the study of diffusion of impuritiesin silicon
subject to cluster formation, where @ islinear near zero and of theform & (1) ~ u™,
0 < m < 1forlarge u. The Okuda-Dawson law D (1) = @’ (u) = u~? proposed
in plasma physics is based on experimental evidence which for other density and
field regimes can take the more general form D(u) ~ u®, —1 < § < 0[11].

Morework is needed to extend the results to reaction-diffusion equations of the
formu, = A®(u)+ F (u, Vu) with ® asabove. Aninteresting aspect of these equa-
tions is the possibility of having a theory of limit solutions with movingstrongly
singular sets. Let us advance the simplest example: the diffusion-convection equa-
tion

u, = Acu™ —a- Vyeu, (10.2)

witha € RV \ {0} and m as before, can be transformed into (0.1) by the change of
variablesx = y-+ar. Translating the solutions of (0.1) with spacevariabley : u;, =
A,u™ into solutions of (10.1), we obtain a class of extended continuous solutions
of (10.1) with a strongly singular set which moves in the a direction with speed
¢ = |al. It will beinteresting to investigate the motion and behaviour of the strongly
singular sets for more general convection termslikeinu; = A u™ —a- Vi f (u).
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Next isthe extension to the so-called “ p-Laplacian heat equation”
u = Ap(u) = V- (|VulP~2Vu).

Thisequationisquitesimilarto(0.1) inthesensethat it hasscalinginvariance, which
leadstotheexistenceof self-similar solutions. Thus, for p. = 2N/(N+1) < p < 2
there exists an IPSS which now takes the form

Ct

=
|x|P) , C(p,N)>0.

Uso(x,t) = <

The basic lemmas hold and allow for asimilar theory of extended solutions. How-
ever, the uniqueness proofs do not apply and actually uniqueness when the initial
datais ameasure is an important open problem.

A further line of extension concerns the nonlinear heat flow on Riemannian
manifolds. Thus, we can consider a Riemannian manifold, (M, g), say, without
boundary, and pose the Cauchy problem

up = Agu™), u(x,0) =uox), (x,1)eMx(0,T),

wherem > 0, A, isthe Laplacian operator with respect to the metric g, cf. [10].
Sincethebasic estimatesthat we haveused intherangem,. < m < 1arelocd, they
can be extended to this framework and the theory of extended continuous solutions
can be developed.

We consider next problems with markedly different qualitative aspects. As we
have pointed out, the theory of the Cauchy problem has many new features and
difficulties in the subcritical range m < m.: non-existence, lack of continuity,
extinction in finite time, . .. Partial results of our current research on this subject
are given in the last section. The range can be also extended to m < 0 in theform
u; = V- " 1Vu), but lessis known in that range, cf. [36,48].

There is aso an interest in better understanding the theory of solutions with
expanding singularities, either strong or weak. Connected with it is the study of
solutions with shrinking supports for the pressure eguation. Both subjects have
been briefly discussed above.

Finally, thetheory can be considered for solutionswith changing sign. Existence
and uniqueness of solutions is known for m > 0 when the data are integrable,
uo € LY(RY), since the solutions form asemigroup of ordered contractionsin that
space [8]. A theory for measures or for data which are large at infinity has not yet
been developed. For m < 0 there can be no solution with changing sign. This has
been proved in the one-dimensional setting in [46].

A. Appendix

We collect here some preliminary results used in the text, a construction of
unbounded solutions, an overview of self-similar solutions and a terminology list.



180 EMMANUEL CHASSEIGNE & JUAN LUIs VAZQUEZ

A.1. Comparison of weak solutions

We give a basic comparison result in the case of bounded solutions, which
comes from [15].

LemmaA.l. Assume thaf2 is a bounded open subset with smooth boundary. Let
0<g<g"eL®Qx(0,T)) andu, v € C(2 x [0, T1), all nonnegative such
thatu is a weak solution af, — Au™ = gin Q x (0, T), andv is a weak solution
with right-hand sideg*. Then ifu < v onadQ x (0, T) and onQ2 x {0},

u<v in QxI[0,T].

Proof. Thisis Lemma 2.2. of [15] applied to our case: the lemma states that for
every A 20and0< ¢ T,

t
EM/[M(I) —v(0)]4 E/[M(O)—v(o)]++/ / Mlg — g 4+ Au — )y
Q Q 0 Ja

Hencetaking A = 0, sinceu(0) < v(0) and g < g*, wefind that

/ [u@®) —v®)]+ =0,
Q

sothat u < v sincer isarbitrary. O

A.2. Regularity

We show an adaptation of the regularity results of DAHLBERG & KENIG [27] in
the case of fast diffusion. Since their methods apply here with no changes (in fact

itiseven easier inthe L, case), we only give a sketch of the proof:

Proposition A.1. Letu € Li5.(22 x (0, T)) be a nonnegative solution of = Au™
in the sense of distributions i x (0, 7). Thenu = u™ almost everywhere in

Qx (0, T),whereu* € C(2x (0, T)) isalso asolutionin the sense of distributions.

