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Abstract
Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding (CREB) family, plays a 
critical role as a stress-induced transcription factor. It orchestrates cellular responses, particularly in the management of 
endoplasmic reticulum stress, amino acid deprivation, and oxidative challenges. ATF4's primary function lies in regulating 
gene expression to ensure cell survival during stressful conditions. However, when considering its involvement in ferroptosis, 
characterized by severe lipid peroxidation and pronounced endoplasmic reticulum stress, the ATF4 pathway can either inhibit 
or promote ferroptosis. This intricate relationship underscores the complexity of cellular responses to varying stress levels. 
Understanding the connections between ATF4, ferroptosis, and endoplasmic reticulum stress holds promise for innovative 
cancer therapies, especially in addressing apoptosis-resistant cells. In this review, we provide an overview of ATF4, including 
its structure, modifications, and functions, and delve into its dual role in both ferroptosis and cancer.
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Introduction

Transcription factors play a role in regulating gene transcrip-
tion rates by binding to DNA regulatory sequences, thereby 
maintaining essential cellular physiological processes. 
Among these factors, activator protein 1 (AP-1) was among 
the earliest mammalian transcription factors discovered, 
often as a dimeric complex (Bejjani et al. 2019). The acti-
vating transcription factor (ATF) family, a subset of AP-1, 
comprises seven members (Fig. 1): ATF1, ATF2, ATF3, 
ATF4, ATF5, ATF6, and ATF7. These members recognize 
and bind cyclic AMP response element-binding proteins 
(CREB), thereby regulating transcription rates of various 
target genes and contributing to intracellular homeostasis 
(Ameri and Harris 2008). Distinct sequence elements are 
bound by AP-1 transcription factors depending on unique 

homodimer or heterodimer combinations, while ATF pri-
marily binds to the sequence 5′-TGA​CGT​CA-3′ (Drust et al. 
1991).

At first, identified as a transcriptional repressor of cAMP 
response elements, ATF4, also known as CREB2, demon-
strates dual functionality, serving as both a transcriptional 
activator and repressor (Mielnicki and Pruitt 1991). It plays 
a multifaceted role in the regulation of various cellular bio-
logical processes and is induced for upregulation and acti-
vation, especially in response to stress conditions. While 
diverse extracellular signals can increase ATF4 levels in 
different cell types, the primary regulation occurs at the 
transcriptional initiation and post-transcriptional levels. The 
ATF4 mRNA contains short upstream open reading frames 
(uORFs) within its 5′ untranslated region (5′UTR) (Marasco 
et al. 2022). These uORFs encode "AUG" start codons and 
are typically suppressed under non-stimulatory conditions, 
resulting in reduced ATF4 protein synthesis. Conversely, 
under stress conditions, the assembly of the protein occurs, 
leading to the phosphorylation of the eukaryotic translation 
initiation factor 2 subunit alpha (EIF2S1) (Tameire et al. 
2019). This event facilitates selective ATF4 translation, fol-
lowed by its translocation to the nucleus for the regulation 
of gene transcription (Baniulyte et al. 2023; Gouveia Roque 
et al. 2023).

 *	 Jiao Liu 
	 2018683073@gzhmu.edu.cn

 *	 Daolin Tang 
	 daolin.tang@utsouthwestern.edu

1	 DAMP Laboratory, Third Affiliated Hospital of Guangzhou 
Medical University, Guangzhou 510150, Guangdong, China

2	 Department of Surgery, UT Southwestern Medical Center, 
Dallas, TX 75390, USA

http://orcid.org/0000-0002-1903-6180
http://crossmark.crossref.org/dialog/?doi=10.1007/s00204-024-03681-x&domain=pdf


1026	 Archives of Toxicology (2024) 98:1025–1041

ATF4 demonstrates low expression in healthy cells, but 
its expression is elevated in cancer, where it can facilitate 
cell survival and tumor growth by inducing adaptive stress 
responses (Harding et al. 2003). For example, the transcrip-
tional activation of ATF4 enhances the proliferation and 
invasiveness of gastric cancer cells (Wang et al. 2023). How-
ever, in cases of persistent stress and failed cellular homeo-
stasis, ATF4 triggers apoptosis through pro-apoptotic fac-
tors, such as DNA damage-inducible transcript 3 (DDIT3) 
and tribbles pseudokinase 3 (TRIB3) (Ohoka et al. 2005). 
Moreover, cancer cells frequently exhibit metabolic aberra-
tions, where metabolic reprogramming becomes associated 
with tumor progression, stress adaptation, and response to 
anti-tumor therapies (Luengo et al. 2017). For instance, dis-
ruptions in glutathione (GSH) metabolism are implicated in 
various malignant tumors' initiation, progression, and drug 
resistance (Miess et al. 2018; Wen et al. 2021). GSH serves 
as a scavenger, protecting cells from damage caused by reac-
tive oxygen species (ROS) to essential cellular components, 
such as DNA, proteins, and lipids.

Ferroptosis, a form of iron-dependent regulated cell 
death, can be induced by GSH depletion and ROS accumu-
lation (Dixon et al. 2012; Stockwell 2022; Stockwell et al. 
2017). Certain cancer cells, due to their altered metabolism 
and ROS burden, display increased susceptibility to ferrop-
tosis (Chen et al. 2022; Lin et al. 2022). For example, clear 
cell carcinoma constitutes a cluster of exceptionally aggres-
sive malignancies marked by anomalous lipid and glyco-
gen buildup. This leads to clear cell carcinoma cells that 
exhibit heightened susceptibility to ferroptosis (Zou et al. 
2019). Pancreatic cancer has KRAS mutations, rendering it 
susceptible to ferroptosis despite the concurrent existence of 
established anti-ferroptotic mechanisms (Kuang et al. 2021; 
Li et al. 2021a, 2023). Consequently, targeting ferroptosis 
emerges as a promising strategy for tumor therapy (Chen 

et al. 2021a; Dierge et al. 2021; Lei et al. 2022; Tang et al. 
2023b; Zhang et al. 2023).

This review aims to provide a comprehensive understand-
ing of the underlying mechanisms governing ATF4-medi-
ated stress responses while also delving into its emerging 
involvement in ferroptotic cell death. A thorough elucidation 
of ATF4's regulation and function in the context of cell death 
offers potential avenues for the development of innovative 
therapeutic approaches in cancer treatment.

The mRNA and protein structure of ATF4

The ATF4 cDNA was initially isolated from human Jurkat 
cells and designated as tax-responsive enhancer element-
binding protein 67 (TAXREB67) (Tsujimoto et al. 1991). 
The human ATF4 mRNA contains three short uORFs in the 
5′UTR before the functional coding sequence, and these 
uORFs are crucial for ATF4's stress response (Harding et al. 
2000). Adjacent to uORF1 in the 5′ region lies a positive-
acting element that facilitates ribosome scanning and recom-
mencement of coding downstream from the ATF4 mRNA 
(Xiao et al. 2022). Positioned in the middle is uORF2, func-
tioning as a repressor element that curbs ATF4 expression. 
Sequentially following uORF2 is the ATF4 ORF, a crucial 
segment for ATF4 expression regulation. Normally, EIF2S1 
activation governs the translatability of ATF4 mRNA. How-
ever, it has been reported that non-coding RNAs can also 
impact ATF4 activation by influencing the stability of ATF4 
mRNA. For instance, the non-coding RNA circBtnl1 reduces 
the self-renewal capacity of intestinal stem cells by desta-
bilizing ATF4 mRNA (Guo et al. 2023). Hence, stabilizing 
ATF4 mRNA and activating EIF2S1 are crucial prerequisites 
for increasing ATF4 protein levels.

