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Abstract
So far, the majority of in vitro toxicological experiments are conducted after an acute 24 h treatment that does not represent a 
realistic human chemical exposure. Recently, new in vitro approaches have been proposed to study the chemical toxicological 
effect over several days in order to be more predictive of a representative exposure scenario. In this study, we investigated the 
genotoxic potential of chemicals (direct or bioactived clastogen, aneugen and apoptotic inducer) with the γH2AX and pH3 
biomarkers, in the human liver-derived HepaRP cell line. We used different treatment durations, with or without a three-day 
recovery stage (release period), before genotoxicity measurement. Data were analysed with the Benchmark Dose approach. 
We observed that the detection of clastogenic compounds (notably for DNA damaging agents) was more sensitive after three 
days of repeated treatment compared to one or three treatments over 24 h. In contrast, aneugenic chemicals were detected as 
genotoxic in a similar manner whether after a 24 h exposure or a three-day repeated treatment. Globally, the release period 
decreases the genotoxicity measurement substantially. For DNA damaging agents, after high concentration treatments, 
γH2AX induction was always observed after a three-day release period. In contrast, for DNA topoisomerase inhibitors, no 
effect could be observed after the release period. In conclusion, in the HepaRP cell line, there are some important differences 
between a one-day acute and a three-day repeated treatment protocol, indicating that different cell treatment procedures may 
differentiate chemical genotoxic mechanisms of action more efficiently.
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Introduction

In vitro chemical toxicity measurement is usually performed 
after one day of acute exposure. However, the duration of 
exposure during the experiment may affect a compound’s 
potency to be detected as a toxic chemical. So far, only a 
limited number of studies have been conducted to investi-
gate the impact of exposure duration on the toxic chemical 
potency with in vitro tests due to cell death at confluence for 
many cell lines used (Jennen et al. 2010; Bell et al. 2017; 
Gupta et al. 2021; Duivenvoorde et al. 2021).

As an alternative, the HepaRG human cell line (isolated 
from a patient with hepatocarcinoma) is widely used in tox-
icological experiments because of its strong similarity to 
human hepatocytes with metabolic capacities and the ability 

to apply repeated treatment (Aninat et al. 2006; Cerec et al. 
2007; Guillouzo et al. 2007; Quesnot et al. 2016). However, 
the HepaRG cell bank is limited. Consequently, epigenetic 
reprogramming of HepaRG cells was used to generate the 
HepaRP cell line, with P450 enzyme levels comparable to 
those expressed in primary human hepatocyte cultures and 
the ability to remain differentiated for several days at conflu-
ence (Brun et al. 2023).

Several compounds classified as genotoxic can lead to 
DNA damage, increase mutation load, and consequently 
induce a carcinogenesis process as well as other health out-
comes such as premature aging or infertility (Srinivasan 
et al. 1997; Friedberg 2003; Wheeldon et al. 2020). The 
aim of this study was to compare the toxic potential (cyto-
toxicity and genotoxicity) induced by eight compounds with 
different modes of action (MoA) after a single or repeated 
exposure in human HepaRP cells. We also chose as toxic 
control tunicamycin, a cytotoxic compound that does not 
induce genotoxic damage (Kim et al. 2018). We decided to 
test three groups of genotoxicants that induce DNA dam-
age by different MoA: benzo[a]pyrene and aflatoxin B1, 
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which lead to DNA adducts whereas mitomycin C leads to 
DNA cross link (Brüsehafer et al. 2014; Shah et al. 2016; 
Theumer et al. 2018). We also tested the genotoxic DNA 
topoisomerase inhibitors etoposide and camptothecin (Bald-
win and Osheroff 2005; Pommier 2006). Finally, we chose 
two aneugen agents taxol and vinblastine (Vogel and Nivard 
1993; Jordan and Wilson 1998).

