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Abstract

This paper is devoted to constructing a general theory of nonnegative solutions
for the equation

ut = �(um), 0 < m < 1,

called “the fast-diffusion equation” in the literature. We consider the Cauchy prob-
lem taking initial data in the set B+ of all nonnegative Borel measures, which forces
us to work with singular solutions which are not locally bounded, not even locally
integrable. A satisfactory theory can be formulated in this generality in the range
1 > m > mc = max{(N − 2)/N, 0}, in which the limits of classical solutions
are also continuous in R

N as extended functions with values in R+ ∪ {∞}. We
introduce a precise class of extended continuous solutions Ec and prove (i) that the
initial-value problem is well posed in this class, (ii) that every solution u(x, t) in
Ec has an initial trace in B+, and (iii) that the solutions in Ec are limits of classical
solutions.

Our results settle the well-posedness of two other related problems. On the one
hand, they solve the initial-and-boundary-value problem in R× (0,∞) in the class
of large solutions which take the value u = ∞ on the lateral boundary x ∈ ∂R,
t > 0. Well-posedness is established for this problem for mc < m < 1 when R
is any open subset of R

N and the restriction of the initial data to R is any locally
finite nonnegative measure in R. On the other hand, by using the special solutions
which have the separate-variables form, our results apply to the elliptic problem
�f = f q posed in any open set R. For 1 < q < N/(N − 2)+ this problem is
well posed in the class of large solutions which tend to infinity on the boundary in
a strong sense.

As is well known, initial data with such a generality are not allowed form � 1.
On the other hand, the present theory fails in several aspects in the subcritical
range 0 < m � mc, where the limits of smooth solutions need not be extended-
continuously.
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0. Introduction and statement of the main results

In this paper we extend the existing theory of nonnegative solutions of the
nonlinear evolution equation

ut = �(um), 0 < m < 1, (0.1)

which serves as a mathematical model for the interplay of fast and slow propagation
speeds in an evolution process of diffusive type. Indeed, equation (0.1) has been
extensively studied in the literature under the name of fast-diffusion equation(FDE),
cf. for instance [7,11,16,34–36], because it can be written in the form

ut = div(D(u)∇u), with D(u) = mum−1,

so that the diffusion coefficient D(u) → ∞ as u → 0 if m < 1. This is reflected
in the well-known property of infinite speed of propagation of small disturbances
with respect to the zero level: a continuous and nonnegative weak solution of the
equation defined in an open cylinder � × (0, T ) ⊂ R

N+1 is necessarily positive
for all x ∈ � at time t > 0 unless it is identically zero at this time. This is a
property shared by the heat equation, ut = �u, but not by the equation withm > 1
(the porous-medium equation). However, the previous approach to equation (0.1)
overlooks the fact that for high values of u the diffusion coefficientD(u) decreases
and D(u) → 0 as u → ∞, opening up a perspective of slow propagationfor
u 
 1, or even no propagation at the level u = ∞, that is absent in the equations
with m � 1. To describe our results it will be convenient to use a terminology
taken from the theory of thermal propagation and think of (0.1) as a nonlinear
heat equation for the temperature distribution u(x, t), and thenD(u) is the thermal
diffusivity. Moreover, the space integral of u over a set E ⊂ R

N is taken as a
measure of the thermal energy contained in E. However, in problems of diffusion
u is a concentration or a density, and in that case the term energy is replaced by
mass, as is often used in properties like conservation of mass. Examples of this
character appear in plasma physics where u is the particle density and m = 1/2
(Okuda-Dawson law) [11] and in the description of the diffusion of impurities in
silicon, where u stands for the concentration of impurities [36].

It is the purpose of this work to formulate a theory of existence, uniqueness and
continuous dependence of solutions for (0.1) with arbitrarily large data in a suitable
class of large solutions, as well as the inverse problem of assigning an initial trace to
any given solution. The project has a successful and simple answer in the so-called
supercritical exponent range, mc < m < 1, with mc = max{(N − 2)/N, 0}. We
show that in that range three closely related problems can be solved in an optimal
sense which is described next. A fourth problem, the well-posedness of the so-
called pressure equation, will be studied in [21]. Before we discuss the results and
the proofs, let us point out the main novelty of our study, namely the existence of
strong singularities which behave like permanent sources of radiation. Actually,
they radiate into the surrounding space an infinite amount of energy, which is then
spread according to the diffusion law.

(I) Theory of the Cauchy problem. Borel measures and very hot spots. The
Cauchy problem, posed for x ∈ R

N and t > 0, admits a classical solution u(x, t) >
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0 for any smooth and bounded initial data u0(x) � 0. This result was extended to
locally integrable data by Herrero & Pierre [35], to finite Radon measures in
a bounded domain by Brezis & Friedman [16] and to locally finite measures in
the whole space by Pierre [42] and Dahlberg & Kenig [29]. The purpose of
this work is to extend as far as possible the class of data and solve (0.1) for all
nonnegative Borel measures as initial data, u0 = ν ∈ B+(RN). Let us recall that
every nonnegative Borel measure ν ∈ B+(RN) can be described by a pair (S, µ),
where S is the set of strongly singular pointsof the measure ν, defined as

S = {x ∈ R
N : ν(Br(x)) = +∞ ∀r > 0}. (0.2)

andµ, the restriction of ν to R = R
N \S, is a locally finite Radon measure, cf. [31].

The strongly singular set S, abbreviated to SSS, can be any arbitrary closed subset
of R

N . We shall think of its points as very hot spots, since there is an infinite thermal
energy in every neighborhood, as small as we please, of a very hot spot. Observe
that µ need not be locally finite in R

N since it may blow up on the boundary of R.
As an example, every measurable function f (x), x ∈ R

N , with values in R+∪{∞},
induces a Borel measure (S, µ), where S is the complement of the maximal open
set R where f is locally integrable and dµ(x) = f (x) dx on R. While S contains
all strongly singular points of ν, weak singularities like Dirac deltas are contained in
µ, i.e., they are not considered very hot. Similar notation applies for the solutions
u(x, t) at t > 0. By a singularity of the temperature distribution u(x, t) at time
t = t0, we mean a point x0 near which u(t0) is not locally bounded. A weak
singularity is a singularity such that u(·, t0) is locally integrable near x0, otherwise
the singularity is strong.

By taking limits of classical solutions, Dahlberg & Kenig [29] considered
initial data in the class of locally finite measures and arrived at the class C of
continuous weak solutions. In the present generality, ν ∈ B+(RN), we arrive at
the class Ec of extended continuous solutions with constant singular set, which is
precisely described as follows.

Definition 1. A solutionu ∈ Ec is a nonnegative and measurable function defined in
Q = R

N×(0,∞), possibly infinite-valued, and satisfying the following conditions:

(i) It is continuous as an extended function: u ∈ C(Q,R+), where R+ = [0,∞].
(ii) It is a classical solution of (0.1) in the regular set � = {(x, t) | u(x, t) <

∞} ⊂ QT .
(iii) For every t > 0 the infinite level-set S(t) = {x : u(x, t) = ∞} consists of

strong singularities and is constant in time.

A solution u ∈ Ec of the Cauchy problem with initial data ν ∈ B+(RN) is a solution
which takes on the initial value ν in the sense of Borel trace, i.e.,

(iv) For any compactly supported test function ϕ ∈ C0(R
N), ϕ � 0,

lim
t→0

∫
RN

u(x, t)ϕ(x) dx =
∫

RN

ϕ(x) dν(x) ∈ R+ ∪ {+∞}. (0.3)
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Conditions (i) and (ii) are the definition of extended continuous solutions, which
form a larger class E ; (iii) restricts this class to a constant and strongly singular
set, because this restriction is naturally found when we obtain solutions as limits
of continuous weak solutions. This is a nontrivial restriction, since solutions with
expanding SSS can be constructed cf. Section 8, but they are not the limits of the
classical theory of the Cauchy problem. Finally, condition (iv) is not necessarily
imposed in the definition of the class since every solution satisfying (i)–(iii) will be
shown to have an initial trace. Note that the Borel trace means the standard trace in
R and

∫
U
u(x, t) dx → ∞ for every neighborhood U of any point of S, cf. (2.6).

Because of (iii) the regular set � of a solution Ec is the cylinder

QR = R × (0,∞), R = R
N \ S.

Since the solutions are strictly positive on R and infinite on S, it turns out that (i) is
equivalent to the stronger assertion that 1/u (or equivalently, D(u)) is continuous
in Q. The solutions are also smooth in R × (0,∞). The extended continuity of
u near the set S is important to eliminate false solutions of the type u = +∞ on
B × (0, T ), where B is a ball and u = 0 on the complement.

The main results of this paper establish that the Cauchy problem is well posed
in the class Ec and that the resulting theory is the unique extension of the classical
theory to general initial data. We sum up next the precise results which are proved
in the paper.

Theorem. The following holds for the set of nonnegative limit solutions of the
Cauchy problem for(0.1) in the rangemc < m < 1:

(a) The mapν �→ u fromB+(RN) intoEc is one-to-one, monotone and continuous
with respect to the convergence of data in the sense of Borel measures.

(b) Conversely, every solution defined fort > 0 admits an initial trace inB+(RN).
(c) For locally finite initial masses, i.e., whenS = ∅, we recover the setC of

continuous weak solutions.
(d) All the solutions inEc are limits of classical solutions with smooth initial data.

In terms of semigroup theory, we may say that (0.1) generates a semigroup
of maps St : u0 �→ u(t) in B+(RN) which is the closure of the classical one. As
usual, we writeu(t) to denote the function x �→ u(x, t). Let us remark that extended
continuous solutions with non-empty SSS are notdistributional solutions since the
functions involved are not locally integrable. The theory is, however, an extension
of the distributional theory since the extended solutions are limits of distributional
solutions. A natural renormalizationof the form v = 1/uα for a convenient value
of α > 0 may allow us to fall into a distributional theory, see Final Remark at the
end of the Introduction.

As a reference to results of a similar generality, the use of Borel measures as data
appears in the recent work of Marcus and Véron. The well-posedness of the Cauchy
problem in the class of Borel measures has been established by these authors in
[37] for the semi-linear heat equation ut = �u − uq , with 1 < q < 1 + 2/N
and we use their outline for the uniqueness proof although the technical aspects are
different. Concerning equations of the type (0.1), a theory with this generality is
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typical of the fast-diffusion range m < 1, and does not apply to the heat equation,
m = 1, where the initial data accepted in the limit theory must be locally finite
Radon measures with an exponential growth rate at infinity. More precisely, for any
nonnegative solution of the heat equation existing in a time interval 0 < t < T the
initial trace is a measure ν such that∫

RN

e−c|x|2dν <∞

for some c > 0, and then T � 1/4c, cf. [53]. For this equation the presence of
a very hot spot forces the function obtained as the limit of classical solutions to
blow up in the whole space-time domain, u ≡ +∞ in Q. The same applies to the
porous-medium rage m > 1 with the only proviso that the allowed growth rate for
the optimal class of initial data is power-like, u0(x) ∼ O(|x|2/(m−1)). In a more
precise form, the initial trace of a nonnegative solution existing for a time interval
0 < t < T is a Radon measure u0 = ν such that∫

|x|�R
dν = O(RN+(2/(m−1)) as R → ∞,

cf. [4,9]. Again, failure to satisfy this condition produces instantaneous and global
blow-up. On the other hand, while the existence of nontrivial solutions with very
hot spots can be extended to the subcritical range 0 < m � mc, the simple charac-
terization of well-posedness fails, and a number of new properties arise from the
even slower rate of propagation for large u, the most typical being the absence of
a point-source solution, [16]. A complete theory is still missing in this case.

(I’) Special solutions. Radiation from very hot spots. Let us turn to the question
of qualitative behavior of the solutions in the good range mc < m < 1. In dealing
with general initial data we have extended the theory by introducing the subclass
of solutions with a nontrivial SSS, E ′

c = Ec \ C. Such solutions have many peculiar
features which separate them from the class of continuous weak solutions C. A
representative example of the relationship and differences between the two kinds
of solutions occurs in the passage from a finite point source to an infinite point
source. Thus, let us consider the family of special solutions Uc(x, t) of (0.1) with
initial mass a Dirac delta,Uc(x, 0) = cδ(x). These solutions, known as source-type
solutions, Barenblatt solutions or fundamental solutions, exist in the classical sense
for all m > mc and are given by the explicit formula

Uc(x, t) =
(

Ct

x2 + At2θ/N
)1/(1−m)

(0.4)

where θ = N/(2 − N(1 − m)), C = 2mN/(θ(1 − m)) is a fixed constant de-
pending only on m and N , and A > 0 is a decreasing function of the mass c,
A = k(m,N)c−α . If we take the limit of the fundamental solutions with increasing
masses, we get the formula

U∞(x, t) =
[
Ct

|x|2
]1/(1−m)

, C = 2m

1 −m(2 −N(1 −m)) > 0. (0.5)
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Notice that C > 0 precisely for mc < m < 1. This is an extended continuous
solution of (0.1) that has the simplest singular initial trace with an infinite source,
of the form S = {0},µ = 0.Accordingly, we shall call U∞ the infinite point-source
solution, IPSS. We see that while the solutions Uc become bounded and smooth
for t > 0 (the so-called regularizing effect, the hot spot disappears), U∞ keeps
its strong singularity at x = 0,

∫
B
U∞(x, t) dx = ∞ for any t > 0 and any ball

BR(0) with r > 0. Solutions like this one with a standing singularity were called
“razor blades” in the classification of the types of singular solutions that appear as
limits of fundamental solutions performed in [51]. The IPSS can be considered as a
relative of another well-known type, the very singular solutions, introduced in [17,
33] for the study of the nonlinear heat equation ut = �u − up and subsequently
found in other models. They have in common the strong singularity at t = 0 but
they differ in the fact that the VSS is bounded for all t > 0 while the “razor blade”
is not.

Next we remark that the strong singularity is not passive, since the solution
becomes positive everywhere for positive time, and moreover, it increases and
tends to +∞ everywhere when t → ∞. We say that the singularity radiatesenergy
into the surrounding space with a rate that can be calculated as

d

dt

∫
|x|>r

U∞(x, t) dx = −
∫
|x|=r

∂um

∂r
dS = K

tm/(1−m)

rN/θ(1−m)
,

which goes to infinity as r → 0, to zero as r → ∞. Thus, the very hot spot acts
as a permanent source of radiation, and the same property holds for all solutions
with a SSS S �= ∅. For them the above theory implies that u > 0 everywhere in
R, which means that even though the radiating hot set S (which has diffusivity
D(u) = 0) stays very hot for ever, it also radiates into the surrounding space, and
the radiation arrives up to infinity. Actually, the IPSS is probably the single most
important solution of the equation since many of the qualitative properties, and
even quantitative estimates, of the general class of solutions are modeled on its
behaviour. Thus, we prove that any extended solution diverges in the neighborhood
of very hot spots at least like the IPSS,

u(x, t) � U∞(x − y, t) ∀y ∈ S, (0.6)

and the estimate holds for all x ∈ R
N , and gives a lower bound of the asymptotic

behavior as |x| → ∞ for fixed t > 0, which is exact for solutions with compactly
supported u0. This “radiation lemma” is one of the key estimates on which the
theory is based. Also of interest is the long-time behavior of solutions with strong
singularities. It turns out that this behavior is governed only by the singular set in
first approximation. Indeed, even when the locally finite part of the initial trace
does not vanish, its effect becomes negligible compared with the radiation of the
singular part when time goes to infinity, and this happens independently of the rate
of growth of µ as x → ∞, even if this rate can be arbitrarily large.