Fig. 1   Distinctions among ATF family members. The human ATF family encompasses ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7, 
each characterized by distinct molecular sizes, cellular localizations, tissue specificities, and phosphorylation sites
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The ATF4 protein consists of 351 amino acids, fea-
turing distinct structural domains and motifs, including 
basic leucine zipper (bZIP) domains. These bZIP domains 
facilitate interactions with other bZIP factors to form 
homodimers or heterodimers, playing a crucial role in 
DNA binding and enhancing ATF4 stability (Yin et al. 
2017). The ATF4 bZIP domain comprises a base region 
for DNA binding and a leucine zipper for dimerization. 
Stress-induced ATF4 regulation relies on motif coordina-
tion for protein stability. Additionally, ATF4 has an acti-
vating N-terminal domain that interacts with other pro-
teins to regulate gene transcription (Schoch et al. 2001). 
This domain partners with genetic regulatory elements to 
control target gene transcription during stress, impacting 
stress response mechanisms.

Translational control of ATF4 synthesis

Phosphorylation of EIF2S1 is a critical step to enhance 
ATF4 mRNA translation. Upstream kinases including 
eukaryotic translation initiation factor 2 alpha kinase 
1 (EIF2AK1), eukaryotic translation initiation factor 2 
alpha kinase 2 (EIF2AK2), eukaryotic translation initia-
tion factor 2 alpha kinase 3 (EIF2AK3), and eukaryotic 
translation initiation factor 2 alpha kinase 4 (EIF2AK4) 
respond to stress and phosphorylate EIF2S1 at Ser51 
(Fessler et al. 2020). These kinases are activated by dis-
tinct triggers: EIF2AK1 by heme deficiency, EIF2AK2 by 
viral infection, EIF2AK3 by ER stress, and EIF2AK4 by 
amino acid deficiency (Fessler et al. 2020).

EIF2S1 is a subunit of the eukaryotic translation initia-
tion factor, crucial for initiating protein synthesis. When 
phosphorylated, EIF2S1 acts as a powerful inhibitor of 
EIF2S2, binding to alternative sites and interrupting the 
exchange of guanosine-5′-diphosphate (GDP) for guano-
sine triphosphate (GTP) during EIF2 complex activation 
(Adomavicius et al. 2019; Zyryanova et al. 2021). This 
exchange is crucial for assembling the 43S ribosome. 
As a result, phosphorylated EIF2S1 reduces the GDP-
GTP exchange factor, leading to decreased protein syn-
thesis (Adomavicius et al. 2019). However, mammalian 
ATF4 mRNA contains an inhibitory uORF that overlaps 
with the ATF4 coding ORF (Vattem and Wek 2004). In 
cells with abundant EIF2-GTP, the inhibitory ORF initi-
ates translation, bypassing the coding ORF. Conversely, 
when EIF2-GTP levels are low, translation bypasses the 
inhibitory ORF, allowing ATF4 coding ORF translation 
to commence. This suggests that ATF4 protein may be 
upregulated when EIF2S1 is phosphorylated and EIF2-
GTP levels are diminished.

Post‑translational modification of ATF4 
protein

ATF4 undergoes various post-translational modifications 
that impact its stability and transcriptional activity. Ubiq-
uitination plays a role in regulating ATF4's stability. A 
proteomics analysis has identified multiple lysine resi-
dues in ATF4 that have the potential to be ubiquitinated, 
although experimental confirmation is pending for many 
of these sites (Hornbeck et al. 2015; Kim et al. 2011). 
Within the nucleus, ATF4 interacts with beta-transducin 
repeat-containing E3 ubiquitin-protein ligase (BTRC), 
an F-box protein involved in the SCF E3 ubiquitin ligase 
complex. Subsequent research has highlighted that this 
ubiquitination process, initiated by BTRC, leads to ATF4's 
degradation via the ubiquitin–proteasome pathway, and 
this degradation is contingent on ATF4 phosphorylation 
at Ser219 (Frank et al. 2010; Lassot et al. 2001).

Moreover, egl-9 family hypoxia-inducible factor 3 
(EGLN3) can prompt ATF4 protein degradation by cata-
lyzing proline hydroxylation within ATF4's oxidation-
dependent degradation domain (Köditz et al. 2007). How-
ever, another perspective suggests that ATF4 interacts with 
EGLN2 and EGLN3, but it's EGLN2 that stabilizes ATF4 
without causing hydroxylation (Hiwatashi et al. 2011). 
Despite ATF4 stabilization by EGLN2, its transcriptional 
activity is repressed. This suggests a nuanced relation-
ship between ATF4 protein levels and its transcriptional 
function. Another regulatory mechanism involves the his-
tone acetyltransferase E1A binding protein P300 (EP300), 
which directly binds to ATF4's N-terminus to stabilize it, 
potentially by preventing ubiquitination at multiple sites 
and thwarting proteasomal degradation (Lassot et  al. 
2005).

While regulating ATF4 stability is crucial, equal atten-
tion must be given to its transcriptional activity. Within 
B-cell progenitors and cardiomyocytes, the protein argi-
nine methyltransferase 1 (PRMT1) amplifies ATF4's tran-
scriptional capabilities by methylating the Arg239 site. 
This modification is facilitated by the BTG anti-prolif-
eration factor 1 (BTG1) (Kim et al. 2022b; Yuniati et al. 
2016). Furthermore, ATF4's transcriptional activity is 
influenced by phosphorylation events. For instance, ribo-
somal protein S6 kinase A3 (RPS6KA3)-mediated phos-
phorylation of ATF4 Ser245 in osteoblasts boosts its tran-
scriptional competence (Yang et al. 2004). Casein kinase 
2 (CSNK2) catalyzes phosphorylation of ATF4's Ser215 
site, promoting transcription of ATF3 and DDIT3—genes 
within ATF4's scope (Ampofo et al. 2013). CSNK2's influ-
ence extends to DDIT3, where its phosphorylation curbs 
the gene's activity (Schwind et al. 2015). This duality of 
phosphorylation's impact on ATF4 is evident in the context 
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of the Ret proto-oncogene (RET), which phosphorylates 
ATF4 at Thr107, 114, 115, and 109, ultimately dampen-
ing ATF4's transcriptional potency (Bagheri-Yarmand 
et al. 2015). Consequently, this leads to reduced transcript 
levels of phorbol-12-myristate-13-acetate-induced pro-
tein 1 (PMAIP1) and BCL2 binding component 3 (BBC3) 
(Bagheri-Yarmand et al. 2015). Such instances highlight 
the potential divergence in transcriptional activity and tar-
get genes contingent upon ATF4's phosphorylation site.