Proof. Let B = B,(xp) beabalinQ2and0 < a < b < T. Thefirst step consists
in proving that u hastraceson B x {a} and dB x (a, b), which are honnegative
bounded measures v, and u respectively on these sets. Then we canwrite, for every
@ € CS°(RN*Yy suchthat ¢ = 0 on 3B x (a, b), the following integral version
(where 3/0n denotes the derivative with respect to the inward normal):

' t
/W(x,t)u(x,t)dx—/ /{uB,w—i—umAlp}:/ / %du—i—/ Y(a)dv,.
B a JB a Jop On B

Thisis exactly Lemma 3.4 of [27]. No use has been made of the fact that in their
casem > 1.
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Then the construction of u* is made by approximation in B, x (a, b), B, =
B,_.(xg) for ¢ > O sufficiently small. If 7, isaconvolution kernel in RV+1, |et uy
be the solution of the following problem:

uf — AwH" =0 inB. x (a, b),
ut = (T.u™Y™ on 3B, x (a, b),
ui(a) = Teu(a) in B;.

Then there existsa constant C = C(”“”Lf’gc) such that
uy <C in B x (a,b),

hence we can extract a subsequence still denoted u} converging locally uniformly
toasolutionu™® in B x (a, b). Moreover, asin Lemmab5.1 of [27], we can passto
the limit in the weak formulation and see that the boundary trace of u* is i, and its
traceat t = a equasv,.

Finally we have to show that u = u* almost everywhere. This is done in
Lemma 5.1 of [27] thanks to the extra estimate that u € L"*(Q x (0, T)). But

loc

here, since we assume that u € L{5.(22 x (0, T)), the proof is made easier. The

adaptations are straightforward. 0O

A.3. Unbounded solutions

We give here the construction of an unbounded solution with initial data in
LY(RN) for the critical case m = m, announced in Section 1. We start with a
collection of smooth and compactly supportedinitial datag, (x) suchthat || @, ||;1 =
1/n?. Let u, bethe corresponding weak solution. Using the scaling properties, we
construct solutions

vy(x, 1) = k,llvu,,(kx, 1),

with &, chosen so large that ||v,(x, 1)||ze = kN |lun,(x, 1|z = n. Besides,
lun 2 = v (0)]I;2 = llgall;2 = 1/n?. Next, we consider the continuous
weak solution u with initial data

u(x,0) =Y ki o (ko (x — ya), 0),
n=1

where y, is an arbitrary sequence of pointsin RV . It is clear that u(x, 0) is inte-
grable in RY. Also by comparison u(x, ) = v,(x,t) for every n € N,. There-
fore, |u(1l)||p = oo. Using the inequdity u; < u/[(1 — m)t], we see that
lu(t)| = oo forany t € (0,1) sincet — u(t)r~Y =™ is non-increasing.
Let usremark that for N = 2, the critical exponent ism. = 0 and the equation is
usually written in the form

uy = Aln(w) = V- (u™1vu).

In this case it has been shown in [45] that initial datain L1(RY) implies that u(r)
is bounded for every r > 0. The difference can be explained as a consequence of
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the property of finite-time extinction of the last equation, which implies that the
solutions for the small masses ¢, (x) that we use in the above construction will
vanish in times that go to zero with n, and this invalidates the conclusion of the
scaling and addition performed later. However, adapting the above proof, we can
show that thisregularizing effect isnot local: thefact that [, uo(x) dx isuniformly
bounded in all balls B of radius R does not imply that u(r) € L>®(R?).

A.4. Self-similar solutions
We consider the solutions of (0.1) with initial data
uo(x) =clx”, x #0, (A1)

withe > Oand y € R. For y # —2/(1— m), both the equation and the initial data
are invariant under the family of transformations

up(x,t) = k“u(kPx, kt), k>0, (A2

where ¢ = y/[2+y(1—m)], B = 1/[2+ y (1 —m)]. Let usfirst discussthe main
features of the case m. < m < 1. By uniqueness of the continuous weak solution
in that range, we have u = uy, so that putting k = 1/¢, we get the representation
of the solutions in the form

ux, 1) =1 f(xt=P). (A.3)

We noticethat for y > —N, ug islocally integrable, sothat f isalocally bounded
function. On the other hand, taking initial data meansthat f(¢) ~ c|é|" as|&é| —
o0, since B > 0. This gives the asymptotic behavior of the solutions as |x| — oo.
In this range, we can still consider the same initial data plus a strong singularity
a |x| = 0, i.e, theinitia datais (S, u), with S = {0} and du = c|x|’dx. Then
the representation is valid with the same « and 8 but now f divergesas |§] — O.
According to the formula, thisis the same behavior of u when r — oo, and we get

2

[ ~ClEl = as |§| >0,

with C asintheIPSS. Intherange —2/(1—m) < y < —N, theinitia dataare not
integrable at zero, and only the solution of the second kind exists. Inthecritical case
y = —N, there are solutions with a strong singularity at |x| = 0, corresponding to
uo(x) = c|x|~" plus solutions with a bounded profile at zero and correspond to a
Dirac mass as initial dataug(x) = ¢do(x). Finaly, when y < —2/(1 — m), then
B < 0and theinitial behavior of u is equivalent to the behavior of f as|&| — O,
which hasto be singular of the form

f&) ~clgl” as J§]—0.