The phenomenon of radiation will not be always true for general initial data if
m � mc, being the source of new complexities in the theory.
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(II) Evolution problem with infinite boundary data. A consequence of the above
results is the well-posedness of the initial-and-boundary value for (0.1) posed in an
arbitrary open set R ⊂ R

N , with infinite boundary data

u(x, t)→ ∞ as (x, t)→ - = ∂R × (0,∞), (0.7)

and initial data

u0 = µ ∈ M+(R), (0.8)

the set of locally finite nonnegative measures. By a solution of this problem we mean
a continuous function u : QR = R × (0,∞) → R+ with solves the equation in
QR, diverges at the lateral boundary - locally uniformly, and takes the initial
data µ in the sense of trace. We show that there exists a unique maximal solution
in this class, which is at the same time the maximal element in the whole class
of continuous solutions with initial data µ and arbitrary boundary behaviour. It is
therefore a universal upper barrier. It can be constructed by considering the Cauchy
problem with initial data the measure ν which is strongly singular on S = R

N \R
and equalsµ on R. Uniqueness follows from the uniqueness of the Cauchy problem
if we add to the definition of solution the condition of strong singularityin . = ∂R
as t → 0. This condition can be stated in this setting as

lim
t→0

∫
U(y)∩R

u(x, t) dx = ∞ (0.9)

for every y ∈ . and every U neighborhood of y. We also show that this condition
need only be checked on a certain subset.0 of. consisting of points of zero density
in S. Thus, when every point of. is a point of density of S, uniqueness holds without
the strong singularity condition. On the other hand, we construct examples of non-
uniqueness when . has isolated points in the form of solutions which do not satisfy
the divergence condition (0.9), i.e., they exhibit weak singularities.

Note the complete generality both of the open setR, which is allowed to be
unbounded and have irregular boundary., and of the locally finite measureµ, which
may diverge at any rate near .. The properties derived for the Cauchy problem
can be translated here. In particular, the map: (S, µ) → u is continuous in both
arguments. The solutions are limits of classical solutions in the same domain. The
results cannot be extended to m � 1 and only partially to 0 < m � mc.

On the other hand, let us point out that the generality of domain R is a char-
acteristic of the problem with infinite boundary values which is not allowed for
other initial and boundary-value problems, like the homogeneous Dirichlet prob-
lem, where the zero data cannot be prescribed on isolated parts of . = ∂R. For the
Cauchy-Dirichlet problem, we refer to Section 6 and the forthcoming papers [22,
23].

(III) The Elliptic Problem with Infinite Data. Another consequence of the results
for the Cauchy problem is obtained when we consider data of the form ν = (S, 0),
i.e., a pure SSS with cold surrounding space. Then it can be proved that the solution
takes the separate-variables form

u(x, t) = t1/(1−m)f (x) (0.10)
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where f is a solution of the elliptic equation �fm = (1/(1 −m))f in R. Taking
the more convenient variable ψ = c f m, it satisfies

−�ψ + ψq = 0 in R, (0.11)

with q = 1/m in the interval 1 < q < N/(N − 2) (1 < q <∞ if N = 1, 2), and
takes infinite boundary values

ψ(x)→ ∞ as x → ∂R. (0.12)

The results of (I), (II) imply that this problem, called the problem of large solutions,
is well posed for any open set R if we add a condition of strong divergence at special
points of.. In fact, problem (III) is completely equivalent in this setting to problem
(II) with µ = 0. Our results complete the deep study of Marcus & Véron [38,
40], from which we draw a number of basic techniques.

As in the problem (II), the full generality of domain R is a characteristic of
the class of large solutions and is not allowed for other boundary values, like the
homogeneous Dirichlet data, which cannot be prescribed on isolated parts of . =
∂R. The results cannot be extended to q � 1 and only partially to q � N/(N −2).

Distribution. The results are organized in ten sections as follows: Section 1 con-
tains the preliminary information on smooth and weak solutions for the Cauchy
problem, references and the main local estimates.

Section 2 contains a study of the properties of extended solutions E without the
restriction of aconstant singular set. The radiation lemma is proved, the expanding
character of the SSS follows, and the existence of the initial trace is proved in a class
Es containing Ec. As a consequence, a first existence result is proved, and extended
solutions with constant singular set (ECS) are obtained as limits of continuous weak
solutions.

The following three sections establish the well-posedness for the Cauchy prob-
lem. Existence of the minimal and maximal ECS is shown in Section 3. Separation
of variables leads to the elliptic problem, studied in Section 4, and uniqueness fol-
lows for data of the form (S, 0). The uniqueness of the general evolution problem is
settled in Section 5, as well as continuous dependence and several other properties
of the solutions. In Section 6 we go back to the Dirichlet problem which is shown
to be well posed in the class of large solutions.

Section 7 investigates the asymptotic behavior, both for large x and large t ,
where the existence of very hot spots is shown to have an important influence.

Two further sections are devoted to presenting the starting aspects of theories
that run parallel to the main theme of this paper. Thus, the theory of extended
solutions with expanding singular sets and with weak singularities is pursued in
Section 8. Section 9 contains a partial analysis of the fast-diffusion equation with
subcritical exponent, 0 < m � mc. Basic known results are reviewed, new direc-
tions stated, similarities and differences with the supercritical theory are discussed.
A final section contains comments, extensions and open problems.

A number of auxiliary results are collected in an Appendix, among them a
concentrated summary on self-similar solutions. It concludes by a terminology list.
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Final Remark. We want to point out that the change of variables v = mum−1,
defining the so-called pressure variable, allows us to pass from the fast-diffusion
equation (1.1) to the equation

vt = v�v + γ |∇v|2, (0.13)

with γ = 1/(m−1) < 0. This equation is a very interesting example of degenerate
parabolic equation in non-divergence form. Nonnegative solutions are considered.
In the case γ > 0 it turns out to be equivalent to the porous medium equation [2].
The less-known case γ < 0 has been studied by several authors and interesting
phenomena of non-uniqueness have been described, cf. [1,6,12–14]. Its degeneracy
makes it a good benchmark for current theories of classical, weak or viscosity
solutions, see [18,19,24–26]. We devote a separate paper [21] to investigating the
consequences of the present theory of fast diffusion for the solutions of (0.13) for
γ < −N/2. It will become apparent that the consideration of solutions of (1.1)
with hot spots is important for understanding the behavior of the solutions of (0.13)
which take on zero values, and it is in fact the key to establishing the well-posedness
of the Cauchy problem in an optimal class of initial data that turns out to include all
nonnegative and measurable functionsv0 : R

N �→ R+ ∪ {∞}, a quite infrequent
situation.

1. The Cauchy problem. Preliminaries

We begin our detailed study by the Cauchy problem posed inQT = R
N×(0, T )

with initial data

u(x, 0) = u0(x), x ∈ R
N, (1.1)

in the supercritical rangeof exponents m ∈ (mc, 1). We want to take as initial
data any nonnegative Borel measure. Before introducing the precise definitions
and results we will briefly review what is known and how the extension arises.
The Cauchy problem (0.1), (1.1) has been studied by a number of authors. One of
the simplest results states that a nonnegative and bounded initial datum u0 gives
rise to a unique smooth and positive solution. A result valid for all 0 < m < ∞
says that for every initial data u0 ∈ L1(R), u0 � 0, there exists a unique so-called
mild solution u ∈ C([0;∞] : L1(RN)) and u � 0, cf. [7]. The critical exponent
mc appears for the first time to mark the interval m � mc where the integral∫
u(x, t) dx is a conserved quantity in time; this law is usually called conservation

of energy or conservation of mass. A general existence result for functions in the
range 0 < m < 1 is obtained by Herrero & Pierre [35], who show that for every
nonnegative function u0 ∈ L1

loc(R
N) there exists a nonnegative weak solution

u ∈ C(0, T ;L1
loc(R

N)); it solves (0.1) in a distribution sense and takes on the
initial value in L1

loc(R
N). The exponent mc appears in this framework to mark the

limit of the range where weak solutions become locally bounded as a consequence
of the following L1

loc → L∞
loc regularizing effect: for every solution u, every point

x ∈ R
N and every time t > 0 the value u(x, t) can be estimated uniformly in
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terms of t , r > 0 and the integral of u0 in the ball of radius r around x. This L∞
loc

regularity is false for 0 < m < mc, as can be seen on the explicit solution

u(x, t) =
(
C
T − t
|x|2

) 1
1−m

, C = 2m

1 −m(N(1 −m)− 2), (1.2)

which has initial data u(x, 0) ∈ Lploc(R
N) for all p < N(1 − m)/2. A counterex-

ample for m = mc and N � 3 is constructed in the Appendix. On the other hand,
Brezis & Friedman [16] showed that when we consider as initial data a Dirac
mass (in a bounded domain) and we try to obtain a limit solution by approximation
with smooth data, the process fails for 0 < m � mc because the limit is constant
in time: u(x, t) = δ0(x)⊗ 1(t), hence the usual concept of solution is lost by lack
of radiation. The same happens when the domain is the whole space.

We quote next the two main estimates from [35] which will be of great use in
the sequel. First, the control of the local energy in time:

Lemma 1.1. Let 0 < m < 1, andu ∈ C(0, T ;L1(�)) be a solution ofut = �um

in � × (0, T ) in the sense of distributions. Then for everyϕ ∈ C2
0 (�) and every

0 < s, t < T , the following estimate holds:∣∣∣∣∣
(∫

�

u(t)ϕ

)1−m
−

(∫
�

u(s)ϕ

)1−m∣∣∣∣∣ � C(ϕ)|t − s|. (1.3)

The precise form of the L1
loc-L∞

loc regularizing effect is as follows.

Lemma 1.2. For everymc < m < 1 and every nonnegative weak solution of the
Cauchy problemu, the following estimate holds:

u(x, t) � C(m,N)

[
t−θ

(∫
Br(x)

u0(y) dy

)2θ/N

+ (t/r2)1/(1−m)
]
, (1.4)

with θ = (m− 1 + (2/N))−1, x ∈ R
N andt > 0.

Pierre [42] showed existence of a weak solution for all nonnegative Radon
measures as initial data in the supercritical range mc < m < 1, and under a
necessary capacity condition on µ when 0 < m � mc. In the latter case the
solutions need not be locally bounded, onlyL1

loc(QT ). Subsequently,Dahlberg&
Kenig [28] prove the uniqueness of continuous weak solutions for this supercritical
range of m allowing the initial data to be a nonnegative Radon (i.e., locally finite)
measure, µ ∈ M+(RN). Note that locally bounded solutions are continuous and
even C∞ smooth by standard regularity theory.

We will also need a uniqueness result for finite measures in cylinders.

Proposition 1.1. Let 0 < m < 1, � ⊂ R
N regular and bounded, andµ ∈

M+(�) of finite mass. Then there exist at most a weak solutionu ∈ C0(� ×
(0, T )) ∩ L∞(0, T ;L1(�)) such that

ut = �um in D′(�× (0, T )),
u(x, t) = 0 on ∂�× (0, T ),
u(x, 0) = µ in �.
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This uniqueness result is a direct consequence of the fact that Lemmas 2 and
3 of [28] remain valid even in the fast- diffusion case, although in this reference
they are stated in the case of slow diffusion m > 1. A study of the homogeneous
Dirichlet problem is made in [22]. We recall that, according to Pierre’s results [42],
existence can be shown only under a capacity condition in the subcritical case.

Next, we need a comparison result for the Cauchy-Dirichlet problem in a pos-
sibly unbounded domain.

Proposition 1.2. Letm > mc and�be a regular open subset ofR
N (not necessarily

bounded). Letu andv be two smooth solutions of

ut −�um = 0 in �× (t1, t2),

such thatu andv are continuous in�×[t1, t2] andu(x, t) � v(x, t) on the lateral
boundary∂� × (t1, t2). Note that�R = � ∩ BR(0). Then for everyt ∈ (t1, t2),
and everyR > 0, the following estimate holds:∫

�R

(u− v)+(t) � C

∫
�2R

(u− v)+(t1)+ C(t − t1)1/(1−m)RN−2/(1−m), (1.5)

whereC depends only onm andN . In particular if u(t1) � v(t1),

u � v in �× [t1, t2]. (1.6)

Proof. We recall that the Heaviside or sign+ function is defined as H(s) = 1
for s > 0, H(s) = 0 for s � 0. Let pk be an approximation of H(s) such that
pk ∈ C2(R), pk(0) = 0 and p′k � 0. We also note jk(α) =

∫ α
0 pk(σ )dσ . For

ϕ ∈ C∞
0 (R

N), we use pk(um − vm)ϕ as the test function, which is allowed since
both u and v are smooth solutions in�× (t1, t2). Here, p stands for pk(um− vm),
and t ∈ (t1, t2):∫

�

[(u− v)t p ϕ](t) =
∫
∂�

∂(um − vm)
∂ν

pϕ

−
∫
�

∇j (um − vm)∇ϕ −
∫
�

p′|∇(um − vm)|2ϕ.

Hence if ϕ is nonnegative, with another integration by parts, we find that∫
�

[(u− v)t p ϕ](t) �
∫
∂�

∂(um − vm)
∂ν

pϕ −
∫
∂�

j (um − vm)∂ϕ
∂ν

+
∫
�

j (um − vm)�ϕ.

The surface integrals are zero since u � v on ∂� and since v and u are smooth
solutions on �× (t1, t2), we can pass to the limit as k → ∞, which yields:

d

dt

∫
�

(u− v)+(t)ϕ �
∫
�

(um − vm)+�ϕ.
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Finally, since� is not bounded, we apply the techniques of [35, p. 155]: taking test
functions ϕR ∈ C∞

0 (R
N) of the form

ϕR(x) = ϕ1

( x
R

)
,

where ϕ1 has compact support in B2(0) and 0 � ϕ � 1, ϕ = 1 on B1(0), we find
that ∣∣∣ d

dt

∫
�

(u− v)+(t)ϕR
∣∣∣ � C(ϕR)

[∫
�

(u− v)+ϕR
]m
,

and by the estimate on C(ϕR) (same reference), this implies that for some other
C = C(m,N),∫

�

(u− v)+(t)ϕR � C

∫
�

(u− v)+(t1)ϕR + C(t − t1)1/(1−m)RN−2/(1−m).

(1.7)

Inequality (1.5) follows easily from our assumptions on ϕR . In the case when
u(t1) � v(t1), letting R increase to infinity, since m > mc yields∫

�

(u− v)+(t) = 0

for every t ∈ (t1, t2), hence u � v in �× [t1, t2]. ��
We use the notation f+ to denote the positive part of a measurable function,

f+ = max{f, 0} almost everywhere. To end these preliminaries, let us mention
that by well-known properties of the fast-diffusion equation when m > mc, every
extended solution u ∈ E with non-zero initial trace will be positive where it is finite,
and thus it will be smooth in this set. We shall show this property in the following
section thanks to the radiation lemma.