Exploring ATF4's post-translational modifications is 
crucial due to numerous undisclosed modification sites. 
For example, EP300 acetylates ATF4 at Lys311, with its 
stabilizing effect being independent of acetylation function 
(Lassot et al. 2005). This highlights potential unexplored 
roles for acetylation within ATF4's bZIP domain.

In summary, investigating ATF4's post-translational 
modifications is essential, considering the many sites with 
unknown functions.

ATF4 and cellular stress

The phosphorylation of EIF2S1 at the Ser51 site stands as 
a pivotal event in diverse stress signaling pathways. While 
generally inhibiting protein synthesis, this phosphoryla-
tion uniquely triggers the translation of specific mRNAs, 
including ATF4. This phosphorylation is catalyzed by four 
enzymes: EIF2AK1 (induced by heme deficiency or oxida-
tive stress), EIF2AK2 (viral infection), EIF2AK3 (amino 
acid deficiency and ultraviolet light), and EIF2AK4 (ER 
stress and hypoxia), acting independently or cooperatively. 
Consequently, ATF4 can be upregulated in response to dis-
tinct cell stress types (ER stress, oxidative stress, amino acid 
depletion, integrated stress response [ISR]) (Fig. 2), func-
tioning as both a transcriptional activator and inhibitor.

ATF4 exerts its regulatory influence on target gene 
transcription by binding to C/EBP-ATF response element 
(CARE) sequences, which facilitate transcriptional activa-
tion in response to diverse stresses (Fawcett et al. 1999). 

Fig. 2   The role of ATF4 in cell stress. In response to various cellu-
lar stressors, ATF4 can be upregulated and activated by four kinases 
(EIF2AK1, EIF2AK2, EIF2AK3, and EIF2AK4). As a result, ATF4 

serves as a crucial effector molecule in multiple stress pathways: 
endoplasmic reticulum stress (a), oxidative stress (b), amino acid 
stress (c), and integrated stress response (d)
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Originally observed in surrogate rat fibroblasts, ATF4 
mRNA levels were induced by hypoxia (Estes et al. 1995). 
However, ATF4's role in cellular stress response varies based 
on stimulus intensity, type, and timing, as elaborated below.

ER stress

The ER serves as a central hub for protein synthesis, folding, 
and modifications. Disruptions caused by external factors 
or internal events can impair ER's protein folding capacity, 
leading to an accumulation of misfolded proteins and per-
turbations in protein homeostasis, culminating in ER stress 
(Kohli et al. 2021). The unfolded protein response (UPR) 
is activated in response to ER stress, forming a complex 
network of signaling pathways that orchestrate adaptive 
reactions.

This UPR comprises three distinct pathways, each acti-
vated by a specific transmembrane sensor: endoplasmic 
reticulum to nucleus signaling 1 (ERN1), EIF2AK3, and 
ATF6. These sensors, in their native state, associate with the 
chaperone heat shock protein family A member 5 (HSPA5), 
preventing downstream signaling activation. However, when 
misfolded proteins accumulate, HSPA5's higher affinity for 
these proteins prompts its dissociation from the sensors, thus 
triggering the unfolded protein response. ERN1 can bind to 
misfolded proteins, also activating the UPR (Gardner and 
Walter 2011). These pathways collectively reduce unfolded 
protein burden by attenuating protein synthesis, augmenting 
ER's protein folding capacity, and enhancing ER-associated 
degradation (ERAD). Nevertheless, if the UPR fails to effec-
tively restore protein homeostasis, it can trigger cell death 
signals.

During ER stress, ATF4 activation hinges on the 
EIF2AK3-EIF2S1 axis (Fig.  2a), which subsequently 
prompts ATF4 to induce expression of DDIT3 and several 
other related proteins involved in autophagy, antioxidant 
defense, and cell death pathways (Huang et al. 2021; Wei 
et al. 2022; Zielke et al. 2021). As the primary downstream 
effector of ATF4, DDIT3 upregulates pro-apoptotic pro-
teins including TNF receptor superfamily member 10b 
(TNFRSF10B), TRIB3, BCL2 like 11 (BCL2L11), and 
BBC3, while suppressing the expression of the anti-apop-
totic protein BCL2 (Wang and Kaufman 2016). Moreover, 
within breast cancer cells, DDIT3 triggers the activation of 
endoplasmic reticulum oxidoreductase 1 alpha (ERO1A). 
This, in turn, enhances 1,4,5-trisphosphate inositol receptor 
type 1 (ITPR1)-mediated ER calcium release to mitochon-
dria, leading to heightened ROS production (Varone et al. 
2021).

ERN1 can indirectly influence ATF4 activation. Mechani-
cally, ERN1, activated by ER stress in chondrocytes, trig-
gers apoptosis through the mechanistic target of rapamycin 
kinase (MTOR)-EIF2AK3-ATF4-DDIT3 pathway (Li et al. 

2021e). The EIF2AK3-ATF4 pathway is crucial for ATF6 
activation in mouse liver (Teske et al. 2011), indicating 
ATF4's significance in coordinating the functions of three 
ER transmembrane sensors.

Recently, a phenomenon known as reticulophagy, which 
involves the selective degradation of the ER through 
autophagy, has been discovered during ER stress. ATF4 
plays a key role as a regulator bridging ER stress and reticu-
lophagy. Glioblastoma cells treated with loperamide (LOP) 
exhibit increased ATF4 expression along with ER stress and 
reticulophagy induction (Zielke et al. 2021). Upregulation 
of ATF4-dependent autophagy genes, such as autophagy-
related 13 (ATG13), WD repeat domain phosphoinositide 
interacting 1 (WIPI1), microtubule-associated protein 1 light 
chain 3 beta (MAP1LC3B), GABA type A receptor-associ-
ated protein (GABARAP), testis-expressed 264 (TEX264), 
and reticulophagy regulator 1 (RETREG1), becomes crucial 
for autophagy and reticulophagy (Zielke et al. 2021). Yet, it 
is still unclear whether ATF4 specifically triggers ER stress-
induced reticulophagy.

Oxidative stress

Cellular redox control hinges on maintaining a delicate 
equilibrium between the generation of ROS/reactive nitro-
gen species (RNS) and the intrinsic defense mechanisms 
provided by antioxidants. These mechanisms are crucial for 
virtually all cellular activities. Alongside direct antioxidants, 
cells rely on indirect antioxidant systems to either curtail 
ROS/RNS formation or neutralize their active byproducts. 
When ROS/RNS production outpaces antioxidant capac-
ity, oxidative stress emerges, prompting distinct cellular 
responses. Two vital intracellular antioxidants, GSH and 
thioredoxin (TXN), heavily rely on nicotinamide adenine 
dinucleotide phosphate (NADPH) to sustain their reduced 
states. Optimal levels of ROS play a role in fostering cell 
proliferation and viability. NADPH oxidase 4 (NOX4) 
stimulates NFE2-like BZIP transcription factor 2 (NFE2L2)-
PINK1-mediated mitophagy by producing mitochondrial 
ROS, thus promoting the survival of hepatocellular carci-
noma (Peng et al. 2023). Conversely, excessive ROS can 
trigger detrimental effects, such as protein and lipid peroxi-
dation, DNA damage, and cell demise (Liu et al. 2022; Yu 
et al. 2021).