In this study, HepaRP cells were exposed to each of 
the eight different compounds for one acute period or for 
repeated treatments. We also evaluated the effect of a three-
day recovery period after the last chemical treatment. Gen-
otoxicity was evaluated using the In-Cell Western (ICW) 
technique with the γH2AX and pH3 genotoxicity biomark-
ers. γH2AX is known to be induced after various types of 
DNA damage and is now used as a classical biomarker for 
clastogenic chemical detection (Burma et al. 2001; Bonner 
et al. 2008; Kopp et al. 2019). Aneugenic chemical treat-
ment blocks the cells in mitosis inducing histone H3 phos-
phorylation (Banerjee and Chakravarti 2011). Using a com-
bination of the γH2AX and pH3 biomarkers, clastogenic 
and aneugenic chemicals can be efficiently distinguished 
from cytotoxic compounds (Khoury et al. 2016a, b). The 
benchmark dose (BMD) modelling approach can be used as 
an alternative to the lowest observed genotoxic effect level 
(LOGEL). BMD modelling permits to fit mathematical 
functions to all of the concentration–response data in order 
to derive the BMD with an interval of confidence (Wills 
et al. 2016; Wheeldon et al. 2020; Sanders et al. 2022). This 
mathematical method can be applied to in vitro genotoxicity 
data for risk assessment and chemical prioritization (Beal 
et al. 2023). The BMD approach was used in this study to 
compare the effect of the different treatment protocols tested.

Materials and methods

Chemicals and reagents

All tested compounds [benzo[a]pyrene (BaP), aflatoxin B1 
(AFB1), mitomycin C (MMC), etoposide (ETO), campto-
thecin (CPT), paclitaxel (Taxol), vinblastine (VIN), tuni-
camycin (TUNI)] were purchased from Sigma-Aldrich 
(France) and prepared in dimethyl sulfoxide (DMSO). 
Penicilin, trypsin, PBS, RNAse A and Triton X-100 were 
purchased from Sigma Aldrich. The blocking solution 
(Maxblock Blocking Medium) was purchased from Active 
Motif (Belgium).

Cell culture

The HepaRP cell line was provided by Biopredic Interna-
tional (St Grégoire, France). These cells are derived from 
a human hepatic cancer cell line (HepaRG) and express a 

large panel of P450 cytochromes and detoxification phase 
II enzymes (Brun et al. 2023). Briefly, undifferentiated 
HepaRP cells were cultured in growth medium (Wiliam E 
medium, 10% AD310 serum and 1% glutamax) for 14 days 
and then differentiated in differentiation medium (William 
E, 10% serum AD320, 1% glutamax) for another 14 days in 
5%  CO2 at 37 °C. For differentiation, an increasing percent-
age of DMSO was added every other day (0.2%, 0.4%, 0.8% 
and 1.4%). Once the differentiation was completed, the cells 
were trypsinated, counted and seeded to 40,000 cells/well in 
a 96 transparent black bottom plate that allows fluorescence 
analysis.

Cell treatments

Cells were treated with eight compounds at seven different 
concentrations separated by a one third dilution. In addition, 
different treatment times were studied (Fig. 1): one treatment 
over 24 h, three treatments over 24 h and three repeated 
treatments every 24 h over 72 h. To study the medium-term 
effect of these treatments, we also performed a period of 
cell release (addition of a proliferation medium without the 
compound) for three days. This release period may allow 
the cells to repair the cellular damage or die in case of over-
damage, before the genotoxicity test is carried out.

Genotoxicity analysis with the γH2AX/pH3 assay

The γH2AX/pH3 assay was mostly performed as described 
before (Khoury et al. 2016a, b; Kopp et al. 2020). At the end 
of the treatment or after the release period, the cells were 
washed in phosphate buffered saline (PBS) and fixed with 
4% paraformaldehyde for 20 min at room temperature and 
washed with PBS. The cells were permeabilized with 0.2% 
Triton X-100 in the PBS for 5 min and washed with the PST 
wash solution (Triton 0.2%, SVF 0.2% in PBS). Cells were 
blocked with MAXblock Blocking medium supplemented 
with 0.1% RNase for 1 h at room temperature, and a washing 
step was done with the PST solution. Cells were incubated 
with the primary antibody solution (mouse monoclonal anti-
body anti-pH3 (Clone CM312, Sigma) and a rabbit poly-
clonal antibody anti-γH2AX (Clone 20E3, Cell Signaling)) 
in PST buffer for 120 min. The cells were washed by three 
successive 5 min washes with the PST solution. Then, sec-
ondary detection was carried out using an infrared fluores-
cent dye conjugated to goat anti-mouse antibody (CF770, 
Biotium) and a donkey anti-rabbit antibody (CF680, Bio-
tium). For DNA labeling, Sybergold (Invitrogen) was used 
in conjugation with the secondary antibodies for 1 h. Finally, 
three successive final washes were performed. DNA, γH2AX 
and pH3 were visualized simultaneously using the Sapphire 
Biomolecular Imager (Azure Biosystem, United States).
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The γH2AX/pH3 assay can determine cytotoxicity and 
genotoxicity in a single experiment. To determine cytotoxic-
ity, the DNA content (linked to the number of cells) recorded 
in the treated cells was compared to the DNA content of the 
DMSO (control) treated cells and expressed as a percentage 
and was expressed as relative cell count (% RCC). To deter-
mine genotoxicity, γH2AX and pH3 fluorescence in treated 
wells was divided by untreated well fluorescence to deter-
mine the change in phosphorylation level of the selected 
histone. The treated conditions were compared with the 
DMSO (control).