2. Limit solutions and extended solutions

We shall see in this section that taking limits of weak solutions leads to the wider
class of extended continuous solutions with singular sets which are preserved in
time. Before we prove the convergence result, Theorem 2.2, we will establish some
basic properties of the classes of extended solutions. We point out that, though the
condition of constancy of the singular set will be satisfied by the limits of smooth
solutions, it is not a condition that appears as necessary in the definition of the
extended solution. Actually, properties like the persistence of strong singularities,
cf. Lemma 2.1, the lower estimate near a strong singularity, (2.3), and the existence
of an initial trace, Theorem 2.1, which we show below, are shared by larger classes
of extended solutions. Among them, we may find solutions with weak singularities.
Even if we consider the class of solutions whose singularities are strong, there are
solutions with expanding singular sets, hence not in Ec.

We start by the important property of persistence of the strongly singular set
for all solutions in E , that we call the radiation lemma.
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Lemma 2.1. Letu ∈ E and define its initial singular set as

S =
{
y ∈ R

N |
∫
Br(y)

u(x, t)dx −→
t→0

∞ ∀r > 0

}
. (2.1)

Then forC defined in(0.5),

u(x, t) �
[

Ct

dist(x,S)2
] 1

1−m
. (2.2)

In particular,S remains a singular set foru at all later times, and for everyt > 0,
u(x, t)→ +∞ asx → S.

Proof. (i) Let u and S be as above and take y ∈ S. Let us fix c > 0 and 0 <
r < R, and let us recall that, by standard arguments, u is positive and smooth in
� = {(x, t) ∈ QT | u(x, t) <∞} (see Appendix). We choose τ > 0 small enough
such that ∫

Br(y)

u(x, τ )dx � 2c.

Since this integral may be infinite, we then define the solution vcr in B × (τ, T ),
where B = BR(y), by the initial data

vcr (x, τ ) = f (x),

where f (x) ∈ C(B) with compact support in Br(y) is chosen so that

0 � f (x) < u(x, τ ),

∫
Br(y)

f (x)dx = c,

which is always possible if τ is small enough. Moreover, we put zero lateral data for
vcr on ∂B× (τ, T ). Now we will compare u and vcr in�R = (BR(y)× (τ, T ))∩�.
At time t = τ , it is clear that vcr < u, and

0 = vcr (x, t) < u(x, t) on ∂B × (τ, T ),
so that by continuity of both solutions, they remain strictly ordered in �R up to a
time greater than τ . Thus we can define the first moment where vcr and u “touch”:

t0 = sup{t ∈ (τ, T ) | u(x, t) > vcr (x, t) ∀x ∈ B} > τ,
and let us assume that t0 is finite. Then consider a point x0 such that u(x0, t0) =
vcr (x0, t0). It is clear that x0 cannot belong to ∂� since u(t0) = +∞ on this set,
hence x0 ∈ �. By continuity of u there exists a small cylinder

Bη(x0)× [t1, t0] ⊂ B × (τ, t0],
which is strictly included in the set�where u is finite. In this cylinder, by continuity
and positivity of both u and vcr , there exist constants α, β > 0 such that

0 < α � u, vcr � β <∞ in Bη(x0)× (t1, t0).
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Thus setting w = u− vcr , we have

wt − a(x, t)�w = 0 in Bη(x0)× (t1, t0),
where a ∈ C(Bη(x0)× (t1, t0)) is such that 0 < α′ � a � β ′ <∞ for some other
constants α′ and β ′. Sincew is positive on Bη(x0)×{t1} and on ∂Bη(x0)× (t1, t0),
because u > vcr in this domain, we reach a contradiction by applying the strong
maximum principle to w, which should be positive in Bη(x0)× {t0}. Hence, u and
vcr never touch, which means that

u(x, t) > vcr (x, t) in B × (τ, T ).
(ii) By letting r decrease to zero, τ also decreases to zero, and thus vcr converges

to the fundamental solution vBcδy in B × (τ, T ). Hence we obtain

u(x, t) � vBcδy (x, t) in B × (0, T ).
By letting the radius of B increase to infinity (recall that B = BR(y)), we find that
the fundamental solution vcδy (x, t) = Uc(x−y, t) (this time defined in R

N×(0, T ))
minorizes u in R

N × (0, T ). Finally, we let c increase to +∞, and we find the
comparison with the self-similar IPSS:

u(x, t) �
[

Ct

|x − y|2
] 1

1−m
. (2.3)

The Proposition follows since y ∈ S was chosen arbitrary. ��
Remark. A first consequence of this estimate is the everywhere positivity of ex-
tended solutions with nontrivial initial singular set. Furthermore, by local regularity,
they will be C∞ smooth on the regular set � = {u < ∞}. Another consequence
of the lower estimate is that we are able to show that any extended solution has a
strong blow-up in S for all times t > 0. Even more, the divergence of the integral
can be computed in R for points of ∂S.

Corollary 2.1. Let u be an extended solution with initial singular setS defined
above in(2.1). Then for everyy ∈ ∂S, everyt > 0 andr > 0,∫

Br(y)∩R
u(x, t)dx = +∞.

Proof. Let x ∈ Br/2(y) and let y′ ∈ S be a point in ∂S that realizes the distance
d(x,S) = r ′ � r/2. Let B = Br ′(x) ⊂ Br(y). Since u satisfies the lower estimate
(2.2), then ∫

Br(y)∩R
u(x, t)dx �

∫
B

U∞(x − y′, t)dx.

But we can compute the last integral: since m > mc,∫
B

U∞(x − y′, t)dx = C′t
1

1−m
∫ r ′

0
r−

2
1−m rN−1dr = +∞,

which proves the integral property of u. ��
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This estimate will have an interest in the study of the Cauchy-Dirichlet problem
and the elliptic problem in Sections 4 and 6. By applying the result of Lemma 2.1 to
solutions starting at times t1 > 0 we conclude the monotonicity of strongly singular
sets of extended solutions at different times.

Corollary 2.2. If u is an extended solution and the strongly singular setS(t) at a
timet is defined as the set of pointsy ∈ R

N at whichu(· , t) is not locally integrable,
then

S(t1) ⊂ S(t2) for all 0 � t1 < t2.

The rate of divergence (2.3) is characteristic of all strongly singular points of
extended continuous solutions. To get this lower bound it is in fact sufficient to
check condition (2.1) only on the points of zero density in S. More precisely, we
have the following technical result that can be skipped at this stage but will be
useful later.

Proposition 2.1. LetS be a closed subset ofR
N with frontier. = ∂S and let the

set.0 be such that

.0 = {y ∈ . | ∃r0 > 0, meas{Br(y) ∩ S} = 0 if r < r0}. (2.4)

Letu ∈ E be any extended solution such thatu(x, t) = ∞ onS for anyt > 0 and
such that for everyy ∈ .0, r > 0,

lim
t→0

∫
Br(y)

u(x, t) = +∞.

Thenu satisfies the lower bound(2.2) for every(x, t) ∈ QT .

Proof. We observe that .0 is a subset of points of . with zero Lebesgue density
in S. For the points y ∈ .0, the proof is the same as above, and we find that

u(x, t) �
[

Ct

|x − y|2
] 1

1−m
.

So we consider a point y ∈ S \.0 : for any r > 0, the measure of the setBr(y)∩S
is positive. Let τ > 0, consider the weak solution Ucr in R

N × (τ, T ) defined by
its initial data

Ucr (τ ) =
c

|Br(y) ∩ S|χr,

χr being the characteristic function of Br(y) ∩ S. Then outside S, Ucr (τ ) is zero,
and on ∂S × (τ, T ), Ucr remains bounded while there u blows up. We can then
apply our comparison result on Rε × (τ, T ), where Rε = R

N \ Sε, Sε being the
ε-neighborhood of the singular set

Sε = {x ∈ R
N | dist(x,S) � ε},
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and pass to the limit when ε → 0, which gives

u(x, t) � Ucr (x, t) in R × (τ, T ).
Now we let r decrease to zero. It is always possible to defineUcr because the measure
of Br(y) ∩ S is always positive, so that in the limit, we concentrate the mass c at
the point y. Hence by uniqueness of the fundamental solution Ucδy = Uc(x− y, t)
in R

N , we get, in the limit,

u(x, t) � Ucδy (x, t) in R × (τ, T ).
We end the proof as in the previous theorem by letting c increase to infinity, and
then τ decrease to zero, which gives the estimate we were looking for:

u(x, t) �
[

Ct

|x − y|2
] 1

1−m ∀y ∈ S \ .0.

Hence (2.2) holds since this estimate holds for any y ∈ S. ��
We will construct in Section 8 extended solutions having weak singularities

which do not satisfy the conditions of the last Proposition and the divergence of
the solution near them proceeds at a lower rate than (2.3). Moreover, these weak
singularities may appear or disappear in time, so that the monotonicity result of
Corollary 2.2 is false for the complete singular set. It is therefore advisable to
introduce the intermediate class Es of extended solutions u ∈ E having only strong
singularities for t > 0: for every space neighborhoodU of a point (x, t) �∈ �, t > 0
we have ∫

U

u(x, t) dx = ∞.

It is clear that Ec ⊂ Es ⊂ E . An example of an extended solution in Es with
expanding singular set is given by the explicit solution

v(x, t) =
(

Ct

x2 − At2θ/N
)1/(1−m)

, A > 0, (2.5)

with C and θ as in (0.4), which is a variant of the fundamental solutions and has an
expanding singular set of the form {(x, t) : t > 0, |x| � A1/2tθ/N }.

Thanks to the non-shrinking property of the strong singular set we will deduce
two important results. The first one establishes the existence of an initial trace for
solutions in Es . The Borel trace can be expressed as follows: for every nonnegative
and compactly supported test function ϕ ∈ C0(R

N),

lim
t→0

∫
RN

u(x, t)ϕ(x) dx =
∫

RN

ϕ(x) dν(x), (2.6)

the limit being finite or infinite.
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Theorem 2.1. Every extended solutionu ∈ Es of (0.1) defined in a stripRN×(0, T )
possesses an initial trace which is a Borel measureν = (S, µ)with initial singular
set

S =
⋂
t>0

S(t).

Proof. We define the initial singular set S as above and put R = R
N \S. Existence

of the initial trace on R is a consequence of (1.3) which we can write as∫
RN

u(x, s)ψ(x)dx �
∫

RN

u(x, t)ψ(x)dx + C(ψ)|t − s| 1
1−m (2.7)

for every ψ ∈ C∞
0 (R) and 0 < s, t small enough. Indeed, by definition of R, for

every open U ⊂⊂ R, there exists t (U) > 0 and C > 0 such that∫
U

u(x, t)dx � C ∀ 0 < t < t(U).

Thus if t and s are small enough, (2.7) proves first that
∫
u(s)ψ is bounded when

s goes to zero, hence there exists a sequence sn → 0 such that u(sn) converges
weakly to a measure µ in R (because ψ is arbitrary). Now if there exists another
sequence tn → 0 such that u(tn) converges to some other measure µ′ in R, then
letting sn decrease first in (2.7), and then tn → 0, we find thatµ � µ′. But reverting
the roles of sn and tn, we get the other inequality, so that µ = µ′, and finally the
whole sequence converges to µ in R. Thus,

u(t) −→
t→0

(S, µ) in the sense of Borel measures,

since by definition of S, u(t)→ ∞ in Borel measure on S. ��
The second result gives the existence of extended solutions as limits of contin-

uous weak solutions.

Theorem 2.2. Letµn be a sequence of nonnegative Radon measures which con-
verge toν = (S, µ) in the sense of Borel measures. Letun � 0 the continuous
weak solution of Problem(0.1),(1.1) with initial dataµn. Thenun converges along
a subsequence to an extended solutionu ∈ E of the problem with constant singular
setS and initial dataν.

Proof. We recall that a sequence of Radon measures µn converges to a measure
ν in the sense of Borel measures if, for every smooth test function ϕ � 0 with
compact support in R

N , we have

lim
n→∞

∫
ϕ dµn =

∫
ϕ dν (2.8)

If as usual we note R = R
N \ S, then for every compact K ⊂ R, the sequence

µn(K) remains bounded as a consequence of (1.3), so that using (1.4) in R, we see
that un is locally bounded and will converge along a subsequence locally uniformly
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in R × (0, T ) to a solution u of the equation with initial trace µ′ on R. The fact
that µ′ = µ is a consequence of passing to the limit in (1.3) with s = 0 and t > 0
when n → ∞, and then letting t → 0. Now for every y ∈ S, estimate (1.3) with
s = 0, t > 0 and ψ with support intersecting S shows that for every neighborhood
U of y and every t > 0, ∫

U

u(x, t)dx = +∞,

hence S is preserved in the strong sense for every t > 0. It is also clear that
u ∈ C(R × (0, T )), and that u(t) → +∞ on S for every t > 0 by Lemma 2.1.
Hence u ∈ Ec and has initial trace ν. ��

The existence of limits of solutions which are singular in some constant set
S and are solutions of (0.1) in the complement of S, has been the motivation to
introduce the new concept of an extended continuous solution with non-expanding
singular set when the initial data is not a locally finite measure. These solutions
will be smooth in QR = R × (0, T ). In the following sections we will use the
abbreviation ECS to denote a solution in the class Ec as defined in the Introduction
by properties (i)–(iv).

3. Existence of minimal and maximal ECS

This section is devoted to the construction of extremal ECS with a prescribed
initial trace. To begin with, the following result gives existence of a minimal solution
with respect to a locally finite µ on R. Note that this solution is only defined in
QR, and not the whole QT (in fact it is not an ECS).

Lemma 3.1. Letm > mc, R be an open subset ofR
N andµ ∈ M+(R). Then

there exists a minimal solutionuµ of ut = �um in QR such thatuµ(0) = µ, in
the sense that for any ECSu with initial traceµ onR,

u(x, t) � uµ(x, t) in QR.

Proof. Let u be as above any ECS with initial trace µ on R, and let Kn be an
increasing sequence of compact subsets of R, with regular boundary and such that
∪Kn = R. We define uεn as the solution of the Cauchy-Dirichlet problem:

∂tu
ε
n = �(uεn)

m in D′(Kn × (ε, T )),
uεn(x, t) = 0 on ∂Kn × (ε, T ),
uεn(x, ε) = u(x, ε)χn(x) in Kn,

χn being the characteristic function of Kn. By construction, since uεn and u are
bounded in Kn × (ε, T ),

uεn(x, t) � u(x, t) in Kn × (ε, T ).
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Moreover, when ε decreases to zero, uεn converges locally uniformly inKn×(0, T )
to some solution un with initial data un(0) = µχn. But since µχn is finite, by
Proposition 1.1 we know that un is the unique strong solution of the problem

∂tun = �umn in D′(Kn × (0, T )),
un(x, t) = 0 on ∂Kn × (0, T ),
un(x, 0) = µχn in Kn.

In particular, un can be constructed independently of any solution. Now we let n go
to infinity, then un converges locally uniformly inQR to a solution uµ, independent
of any solution in QR, with initial data µ and such that

uµ(x, t) � u(x, t) in QR,

for any solution u. Hence it is the announced minimal solution. ��
It might be thought that uµ is the minimal solution we are looking for, but the

problem is that this solution does not necessarily blow up near S (by the way, this
implies that uµ, extended by +∞ on S, is not necessarily a limit solution). In the
following Theorem, we impose the blow-up on S:

Theorem 3.1. Letm > mc andν = (S, µ) ∈ B+(RN). Then there exists a minimal
solutionu of (0.1) with singular setS. In other words, for any ECSu such that
trRN (u) = ν,

u(x, t) � u(x, t) in R × (0, T ).
Moreover,u is a limit of weak solutions, and thus of smooth solutions.