Like NFE2L2 (Dai et al. 2020a; Lane et al. 2023; Sun 
et al. 2016a, 2016b; Wang et al. 2021), ATF4 plays a role in 
regulating various oxidative stress processes (Fig. 2b). It is 
typically upregulated in response to oxidative stress, where 
it oversees the expression of multiple genes, including those 
responsible for antioxidant enzymes, heat shock proteins, 
and redox-related factors. This regulatory activity helps 
mitigate oxidative stress-induced damage and maintains 
intracellular redox homeostasis. Consequently, inhibiting 
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intracellular ATF4 can elevate the risk of oxidative stress. 
For example, in acute myeloid leukemia cases, the inhibition 
of protein arginine methyltransferase 5 (PRMT5) leads to the 
expression of unstable ATF4 mRNA with retained introns, 
causing nuclear stalling (Szewczyk et al. 2022). Simultane-
ously, reduced cytoplasmic ATF4 splice transcription results 
in decreased expression of ATF4 target genes and subse-
quent oxidative stress (Szewczyk et al. 2022).

Intracellular antioxidants rely on NADPH for their 
effectiveness, and ATF4 can stimulate NADPH production 
through various pathways. In mouse cardiomyocytes, ATF4 
emerges as a regulatory factor governing the upregulation 
of essential enzymes (e.g., G6PDX, PHGDH, PSAT1, and 
MTHFD2) within both NADPH production pathways (Wang 
et  al. 2022b). Overexpressing ATF4 amplifies NADPH 
enzyme production, effectively safeguarding against oxida-
tive stress-triggered heart failure (Wang et al. 2022b). This 
antioxidative prowess of ATF4 holds therapeutic potential, 
as demonstrated by its role in mitigating oxidative stress 
in erythrocytes through the EIF2AK1-EIF2S1-ATF4 path-
way (Suragani et al. 2012). This pathway also proves indis-
pensable for erythroid differentiation, highlighting ATF4's 
promise as a therapeutic avenue for addressing β-thalassemia 
(Suragani et al. 2012).

While ATF4 primarily acts as an adaptive response to 
oxidative stress, it can also initiate or enhance oxidative 
stress in some cases. For instance, in primary hepatocytes, 
ATF4 silencing impedes palmitate-triggered ROS genera-
tion and upregulation of cytochrome P450 family 2 sub-
family E member 1 (CYP2E1) (Wang et al. 2014). ATF4 
mediates CYP2E1 expression through a CREB-dependent 
mechanism and directly activates CYP2E1 promoter activ-
ity (Wang et al. 2014). This ATF4-driven ROS production 
can be curtailed by using CYP2E1 inhibitors. Furthermore, 
during cadmium-induced oxidative stress in human placen-
tal trophoblast cells, ATF4 can be activated by EIF2AK4, 
prompting BCL2 interacting protein 3 (BNIP3)-dependent 
mitochondrial autophagy (Zhu et al. 2021). This underscores 
ATF4's potential role as a central mediator connecting oxida-
tive stress and autophagy.

Amino acid stress

At the cellular level, dietary protein restriction triggers 
amino acid deprivation, setting off amino acid response 
signaling pathways (Tabata et  al. 2023). The EIF2AK4 
kinase acts as a sensor by binding uncharged tRNAs, which 
prompts EIF2S1 phosphorylation. EIF2AK4's kinase activ-
ity is engaged upon interaction with any uncharged tRNA 
molecule (Wek et al. 1995). Consequently, the depletion 
of any single amino acid at the cellular level instigates the 
amino acid response. During amino acid abundance, ATF4's 
two uORFs engage with ribosomal machinery, preventing 

ATF4's core coding region translation and thus maintaining 
low ATF4 levels (Vattem and Wek 2004). Conversely, amino 
acid scarcity triggers EIF2S1 phosphorylation by EIF2AK4. 
This allows the 40S ribosomal subunit to bypass ATF4's 
second uORF before binding to the ATF4 coding region, 
increasing ATF4 expression (Vattem and Wek 2004).

ATF4 is a key player in the amino acid response, capa-
ble of binding all recognized amino acid response ele-
ment (AARE) sequences (Fig. 2c) (Siu et al. 2002). The 
EIF2AK4-ATF4 pathway is activated in sulfur-containing 
amino acid-deficient endothelial cells, where ATF4 induces 
vascular endothelial growth factor (VEGF) expression, 
influences glucose utilization via glycolysis and the pentose 
phosphate pathway, and spurs endothelial migration and 
proliferation through hydrogen sulfide production driven 
by cystathionine gamma-lyase (CTH) (Longchamp et al. 
2018). Conversely, in intestinal epithelial cells, ATF4 defi-
ciency hampers glutamine uptake and reduces antimicrobial 
peptide expression by downregulating solute carrier family 
1 member 5 (SLC1A5) transcription (Hu et al. 2019). How-
ever, not all amino acid deficits engage the EIF2AK4-ATF4 
axis; leucine deficiency prompts hemoglobin production in 
erythrocytes through the MTOR-EIF4EBP1 axis rather than 
the EIF2AK4-ATF4 axis (Chung et al. 2015).

Tumor cells frequently undergo mutations to modu-
late amino acid metabolism since they necessitate amino 
acids and other macromolecular precursors for sustaining 
growth (Vander Heiden et al. 2009). In KRAS-mutated can-
cer cells, ATF4 regulates the expression of crucial amino 
acid transport proteins, maintaining intracellular amino acid 
levels (Gwinn et al. 2018). Upon amino acid deprivation, 
KRAS mutation elevates ATF4 mRNA levels through PI3K-
AKT-mediated NFE2L2 upregulation (Gwinn et al. 2018). 
EIF2AK4-ATF4 activation further boosts ATF4 transla-
tion, augmenting ATF4 target gene expression including 
asparagine synthetase (ASNS), thereby promoting tumor 
growth (Gwinn et al. 2018). Gaining a more comprehen-
sive understanding of ATF4's involvement in diverse amino 
acid metabolism processes will pave the way for innovative 
approaches in treating a wide range of diseases (McIntyre 
et al. 2023).

Integrated stress response

The ISR is a highly conserved network of intracellular sig-
nals that orchestrates adaptive responses to diverse environ-
mental changes, safeguarding cellular and organismal well-
being. This response can be triggered by various distinct 
stressors, encompassing ER stress, amino acid deficiency, 
heme scarcity, viral infection, and, notably in cancer biol-
ogy, oncogene activation (Gwinn et al. 2018). This intricate 
mechanism operates through the activation of four specific 
kinases (EIF2AK1, EIF2AK2, EIF2AK3, and EIF2AK4), 



1031Archives of Toxicology (2024) 98:1025–1041	

each inducing the phosphorylation of the translation initia-
tion factor EIF2S1 under specific stress contexts. Despite 
sharing significant kinase catalytic domain homology, 
these kinases boast distinct regulatory domains (Berlanga 
et al. 1998; Chen et al. 1991). EIF2S1 activation occurs 
via dimerization and autophosphorylation within all four 
kinases. Once phosphorylated, EIF2S1 hinders general pro-
tein synthesis while intriguingly amplifying the translation 
of select mRNA species, including ATF4 and protein phos-
phatase 1 regulatory subunit 15A (PPP1R15A, also known 
as GADD34). GADD34 participates in a feedback mecha-
nism that directs protein phosphatase 1 (PP1) to dephospho-
rylate phospho-EIF2S1, enabling renewed protein synthesis 
and effectively culminating the ISR (Novoa et al. 2001).