BMD analysis

The data obtained in the different experiments were analyzed 
with the BMD covariate method using the PROAST webtool 
(version 70.1- https:// proas tweb. rivm. nl/) and following the 
manual provided by the European Food Safety Authority 
(Committee et al. 2017). In this study, we choose a BMR 
value of 0.5, which corresponds to a 50% increase over the 
background signal as recommended for in vitro genotoxic-
ity data analysis (Wills et al. 2016; Wheeldon et al. 2020; 
Sanders et al. 2022).

Statistical analysis

The results are presented as a mean ± standard deviation 
from the mean (SEM) of at least three separate experiments. 
Statistically significant increases in biomarkers, following 
treatment, were compared with the vehicle (DMSO) con-
trol using two-sided Student's t-test (*P ≤ 0.05; **P ≤ 0.01). 
A result was considered positive if there was a 1.5-fold 
increase of the considered biomarker and a level of cytotox-
icity above 50% compared to the DMSO control. The result 
after 72 h treatment was also compared with the γH2AX and 
pH3 induction after the 24 h treatment (a and b respectively).

Results

DNA damage after one or three treatments over 24h

In order to study the genotoxicity of the eight selected 
compounds, we evaluated the induction of the γH2AX and 
pH3 biomarkers. We first tested the standard one treatment 
over 24 h protocol (Fig. 1A). The TUNI compound (a non-
genotoxic cytotoxic compound) did not induce any change 
of the studied biomarkers (supplementary data, Fig. S1A) 
but a decrease in the viability at the highest concentration 
was observed. BaP treatment at 1, 3 and 10 µM (Fig. 2A) 
gave a significant increase of γH2AX compared to DMSO. 
In a similar way, AFB1 treatment increased γH2AX sig-
nificantly at concentrations of 0.1, 0.3 and 1 µM. In addi-
tion, we observed a decrease of cell viability from 3 µM 
AFB1 (Fig. 2B). For MMC (Fig. 2C), γH2AX was signifi-
cantly increased from 1 to 10 µM. For ETO (Fig. 3A), we 
observed a significant increase of the γH2AX biomarker 
at 0.1 µM whereas for the CPT (Fig. 3B), we observed a 
significantly increase of γH2AX at 0.01 µM. At the same 
time, we used the pH3 marker to study mitotic cell arrest. 
We observed a significant increase of pH3 from 0.003 µM 
for taxol (Fig. 4A), compared to DMSO, as well as for the 
VIN treatment (Fig. 4B). As anticipated for an aneugenic 
chemical, we did not observe a significant difference of 
γH2AX compared to the control.

We then compared the single 24 h acute treatment with 
a protocol including three treatments over a day (Fig. 1B), 
with the concentrations previously used for the single dose 
treatment. After three treatments over 24 h, we did not 
observe a significant difference for the cytotoxicity and of 
γH2AX and pH3 biomarkers compared to a single treat-
ment over 24 h (supplementary data Fig S2).

Fig. 1  Scheme of the different 
treatment protocols used. A 
Treatment 1 × 24 h. B Treatment 
3 × 8 h. C Treatment 3 × 24 h. 
T, Treatment; O, Observation

https://proastweb.rivm.nl/
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Fig. 2  In vitro cytotoxicity and 
genotoxicity of three genotoxic 
compounds (benzo[a]pyrene, 
aflatoxin B1 and mitomycin 
C) tested for γH2AX and pH3 
after one or three repeated 
treatments. Panel A: Benzo[a]
pyrene; Panel B: Aflatoxin B1; 
Panel C: Mitomycin C. Cyto-
toxicity is represented by the % 
RCC. Each value represents the 
mean ± SEM (n ≥ 3). Significant 
differences are noted (*P ≤ 0.05; 
**P ≤ 0.01; a ≤ 0.05 compared 
to γH2AX; b ≤ 0.05 compared 
to pH3)
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DNA damage after three repeated treatments of 24h