Proof. For ε > 0, let Sε be an ε-neighborhood of S, with regular boundary and
Rε be its complement. Let us take for vε,cn a limit solution on R

N × (1/n, T ) with
initial data:

vε,cn (x, 1/n) =


Ucδy (x, 1/n) if x ∈ Sε/2,
uµ(x, 1/n) if x ∈ R3ε/2,

0 if x ∈ S3ε/2 \ Sε/2,
where y(x) ∈ S is a point such that dist(x,S) = dist(x, y), Ucδy being the funda-
mental solution with mass c > 0 placed at y. We will first compare vε,cn with any
ECS u on Rε × (1/n, T ). First, we know from Lemmas 2.1 and 3.1, that

u(x, 1/n) � vε,cn (x, 1/n) on R
N.

We also know that u blows up on S locally uniformly in time:

u(x, t) �
[

Ct

d(x,S)2
] 1

1−m
,

while vε,cn is bounded. We will compare both solutions in the domain D = Rδ ×
(1/n, T ). The comparison has been made at the initial time. Besides, we can choose
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δ > 0 small, depending on u, ε and c, such that on the lateral boundary ∂Rδ ×
(1/n, T )

vε,cn � u.

We also take δ < ε/2. Applying Proposition 1.2 we conclude that

vε,cn (x, t) � u(x, t) in Rδ × (1/n, T ). (3.1)

We observe next that the same inequality is true in the smaller set Rε × (1/n, T ).
Now we let c increase to infinity: vε,cn converges monotonically to a solution vεn

with singular set S (because of Lemma 2.1 and the fact that points y(x) remain in
S), and inequality (3.1) is preserved at the limit. Now we let n increase to infinity,
and in the limit, we get a solution vε with singular set S and the initial trace of vε

is µ on R3ε/2. In fact the initial trace of vε is zero on S3ε/2 \ S, but this is not
important here since when ε decreases to zero, vε converges to a solution u with
initial trace exactly

trRN (u) = (S, µ),

and with singular set S for every t > 0 (because it is a limit solution – see The-
orem 2.2). Moreover, this solution is minimal since by passing to the limit in the
different variables, we get

u(x, t) � u(x, t) in R × (0, T ). ��

Remark. For the minimal solution, as well as for the maximal solution as we shall
see below, it is not sufficient to assign the infinite value on S since S may be of
zero measure in R

N . By first taking the Sε, we make sure that Sε is “viewed”. But
we need the lower bound near S to prevent the possibility that the singular set of vε

shrinks to the empty set when ε decreases. It is important that the lower comparison
holds thanks to the existence of solutions with Dirac masses, which is not the case
whenm � (N − 2)+/N . Actually, in this range of parameters, when vε decreases,
we “lose” some points of S, so that existence holds only for a class of singular sets,
and a class of measures on its complement (µ has to satisfy a capacity condition –
see [42] and Section 9).

We next show that there exists a maximal ECS with a given initial trace by
modifying a little the construction of the minimal ECS.

Theorem 3.2. Letm > mc andν = (S, µ) ∈ B+(RN).Then there exists a maximal
ECS solutionu of (0.1) with initial trace

trRN (u) = ν,

which has a constant blow-up setS. As for the minimal ECS, it is a limit of smooth
solutions.
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Proof. Let u be any solution. We use the same notation as in the previous Theorem,
and we define vε,cn (x, t) as the solution in R

N × (1/n, T ) with initial data

vε,cn (1/n) =
{

c if x ∈ Sε,
uµ(x, 1/n) if x ∈ Rε.

As for the minimal ECS, it is clear that if we let c go to infinity, then n go to infinity
and finally ε decrease to zero, we have in the limit a solution v with initial trace
(S, µ) = ν, thus we have only to check the maximality of v. So let u be any ECS,
and notice that u is bounded on Rε × (1/n, T ). But if we let c increase to infinity,
v
ε,c
n will converge to a solution vεn such that vεn = +∞ on Sε and by comparison

with IPSS, we have

vεn(x, s) �
[

Ct

d(x,Sε)2
] 1

1−m
,

hence vεn will be greater than u on ∂Rε′ × (1/n,∞) for some ε′ > ε small enough.
Moreover, by Lemma 3.1,

u(x, 1/n) � vεn(x, 1/n) = uµ(x, 1/n) ∀x ∈ Rε′ .

So it is possible to apply Proposition 1.2 on � = Rε′ and t1 = 1/n, t2 = T .
Inequality (1.5) becomes here:∫

Rε′∩BR
(u− vεn)+(t) � C

∫
Rε′∩B2R

(u− uµ)+(1/n)+ CRN−2/(1−m).

But since u � uµ, we can let n go to infinity: by weak convergence in measure on
R, ∫

Rε′∩B2R

(u− uµ)+(1/n) =
∫
Rε′∩B2R

u(1/n)−
∫
Rε′∩B2R

uµ(1/n) −→n→∞ 0.

This gives ∫
Rε′∩B2R

(u− vε)+(t) � CRN−2/(1−m),

where vε = limn→∞ vεn, and letting R go to infinity, we obtain

u(x, t) � vε(x, t) in Rε′ × (0, T ).
We can let ε′ decrease to ε with no problem, so that the same inequality holds on
Rε × (0, T ). By passing to the limit when ε goes to zero, we find

u(x, t) � v(x, t) in QR.

Hence u ≡ v is the announced maximal solution. ��
Remark. In proving maximality we do not use the continuity property at u = ∞,
i.e., that u(x, t) → ∞ as dist(x,S) → 0. This property is however needed in the
proof of minimality. Hence, u is maximal in a larger class of solutions with constant
singular set.
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4. The elliptic problem

In this section, we relate the solutions of the Cauchy problem (0.1), (1.1) with
special initial data (S, 0) to the elliptic equations−�fm+ 1

1−mf = 0, and−�ψ+
ψq = 0. Passing from one of the elliptic equations to the other is just a matter of
changing functions and variables. Let us mention that although we use here some
estimates and results for the extended solutions of the fast-diffusion equation, the
results of this section can be completely handled by elliptic techniques, which
constitute in fact the elliptic version of this work. The complete elliptic theory was
already done in [38,40,52] except for Theorem 4.1. Our improvement comes from
the fact that we only deal with strong singularities here (see however Section 8 for
more general singularities).

If u and v are two nonnegative functions defined near a point x0, we note u ≈ v

near x0 if there exist two constants C1, C2 > 0 such that

C1v � u � C2v.

We begin with the following Lemma which explains the link with the elliptic prob-
lem.

Lemma 4.1. Letmc < m < 1 andS be a closed subset ofR
N . Then the minimal

and maximal ECSu andu with initial trace (S, 0) have the form

u(x, t) = t
1

1−m f1(x), u(x, t) = t
1

1−m f2(x),

wheref1 andf2 are classical positive solutions of the problem

−�fm + 1
1−mf = 0 in R

N \ S,
f = +∞ on ∂S. (4.1)

Proof. We show the result for the maximal solution, the method being the same
for the minimal solution. (i) If we put

vλ(x, t) = λ−
1

1−m u(x, λ t),

then vλ is again an ECS for any λ > 0, and it has the same initial trace, (S, 0).
Indeed, vλ satisfies the equation in R × (0,∞) and as t → 0, vλ → 0 locally
uniformly in R. On S, the integrals of vλ are always infinite since S is the strongly
singular set of u(·, λ), so that the initial trace of vλ is exactly (S, 0).

(ii) Let us prove next that the property of maximality implies that vλ(x, t)
must equal u, and that this one must have the self-similar form t1/(1−m)f (x) with
f (x) = u(x, 1). Note that f ∈ C∞(RN \ S), f (x)→ ∞ when dist(x, ∂S)→ 0.
By maximality of u, we have vλ(x, t) � u(x, t) in R

N × (0, T ), hence, putting
λ = 1/t ,

v1/t (x, t) = t
1

1−m f (x) � u(x, t) in R
N × (0, T ).
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Moreover, taking t = 1, we get, again from the maximality of u,

vλ(x, 1) = λ−
1

1−m u(x, λ) � f (x)

for every λ > 0. Putting both inequalities together we get

u(x, t) = t
1

1−m f (x),

hence u is self-similar, and thus necessarily f satisfies the elliptic problem (4.1).
��

Here is now our main result concerning the elliptic problem. Existence and
uniqueness under suitable assumptions on ∂� were shown by Marcus & Véron
[40] (no conditions for existence). But here we prove uniqueness in the class of
solutions which take on the infinite value on ∂� in the strong sense, avoiding the
possibility of weak singularities at isolated points:

Definition 1. By a very large solutionof the problem

−�ψ + ψq = 0 in �,
ψ = +∞ on ∂�,

(4.2)

we mean a positive function ψ ∈ C2(�), satisfying the equation in the classical
sense, such that ψ(x)→ ∞ as x → y ∈ ∂�, x ∈ �, and for every y ∈ ∂�, and
every r > 0, ∫

�∩Br(y)
ψq(x)dx = +∞. (4.3)

The class of such solutions is called EL.

In fact, less regularity on ψ can be required, since by standard arguments, ψ
will be automatically smooth if it satisfies the equation in the distributional sense.

The solutions constructed above by separation of variables belong to the class
EL, in particular, the strong blow-up condition (4.3) was proved in Corollary 2.1. In
fact, there is one-to-one correspondence between separate-variable solutions u ∈Ec
with initial data (S, 0) and solutions ψ ∈ EL.

Theorem 4.1. Let 1 < q < N
(N−2) if N > 2, q > 1 if N = 1, 2 and� be an open

subset ofRN . Then there exists a unique solutionψ of problem(4.2) in the class
EL. Moreover,

ψ(x) ≈ dist(x, ∂�)−
2
q−1 . (4.4)

Proof. We first apply the preceding result to prove the existence of a minimal and
a maximal solution to (4.2): we can construct a minimal and a maximal ECS with
initial trace (S, 0), where S = R

N \�, and these solutions have the separation-of-
variables form. Hence it yields two solutions f and f of the elliptic problem (4.1).
By using the transformationψ = f m, we get indeed two solutions of problem (4.2)



156 Emmanuel Chasseigne & Juan Luis Vazquez

satisfying (4.3) with q = 1/m ∈ (1, N/(N − 2)+). Moreover, if ψ is a solution of
(4.2), satisfying (4.3), then

u(x, t) = t
1

1−mψq(x)

is obviously an ECS with initial trace (S, 0), hence it can be compared with u and
u, which proves the maximality and minimality of ψ and ψ . Finally, the behavior
(4.4) of all solutions ψ comes from the behavior of the minimal ECS near S : for
any ECS with initial, trace (S, 0),

u(x, t) �
(

Ct

dist(x, ∂S)2
) 1

1−m
,

so that using the variable separation for u(S,0) and u(S,0), and the fact that q = 1/m,
we find exactly the required behavior from below for any ψ . The behavior from
above is well known, and comes from comparison with explicit super-solutions
[38].

Now thanks to estimate (4.4), we will prove uniqueness of ψ by using the
methods of [38]. Noting as above ψ and ψ the maximal and minimal solutions for
the elliptic problem, we know by (4.4) that there exists a constantC = C(q,N) � 1
such that

ψ � C · ψ in � = R
N \ S.

Now if we assume that ψ �= ψ , then by the strong maximum principle,

ψ < ψ in �.

So let α ∈ (0, 1/C), and put

V = ψ − α(ψ − ψ) = (1 + α)ψ − αψ.
Since our choice for α, V is nonnegative, V < ψ , and (q = 1/m)

�V = (1 + α)ψ1/m − αψ1/m
.

By an easy convexity argument, it follows that �V < V 1/m, that is, V is a super-
solution of the elliptic problem, and moreover, for every β ∈ (0, α), it is clear that
βψ is a sub-solution and

βψ < V < ψ.

To construct a solution which lies between βψ and V , we use here the parabolic
fast-diffusion problem: if

U(x, t) = t
1

1−m V 1/m(x, t),

then clearly U is a super-solution of the fast-diffusion problem with initial trace
(S, 0). Let n ∈ N and let un be the minimal solution with initial trace

trRN (un) = (S, U(1/n)).
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Then by comparison on �× (1/n, T ), since U → ∞ on ∂� (because V > βψ),

un(x, t) � U(x, t) in �× (1/n, T ).

Letting n go to infinity, we find that (up to extraction), un will converge to an ECS
u with initial trace (S, 0). Indeed, the singular set S is preserved thanks to lower
estimates for the un, and on �, since u � U in the limit, the initial trace of u on �
is zero, but since

u(x, t) � U < u(S,0) = t
1

1−mψ(x)1/m,

we contradict the minimality of u(S,0). Thus necessarily ψ ≡ ψ , which proves
uniqueness. ��

Remark. Some form of the L1 divergence condition (4.3) is necessary to obtain
uniqueness for general �. If, for instance, ∂� contains an isolated point, we can
construct a solution with a weak singularity at this point, of the form

u(x) ∼ c|x|−N−2
m if N � 3, u(x) ∼ c(log |x|) 1

m if N = 2,

which will be of course different form the very large solution, which has a strong
singularity at this point. Solutions with weak singularities will be studied in Sec-
tion 8.

In order to weaken condition (4.3), we observe that at any point y ∈ ∂� such
that meas{Br(y)\�} > 0 for every r > 0, the solution u of the associated evolution
problem will have a strong singular point, as we have shown in Lemma 2.1. This
implies that ψ will automatically satisfy (4.3) at y. Thus we only need to check
(4.3) on points of the set

.0 = {y ∈ ∂� | ∃r > 0, meas(Br(y) \�) = 0}.

Marcus &Véron [40] prove uniqueness without (4.3) for domains such that

∂� = ∂�
c
,

because they show that, then, all ∂� is strongly singular. Their result differs from
ours in the fact that they impose a condition on� for uniqueness, while we impose
a local behavior on the class of solutions.

Corollary 4.1. Letmc < m < 1 andS be a closed subset ofR
N . Then there exists

a unique ECS with initial trace(S, 0).

Proof. Sinceu(S,0) andu(S,0) have the separation-of-variables form and the elliptic
problem has a unique solution, they are equal, hence the solution is unique. ��
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Estimate (4.4) gives the behavior of ψ as x approaches ∂�. When we consider
a particular point x0 ∈ ∂�, the lower estimate

ψ(x) � C1|x − x0|−
2
q−1 , x ∈ �

is still true but an upper estimate with this rate may be false when � forms a spine
near x0, so that dist(x, ∂�) is not comparable with |x − x0|. Indeed, any higher
rate may be allowed, if the spine is slender enough, as the following result shows.
This Proposition extends results form [43] and shows that we can obtain arbitrarily
large rates of divergence near special points of ∂� (thin spines).

Proposition 4.1. LetN � 2, 1 < q < N/(N − 2) and� be an open subset ofR
N .

Assume that0 ∈ ∂� and there existδ > 0 such that

Bδ(0) ∩� = {(x, y) ∈ R+ × R
N−1 | |y| < f (x)},

wheref is a convex function such thatf ∈ C1([0, δ];R+), f (0) = f ′(0) = 0.
Then the solutionψ of the elliptic problem(4.2) satisfies

ψ(x, 0) ≈ f (x)
− 2
q−1 .