The defining feature of the ISR is the elevation and activa-
tion of ATF4 (Fig. 2d) (Harding et al. 2000). This response, 
when engaged at low or short-term levels, typically steers a 
pro-survival pathway. However, under prolonged or intense 
activation, it can drive cell death (Andrysik et al. 2022). 
Cellular outcomes depend on ATF4's regulation of target 
genes through complex mechanisms involving transcrip-
tion, translation, post-translation, and interactions with other 
transcription factors. Despite common mediators, the ISR 
elicits distinct responses to different cellular stresses. ATF4 
target gene activation is influenced by stress severity, cellular 
context, and stimulus duration. For instance, renal epithelial 
cells respond to oxidative stress and amino acid deprivation 
with ISR-ATF4 activation in a scenario resembling amino 
acid scarcity due to tricarboxylic acid cycle inhibition (Ryan 
et al. 2021). Suppressing ATF4 via siRNA leads to dimin-
ished protein and transcript levels of ATF4 target genes, 
perturbed GSH synthesis, and disrupted amino acid levels 
(Ryan et al. 2021).

While ATF4 primarily serves as a transcriptional acti-
vator for a cohort of genes implicated in the ISR, it can 
also exert transcriptional repression effects. This multifac-
eted behavior is demonstrated in the mouse hippocampus, 
where heightened phosphorylation of ATF4's Ser219 resi-
due leads to ubiquitination-mediated degradation (Smith 
et al. 2020). This degradation liberates CREB, fostering 
enhanced CREB-dependent gene expression (Smith et al. 
2020). Additionally, ATF4 can indirectly enforce inhibitory 
effects. For instance, in mouse neuronal cells, ATF4 partners 
with the DISC1 scaffold protein to facilitate phosphorylation 
of DISC1 at Ser58, consequently inhibiting phosphodies-
terase 4D (PDE4D) via mutual binding (Soda et al. 2013). 
ATF4 doesn't engage directly with PDE4D in this context.

While unbound to the DNA of target genes, ATF4 
exists in a monomeric form (Podust et al. 2001). However, 
ATF4's transcriptional specificity is influenced by its abil-
ity to form heterodimers with other bZIP or AP-1 mem-
bers, thereby modulating the outcomes of ISR signaling. 
In multiple myeloma cells, ATF4 forges a complex with 

ATF3, capable of binding to the PMAIP1 promoter, thereby 
activating PMAIP1 transcription (Wang et al. 2009). In the 
Drosophila model, ATF4's interaction with DDIT3 triggers 
TRIB3 expression, ultimately triggering cell death (Ohoka 
et al. 2005). Some of ATF4's binding partners can repress its 
transcriptional activity. In HeLa cells, EGLN2 and EGLN3 
associate with ATF4, curbing its transcriptional potency 
amidst hypoxia (Hiwatashi et al. 2011; Köditz et al. 2007). 
This dynamic also extends to the Drosophila ISR, where 
TRIB3 interaction curtails ATF4's transcriptional vigor. 
TRIB3 also stands as an ATF4 target gene, presenting an 
intricate negative feedback loop, intricately fine-tuning ISR 
(Wang et al. 2009).

Moreover, the regulatory landscape of the ISR isn't 
confined to ATF4's transcriptional control alone. Obg like 
ATPase 1 (OLA1) in cancer cells influences ISR regulation 
(Chen et al. 2015). OLA1, belonging to the ancient Obg 
GTPase family, acts as an eIF2 regulatory protein, impeding 
protein synthesis and promoting ISR and ATF4 production 
by binding eIF2, catalyzing GTP hydrolysis, and disrupting 
ternary complex formation (Chen et al. 2015).

Overall, the future of ISR and ATF4 research lies in 
uncovering the intricate details of their functions, interac-
tions, and regulatory mechanisms, which could ultimately 
lead to new therapeutic strategies and a deeper understand-
ing of cellular stress responses.

ATF4 in ferroptosis

Ferroptosis was initially identified as a non-apoptotic cell 
death pathway, primarily revealed through the screening of 
compounds, such as erastin and RSL3 (Dixon et al. 2012; 
Liu et al. 2021a). These compounds demonstrated selec-
tive lethality towards cancer cells that harbor mutant RAS 
oncogenes (Chen et al. 2021c). In contrast to apoptosis, fer-
roptosis exhibits distinct biochemical and morphological 
characteristics (Tang et al. 2021; Xie et al. 2016). Morpho-
logically, ferroptosis involves cellular swelling and plasma 
membrane disruption, while apoptosis is characterized by 
cytoplasmic and nuclear condensation with an intact cell 
membrane. A defining feature of ferroptosis is its reliance on 
iron-driven lipid peroxidation, which operates independently 
of the caspases central to apoptosis (Lin et al. 2021). This 
unique mechanism entails perturbed iron ions, lipid metabo-
lism, and redox systems, ultimately resulting in organelle 
and cellular membrane deterioration (Wu et al. 2021). The 
pivotal player in suppressing ferroptosis within the antioxi-
dant system is glutathione peroxidase 4 (GPX4) (Han et al. 
2021a; Li et al. 2023; Xie et al. 2023b; Xue et al. 2023a; 
Yang et al. 2014). Nevertheless, GPX4-independent path-
ways also demonstrate context-dependent roles in inhibiting 
lipid peroxidation.



1032	 Archives of Toxicology (2024) 98:1025–1041

ATF4 modulates ferroptosis sensitivity through multiple 
pathways, including interactions with other transcription fac-
tors (He et al. 2023; Lane et al. 2023; Sun et al. 2016b; Zhu 
et al. 2017) (Fig. 3). The heightened expression of ATF4 
plays a dual role in ferroptosis, depending on its regulation 
of target genes, as discussed below.

ATF4 inhibits ferroptosis

HSPA5 is a chaperone protein induced by ER stress (Cerezo 
and Rocchi 2017). Its roles span signaling control, prolif-
eration, invasion, apoptosis, inflammation, and immunity 
(Cerezo and Rocchi 2017). In the context of human pan-
creatic ductal adenocarcinoma (PDAC), erastin triggers 
a dose-dependent elevation of HSPA5 protein expression 
(Zhu et al. 2017). In contrast, ATF4-knockdown prevents the 
upregulation of HSPA5 (Zhu et al. 2017). HSPA5, in turn, 
enhances GPX4 protein stability, contributing to ferroptosis 
resistance through their interaction (Zhu et al. 2017). Tar-
geting the ATF4-HSPA5-GPX4 axis enhances gemcitabine 
sensitivity in PDAC and provides a potential strategy against 
drug resistance in pancreatic cancer. This axis-mediated 

ferroptosis resistance extends to gliomas, glial cells, and 
carp hepatocytes (Chen et al. 2019; Cui et al. 2022; Shao 
et al. 2023). However, mesencephalic astrocyte-derived neu-
rotrophic factor (MANF) attenuates ferroptosis-driven lung 
injury by diminishing ER stress and restraining HSPA5-
EIF2AK3-ATF4 signaling in lung tissue (Zeng et al. 2023). 
Yet, the precise mechanism behind this phenomenon awaits 
elucidation.