Following the 24 h treatment experiment protocol, we per-
formed three separated treatments over three consecutive 
days (Fig. 1C). TUNI compound did not give any significant 
results on the γH2AX or pH3 genotoxicity markers (sup-
plementary data, Fig. S1B). After three repeated treatments 
over 72 h, we observed a significant increase of γH2AX 
from 0.1 to 10 µM of BaP compared to the control (Fig. 2A). 
For AFB1, we observed a significant increase in γH2AX 
from 0.1 µM (Fig. 2B). For the MMC we observed a signifi-
cant increase for the γH2AX marker at 0.3 µM (Fig. 2C). 
ETO gave a significant increase in γH2AX at 0.1  µM 
(Fig. 3A) whereas for CPT, γH2AX induction was signifi-
cant at 0.03 µM (Fig. 3B). For topoisomerase inhibitors, 
we observed a strong significant decrease in cell viability 
after three days of repeated treatments compared to the 
24 h protocol. For VIN and taxol, we observed a significant 
increase for the pH3 biomarker and this effect was more 

pronounced after an acute 24 h treatment compared to a 
three-day repeated protocol (Fig. 4A, B).

Effect of a three‑day release period on genotoxicity 
assessment at the end of the treatment

As expected, for all of the compounds tested in this study 
(excepted for TUNI), we observed an increase of the γH2AX 
or pH3 biomarkers (depending on the MoA), indicating geno-
toxicity induction. Following these DNA insults, the cells may 
activate some DNA repair pathways. To verify this hypothesis, 
we tested the effect of a three-day release period. At the end of 
the cell treatment (after a single or three treatments over 24 h 
or three days of repeated treatments), cells were incubated in 
fresh media without any compounds for three days (Fig. 1). For 
the apoptosis inducer TUNI (supplementary data Fig. 1B), we 
did not observe any effect of the release period. We observed a 
significant decrease in the γH2AX markers for BaP (Fig. 5A), 
AFB1 (Fig. 5B) and MMC (Fig. 5C), but a significant γH2AX 

Fig. 3  In vitro cytotoxicity and 
genotoxicity of two geno-
toxic compounds (etoposide 
and camptothecin) tested for 
γH2AX and pH3 after one 
or three repeated treatments. 
Panel A: Etoposide; Panel B: 
Camptothecin. Cytotoxicity 
is represented by the % RCC. 
Each value represents the 
mean ± SEM (n ≥ 3). Significant 
differences are noted (*P ≤ 0.05; 
**P ≤ 0.01; a ≤ 0.05 compared 
to γH2AX; b ≤ 0.05 compared 
to pH3)
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induction was always observed at the highest concentrations 
tested. For ETO and CPT, we observed a significant differ-
ence in the DNA damage with a release period compared to 
no release. After the three-day release period, subsequently to 
topoisomerase inhibitors treatment, we did not observe any 
γH2AX induction in contrast to the observed effect at the end 
of the treatment (Fig. 6). For the two tested aneugens, taxol 
and VIN, the release period significantly decreases the pH3 
induction observed at the end of the 24 h treatment (Fig. 7). 
Similar effects of the three-day release period were observed 
after a single or three treatments over 24 h (supplementary 
data Fig. S3 and S4).

BMD‑covariate analysis classifies genotoxic 
substances by their mechanism of action

We used the BMD-covariate approach to compare the differ-
ent compound effects depending on the treatment protocols 

used (Fig. 8). There was some overlap between the differ-
ent exposure treatments, indicating no statistical difference 
between the treatment protocol used. However, we observed a 
significant lower benchmark concentration (BMC) (between 5 
and 10 times lower) for three consecutive repeated treatments 
compared to one acute treatment for BaP, AFB1 and MMC 
(Fig. 8A). In contrast, for ETO and CPT, the BMC did not 
change between one or three repeated treatments (Fig. 8A). 
For taxol and VIN, we observed a similar BMC for one acute 
24 h and three repeated treatments (Fig. 8B). For all the tested 
chemicals, we observed a significant increase of the BMC after 
the release period for the same final concentrations tested.