Proof. Let A(x, 0) for 0 < x < δ. Since f is convex,

dist(A, ∂�) = dist(A,B),

whereB(xB, yB) is the orthogonal projection ofAon the graph off . More precisely,
if T is the tangent to the graph of f at the point B,we have necessarily (AB) ⊥ T ,
which gives xB − x = −f ′(xB)|yB |. Hence,

dist(A,B) =
(
f ′2(xB)|yB | + |yB |2

) 1
2 = f (xB)

(
1 + f ′2(xB)

) 1
2
.

On the other hand, as x → 0 we have yB = f (xB) = o(xB)+ o(x) (0 � xB � x),
so that xB = x + o(x). Hence,

dist(A,B) = [f (x)+ o(x)][1 + o(1)] 1
2 ,

which in turn implies that dist(A, ∂�) = f (x)+o(x). Now, by our estimate (4.4),
it follows that for every solution ψ ,

ψ(x, 0) ≈ f (x)
− 2
q−1 . ��
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5. Well-posedness of the Cauchy problem in Ec

We proceed now with the central results of our paper. We have seen that unique-
ness of ECS holds whenµ = 0. We show next uniqueness of the ECS for any initial
trace (S, µ) ∈ B+(RN). We first show the monotone convergence of extremal so-
lutions.

Lemma 5.1. Let ν = (S, µ) ∈ B+(RN) and, for everyR > 0, let νR = νχR,
whereχR is the characteristic function of the ballBR(0). Then whenR increases
to infinity,

uνR ↗ uν and uνR ↗ uν.

Proof. The convergence of the minimal solutions is obvious since we approach the
minimal solution from below. It can be also proved by the method we use below
to handle the convergence of the maximal solutions, but this one is not so obvious.
Recall that uν and uνR are constructed as the limits of the weak solutions with initial
data at t = 1/n :

(uν)
ε,c
n (1/n) =

{
c on Sε,
uµ on Rε,

and

(uνR )
ε,c
n (1/n) =

{
c on Sε ∩ BR,
uµR on Rε ∪ {|x| � R},

where µR = µ on BR ∩ R and 0 on R
N \ BR . Now we use the techniques of

Herrero and Pierre to compare the approximations on R
N × (1/n, T ), which are

ordered: for every ϕ ∈ C∞
0 (R

N) nonnegative,

(∫
[(uν)ε,cn − (uνR )ε,cn ](t)ϕ

)1−m
�

(∫
[(uν)ε,cn − (uνR )ε,cn ](1/n)ϕ

)1−m

+ C(ϕ)|t − 1/n|.
We take now the special test functions

ϕR(x) = ϕ1(x/R),

where ϕ1 ∈ C∞
0 (R

N), with compact support in B2(0), and ϕ = 1 on B1(0). Then
it follows that∫

[(uν)ε,cn − (uνR )ε,cn ](1/n)ϕR/2 =
∫
Rε

[uµ − uµR ](1/n)ϕR/2,

because ϕR/2 has compact support in BR . Thus when c increases to infinity, and
then n increases to infinity, we obtain in the limit(∫

[uεν − uενR ](t)ϕR/2
)1−m

� C(ϕR/2)t.
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Indeed, uµ(1/n) and uµR(1/n) converge weakly in measure to µ and µR respec-
tively when n increases to infinity, and these two measures are equal onBR . Finally
we let ε decrease to zero and get

0 �
∫
[uν − uνR ](t)ϕR/2 � C(ϕR/2)

1
1−m t

1
1−m � CT

1
1−mRN−2/(1−m),

by our choice for ϕ. Fixing t > 0 and letting R increase to infinity, we get the
result:

uν(t) = lim
R→∞ uνR (t) ∀t > 0. ��

Now we can establish our general uniqueness result.

Theorem 5.1. Letmc < m < 1 andν = (S, µ) ∈ B+(RN). Then there exists a
unique ECSu(S,µ) with initial traceν.

Proof. Step 1. We will first assume that ν = (S, µ) has compact support. Let
Zµ = um

(S,µ)−um(S,µ), where we keep the same notation for the approximations of
extremal solutions. Let φm be the function defined by

φm(r, s) =
{

r−s
rm−sm if r �= s,

0 if r = s.

Then by convexity of φm (since 0 < m < 1), it is clear that if r1 � r0, s1 � s0 and
r0 � s0, r1 � s1, we have

φm(r1, s1) � φm(r0, s0).

Then writing the equation satisfied for each solution, we get

∂t (λµZµ − λ0Z0) = �(Zµ − Z0),

where λµ = φm(u(S,µ), u(S,µ)). Integrating the equation in time, and using the fact
that Zµ = Z0 at t = 0, we get

�

∫ t

0
(Zµ − Z0) = λµZµ − λ0Z0 � λµ(Zµ − Z0).

Thus defining W(t) = ∫ t
0 (Zµ − Z0), we get

Wt � 1
λµ
�W in R

N × (0, T ),
W(0) = 0 in R

N.

Now we use the fact that ν has compact support, which implies that W(t) goes
to zero at infinity for every t > 0. This is a consequence of the L∞ estimates
of Herrero and Pierre on the complement of the support of ν. Thus we define the
function

H(t) = W(t)e−t ∈ C(RN) ∀t > 0.
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Moreover, Zµ−Z0 is bounded in R
N × (0, T ) (because we work with the approx-

imations),W and H are in fact continuous in R
N × [0, T ]. Assume now that there

exists a point (x, t) ∈ R
N × (0, T ) such that H(x, t) > 0. Then the maximum of

H is positive and attained at some point (x0, t0) ∈ R
N × (0, T ]. Indeed,H goes to

zero when t = 0 and when |x| → ∞. Thus we have

Ht(x0,t0) � 0 and �H(x0, t0) = e−t�W(x0, t0) � 0,

which implies that at this point,

0 � Ht = e−tWt − e−tW � 1

λµ
�W − e−tW � −e−tW = −H,

and we reach a contradiction since H(x0, t0) > 0. Thus

W � 0 in R
N × (0, T ).

This holds for W constructed from the approximate solutions. But by uniqueness
in the case µ = 0, we know that when passing to the limit on the approximations,
Z0 goes to zero, hence

W =
∫ t

0
(Zµ − Z0)→

∫ t

0
Zµ � 0.

Since Zµ � 0 in the limit, this implies that W = 0, hence u(S,µ) = u(S,µ).
Step 2.Now, for general Borel measures ν, we use the sequence νR of Borel mea-
sures defined by

νR = νχR,

where χR is the characteristic function of BR(0). By Lemma 5.1 we know that uνR
and uνR converge monotonically to uν and uν respectively. But since uνR ≡ uνR
for every R > 0, the same holds in the limit:

uν ≡ uν,

and uniqueness is proved. ��
We can now prove the well-posedness of the Cauchy problem (0.1), (1.1) in the

class Ec together with the converse problem of initial traces. The set of extended
solutions Ec is equipped with the local uniform convergence in R+, while the
convergence in the sense of Borel measures has already been defined.

Theorem 5.2. Letmc < m < 1. Then the mapping

trRN : Ec → B+(RN),
u �→ u(0)

is a bicontinuous, nondecreasing one-to-one correspondence.
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Proof. The fact that the trace application is invertible is a direct consequence of
existence. Now by uniqueness, it is clear that the mapping is monotone. Indeed, the
solutions are ordered by construction. Finally let us assume that νn is a sequence of
Borel measures converging to ν in the Borel sense. Then we have already seen in
Theorem 2.2 that up to extraction, the associated sequences of solutions converge
locally uniformly in R+ to the unique solution u with initial trace ν. In fact, in
this Theorem, we also assumed that the νn were in locally finite (Radon) measures,
but the same proof works also here with no changes. Now if there exists another
subsequence which converges, then by uniqueness, the limit is again u, so that
finally all the sequences of solutions converge to u. The continuity is thus proved.
Obviously, the inverse mapping is also continuous; this can be done essentially in
the same way. ��

We collect here the most important properties of the ECS. Most of them have
been already shown, or they are consequences of former results.

Proposition 5.1. Letu be the ECS with initial traceν = (S, µ) ∈ B+(RN). Then

• u > 0 in QR,
• u ∈ C∞(QR),
• D(u) = mum−1 ∈ C(QT ;R+),
• ut = �um in the classical sense inQR.

Proof. In the case of a non-empty singular set S, the positivity property comes
from estimate (2.2). Then, since u is continuous, it is automatically smooth in the
regular setQR, since the equation is locally not degenerate. In the case of an empty
singular set, this property is well known (see for instance [35] or [3]). The continuity
ofD(u) is a consequence of the fact that u > 0 and regular inQR, and that u→ ∞
as x → S. ��

The following derivative estimates are also valid for ECS since they are limit
solutions.

Proposition 5.2. For every ECS in the rangemc < m < 1, the following estimates
hold:

(i) The ratiout/u is bounded for anyt > 0. More precisely,

−θu
t

� ut � u

(1 −m)t , θ = (m− 1 + 2/N)−1. (5.1)

(ii) The bounds for spatial derivatives ofum−1 are

−1

t
� �(mum−1) � C1

t
, C1 = θ(1 −m), (5.2)

and

|∇(mum−1)|2 � C2
um−1

t
, C2 = 2θ(1 −m)/N. (5.3)



Extended Solutions for Fast-Diffusion Equations 163

(iii) Moreover, when the initial trace is(S, 0), thenut > 0 in QR.

Proof. Inequalities (5.1) and the right-hand one in (5.2) are due to Aronson &
Bénilan [3] for regular solutions.We pass to the local uniform limit inQR to obtain
the same bounds for ECS. Concerning the lower estimate for �v, v = mum−1,
writing the fast-diffusion equation for classical solutions in the form

v�v = vt + |γ ||∇v|2,
it turns out that v�v � vt � −v/t . Dividing by v, we obtain the lower bound for
�v. The estimate for ∇v is then immediate.

When µ = 0, it is clear that u(t) > u(t + τ) for any t, τ > 0. Indeed, u(t + τ)
can be viewed as an ECS with initial trace (S, u(τ )), and thus by uniqueness, it is
greater than u(t)which has initial trace (S, 0). Since ut is defined inQR because u
is smooth there, we see that indeed ut � 0 inQR. Since v = ut satisfies a classical
parabolic equation in QR, ut > 0 in this set. ��

The two-sided estimates on ut and on�v are typical of the rangemc < m < 1
and do not hold for m > 1 or m < mc. An estimate from below for �um−1 works
for m > 1 as well as an estimate from below for ut/u; the estimate from above for
ut/u holds for allm < 1. Estimates (5.2) and (5.3) are an indication of the interest
of reviewing the whole theory in terms of the pressure variable v. We will devote
paper [21] to such an analysis.

Let us remark that, but for (5.2)-left, the constants in the estimates are sharp, as
can be checked by inspection of the IPSS and the fundamental solutions (take the
limit x → ∞ or x = 0).

We conclude this section with a simple continuity result at t = 0.

Proposition 5.3. Let u ∈ Ec and assume that the initial traceν is given in a
neighborhoodU of a pointx0 ∈ R

N as a functiondν = f (x)dxwhich is continuous
at x0. Then

lim
t→0,x→x0

u(x, t) = f (x0). (5.4)

Proof. Since ν is continuous at x0, for any ε > 0, there exists a ball V ⊂ U

centered at x0 such that

c − ε � f (x) � c + ε ∀x ∈ V, c = f (x0).

If c > 0, we construct a lower barrier by considering any smooth bounded function
g(x) supported in V such that g(x) � f (x) in V and g(x0) � c− 2ε. By classical
theory, the corresponding solution u1 is continuous down to t = 0 in R

N , and
u1(x, t) � u(x, t) in Q. Hence we obtain the lower estimate

lim
t→0,x→x0

u(x, t) � f (x0).

The barrier for the upper bound is constructed by separation of variables in the form

u2(x, t) = (t + a) 1
1−m F (x),

where F(x) solves the elliptic problem (4.1) in V , and we select a so that F(x0)

a1/1−m = c + ε. Comparison shows again that u2(x, t) � u(x, t) in V × (0,∞).
Hence the upper limit since F is a continuous function. ��
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6. The Dirichlet problem

Our results prove directly that the singular Dirichlet problem posed in an open
domain � ⊂ R

N has a unique solution, which is a universal barrier in �. Here, �
need be neither bounded nor regular.

Theorem 6.1. Letmc < m < 1 andµ be a nonnegative Radon measure in�, open
subset ofRN . Then there exists a unique extended solutionu ∈ C(�×(0,∞);R+)
of the following problem:

(CD)∞




ut = �um in �× (0,∞),

u(x, t) = +∞ on ∂�× (0,∞),

u(0) = µ in �.

In fact this solution is the unique ECS inRN × (0,∞) with initial trace (S, µ),
whereS = R

N \�.

On the contrary, the homogeneous Dirichlet problem in an open set� does not
necessarily have a solution for two reasons. The first one is well known and is due
to the geometry of �. For instance, if � is a punctured ball, it is clear that it is not
possible to construct a positive solution of the elliptic problem

−�ψ + ψq = 0 in �,
ψ = 0 on ∂�.

Hence for similar reasons, it is not possible in this case to construct a solution of
the parabolic Dirichlet problem

(CD)0



ut −�um = 0 in �× (0, T ),
u(x, t) = 0 on ∂�× (0, T ),
u(0) = u0 �= 0 in �.

The optimal condition on ∂� is that it satisfies a Wiener criterion, which can be
expressed as an H 1-capacity density.

Now, even in the case of regular, bounded subsets � of R
N , it turns out that

there is no solution to (CD)0 if∫
�

dist(x, ∂�)dµ(x) = +∞, (6.1)

since in this case the zero lateral data is lost not only pointwise but also in a strong
sense on some part of the boundary. We derive a theory of extended solutions for
the homogeneous Cauchy-Dirichlet problem (CD)0 in [22] when (N − 2)+/N <

m < 1, where the following facts are established:

• If ν = (S, µ) is a Borel measure in � such that dist(S, ∂�) > 0 and∫
�

dist(x, ∂�)dµ(x) < ∞, there exists a unique extended solution u in the
sense of the present paper, which takes on the zero lateral data on ∂�× (0,∞)

in the weak sense (i.e., in the sense if integration by parts).
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• If ν = (S, µ) is such that S ∩ ∂� �= ∅ or (6.1) holds, then the lateral data is lost
somewhere in ∂� for any positive time.

We refer to [22] for a more detailed study, including results concerning the long-
time behavior of the solutions, the presence of an extra measure term on ∂�× {0},
as well as new regularizing effects. A new critical exponent appears in that study,
m1 = (N − 1)/(N + 1).

7. Asymptotic behavior for the Cauchy problem

We discuss in this section the behavior of the solutions as |x| → ∞ or t → ∞.
We start with a general result on space asymptotics, valid for all nontrivial ECS.
For weak solutions, this result was proved by Herrero & Pierre [35].

Proposition 7.1. For every ECSu,

lim|x|→∞ |x|2/(1−m)u(x, t) � (Ct)
1

1−m , (7.1)

whereC = C(m,N) is defined in(0.5). This rate is the optimal minimal rate and,
moreover, the limit is exact in the case of compactly supported initial traces.