We are left with the case y = —2/(1 — m). Then, the equation and the data are
invariant under the scaling

up(x,t) = kﬁu(kx, 1), k>0.
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Therefore the solution takes the form u(x, 1) = |x|‘ﬁf(t), and we finally get
the IPSS delayed in time since f(0) = c¢. We can do asimilar analysisin the more
genera casewhere ug = |x|” f (o), witho = x/|x|, hence considering non-radial
solutions. The exponents and the representation formulas are similar, but now the
profile f depends a so on the angular variable.

Next, we give a quick glimpse of the case 0 < m < m.. We also take initia
data of the form (A.1) and we construct by approximation an extended continuous
solution which has the self-similar form (A.3) with « and 8 as above for y #
—2/(1—m). Inthiscase, the value of the profile f(0) isbounded fory > —2/(1—
m) and infinite for y < —2/(1 — m). It is easy to prove that in the latter case,
f(&) ~ cl&]” when & — 0 so that these self-similar solutions are unbounded.
Therearetwo subranges. For y < — N, thesolution u(x, 7) hasastrong singularity
a |x| = Ofor al times. On the other hand, the singularity at zero is integrable for
—N <y < —2/(1—m) thusproving that in the subcritical range, the LL . — L.
regularizing effect fails. The corresponding self-similar solutions exhibit a weak
singularity at |x| = O for al times, something that did not happen for m > m..
Both strong and weak singularities may have different divergence rates. Finally,
wheny = —2/(1 — m), weget for 0 < m < m, the explicit solution

_.2 1
ulx,t)y =clx|"Tm(T —t)T-m.

Using thissolution and symmetrization [49], we can provethat solutionswithinitial
datain the Marcinkiewicz space M” (RN), p = N(1—m)/2,0 < m < m,, vanish
in finite time, thus improving the result of BENILAN & CRANDALL [8]. Proofs of
all these facts have been omitted here due to lack of space, but they will appear
elsawhere.

Remark. The nonlinear elliptic equation satisfied by f in the radial case can be
translated into an autonomous system which is then studied by phase-plane tech-
niques, starting with the early papersof the50's, cf. [5,54]. Thereisahugeliterature
for m > 1, see for instance [44] and the references therein for the study of self-
similar solutions with weak singularities which give the asymptotic behaviour of
the Cauchy-Dirichlet problem in an exterior domain. For 0 < m < 1, we refer
to [36,41]. There are other types of self-similar solutions that can be considered,
and many interesting properties have been observed (singular behaviour, asymp-
totic attraction, stability, ...) but werefrain in this paper from further details on the
subject.

A.5. Terminology

We end the appendix with the following brief terminology for convenience of
the reader.
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Barenblatt solution:
E.

Es:

Ee:

ECS:
Hot spot:

IPSS:
Pressure:

Self-similar solution:
Source-type solution:

Strong singularity:
SSS:

see source-type solution.

The class of extended continuous solutions.
Subclass of £ with only strong singularities.
Subclass of & with only constant strong
singularities.

Extended continuous solution in &..

Singularity, a point xo where u(xg, 1) = oo for

t > 0 (or where ug is not locally bounded).
Infinite point source solution, see (0.5).

The function v = mu™ ! where u satisfies (0.1).
Special solution of the form u(x, 1) = t* f (xtF).
Solution with a Dirac mass as initial data, more
precisely finite point-source solution see (0.4),

A singular point where f isnot locally integrable.
Strongly singular set, consisting of the strong

singularities.

A special solution of theform u(x, t) = f(x — ct).
Strong singularity.

A singular point of f whereitislocally integrable.

Travelling wave:
Very hot spot:
Weak singularity:

Note. As an answer to one of the referees’ questions, we would like to add the
following comment: the class of extended continuous solutions described here
offers a new perspective of combining diffusion and radiation in a compact form
and we conjecture its usefulness in models of reaction-diffusion and other fields.
However, two years after first announcing this mechanism, the possibility of real-
world applications is till the main open issue and we would like to draw the
attention of potential readersto it. On the other hand, there has been rapid progress
in the study of solutions with expanding singularities (studied in Section 8) in the
work of BARENBLATT et al, cf. [6,50].
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