Solute carrier family 7 member 11 (SLC7A11), a com-
ponent of the cystine/glutamate reverse transporter protein 
vital for GSH synthesis, plays a pivotal role as a negative 
regulator of ferroptosis (Dixon et al. 2012, 2014). In ER 
stress-prone MUP-uPA mouse hepatocytes, ATF4 deficiency 
leads to diminished hepatic steatosis but heightened vulner-
ability to ferroptosis, culminating in accelerated hepatocel-
lular carcinoma progression (He et al. 2023). Intriguingly, 
introducing SLC7A11 via ectopic expression reduces fer-
roptosis susceptibility and hepatocarcinogenesis (He et al. 
2023). Thus, ATF4-dependent SLC7A11 expression inhibits 
ferroptosis.

Thioredoxin domain-containing protein 12 (TXNDC12) 
is an ER protein involved in redox signaling and regulation. 

Fig. 3   The role of ATF4 in ferroptosis. ATF4 exerts its influence on 
ferroptosis through a variety of pathways. Several target genes of 
ATF4, including HSPA5, SLC7A11, and NUPR1, act as negative reg-

ulators of ferroptosis. Conversely, other ATF4 target genes, such as 
BTG1, DDIT3, CHAC1, and SLC1A5, positively regulate ferroptosis
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This protein contains a thioredoxin domain, which is associ-
ated with the regulation of cellular redox homeostasis and 
plays a role in the reduction of disulfide bonds in other pro-
teins. In leukemia cells, ER stress triggered by erastin or 
RSL3 activates ATF4, rather than NFE2L2, resulting in the 
upregulation of TXNDC12 transcription and the suppression 
of lipid peroxidation in a GPX4-independent manner (Lan-
lan et al. 2023). Therefore, directing interventions towards 
TXNDC12 presents a promising strategy for overcoming 
ferroptosis resistance in leukemia cells.

Another key player, protein disulfide isomerase family 
A member 4 (PDIA4), an ER enzyme, orchestrates protein 
disulfide bond formation, breaking, and rearrangement, 
critical for protein folding (Lee et al. 2022). In renal cell 
carcinoma, salinomycin induces autophagic degradation 
of PDIA4, concurrently attenuating the EIF2AK3-ATF4-
SLC7A11 signaling pathway (Kang et al. 2023). This inhi-
bition, in turn, hinders the GPX4-mediated defense against 
lipid peroxidation, ultimately promoting ferroptosis (Kang 
et al. 2023).

YAP/TAZ, pivotal effectors of Hippo signaling, modu-
late diverse cellular functions, including tumorigenesis and 
tissue development (Ma et al. 2022; Wang et al. 2022a). 
Despite previous findings indicating that YAP/TAZ sensi-
tizes cells to ferroptosis via increased expression of NADPH 
oxidase 4 (NOX4), acyl-CoA synthetase long-chain family 
member 4 (ACSL4), and transferrin receptor (TFRC) (Wu 
et al. 2019; Yang et al. 2019), a recent study uncovered a 
contrasting role for YAP/TAZ in hepatocellular carcinoma. 
YAP/TAZ emerged as a negative regulator of ferroptosis, 
orchestrating ATF4-dependent induction of SLC7A11 
expression via TEA domain transcription factor (TEAD) 
(Gao et al. 2021). Mechanistically, YAP/TAZ collaborates 
with ATF4, facilitating ATF4's nuclear entry and prevent-
ing cytoplasmic degradation. Inside the nucleus, ATF4 
binds to DNA fragments within the AARE region of the 
SLC7A11 promoter, orchestrating SLC7A11 expression 
(Gao et al. 2021). Thus, these findings establish a feedback 
loop between Hippo signaling and ATF4 activation to con-
trol SLC7A11 expression during ferroptosis.

Moreover, ATF4 unveils additional avenues for SLC7A11 
upregulation. In glutamine and cystine-starved melanomas, 
ATF4 induces γ-glutamylcyclotransferase 1 (CHAC1) 
expression, reducing GSH levels and activating the NFE2L2-
SLC7A11 axis (Kreß et  al. 2023). Additionally, ATF4 
directly activates NFE2L2, promoting the expression or pro-
duction of SLC7A11, GSH, and NADPH (Kress et al. 2023). 
The G-quadruplex is a secondary nucleic acid structure with 
three stacks of G-tetrads. In the NFE2L2 mRNA 5' untrans-
lated region, it regulates de novo NFE2L2 protein transla-
tion under oxidative stress. Additionally, the formation of 
G-quadruplex structures in liver cancer cells enhances ATF4 
expression during erastin-induced ferroptosis (Xie et al. 

2023a). Taken together, this intricate network highlights the 
presence of adaptive mechanisms within the ISR, resulting 
in the activation of ATF4 and NFE2L2.

Cysteine plays a vital role in regulating GSH synthesis, 
and a recent report has revealed that the AHR-ATF4 axis 
mediates cysteine responses in lysosomes, influencing fer-
roptosis sensitivity (Swanda et al. 2023). Mechanistically, 
lysosomal cystine depletion activates the aromatic hydro-
carbon receptor (AHR), leading to its nuclear transloca-
tion. Within the nucleus, AHR binds to the ATF4 promoter, 
inducing ATF4 expression, thus reducing susceptibility to 
ferroptosis. This pathway operates independently of the con-
ventional ISR and oxidative stress, governing ATF4's tran-
scriptional regulation in the nucleus (Swanda et al. 2023).

ATF4 also plays an anti-ferroptotic role in promoting 
nuclear protein 1 (NUPR1) expression. NUPR1 was initially 
identified as a stress-responsive protein during pancreati-
tis, pancreatic development, and regeneration (Mallo et al. 
1997), with its regulation being under the control of ATF4 
(Jin et al. 2009). In human and murine PDAC cells, NUPR1 
plays a protective role against ferroptosis by directly increas-
ing lipocalin 2 (LCN2) expression, a process dependent on 
ATF4 activation (Liu et al. 2021b). LCN2 plays a crucial 
role in regulating iron homeostasis by inhibiting iron uptake, 
thereby limiting the host's ability to acquire iron from the 
cellular environment. In addition to regulating LCN2 expres-
sion, the NUPR1 inhibitor ZZW-115 induces mitochondria-
dependent ferroptosis in PDAC and hepatocellular carci-
noma cells. Inhibition of NUPR1 by ZZW-115 represses 
transcription factor A mitochondrial (TFAM), leading to 
ROS generation and lipid peroxidation due to mitochondrial 
dysfunction (Huang et al. 2021). This complex interplay 
highlights NUPR1 as a transcriptional effector modulated 
by ATF4, potentially influencing ferroptosis defense mecha-
nisms through multiple pathways. Similarly, tomatidine, a 
known compound for preventing muscle wasting, can dis-
rupt ATF4-dependent signaling to induce ferroptosis, thus 
impeding the progression of pancreatic cancer (Mukherjee 
et al. 2023).