Proof. The lower rate (7.1) comes from the lower estimates for u: if we first assume
that ν = (S, µ) has compact support, then it is clear that

dist(x,S)
|x| −→|x|→∞ 1,

so that (2.2) implies (7.1). For general ν we take an increasing sequence of com-
pactly supported Borel measures νn. As in Lemma 5.1, by uniqueness, the solution
un with initial trace νn converges monotonically to u, and since un satisfies (7.1),
u also in the limit. Now let us assume that ν = (S, µ) is compactly supported.
Consider the pseudo-Barenblatt solutions

Uc(x, t) =
(

Ct

(x2 − At2θ/N )+
)1/1−m

, (7.2)

where θ = N/(2 − N(1 − m)), A = k(m,N)c−α where c is the mass carried
by Uc. Then Uc(x, t) = ∞ on the set {(x, t) ∈ QT | |x| �

√
A · tθ/N }, so for

τ > 0 fixed, there exists c big enough such that A is small and the support of ν is
contained in the set {x ∈ R

N | √A · τ θ/N }. Thus we can easily compare the ECS
u with Uc, since u is obtained as a limit of smooth solutions with initial data in the
same support as ν. This proves that for any t > 0,

lim|x|→∞ |x| 2
1−m u(x, t) � lim|x|→∞ |x| 2

1−mUc(t) = (Ct)
1

1−m .

Thus we have the exact rate at infinity for such solutions. ��
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Such a lower bound holds also near the singularities and is typical of the sin-
gularities that remain constant in time, i.e., it characterizes our class Ec. In fact, we
will see in Section 8 solutions with expanding strong singularities whose behavior
is like |x|1/(1−m), and weak singularities with a rate |x|−(N−2)/m.

There are three kinds of results that can be obtained for the large-time behaviour
of the ECS with non-empty singular sets. They describe the way in which the singu-
lar set S radiates into the surrounding space. The first one concerns the asymptotics
for fixed x. We show convergence to the stationary problem. As announced, only
the radiation of the singular set determines the limit, the locally finite part of the
measure being negligible for large t .

Theorem 7.1. Let u(S,µ) be an ECS. with initial trace(S, µ) ∈ B+(RN), and
assume thatS is non-empty. Then

lim
t→∞ t

− 1
1−m |u(S,µ) − u(S,0)|(x, t) = 0 locally uniformly inR,

or in other words,

lim
t→∞ t

− 1
1−m u(S,µ)(x, t) = f (x) locally uniformly inR,

wheref is the unique solution of problem(4.1) (with strong singularities on the
boundary).

Proof. We will first assume that S contains the complement of a ball BR . Thus the
regular set R is included in BR . Let ε > 0, and t0 > 0. Then u(S,µ)(t0) is bounded
on Rε = R

N \Sε, where as usual Sε = {x ∈ R
N | dist(x,S) � ε} (recall that Rε

is bounded). Since u(S,0) satisfies the lower bound (2.2), there exists τ > 0 such
that

u(S,µ)(t) � u(S,0)(t + τ) on Rε × (t0,∞).

Now we use the fact that u(S,0) has the separation-of-variable form: if f is as above,
then

t−
1

1−m u(S,µ)(t) � t−
1

1−m (t + τ) 1
1−m f (x),

and thus when t → +∞,

lim
t→∞ t

− 1
1−m u(S,µ)(x, t) � f (x) in Rε.

Now since ε > 0 is arbitrary, we obtain the upper estimate pointwise in R. The
lower estimate comes from the fact that u(S,µ) � u(S,0) in R × (0, T ). Moreover,
if x stays in a fixed compact K ⊂ R, then there exists τ > 0 as above such that

t−
1

1−m f (x) � t−
1

1−m u(S,µ)(t) � t−
1

1−m (t + τ) 1
1−m f (x) in K × (t0,∞),

(7.3)

and thus the limit is uniform in K , which proves the result.
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Now for general S, we have only to find an upper estimate since the lower one
comes from the fact that u(S,µ) � u(S,0), as above. Let us consider a sequence Sn
of singular sets such that

Sn = S ∪ {RN \ Bn(0)}.
Then the unique ECS un with initial trace (Sn, µn), where µn = µ/Rn

converges
monotonically to the unique ECS u(S,µ) with initial trace (S, µ). Thus defining fn
as the unique solution of (4.1) in �n = Rn, (7.3) gives, for some τ = τ(n, ε),

t−
1

1−m u(S,µ)(t) � t−
1

1−m un(t) � t−
1

1−m (t + τ) 1
1−m fn(x) in Rε

n.

Moreover, it is clear that if K is a fixed compact in R, then τ can be chosen
independently of n and ε. Thus letting n increase to infinity, by monotonicity of the
fn, we get

t−
1

1−m u(S,µ)(t) � t−
1

1−m (t + τ) 1
1−m f (x) in K,

where f is the unique solution of (4.1) in � = Rε. We end as above by letting t
increase to infinity, which gives the local uniform convergence. ��
Remark. More precisely, it is obvious by (7.3) that if x remains in a compact set
K ⊂ R,

u(S,µ)(x, t) = t
1

1−m f (x)(1 +O(1/t)). (7.4)

When S = ∅, the case of classical weak solutions, the long-time behavior is
given by a smaller rate than (7.4) (such a rate characterizes then the presence of
singularities).

Theorem 7.2. Letu be a continuous distributional solution ofut = �um. Then as
t goes to infinity,

u(x, t) = o(t
1

1−m ) (7.5)

locally uniformly inR
N .

Proof. Let uR ∈ Ec be the unique ECS with initial data νR , the Borel measure
defined as

νR(E) =
{
µ(E) if E ⊂ BR(0),
+∞ otherwise,

where µ is the initial trace of u (it is a Radon measure in R
N since u does not have

singularities in the cylinder R
N × (0, T )). Then obviously,

u(x, t) � uR(x, t) in BR(0)× (0, T ),
and by 7.4, since in our case the singular set is exactly R

N \ BR(0), we have

uR(x, t) = C(m,N)t
1

1−m (R − |x|)− 2
1−m [1 +OR(1/t)].
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Thus if x remains in a compact set K , for any ε > 0, there exists R big enough
such that when t goes to infinity,

u(x, t) = ε · t 1
1−m [1 +Oε(1/t)],

which proves that u(x, t) = o(t
1

1−m ) locally uniformly in R
N . ��

Remark. We can obtain continuous weak solutions having as time growth rate any
power less than 1/(1 − m) by means of the family of self-similar solutions of the
form

u(x, t) = tαf (xt−β),

which solve the Cauchy problem with initial data u0(x) = c|x|γ , with γ (1−m)+
2 �= 0. The relation between α, β and γ is then given by

α = γ

2 + γ (1 −m), β = 1

2 + γ (1 −m). (7.6)

It is clear that u(0, t) = O(tα), and as γ → ∞, we see that α → 1/(1 − m), a
rate that is never attained according to (7.5). For a more detailed description of the
self-similar solutions cf. Appendix, Subsection A4.

The second asymptotic result states the intermediate asymptoticsin expanding
sets. A first result in the direction of time asymptotics in expanding sets was proved
by Friedman & Kamin [32], who show that the source-type solutions, which are
self-similar solutions formally corresponding to γ = −N in (7.6), represent the
asymptotic behaviour of all solutions with integrable initial data, u0 ∈ L1(RN).
We show that for a large class of ECS, the intermediate behavior is given by the
IPSS.

Theorem 7.3. Let β > 0 and assume thatu is an ECS with initial traceν =
(S, µ) ∈ B+(RN), whereS is bounded and non-empty, anddµ = f dx. Under the
condition

f (x) = o(|x|γ ), γ = 1 − 2β

β(1 −m), (7.7)

the asymptotic formula is

lim
t→∞ t

−α|u(y, t)− U∞(y, t)| = 0, α = 1 − 2β

1 −m > 0, (7.8)

uniformly on sets of the formC1t
β � |y| � C2t

β .

Proof. Note that γ > − 2
1−m . Given β as (7.6), we perform the change of variables

uλ(x, t) = λ−αu(λβx, λt), λ > 1,
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which is again a solution since α(1−m)+ 2β = 1. The initial trace of uλ satisfies
the following estimate as λ → ∞: for every ε, c > 0 there exist λ0 such that for
λ > λ0 and |x| > c

uλ0(x) = λ−αu0(λ
βx) � ε|x|γ λβγ−α.

By our assumptions on α and γ , the exponent of λ vanishes so that

lim
λ→∞ uλ0(x) = 0

uniformly away from zero. On the other hand, all the uλ’s are strongly singular at
zero, hence uλ(x, t) converges to the IPSS on compact sets away from |x| = 0.
This happens in particular for t = 1, which gives

lim
λ→∞ λ

−αu(λβx, λ) = U∞(x, 1) for C1 � |x| � C2.

Writing λ = t and λβx = y, we get the desired formula (7.8). ��
Remark. Actually, the same proof works if µ is a Radon measure and condition
(7.7) is satisfied in integral average,

1

RN

∫
BR

dµ = o(Rγ ), R → ∞.

The condition is optimal since for f (x) = O(|x|γ ) the behavior is not given by
U∞. This can be also checked on the family of self-similar solutions u(x, t) =
tαf (xt−β). These solutions behave like tαf (ξ0) on the set |x| = ξ0t

β . Actually,
they give the intermediate asymptotics for a larger class of data

Theorem 7.4. Under the conditions of Theorem 7.3, with the assumption off

replaced by

f (x) = c|x|γ + o(|x|γ ) as |x| → ∞,

the asymptotic formula is

lim
t→∞ t

−α|u(y, t)− Uγ (y, t)| = 0,

whereUγ is the self-similar solution with initial data({0}, c|x|γ ), and the con-
vergence is uniform on the same setsC1t

β � |y| � C2t
β . If S = ∅, the same

result is true takingUγ as the self-similar solution with initial data(∅, c|x|γ ), and
convergence is uniform in|y| � C2t

β .

The proof is essentially the same as in Theorem 7.3 and we leave it to the reader.
The term “intermediate asymptotics” refers to the fact that this limit does not

happen either for fixed x, or for far-away regions of the form |y|t−β → ∞ as
t → ∞. In this far-field regionthe behavior depends on the asymptotics of the
initial data. This third behavior can be checked on the same family of self-similar
solutions For γ > −2/(1−m), i.e., β > 0, the initial data imply that f (ξ) ∼ c|ξ |γ
as |ξ | → ∞whenever γ > −2/(1−m). This implies that u behaves like |x|γ tα−βγ
on sets of the form |x|t−β 
 1.
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8. Extended solutions with weak singularities. Expanding singular sets

Up to now, we have only considered strong singularities in R
N × (0, T ), that

is, the points y where the solution u is infinite and such that, at some time t > 0,
for every r > 0,

∫
Br(y)

u(x, t)dx = +∞.

In this section, we first investigate the possibility that solutions develop weak sin-
gularities. That is, some points where u is infinite, but where the above integral is
finite for some r0 > 0. Our previous study has proved that the theory of initial trace
for solutions having only non-expanding strong singularities is complete, but this is
not the case for solutions presenting weak singularities. Indeed, we shall see below
that the initial trace does not characterize these solutions, since weak singularities
may appear only after some positive time, and then possibly increase to form a
strong singularity, or even disappear in finite time.

Proposition 8.1. Let (N − 2)+/N < m < 1, andf ∈ C([0, T ]), nonnegative.
Then the following problem has a weak solution:

ut −�um = δ0(x)⊗ f (t) in D′(QT ),
u(0) = 0 in R

N,

andu ∈ L1(QT ).

Proof. We follow the proof in [44]. Letη ∈ C∞
0 (R

N) be nonnegative and supported
in B1(0) such that

∫
η = c, and moreover assume that η is radially symmetric and

decreasing. Let ηk(x) = kNη(kx), then ηk converges to δ0 weakly in measure in
R
N , and according to standard theory, there exists a unique bounded solution uk of

the following problem:

ut −�um = ηk(x)⊗ f (t) in D′(QT ),
u(0) = 0 in R

N.

It is obvious that the uk are radially symmetric, non-increasing in |x|, and that they
are bounded in L∞(0, T ;L1(RN)) since

∫
uk(t) = f (t) is bounded in [0, T ]. As

in [44], we have the following uniform bound: for some constant K > 0,

uk(x, t) � K|x|−N−2
m . (8.1)

This allows us to pass to the limit in the equation, and we find that (up to extraction)
the sequence {uk} converges to a function u which is solution of our problem with
the singular right-hand side. Moreover, estimate (8.1) still holds in the limit for u,
so that u ∈ L1(QT ). ��
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Consequences of this result.

• We can construct the IPSS by solving the above problem with f = c and letting
c increase to infinity. Indeed, it is clear that in this case the solution uk satisfies
the scaling property

uk(x, t) = k
N−2
m u1

(
kx, k

N(m−1)+2
m t

)
,

hence when c→ ∞, we find a self-similar solution which is the IPSS.
• We can construct solutions with standing weak singularities, by taking f = 1 in

the above example, although it is not seen on the initial trace which is zero.
• We can construct solutions with singularities which appear only after a certain

time, and which disappear in finite time. This is achieved by taking f with
compact support in (t1, t2) ⊂ (0, T ).

• We can create a strong singularity after some positive time thanks to weak sin-
gularities (see the theorem just below). In this case, the strong singularity is not
seen on the initial trace.

Theorem 8.1. Let (N − 2)+/N < m < 1 andf � 0, continuous in[0, T ) with
values inR+ We assume thatf ↗ +∞ whent ↗ τ for someτ ∈ (0, T ). Then
there exists a solutionu to the following problem:

ut −�um = δ0(x)⊗ f (t) in D′(QT ),
u(0) = 0 in R

N.

Such a solutionu has a weak singularity atx = 0 for everyt ∈ (0, τ ), and it has
a strong singularity atx = 0 on [τ, T ) if for instancef = ∞ on [τ, τ + ε].
Proof. The construction on (0, τ ) has been already made above. Moreover, it is
easy to see that for any c > 0, there exists tc ∈ (0, τ ) sufficiently close to τ such
that f (tc) > c. Hence on (tc, T ),

u(x, t) � uc(x, t − tc),
where uc is the solution with f = c. We have seen that letting c increase to infinity
yields the IPSS v∞, and thus

u(x, t) � v∞(t − τ) on R
N × (τ, T ).

Thus u has a strong singularity at x = 0 for any t � τ (at time t = τ , we take the
trace). ��

The previous examples show that the set of weak singularities does not enjoy any
monotonicity properties, which is not the case for strong singularities, as proved by
Lemma 2.1: once a strong singularity is created, it remains as such for any larger
time. We give below a construction of solutions with general expanding strong
singular sets, which proves in particular that strong singularities may develop in
finite time although there are none in the initial trace. So in this case also, the initial
trace does not characterize the solutions.



172 Emmanuel Chasseigne & Juan Luis Vazquez

Theorem 8.2. Letmc < m < 1 and, for everyt ∈ (0, T ), let S(t) ∈ R
N be a

closed set such that the mappingt �→ S(t) is nondecreasing. Then there exists an
extended solution with strong singular setS(t) at timet ∈ (0, T ) and initial trace
(S(0), 0), where

S(0) =
⋂
t>0

S(t).