Fig. 4  In vitro cytotoxicity and 
genotoxicity of two aneugenic 
compounds (taxol and vin-
blastin) tested for γH2AX and 
pH3 after one or three repeated 
treatments. Panel A: Taxol; 
Panel B: Vinblastin. Cytotox-
icity is represented by the % 
RCC. Each value represents the 
mean ± SEM (n ≥ 3). Significant 
differences are noted (*P ≤ 0.05; 
**P ≤ 0.01; a ≤ 0.05 compared 
to γH2AX; b ≤ 0.05 compared 
to pH3)
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Fig. 5  In vitro cytotoxicity and 
genotoxicity of three clastogenic 
compounds (benzo[a]pyrene, 
aflatoxin B1 and mitomycin 
C) tested for γH2AX and pH3 
after three repeated treatments 
with or without a release period. 
Panel A: Benzo[a]pyrene; 
Panel B: Aflatoxin B1; Panel 
C: Mitomycin C. Cytotoxicity 
is represented by the % RCC. 
Each value represents the 
mean ± SEM (n ≥ 3). Significant 
differences are noted (*P ≤ 0.05; 
**P ≤ 0.01; a ≤ 0.05 compared 
to γH2AX; b ≤ 0.05 compared 
to pH3)
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Discussion

The aim of this study was to compare the classical 24 h 
acute treatment protocol to a repeated exposure over one or 
three days and the effect of a release period on genotoxicity 
measurement. We investigated the toxic effects of genotoxic 
compounds with different MoA: direct and bioactivated clas-
togenic chemicals, aneugenic compounds and an apoptotic 
inducer compound. For this purpose, we used the HepaRP 
cell line, because classical adherent cell models, like HepG2 
cells, die after reaching confluence (Khoury et al. 2016a).

We used TUNI (apoptosis inducer) as a negative geno-
toxic control. As expected, we did not observe a signifi-
cant induction of γH2AX or pH3 biomarkers after TUNI 
treatment (Khoury et al. 2020). We classically detected 
an increase of the γH2AX biomarker for the clastogenic 
genotoxins BaP, MMC, AFB1, CPT and ETO (Kopp et al. 
2019). In contrast, as expected, cells blocked in mitosis 

after aneugenic compound treatment such as taxol (inhi-
bition of the depolymerization of microtubules) or VIN 
(inhibition of the polymerization of microtubules) dem-
onstrated an induction of pH3 as observed previously and 
there was no impact on the γH2AX biomarker (Parry et al. 
1996; Bernacki et al. 2019).

In this study, we also compared the cell toxicity after 
one 24-h treatment or 72-h repeated treatment. We 
observed differences depending on the MoA of the tested 
compound (inhibitor of topoisomerase or DNA damaging 
agent). Direct DNA damaging compounds (BaP, AFB1 
and MMC), induced equivalent cytotoxicity after 24 h or 
72-h treatment. In contrast, for topoisomerase inhibitors, 
we observed more pronounced cytotoxicity after a three-
day repeated treatment protocol compared to one day acute 
treatment confirming the results of previous studies (Kopp 
et al. 2020; Dural et al. 2020).

Fig. 6  In vitro cytotoxicity and 
genotoxicity of two clasto-
genic compounds (etoposide 
and camptothecin) tested for 
γH2AX and pH3 after three 
repeated treatments with or 
without a release period. 
Panel A: Etoposide; Panel B: 
Camptothecin. Cytotoxicity 
is represented by the % RCC. 
Each value represents the 
mean ± SEM (n ≥ 3). Significant 
differences are noted (*P ≤ 0.05; 
**P ≤ 0.01; a ≤ 0.05 compared 
to γH2AX; b ≤ 0.05 compared 
to pH3)
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We also compared a 3 × 8 h treatment and the 24 h treat-
ment. We wanted to test the hypothesis that if we treated the 
cells three times instead of once in the same day, the toxicity 
would be higher. However, in our study, we found no differ-
ence between the two treatment procedures for cytotoxicity 
or genotoxicity. The DNA damage is already present after 
the first treatment, and it seems there was no cumulative 
effect. Therefore, for the tested chemicals, three treatments 
in one day correspond to one acute treatment of 24 h for the 
same final concentration. It may be possible that less stable 
compound as alkylating agent or oxidative stress inducers 
produce different results.