ATF4 promotes ferroptosis

In specific contexts, ATF4 can promote ferroptosis by modu-
lating the expression of genes, such as DDIT3 and CHAC1, 
in HT1080 or retinal pigment epithelial cells upon exposure 
to erastin (Dixon et al. 2014; Sun et al. 2018). CHAC1, orig-
inally identified as upregulated during ER stress induced by 
DDIT3 (Mungrue et al. 2009), selectively impacts GSH by 
cleaving the γ-glutamyl bond of GSH (Kumar et al. 2012). 
The direct connection between CHAC1 and ferroptosis is 
established due to its involvement in erastin-induced fer-
roptosis and ER stress (Dixon et al. 2014). The EIF2AK4-
ATF4-CHAC1 signaling pathway also plays a pivotal role 
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in ferroptosis and necroptosis triggered by cystine starvation 
in triple-negative breast cancer (Chen et al. 2017). CHAC1-
knockdown rescues the decrease in GSH levels and cell 
death induced by cystine starvation (Chen et al. 2017). In a 
recent study, methionine, an indispensable amino acid cru-
cial for amino acid metabolism, methylation reactions, and 
redox balance, was found to have a dual role in ferroptosis 
regulation (Xue et al. 2023b). CHAC1 synthesis relies on 
methionine, and prolonged methionine deficiency reduces 
CHAC1 production, hindering tumor cell ferroptosis. How-
ever, brief methionine depletion triggers ATF4 activation, 
subsequently stimulating CHAC1 synthesis and increasing 
tumor cell susceptibility to ferroptosis (Xue et al. 2023b).

Sestrin 2 (SESN2) is known for its role in protecting 
cells against stress and maintaining cellular homeostasis 
(Kim et al. 2015). However, in dendritic cells, a surprising 
observation was made regarding SESN2's interaction with 
the ATF4-DDIT3-CHAC1 signaling axis, which seemed to 
enhance ferroptosis induction (Wang et al. 2020). When den-
dritic cells are exposed to lipopolysaccharide treatment, the 
ATF4-DDIT3-CHAC1 pathway become more pronounced. 
This effect is further amplified upon SESN2 knockdown, but 
can be alleviated by using an ATF4 inhibitor. These findings 
shed light on the crucial role of the SESN2-ATF4-DDIT3-
CHAC1 signaling axis in shaping dendritic cell responses 
to inflammation-induced ferroptosis under septic conditions 
(Li et al. 2021b; Wang et al. 2022c).

Studies have uncovered that cadmium induces ferropto-
sis in renal tubular epithelial cells through the EIF2AK3-
ATF4-DDIT3 signaling pathway, especially under condi-
tions of ER stress (Zhao et al. 2021). Effective mitigation of 
cadmium-induced ferroptosis can be achieved by inhibiting 
ER stress (Zhao et al. 2021). Similarly, in human umbilical 
vein endothelial cells, the activation of ER stress activates 
the HSPA5-ATF4-DDIT3 axis, where active DDIT3 down-
regulates GPX4, thereby promoting ferroptosis (Zhu et al. 
2023). On the other hand, ATF4-mediated DDIT3 activa-
tion not only modulates autophagy, but also regulates the 
expression of various autophagy-related genes (B'Chir et al. 
2013). In hepatocytes, the upregulation of DDIT3 fosters 
excessive autophagy, including ferritinophagy, leading to the 
degradation of ferritin heavy chain 1 (FTH1), an increase in 
iron ion levels, and the promotion of ferroptosis (He et al. 
2022). This also illustrates a positive feedback loop mecha-
nism in ATF4-DDIT3-induced ferroptosis, particularly 
evident in cases where iron overload triggers ferroptosis in 
pancreatic beta cells through the activation of the MAP3K5-
p38-DDIT3 pathway (Deng et al. 2023). The mechanism 
by which ATF4-dependent DDIT3 selectively mediates fer-
roptosis or apoptosis in response to cancer therapy remains 
unclear (Ludwig et al. 2023).

Another player in the context of ATF4-related ferrop-
tosis is BTG1, a member of the ErbB2 family of BTG/

transposons. Originally discovered alongside MYC in 
B-cell chronic lymphocytic leukemia (Rimokh et al. 1991). 
BTG1 plays a role in influencing cell cycle progression, 
differentiation, and cell death through its interaction with 
ATF4 (Yuniati et al. 2016). In hepatocytes undergoing fer-
roptosis, ATF4 positively regulates the expression of BTG1. 
This heightened BTG1 expression, in turn, augments ATF4 
activation, including the upregulation of ATF4-dependent 
TRIB3 and DDIT3 genes (Cho et al. 2021). Furthermore, 
SLC1A5, a target gene of ATF4, exhibits reduced glutamine 
uptake and decreased MDA accumulation in melanoma cells 
when miR-137 is inhibited, resulting in suppressed ferrop-
tosis (Luo et al. 2018). Nevertheless, the exact mechanisms 
of the ATF4-SLC1A5 axis in influencing ferroptosis remain 
to be fully elucidated.

In summary, ATF4 plays dual roles in ferroptosis, but 
the circumstances determining whether ATF4 acts as an 
inhibitor or agonist of ferroptosis remain unclear. A deeper 
understanding of ATF4's regulatory role in ferroptosis may 
offer novel disease treatment approaches and insights into 
ferroptosis mechanisms.

ATF4 in cancer

Ferroptosis plays a dual role in tumor biology, with potential 
as a direct cancer cell eradication strategy, yet contribut-
ing to tumor development and immune response attenuation 
(Chen et al. 2023, 2021b; Dai et al. 2020b; Kim et al. 2022a; 
Motooka and Toyokuni 2023). ATF4 also exhibits a com-
plex role in tumorigenesis and tumor therapy, dependent on 
tumor stage and microenvironment (Fig. 4) (He et al. 2023; 
Horiguchi et al. 2012; Xiao et al. 2019). ATF4's multifaceted 
role in tumors requires careful evaluation across different 
contexts, with the following sections elaborating on its dual 
roles and potential as a therapeutic target in tumor therapy.

ATF4 acts as an oncogene

In the tumor microenvironment, hypoxia is a prevailing con-
dition where cancer cells adeptly respond to their surround-
ings (Masson and Ratcliffe 2014). Hypoxia induces the rapid 
upregulation of lactate dehydrogenase A (LDHA) through 
hypoxia-inducible factor 1 subunit alpha (HIF1A) (Semenza 
2013). This enzyme aids in converting pyruvate to lactate, 
compensating for compromised oxidative mitochondrial 
function during hypoxia, and thereby sustaining tumor cell 
survival. Conversely, in melanoma cells, inhibiting LDHA 
triggers a signaling cascade involving EIF2AK4-ATF4 acti-
vation, driving serine and aspartate biosynthesis, upregulat-
ing SLC1A5, and bolstering glutamine and essential amino 
acid influx (Pathria et al. 2018). This pathway ultimately 
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contributes to pro-survival MTOR activation (Pathria et al. 
2018).