In particular, it is possible to start withS = ∅. If moreover the mappingt �→ S(t) is
continuous, then the solution constructed is continuous with values inR+∪{+∞}.

Proof. We define S0 = ∩t>0S(t). Let χt be the characteristic function of S(t).
Then by our assumptions, t �→ χt is nondecreasing. We solve the problem

ut −�um = f
ε,c
n (x, t) in D′(QT ),

u(0) = 0 in R
N,

where f ε,cn is continuous and such that

f ε,cn (x, t) −→
n→∞ c · χεt (x, t),

χεt being the characteristic function of Sε(t) = {x ∈ R
N | dist(x,S) � ε}.

By arguments similar to those in the case of point singularities, we can solve the
problem and pass to the limit which yields a solution uε,c with right-hand side
c · χε,ct . Now letting c increase to infinity, the uε,c converge monotonically to a
solution uε possessing a strong singularity on Sε(t) for every t > 0. Indeed, it is
clear that we can compare uε with any solution with right-hand side cδy(x)× 1(t),
y being any point in Sε, and we can let c increase to infinity, which yields an IPSS at
y. The same being true for y ∈ S, when we let ε decrease to zero, the uε decreases
to a solution u which has strong singularities on S, and we find for any t > t0 � 0,

u(x, t) �
(

C(t − t0)
dist(x,S(t0))2

) 1
1−m

. (8.2)

It is moreover clear that if t �→ S(t) is continuous, the solution is continuous with
extended values in R+ ∪ {+∞}. ��

Remark. It is important to recall that limit solutions of the fast-diffusion equa-
tion ut = �um have a constant singular set: these are in fact what we call ECS.
Thus, solutions with a strictly expanding singular set are not limit solutions of this
equation, but they are if we add a right-hand side to the equation. It seems that a
general theory for such solutions can be drawn. At least, we have just constructed
a maximal solution, and a minimal solution can be constructed by using the same
method as for ECS. However, the question of uniqueness (given the S(t)) is not
clear.
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Asymptotic behavior near singularities. We finally give three examples which
prove that the space behavior near the singular set given in (2.2) does not hold in
the case of an expanding singular set. In fact the blow-up rate (exponent) is divided
by two in this case, and can be explained by means of the Darcy Law, which says
that the velocity of normal movement of an interface is given by a multiple of the
pressure gradient, cf. [2].

Example 1. The travelling wavewith speed c > 0, given by

Uc(x, t) =
[

m

(1 −m) c (x1 − ct)+
] 1

1−m
.

Then Uc behaves like

C(m, c)dist(x,S(t))− 1
1−m

as x goes to ∂S(t) = {x1 = ct} with x1 > ct . The interface is x1 = ct , its velocity
c, and Darcy’s Law reads

lim
x1→ct, x1<ct

m

1 −m∇(um−1)(x, t) = (c, 0, . . . , 0).

Example 2: The pseudo-Barenblatt solutionv given in (2.5). Clearly if t is fixed,
v(x, t) behaves like (

C

2A1/2t (θ/N)−1

1

‖x‖ − r0(t)
) 1

1−m
,

as x goes to ∂S(t) = {|x| = A1/2tθ/N = r0(t)} with |x| > r0(t). Now the interface
is |x| = r0(t) and Darcy’s Law says

lim|x|→r0(t), |x|>r0(t)
m

1 −m
∂

∂r
(um−1)(x, t) = r ′0(t).

Example 3: The pseudo-Barenblatt solution with complete blow-up in finite time.
It is another variation of the source-type solution which is obtained by replacing t
by (T − t) and changing accordingly the signs of the profile. This reads

UT (x, t) =
(

C(T − t)
A(T − t)2θ/N − |x|2

)1/(1−m)
, A > 0,

C defined in (0.5) and |x| < A1/2(T − t)θ/N , the solution being defined as infinite
for |x| � A1/2(T − t)θ/N . Indeed, UT has a complete blow-up at time t = T . The
asymptotic behavior near the singular set is as above.

To conclude the section, let us recall that ECS solutions with expanding singular
sets translate into continuous weak solutions of the pressure equation (0.13) with
shrinking support. In particular, the last example becomes a model for extinction
in finite time which has been studied by Barenblatt et al. [6].
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9. Fast diffusion with subcritical exponents

As a complement to the study of (0.1) in the supercritical range mc < m < 1
we discuss in this section several aspects of subcritical diffusion, 0 < m � mc. A
new phenomenon occurs for Dirac masses [16]. In fact, the Dirac mass does not
radiate, and moreover, the fundamental solutions understood as limits of classical
solutions in the usual way turn out to be stationary masses. The following result
from Brézis & Friedman [16] explains the phenomenon:

Proposition 9.1 (Brezis and Friedman). Let 0 < m � mc and ηn ∈ C∞(RN),
ηn � 0 and ηn → cδ0 weakly in measure. Ifun is the associated sequence of
solutions, then

un(x, t)→ cδ0(x)⊗ 1(t) in D′(RN × (0, T )).
Hence, when taking the limit of those singular fundamental solutions with in-

creasing masses, we find an IPSS which is also stationary, hence it is not continuous,
not even a function. Consequently, there is no hope of finding a theory of continu-
ous extended solutions for general initial data. These difficulties are related to the
fact that there is no L∞-regularizing effect from L1, as can be seen on the explicit
solution (1.2). On the other hand, it was proved by Pierre [42] that the Radon
measures admissible as initial data are exactly those which satisfy the following
condition:

C2, 1
1−m
(E) = 0 ⇒ µ(E) = 0, (9.1)

C2,1/(1−m) being the capacity associated with the Sobolev spaceW 2, 1
1−m . Under this

condition, he proves that the constructed solution is a locally integrable function,
not just a measure.

We can generalize Brezis and Friedman’s result to the case of general measures:
if µ is an arbitrary nonnegative Radon measure charging some set of zero capacity,
then it will not be regularized and will remain fixed on this set (we refer to [20]
for more details). Moreover, the same phenomenon happens for singular sets as the
following result shows:

Lemma 9.1. Let 0 < m � mc andS be closed such that

C2, 1
1−m
(S) = 0.

Then the maximal solutionu(S,0)(t) is zero outsideS for anyt > 0.

Proof. We construct the maximal solution as usual by constructing a solution uε

with singular set Sε, which is an ε-neighborhood of S. Since u(0) = 0 outside
S, we know that u remains bounded outside Sε, so that when ε decreases, uε also
and there exist local uniform bounds for the uε on the complement of S. The local
estimates outside S are obtained as in [16] by comparison with a super-solution in
BR(x0)× (0, T ) of the form

V (x, t) = Ct
1

1−m

(R2 − |x − x0|2)N−2
m

.



Extended Solutions for Fast-Diffusion Equations 175

The limit solution u is obviously the maximal solution we are looking for. We will
prove that outside S, u is zero. Of course, u(0) is zero for x �∈ S.

Let ϕ ∈ C∞
0 (R

N), nonnegative. Then S ∩ supp(ϕ) is also compact (because
S is closed) and it has zero capacity, thus there exists a sequence vn ∈ C∞

0 (R
N)

such that 0 � vn � 1, vn = 1 on a neighborhood of S ∩ supp(ϕ) and vn → 0
in W 2,1/(1−m)(RN). For α > 2

1−m, we use the test function ζ αn = [ϕ(1 − vn)]α ∈
C∞

0 (R
N \ S): ∫

u(t)ζ αn −
∫ t

0

∫
um�ζαn = 0, (9.2)

since the support of ζn is outside S. Then we estimate

∫ t

0

∫
um|�ζαn | � C(ζαn )

[∫ T

0

∫
uζαn

]m
,

with

C(ζαn ) = T 1−m
[∫

|�ζαn |
1

1−m ζ
− αm

1−m
n

]1−m
� C(m,N)‖ϕ‖

W
2, 1

1−m (RN)
.

The estimate of C(ζαn ) comes from easy computations and the fact that (1 − vn)

remains bounded in W 2, 1
1−m (RN). Thus integrating (9.2) on (0, T ), we get∫ T

0

∫
uζαn � C′

[∫ T

0

∫
uζαn

]m
. (9.3)

Hence it follows that for some constant C′′ depending only on m,N and
‖ϕ‖

W
2, 1

1−m (RN)
,

∫ T

0

∫
uζαn � C′′

(
m,N, ‖ϕ‖

W
2, 1

1−m (RN)

)
.

Passing to the limit when n goes to infinity, and using the fact that ϕ is arbitrary,
we obtain

u ∈ L1(0, T ;L1
loc(R

N)). (9.4)

Now take ϕ ∈ C∞
0 (R

N × [0, T )), and put ζn = ϕ(1 − vn) as the test function,
where vn is as above:∫

u(t)ζn −
∫ t

0

∫
u∂t ζn −

∫ t

0

∫
um�ζn = 0.

When n goes to infinity, the two first terms converge by dominated convergence
and for the last one, we use both the fact that

ζn −→
n→∞ ϕ in W 2, 1

1−m (RN),
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and that um ∈ L1/m(0, T ;L1/m
loc (R

N)) (by (9.4)), so that∫ t

0

∫
um�ζn −→

n→∞

∫ t

0

∫
um�ϕ.

Hence we find that u satisfies∫
u(t)ϕ −

∫ t

0

∫
uϕt −

∫ t

0

∫
um�ϕ = 0,

which means that u ∈ L1(0, T ;L1
loc(R

N)) is a solution of

ut −�um = 0 in D′(RN × (0, T )),
with zero initial data. Thus by Lemma 3.1 of [35], we have∫

BR

u(t) � Ct1/(1−m)RN−2/(1−m).

(In fact, in [35, Lemma 3.1], the result is stated under the extra assumption that
u ∈ C([0, T );L1

loc(R
N)), but it is easy to see that if u is only assumed to satisfy

(9.4), and u(t)→ 0 in measure when t → 0, then the same result holds, for almost
every t > 0).

The problem here is that since m � mc, letting R go to infinity does not yield
u(t) = 0. However, using the same technique as in the proof of [35, Theorem 2.3],
we easily show that u ≡ 0 almost everywhere. Indeed, if w(x) = ∫ t

0 u
m(x, σ )dσ ,

which is defined almost everywhere in R
N , then w is sub-harmonic, and thus

w(ξ) � C

RN

∫
BR(ξ)

w(x)dx

� C

RN

∫ t

0
RN(1−m)

[∫
BR(ξ)

u(s)

]m
ds

� Ct1/(1−m)R−2m/(1−m),

which goes to zero when R goes to infinity. Note that here we do not need to
assume that u is a strong solution (in [35], this assumption is needed because they
use Kato’s inequality). ��

As a consequence, the IPSS, does not existfor 0 < m < mc. More precisely, the
limit solution corresponding to an infinite mass located at x = 0 is constant in time.
This result does not imply however that solutions with strong singularities cannot
exist. In the simplest case, the solution corresponding to data ν = (S, 0), where S =
Br(0), r > 0 is a ball, is easily shown to exist as an extended continuous solution
and to have the standard separation-of-variables form discussed in Section 4. More
generally, it is possible to construct solutions which will preserve the singular set
if either S is created by the measure µ, or it is dense enough. More precisely, the
“bad” points of S, i.e., the points that do not radiate, are those which have zero
density in the sense of (2.4), with the Lebesgue measure replaced by the C2, 1

1−m
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capacity. FollowingMarcus&Véron [39], we can thus define the singular interior
S∗ of S, which consists of density points of S, and the singular part ∂s[µ] created
by µ:

S∗ = {y ∈ S | C2,1/(1−m)(Br(y) ∩ S) > 0 ∀r > 0},
∂s[µ] = {y ∈ ∂S | µ(Br(y) ∩ R) = +∞ ∀r > 0}.

Then the result is that there exists a non-stationary solution which preserves S as
a strong singular set if and only if S = ∂s[µ] ∪ S∗ and µ satisfies the capacity
condition (9.1) (see [20] for a proof). However, the continuity property of such
solutions is not preserved unless µ = 0. See also Section A.4 for the study of
self-similar solutions in this range.

Another interesting aspect of the subcritical case is the property of extinction in
finite timewhich has been proved by Bénilan & Crandall [7] for all solutions
in Lp(RN), p = N(1 − m)/2, 0 < m < mc. The result can be extended to
the Marcinkiewicz space Mp(RN), the space to which the explicit solution (1.2)
belongs. This property does not hold for m = mc since then conservation of mass
is true,

∫
u(x, t) dx = ∫

u0(x) dx.

10. Comments, extensions and open problems

We have constructed in this paper a complete theory of existence and uniqueness
of nonnegative solutions of the Cauchy problem for equation ut = �(um) in the
range mc < m < 1, posed in the whole space � = R

N . We have also solved the
initial-and-boundary value problem posed in an arbitrary open set � ⊂ R

N with
infinite boundary values. However, the same problem with finite boundary values
cannot be solved with the same generality, and the theory offers a number of new
qualitative aspects. Thus, there is a new critical exponent m1 = (N − 1)/(N + 1).
We study this problem in [22,23].

There is a remarkable novelty in the class of extended continuous solutions
with strong singularities that we have already noted in the Introduction, namely the
radiation of energy from the singularities. This phenomenon has nothing to do with
the diffusion process that takes place in the regular set R. Actually, the equation
does not hold in S, even though the radiative solutions arise as limits of purely
diffusive solutions (the subclass C). We want to emphasize at this moment that
the radiation is a consequence of the presence of strongly singular initial data and
cannot be stopped later at any given moment (for instance by trying to enforce the
equation in R

N for t � T > 0) without breaking the maximum principle, since the
radiation lemma says that all singular solutions lie above any Barenblatt solution
(which is a classical solution for t > 0), hence above the IPSS in the limit, thus
they must be singular for all t at the very hot spots of the initial data. It would
be very interesting to find more related models of radiation-diffusion equations,
maybe systems, in particular systems with quenching mechanisms for the radiation
process.

As we have pointed out, the fast-diffusion equation can be transformed into
the so-called pressure equation (0.13) by means of the transformation v = mum−1,
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which maps u = ∞ into v = 0. Therefore, problems concerning singularities trans-
form into problems concerning zero values. The investigation of the correspondence
between the two equations for general classes of solutions is taken up in [21]. In
particular, we prove that a bounded and continuous viscosity solution of(0.13) in
the rangeγ < −N/2 is not uniquely determined by prescribing continuous initial
data if these data have a nontrivial zero set.

We list below a number of other problems that represent natural extensions of the
above theory. Since none of the applications is immediate and they are not essential
at this point, we will only present the main features, results and open questions as
far as we know. We begin with the extensions which offer larger similarities. A first
extension concerns very fast diffusion in one dimension. We note that, though we
have taken the critical exponent to be mc = 0 in this case, it is formally given by
mc = (N−2)/N = −1. Similarities and some differences appear in the remaining
range −1 < m � 0 where the equation is written in the form ut = (um−1ux)x
which preserves the parabolicity.Actually, a theory of existence has been developed
in this range and applies to all u0 ∈ L1

loc(R), u0 � 0, while the peculiar feature
is the non-uniqueness of solutions of the Cauchy problem for integrable data [30,
47]. The present theory of ECS, based on local estimates and strong singularities
of the IPSS type, can be extended to this range with few differences aside from the
non-uniqueness phenomenon. The detailed analysis will appear elsewhere.