DNA damaging agents AFB1, BaP and MMC induced 
important DNA damage resulting in γH2AX induction as 
expected. After a three-day release period, the cells treated 
with these chemicals at a low concentration did not display 
anymore DNA damage, presumably due to an efficient DNA 
repair process. However, at the highest tested concentrations, 

cells always demonstrated some DNA damage as indicated 
by an elevated γH2AX status, indicating that high DNA 
damage may persist despite the three-day DNA repair recov-
ery period. Also, this treatment protocol did not induce cyto-
toxicity at this late time point, indicating that the γH2AX 
induction was not related to apoptosis. These DNA damag-
ing agents can activate the pathway of senescence linked 
to the DNA damage response pathway (DDR). It has been 
demonstrated that if the DNA damage persists, the DDR 
stays active and may lead to cellular senescence and stop 
proliferation (Pospelova et al. 2009; Di Micco et al. 2021). 
Some studies have shown similar results with the marker of 
senescence Sen-B-Gal and the γH2AX biomarker (Berna-
dotte et al. 2016; Zhang et al. 2021). In contrast, after the 
three-day release period after cell treatment with the two 
DNA topoisomerase inhibitors ETO or CPT, cells did not 
present anymore DNA damage. This indicated that for these 
non-direct-DNA damaging agents, cells can either repair 

Fig. 7  In vitro cytotoxicity and 
genotoxicity of two aneugenic 
compounds (taxol and vinblas-
tin) tested for γH2AX and pH3 
after treatment with or without a 
release period. Panel A: Taxol; 
Panel B: Vinblastin. Cytotox-
icity is represented by the % 
RCC. Each value represents the 
mean ± SEM (n ≥ 3). Significant 
differences are noted (*P ≤ 0.05; 
**P ≤ 0.01; a ≤ 0.05 compared 
to γH2AX; b ≤ 0.05 compared 
to pH3)



1234 Archives of Toxicology (2024) 98:1225–1236



1235Archives of Toxicology (2024) 98:1225–1236 

their DNA damage properly during the release period, or 
die. Finally, for aneugenic chemicals, taxol and VIN, we 
observed the same effect as with the direct DNA damaging 
agents. At low concentration, cells were able to resume their 
cell cycle during the release period. However, at higher con-
centrations, aneugenic chemicals induced an important cell 
cycle block in mitosis and cells did not totally resume their 
cell cycle despite the three-day release period.

In this study, for some compounds, we can detect a geno-
toxic effect at lower concentrations with a repeated treatment 
compared to one unique regular acute treatment. We know 
that there are many compounds in food and the environ-
ment that can be hazardous (Barsouk et al. 2021), but they 
are generally tested after an acute 24 h treatment. However, 
if the population is exposed to these same compounds sev-
eral times at low doses, there can be an accumulation of 
DNA damage and possibly mutagenesis induction (Rumgay 
et al. 2022). Here we show the benefit of using a three-day 
repeated treatment versus a single 24 h treatment. Using 
the BMD approach, it was demonstrated that in vitro geno-
toxicity data may be used for risk assessment and chemical 
prioritization (Beal et al. 2023). The lowest observed BMC, 
caused by the repeated treatment protocol, should be taken 
into account in future studies.

This study was performed with a particular cell type 
(HepaRP) with specific genotoxic biomarkers (γH2AX and 
pH3). New experiments should be performed with other cell 
types, possibly in proliferation status, permitting repeated 
treatment protocol (like TK6 cells) and with other genotoxic 
endpoints (mutagenesis, micronucleus) to confirm the con-
clusion of your study.

The main strength of this study is that we presented an 
analysis of eight different chemicals with several genotoxic 
MoA. The new protocol used in this study with repeated 
treatment helps to differentiate and better understand some 
mechanisms of action in a more human realistic exposure 
scenario. Also, with repeated treatment, we gain a better 
evaluation of the minimal concentration inducing a geno-
toxic effect. The results of this study demonstrated the utility 
of performing a three-day repeated in vitro treatment for 
genotoxicity studies, as proposed in some previously pub-
lished studies (Quesnot et al. 2016; Kopp et al. 2020; Dural 
et al. 2020; Sanders et al. 2022). Consequently, with HepaRP 
or HepaRG cell models, it should be pertinent to use, in par-
allel of the classical 24 h protocol, a repeated 72 h treatment 
period for genotoxicity assessment with the γH2AX/pH3 
biomarkers, therefore generating more information about 
the genotoxic MoA. 3D cell culture is another cell model 

with easily repeatable cell treatment overtime without the 
confluence toxicity drawback (ter Braak et al. 2022). New 
experiments with 3D models should be performed to con-
firm the advantage to using repeated chemical treatment over 
an acute 24 h period.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00204- 024- 03690-w.
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