In addition, tumor cells often experience disrupted pro-
tein folding in the ER (Wang and Kaufman 2014). In PDAC 
cells, erastin induces ER stress, triggering the ATF4-HSPA5-
GPX4 pathway, which confers resistance to gemcitabine by 
inhibiting ferroptosis (Zhu et al. 2017). Furthermore, ATF4 
contributes to tumorigenesis by binding to over 30 promoter 
regions of MYC proto-oncogene (MYC) target genes, par-
ticularly those involved in amino acid and protein synthesis 
(Dey et al. 2013; Qing et al. 2012). This interaction involves 
eukaryotic translation initiation factor 4E binding protein 
1 (EIF4EBP1), which mitigates MYC-induced proteotoxic 
stress (Tameire et al. 2019). MTOR negatively regulates 
EIF4EBP1, and blocking MTOR activity in ATF4-deficient 
cells counteracts MYC-induced ER stress, delaying MYC-
driven tumorigenesis (Tameire et al. 2019). These findings 
establish a complex interplay between ATF4, proteotoxic 
stress, and proliferative signaling during tumorigenesis (Sin-
gleton and Harris 2012).

The migration and invasion of cancer cells require 
detachment from the extracellular matrix (ECM), enabling 
their entry into blood and lymphatic vessels (Yilmaz and 
Christofori 2009). When HT1080 cells detach from the 
ECM, they activate the ISR (Dey et al. 2015). This trig-
gers ATF4-mediated signaling, serving a dual purpose. 
First, ATF4 promotes the upregulation of the antioxidative 
stress factor heme oxygenase 1 (HMOX1), which reduces 
ROS generation and guards against anoikis—a form of 
cell death resulting from the loss of ECM attachment 
(Dey et al. 2015). Second, ATF4 stimulates pro-survival 
autophagy by increasing the expression of autophagy-
related genes, including ATG5, ATG7, and unc-51 like 
autophagy activating kinase (ULK) (Dey et al. 2015).

In summary, ATF4's oncogenic role in tumor cells often 
arises due to its upregulation, leading to enhanced cell 
survival, migration, and invasion in response to stress con-
ditions (Fig. 4a).

Fig. 4   The role of ATF4 in cancer. ATF4 governs the expression of 
distinct target genes in various contexts, thereby shaping the destiny 
of tumor cells. a ATF4 acts as a tumor-promoting factor by enhancing 

survival mechanisms, including cellular resistance to drugs and eva-
sion of cell death. b ATF4 also acts as a tumor suppressor, inducing 
cell death and strengthening immune responses
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ATF4 acts as a tumor suppressor

ATF4 also can suppress tumorigenesis (Fig. 4b). Immuno-
genic cell death (ICD) is a mode of cell demise character-
ized by the release of damage-associated molecular patterns 
(DAMPs) such as HMGB1 and ATP, along with the pres-
entation of calreticulin (CALR) on the cell surface. These 
processes collectively promote dendritic cell maturation 
and activation, ultimately leading to antigen presentation 
and cytotoxic T-cell responses (Galluzzi et al. 2020; Mar-
tins et al. 2014; Tang et al. 2023a). ATF4 can enhance anti-
tumor activity by promoting antitumor immune responses, 
including ICD. For instance, oleandrin, a cardiac glycoside, 
exemplifies this process in breast cancer cells through ER 
stress-induced activation of EIF2AK3-ATF4-DDIT3 signal-
ing, independent of the CASP family (Li et al. 2021d). In 
this context, ER stress increases DAMP and ATP secretion, 
intensifying immune cell infiltration and response (Li et al. 
2021d).

Gene-level regulation also plays a role in ATF4-mediated 
tumor suppression. For example, withaferin A-induced cell 
death in glioblastoma multiforme triggers ATF4-ATF3-
DDIT3 activation, promoting apoptosis and cell cycle arrest 
through transcriptional regulation (Tang et al. 2020). The 
ablation of ATF4 in hepatocytes inhibits hepatic steatosis but 
increases susceptibility to ferroptosis through the downregu-
lation of SLC7A11, consequently resulting in the accelerated 
development of hepatocellular carcinoma (He et al. 2023). 
Additionally, a brief deficiency in methionine can activate 
the ATF4-CHAC1 pathway, increasing the susceptibility of 
tumor cells to ferroptosis (Xue et al. 2023b). Consequently, a 
combined approach involving short-term dietary methionine 
deficiency, a ferroptosis inducer, and an anti-programmed 
cell death 1 (PDCD1, also known as PD-1) antibody yields 
significant inhibition of tumor progression (Xue et  al. 
2023b). These findings also establish dietary approaches to 
enhance ferroptosis-related antitumor immunity.

The interplay between ATF4 and autophagy plays a role 
in determining the fate of tumor cells. In some situations, 
ATF4-induced autophagy can promote cell survival by elim-
inating damaged components and providing energy during 
stressful conditions. For instance, in colon cancer cells, sup-
pression of glutamine catabolism activates the ATF4-DDIT4 
signaling pathway, leading to the inhibition of the MTOR 
and the initiation of pro-survival autophagy (Han et al. 
2021b). In lung cancer cells, the survival process during 
glutamine starvation, facilitated by ATF4, is also positively 
regulated by the activation of the Hippo pathway (Kim et al. 
2023). However, under specific circumstances, excessive or 
sustained ATF4 activation and autophagy can lead to a form 
of cell death known as "autophagy-dependent cell death" 
(Chen et al. 2023; Denton and Kumar 2019; Li et al. 2021c; 
Liu et al. 2023; Tang et al. 2019; Xie et al. 2023a), which 

functions as a tumor suppressor mechanism. The precise 
conditions or stimuli that determine whether ATF4 promotes 
cell survival through autophagy or contributes to cell death 
through excessive autophagy are not yet fully understood.

Conclusion and perspective

In summary, ATF4 plays a pivotal role in cellular stress 
responses, ferroptosis, and cancer, exhibiting its versatility 
in adapting to adverse conditions, such as ER stress, amino 
acid deprivation, and oxidative stress (Dey et al. 2015; Wang 
et al. 2022b, 2023). Its intricate involvement in the ISR influ-
ences cell survival and shapes cancer biology.

The emergence of ferroptosis as a cell death pathway 
in cancer therapy highlights ATF4's contextual role, either 
promoting or inhibiting ferroptosis (Chen et al. 2017; Zhu 
et al. 2017). This dual function suggests that ATF4-mediated 
mechanisms can offer resistance to ferroptosis, but may also 
represent therapeutic targets.

For future directions, deeper insights into ATF4's multi-
functionality, interactions with other cellular components, 
and context-dependent actions are essential for innovative 
cancer treatments. Leveraging ATF4 as a modulatory target, 
whether to enhance ferroptosis in apoptosis-resistant cancers 
or counteract tumor-promoting effects, presents promising 
therapeutic avenues. Additionally, uncovering the molecu-
lar intricacies of ATF4's role in cell stress and ferroptosis 
may lead to biomarker discovery and predictive indicators 
in diverse cancer types.

In conclusion, the dynamic interplay among ATF4, cellu-
lar stress, ferroptosis, and cancer underscores the complexity 
of cellular systems. It emphasizes the need for a comprehen-
sive approach considering the intricate cross-talk between 
stress pathways and their implications in cancer progression. 
As research reveals the molecular nuances of these interac-
tions, novel targeted therapies exploiting ATF4's dual nature 
in stress response and cell death regulation may reshape the 
landscape of cancer treatment.
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