A second extension concerns the filtration equation, ut = �I(u), under suit-
able conditions on the monotone increasing function I. Following Dahlberg &
Kenig [29] we assume the power-growth condition

0 < c1 � sI′(s)
I(s)

� c2

holds for all large s 
 1, where mc < c1 � c2 < 1. Examples of such equations
have been proposed by King [36] in the study of diffusion of impurities in silicon
subject to cluster formation, whereI is linear near zero and of the formI(u) ∼ um,
0 < m < 1 for large u. The Okuda-Dawson law D(u) = I′(u) = u−1/2 proposed
in plasma physics is based on experimental evidence which for other density and
field regimes can take the more general form D(u) ∼ uδ , −1 � δ < 0 [11].

More work is needed to extend the results to reaction-diffusion equations of the
formut = �I(u)+F(u,∇u)withI as above.An interesting aspect of these equa-
tions is the possibility of having a theory of limit solutions with movingstrongly
singular sets. Let us advance the simplest example: the diffusion-convection equa-
tion

ut = �xu
m − a · ∇xu, (10.1)

with a ∈ R
N \ {0} and m as before, can be transformed into (0.1) by the change of

variables x = y+a t . Translating the solutions of (0.1) with space variable y : ut =
�yu

m into solutions of (10.1), we obtain a class of extended continuous solutions
of (10.1) with a strongly singular set which moves in the a direction with speed
c = |a|. It will be interesting to investigate the motion and behaviour of the strongly
singular sets for more general convection terms like in ut = �xu

m − a · ∇xf (u).
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Next is the extension to the so-called “p-Laplacian heat equation”

ut = �p(u) = ∇ · (|∇u|p−2∇u).

This equation is quite similar to (0.1) in the sense that it has scaling invariance, which
leads to the existence of self-similar solutions. Thus, forpc = 2N/(N+1) < p < 2
there exists an IPSS which now takes the form

U∞(x, t) =
(
Ct

|x|p
) 1

2−p
, C(p,N) > 0.

The basic lemmas hold and allow for a similar theory of extended solutions. How-
ever, the uniqueness proofs do not apply and actually uniqueness when the initial
data is a measure is an important open problem.

A further line of extension concerns the nonlinear heat flow on Riemannian
manifolds. Thus, we can consider a Riemannian manifold, (M, g), say, without
boundary, and pose the Cauchy problem

ut = �g(u
m), u(x, 0) = u0(x), (x, t) ∈ M × (0, T ),

where m > 0, �g is the Laplacian operator with respect to the metric g, cf. [10].
Since the basic estimates that we have used in the rangemc < m < 1 are local, they
can be extended to this framework and the theory of extended continuous solutions
can be developed.

We consider next problems with markedly different qualitative aspects. As we
have pointed out, the theory of the Cauchy problem has many new features and
difficulties in the subcritical range m � mc: non-existence, lack of continuity,
extinction in finite time, . . . Partial results of our current research on this subject
are given in the last section. The range can be also extended to m � 0 in the form
ut = ∇ · (um−1∇u), but less is known in that range, cf. [36,48].

There is also an interest in better understanding the theory of solutions with
expanding singularities, either strong or weak. Connected with it is the study of
solutions with shrinking supports for the pressure equation. Both subjects have
been briefly discussed above.

Finally, the theory can be considered for solutions with changing sign. Existence
and uniqueness of solutions is known for m > 0 when the data are integrable,
u0 ∈ L1(RN), since the solutions form a semigroup of ordered contractions in that
space [8]. A theory for measures or for data which are large at infinity has not yet
been developed. For m � 0 there can be no solution with changing sign. This has
been proved in the one-dimensional setting in [46].

A. Appendix

We collect here some preliminary results used in the text, a construction of
unbounded solutions, an overview of self-similar solutions and a terminology list.
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A.1. Comparison of weak solutions

We give a basic comparison result in the case of bounded solutions, which
comes from [15].

Lemma A.1. Assume that� is a bounded open subset with smooth boundary. Let
0 � g � g∗ ∈ L∞(� × (0, T )) andu, v ∈ C(� × [0, T ]), all nonnegative such
thatu is a weak solution ofut −�um = g in �× (0, T ), andv is a weak solution
with right-hand sideg∗. Then ifu � v on ∂�× (0, T ) and on�× {0},

u � v in �× [0, T ].
Proof. This is Lemma 2.2. of [15] applied to our case: the lemma states that for
every λ � 0 and 0 � t � T ,

eλt
∫
�

[u(t)− v(t)]+ �
∫
�

[u(0)− v(0)]+ +
∫ t

0

∫
�

eλs[g − g∗ + λ(u− v)]+.

Hence taking λ = 0, since u(0) � v(0) and g � g∗, we find that∫
�

[u(t)− v(t)]+ � 0,

so that u � v since t is arbitrary. ��

A.2. Regularity

We show an adaptation of the regularity results of Dahlberg & Kenig [27] in
the case of fast diffusion. Since their methods apply here with no changes (in fact
it is even easier in the L∞

loc case), we only give a sketch of the proof:

Proposition A.1. Letu ∈ L∞
loc(�×(0, T )) be a nonnegative solution ofut = �um

in the sense of distributions in� × (0, T ). Thenu = u∗ almost everywhere in
�×(0, T ), whereu∗ ∈ C(�×(0, T )) is also a solution in the sense of distributions.

Proof. Let B = Br(x0) be a ball in � and 0 < a < b < T . The first step consists
in proving that u has traces on B × {a} and ∂B × (a, b), which are nonnegative
bounded measures νa andµ respectively on these sets. Then we can write, for every
ϕ ∈ C∞

0 (R
N+1) such that ϕ = 0 on ∂B × (a, b), the following integral version

(where ∂/∂n denotes the derivative with respect to the inward normal):∫
B

ψ(x, t)u(x, t)dx −
∫ t

a

∫
B

{u∂tψ + um�ψ} =
∫ t

a

∫
∂B

∂ψ

∂n
dµ+

∫
B

ψ(a)dνa.

This is exactly Lemma 3.4 of [27]. No use has been made of the fact that in their
case m > 1.



Extended Solutions for Fast-Diffusion Equations 181

Then the construction of u∗ is made by approximation in Bε × (a, b), Bε =
Br−ε(x0) for ε > 0 sufficiently small. If Tε is a convolution kernel in R

N+1, let u∗ε
be the solution of the following problem:

∂tu
∗
ε −�(u∗ε)m = 0 in Bε × (a, b),

u∗ε = (Tεu
m)1/m on ∂Bε × (a, b),

u∗ε(a) = Tεu(a) in Bε.

Then there exists a constant C = C(‖u‖L∞
loc
) such that

u∗ε � C in Bε × (a, b),
hence we can extract a subsequence still denoted u∗ε converging locally uniformly
to a solution u∗ in B × (a, b). Moreover, as in Lemma 5.1 of [27], we can pass to
the limit in the weak formulation and see that the boundary trace of u∗ is µ, and its
trace at t = a equals νa .

Finally we have to show that u = u∗ almost everywhere. This is done in
Lemma 5.1 of [27] thanks to the extra estimate that u ∈ Lm+1

loc (� × (0, T )). But
here, since we assume that u ∈ L∞

loc(� × (0, T )), the proof is made easier. The
adaptations are straightforward. ��

A.3. Unbounded solutions

We give here the construction of an unbounded solution with initial data in
L1(RN) for the critical case m = mc announced in Section 1. We start with a
collection of smooth and compactly supported initial dataϕn(x) such that ‖ϕn‖L1 =
1/n2. Let un be the corresponding weak solution. Using the scaling properties, we
construct solutions

vn(x, t) = kNn un(kx, t),

with kn chosen so large that ‖vn(x, 1)‖L∞ = kN‖un(x, 1)‖L∞ = n. Besides,
‖vn(t)‖L1 = ‖vn(0)‖L1 = ‖ϕn‖L1 = 1/n2. Next, we consider the continuous
weak solution u with initial data

u(x, 0) =
∞∑
n=1

kNn ϕn(kn(x − yn), 0),

where yn is an arbitrary sequence of points in R
N . It is clear that u(x, 0) is inte-

grable in R
N . Also by comparison u(x, t) � vn(x, t) for every n ∈ N∗. There-

fore, ‖u(1)‖L∞ = ∞. Using the inequality ut � u/[(1 − m)t], we see that
‖u(t)‖L∞ = ∞ for any t ∈ (0, 1) since t �→ u(t)t−1/(1−m) is non-increasing.
Let us remark that for N = 2, the critical exponent is mc = 0 and the equation is
usually written in the form

ut = � ln(u) = ∇ · (u−1∇u).
In this case it has been shown in [45] that initial data in L1(RN) implies that u(t)
is bounded for every t > 0. The difference can be explained as a consequence of
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the property of finite-time extinction of the last equation, which implies that the
solutions for the small masses φn(x) that we use in the above construction will
vanish in times that go to zero with n, and this invalidates the conclusion of the
scaling and addition performed later. However, adapting the above proof, we can
show that this regularizing effect is not local: the fact that

∫
B
u0(x) dx is uniformly

bounded in all balls B of radius R does not imply that u(t) ∈ L∞(R2).

A.4. Self-similar solutions

We consider the solutions of (0.1) with initial data

u0(x) = c|x|γ , x �= 0, (A.1)

with c > 0 and γ ∈ R. For γ �= −2/(1−m), both the equation and the initial data
are invariant under the family of transformations

uk(x, t) = k−αu(kβx, kt), k > 0, (A.2)

where α = γ /[2+γ (1−m)], β = 1/[2+γ (1−m)]. Let us first discuss the main
features of the case mc < m < 1. By uniqueness of the continuous weak solution
in that range, we have u ≡ uk , so that putting k = 1/t , we get the representation
of the solutions in the form

u(x, t) = tαf (xt−β). (A.3)

We notice that for γ > −N , u0 is locally integrable, so that f is a locally bounded
function. On the other hand, taking initial data means that f (ξ) ∼ c|ξ |γ as |ξ | →
∞, since β > 0. This gives the asymptotic behavior of the solutions as |x| → ∞.
In this range, we can still consider the same initial data plus a strong singularity
at |x| = 0, i.e., the initial data is (S, µ), with S = {0} and dµ = c|x|γ dx. Then
the representation is valid with the same α and β but now f diverges as |ξ | → 0.
According to the formula, this is the same behavior of u when t → ∞, and we get

f (ξ) ∼ C|ξ |− 2
1−m as |ξ | → 0,

with C as in the IPSS. In the range −2/(1−m) < γ < −N , the initial data are not
integrable at zero, and only the solution of the second kind exists. In the critical case
γ = −N , there are solutions with a strong singularity at |x| = 0, corresponding to
u0(x) = c|x|−N plus solutions with a bounded profile at zero and correspond to a
Dirac mass as initial data u0(x) = cδ0(x). Finally, when γ < −2/(1 − m), then
β < 0 and the initial behavior of u is equivalent to the behavior of f as |ξ | → 0,
which has to be singular of the form

f (ξ) ∼ c|ξ |γ as |ξ | → 0.

We are left with the case γ = −2/(1 − m). Then, the equation and the data are
invariant under the scaling

uk(x, t) = k
2

1−m u(kx, t), k > 0.
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Therefore the solution takes the form u(x, t) = |x|− 2
1−m f (t), and we finally get

the IPSS delayed in time since f (0) = c. We can do a similar analysis in the more
general case where u0 = |x|γ f (σ ), with σ = x/|x|, hence considering non-radial
solutions. The exponents and the representation formulas are similar, but now the
profile f depends also on the angular variable.

Next, we give a quick glimpse of the case 0 < m � mc. We also take initial
data of the form (A.1) and we construct by approximation an extended continuous
solution which has the self-similar form (A.3) with α and β as above for γ �=
−2/(1−m). In this case, the value of the profile f (0) is bounded for γ > −2/(1−
m) and infinite for γ < −2/(1 − m). It is easy to prove that in the latter case,
f (ξ) ∼ c|ξ |γ when ξ → 0 so that these self-similar solutions are unbounded.
There are two subranges. For γ � −N , the solution u(x, t) has a strong singularity
at |x| = 0 for all times. On the other hand, the singularity at zero is integrable for
−N < γ < −2/(1−m) thus proving that in the subcritical range, theL1

loc → L∞
loc

regularizing effect fails. The corresponding self-similar solutions exhibit a weak
singularity at |x| = 0 for all times, something that did not happen for m > mc.
Both strong and weak singularities may have different divergence rates. Finally,
when γ = −2/(1 −m), we get for 0 < m < mc the explicit solution

u(x, t) = c|x|− 2
1−m (T − t) 1

1−m .

Using this solution and symmetrization [49], we can prove that solutions with initial
data in the Marcinkiewicz spaceMp(RN), p = N(1−m)/2 , 0 < m < mc, vanish
in finite time, thus improving the result of Bénilan & Crandall [8]. Proofs of
all these facts have been omitted here due to lack of space, but they will appear
elsewhere.

Remark. The nonlinear elliptic equation satisfied by f in the radial case can be
translated into an autonomous system which is then studied by phase-plane tech-
niques, starting with the early papers of the 50’s, cf. [5,54]. There is a huge literature
for m > 1, see for instance [44] and the references therein for the study of self-
similar solutions with weak singularities which give the asymptotic behaviour of
the Cauchy-Dirichlet problem in an exterior domain. For 0 < m < 1, we refer
to [36,41]. There are other types of self-similar solutions that can be considered,
and many interesting properties have been observed (singular behaviour, asymp-
totic attraction, stability, ...) but we refrain in this paper from further details on the
subject.

A.5. Terminology

We end the appendix with the following brief terminology for convenience of
the reader.
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Barenblatt solution: see source-type solution.
E : The class of extended continuous solutions.
Es : Subclass of E with only strong singularities.
Ec: Subclass of Es with only constant strong

singularities.
ECS: Extended continuous solution in Ec.
Hot spot: Singularity, a point x0 where u(x0, t) = ∞ for

t > 0 (or where u0 is not locally bounded).
IPSS: Infinite point source solution, see (0.5).
Pressure: The function v = mum−1 where u satisfies (0.1).
Self-similar solution: Special solution of the form u(x, t) = tαf (xt−β).
Source-type solution: Solution with a Dirac mass as initial data, more

precisely finite point-source solution see (0.4),
Strong singularity: A singular point where f is not locally integrable.
SSS: Strongly singular set, consisting of the strong

singularities.
Travelling wave: A special solution of the form u(x, t) = f (x − ct).
Very hot spot: Strong singularity.
Weak singularity: A singular point of f where it is locally integrable.

Note. As an answer to one of the referees’ questions, we would like to add the
following comment: the class of extended continuous solutions described here
offers a new perspective of combining diffusion and radiation in a compact form
and we conjecture its usefulness in models of reaction-diffusion and other fields.
However, two years after first announcing this mechanism, the possibility of real-
world applications is still the main open issue and we would like to draw the
attention of potential readers to it. On the other hand, there has been rapid progress
in the study of solutions with expanding singularities (studied in Section 8) in the
work of Barenblatt et al., cf. [6,50].

Acknowledgements.This work has been performed during E.C.’s stay at the University
Autónoma de Madrid supported by the TMR contract ERB FMRX CT98-0201 “Nonlinear
parabolic equations”. He wishes to thank the Department of Mathematics of UAM for its
hospitality. We benefited from discussions with a number of colleagues. We are especially
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